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ESTIMATE OF TURBULENT EDDY DIFFUSION BY EXACT
RENORMALIZATION*

ALEXANDRA INDEIKINAT AND HSUEH-CHIA CHANGT

Abstract. By using a Lagrangian renormalization formulation, the effective diffusion equation
is rigorously derived for a tracer in a homogeneous, isotropic, stationary, multidimensional and zero-
mean Gaussian velocity field with a known two-point/two-time correlation tensor. The basic idea is
to find the appropriate representation for the averaged small-scale solute distribution, to express it
in terms of large-scale variables, and then to evaluate the limit of the infinite separation between the
dissipation and the integral scales of turbulence. Key to the derivation is the validation of Corrsin’s
independence hypothesis for the selected velocity field at any diffusion time. The requirement of the
nontrivial limiting behavior for the averaged solute distribution then results in the determination of
the appropriate time scale for the averaged effective large-scale long-time spreading problem and in
the evaluation of the effective transport coefficient. Unlike the simple shear flow case of Avellaneda
and Majda, multidimensional velocity fluctuations ensure a constant eddy diffusivity in the limit of
infinite time for any spectral parameters. By adjusting a single decorrelation time spectral parameter
for a velocity field with Kolmogorov spectrum, the effective evolution equation is shown to produce
the same time-evolution of the lateral mean-square displacement as a numerical simulation of planar
flow and experimental heat-transfer data in turbulent pipe flow. The predicted constant asymptotic
eddy diffusivity at infinite time, Ep = 7.26 x 10~ 3vRe"/8, agrees with experimental data for eddy
diffusivities in pipes and ducts over three decades of Reynolds numbers.
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1. Introduction. It is well known that the effective diffusivity of a turbulent
flow can be a thousand times larger than the molecular transport coefficient. Hence,
the computation of eddy diffusivity in a fully developed turbulence is an extremely
important practical problem in both engineering and environmental science. Macro-
scopic description of the dispersion enhancement is a complex problem due to large
fluctuations in the scalar field caused by the turbulent flow, where the velocity involves
a continuous range of excited space and/or time scales and admits only a statistical
description. The goal of eddy diffusivity theories is to assess the effects of the con-
tinuum of energetic smaller scales on the large scales through an effective equation
without resolving this effect explicitly. Mathematically, it requires the statistical av-
eraging of the small-scale fluctuations and then the determination of new appropriate
time scales for the resulting effective transport equation such that the desired solution
behaves nontrivially in the large-scale long-time limit.

Unfortunately, because of the presence of convective term u- V(...) in transport
equations, all statistical quantities are coupled up to infinite order. To find the average
value (C'), for example, one needs to know the correlation (Cu); if one tries to write
down the equation for (Cu), terms like (Cuu) will appear in it, and so on. Hence, one
needs to close somehow this infinite hierarchy of statistical moments. The fluctuations
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in turbulent flows are typically large, however, and the usual perturbation expansions,
which simply neglect higher-order moments, will completely fail to predict something
reasonable for problems of such kind. Instead, these problems have been attacked
through a wide variety of renormalized perturbation theories that mimic ideas from
field theory and the renormalization group theory from critical phenomena, both
involving partial summation of the perturbation series.

The basic idea of the renormalized perturbation theories (RPT) is in the replace-
ment, after ensemble averaging, of the zero-order terms in a formal widely divergent
perturbation expansion by the exact values. It should be mentioned that convergence
is not ensured for the renormalized perturbation series. However, even if it does not
converge, it is much more accurate than widely divergent primitive perturbation se-
ries. The application of renormalized perturbation theories to turbulence has been
pioneered by Kraichnan in a series of papers during the late 1950s, cumulating in
the direct interaction approximation (DIA). (See Kraichnan [16], for example.) The
“direct interaction principle” means that the strongest coupling occurs between the
“nearest neighbors” in the wavenumber space. Consequently, only terms responsible
for such interactions should be taken into account, summed, and averaged. As a
result, the renormalized perturbation series is truncated at the second order.

Note that in its original formulation, DIA fails even to reproduce the Kolmogorov
“k=5/37 energy spectrum and results instead in a k~3/2 decay for the inertial range
of wavenumbers. Further development of this theory that includes reformulation
in mixed Eulerian Lagrangian coordinates (see Kraichnan [17]) results in at least
qualitative agreement with spectral measurements. Unfortunately, as the performance
improves, the length and complexity of the final equations grow dramatically. Until
now, different modifications of DIA remain the most popular among all renormalized
perturbation theories. As an example of the application of DIA to scalar transport
problems, one can mention the study of Koch and Brady [14]. They use DIA to
predict the rate of growth of the variance of a tracer for a slowly decaying velocity
covariance ~ 7. Their analysis indicates that the spread will be nondiffusive with
the mean-square displacement growing like 4/ (%) as t — oo for 0 < 4 < 2, and this
result is qualitatively consistent with numerical simulation. However, higher-order
moments obtained from this approximation are incorrect.

In general, the strength of the renormalized perturbation theories lies in their
generality and the absence of ad hoc assumptions or disposable constants. However,
the unpredictable error of all RPT’s (because of unknown mathematical properties of
renormalized perturbation series) on one hand, and the enormous complexity when
formulated for inhomogeneous turbulence on the other, restrict using these theories in
both fundamental and engineering applications. A partial answer to the first of these
problems lies within the renormalization group approach, which is quite distinct from
RPT.

The renormalization group method (RNG) already has some success when applied
to problems in critical phenomena. The pioneers in the development of the RNG for
turbulence are Forster, Nelson, and Stephen [9]. Their theory is later generalized
by De Dominicis and Martin [6]. The RNG involves iterative averaging over the
small bands of modes and progressive scaling away from the highest wavenumbers
(short waves), whose effect on the lowest wavenumbers (long waves) can be retained
in an average form as a contribution to the transport coefficients. If the system
becomes invariant under the mode elimination procedure, the scaling transformation
is said to have reached a fixed point. One can then eliminate all fluctuations, and
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the value of the new transport coefficient at the fixed point corresponds to enhanced
diffusivity. Using the RNG, Yakhot and Orszag [23] obtain the turbulent viscosity and
the relation between turbulent Prandtl number and turbulent viscosity for unbounded
homogeneous turbulence and applied these results to heat transfer in a pipe, using
an empirical model for the viscosity in a wall region (Yakhot, Orszag, and Yakhot
[24]). Tt has been reported that the proposed formula gives good agreement with
experimental data in a wide range of Prandtl number, 1072 < Pr < 105,

From both a physical and mathematical point of view, the RNG is more rigorous
than the RPT, and at the same time, the RNG is simpler: at the end, the mathe-
matical problem reduces to the study of a system of first-order ordinary differential
equations. However, it should be mentioned that the RNG mode elimination pro-
cedure is valid to any order only if the neglected higher-order terms (they are truly
negligible only when the first band of modes is eliminated) remain negligible after
scaling transformations. In turbulent flow calculations, the above condition often re-
quires the space dimension to be “slightly higher than 3,” with the best performance,
for example, in seven-dimensional space (Yakhot and Orszag [23]). Consequently, it is
hard to expect the RNG to give the correct prediction for any case, Yakhot, Orszag,
and Yakhot’s claim notwithstanding.

For scalar transport problems, perhaps the most rigorous and accurate approach
has been suggested by Avellaneda and Majda [1]. They consider an advection-diffusion
of a passive scalar in a simple shear flow u = (0, ug(z1,t),0), where us(x1,t) has sta-
tionary Gaussian statistics. This model problem admits an explicit representation of
the solution through the Lagrangian formulation. Using the above representation and
some properties of stochastic differential equations, Avellaneda and Majda develop
a complete renormalization theory for this exactly solvable model with full mathe-
matical rigor. They found several regimes of anomalous diffusion that depend on the
parameters of the velocity spectrum, such as time-dependent diffusivities and even an
effective equation with a random nonlocal diffusion coefficient.

With this exact result, the capability of the RNG, Lagrangian RPT, and DIA in
predicting turbulent transport for the same model flow is also examined (Avellaneda
and Majda [2]). It is found that all these approximate theories give incorrect predic-
tions for some regions of renormalization, which depend on the parameters defining
the velocity spectrum.

The RNG always predicts a simple local diffusion equation with constant diffusiv-
ity and often erroneously determines the appropriate time scale for the effective trans-
port problem. More importantly, it has been found that the RNG is barely acceptable
for velocity spectra pertinent to turbulent transport problems. The important exam-
ple of the Kolmogorov velocity spectrum belongs to the boundary of applicability of
the RNG, where this method can still give the correct long time scale for the effec-
tive diffusion problem. However, in this case RNG can only provide the infinite-time
asymptotic value of effective diffusivity and cannot resolve the time-evolution of the
mean-square displacement. Hence, the application of the results of Yakhot and Orszag
[23] to nonsteady turbulent transport problems seems questionable.

In contrast, both RPT always reproduce the correct time scale for effective dif-
fusion problems. However, the resulting effective equations can vary from the simple
wave equation to some complicated integro-differential equation instead of the local
diffusion equation with time-dependent diffusivity predicted by the exact renormal-
ization theory of Avellaneda and Majda [1].

For the more general case of turbulent transport by isotropic homogeneous ran-



4 ALEXANDRA INDEIKINA AND HSUEH-CHIA CHANG

dom velocity fields, Avellaneda and Majda [3] investigate a part of the spectral pa-
rameter space in the vicinity of the Kolmogorov value. They find that the anomalous
long-time scale for the effective transport process remains the same as for a simple
shear flow model considered earlier [1], regardless of flow dimensions. The govern-
ing equation may, however, differ. If the temporal fluctuations are not irrelevant in
the large-scale long-time limit, Avellaneda and Majda suggest a nonlocal diffusion
equation but do not present details in their report [3].

Recently, Fannjiang [8] invokes variational principles to analyze scalar transport
by the same three-dimensional turbulent flow for the entire range of spectral parame-
ters. He also investigates the effect of the cut-off wavenumber on the resulting scaling
laws. (In fact, this introduces a third dimension in the parameter space.) While this
method produces a long time scale for anomalous diffusion, consistent with earlier
results of Avellaneda and Majda [3] at identical values of the parameters, it provides
only an upper bound for the effective diffusion coefficient. The limiting long time
scale is found to be dependent on the wavenumber scaling. However, it should be
noted that the actual wavenumber range, important for the scalar transport, is not
arbitrary. Instead, it should be determined from physical arguments (as has been done
by Avellaneda and Majda [1]) like the velocity spectrum, spatial scales of initial data,
requirement of finite (not only bounded) eddy diffusivity, etc. Hence, the applicability
of Fannjiang’s results [8] to practical turbulent transport is quite limited.

It also should be noted that none of the earlier works relate the main scaling
parameter (the ratio of dissipation to integral length scales of turbulence) to other
typically reported physical quantities (like Reynolds number, friction velocity, pipe di-
ameter, etc.). For the Kolmogorov spectrum, this relation is well known (see McComb
[19], for example, or any other textbook on turbulence), but it is not obvious for other
spectra. Also, there are almost no comparisons of suggested theories with experimen-
tal data. The only exceptions are the work of Yakhot, Orszag, and Yakhot [24] and
in the fundamental book of McComb [19], where some of the predicted infinite-time
asymptotic values of effective diffusivities are compared to data. If, however, the the-
ory suggests time-dependent eddy diffusivity or nonlocal scalar transport, one needs
to use data on the time-evolution of mean-square displacement to check the prediction
adequately.

The investigation of full two-dimensional (2-D) and three-dimensional (3-D) tur-
bulent transport using an extension of exact renormalization theory of Avellaneda
and Majda is the subject of this report. With the usual idealization for the turbulent
core, the zero-mean unbounded turbulent flow in the inertial range of length scales
is assumed to be stationary, homogeneous, and isotropic. The spreading of the pulse
of the solute in 2-D or 3-D isotropic random flow is examined as the simplest exam-
ple, allowing the derivation of large-scale long-time effective transport equation and
the associated effective diffusivity, which is time-dependent in general, in terms of
parameters defining the velocity statistics.

The basic idea is to find the appropriate representation for the averaged small-
scale solute distribution, to express it in terms of large-scale variables, and then to
evaluate the limit of the infinite separation between the dissipation and the integral
scales of turbulence. (In fact, this is the limit of infinite Reynolds number). The
requirement of the nontrivial limiting behavior for the averaged solute distribution
(it is never equal to zero nor the initial data) then results in the determination of
the appropriate time scale for the averaged effective large-scale long-time spreading
problem and in the evaluation of the effective transport coefficient.



ESTIMATE OF TURBULENT EDDY DIFFUSION 5

Since the whole idea of renormalization in this case is based on the appropriate
rescaling, the initial nondimensionalization of the small-scale transport problem and
the statistics of the random velocity field are defined precisely in sections 2 and 3.

Section 4 describes the Lagrangian formulation of the advection-diffusion problem
through Ito’s stochastic differential equation. It provides the solution for the distri-
bution of the evolved concentration field that, however, has to be averaged over the
distribution of random velocity field and over the Brownian motion that represents
the molecular diffusion effect in Ito’s formulation.

This averaging is completed in section 5, and it is shown that the resulting aver-
aged concentration distribution and the evolution equation for the effective diffusivity
are exact for the selected stationary homogeneous isotropic Gaussian velocity field.
With some physically plausible assumptions, the above result also can be applied to
the more important case of non-Gaussian velocity statistics.

In section 6 the rescaling of the derived equations is carried out. The large-scale
long-time limiting behavior of the averaged solute distribution is evaluated and the
effective diffusion equation is derived, provided that the effective diffusivity can be
properly renormalized.

The renormalization procedure for different parameters of the velocity spectrum
is described in section 7. It includes the evaluation of the distinguishing limit for
the evolution of rescaled enhanced diffusivity and hence the determination of the
appropriate time-rescaling function for the effective large-scale long-time diffusion
equation.

The summary and discussion of results of the renormalization analysis are offered
in section 8. The Kolmogorov velocity spectrum is chosen to compare the predicted
transport coefficient with experimental data on turbulent scalar transport and with
earlier numerical simulation. Both quantitative and qualitative agreement seem to be
satisfactory, taking into account the strong limitation of the assumed homogeneous
and isotropic Gaussian statistics.

2. Initial nondimensionalization for the transport problem. Consider the
dispersion of a solute/temperature field by a well-developed turbulent flow. Away
from the boundaries, in a turbulent core, the mean velocity profile is often assumed
to be flat. Consequently, such mean flow results only in the translation of the initial
solute distribution. Hence, in a frame of reference moving with the constant mean
flow, the spreading of the pulse is governed by the advection-diffusion equation

oc’

o tu V0= Dyvc’,  C'(X,0) = Cy(x),

(2.1)

where u/(x’,t¢') is the random velocity field with zero mean, Dj, is the molecular
diffusivity and primes denote dimensional variables. Because only the turbulent core
will be considered here, no boundary conditions are imposed. Since the goal of this
study is to average the effect of all inertial range fluctuations of the velocity field, the
problem should be made nondimensional with the smallest possible scale of turbulence
initially. Hence, the dissipation length scale Ly for the fluctuation velocity field u’ is
taken as the characteristic length. The characteristic velocity Uy is then defined by
the requirement that the dissipation Reynolds number R; = UyL4/v is equal to 1,
such that Uy = v/Lg. This results in the characteristic time 74 = Lyq/Uyq = Ld2/1/,
which corresponds to the viscous dissipation time scale. The inverse of the Schmidt
number defines the nondimensional diffusivity Dy = Dj/v = Sc™!.
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For the renormalization procedure, it also is necessary to define the macroscopic
scales for the problem. The macroscopic length scale Ly is defined as the integral
length scale of the turbulence. For the realistic systems, Lg is of the order of the
lateral dimension of the flow. Since the effect of constant mean flow in this idealized
problem has been eliminated and only the inertial range of the turbulence will be
considered, the large-scale Reynolds number Ry = UyLg/v is defined through the
root-mean-square velocity Uy for the large-eddy motion.

The ratio between the dissipation and the integral length scales increases with Ry
and it is represented by the small parameter 6 = Ly/Ly < 1. The actual dependence
of 6 on the large-scale Reynolds number Ry depends on the spectrum of the velocity
fluctuation and will be specified later.

The advection-diffusion problem (2.1) is linear in C’ and, because there are no
boundary conditions, the characteristic value of the concentration difference AC” used
for nondimensionalization is not important. However, several restrictions should be
imposed on the initial nondimensional solute distribution Cy = Cj/AC". Since (2.1)
describes the solute dispersion in the unbounded domain, Cy(x’) should decay to
infinity fast enough such that the integral of the initial distribution over the entire
n-dimensional space is finite,

0< L’_"/ Co(x")d"x' < 0,

where an appropriate length scale L’ is added for dimensional reasons. Consequently,
Co(x') can be defined by its Fourier integral

(2.2) Co(x') = (2r/L")™ /_ h Co(K') exp(1K'x")d"K/,

where K’ is the n-dimensional wavevector.

If one would like to describe a large-scale long-time behavior of the spreading
process, it is necessary to assume large-scale initial data for the advection-diffusion
problem (2.1). This implies that Cy(x’) varies only over the integral length scale Lg.
Consequently, one should set L' = Lg in (2.2) such that Co(x’) = Co(x'/Lg) and
Co(K') = Co(K), where K = K'Ly is the large-scale nondimensional wavevector.

Hence, with the nondimensionalization on dissipation length and time scales Lg
and 74, the governing equation (2.1) and the initial distribution (2.2) becomes

(2.3) % +u-VC = DyV3C,

(2.4) C(x,0) = Co(6x) = (2m) ™" / h Co(K) exp(16Kx)d"K,

— 00

and all nondimensional variables and parameters introduced in this section are sum-
marized below:

x = x'/Ly, u=u'/Uy, K =K'Ly, t=1t"/1a,

74 = Lg/Uq = Lg*Jv, Dy = D}Jv=Sc!,
RdZUde/l/Zl7 ROZU()L()/V>>17 (S:Ld/Lo < 1.
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3. Velocity statistics. Let us specify the random velocity field u(x,t). The
fluid is assumed to be incompressible, such that the continuity equation V -u’ = 0
holds. With the usual idealization for the turbulent core, the zero-mean unbounded
turbulent flow in the inertial range of length scales (Lgy < L' < Lg or, in nondimen-
sional form, 1 <« L' < 1/6) is assumed to be stationary, homogeneous, and isotropic.

It also is assumed that the random flow field u(x,t) has Gaussian statistics. In
general, this is a very strong and, moreover, nonphysical assumption for the turbulent
flow. It is well known that real turbulence is never Gaussian. More importantly, the
nonzero triple correlation (u;(x,t)u;(x,t)ux(y,t)) is responsible for turbulent energy
transfer. At the same time, the Gaussian statistics for zero-mean u(x,t) immediately
leads to the vanishing of all odd-order moments. For the problem of a scalar transport,
however, this is a rather common approximation (see Kimura and Kraichnan [13],
Koch and Shagfeh [15], or Avellaneda and Majda [2], for example) if one is not
interested in how the random flow field has been created and sustained.

With the above assumptions, the m-dimensional Gaussian velocity field u(x,t) is
specified by the spectral form of two-point two-time correlation tensor R,

(ui(x, )u;(y, s)) = Rij(|x —yl, [t — s])

(3 = n 7 [ QU= )P 09 explik(x — v

where k = |k|, Pij(k) = 6;; — kikj/k?, and the spectral amplitude Q(k, [t — s|) is
defined in the inertial range of wavenumbers

Qs [t — s]) = a2k~ exp(—ak®|t —5]), <k <1,

(3.2) .
Qk, |t —s[)=0 otherwise.

One should mention that the correlation of the Fourier-component of the velocity field
is given by

(i (k, t)a;(q, 8)) = 6(k + q) Rij (k, [t — s])

(3.3) . N
= 0(k+q)Q(k, [t — s|) P;; (k).

Note that for the simple shear flow considered by Avellaneda and Majda [1] (m = 1,
u(x,t) = (0,ug(x1,t),0), k = (k1,0,0)) the spectral correlation tensor R(k, |t — s|)
reduces to a single component Rgy = Q(k, |t — s|) and in this case the requirement of
the isotropy of the velocity field should be omitted.

For the realistic turbulent core, the spatial dimensions m and n for the velocity
and concentration field should always be set equal to 3 because fluctuations are always
3-D. However, the general form of the isotropic spectrum (3.2) and the initial condi-
tions (2.4) with m = n = 2 or 3 will be considered, keeping in mind other possible
applications and the comparison with earlier works.

If the experimental data on the two-point two-time correlation are available, all
parameters in the model spectrum, as well as the value of the scale ratio ¢, can be
determined directly. However, most velocity measurements provide only the energy
spectrum. Hence, it is useful to discuss the physical meaning of the parameters of
the model spectrum (3.2) and to establish some relations between values of these
parameters and more common measurable quantities, like the Reynolds number, for
example. The parameters e and « are related to the kinetic energy spectrum (per
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Fi1G. 1. Schematic of the model energy spectrum (log-log plot). (a) For positive €, the energy is
supplied by the large-eddy motion, with k < 6, and is dissipated in small-scale fluctuations k > 1,
with the energy cascade along the spectrum. (b) In the case of negative €, the spectrum should
necessarily have a peak, where some additional stochastic forcing is applied.

unit mass of liquid)

. 1 . S(m)
4 E(k)dk = ~trR(k, 0)k™ ' ——dk
(3.4 (k) = 5 0)k™ 2
where S(™) = 27™/2 /T'(m/2) is the area of the m-dimensional unit sphere. For 2-D
or 3-D flow, the model energy spectrum (3.4) becomes

a?(m—1)
Qam—1
The energy spectrum (3.5) is shown schematically in Figure 1(a) for positive values of
the exponent €. Hence, € defines the strength of the infra-red divergence of the kinetic
energy at low wavenumbers, and « is the nondimensional amplitude parameters which
are assumed to be independent on the separation of scales 6. The values of € = 5/3,
m =3, and a?(m — 1)/(47™"1) = aq in (3.5) provide the nondimensional version for

the Kolmogorov energy spectrum

(3.5) E(k)dk = k=¢dk, 6<k<1, m=23.

(3.6) E{jey (K" dK' = aoe® k' =Pk,

where o =~ 1.5 is the Kolmogorov constant and ¢ is the energy dissipation rate.

With the nondimensionalization on the dissipation length scale, the kinetic en-
ergy of the small-scale fluctuations (k,dk ~ O(1)) should be of the order of O(1).
Consequently, the amplitude for the energy spectrum o?(m — 1)/(47™~1) ~ O(1).
The universality of the spectrum in the inertial range of wavenumbers implies that
(3.5) should remain invariant under the scaling transformations (Lg < Lo, Uy < Up).
Consequently, in the large-scale limit (k,dk ~ O(6)) expression (3.5) should provide
the kinetic energy for the largest eddies included in consideration, without rescaling
of the amplitude «. This requirement gives the relation between the integral and
dissipation scales

(3.7) — ~ e
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or, in terms of the Reynolds number for the large-eddy motion,
(3.8) 6 ~ Ry~ (1),

With e = 5/3, (3.8) reduces to § ~ Ro~%/*, i.e., provides the correct dependence for
the scales ratio 6 on the Reynolds number of the large-eddy motion for well-developed
isotropic turbulence.

Several remarks should be made here. As is evident from (3.7), a physically
meaningful spectrum for the flow with an energy cascade from the large to the small
scales should have ¢ > 1. It is unlikely for the speed of the large-eddy motion Uj to
be smaller than the root-mean-square velocity of the smallest scales Uy, unless some
additional small-scale stochastic forcing is applied. In such a case, when the system
presents both “slow” large eddies and “fast” small fluctuations, (3.8) provides another
restriction: € > —1 because the separation of scales § should increase with Ry. For
negative values of €, the spectrum should necessarily have a peaked shape, like in
Figure 1(b), and the functional form of the decaying part of the spectrum may be
important.

The integration over k in (3.5) results in the total kinetic energy of the inertial-
range fluctuations

2
m U

2 U3

o / B(k)dk = %trR(QO) _
0

and provides the relation for the parameters of the model spectrum with the root-
mean-square velocity U,

(3.9) U2, _ a?(m—1) {611(61_E —-1) e#1,

U? 2mam=1 | —1lné e=1,

or, in terms of the root-mean-square Reynolds number R,.,,s = UpmsLo/V,

2mrm—1 | —6721né e=1.
In the limit § — 0, (3.8) and/or (3.10) allow us to relate the amplitude parameter « in
the model and the ratio of scales § with R,..,,s and Ry for € different from Kolmogorov’s
5/3 value.

Now let us consider the time-dependent part of the two-point two-time correlation
(3.2). The decorrelation time T' = 1/ak? corresponds to the turnover time for different
spatial modes. The parameter z > 0 represents the fact that low-wavenumber modes
have larger turnover times than the short waves. Larger values of z increase the
separation of the decorrelation times for long and short waves. The nonnegative
parameter a defines the decorrelation time 1/a for the shortest waves with & = 1.
The value of a = 0 corresponds to the spatially random steady flow u = u(x). The
limiting value a — oo (provided that ? scales as a) corresponds to fluctuations that
are completely decorrelated in time. In such a case, the exponential term should be
replaced by a delta-function §(k*(t — s)) = k=%6(t — s). Similar to the amplitude of
the spectrum «, a is assumed to be independent of the scale ratio 6.

The physical association of T with the turnover time for different modes u(k)
implies that 1/T ~ ku(k). Since the speed of the mode u(k) can be estimated as a
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root-mean-square fluctuation velocity in the range of wavenumbers g > k,

)~ ([ B "

the kinetic energy spectrum (3.5) results in the estimate for 1/T,
(3.11) 1/T = ak? ~ akB=9)/2,

and, consequently,

(3.12) a~ a, z=

The above estimate prescribes the particular relationship (3.12) between z and e.
Note that, according to the Kolmogorov similarity hypothesis, in the inertial range of
wavenumbers, T can depend only on the energy dissipation rate € and the wavenumber
itself. Dimensional analysis then leads to the well-known result for the frequency-
response function w’(k’) ~ 1/T" and turbulent viscosity vr(k'):

(3.13) W (k) = vr (K> ~ 1T ~ 31?3,

As can be easily seen, for the Kolmogorov value of the exponent e = 5/3, (3.11) is
just a nondimensional version of (3.13).

Measurement of the decorrelation time 7' from two-time correlations are rare.
Hence, (3.12) provides a welcomed estimate of z from e. However, the spectral pa-
rameter a remains unknown as a ~ « is only an order estimate. We shall determine
a parameter a empirically in section 8.

Hence, the Kolmogorov energy spectrum (3.6) corresponds to e = 5/3, z = 2/3,
m = 3, a?(m—1)/(47™" 1) = ap ~ 1.5, and a ~ O(1) in the model spectrum
(3.2). However, regardless of solute dispersion by a well-developed turbulent flow,
different “velocity” statistics are possible. In a subsequent analysis, the general form
of the two-point two-time correlation function (3.1)—(3.2) for the isotropic stationary
Gaussian velocity field u(x, ¢) will be used. The possible values of parameters in (3.2)
arem={2;3}, -1<e<3,2>0,a>0,a~O0(1).

4. Lagrangian formulation for statistical advection-diffusion problem.
The advection-diffusion problem (2.3)—(2.4) for the concentration field C(x, t) is essen-
tially the Fokker—Planck equation for the probability density function to find a fluid
particle in a particular location x at time ¢ for given initial condition C'(x,0) = Cy(6x).
The equivalent representation for a Fokker—Planck equation is an Ito stochastic dif-
ferential equation for the trajectory of the fluid particle

(41) dX(s) = u(X(s), s)ds + /2DqdW (s),
. X(s=0) =x,
where the Gaussian white noise W (s) represents the displacement of the fluid par-
ticle due to molecular diffusion. Hence, equation (4.1) is, in fact, the Lagrangian
formulation of the advection-diffusion problem (2.3)—(2.4), where the molecular dif-
fusion is replaced by a random walk /2DyW (s) of a fluid particle. Note that the
Lagrangian velocity u(X(s), s) depends on W (s) while the realization of the Eule-
rian velocity field u(x, s) is, of course, independent of molecular diffusion. The goal
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i=1

Y (slx 1) = X (t-slx )
s=t-8  UuXs)--u(Yts)ds
dW(s) - d(W(t) - W(t-s)) & dW(s)

(Y 3tx b))

(x,t) = (Y(0OIx,1),t-0)

1

~ Co(Y'(tIx,t)

Mz

C(x,t) =

(Y (tIx,t), 1)

F1G. 2. Schematic of the Lagrangian formulation for the advection-diffusion problem. (a) The
concentration in point x at time t is determined by the initial solute distribution, averaged over all
possible initial points V) of fluid particles trajectories X (t) = x. (b) Transition to the inverse
problem allows us to find the distribution of the initial points (x(i), 0) with respect to the final state
(z,1).

now is to find the representation for the average concentration distribution for any
x and ¢. For each fixed realization (i) of the “composed” random “velocity field”
V = u+ v2DyW (of course, W is only a formal notation because the trajectories
of the Brownian motion are nondifferentiable), there exists a particular trajectory
X @ (s]x(,0) which begins at some initial point x(Y) at s = 0 and arrives at x at
time s = t, such that x = X® (s|x(, 0), as shown schematically in Figure 2(a). Since
in such formulation (2.3)—(2.4) is reduced to a pure convection problem, the concen-
tration does not change along the trajectory X® (s|x(?),0) and is equal to Cy(6x®).
The corresponding realization of the random concentration field is then

CO(x,t) = C(XD(s]xD,0)) = Co(6xD),
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and the averaging over all possible trajectories gives the solute distribution

(4.2) Clxt) =+ N@})OZOO (6x@

In order to compute (4.2) one needs to determine the evolution of the initial points
(x(),0) with respect to the final state (x,t) = (X@(¢|x(?,0),¢)—in other words, to
find the inverse trajectories Y (s) = Y (s|x,t), which begin at (x,t) at s = 0 and
come to (x(,0) at s = t. The schematic of the inverse problem is bhOWIl in Figure

2(b): for any fixed realization of u and W one can go on the trajectory X (sx(*), 0) in
the opposite direction, such that the inverse trajectory Y (s|x,t) = X&) (t— s|x(l 0),
and, consequently,

1 4
— (@)
(4.3) Clx,t) =+ Jim zco(w (tx,1)).
Hence, it is possible to write down the stochastic differential equation for the
inverse problem:

(4.4) dY (s) = —u(Y(s),t — s)ds + \/2DodW (s)
' Y(s=0)=

The solution for the average concentration distribution is then given by (4.3) and

(2.4) with the replacement of the empirical averaging in (4.3) by the averaging over

the distribution of trajectory Y (¢|x,t),

) = (2m)" / " Co(K) exp(KY (t]x, 1))y d"K
(4.5) o
— (2m) " /_ Co(K) {(exp(8KY (£}, ))))u v d"K.

Note that since Y (s|x,t) is related to u and W by (4.4), the above averaging is
equivalent to the averaging over independent distributions of the Eulerian velocity

The representation of the advection-diffusion problem (2.3)-(2.4) by (4.4)—(4.5)
is exact regardless of whether the velocity field is stochastic or not. For example,
in the case of time-periodic linear planar flow field (Ujpear = Ax coswt), where the
constant matrix A has zero trace), equation (4.4) describes a 2-D time-dependent
Ornstein—Uhlenbeck process (see Gardiner [10], for example). The solution of (4.4)
then becomes

Yhne'lr(S —t X+ \V4 2/P€ / t— S dW( )

where the matrix B(t) = exp(—A sinwt/w). Since Yiipear i linear in dW, and B(t)
is nonstochastic, Yiinear is a Gaussian random process. The averaging over W in (4.5)
then gives a solute distribution (equation (6) of Indeikina and Chang [12]) in terms
of the Fourier transform.
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5. Evaluation of the partially-averaged enhanced diffusivity tensor. Un-
fortunately, explicit solution of the stochastic differential equations can be easily done
only for several special cases, mostly including linear equations or some simple ex-
plicit form of coefficients. In the present case, the random velocity field is specified
by the spectral correlation function (3.1) and hence (4.4) is, in fact, a system of cou-
pled stochastic integro-differential equations. Hence, one should make some possible
simplifications.

Note that the “final” time ¢ is only a parameter in (4.4) containing only u(Y (s),t—
s) and that u(Y(0),t—0) = u(x, t). Hence, because of the stationarity of the random
velocity field (everything depends only on |(t—s) — (¢—0)| = s), the statistical proper-
ties of the random function Y (s|x, t) also cannot be dependent on ¢. Consequently, the
replacement of u(Y(s),t — s) on u(Y(s),s) in (4.4) changes nothing in the statistics
of Y. It can be easily shown that the absence of the mean flow and the requirement of
the homogeneity of the velocity field leads to ((Y (s|x,¢)))uw = (Y (s|x,t))u)w = x.
The homogeneity of the velocity field then gives rise to the independence of all statis-
tical properties of the zero-mean function Y (s|x,t) —x on x. Also one can partially
separate the influence of Brownian motion W and focus first on the averaging over
the distribution of Eulerian velocity u in (4.5). Hence, (4.4) can be rewritten as

(5.1a) Y (s|x,t) =x+/2DoW(s) + Z(s, W(s)),
(5.1b) dZ(s) = —u(x+ /2DoW (s) + Z(s), s)ds,
(5.1c) Z(s=0)=0,

and, without loss of generality, one can set * = 0 in (5.1b) for Z. It should be em-
phasized that all these changes are possible only for the stationary and homogeneous
velocity field with zero mean. For example, the linear flow field of Indeikina and
Chang [12] does not satisfy the homogeneity condition and one should use (4.4).

Invoking the representation of Eulerian velocity u(x,t) by the spatial Fourier
transform, one can formally integrate (5.1b)—(5.1c) to get

(5.2) Z(t) = (271')77”/2/0 /jo u(k, s) exp(1v/2DokW (s)) exp(tkZ(s))d"kds.

With the representation of trajectory Y (s|x,t) by (5.1a) and (5.2), the averaging in
(4.5) also can be partially decomposed on the independent averaging over distributions
of it and W:

({exp(10KY (t]x, 1)) )uw =
exp(16Kx)(exp(16\/2DoKW (t))(exp(16KZ(t, W (t)))) z(uw)) W

where the averaging over i should be made first.

For the simple shear flow u(x,t) = (0, uz(z1,t),0), analyzed by Avellaneda and
Majda [1], integral (5.2) provides the exact solution. In this case, without coupling of
the fluctuations of the velocity field, Z(t) is a Gaussian random variable in the sense
of averaging over the distribution of u because t is assumed Gaussian. In several
dimensions, the nonlinear coupling of the fluctuations in different directions may result
in the deviation of the distribution of trajectories from Gaussian at intermediate times.
However, according to the central limit theorem, in the long-time limit, Z(¢) again
approaches a Gaussian variable regardless of the distribution of G as a result of the
summation of a large number of random steps (McComb [19, pp. 446-447], Gardiner

(5.3)
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[10, pp. 37-38]) and this fact is well supported by numerous experiments on turbulent
transport of passive scalar (for example, Shlien and Corrsin [21], McComb and Rabie
[18], Groenhof [11], and many others).

Hence, one can simply assume that the Gaussian distribution of trajectories
Z(t,W(t)) for a fixed W(t), that is strictly valid in the long-time limit (and it is
the topic of interest), is not in great error also at intermediate times. In such a case,
the averaging over the distribution of the velocity field in (4.5) reduces to

62 52 ~
(exp(10KZ)) 7 (ujw) = exp (—2<(KZ)2>Z(uW)> = exp (—2KiZi2jKj> )

22 = Z%(tL, W(t) = (Zi(t, 0, W(t)) Z;(t, &, W(1)))a,

(5.4)

where the tensor of “convective” mean-square displacement ij is obviously symmet-
ric. ~

Now it is necessary to determine the partially averaged tensor ij As is evident
from (5.2), it requires the evaluation of the quantity

(5-5) (i (k, 51)a;(q, s2) exp(u(kZ(s1) + aZ(s2))))a,z\w

if one cannot solve (5.1) explicitly. Unfortunately, Z and @ are dependent and, in
general, one cannot separate the averaging in (5.5) into two independent averagings
(t3ti5)q (exp(- - -)) zjw, as is suggested by Corrsin’s independence hypothesis for long-
time turbulent diffusion (Corrsin [5]).

However, we show (details are given in Appendices A and B) that, for the selected
stationary homogeneous isotropic Gaussian Eulerian velocity field u, (5.4) provides
the exact result. (We invoke the symmetry of the velocity field and the factorization
property of higher-order moments of the Gaussian distribution to show the Gaussian
distribution of trajectories Z(t, W(t)) at fixed W(¢).) By introducing the “deviation
variables” for trajectories and velocity and utilizing the stationarity of both Eulerian
and Lagrangian Gaussian velocity fields, we also have shown (see Appendix C for
details) that, despite the dependence of Z on 1, averaging in (5.5) leads to the same
expression for ij as if Corrsin’s independence hypothesis holds for any diffusion
time. Hence, using the above result and the two-point two-time correlation (3.1)—

(3.3) yields the representation for Z;Q] in terms of the enhanced diffusivity tensor
Di;(t) = Dyj(t, W(t)). In the 3-D case (m = 3 below) it is given by (see Appendix C)

(5.6) 22 LWt / Diy(s

27
610 Dyl) = gy / / / K Pk, 5) (@J - >dkd¢d0

(5.7b) dF(s) = (1 — [ak® 4+ k*Dg + ki Di;(s)k;]F)ds — G\/2Dok,,dW,(s),
(5.7¢) dG(s) = —[ak® + k® Do + k;iD;;(s)k;]Gds + F\/2Dok,dW,,(s),
(5.7d) Di;(0)=0, F(k,00=0, G(k,0)=0,

and for 2-D flow one should set m = 2 and omit integration over 6 in (5.7a).

Note that without molecular diffusion (Dy = 0), the enhanced diffusivity tensor,
as well as the concentration distribution, is already fully averaged. After the inte-
gration of angular dependence in (5.7a), D~ij(s) reduces to an isotropic one, D~Z—j (s) =
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6ijm, and, consequently, k,-ljij(s)kj = k2D(s), as it should be because of the
isotropy of the velocity field. It is clear that, since the Brownian motion W () also
is isotropic, there does not exist any interaction that can create some preferred direc-
tion. However, formally one cannot integrate out the angular dependence in (5.7a)
and hence reduce the tensor to a single scalar before the molecular diffusion effect is
averaged or neglected because of the presence of the last term in the right-hand side
of (5.7b).

Hence, invoking (5.3) and (5.6), one obtains for the average concentration distri-
bution (4.5):

C(x,t)=02m)™" /_00 Co(K) exp(16Kx)

t
X <eXp (zéKW(t)\/2D0 — 62 / KiD}j(s)Kjds>> d"K,
0

w

(5.8)

where D;; is given by (5.7).

As also is evident from (5.7b) and (5.7c), in the limit of infinite time, the average
value of F approaches fixed point value [ak* + k*Dg + k;QDOO]_l while the average
value of G — 0. The dispersion of F, which is determined by k?Dy(G?)w, can
remain finite in general or even large in comparison with ((F)y/)2. Such an effect has
been found by Avellaneda and Majda [1] for the simple shear flow for some range of
spectral parameters that are, however, very far from the region of interest of turbulent
problems. Fortunately, this is not the case for isotropic 2- or 3-D flow. In several
dimensions the coupling of fluctuations in different directions results, from one side,
in a larger enhanced dissipation and, from the other side, in the necessary existence
of the “random walk” limit with constant diffusivity. Hence, any nonlocal behavior
due to the interaction of the flow with molecular diffusion, as in the Avellaneda and
Majda [1] case, can only be a transient effect.

It has been specially checked that in the large-scale long-time limit the contribu-
tion of dW,, terms in D and, consequently, the dispersion always remains negligible
in comparison with the average for all values of spectral parameters. This means
that the fluctuations of D due to the interaction with the molecular diffusion are
the higher-order effect and only the mean value affects the solute distribution (5.8).
Hence, in order to simplify the presentation of the renormalization procedure, the av-
eraging in (5.7) and (5.8) will be taken independently now since the cross-interaction
terms always become irrelevant in the large-scale long-time limit. As a result, (5.7)
and (5.8) become

N D2 Cm=b e
(5.9a) D(s) G ySS—— /5 k™ F(k,s)dk,
oF z 7.2 ST
(5.9b) 5o =1-lak* + Do+ K*D(s) F.
(5.9¢) D(0) =0, F(k,0)=0,
C(x,t)=(2m)™ /OO Co(K) exp(—16Kx)
(5.10) o

t
X exp [—62K2 (Dot +/ D(s)ds)] d"K.
0
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6. Large-scale long-time behavior of the averaged concentration distri-
bution. It should be recalled that all variables in (5.9)—(5.10), except the initial data
wavevector K, are made dimensionless in the dissipation length scale, while the topic
of interest is the integral-scale averaged solute distribution. Consequently, in order to
find this large-scale long-time limiting behavior of the spreading process, one should
rescale other variables in (5.9)—(5.10),

(6.1) x =x"/6, k=k*g(), t=t*/p(6),

such that new nondimensional space and time variables become

§ 21§ 77
— |, t"=t/r, wherer =" {} .
o] / v Lo®)

The scaling functions p(6) and g(6) then must be determined from the requirement
that the averaged concentration distribution has nontrivial limiting behavior, namely,
it is never equal to zero nor the initial data,

(62) x" = X//L()7 k' = k,LO |:

(6.3a) O (xr,t7) = lim O (x*/6, 1% /p*(9));
(6.3b) G ) £0, O (1) # Co(x").

Note that the scaling p(§) = & results in the diffusion time scale 7 = L /v and scalings
p(6) = 6° with b < 1 correspond to shorter time scales. This means that the spreading
occurs faster than pure diffusion motion.

The application of rescaling (6.1) to (5.9)—(5.10) then gives the representation for
the averaged solute distribution

(6.4) C*(xx, t*) = /:)O Co(K) exp l—sz* — KQ/O D*(s*)ds*l %7

which corresponds to the large-scale effective diffusion equation
oC*
ot*

(6.5) = D.()V.2C5, O (z*,0) = Colz*)

in nondimensional variables specified by (6.2). The conditions in (6.3b) imply that
the effective diffusivity D, (t*) must satisfy 0 < D, (t*) < oo and it is then defined by
the large-scale limit

D.(#) = lim [pfé)} 2 (Do + D& /%0),5,99)))
(6.6) 2
= éli% [p((ig):| Dy + AD(tY),
where

2,1—¢ 1/9(8) _
(6.7a) AD(t*) = lim Maf/ k*"CF(k*,t*, 6)dk*,
6/9(8)

GF z 2 2
(6.7b) =1- (iak*z + %k“po + ng*QAD(t*)> F, F(k*,0)=0,

(6.7c) 0 < AD(t") < oo,
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and the new amplitude constant

a?(m—1)

2 __
(68) Qe = Qmﬂ-m—l

is introduced only to simplify the notation since the spectral amplitude a? is assumed
to be independent of 6.

In the next section the limits (6.6) and (6.7) will be evaluated with an appropriate
choice of scaling functions for all possible values of exponents —1 < e < 3 and z > 0
of the velocity spectrum (3.2).

7. Renormalization for different parameters of the velocity spectrum.

7.1. Mean field regime (region 1). This regime corresponds to the case when
the standard diffusive scaling p(6) = ¢ describes a large-scale long-time behavior of
the average concentration field. Hence, one can expect that the molecular diffusion
also will make a contribution into the effective diffusion coefficient. With the choice
p(6) =6 and g(6) = 1 in (6.6) and (6.7) one obtains

(7.1a) D, = AD + Dy,
1
Nl t = lim 5 O F *7t*7 *7

7.1b AD(t*) =1 122 kP (K%, 6)dk

6—0 0 s

aF *Z * * * F nl *

(7.1c) =1 (ak + k2 Dy + k"2 AD(t )) = U0 =0,
(7.1d) 0 < AD(t") < oo.

It is evident from (7.1c) that as & — 0 the fixed point value F, /6% = [ak** +k*2Dg +
E**/AD(00)]~" is reached exponentially fast. Hence, for any t* > 0 one can set the
enhanced diffusivity equal to the limiting value AD(t*) = AD(c0). Consequently,
(7.1b) and the fixed point value from (7.1c¢) provide the expression for AD(o0):

1 *—€ *
(7.2) AD(c0) = az/ f dk 5 .
0o ak** +k**Dy+ k**AD(c0)

The integral in (7.2) is finite for e < 1—z and z < 2 or for ¢ < —1 and z > 2 which,
together with the lowest allowable value of € > —1 define the boundary of the mean
field regime: —1 < e < 1 — z. For such spectra, there is no infra-red divergence of the
kinetic energy and the contributions of the individual fluctuations are, in fact, simply
summed. Instead, because the upper limit of integration in (7.2) remains finite, the
ultraviolet cut-off, which corresponds to the decaying part of the spectrum at large
wavenumbers in Figure 1(b), is important. Consequently, the simple cut-off by setting
the velocity correlation tensor equal to zero above some highest wavenumber may be
inappropriate for peaked spectra.

7.2. Superdiffusive regimes. These regimes describe spreading that is faster
than pure diffusion motion. As has been already mentioned, such dispersion requires
the shorter time scale in (6.2),

5
7.3 —— —0 as 6—0.
73) o)

Physically, this corresponds to convection-dominant spreading and to spectra with
infra-red divergence of kinetic energy of fluctuations. Hence, one can expect that
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molecular diffusion will be negligible under such conditions. Indeed, the term con-
taining Dy in (6.6) vanishes in this limit and the effective diffusivity D. = AD(t*).
However, since for larger values of e the infinite-time enhanced diffusivity (7.2) di-
verges at low wavenumbers, one needs to introduce a nontrivial wavenumber rescaling

(7.4) g(6)#1, g(6)—>0 as §—0

in order to reach the convergence of the integral in (6.7a) and hence to satisfy the
condition of the existence of the nontrivial solution (6.7c¢). Consequently, for some
values of ¢(6), the molecular diffusion coefficient still can enter into the expression for
D, through (6.7b).

However, let us consider first the natural choice of g(6) = ¢ which is stipulated
by the infra-red cut-off of the spectrum. In this case, because of the requirement
(7.3), the molecular diffusion term in (6.7b) vanishes and the governing equations for
renormalization become

) 63—5 ) 1/6 =
(7.50) AD(E") = lim Sl /1 BTk, £, 8)dk",
oF P o
. =1—( —=ak* *“AD(t*) | F F(k* =
(7.5b) d (pzak +E2AD( )> R0 =0,
(7.5¢) 0 < AD(t") < 0.

Because the dependence on ¢ still remains in (7.5b), it is necessary to analyze three
separate cases:

6 6

— — 00, — — 0, and

e = =1 as 6—0

4
»”
I. %, — oo (region 2). Under such conditions, the fixed point value in (7.5b)

is again reached infinitely fast. Hence, similar to the mean field regime, the enhanced
diffusivity is effectively time-independent and can be set equal to its limiting value for
any t* > 0. The substitution of the fixed point value F, = p?/(6%ak**) of (7.5b) into
(7.5a) and the straightforward integration gives the renormalized enhanced diffusivity

042 ) 63—6—2

*

(7.6) AD(E" > 0) = AD(o0) = Pt I =

The requirement of the nontriviality solution (7.5¢) implies that AD(oco) should be
positive and that the limit in the right-hand side of (7.6) should be finite. Without
loss of generality, one can set it equal to one, because any constant value can be
included into p or AD.

Hence, these restrictions together with the definition of the case define the time-
rescaling function p(6) and the boundaries for region 2 of renormalization

(7.7 p(8) = §B—2)/2 for l—2z<e<3-22

with the effective diffusivity

(7.8) D, = AD(x) = p—
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1I. Z—Z — 0 (region 3). In this case (7.5b) is independent on § and hence
the time-rescaling function p(8) can be determined directly from the limit in (7.5a)
that gives p(6) = 63~9/4 provided that the integral over k converges. Note that
the integral should converge for any time, 0 < t* < oo, since (7.5) predicts the time-
dependent effective diffusivity in this regime. The estimate of the limiting behavior
of the enhanced diffusivity at small time, t* — 0, gives

t*a?

AD(t* — 0) ~ 6_*1 (1—061),

and the requirement (7.5¢) then provides the lower bound for €, € > 1. The restriction
for the superdiffusive scaling (7.3) and the definition of the case give another bound:
3 — 2z < € < 3. Consequently, region 3 of the renormalization is finally defined by

(7.9) p(6) = 6B3=/4 for max{1,3 — 2z} < € < 3,

(7.10) D, =AD(t") =a? /100 E*~F(k*,t*)dk*,

(7.11) gz =1—-k*ADW*)F,  F(k*,0) =0,

with the following limiting behavior at short and long time:

(7.12) AD(E —0)~ L% ADE o) 2
—1 NS

I11. i—; = 1 (Kolmogorov boundary). This case corresponds to the boundary
between the regions 2 and 3 and it is defined by € = 3 — 2z, z < 1, where both scaling
functions (7.7) and (7.9) collapse into p(§) = §*/2. From the order-of-magnitude
and dimensional analysis of section 3 one can conclude that the physically plausible
velocity correlation, which can provide the energy cascade and remain invariant under
the scaling transformations, should belong to this boundary. The Kolmogorov velocity
spectrum with e = 5/3 and z = 2/3 also corresponds to this regime and that is why
this region is called the “Kolmogorov boundary.” The effective diffusivity D, is hence
given by (7.10), but (7.11) for F(k*,t*) becomes different,

OF
ot*

(7.13) —1- (ak*z + k*zAD(t*)) 7,

and in such a case one obtains the widest dependence on the parameters of the spec-
trum. The small-time asymptote in (7.12) does not change on this boundary, but in
the large-time limit t* — oo the evaluation of the integral in (7.10) with e = 3—2z and

Foo = (ak** + k*QAD(oo)) ' results in the following implicit expression for AD(o0):

a?(2 - z2) a

(7.14) = apeg m (1+AD&(OO)>.

As is evident from (7.14), for any fixed z (or €), AD(o0)/a depends, in fact, on
one parameter, a?/a2. It should be noted that, as has been established in section
3 (equations (3.11)—(3.12)), in this regime a ~ a, and the proportionality constant
should not depend much on flow conditions, as is stipulated by the Kolmogorov simi-
larity hypothesis. The parameters «, and ¢ also are related to the root-mean-square




20 ALEXANDRA INDEIKINA AND HSUEH-CHIA CHANG

velocity and the large-scale Reynolds number through (3.7)—(3.10). Hence, in fact, in
the dimensional version of (7.14), there are no free parameters to play with in order
to fit any experimental data.

Intermediate wavenumber scaling g% — 0 as 6 — 0 (region 4). The
diffusive (g(6) = 1) and convective (g(6) = §) wavenumber scalings have already been
considered. However, it still remains the part of e~z plane, max{—1,3 — 2z} <e <1,
where these scalings do not give successful renormalization. Consequently, one should
select some intermediate wavenumber scaling, something like g(6) = 6° with b < 1,
such that 6/g(6) — 0 as § — 0 slower than for pure diffusive scaling.

For simple shear flow (Avellaneda and Majda [1]), the requirement 6/g(6) — 0
splits this remaining part of the e~z plane into two regions by the line z = 2. In both
cases the integration over k in (6.7a) is extended from 0 to oo such that both cut-offs
are negligible, and the analysis of Avellaneda and Majda [1] results in an effective
diffusivity that grows as a noninteger power of time, AD ~ t¢ with 0 < ¢ < 1.
The coefficient of proportionality is determined by time-correlation of the velocity
fluctuations (ak** term in (6.7b)) for z < 2. For z > 2, random nonlocal diffusivity
has been obtained because of nonlinear interaction of the velocity field with Brownian
motion /2DydW (t), which describes the molecular diffusion.

In 2- or 3-D flow, however, the mathematical consequence of the coupling of
the fluctuations is the term AD(t*)k*?¢g?/6% in (6.7b) for F and, consequently, for
AD(t*) because they also are related by (6.7a). It can be easily seen that, under
the conditions of the superdiffusive time-scaling 6/p — 0 as 6 — 0, for any choice of
the wavenumber scale satisfying §/¢g(8) — 0, this “feedback” term immediately leads
to the achievement of infinite-time limit in (6.7b). Hence, it is quite possible that
the effective diffusivity grows like a noninteger power of time at the beginning of the
spreading process, but in two or three dimensions this is a transient effect, and for
large-scale initial data the infinite-time limiting behavior will be seen for any t* > 0.
However, if the initial data vary in some intermediate scale between L, and Ly, it also
will require the rescaling of the initial data wavevector K. This rescaling should reduce
the “feedback” term, such that the above transient behavior can become visible from
the point of view of large-scale motion. However, since such assumption effectively
adds a third dimension to e~z parameter space, this analysis will not be pursued here,
mostly because this region of renormalization is far away from the turbulent transport
problems.

Instead, without changing the assumption of the integral-scale initial data, the
fixed-point value Fo, = (6/¢(6))?[k*>AD(c0)]~" is utilized to determine the scaling
function p(8). The integration in (6.7a) then results in the same scaling law as for
region 3 and the effective diffusivity is equal to the infinite-time asymptote in (7.12).
Because there is no convergence problem on the boundary ¢ = 1 with region 3 and
the scaling law also is continuous, this boundary can be included in region 4. The
remaining boundaries, however, should be considered separately.

Boundaries {e =1 — 2z, z < 2} and {e =3 — 22, 1 < z < 2}. Since all
these boundaries separate regions with constant effective diffusivity, one can expect
their behavior will not be different. In all these cases, the integral in (7.10) can
be evaluated explicitly with F'(k*,t*) = F, and the requirement of the large-scale
long-time distinguishing limit provides expressions for the effective diffusivity and
time-rescaling function.

For the continuation of the Kolmogorov boundary into the region 1 < z < 2,
the scaling function is continuous on the boundary between regions 2 and 4, and the
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enhanced diffusivity corresponds to the infinite-time limit (7.14) of the Kolmogorov
boundary.

For the boundary between regions 1 and 2 the analysis results in the logarithmic
dependence for p?,

2
(7.15) p(8) = §(—n &)1/, D, = AD(x0) = % for e=1-2, 2<2,

and, consequently, (7.15) can be used at finite scale ratio § only if é is so small that
(—1In6)/? is a large number.

8. Comparison and discussion. From the renormalization analysis of the
advection-diffusion problem (2.1) with Gaussian random velocity field defined by two-
point two-time correlation (3.1)—(3.2), it has been found that in the large-scale long-
time limit the averaged spreading process can be described by the effective diffusion
equation (6.5),

oC*
ot*

= D*(t*)v*2ﬁ7 C*(TE*,O) = CO(x*)a

where nondimensional variables are specified by (6.2):

x' t 276 7? R E
A {EE R

Lo T v | p(d) T p(8)
The effective diffusivity D.(t*) = D.(t*,¢, 2, a, a,) and the scaling function p(8) have
been determined for different spectral parameters. It has been found that the func-
tional forms of D, and p(6) depend only on the exponents ¢ and z of two-point
two-time correlation (3.2) and several different regions of renormalization in e~z have
been determined. The regions of renormalization are shown in Figure 3 and the values
of D,, p(6) and 7(8) are summarized below:

Region 1. —-1<e<1-—2z.

2k~ Cdk*
ak** 4+ k**(Dy + AD)’

1
p(6):6, T = Tdiff, Di*:DO—FAD, AD:/
0

Boundary 1-2. e=1—2, 0<2z2<2.

2
p(6) = 6(=n &)/, 1 = 7ai77/(=Iné), D,=AD= @
a
Region 2. 1—-—z<e<3—2z.
5) = sB—2)/2 st1 P A o?
=46wT” = Tdif Ezi’ D*: D= — —*
p(0) s T =Tdiff P

Kolmogorov boundary (regions 2-3). e=3—-2z, e>1, z<IL.
p(6) = §B=/4 —§2/2 L — Tdiff6(1+e)/27 D, = AD(t"),
AD(t*) = a? /Oo E*F(k*,t*)dk*,
oF 1
ot*

—1- (ak*z + k*zAD(t*)> F, F(k*,0)=0.
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F1a. 3. The regions of renormalization in the e~z parameter plane. The dashed line corresponds
to the split of region 4 in the 1-D case. The separation of region 2 occurs only in terms of Reynolds
number because of the different dependence on the scale ratio § for spectra with and without infra-red
divergence of kinetic energy.

Region 3. max{1,3 —2z} <e<3.
p(é) — 6(3—6)/47 F= Tdiff6(1+s)/2, D7* _ AD(t*),

AD(t) :ai/ E*F(k*,t*)dk*,
1
gf: =1-k?ADW*)F, F(k*,0)=0.

Region 4. max{1,3 —2z} <e<1.

5 :5(376)/4’ — 5(1+6)/2’ D, =AD = )
p(9) T =Tdif f Jerl

Boundary 2-4. e=3—-2z, —-1<e<l1l, 1<z<2

p(é) = 6(3_6)/47 T = Tdiff§(1+6)/27 D* = AD?

@*2-2) @ (), a0
a2 _AD " AD)"

The case of spatially random steady flow u = u(x) (a = 0) corresponds to the line
z = 2 on the e~z plane shown in Figure 1, because one should preserve the convergence
of all integrals with only diffusive terms ~ k2. There also is no need to set a = 0,
because in regions 3 and 4 the effective diffusivity and the time-rescaling function are
independent of both a and z.

If u is a white noise in time (a — oo, a? ~ a), one should cross the ez diagram
by the line z = 0 and evaluate the above limit for regions 1 and 2. Note that in
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the present analysis the exponent of the spectral correlation function Q ~ flmm—e
introduced by (3.2), is defined in a manner that depends on the space dimension m in
such a way that the kinetic energy spectrum (per unit mass of liquid) depends only
on €. Hence, 2-D and 3-D cases have the same e—z diagram, and only the amplitude
constant a2 of (6.8) depends on the space dimension. If one would like to work in
terms of exponent of the spectral correlation function instead of kinetic energy, one
simply has to move the e—z diagram of Figure 3 to the right along the € axis by one or
two units and make corresponding changes of notation in the definitions of the time
scale.

The e—z diagram of Figure 3 is identical to that obtained by Avellaneda and
Majda [1] for the simple shear flow with appropriate changes of notation (e « € — 1,
such that the left boundary of the mean field regime corresponds to € = 0) except for
region 4. The effective diffusivities for two or three dimensions are different every-
where except in region 2. There the enhanced diffusivity is completely determined by
strongly correlated (low z) high-wavenumber fluctuations of the velocity field. The
above results also are consistent with earlier findings of Avellaneda and Majda [3] and
Fannjiang [8] for multidimensional flows.

In general, the one-dimensional (1-D) analysis of Avellaneda and Majda [1] pro-
vides a small-time asymptote for the spreading process in 2-D or 3-D flow when
enhanced diffusivity is small: a linear growth of effective diffusivity in time for region
3 and Kolmogorov boundary and noninteger power growth in time for two different
parts of region 4. Later on, coupling of fluctuations in several dimensions necessarily
results in the random walk limit, while this does not always happen in the 1-D simple
shear flow. However, for region 3 and the Kolmogorov boundary, Avellaneda and
Majda [3] suggest an effective nonlocal diffusion equation, while our analysis gives
the usual diffusion equation with a time-dependent coefficient (which approaches a
constant as t — 00). At the least, our infinite-time limit for the Kolmogorov spectrum
(i.e., for usual turbulence) is well supported by numerous experimental data (see, for
example, McComb [19, pp. 470-471] or Sherwood, Pigford, and Wilke [20, pp. 124—
125] for data collections). Below, we also will compare our predicted time-evolution of
mean-square displacement with available data, which will provide additional support
for our results.

It has been shown in section 2 that the scale ratio § and the spectral amplitude
o, are related to the large-eddy Reynolds number Ry = UyLg/v and with the root-
mean-square Reynolds number R,.,,s = U,msLo/v by equations (3.7)—(3.10), and
these dependencies are different for ¢ >, <,= 1. It also is established in section 2
that, at least for the Kolmogorov boundary, a is of the order a. Hence, it also is
useful to provide the expressions for the time scale 7 and the effective diffusivity D.
in terms of the above Reynolds numbers. This summary is given below, where all
time scales are defined with respect to the convective time scale of the fluctuations
Teonw = Lo/Urms instead of the diffusion time scale 74y = Lg/v, and the typically
unknown spectral parameter a has been replaced by

(8.1) 8 =a/a,

such that @ is unit order coefficient.
Region 1. —-1<e<1-—2z.

€ D ~ Rrms

T = TcoanS/(‘—s_l), _Dﬁ< = -0 —+ AD, o= 4R72/(€+1) 5
0

O I

AD = AR :
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Region 2.1. 1-2<e<3—-22, e<lLl
2(2—e— z)/(e+1) - 1—e€

T = Tcoan D* =

Region 2.2. 1—-2<e<3—2z, €e>1.

— Tcoan2(3 e— 22)/(e+1)’ D, =—"

Boundary 2.1-2.2. e=1, 0<z<1.

— 1
T = TeonvRy “InRy, D, =—.

z
Kolmogorov boundary (regions 2-3). ¢=3—-2z, e>1, z<L
T = Teonv, Du(t* (e—1) / E*, t")dk™,
F
gt* —1- (ﬂk*z + E2D, (1) ) F(k*,0) = 0.

Region 3. max{1,3 — 2z} <e < 3.

T = Tconv; D*(t*) = (6 - 1)/ E*~°F (k* )dk*,
1

oF
ot*

=1-k*D,(t*)F, F(k*,0)=0.
Region 4. max{1,3 —2z} <e< 1.

1—c¢
e+1°

RGO+ B

T = Tconv * =

Boundary 2-4. e=3-2z, —-1l<e<l, 1<z<2.

Rél—f)/(1+€) w ﬂ —In (1 —+ ﬂ ) .

" 2(z-1) D,

T = Tconv

*

The boundary 1-2 with logarithmic scaling with respect to 6 is not included
in this summary because the accuracy of the logarithmically distinguished limit is
already too low. It also should be mentioned that the above analysis is valid in the
limit of infinite (i.e., very large, in practice) Reynolds number. This is especially
true for spectra with weak infra-red divergence, when € is close to 1. In such a case,
the |e — 1| factor in the expressions for the effective diffusivity should be replaced on
[(e —1)/(1 — R((f_l)/(sﬂ))\, and this will make transitions across regime boundaries
continuous.

Hence, depending on the data available, one can use any of these summaries
to scale variables in the effective diffusion equation (6.5). It should be emphasized,
however, that the integral scales Ly and R correspond to the largest possible eddies of
the inertial range and are not the same as the mean flow parameters of the real flows.
Because the lower limit of integration over k in the superdiffusive regimes has been
set equal to 1, the integral length scale Ly corresponds to the inverse of the maximal
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F1G. 4. Effective diffusivity at the Kolmogorov boundary € = 3 —2z. (a) Time-evolution of the
effective diffusivity for the Kolmogorov spectrum (e = 5/3) with indicated values of B. In the range
from 0 to 2, B increases with a 0.2 increment. (b) The dependence of D(c0) on B for e = 7/6;
4/3;5/3; 2; 7/3; 8/3; 3.

possible wavenumber. Hence, by the usual convention for spectral methods, one can
set Lo = L'/2m in the definition of the convective time scale, Teony = Lo/Upms =
L' /27Uppms, where L’ is the conventional spatial dimension of the real flow (pipe
diameter, for example).

The most interesting regions for turbulence are the Kolmogorov boundary and
region 3, where the time scale 7 does not depend on Ry, as it should be in the limit
of the infinite Reynolds number. In other regions of renormalization, the physics that
cause the lower infra-red divergence of the spectrum should be invoked to determine
large-eddies characteristics.

The effective diffusivity depends on the molecular one only for the mean field
regime (region 1), which corresponds to the slowest rate of spreading. In the superdif-
fusive regimes (regions 2—-4), the transport process is faster than pure diffusion motion.
The integral time scale for these cases takes the form 7 = 74 féb or T = Teonu R,
where b > 0, 0 < ¢ < 1. The shortest pure convective time scale belongs to region 3
and to the Kolmogorov boundary. These regions have the largest values of the param-
eter €, which defines the strength of the infra-red divergence of the velocity spectrum.
For these regions, time-dependent effective diffusivity is obtained.

It is well known, beginning from the classical work of Taylor [22], that the mean-
square displacement of fluid particles (X?2(¢)) by turbulent flow is defined by the
convective scaling (X2(¢)) = (V?)¢? initially and approaches the random walk limit
(X2(t)) = 2(V2)Tyt for long diffusion time. Figure 4(a) shows the dependence of
the effective diffusivity on time for the Kolmogorov spectrum for the different values
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F1G. 5. Effective diffusivity in region 3. (a) Time-evolution of the effective diffusivity. The
lowest line corresponds to € = 1.1 and others correspond to the increasing values of € from 1.2 to 3
with 0.2 increment. (b) The dependence of D« (c0) on e.

of the parameter 5. Recalling the definition of the effective diffusivity through the
“convective” mean-square displacement by (5.6),

¢
7' = 2/ D, (s)ds,
0

one can conclude that the time-evolution of the effective diffusivity is qualitatively
consistent with the classical result: linear growth of D,(t) at t — 0 and approach
to the constant value D,(0o) at large times for all values of 8. For other values of
€ = 3 — 2z at the Kolmogorov boundary, the time-evolution of the effective diffusivity
occurs in a similar manner, as shown in Figure 4(a).

Increasing the parameter (3 corresponds to decreasing the correlation time for
the fluctuation of the velocity field. As one can see in Figure 4(a), the random
walk limit is reached faster when the correlation time decreases. The largest diffu-
sivity enhancement corresponds to the steady flow case 8 = 0, which produces the
D,(t) dependence of region 3 for the corresponding value of e. The dependence of
the infinite-time asymptotic diffusivity Do, = D, (00)/27 on f3 for the Kolmogorov
boundary € = 3 — 2z is shown in Figure 4(b) for several values of e.

The dependence D, (t) for region 3 has a similar shape as that for the Kolmogorov
boundary and is shown in Figure 5(a) for several values of €. The stronger infra-red
divergence of the spectrum (higher €) results in larger effective diffusivity and shorter
time to reach the random walk limit. The dependence of infinite-time asymptote Do
on € in Figure 5(b) confirms that the boundary € = 1 does not belong to this region,
since Dyo(e = 1) = 0, and a different, slower time scale should be imposed in this
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case. Note that, for fixed (3, the dependence of the effective diffusivity on e for the
spectra from the Kolmogorov boundary is similar to one shown in Figure 5.

The superdiffusive regimes in regions 2 and 4 correspond to intermediate time
scales between diffusion and convection. In these time scales, the transition period
for D, = D,(t) is short and one immediately sees the limiting value D,(cc) in the
integral time scale.

We shall compare our theoretical predictions to experimental data for the trans-
verse (normal) diffusivity for turbulent channel flows. Due to the zero-mean velocity
assumption, we cannot capture the downstream diffusivity of the most common tur-
bulent flows. In order to make a comparison with earlier experimental and numerical
works on turbulent transport, the Kolmogorov spectrum is chosen, which is defined
by € = 5/3, z = 2/3. Unfortunately, experimental measurements of the two-point
two-time correlation in well-developed isotropic turbulence has not been found. Dif-
ferent spectral theories suggest different relations between the value of 5 and the
Kolmogorov constant ag (mostly like 3 = cag, where the constant ¢ varies from one
theory to another) and, at the same time, predict the value of the Kolmogorov con-
stant that is several factors off [19]. Hence, instead of selecting the appropriate value
of  from existing theoretical predictions, we shall determine it empirically from the
asymptotic diffusivity at infinite time.

Note that the values of D = ﬁ*/ 27 and t = t, /27 shown in Figure 4 are already
rescaled according to the conventional choice Ly = L'/2m, such that the dimensional
effective diffusivity and time are

tL’

— =
D = DUrmsL/7 th = )
Urms

where L’ is the appropriate spatial dimension for the real turbulent flow. For pipe
flows, for example, the long-time effective diffusivity in the transverse direction scaled
on the friction velocity and a pipe diameter is about [3 — 4] x 1072 [11], [18], [19].

Hence, it is already evident in Figure 4(b) that the infinite time asymptotic Do,
for the Kolmogorov spectrum provides a correct order-of-magnitude estimate for any
[ < 10. Because the root-mean-square velocity near the center of the pipe is typically
about 0.8 of the friction velocity U, [19], one can expect a quantitative agreement
with the choice of 8 ~ 1 — 2, and the selected value of 8 should not vary from one
particular set of data to another. Figure 6 reproduces experimental data collection
from the book of Sherwood, Pigford, and Wilke [20, Figure 4.11, p. 125]. The solid
line Ep = ﬁ;o is calculated using the value of 3 = 1 for the Kolmogorov spectrum,
which gives Do, = 4.55x 10~2 and the typical value 0.8 for the ratio U,,,s/U,. Hence,
in terms of the friction velocity, the long-time effective diffusivity becomes

D =08Du(e=5/3,2=2/3,8=1)U.d = 3.64 x 102U,

where d is the pipe diameter. To express the friction velocity in terms of the average
velocity Uy, the well-known expression for the friction factor in a pipe flow has been
invoked,

U.d —1/4
Ur = Uy V f/27 f = 0.067 (llyv> )

because most of the data in the high Reynolds number part of the figure has been
taken for air flow in pipes. Hence, in variables of Figure 6, the line Ep = E;o(Uavd)



28 ALEXANDRA INDEIKINA AND HSUEH-CHIA CHANG

100 —

E,, cm? [sec, normal to flow
=)
[

E, =

ol 1 | | |
0 100 1000 10,000 100,000

U 2
U,,d,, cm? [sec

Fic. 6. Eddy diffusion coefficient for transport normal to the flow direction in pipes and flat
ducts. The data are taken from Sherwood, Pigford, and Wilke [20, Figure 4.11, p. 125]. The solid

line indicated Ep = 5;0 uses the Kolmogorov velocity spectrum with 3 = 1.

is given by
Ep =7.26x 102vRe™® = 7.26 x 107303 (U,,d)7/® = 5.73 x 1073 (Uppd)™/®,

where in the last equality v = 0.15 cm? /sec for air has been used and, consequently,
Ugavd should be taken in the same units.

It is evident from Figure 6 that the choice of 8 = 1 gives a reasonable represen-
tation for the long-time effective diffusivity over a wide range of Reynolds numbers.
Lower values of 3 quickly lift up the calculated line, while a slightly higher number,
say B = 1.2, still gives a good representation. For 8 = 2, however, the Ep = E;o line
is already outside most of data points in Figure 6. These data hence allow us to select
a very specific coefficient § for the decorrelation time spectral parameter. We shall
use this value of 8 =1 in all subsequent comparisons, without further adjustment to
the particular flow conditions.

The usual measurable time-dependent quantity in turbulent transport experi-
ments is the solute/temperature profile. For diffusion from a point or line source,
it is well represented by a Gaussian shape. This allows the determination of the
mean-square displacement Z2(t), and the slope of the long-time path of the curve
Z%(t)/2 gives the long-time value of effective diffusivity. Unfortunately, the mean-
square displacement data are not reported so often as the long-time diffusivity and
the resolution of the small-time region are typically low.

The solid line in Figure 7 shows the small-time evolution of the nondimensional
mean-square displacement for the Kolmogorov spectrum with § = 1, and the dashed
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Fi1G. 7. Mean-square displacement of fluid particles by turbulent flow. (—) Current theory with
Kolmogorov velocity spectrum and 8 = 1. (- -) Experimental heat-transfer data of Baldwin and
Walsh [4] in turbulent pipe flow, scaled by the reported values of the root-mean-square velocity and
the pipe diameter.

line corresponds to one of the data point from Figure 6 (the lowest black square in the
high-Re range [4]). The experimental curve is scaled according to the suggestion of
the present theory, on the reported values of the root-mean-square velocity (Upp,s &
0.035U with U = 22 m/sec), and the pipe diameter (20 cm). It is evident that small-
time evolution of the mean-square displacement also is reproduced by the current
theory with reasonable accuracy.

Near the axis of the pipe, turbulence is approximately isotropic. In the numer-
ical experiment of Deardorff and Peskin [7], the trajectories of the fluid particles,
released at 1/4 of the channel height and well within the region of mean shear for a
turbulent plane air flow, have been calculated. The different statistical quantities, like
mean-square displacements in different directions, correlation functions, mean-square
particles separation, and so on, have been obtained by averaging the results for dif-
ferent sets of particles. All results are reported in nondimensional form, scaled on the
friction velocity and channel height.

Since diffusion starts from a region of appreciable shear, the effective ratio of
the root-mean square to friction velocity can vary significantly with time, even if
spreading in a spatially homogeneous lateral direction is considered. This is because
of the cross-influence of the fluctuations in different directions, included in the present
theory and also apparent in reported results of Deardorff and Peskin [7] for the mean-
square displacements in different directions for different sets of particles, before the
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Fi1G. 8. Mean-square displacement of the fluid particles by turbulent flow. (—) Current theory
with Kolmogorov velocity spectrum and 3 = 1. (- -) Numerical experiment of Deardorff and Peskin
[7], mean-square displacement in the lateral direction of a shear flow in a plane channel.

final averaging.

In Figure 8 the solid line again corresponds to the prediction of the present theory,
and the dashed line now represents the Deardorff and Peskin [7] numerical result for
the mean-square displacement in the lateral direction with no additional rescaling for
the adjustment of the root-mean-square to friction velocity. The agreement again is
quite good. Hence, one can expect that the above renormalization theory to yield
satisfactory prediction from the spectral data for the transport properties of nearly
isotropic random flows.

Appendix A. Distribution of convective trajectories (5.4). First of all,
let us establish some statistical properties for the Lagrangian velocity field U(¢) =
—u(v/2DgW (t) +Z(t),t). Invoking the representation of the Eulerian velocity u(x,t)
by its spatial Fourier transform, one can represent U(t) by

(A1) Ul = 20 [ a0 e 0

— 00

where
gw(k,t) = exp(1\/2DokW (t)),
fk,t) = exp(tkZ(t)) = exp (zk/o U(s)ds) ,
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and the value of (f(0K,t))yw gives the characteristic function of the distribution of
“convective” trajectories Z(t). The product of any N number of the components of
U(t) is then given by

o (

N N N N
(A.2) H U, (t) = (2))% /gw (Z kn’t> f (Z kn’t) H ;, (K™, t)d™k™.

n=1 n=1

Hence, in order to express any analytic function of the Lagrangian velocity U(t) in
terms of known random functions &t and W (), one needs to find such representation
for f(k,t).

Time-evolution of f(k,t) can be described by the equation

df = kU@t)f(k,t)dt, f(k,0) =

and formal integration with U(¢) given by (A.1) yields

(A.3) flk,t)=1 —/0 /_Oo ikia(q,s) f(k + qu)gw(q,S)mdS

Equation (A.3) is a linear integral equation for f with random but continuous and, in
the mean-square sense, bounded kernel. It should be recalled that G(q,s) is defined
on the domain § < ¢ < 1 and the dispersion of 4, as is given by (3.3), is bounded for
any finite 8. The probability for wi(q, s) to exceed essentially (t1t1)'/? is really small
because a Gaussian distribution has an exponentially small tail. Consequently, one
can expect that the analogue of the Neumann expansion for (A.3) will converge, at
least for some finite values of ¢ and 6.

Hence, by iterative substitution of f(k + q, s) into (A.3) one can write the series
solution for f in terms of & and W:

t 0 L L qul
flk,t)=1 _/ / kg, (a0, 51)9w(d ,Sl)stl

/ ds, / dss / i, (@, s1)(k + 42 itz (2, 52)
(A.4)

9 dm ldm 2
X gw(q s1)9w(q”, SQ)W 4.
+ ( / (quk> u]k(q Sk)gw(q sp)d™q kd3k+
T k=1
where sg = t and q° = k in the representation of general terms in (A.4). The

convergence of this Neumann series is established in Appendix B.

The substitution of (A.4) into (A.2) and averaging over 4 immediately gives that
all terms in the series, except the first one (which is equal to 1), vanish because of
the homogeneity of the Eulerian velocity field u and the continuity equation. Indeed,
with ° = k = Zzzl k™ in (A.4), the general “pth” term in the product of “N”
U-components in (A.2) becomes

N P k—1
(A.5) T k) TT <Z kT + Zq§k> aj, (a¥,sk) -
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where only dependencies on @ and wavevectors are shown. The homogeneity require-
ment implies that only terms with

N 4
Z k™ + qu =0
m=1 =1

can give nonzero average (compare with the §(k + q) term in the spectral form of
velocity correlation (3.3)) and, consequently, one can set

N p—1
Z k™ + qu =-
m=1 =1

n (A.5). The last two factors in the product (A.5) then become

(ka+zq> i, (a”, Sp):—(ﬁpﬂjp(qp,sp)zo

Jp

because of the continuity equation. Hence, only fo(k,t) = 1 contributes to the average
of (A.2), and the homogeneity restriction for the remaining term, 22;1 k" =0, also
leads to the disappearance of the dependence on W (%),

(A.6)

Y (-pN pa— al
<H Uz’n (t)> = (27-() /exp < 2D0 an > <H >dmkn
£ (s - o)

N
N <H uin(x,Tt)> = (-1)N <H uin(0,0)>.

The last two identities follow from the original definition of the inverse trajectory and
from the stationarity of the Eulerian velocity field u(x,t).

Because any analytic function of the Lagrangian velocity can be represented by
a power series in the velocity components, it follows from (A.6) that

(@(U(s))v = (d(—u(x,t = s)))u

for any arbitrary analytic function ¢(U(s)). This implies that U(s) and —u(x,t — s)
have the same distribution. Because u is assumed Gaussian, U(t) and the convective
trajectory Z(t), which is linear in U, also are Gaussian. Consequently, equation (5.4),

52 62 -
(exp(10KZ)) 7(ujw) = exp <<(KZ)2>Z(u|W)> = exp <2KiZi2jKj> ,
(A7)

Zizj = Zizj(t7w(t>) = (Zi(t) Yo = / / ) ydsds',
provides the exact representation for the characteristic function (exp(:6KZ)) at any

time ¢ for the selected stationary homogeneous isotropic Gaussian Eulerian velocity
field u.
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Appendix B. Convergence of Neumann series (A.4) for the characteris-
tic function. For all the results in Appendix A to be correct, one needs to establish
the convergence of the series (A.4) for f(k,t). In fact, it is enough to estimate the
average of a general even term, |(f(k,t)s2,)|. The absolute convergence of the series
(f(k,t)2p) will then guarantee the convergence of (A.4) in the mean-square sense be-
cause of the structure of even and odd terms and because of the previously discussed
fast decay of the tail of Gaussian distribution. Hence, let us consider the detailed
structure of |(f(k,t)2p)],

(=pr [ o sart - 1 m 2 2
[(f(k,t)2p)| = ‘(27‘(‘)mp/ dsl/ dssy. / dszp/ d"q d™q*...d"q*
0 0 0 —o
2p
X exp (z\/ 2D Z qZW(sz)>
i=1
2p—1
(B.1) X ki (k+q") 5k +q" 4+ %) - <k+ > ql>
i=1 J2p

X <ﬁj1 (q17 Sl)ﬂjé (q2’ 52)ﬁj3 (q37 53) cee ﬂj?p (q2p7 52p)> ‘

To calculate the average in the last line of (B.1), one can invoke the factorization
property of high-order moments of Gaussian distribution

2p!

(B.2) Gitgpin ) = o0 | Gl (o) |
2p p 2-nd moments

sym

where the subscript “sym” denotes the arithmetic mean of all symmetrized products
of the ;4. For example, the fourth-order moment is

(B.3)  (0jUkl,) = % (; (@t ) (T ) + (Uil (T T + <uzﬁm><u]ﬁk>]> .

With the factorization (B.2) and the correlation of the Fourier-component of the
velocity field given by (3.3),

</aji (qia Si)ajn (qn’ STL)> =
(B.4) qi,_qi. e )
Sjign — g | @(a") T exp(—a(q")?[si — snl)

o’ +a") (¢")?

for § <q¢' =|q'| = |q"| < 1; (4, (d’, s;)d;, (q", s,)) = 0 otherwise, (B.1) becomes
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P 2pl ~k . s1 S2p—1
(e )ap)| = 5 m,,p,2pH [ @i [Cas [T [ an,

y (z )/ /exp(mzqm)

angles

(B.5) x kj (k+ ¢ (k +¢" +¢°) <k+2q>

11
n 9,95,
xl...é(ql—i—q )<6jzjn_ (]qz)Jz)"'] )

p factors

P

sym

where the symbolic notations A\;s, A;W, and q* correspond to the ordering of terms
in the symmetrized product

q =q, ANis=s1—sk, LW =W(s1)— W(sp),

9 q%, Ngs=s9—5;, NoW =W(sy)— W(s;) fork #2,
4 Q®, Azs=s3—5;, A3W =W(s3)—W(s;) fork=2,
and so on.

It is evident that the homogeneity requirement and the fluid incompressibility
(product of p delta-functions and [8;,5, — ¢} d5, /(¢")?] factors, respectively, in the last
line of (B.5)) effectively eliminate most of the “¢” terms in the third line of (B.5).
The symmetry condition of the velocity field, however, cannot be invoked completely
until Brownian motion effect is averaged or neglected. By explicit consideration of
angular integration for the fourth and sixth moments (they are relatively short but
already contain all representative combinations of even and odd powers of ¢'), it
can be shown that interaction with nonaveraged effect of molecular diffusion leads to
factors |gi| < 1, like

_sm(\/2Docjl|AZW|) and /OI' gi AZW gml AW"‘A W
iAW) I IAW T AL W

~q

gw - ~
vV 2D0qZ‘AiW|

in the 3-D case, for example. More importantly, the first one with a nonzero average
always corresponds to terms with even powers in ¢ in the third line of (B.5). The
others, which contain an odd power of W and hence will vanish after averaging,
always appear only if odd powers in ¢* are present, i.e., they correspond to terms like
quj and ¢;¢;" with i # m and their odd powers in (B 5). Hence, the interaction of
random symmetric convection with molecular diffusion does not induce net coupling
between nonsymmetric terms q~;q~;” with ¢ # m in (B.5) and it cannot lead to net
nonsymmetric effects.
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Consequently, one can set | exp(1y/2Dg...)| =1 in (B.5) before the angular inte-
gration. As a result, the absolute value of the integral over angles in (B.5) yields

(B.6) // < CPEP,

angles

where the numerical constant C' depends on the space dimension but is independent
on p. Now, because exp (—a Zle(qi)mis) is always less than 1, one can replace
it by 1 in the second line of (B.5) and complete the integration over s and ¢'. The
resulting estimate for |(f(k,t)2p)| is

a?r 2pl (61T — 1\ P ¢
k < A Z_rR2r
|U(’”%H—-QWWWpQP< e—1 ) o

1 [C(kta)® (87 =1\]"

~op! | 2(2m)m e—1 '

With the Stirling’s formula, p! ~ pPe~P,/27p, it is evident that for any fixed ¢t < oo,
k <oo,and 6 >0

N e e L

(B.7)

Hence, according to the Cauchy criteria, the average of series (A.4), (f(k,t)) =
(f(k,t)2p), converges absolutely, regardless of the value of the exponent €. Because of
the exponentially small tail of the Gaussian distribution, this leads to the convergence
of the unaveraged series (A.4).

It should be mentioned that (B.7) strongly overestimates |(f(k,t)2,)| at large
values of ¢ because exp (—a Y t_;(¢")*A;s) in (B.5) has been set equal to 1, which
corresponds to small-time behavior. Hence, it is not surprising that larger and larger
values of p are needed in order for the right-hand side of (B.7) to decay in the large-
scale, long-time limit for arbitrary values of e. However, this does not yet mean that
the actual convergence of (A.4) is not as rapid at large time. In fact, one of the
goals of the subsequent renormalization analysis is to reach the uniform convergence
of (A.4) in the above limit. In any case, (B.8) is valid for any finite ¢t < 0o, k < o0,
and 6 > 0, and it is valid to replace the characteristic function with series (A.4).

Appendix C. Effective diffusivity tensor (5.7). It should be emphasized
that establishing that the trajectories are Gaussian distributed tells us only that the
characteristic function can be expressed through the mean-square displacement tensor
alone as it is given by (A.7) (which is the same as (5.4)), but it does not yet provide
the expression for ij It is evident that (A.7) involves the two-time correlation
(U;(s)U;(s"))v, and only relations among the single-time moments <Hg:1 U, (t))
and <ny:1 u;,, (0,t)) have been established by (A.6).

While estimate (B.7) for |(f(k,t)2,)| is quite straightforward, it is difficult or
even can be impossible to obtain the exact expression for ZZ-QJ- by directly averaging
and summing series (A.4) for f(6K,t). Using the averaged version of (A.4) instead
of (A.6) for any practical purposes also is difficult since (B.7) and (B.8) strongly
overestimate the number of terms that is required for the convergence of the series
(A.4) in the long-time limit. Hence, another approach will be used to obtain the
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evolution equation (5.7) for the effective diffusivity D;;(s), which is related to Z;QJ by
definition (5.6),

(C.1) 722 tLW(t / Dy;(s

Note that Z(t) is Gaussian, Z(0) = 0, and (Z(¢))y = 0. Then one can introduce
the appropriate m-dimensional white noise z(t) with the usual autocorrelation prop-
erties, dzp(t)dzi(t) = 6prdt and dz,(t)dzi(s) = 0 for ¢ # s, such that Z(t) can be
represented by Ito’s stochastic integral

(C.2) Zi(t) = /0 Ui(s')ds' = /0 Ain (5, W (s))dzn(s),

where the matrix A;, (s, W(s)) does not depend explicitly on z(t). It, however, de-
pends on G. The Gaussian random processes z(t) and W(t), as well as z(¢) and
f ...a(k,t)d™k, also are dependent in general. For example, the dependence of A
on u is evident from relation (A.6) among the statistical properties of Eulerian and
Lagrangian velocities that suggests A ~ (u(0,0)u(0,0))*/2. The general dependence,
of course, is not limited by this simple relation.

However, according to the definition of Ito’s stochastic integral, z(s), W(s), and
u(k, s) are statistically independent of dz(t) for ¢ > s (this also is true for dW(¢)). It
should be emphasized that only independence on dz(t) is implied, but not on z(¢); for
example, (u;(k, s)dz;(t)) =0 for t > s, but (u;(k, s)z;(t)) # 0 in general, regardless of
the relative values of ¢ and s. Physically, this means that all these physical quantities
at time s “do not know what happens in the future,” i.e., how the white noise z will
change at the next instant in time. Hence, from definitions (C.1) and (C.2) and the
above properties of dz, it follows that because

250 =20 2i0)a = { [ Ao W) | Akj<s’,vv(s'>>dzk<s’>>

:/Ot<Am(s,W(s))Anj(s Wi(s ds—2/ Dij(s “

the two-time correlation (Z;(t1)Z;(t2))a becomes

min{ty,t2}
(i) Z(t2)a = [ (Ain (5, W(5)) Ans (5, W (5))) adls
(C.3) 0

min{ty,ta}
= 2/ Dyj(s)ds = Z2 *(min{ty, t2}).
0

Another important consequence of (C.2) and these properties of dz is the statistical
independence of both Z(s) and t(q, s) on

AN (Kt > 1) = kp(Zn(t) — Zim(t)) = m/ A (8, W (s))d2,(s")
(C.4) ¢

t
= km/ Upn(s")ds"
t/

for any k, q, and t >t > s.
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It also should be noted that the two-point two-time Eulerian velocity correlation
(3.3) (same as (B.4)) yields

(i (k, t)a;(q, s)) = exp(—ak®|t — s|)(a(k, s)a;(q, s))

(:5) — exp(—ak*|t — s|){is (k. 0)it;(q, 0))
such that
(C.6) (lis (b £) — exp(—ak? (¢ — ))its(k, 5)] 5 (q 5)) = 0

for any pairs of {k,q}, {,7}, and ¢ > s. For further analysis, it is convenient to
introduce the notation

(C.7) Ak, t > 1) = a;(k, t) — exp(—ak®(t — )t (k, t'),

where, similar to (C.4), ¢ should be > t'. Using (C.5) and definition (C.7), it can be
easily shown that

(C.8) (A (k,t > t)aj(q,8) =0

for any {k,q}, {i,7}, and t > ¢/ > s.

This means that t(q, s) is statistically independent of A"(k,t > ¢') for ¢’ > s.
According to (C.2), Z(s) also can be defined through the Lagrangian velocity U(s’)
with s’ < s, which, in turn, depends only on w(q', s;) at different instants of time
s1 < s’ because of the series solution (A.4). Consequently, Z(s) also is statistically
independent of A%(k,t > t') for ¢’ > s. It is hence useful to summarize the established
independence properties:

(C.9) (A (k,t > t)a(g,8)) =0, (Af(k,t >t)Z;(s)) =0,
(C.10) (AN (k,t > t)ia(q,8)) =0, (AZ(k,t>1)Z;(s)) =0
for any {k,q}, {i,j}, and t>t >s,

where AZ and AY are defined by (C.4) and (C.7), respectively.
Now let us consider the two-time correlation for the Lagrangian velocity compo-
nents

U(O)T;(3))a = (2m)™ / / esxp [1y/2Da(KW (1) + aW(s))
x (ti(k, t)i;(q, s) exp [UKZ(t) + qZ(s))])ad"kd™q,

where, without loss of generality, one can set ¢ > s. The next step is to find the
proper decomposition for the average in the last line of (C.11) in order to complete
the averaging without obtaining the explicit solution for Z. Using definitions (C.4)
and (C.7) and the independence properties (C.9)—(C.10), one obtains

(1 (k, t)t;(q, s) exp [u(KZ(t) + qZ(s))])
= ({A}(k,t > s) + exp(—ak®(t — s))ii(k, 5)} 1;(q, s)
(C.12) X exp [1 {Az(k,t >s)+ (k+q)Z(s)}])
= (Df(k,t 2> s)exp 1A% (k. t > 5)])(a;(q. s) exp [o(k + @) Z(s)])
+ loxp [187 (I, 1 > 5)]) exp(—ak*(t — )){ia(k, )iy, ) exp bk + )Z()])
= {1} +{2}.

(C.11)
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The second term {2} in (C.12) can now be averaged explicitly. One can use two-
time correlation (C.3) for Z in the first average, which involves only AZ(k,t > s) =
k(Z(t) — Z(s)). The second {(...) in {2}, which contains only s-dependent quantities,
is exactly the same as (...) in the average of (A.2) for the single-time second moment
of Lagrangian velocity (U;(s)U;(s)),. Consequently, (A.6) and the Eulerian velocity
correlation (B.4) allow the completion of this averaging. The result is

(2} = exp {;km {me(t) - sz(s)} kn] exp(—ak(t — s))(i; (k, 0)it; (q, 0))

kik;
= 6(k + q)a’ktme <(‘5ij 12 ) exp {—ak’z(t —5) km/ Dmn "ds' kn} ,
(C.13)
E=1k|, é6<k<l1,

where the definition of D,,,, in (C.1) also has been used. Note that (C.13) gives exactly
the same result as that from invoking Corrsin’s independence hypothesis, namely, the
independent averaging of (@) and (exp|...]) in (C.11). The decomposition (C.12) for
the averaging in (C.11), however, also contains the term {1}, which will be considered
below.

The second average in {1}, which contains all g-dependent factors and quantities,
and depends only on s but not ¢, is not of great interest. Including exp tqW (s)] from
the first line of (C.11) (which remains invariant under the averaging over @) into this
(...) and integrating over q reduce it to (U, (s) exp [tkZ(s)])y;, which is some nonzero
function of s and k in general.

Now let us examine the first average in {1}, which depends only on wavevector k
and “differences” A¥ and AZ, (A¥(k,t > s)exp [1AZ(k,t > s)]). Using the definition
of AZ by (C.4), one can write the stochastic differential equations (with respect to
variable t) for the exponential factor

f2(k,t>s) =exp [ZAZ(k,t > s)]

(C.14) = exp [k(Z(t) — Z(s))] = exp {Zk/ Uls }

both in terms of Lagrangian velocity and the new white noise z(t):
(C.15) df®(k,t > s) = kU(t) f2(k, t > s)dt,
(C.16) df® (k,t > s) = 1kA(t) 2 (k, t > s)dz(t) — kD(t)kf2 (k,t > s)dt.

Now, similar to (A.3), let us formally integrate (C.15), multiply it by A%(k,t > s),
and average the result:

(AY(k,t > s)f2(k,t > s)) = (AY(k,t > 5))

+ <A“(k,t > 5) /: XU 2 (k, t > s)dt’>
(C.17)
= <A“(k,t >t) /: KU®) f2 (k, t > s)dt’>

+ </t exp(—alk[*(t — ") A% (k, t' > s))kU(t) [ (k, t' > s)dt’> ,
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where the useful property of A",

AY(k,t > s) = AV(k,t > ') + exp(—alk|*(t — ")) AV (k,t' > s)
for any  t >t > s,

which can be easily obtained from its definition (C.7), has been invoked. The first
term in the right-hand side of (C.17) vanishes because, as is evident from (A.3), both
U(t') and f2(k,t' > s) contain only (ql,#; < t'), and because of the independence
properties (C.9). In order to average the second term, one can invoke the equivalent
representation of df(k,t > s) = 1kU(t) f2 (k,t > s)dt by (C.16):

exp(alk|*t) (A% t > 5) [ (K.t > 5))
(C.18) _ < / exp(alk|H kA () AR (K, ¢ > 5)F2 (k,t > s)dz(t’)>
- / DAYt > ) fA (et > )
=— /t exp(alk]*tkD(t k(A% (k,t' > s)f2(k,t' > s))dt,

where both sides also have been multiplied by exp(a|k|?¢). The first term in (C.18)
again vanishes because it is linear in dz(¢'). Consequently, the time-evolution of the
average value (A" f%) is described by the simple equation

d(AVf2)
dt

which has the only trivial solution (A% f2) = (A%(k,t > s)f>(k,t > s)) = 0.

Hence, term {1} in (C.12) vanishes exactly, and term {2} gives the same average
as if the Corrsin’s independence hypothesis had been invoked during the averaging
of (C.11). This is essentially due to Gaussian distribution of the trajectories and
stationarity of both Eulerian and Lagrangian Gaussian velocity fields. All these prop-
erties lead to the statistical independence of “changes” in the Eulerian velocity field,
AY(k,t > s), and in the distribution of “differences in trajectories,” f2(k,t > s),
despite the interdependence of Z and u.

The substitution of expression (C.13) for the “effectively independent” term {2}
into (C.11) hence gives the two-time Lagrangian velocity correlation for ¢ > s:

(C.19) S [a|k|z LKD)k (AUFA),  (AUFAY (¢t < s) =0,

(Us(WUj(s))a = RLi;(t, s)
X exp {—k‘m /: Dmn(s’)ds'kn}

X exp [u/zpok(wu) - W(s))} d"k.

The derivation of the evolution equation for the effective diffusivity now becomes
straightforward. According to the definition of effective diffusivity by (C.1),

(C.20)

(C.21) %dzj (t) = Dy (t)dt = { / C(RLis(t,5) + RLis(5,1) ds} dt,
0
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where (C.20) provides the expressions for RL;;(t, s) and RL;;(s,t) under the condition
t > s. The resulting expression for D;;(t) is

042

- Lk
ErmmeF(k, t, W (t (5, - J) d™k,
(2m)™ /6<k<1 ( (1) {8 k2
t t
F(k,t,W(t)) = / exp (akz(t —s) — km/ Dmn(s/)dslkn>
0 s

(C.22b) X oS [\/2D0kl(Wl(t) - Wl(s))] ds.

(0223) Dij (t) =

The averaging of all quantities involving D;;(t) over W (t) and the analysis of their
time-evolution becomes easier if one can write down the governing differential equation
for the real-valued function F'(k,t, W(t)). Invoking Ito’s stochastic differentiation,

o1 o7
ot ow;

df (t, W(t)) = [ + ;V%Vf} dt + dW;(t),

one can write the evolution equation for F(k,t, W (t)) defined in (C.22b):
dF = [1 . (akz + K2Dg + km[)mn(t)kn> F} dt — C\/2DokidWi (1),
(C.23) dG = — [ak® 4+ k> Do + kp Dy (8)kn|Gdt + F\/2DokidWi(t),
F(k,0,W(0)) =0, G(k,0,W(0)) =0,
where

OF
Ok Wi(t))

= /O t exp <—akz(t— ) — km / t f)mn(s’)ds’kn)
x sin [\/2Dohi (Wi(t) — Wi(s))| ds.

It is evident that (C.22a) and (C.23) are exactly the same as equations (5.7a)—(5.7d).

G =Gk t,W(t) = —
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SELF-SIMILAR SOLUTIONS FOR WEAK SHOCK REFLECTION*
ALLEN M. TESDALL? AND JOHN K. HUNTER*

Abstract. We present numerical solutions of a two-dimensional Riemann problem for the un-
steady transonic small disturbance equations that provides an asymptotic description of the Mach
reflection of weak shock waves. We develop a new numerical scheme to solve the equations in self-
similar coordinates and use local grid refinement to resolve the solution in the reflection region.
The solutions contain a remarkably complex structure: there is a sequence of triple points and tiny
supersonic patches immediately behind the leading triple point that is formed by the reflection of
weak shocks and expansion waves between the sonic line and the Mach shock. An expansion fan
originates at each triple point, thus resolving the von Neumann paradox of weak shock reflection.
These numerical solutions raise the question of whether there is an infinite sequence of triple points
in an inviscid weak shock Mach reflection.
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1. Introduction. Experimental observations of the Mach reflection of weak
shock waves off a wedge show a pattern that closely resembles a single Mach re-
flection, in which the incident, reflected, and Mach shocks meet at a triple point. The
von Neumann theory of shock reflection [10, 16] shows that a standard triple point
configuration, consisting of three shocks and a contact discontinuity, is impossible for
sufficiently weak shocks. This apparent conflict between theory and experiment for
weak shock reflection has been a long-standing puzzle and is often referred to as the
triple point, or von Neumann, “paradox” (see section 1.17 of [2], for example).

Guderley [8, 9] proposed that there is a supersonic region behind the triple point in
a steady weak shock Mach reflection, in which case there is an additional expansion
fan at the triple point, resolving the apparent paradox. There was, however, no
evidence of a supersonic region or an expansion fan in experimental observations
[3, 18, 19] or numerical solutions [4, 5, 20] of weak shock reflections off a wedge, until
Hunter and Brio [12] obtained a numerical solution of a shock reflection problem for
the unsteady transonic small disturbance equation that contained a supersonic region
behind the triple point. The region is extremely small, which is why it had not been
detected previously. Subsequently, Zakharian et al. [24] found a supersonic region in
a numerical solution of a shock reflection problem for the full Euler equations, using
local grid refinement near the triple point, for a set of parameter values corresponding
to those in [12].

The solutions in [12, 24] are for a single set of parameter values, and they are not
sufficiently well resolved to show an expansion fan at the triple point directly, or to
show the structure of the flow inside the supersonic region. In this paper, we present
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high-resolution numerical solutions of the shock reflection problem for the unsteady
transonic small disturbance equations for a range of parameter values. There is a
supersonic region behind the triple point in all of the numerical solutions obtained
here. This region consists of a sequence of supersonic patches formed by a sequence
of expansion fans and shock waves that are reflected between the sonic line and the
Mach shock (see Figures 5 and 6, for example). Each of the reflected shocks intersects
the Mach shock, resulting in a sequence of triple points, rather than a single triple
point. The numerical results raise the question of whether there is an infinite sequence
of triple points in an inviscid weak shock Mach reflection.

The total size of the repeating structure of supersonic patches is approximately
the same as that of the supersonic region in the solution obtained in [12], at the
same parameter value, by a different numerical scheme. Other important quantities,
including the strength of the reflected shock and the location of the triple point, agree
closely with this solution, providing an independent check on the self-similar solutions
presented here.

There are, at the moment, no experimental observations of a supersonic region
behind the triple point in a weak shock Mach reflection. As we discuss in section
5, the small size of the region and the effect of viscosity may make it very difficult
to detect experimentally. A structure similar to the one in the solutions presented
here has been observed in shock-boundary layer interactions in transonic flows over
an airfoil [1, 13] (see Figures 245 and 247 in [6]). The shock reflects off a laminar
boundary layer as an expansion wave, leading to a sequence of reflected shock and
expansion waves inside the supersonic bubble on the airfoil.

The numerical solutions of weak shock reflection in [5, 12, 20, 24] were obtained by
solving an initial-value problem for the unsteady equations. The problem of inviscid
shock reflection off a wedge is self-similar, and there are a number of advantages
to solving the problem in self-similar, rather than unsteady, form. In the unsteady
formulation the equations are time-marched, and any waves present move through
the computational domain, complicating algorithms for local grid refinement near the
triple point. By contrast, a solution of the self-similar equations is stationary, making
local grid refinement algorithms much easier to implement. Moreover, a global grid
refinement strategy is possible, in which a partially converged solution on a coarse
grid is interpolated onto a fine grid, and then converged on the fine grid. This process
may be repeated recursively until the desired resolution is obtained.

In this paper, we present numerical solutions of the shock reflection problem for
the unsteady transonic small disturbance equations computed in self-similar coordi-
nates. Samtaney [17] developed a scheme for the solution of the Euler equations in
self-similar coordinates, but his scheme does not apply to the unsteady transonic small
disturbance equations, and a different approach is required. In our approach, we intro-
duce special self-similar variables in which the self-similar transonic small disturbance
equations have the form of the usual transonic small disturbance equations modified
by lower-order terms. What makes the use of the unsteady transonic small distur-
bance equations worthwhile is the fact that, with the same computational resources,
we can obtain a much more finely resolved solution than for the Euler equations.

This paper is organized as follows. In section 2, we describe the shock reflection
problem for the unsteady transonic small disturbance equation, and in section 3 we
give the details of our numerical method. In section 4, we present our numerical
solutions. In section 5, we discuss some of the questions raised by these solutions and
consider the effect of physical viscosity on the inviscid solutions. We summarize our
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conclusions in section 6.

2. The asymptotic shock reflection problem. The asymptotic shock reflec-
tion problem [11, 12, 14, 20] consists of the unsteady transonic small disturbance
equation

1
(21) Ut + <2u2) —+ ’Uy = O,
Uy — Vg =0

in the half space y > 0 with the initial and boundary conditions

|0 ifz>ay,
(22) a0 ={ | LI
(2.3) v(x,y,t) =0 if x> o(y,t),
(2.4) v(z,0,t) = 0.

Here, x = o(y,t) is the location of the incident and Mach shocks. The location of the
incident shock is given by

1
(2.5) T=ay+ (2 + a2> t.

The incident shock strength, as measured by the jump in u, is normalized to one. This
problem depends on a single parameter a, the inverse slope of the incident shock.

These equations may be derived by a systematic asymptotic expansion of the
shock reflection problem for the full Euler equations for weak shock reflection off
thin wedges [12]. The variables u(zx,y,t), v(z,y,t) are proportional to the z, y fluid
velocity components, respectively, and pressure perturbations are proportional to u.
The flow is irrotational and isentropic to leading order in the shock strength.

If the Mach number of the incident shock is M, and the wedge angle in radians
is 0y, then (2.1)-(2.4) is obtained in the limit M — 1 and 6,, — 0, with

(2.6) a=

fixed. Because of transonic similarity, the asymptotic problem depends on a single
combination of the incident shock strength and the wedge angle. A regularly reflected
solution of (2.1)~(2.4) is impossible when a < v/2, and triple point solutions of (2.1),
in which three plane shocks separated by constant states meet at a point, do not exist.

The problem (2.1)—(2.4) is self-similar, so the solution depends only on the simi-
larity variables

_ _Y
=, =7

Writing (2.1) in terms of £, n, and a pseudo-time variable 7 = log ¢, we get

1
(2.7 ur — Eug — nuy + <2u2> +v, =0,
3
Uy — v = 0.
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As 7 — 400, solutions of (2.7) converge to a pseudo-steady, self-similar solution that
satisfies

1
(2.8) —Eug — nuy, + (2u2> + v, =0,
¢
Uy —vg = 0.
Equation (2.8) is hyperbolic when u < ¢ + n?/4, corresponding to supersonic flow in
a self-similar coordinate frame, and is elliptic when u > ¢ + n?/4, corresponding to
subsonic flow. The equation changes type across the sonic line given by

"

3. The numerical method. In order to solve (2.7) numerically, we write it in
terms of parabolic coordinates

1
(3. r=g+ P 0=,

which gives

1 1
(3.2) Uy + (262>T + Tp + gﬁ+ 57 =0,
ug — v, = 0.

With respect to these variables, the self-similar equations have the form of the usual
transonic small disturbance equations modified by lower-order terms, and they can
be solved by a standard numerical scheme. We introduce a potential ¢(r,6,7) such
that

(3.3) =@, U= e,

and we write (3.2) in the potential form

1 3 1
(34) Prr + <29072°) + poo + 5% + §T =0.
r

We define a nonuniform grid r; in the r direction and 6; in the 6 direction, where
rig1 = Ti + Aripio and 0541 = 0; + AOj 115, We also define (r;_1/2,7i41/2) as
the neighborhood of the point r;, with length Ar; = %(Ari_lm + Ar;i1/2), where
Tit1/2 = %(Ti+1 + r;). Similar definitions apply for the nonuniform grid 6;. We
denote an approximate solution of (3.4) by

@ij ~ @(Tiv ej’ nAT),
where A7 is a fixed time step, and we discretize (3.4) in time 7 using

n+l _ n
(3'5) SDT‘ (p”’

3 1
n+1 n n+1
AT + 9000+ + f(go?”)r + §§0r+ + -7 =0,

2
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where the flux function f is defined by
(3.6)

We solve (3.5) by sweeping from right to left in r, using the spatial discretization

(3.7) .
Pig+1=Pij _ Pij—Pij—1 3
A A
n+1 j+1/2 j—1/2 n+1
L‘O’L',j — A’I"Z'+1/2AT AQ + 5AT§D17J
J

= O = iy T PR+ AT (F(Uigay2,, Uivaya )" = F(Wio1/2,, Gigrj2,)")

3
+ 5 ATQDn+1

1 .
i+1,5 + 5A7A7i+1/2 7"2'_;,_1/2.

Here, F' is a numerical flux function, and

~ _ Pig Pl
Wi—1/2,5 = ATi_1 )2 .
i

The variable 7,/ is the value of r at which the source term %7’ is evaluated, and
in most of the calculations we used the definition #; 1,/ = ;. We tried a number
of different treatments of the source term and obtained similar results with them all.
See [21] for a detailed discussion.

In most of the computations, we used an Engquist—Osher numerical flux func-
tion. Dropping the #-subscript j, which is constant in the following definitions, the
Engquist—Osher flux for (3.6) is

~ ~ 1 ~ 1 .
FEO (W12, Uiy1)0) = 5 max (t;_1/2,0)” + 3 min(@; 41,2, 0)>.

In our highest resolution computations for a = 0.5, we used a second-order, flux-limiter
scheme [23], with a Lax—Wendroff flux as the higher-order flux, and an Engquist—Osher
flux as the lower-order flux. The numerical flux function for this scheme is given by

(Wi—1/2, Uir1y2) + (1 — () FP°

F(ﬁi71/27ﬂi+1/2) = w(Q)FLW (ﬂi71/27ﬁi+1/2)»

( aiig/?’:ﬂiil/?’ B AATTi (ﬁ'i73/22ﬂ171/2 >2)(m_1/276i_3/2) Ui_1/2FUip1)2

( ﬁi_l/z;ﬁ“lﬂ _AA:i (ﬁi_l/Q:ﬁHl/Q)2>(17i+1/2—77¢_1/2), 2 =0
Q - 2

( qu/Q;qu/Q - (uiﬂ/2jui+3/2> >(ﬂi+3/2—ﬁi+1/2) Ty jatiisi /e -0

( %4/2:71”1/2 —AT <ﬂi71/2;ﬂi+1/2 )2>('Ei+1/275171/2)7 ? ’

where 1 is a minmod flux-limiter,

0, 0<0,
0<p<1,
1, o>1.
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D C B

Fi1a. 1. A schematic diagram of the computational domain. EA is the wall and ABDE is
the numerical boundary. The incident shock enters the computational domain through AB. The
incident, reflected, and Mach shocks meet at the triple point T.

The Lax—Wendroff flux for (3.6) is given by

- - 1 -
FEW (Ui 19, Uig1)2) = Z(“?q/z + 741 )0)

1 AT ﬂi,1/2+ﬂi+1/2 2 ~ ~
_iAT‘i f (ui+1/2 _Ui71/2)-

We evolve the solution of (3.7) forward in time 7 until it converges to a steady
state, using line relaxation. The direction of sweep, from right to left in r, is consistent
with the direction of propagation of the characteristics for (2.8), which is in the —r
direction.

3.1. Boundary conditions. We computed solutions of the half-space problem
(2.1)-(2.4) in the finite computational domain

rb<r<rk, 0<6<67,

shown schematically in Figure 1. The left and right boundaries of the computational
domain are parabolic because of the use of the coordinates in (3.1). We use a nonuni-
form grid that has a locally refined area of uniform grid very close to the triple point,
and is stretched exponentially away from the triple point toward the outer numerical
boundaries and the wall. In the solutions shown below, the nonuniform grids are
stretched by amounts between 0.5% and 1.5%, and the total number of grid points in
our largest grid is approximately 3 x 106.

We impose the physical no-flow condition (2.4), which implies that @y = 0, on
the wall FA. In addition, we require numerical boundary conditions on the outer
computational boundaries.

On the right boundary AB, we impose Dirichlet data corresponding to the in-
cident shock solution in (2.2)—(2.3). Using (3.1) in (2.5), we find that the incident
shock location with respect to the transformed self-similar coordinates is given by

1 1
=af+-0>+ = +d°.
r=abt+ 1 + 5 +a
Thus, the incident shock location is a parabola with respect to the transformed coor-
dinates, instead of a straight line. Ahead of the incident shock we have (u,v) = (0,0),
and behind the incident shock we have (u,v) = (1, —a). Hence, using (3.1), (3.3), and
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the requirement that the potential is continuous across the shock, we find that the
potential for the incident shock solution is given by

1,2 1p2 | 1 2
(3.8) @(7"79):{ 2" 1pg2 1,2 1 2 7’>a9+41192+%+a2,
r—af — 30°—35r°—5—a°, r<ab+ 30°+ 5 +a°.

We impose (3.8) as a boundary condition for (3.4) on AB.

The asymptotic behavior of the solution of the shock reflection problem at large
distances from the reflection point is given by the solution of the linearized shock re-
flection problem [12]. We use this result to formulate a numerical boundary condition
on the subsonic boundary CDE. In self-similar variables, the linearized solution for

@, behind the reflected wavefront r =1 is

1 2a+/1 —
(3.9) <pT:1—r+tan_1( a ! >, r<l1.
™

1—7‘—|—%02—a2

We impose (3.9) as a Neumann condition on the left boundary DE. Writing (3.9) as
or = f(r,0), we discretize it as

% = f(Ti+1/2,9j)~

On the top boundary BD, we impose the Dirichlet condition (3.8) when r > 1,
corresponding to the segment BC, and the condition (3.9) when r < 1, corresponding
to the segment C'D. The exact location of the reflected shock is slightly different
from the point r = 1, where we switch the numerical boundary conditions, and the
exact solution differs slightly from the linearized solution, but we found that the
disturbance originating from the top boundary was small provided that the boundary
was far enough away from the triple point (see Figure 9). We tried a number of other
numerical boundary conditions, but (3.8)—(3.9) gave the most satisfactory results.

4. Numerical results. We computed numerical solutions of (2.1)—(2.4) for a
equal to 0.3, 0.4, 0.5, 0.6, 0.65, 0.7, 0.75, and 0.8. In the following figures, we present
solutions for the values 0.3, 0.5, 0.6, and 0.8. The solutions for the other values
of a are similar to the ones presented here. Figure 2 shows u-contour plots of the
global solutions as a function of (z/t,y/t). From (2.6), increasing a corresponds to
increasing the wedge angle while fixing the Mach number of the incident shock, or
decreasing the Mach number while fixing the wedge angle. Hence, the sequence of
plots in Figure 2(a)—(d) is a numerical representation of a series of shock reflection
experiments in which the wedge angle is increased, while the Mach number is held
constant at a value near one.

The numerical solutions closely resemble a single Mach reflection. The Mach
shock becomes shorter and stronger as a increases, and the strength of the reflected
shock near the triple point, which is very weak for smaller values of a, also increases
with a (see Table 4.1). For a fixed value of a, the strength of the Mach shock increases
as it moves away from the triple point, reaching a maximum at the wall y = 0. The
strength of the reflected shock increases initially as it moves away from the triple
point, then decreases, approaching zero as y — +o00. The thickening of the incident
shock as it moves away from the triple point in Figure 2(a)—(d) is caused by the use
of a stretched grid.

In Figure 3, we show the u-contours and the numerically computed location of
the sonic line (2.9) near the triple point for the values of a shown in Figure 2. All of
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Fi1G. 2. Contour plots of u for increasing values of a, showing the full numerical domain. The
u-contour spacing is 0.05.

TABLE 4.1
Numerically computed values of the size of the supersonic region at the triple point, the triple
point location, and the strength [u], of the reflected shock at the sonic point. The shock strength is
measured by the jump [u] in u.

[ a [ A/ [ AW/ | @/0ip | WDy | [ulr ]

0.3 0.0030 0.023 0.837 0.831 0.01
0.4 0.0023 0.019 0.924 0.665 0.03
0.5 0.0012 0.0096 1.008 0.513 0.07
0.6 0.0006 0.0030 1.098 0.398 0.13
0.65 | 0.0004 0.0014 1.148 0.349 0.17
0.7 | 0.00016 | 0.00074 1.200 0.302 0.22
0.75 | 0.00008 | 0.00027 1.255 0.258 0.27
0.8 | 0.00004 | 0.00011 1.315 0.220 0.33

the solutions contain a small region of supersonic flow behind the triple point, the size
of which decreases rapidly with increasing a. Table 4.1 gives the size of the supersonic
region in the numerical solution for each value of a. The height A(y/t) is a numerical
estimate of the difference between the maximum value of 3/t on the sonic line and the
minimum value of y/t at the rear sonic point on the Mach shock. The width A(x/t)
is an estimate of the width of the supersonic region at the value of y/¢ corresponding
to the triple point. In detailed plots of our most refined solution with a = 0.5 (see
Figures 5 and 6, for example), the expansion fan generated by the collision of the
reflected shock with the incident shock at the triple point can be clearly seen. Behind
the leading triple point, there is a sequence of shocks and expansion fans. These
shocks are less apparent in the less resolved solutions, such as Figure 3(c), and in
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FiG. 3. Contour plots of u near the triple point for increasing values of a. The u-contour
spacing is 0.005 in (a), and 0.01 in (b)—(d). The dotted line is the sonic line. The regions shown
contain the refined uniform grids, which have the following numbers of grid points: (a) 620 x 480;
(b) 768 x 608; (c) 346 x 260; (d) 245 x 150.

Figure 3(d) they cannot be seen at all.

The area covered by the most refined uniform grid fits inside the region shown
in Figure 3(a)—(d); the actual refined grid area would appear as a sheared rectangle
because the equations are discretized with respect to the parabolic coordinates in
(3.1). The figure caption gives the number of grid points in the most refined area of
the grid. The small numerical oscillations immediately behind the Mach shock (see
Figure 3(a) and (d), for example) seem to be caused by the lack of alignment of the
shock with the grid.

We found that, for a given value of a, a certain minimum grid resolution was
required to resolve the supersonic region behind the triple point. As we refined the
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F1c. 4. A sequence of contour plots illustrating the effect of increasing grid resolution on the
numerical solution. The solutions plotted here are for a = 0.5. The figures show the u-contours in
the refined grid area mear the triple point, with a w-contour spacing of 0.01. FEach grid is refined
by a factor of two in both x/t and y/t in relation to the previous grid. The region shown includes
the refined uniform grid area. The dotted line is the sonic line. In (a), the refined uniform grid
contains 64 x 42 grid points. A supersonic region is visible as a bump in the sonic line, but it is
poorly resolved. In (b), the refined uniform grid area contains 128 x 84 grid points. The supersonic
region appears to be smooth. In (c), the refined uniform grid area contains 256 X 168 grid points.
There is an indication of a shock wave behind the leading triple point. The refined uniform grid in
(d) contains 512 x 336 grid points. Two shock waves are visible behind the leading triple point.

grid beyond this minimum level, a detailed flowfield structure in the region emerged.
Figure 4 shows the u-contours and the sonic line near the triple point for a sequence
of solutions for a = 0.5 computed on successively refined grids. In this sequence, we
refined each grid by a factor of two in x /¢ and y/t in relation to the previous grid. The
resolution of the locally refined areas is indicated on the plots. In Figure 4(a)—(b), the
sonic line appears fairly smooth. The supersonic region in Figure 4(b) is similar in
size, shape, and resolution to the one obtained in [12]. At the next level of refinement,
shown in Figure 4(c), there is an indication of the coalescence of u-contours at the
rear of the supersonic region and evidence of a second reflected shock there. Finally,
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in Figure 4(d), the second reflected shock is better defined, with an indication of a
third, weaker shock following it. Further shocks appear in our most refined solution
in Figure 3(b).

Returning to Figure 3, we can explain the qualitative differences between the
solutions for different values of a in terms of their numerical resolution. As shown in
Table 4.1, the size of the supersonic region decreases with increasing a. We therefore
had to use more refined grids for higher values of a. For example, the solution shown
in Figure 3(d) for a = 0.8 was computed using a grid that was a factor of 16 times
more refined in 2/t and y/t than the grid used in the solution for a = 0.5 shown in
Figure 3(b). However, the supersonic region in Figure 3(d) is smaller than the one
in Figure 3(b) by a linear factor of about 90, resulting in a lower relative resolution.
Consequently, the detailed flowfield near the triple point is not visible in Figure 3(d),
similar to the under-resolved solutions shown in Figure 4(a)—(b). By contrast, the
solutions for a = 0.3,0.5,0.6 in Figure 3(a)-(c) contain a sequence of shocks and
expansions, evident from the pronounced bumps in the sonic line.

There is a small discrepancy between the numerically computed location of the
triple point in these figures and the theoretical location of the incident shock in (2.5).
The reason for this discrepancy is that the numerical boundary conditions did not
give an incident shock that was of exactly constant strength and exactly straight
in (z/t,y/t)-coordinates. The deviation of the numerical solution for the incident
shock from the exact uniform solution was, however, very small. For example, in
our numerical solution for a = 0.5, the nonuniformity in « and v in the state behind
the incident shock is less than 0.4%, and the numerically computed value of the x/t-
coordinate of the triple point differs by 0.15% from the theoretical value obtained from
(2.5) using the numerically computed value of y/t. We tried a number of different
implementations of the numerical scheme and boundary conditions, but none of them
gave an exactly straight incident shock. Nevertheless, we saw a supersonic region
and the same structure of reflected shocks and expansion fans inside it for all of the
implementations.

In Figure 5, we plot closely spaced u-contours, and more widely spaced v-contours,
to give a detailed picture of the sequence of shock and expansion waves for a = 0.5.
Figure 6 is an enlargement of the solution shown in Figure 5 over a very small area
close to the leading triple point, which shows the expansion wave that originates at
the triple point. The expansion wave is in the family opposite to the shock waves,
and it reflects off the sonic line as a compression wave (cf. the discussion in [9]). This
compression wave forms a shock that hits the Mach shock and reflects as the next
expansion wave. The result is a sequence of triple points, rather than a single triple
point. The variables u and v decrease smoothly across the expansion wave at the
front of a patch from sonic to supersonic values, moving from right to left in the
downstream direction; then v and v jump from supersonic to subsonic values across
the shock at the rear of a patch. A very weak wave is visible behind the incident
shock in Figure 5(b). This wave is a numerical artifact that is generated when the
incident shock crosses from the stretched grid into the uniform grid.

Each shock-expansion pair in the sequence is smaller and weaker than the one
preceding it. Four reflected shocks appear to be visible in Figures 5-6. From the
numerical data, their approximate strengths, beginning with the leading reflected
shock, are

[ul; ~0.08,  [ulz~0.02,  [us~001, [u]s~ 0.003.

Here, the jump [u] in u across a reflected shock is measured at the point where the flow
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Fic. 5. A detailed contour plot of (a) u and (b) v near the triple point for a = 0.5. The u-
contour spacing is 0.0005 and the v-contour spacing is 0.001. The sonic line is plotted in Figure 3(b)
and Figure 6. The figure shows a sequence of shock and expansion waves. Each erpansion wave
is centered at a triple shock intersection and reflects off the sonic line into a compression wave.
The compression wave forms a shock wave that intersects the Mach shock, resulting in a sequence
of triple points. Three shock-expansion wave pairs and triple points are visible in the plots, with
indications of a fourth. The region shown contains the refined uniform grid, which has 768 x 608
grid points.

behind the shock is sonic. This point is very close to the corresponding triple point
on the Mach shock, as shown in Figure 6. It is not possible, however, to determine
from the numerical solution whether or not this sonic point coincides exactly with
the triple point, as argued by Guderley [9] in the case of steady weak shock Mach
reflections.

Three shocks and an expansion fan appear to connect four states at the leading
triple point. We label these states 1-4 in Figure 6. Table 4.2 gives values of v and v
for each of the states, computed from the numerical solution. For states 2-4, these
values were computed at the locations indicated in the figure. The values of (u,v)
for state 3 behind the reflected shock were computed close to the point where the
flow behind the shock is sonic. This ensures that states 2 and 3 are connected by the
reflected shock and not by any part of the expansion fan, which connects states 3 and
4. For state 1, the values for (u,v) were computed at a location sufficiently far ahead
of the incident shock so that they were not influenced by the effects of numerical
diffusion near the shock.

The velocity components (@, ?) in a reference frame moving with the triple point
are given by [12] as

1 1
(4.1) U=u-— (§*+4nf), 0= 0= S,

where (&4,7.) are the (£, n)-coordinates of the triple point. From the numerical solu-
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Fic. 6. An enlargement of the solution in Figure 5 near the leading triple point, showing (a)
u-contours and (b) v-contours. The u-contour spacing is 0.005, and the v-contour spacing is 0.001.
The dashed line in the plots is the sonic line. Table 4.2 gives the values of uw and v from the numerical
solution for the states labeled 1-4 in the plots.

tion shown in Figure 6, we obtain &, = 1.008, 1. = 0.5128. We show the corresponding
values of (@, ) in Table 4.2. In Figure 7(a), we plot the shock and rarefaction curves
for the steady transonic small disturbance equation [12] through each of the four states
for (@,v). The plot in Figure 7(b) is an enlarged view of the shock and rarefaction
curves for the states 2, 3, and 4. The curves coincide almost exactly with those of
a triple point with an expansion fan. We show similar curves through the numerical
values of the analogous states at the second triple point in Figure 7(c)—(d). These
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TABLE 4.2

Numerically computed values for the four states at the leading and second triple points, from
the solution for a = 0.5 (see Figure 6). The state ahead of the incident shock is denoted by 1, the
state behind the incident shock by 2, the state behind the reflected shock by 3, and the state behind
the Mach shock by 4. The states 1'-4’ are the four analogous states at the second triple point. The
variables @ and U are defined in (4.1), with & = 1.008, n« = 0.5128 for states 1-4, corresponding
to the leading triple point, and &, = 1.007, n. = 0.5108 for states 1'—4’, corresponding to the second
triple point.

[ State [ u [ v [ u [ v ]
1 0 0 -1.074 0

2 0.997 | -0.5000 | -0.077 | -0.756
3 1.073 | -0.4963 | -0.001 | -0.771
4 1.047 | -0.5062 | -0.027 | -0.775
1/ 0 0 -1.072 0

2! 1.052 | -0.5076 | -0.020 | -0.776
3’ 1.072 | -0.5047 0.000 -0.778
4’ 1.060 | -0.5088 | -0.012 | -0.779

-0.1-0.075-0.05-0.025 0.025 0.05 0. 075LI

-0.04 -0.03 -0.02 -0.01 0.01 O.OéJ
(c) (d)

Fic. 7. The plots in (a)—(b) show the theoretical shock and rarefaction curves through each
of the four states for (@,v) at the leading triple point (see Figure 6). Their numerical values are
gien in Table 4.2. (The bars have been omitted from the axis labels.) The curves correspond almost
ezactly to those of a triple point with an expansion fan. The plots in (c)—(d) show similar shock
and rarefaction curves for the second triple point. The states 2 and 4 lie slightly off the shock curve
of 1; nevertheless, the overall agreement with the curves of a triple point with an expansion fan is
excellent.

plots show that the triple points with expansion fans that we observe numerically are
consistent with theory.

To accelerate the convergence of the solution on a very refined grid, we partially
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Fic. 8. A plot of the maximum norm of the residual, showing partial convergence on a sequence
of grids, followed by convergence on the most refined grid. The sharp local peaks correspond to inter-
polations onto more refined grids. The computation on the most refined grid begins at approzimately
n = 30000. The final stage of convergence to a value for the mazimum norm of the residual of less
than 10~9 is not shown in the plot.
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FiG. 9. A check of the sensitivity of the solutions to the size of the numerical domain, showing
u-contours for two solutions computed on different sized domains, for a = 0.5. The full numerical
domains are shown, with u-contours for the large domain solution (dashed lines) and the small
domain solution (solid lines) plotted at the same values of u. Contour lines for uw and v near the
triple point for both solutions shown here are compared in Figure 10.

converged the solution on a coarse grid, interpolated the solution onto a refined grid,
and repeated this process until the desired resolution was obtained. For example,
Figure 4 shows a sequence of solutions obtained on four consecutive intermediate
grids during the computation for a = 0.5. In Figure 8, we plot the maximum norm
of the residual for a typical computation, in which nine grids were used. The sharp
local peaks correspond to interpolations onto more refined grids. In the computation
shown, the solution on each intermediate grid was converged until the maximum norm
of the residual was less than 10~7. The solution on the final grid in a computation
was converged until no further change was observed in the details of the solution near
the triple point, which typically occurred when the maximum norm of the residual
was less than 1077,

We performed checks to determine the sensitivity of the solutions to the placement
of the top and left numerical boundaries, which intersect the region where (2.8) is
elliptic. In Figure 9, we plot u-contours for two solutions for a = 0.5 computed on
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Fic. 10. A comparison of u- and v-contours near the triple point for the two solutions shown
in Figure 9. The plots in (a) and (b) show u-contours for the solutions computed on the larger
and smaller domains, respectively, plotted at the same levels of u. The plots in (c) and (d) show
v-contours for the solutions computed on the larger and smaller domains, respectively, plotted at the
same levels of v. The dashed line in (a)—(d) is the sonic line. The u-contour spacing in (a)—(b) is
0.005, and the v-contour spacing in (c)—(d) is 0.001.

BT

different sized domains. In this study, the top and left numerical boundaries of the
smaller domain were extended, as indicated in the figure, to approximately double
the distance from these boundaries to the triple point. The contour lines are plotted
at the same values of u for both solutions, with the dashed lines representing the
u-contours of the solution on the larger domain. The contour lines approach each
other and almost coincide near the triple point.

Figure 10 is an enlargement of the solutions near the triple point, showing u-
contours and v-contours for the solutions on the larger and smaller domains. The
u-contours in Figure 10(a)—(b) and the v-contours in Figure 10(c)—(d) are plotted
at the same values of u and v, respectively, and the sizes of the regions shown in
these plots are the same. The dashed line in Figure 10(a)—(d) is the sonic line. The
structure of reflected shocks and expansion waves, supersonic patches, and repeating
triple points did not change as a result of enlarging the computational domain, and
the size of the supersonic region is nearly identical for the two solutions. The main
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effect of extending the boundaries is a slight shift in the location of the leading triple
point. The shift is approximately 0.05% in z/t and 0.2% in y/t.

5. Discussion. These numerical results raise the question of whether there is an
infinite sequence of triple points in an inviscid weak shock Mach reflection. Gamba,
Rosales, and Tabak [7] prove, under some mild assumptions, that the flow behind a
triple point cannot be strictly subsonic for the unsteady transonic small disturbance
equation. Therefore, if there were a finite sequence of supersonic triple points, there
would presumably have to be a smooth transition from supersonic to subsonic flow at
the rear of the final supersonic patch. Such a smooth transition appears unlikely to
occur, however, because the resulting nonlinear mixed-type boundary value problem
would be overdetermined [9, 15].

The most plausible alternative to a finite sequence of triple points terminated by a
shock-free supersonic patch is an infinite sequence of more closely spaced triple points,
weaker shock-expansion pairs, and smaller supersonic patches that accumulate at the
rear sonic point of the supersonic region on the Mach shock. In this structure, the
shock and expansion waves would reflect back and forth infinitely many times between
the Mach shock and the sonic line, into the rear sonic point. The inviscid equations
do not define a length scale so solutions may, in principle, develop arbitrarily small
structures. We do not know, however, of a way to confirm or deny the existence of
an infinite sequence of patches whose size shrinks to zero.

A remarkable feature of the numerical solutions is the extraordinarily small size
of the supersonic region, especially for larger values of a. For example, when a = 0.8,
the height of the supersonic region is approximately 0.05% of the height of the Mach
shock. Once the inverse shock slope a is fixed, there are no further parameters in
the problem, so the small size of the region cannot be explained by the dependence
of the solution on a small parameter. The shock reflection pattern is produced by
the requirement that the y-velocity component v, which is equal to —a behind the
incident shock, must return to zero at the wall y = 0. Thus, a global scale for v, is

a

(y/t)t.p. ’

where (y/t)y.p. is the (y/t)-location of the triple point. The supersonic region is
produced by the expansion fan that is formed when the leading reflected shock collides
with the incident shock. If Av is the change in v across this fan, then a local scale
for v, near the triple point is

Av
7= Ry

where A(y/t) is the height of the supersonic region. From the numerical data, we find
that « is much less than § for larger values of a, corresponding to a rapid change in
the solution near the triple point and a tiny supersonic region. For example, when
a = 0.5, we find from the numerical data that /8 ~ 1.0, but when a = 0.8, we find
that /8 =~ 0.05. Since the largest value of a that we investigated is 0.8, we neither
know if solutions for higher values of a contain a supersonic region with a sequence of
triple points over the entire range 0.8 < a < v/2, nor know if the transition between
regular and Mach reflection occurs exactly at a = /2.

A repeating structure of supersonic patches and triple points with expansion
fans appears to provide a resolution of von Neumann’s triple point paradox within
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the framework of inviscid shock theory, and viscosity is not required to explain the
structure of a weak shock Mach reflection. Nevertheless, in view of the extremely
small size of the supersonic region, it is important to consider the likely effect of
physical viscosity on the inviscid description. Since the triple point lies in the interior
of the fluid, it is reasonable to expect that boundary layer effects do not influence
the local structure of the solution. Thus, the main effect of viscosity is to thicken
the shocks. If the size of the supersonic region is smaller than the viscous thickness
of the reflected shock, then the sonic line is embedded inside the viscous profile of
the reflected shock, and the local structure of the solution near the triple point is
dominated by viscous effects. Since the numerical scheme includes numerical viscosity,
which mimics the effect of physical viscosity, the plots in Figure 4 of the solution with
increasing numerical resolution presumably indicate the effect of decreasing physical
viscosity on the solution. At resolutions lower than the ones shown in Figure 4, the
supersonic region disappears completely, and the sonic line runs down the inside of
the reflected shock, through the triple point, and down the Mach shock.

To compare the width of the supersonic region with the viscous shock thickness,
we suppose that the reflected shock Mach number is M, and the mean free path in the
gas is A. The thickness § of the reflected shock is then approximately given by [22]:

3\

6:Mr—1'

The incident and Mach shocks are thinner than the reflected shock because they are
stronger. If the width of the supersonic region in z/t in the solution of the unsteady
transonic small disturbance equation is A(z/t), then, from [12], the asymptotic width
d of the supersonic region parallel to the wall in physical variables is given by

d=2(M — 1)A(z/t)L.

Here, L is the distance traveled by the Mach shock along the wall, from the corner of
the wedge to the reflection point, and M is the Mach number of the incident shock.
Hence

d ,L
E—C(M—l) X,

where the dimensionless constant ¢ is defined by
2 T
(5.1) c=3A (;) [ulr,

and [u], is the ratio of the reflected and incident shock strengths,

M, -1
M-1

[u]r =

The supersonic region is much larger than the reflected shock structure if d > 0,
meaning that

A

L>» —.
> (M —1)2

The value of ¢ in (5.1) may be estimated from the numerical data in Table 4.1. The
supersonic region is easier to observe for larger values of ¢, and the largest value of
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c for the results obtained here is ¢ ~ 6 x 107° for @ = 0.5. For smaller values of
a, the reflected shock becomes very weak and thick, while for larger values of a, the
supersonic region becomes extremely small. The mean free path in argon at standard
conditions is approximately A = 6 x 107> mm. Therefore, for a shock reflection in
argon with @ = 0.5, we estimate that the supersonic region separates from the viscous
profile of the reflected shock when L > (M — 1)~?mm. Even for a relatively strong
weak shock with M = 1.1, this estimate gives L > 100 mm. Thus, in order to observe
the supersonic region in a shock tube experiment, the test section of the tube would
have to be significantly longer than 100 mm.

It is striking that such a complex inviscid structure forms on a length scale that
is comparable with, or less than, the viscous shock thickness in typical experiments.

6. Conclusion. We have presented numerical evidence of a structure of reflected
shocks and expansion waves and a sequence of triple points and supersonic patches in
a tiny region behind the leading triple point of an inviscid weak shock Mach reflection.
The presence of the expansion fans at the triple points resolves the von Neumann para-
dox of weak shock reflection. Qualitative arguments, based on the well-posedness of
mixed-type boundary value problems, suggest that there may be an infinite sequence
of triple points and patches in an inviscid reflection, but a proof or disproof of this
suggestion is lacking. The numerical solutions provide an estimate of the size of the
supersonic region, which may enable its experimental detection.
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MULTIPLE BUMPS IN A NEURONAL MODEL OF WORKING
MEMORY*

CARLO R. LAINGT, WILLIAM C. TROY*, BORIS GUTKINS, AND G. BARD
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Abstract. We study a partial integro-differential equation defined on a spatially extended
domain that arises from the modeling of “working” or short-term memory in a neuronal network. The
equation is capable of supporting spatially localized regions of high activity which can be switched
“on” and “off” by transient external stimuli. We analyze the effects of coupling between units in the
network, showing that if the connection strengths decay monotonically with distance, then no more
than one region of high activity can persist, whereas if they decay in an oscillatory fashion, then
multiple regions can persist.

Key words. short-term memory, integro-differential equation, coupling, homoclinic orbits
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PII. S0036139901389495

1. Introduction. Working memory, which involves the holding and processing
of information on the time scale of seconds, is a much studied area of neuroscience
[3, 9, 24, 35, 37]. Experiments in primates [8, 15, 29] have shown that there exist
neurons in the prefrontal cortex that have elevated firing rates during the period
in which an animal is “remembering” the spatial location of an event before acting
on the information being remembered. Realistic models for this type of activity
have involved spatially extended systems of coupled neural elements and the study
of spatially localized areas of high activity in these systems. Previous studies have
involved “rate” models [1, 19, 22, 37] in which a neural element is described by a single
scalar variable, e.g., a firing rate and more complicated “spiking” models [9, 24, 35],
which take into account the intrinsic dynamics of single neurons.

In this paper we extend the 1977 work of Amari [1] who found single spatially
localized regions of high activity (“bumps”) in rate models of the form

(1.1) % = —u(x,t) + /_00 w(x —y) f(u(y,t)) dy + s(z,t) + h.

Equation (1.1) models a single layer of neurons. The function u(x,t) denotes the
“synaptic drive” or “synaptic input” to a neural element at position z € (—o0, )
and time ¢ > 0. The connection function w(z) determines the coupling between ele-
ments, and the nonnegative function f(u) gives the firing rate, or activity, of a neuron
with input u. Neurons at a point x are said to be active if f(u(x,t)) > 0. The func-
tion s(x,t) represents a variable external stimulus. Finally, the parameter h denotes
a constant external stimulus applied uniformly to the entire neural field. Although
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the model we study has been used to model working memory, similar equations arise
in neural theory as applied to vision and robotic navigation [17], head direction sys-
tems [39], and cognitive development in infants [32]. We also mention recent analyses
of wave propagation when inhomogeneities are present in the underlying neural sub-
strate [4] and also in neural networks with axo-dendritic synaptic interactions [10].

Our goal is to extend Amari’s results in two ways. First, in the next section
we will extend the analysis of the original model in which w(z) is assumed to have
exactly one zero in (0, 00), and f(u) is a step function. We will determine a simple set
of assumptions on w and f for which (1.1) has stationary “single-bump” solutions.
Our assumptions will allow us to obtain a more precise description of the shape of
solutions. We will also investigate the existence of “double-bump” solutions.

In section 3 we relax the restrictions on w and f to include both oscillatory
connection functions which change sign infinitely often and continuous firing rate
functions. Our goal here is to show that “multi-bump” solutions of (1.1) exist over
an appropriate range of parameters. The extension of f(u) to a continuous function
will allow us to derive an ordinary differential equation, specific solutions of which are
steady-states of (1.1). This differential equation, which is derived in section 5, will
be invaluable in proving the existence or otherwise of such “multi-bump” solutions.
Sections 6 and 7 are devoted to studies of its N-bump solutions. In section 8 we
extend the model to two space dimensions and present numerical evidence for multi—
bumps solutions. Sections 9 and 10 contain proofs of two theorems stated in the text,
and a summary of our results is given in section 11.

2. “Mexican hat” coupling. We begin with a description of the assumptions
and conclusions obtained by Amari [1] where the coupling function w(z) satisfies the
following:

(Hy) w(x) is symmetric, i.e., w(—z) = w(z) for all x € R;

(Hz) w(z) > 0 on an interval (—z,Z), and w(—2) = w(z) = 0;

(H3) w(x) is decreasing on (0, Z];

(Hy) w < 0on (—o0,—Z) U (T, 00).
An additional condition which Amari uses but does not explicitly state is

(H5) w is continuous on R, and [*_w(y) dy is finite.
A coupling satisfying (Hy) and (H4) produces “lateral inhibition” [14]. That is, con-
dition (Hs) means that nearby neural elements excite one another, but (Hy) results in
an “inhibitory effect” if the distance between neural elements is greater than a certain
value, Z. Conditions (H;), (H;3) and (Hs) are general requirements which allow for a
tractable mathematical analysis of (1.1). In order to rigorously determine the shape of
steady-state solutions of (1.1), we make one final assumption on the coupling function
w(x):

(Hg) w(x) has a unique minimum on R* at a point zy > 7, and w(w) is strictly

increasing on (zg, 00).
A connection function which satisfies conditions (H;)—(Hg) is

(2.1) w(z) = Ke *=l — pre=mlel,

where 0 < M < K and 0 < m < k. An example of this “Mexican hat” type function
is given in Figure 1 for K = 3.5, M = 3, k = 1.8, and m = 1.52. For simplicity, Amari
assumes (see Figure 1) that the firing rate f(u) is the Heaviside step function

0, u<0,
(2:2) flu) = {

1, u>0.
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Fia. 1. Mezican hat function (2.1) for parameters given in the text, and the Heaviside firing
rate function (2.2).

The effect of (2.2) is that a neuron fires at its maximum rate when the input exceeds
the threshold value u = 0 and does not fire otherwise. Thus, (2.2) can be viewed as
modeling neural elements whose firing rates “saturate” immediately, since increasing
the input further does not cause the firing rate to increase, provided the input is above
the threshold value.

Under assumptions (H; )—(Hs), Amari analyzes the existence and stability of equi-
librium solutions of (1.1) under the assumption that there is no “inhomogeneous” ex-
ternal stimulus s(z,t). That is, he sets du(x,t)/0t = 0 and s(z,t) = 0. This reduces
(1.1) to the time independent equation

(2.3 ww) = [ wla =) sle) dy-+

— 00

Solutions of (2.3) are called equilibrium or stationary solutions. An important obser-
vation is that the neural system is still subject to the constant external stimulus h
applied uniformly to the entire neural field. Note that if A < 0, then the constant
function u = h is a solution of (2.3).

Single-bump solutions: For a given distribution u(x), Amari defines its region
of excitation to be the set

R(u) = {z|u(x) > 0}.

He then defines a localized excitation to be a pattern u(x) whose region of excitation is
a finite interval, i.e., R(u) = (a1, az2). If R(u) is connected, we refer to the pattern as a
“single-bump”, or “l1-bump” solution. Furthermore, because (2.3) is homogeneous, it
is easily verified that u(z — a) is a solution whenever u(z) is a solution. Thus, without
loss of generality, we assume that the region of excitation for a single-bump solution
has the form

R(u) = (0, a).

Remark. If (2.3) has a solution whose region of excitation consists of N > 1
disjoint, finite connected intervals, the solution is called an N-bump solution. A major
goal of this paper is to show that multi-bump solutions exist for (2.3) when the
restrictions on w(z) and f(u) are relaxed.
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Fic. 2. W(x), (2.4), for parameters given in the text. We have chosen h to be negative, so that
Woo <0< —h < Wy,

In his analysis of single-bump solutions, Amari makes use of the function

(2.4) W(zx) = / w(y) dy
0
and the related quantities

(2.5) Wy = max W(z) and Wy = lim W(x).

Conditions (H;y) and (Hs) imply that W (x) is odd, and that W, is finite, respectively.
Amari observes that if (2.3) has a single-bump solution u(x) whose region of excitation
is given by R(u) = (0,a), then u(x) satisfies

(2.6) u(z) = /Oaw(a: ) dy+h=W(z)— Wz —a)+ h.

At the value z = a, (2.6) reduces to
(2.7) W(a) =—h

since W(z) is odd and u(0) = u(a) = 0. In turn, Amari claims that ifa > 0 and h < 0
satisfy (2.7), then

(2.8) u(z) =W(x)—W(x—a)+h

is a single-bump solution of (2.3) for which R(u) = (0, a).

For a given h < 0, (2.7) may have zero, one or two positive solutions. The
exact number is determined by the relative values of W, W,,,, and h. In Figure 2 we
construct the W (x) corresponding to the Mexican hat function illustrated in Figure 1.
That is, we use the formula for w(x) given in (2.1) for the specific values K = 3.5,
k=18, M =3, and m = 1.52. In Figure 2 we see that if W < 0 < —h < W,,, then
there are two values, a1 and ag, which satisfy (2.7). Setting a = a1 and a = ag in (2.8)
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F1G. 3. Stable (left) and unstable (right) single-bump solutions of (2.3) for the functions w and
f shown in Figure 1 and h = —0.7.

gives the corresponding single-bump solutions of (2.3). In Figure 3 we illustrate these
two solutions for the value h = —0.7. Amari gives arguments that indicate that the
large amplitude solution corresponding to a = as (i.e., the first solution in Figure 3)
is stable, while the second, smaller amplitude solution in Figure 3 corresponding to
a = ay is unstable. Furthermore, as Figure 2 indicates, if h = 0, then (2.7) holds only
at the positive value a = az = a.. Setting a = a, and h = 0 in (2.8), one can easily
show that the resulting function is still a single-bump solution of (2.3).

We note that if (2.7) has a solution for some a > 0 and h > 0, then (2.8) implies
that u(x) > 0 for all large x, contradicting the supposition that R(u) = (0, a) is finite.
Thus, single-bump solutions do not exist if A > 0.

Finally, we make a few observations concerning the shape of nonconstant single-
bump solutions (see Figure 3). First, we conclude from hypotheses (H;)—(H4) and
(2.8) that u(z) is symmetric with respect to © = a/2 and that u(x) is increasing
on (0,a/2) and decreasing on (a/2,a). When we consider the additional hypotheses
(Hs) and (Hg), it follows from standard analysis that the solution u(x) has a unique
minimum on (0, 00), and that u(x) — h from below as © — oo.

Double-bump solutions: We now consider the possible existence of double-
bump solutions. A solution u(x) of (2.3) is called a double-bump, or 2-bump, solution
if there are values 0 < a < b < ¢ such that

u>0 on (0,a)U(bc),
(2.9) u(0) = u(a) = u(b) = u(c) =0,
u <0 otherwise.

Thus, a 2-bump solution is one whose region of excitation consists of two disjoint,
connected intervals. The quantity b — a is the distance between bumps. Our goal is
to prove the existence or nonexistence of double-bump solutions of (2.3) which satisfy
property (2.9). In general, a rigorous resolution of this problem is very difficult.
Before stating our first result, we recall that xy denotes the unique positive value at
which the coupling function w(z) attains its global minimum and that w(z) is strictly
increasing on (zg,00) (see Figure 1). In the following result we eliminate a class of
2-bump solutions.
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THEOREM 2.1. Under hypotheses (Hy)—(Hg) there is no value h € R for which
the problem (2.2)—(2.3) has a 2-bump solution such that the distance between bumps
satisfies b — a > xg.

Remark. Theorem 2.1 does not completely eliminate the existence of all double-
bump solutions. For example, our proof does not address the existence of general
2-bump solutions such that the distance b — a satisfies b — a < x9. However, it
can be shown that under the assumptions ¢ — b = a, i.e., equal width bumps, and
We < 0, (2.2)-(2.3) can support (possibly unstable) 2-bump solutions [33] (and
see [18]). We also have no results concerning existence or nonexistence of N-bump
solutions where N > 3. The resolution of these problems remains open.

Because the proof of Theorem 2.1 is somewhat technical, we postpone the details
until section 9. We proceed in the next section to describe the main focus of our
investigation.

3. Statement of main results. The main goal of our investigation is to ex-
tend the analysis in section 2 and determine conditions on the connection and firing
functions so that the integral equation (1.1) has stable N-bump solutions. For this
we choose a specific w(z) which changes sign infinitely often, and we let f(u) be a
continuous extension of the Heaviside function. For simplicity it is assumed that both
s(z,t) =0 and h = 0. Setting h = 0 will be compensated for by including a threshold
in f. Thus, we study the problem

(3.1) Pt — o)+ [ wla = ) ulas0) do
where

(3.2) w(z) = e "®(bsin |z| + cos z)

and

(3.3) Fu) = 2"/ W=t [ (y — th).

Here th > 0, b > 0, and r > 0 are constants. The parameter b controls the rate at
which the oscillations in w decay with distance. As shown in Figure 4, they decay
more rapidly as b is increased. It is hoped that this oscillatory form of coupling better
represents the connectivity known to exist in the prefrontal cortex, where labeling
studies have shown that coupled groups of neurons form spatially approximately pe-
riodic stripes [16, 26, 27]. Interestingly, it has been proposed that disruption of this
“lattice” of connectivity may be responsible for some of the symptoms of schizophre-
nia [27]. Note that we are not addressing the processes involved in the formation of
these stripes, but are interested in the possible patterns of neural activity that can
exist in the system once these patterns are in place. Also, although w(z) does not
have finite support we know that in the brain, connections cannot exist over arbi-
trarily large distances, so this is obviously an approximation to reality. It would be
an interesting problem to analyze (3.1) with a function w(z) that had more than one
zero crossing for x > 0 yet had finite support. Finally, it is interesting to observe
that the coupling given in (3.2) is differentiable at « = 0, and that w’(0) = 0. This is
proved in [23] and easily follows from the formal definition of derivative. In contrast,
the lateral inhibition coupling given in (2.1) is not differentiable at x = 0. However,
we believe that the only significant feature for analysis of the models is continuity of
w at x =0.
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FiG. 4. w(z), (3.2), for b=0.25 (left) and b = 1.0 (right).

Fic. 5. f(u), (3.3), forr =0 (left) and r = 0.1 (right), with th = 1.5.

The parameter th denotes the threshold that is now included in f(u). The coeffi-
cient of 2 in (3.3) was chosen merely for convenience. We note that f(u) = 0 if and
only if u < th. Furthermore, f(u) is a C* function when r > 0, and r controls the rate
of increase of f(u) for u just past threshold. The differentiability of f will be useful
when we derive a differential equation, specific solutions of which are equivalent to
steady-state solutions of (3.1). In Figure 5 we set th = 1.5 and graph f(u) for r =0
(left) and r = 0.1 (right). When r = 0, f(u) is just twice the Heaviside function.
For r > 0, f(u) is a continuous function which rapidly approaches 2 from below as u
increases past th.

The choice of the functions (3.2) and (3.3) had some arbitrariness to it. The
important features of (3.3) are that f(u) =0 for u < th and that f(u) is sufficiently
differentiable. The choice of (3.2) was made not only because it has the appropriate
shape (decaying oscillations, with approximately the same distance between successive
maxima), but also because the form of its Fourier transform makes the ordinary
differential equation derived in section 5 particularly simple. Our hope is that the



MULTIPLE BUMPS IN WORKING MEMORY 69

qualitative details of the following results do not depend on the exact form of (3.2)
and (3.3).

As before, we define a “stationary solution” to be a time independent solution of
(3.1)—(3.3). Thus, a stationary solution satisfies the equation

o0
(3.4) uw) = [ e~ y)f(ulw)dy.
—o0
Before proceeding with our study of N-bump stationary solutions, we need to make
precise the definition of the “region of excitation.” For a solution of (3.4), we define
its region of excitation to be the set

(3.5) R(u) = {z|u(x) > th}.

A solution of (3.4) is an N-bump solution if its region of excitation consists of exactly
N disjoint, finite connected intervals.

In the next section we begin our investigation of N-bump stationary solutions
by considering the limiting value 7 = 0. As r — 0T we note that the firing function
tends to the discontinuous step function depicted in Figure 5 (left). In sections 57 we
extend our studies to the case r > 0, for which the firing function f(u) is continuous.
As mentioned above, when r > 0 we find that there is an equivalent differential
equation, some of whose solutions are solutions of (3.4). In section 5 we derive this
fourth order equation and state our second theorem which determines a range of
parameter values over which N-bump solutions can possibly exist. The differential
equation will be especially useful to us in sections 6 and 7 where we give an extensive
numerical investigation of the global behavior of entire families of N-bump solutions
as parameters vary. Section 6 consists of a study of families of N-bump solutions for
odd values of N, while section 7 covers even values of N.

4. The limiting problem: r = 0. It is natural to begin our investigation by
considering the case r = 0 where f(u) reduces to a multiple of the Heaviside function.
In order to understand this case, we investigate the existence of N-bump solutions
for a specific choice of the parameters b and th. For convenience we set th = 1.5
and b = 0.25 (see Figures 4 and 5 in the previous section). At these values our
computations suggest that the problem (3.1)—(3.3) has at least four stable N-bump
solutions. These are shown on the left in Figures 6-9, where the initial profile u(z, 0)
is represented by the dashed curve, and the solid curve represents u(z,t) at ¢ = 60.
The formula for u(z,0) is given by

Lz Lz \°
4.1 = — - = —12. 12.57.
(4.1)  u(x,0) = cos (12.57r> exp ( (12.57r) >, 51 < x < 12.57

The parameter L > 0 allows us to vary the initial profile u(z,0). Equation (3.1)
was numerically solved by spatially discretizing it on a uniform grid and then moving
forward in time with an Euler step until convergence. The integral was approximated
by a Reimann sum; note that the convolution can be performed more efficiently with
a fast Fourier transform.

In the left panel in Figures 6 and 7 we set L = 6 and L = 2.5, and find that
u(x,t) approaches stable 1-bump and 2-bump solutions, respectively, as ¢ — co. Our
computations imply that these also are solutions of

(4.2) utw) = [ " wle - y) f(uly))dy.
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F1G. 6. Stable (left) and unstable (right) 1-bump solutions: r =0, th = 1.5, b= 0.25.

u u
45
th=1.5 i th=1.5
: \/AHH/\V : X : /\{\ /\/\ : X
-30 \j v 30 -30 v v 30

F1a. 7. Stable (left) and unstable (right) 2-bump solutions: r =0, th = 1.5, b = 0.25.

Our computations also indicate that there exist unstable 1-bump and 2-bump station-
ary solutions. These are shown in the right panel in Figures 6 and 7. It is interesting
to compare these unstable solutions with the unstable single-bump solution of the
original Amari model described in section 2 (see Figure 3). Some of the stable solu-
tions in Figures 6-9, Figures 1417, Figure 19, Figure 23, Figures 25-28, and Figure 30
were found by numerically integrating (3.1) to a steady state, and the continuation
program Auto97 [12, 13] was used to find the unstable solutions and reconfirm some
of the stable solutions already found. We provide more detail in section 6.

Even though the system (3.1)-(3.3) is defined on an infinite domain, when nu-
merically integrating (3.1) it must be finite. We have chosen a domain size of 25,
centered at x = 0. While it is unlikely that the boundaries have a significant effect
on the spatially localized solutions shown in Figures 6 and 7, they will have a greater
effect on broader solutions such as those in Figures 8 and 9. When comparing homo-
clinic orbits for the differential equation derived in section 5 (which represent solutions
on an infinite domain) with solutions obtained from the numerical integration of (3.1),
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Fi1G. 8. Stable (left) and unstable (right) 3-bump solutions: r =0, th = 1.5, b= 0.25.
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F1c. 9. Stable (left) and unstable (right) 4-bump solutions: r =0, th = 1.5, b = 0.25.

the difference in domains should be kept in mind.

In the left panel of Figures 8 and 9 we let L = 1.6 and L = 1.5, respectively,
and found that u(z,t) tended to stable 3-bump and 4-bump stationary solutions as
t — oo. Again, our computations indicate that there exist corresponding unstable
3-bump and 4-bump stationary solutions. These are shown in the right panels of
Figures 8 and 9. Although we do not show the results, our computations indicate
that if L = 1, then u(z,t) tends to a stable 5-bump stationary solution as t — oo.
For the values r = 0, b = 0.25, and th = 1.5, and a sufficiently large domain, we
conjecture that both stable and unstable N-bump stationary solutions exist for each
N > 1. We leave the resolution of this conjecture as an open problem.

We now develop a necessary mathematical criterion for the existence of 1-bump
solutions of (4.2) when r = 0. In this case the firing function f(u) defined in (3.3)
reduces to twice the Heaviside function, as shown in the left panel of Figure 5. The
solutions computed in Figures 6-9 are symmetric with respect to x = 0. Thus, we
first look for single-bump symmetric solutions. We assume that there is a value a > 0
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FiG. 10. W (z), (4.4): th =15, b= 0.25.

such that u(z) > th on (—a,a) and u(z) < th if |x| > a. Under these assumptions,
(4.2) reduces to

(4.3) u(z) = /a 2w(z — y) dy.

—a

In analogy with section 2, we define

(1.4 W)= [ 2l

and note that W(0) = 0. From (4.3) and (4.4) it follows that
(4.5) u(z) = W(x +a) — W(x — a).

Thus, we conclude that the condition u(a) = th can be written as
(4.6) W(2a) = th.

Figure 10 shows that, when b = 0.25 and th = 1.5, there are exactly two positive
values, a1 and ag, for which (4.6) is satisfied. In Figure 11 we keep th = 1.5 and
decrease b from b = 0.25. The left panel shows that there is a critical b ~ 0.057 at
which a third value a = ag appears which satisfies W (2a3) = th. For 0 < b < 0.057
there are at least four solutions of (4.6). For example, we set b = 0.03 and illustrate
this property in the right panel of Figure 11. As b decreases further, the number
v = v(b) of solutions of (4.6) (i.e., the number of symmetric 1-bump solutions of (4.2))
continues to increase, with v(b) — +oco as b — 0F. In Figure 12 we see that the
number v(b) of solutions of (4.6) also increases if we keep b fixed at b = 0.25 and
then lower the value of th from th = 1.5. Here we find that there is a critical value
th* = W(oo) = 4b/(b® + 1) such that v(b) — +oo as th — th*. We conjecture that
each solution of (4.6) corresponds to a single-bump solution of the integral equation
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Fic. 11. W(z), (4.4): th=1.5; b=0.057 (left) and b= 0.03 (right).
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Fic. 12. W(z), (4.4): b=0.25, th* = 0.94.

(4.2). In order to prove this conjecture, one would need to check that for all values
of a satisfying (4.6), the function defined in (4.5) satisfied

(4.7 u(z) > th for —a <z <aandu(z) <thforz<—aora<u,

i.e., that the form of u(z) given in (4.5) is actually a 1-bump solution. It would also be
interesting to develop a criterion for the existence of N-bump solutions when N > 1.
We leave these questions as open problems for future research.

5. The continuous case: r > 0. We now turn to the case r > 0, for which
f(u) is a continuous function. Thus, we study the existence of N-bump solutions of
the equation

(5.1) utw) = [ " wle — y)f(ul)) dy,

— 00
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where w(zx) is given in (3.2) and f(u) is given by (3.3), with » > 0. When r > 0,
both the mathematical and computational analysis of (5.1) become more tractable.
This is due to the fact that N-bump solutions of an associated differential equation
problem also are solutions of (5.1). To derive the differential equation we make use
of the Fourier transform, defined by

(5.2) ro) - [ " emiong(n) dn,

—00

where g € L*(R) and o € R. Note that F(g) is a function of a.
We assume that u is a solution of (5.1), that u, v/, v, v, and u
on R, and that

" are continuous

(5.3) (u, o', u” u"") — (0,0,0,0)

exponentially fast as ¢ — 4o00. Under these assumptions, an application of the Fourier
transform to (5.1) is justified and gives

(5.4) F(u) = F(w)F(f(u)).
An evaluation of F(w) converts (5.4) to

4b(b* + 1)
at +2a2(b2 — 1) + (b2 + 1)2

(5:5) F(u) = F(f(u)).

Next, multiply both sides of (5.5) by the denominator of F(w) and use the identities

(5.6) F(u"") = a’F(u) and F(—u") = o?®F(u)
to obtain
(5.7) Flu"" —2(b* — D)u” + (b + 1)%u — 4b(b* + 1) f(u)] = 0.

We claim that (5.7) is satisfied if u is a solution of the problem
(5.8) { u" = 2(0% = D" + (0* + 1)u = 4b(b* + 1) f(u),

limg 400 (u, v/, u”’, u”") = (0,0,0,0).

Because r > 0, it follows from the definition of f(u) and standard analysis that if u
is a solution of (5.8), then u, v/, v”, v, and v"" are continuous on R, hence (5.7)
holds. It then follows that properties (5.4)—(5.7) also hold. From this we conclude
that any solution of (5.8) also is a solution of the integral equation (5.1). This reduces
the problem of finding N-bump solutions of (5.1) to the study of N-bump solutions
of (5.8).

The first goal of our investigation of (5.8) is to extend the results of the previous
section where we considered the special case r = 0. Thus, we keep th = 1.5 and choose
an 7 > 0. Our numerical experiments for the case r = 0 indicate the existence of even
solutions. Thus, when r > 0 we will restrict our attention to even solutions of (5.8).
These satisfy

(5.9) v’ (0) = u"(0) = 0.
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In the next two sections we use the program AUTO97 [12, 13] to obtain an understand-
ing of the global behavior of families of N-bump solutions of (5.8) as the parameter
b varies.

Our second goal is to give global estimates on the range of r, th, and b for which
N-bump solutions of (5.8) can exist. We have the following result.

THEOREM 5.1. Let r > 0 and th > 0. If there is a value b > 0 for which (5.8)
has a monconstant solution, then

44 /16 — th?
(5.10) 0<bgy.

th

Remarks. (i) It would be interesting to extend the results of Theorem 5.1 to the
special case r = 0. When r = 0 the function f(u) is discontinuous and the differential
equation in (5.8) no longer has a continuous right-hand side. However, since f(u)
will now be piecewise constant and the left-hand side of the differential equation is
linear, it may be possible to solve (5.8) over restricted domains, piecing together these
solutions into a continuous solution for all z € (—oo,00). We leave this as an open
problem.

(ii) The proof of Theorem 5.1 will be postponed until section 10.

(iii) As will be seen in section 6, the upper bound for b in Theorem 5.1 is not
particularly tight, but the main purpose of this theorem is to show that there do not
exist nonconstant solutions for all positive b.

The differential equation in (5.8) is fourth order, and for th > 0 it has a fixed
point at the origin. The eigenvalues of the linearization of (5.8) about the origin are
b+iand —b+4i. Thus, in (u,u’,u”,u”") phase space, solutions of (5.8) are homoclinic
orbits leading to the bifocus-type fixed point (u,u’,vw”,v"") = (0,0,0,0) [25]. We note
that the differential equation is not generic since the sum of the eigenvalues is zero
for all parameter values. This is a simple consequence of the fact that the differential
equation in (5.8) is conservative and, in fact, Hamiltonian. This is easily verified,
since solutions u(x) satisfy the first integral

1o (UH)2

(5.11) u'u 5~ (b = 1) (u)* + (* +1)*Q(u) =0,

where Q(u) is defined by

(5.12) Qu) = /0 ’ (s - < bfj 1> e/ (s=th)’ p (5 — th)> ds.

We also note that the differential equation is reversible since it contains only even
order derivatives.

In recent years, higher order reversible, Hamiltonian equations have played an
increasingly important role in modeling pattern formation in physical systems. We
mention, for example, the encyclopedic paper by Cross and Hohenberg [11] which
describes a wide array of higher order scalar equations. In two recent survey papers,
Champneys [5, 6] gives a dynamical systems approach to the analysis of multi-bump,
homoclinic orbits in higher order reversible models arising in physics, fluid mechan-
ics, and optics. We also mention the recent book by Peletier and Troy [30] in which
methods of analysis of pattern formation in higher order equations are developed from
the alternative topological shooting point of view. In the models considered in these
works, families of N-bump homoclinic orbits often arise through a Hamiltonian—Hopf
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bifurcation from a constant solution. Furthermore, in many of these models the terms
involving u are polynomials of degree greater than one. Thus, these terms exhibit su-
perlinear growth as |u| — co. However, in the model proposed in this paper, the terms
involving u exhibit only linear growth for large |u|. In addition, the rapidly increasing
sigmoidal function f(u) given in (3.3) is poorly approximated by polynomials. Finally,
as we shall see in the next two sections, our numerical investigation of (5.8) indicates
that families of N-bump solutions do not come into existence through a Hamiltonian—
Hopf bifurcation from a constant solution. Because of these fundamental differences
from other higher order equations, a rigorous proof of existence of N-bump solutions
of problem (5.8) should prove to be a challenging problem.

6. Families of N-bump solutions: IN odd. In this section we use AUTO97
[12, 13] to determine the global behavior of families of even 1-bump, 3-bump, and
5-bump solutions of the problem

61) { u" =267 — D’ + (b2 + 1)%u = 4b(6* + 1) f (u)
limg 4 oo (u, v/, v, u"") = (0,0,0,0),

where

(6.2) Fu) = 2~/ [ (4 — th),

and th > 0, b > 0, and r > 0 are constants.

In Figure 13 we set th = 1.5 and r = 0.095, and let b vary, and compute the
bifurcation curve for families of even 1-bump and 3-bump solutions of (6.1)—(6.2).
The horizontal axis is b and the vertical axis gives the global maximum of u for the
corresponding solutions. Figures 14—-17 show solutions at specific points P,... , Pr
on the curve.

Using MATLAB [28], we numerically integrate (3.1)—(3.3) to a steady state, choos-
ing an initial condition which evolves, as t — oo, into a 1-bump solution at b = 0.25.
This solution, which we conjecture to be stable, is labeled P, on the bifurcation di-
agram, and is illustrated in the right panel of Figure 16. We then use AUTO97 to
continue this solution as b varies. Figure 13 shows 1-bump solutions along the lower
branch I'y~ between P; and P3. We conjecture that these solutions are unstable. So-
lutions at P, and Ps are shown in Figure 15. As b decreases along I'; ™, solutions
cease to be 1-bump solutions at P; (the right panel in Figure 14). As b decreases
towards zero, solutions acquire arbitrarily many bumps. For example, the point P,
corresponds to the 3-bump solution shown in the left panel of Figure 14. Note that
when b = 0, the only bounded even solution of the ordinary differential equation
(ODE) in (6.1) is u(z) = cosz, and it is to this that solutions tend as b — 0.

Remark. The first solution in Figure 15 is computed at b = 0.25. As 7 — 0T, our
computations indicate that this solution tends to the 1-bump solution shown in the
right panel of Figure 6 in section 4.

Next, we consider the middle branch T;" in Figure 13. Along I't ™ we find a
second family of 1-bump solutions, some of which we conjecture are stable, between
P5 and Ps3. As b decreases along I'; 1, solutions cease to be 1-bump solutions at P (the
left panel in Figure 16). The solution in the right panel of Figure 16 was computed
at b = 0.25. As r — 0%, our computations indicate that this solution is stable and
tends to the 1-bump solution shown in the left panel of Figure 6 in section 4.

We let I's™ denote the upper branch of the diagram in Figure 13. Along this
branch our computations indicate that solutions are unstable 3-bump solutions. Spe-
cific solutions at Ps and P; are given in Figure 17. The solution at Ps is computed
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F1G. 13. Bifurcation curve for (6.1)—(6.2) showing 1-bump and 3-bump solutions. Parameters
are th = 1.5 and r = 0.095. umaqz s the mazimum of u over all x. Particular solutions at the points
Py, ... P7 are shown in Figures 14-17, and the labeling of the curves is discussed in the text.

F1G. 14. Solutions on T'1~ at Py (left) and P1 (right) in Figure 13.

at b = 0.25, and as r — 0T our computations indicate that it tends to the solution
shown in the right panel of Figure 8.

We have also investigated the existence of 3-bump and 5-bump solutions. Our
computations show that these solutions lie on yet another branch leading to the
original bifurcation curve in Figure 13. This branch of solutions is labeled T's™ and
I's~ in Figure 18. In Figure 19 we give specific solutions on I's™ and T's™ at b = 0.25.
Our computations indicate that the solution in the left panel of Figure 19 is stable.
Furthermore, as r — 07 this solution tends to the solution in the left panel of Figure 8.

We can use data from Figures 13 and 18 to compare the largest values of b
for which nonconstant solutions exist with the upper bound given in Theorem 5.1.
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F1G. 15. Solutions on I'1~ at P2 (left) and Ps (right) in Figure 13.
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FIG. 16. Solutions on T17 at Ps (left) and Py (right) in Figure 13.
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Fic. 17. Solutions on I's™ at Ps (left) and Py (right) in Figure 13.
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F1G. 18. Bifurcation curve for (6.1)—(6.2) showing 1, 3, and 5-bump solutions. This Figure is
an extension of Figure 13.
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Fic. 19. Solutions on the curves T'sT (left) and Ts~ (right) at b = 0.25 in Figure 18.

In Figure 20 we show saddle-node bifurcations of 1-, 3-, and 5-bump solutions in
the b,th plane for r = 0.095. The curve ~; is the continuation of the point Pj3 in
Figure 13, and the curves y3 and -5 are the corresponding continuations for 3- and
5-bump homoclinic orbits, respectively. The dashed line (A) is the function given by
the equality in (5.10), i.e., the value of b above which Theorem 5.1 states that no
nonconstant solutions of (6.1)—(6.2) can exist. We see that the solutions studied in
this section are compatible with Theorem 5.1, but that the bound given there is not
particularly tight.

We have done one further experiment which shows how quickly the global behavior
of solutions can change. In Figures 13 and 18 we set th = 1.5 and r = 0.095 and
found that two “cusps” form on the left side of the bifurcation diagram. In Figure 21
we have increased r from r = 0.095 to » = 0.1 and repeated our computations. In
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Fic. 20. The continuation of the saddle-node bifurcations marking the largest values of b
for which various orbits exist, compared with the upper bound given in Theorem 5.1. ~1 is the
continuation of the point P3 in Figure 13, while 3 and ~ys are continuations of the corresponding

points for 3- and 5-bump homoclinic orbits. The curve “A” is the function b = (4+ /|16 — th?|)/th,
given in (5.10).

this case we find that the cusps have now joined and the 1-bumps solutions lie on
an isolated closed curve. The lower branch I'] consists of small amplitude 1-bump
solutions, which are conjectured to be unstable. The upper branch I'{” consists of large
amplitude 1-bump solutions, some of which are conjectured to be stable. In order to
see the separation of curves more clearly, in Figure 22 we have redrawn the bifurcation
diagram of Figure 21 but now we have replaced ;4. on the vertical axis with the L2
norm of the solution (the default L? norm of AUTO97 is used). Figure 22 suggests
that a “snaking” phenomenon occurs in the branches of the bifurcation curve and that
solutions acquire more bumps as the L? norm increases (e.g., see Figure 23). Similar
snaking phenomena occur in other physical systems modeled by higher order scalar
equations [21, 30, 38], as well as in systems where homoclinic orbits are present [20].

7. Families of N-bump solutions: IN even. In this section we determine the
global behavior of families of 2-bump, 4-bump, and 6-bump solutions of the problem

(7.1) u" —2(b% — Du + (b2 +1)%u = 4b(b* + 1) f (u),
’ limy 400 (u, v, u”, u™) = (0,0,0,0),

where

(7.2) Fu) = 2"/ W=t [ (4 — th).

Here H(-) is the Heaviside function, th > 0 is the threshold, and b > 0, r > 0 are
constants.

In Figure 24 we again keep th = 1.5 and r = 0.095, and let b vary, and compute
the bifurcation curve for families of even 2-bump and 4-bump solutions of (7.1)—(7.2).
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F1G. 21. Bifurcation curve for (6.1)—(6.2) showing 1-, 3-, 5-, and 7-bump solutions. Parameters
are th = 1.5 and r = 0.1. Compare this with Figure 18.

0

F1G. 22. The same curves as in Figure 21, but the vertical axis is now the L2 norm of the
solutions.

Figures 25-28 show solutions at specific points Py, ... , Py on this curve. To compute
the curve in Figure 24 we first set b = 0.25 and integrate (3.1)—(3.3) with an initial
condition chosen so that the solution converges, as t — 00, to the 2-bump (apparently
stable) solution indicated by point Py, and illustrated in the right panel of Figure 27.
We then use AUTO97 to continue this solution as b varies. In Figure 24 we find
2-bump solutions, which are conjectured to be unstable, along the lower branch I's™
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|

Fic. 23. Solutions on the curves F; (left) and F;L (right) in Figure 22. Parameters are
r=0.1, th=1.5, and b = 0.25.

Fic. 24. Bifurcation curve of 2-bump and 4-bump solutions for (7.1)—(7.2). Solutions at the
points Py, ..., Pr are shown in Figures 25-28. Parameters are r = 0.095, th = 1.5. Compare with
Figure 13.

between Py (b= 0.045) and P; (b = 1.23). Solutions at P2 (b = 0.25) and P5 are shown
in Figure 26. As b decreases along I's™, solutions cease to be 2-bump solutions at P;
(right panel in Figure 25). To the left of P, our computations imply that solutions
acquire arbitrarily many bumps as b — 07, as was the case for bumps with N odd.
For example, at b = 0.03 the point Py corresponds to the 4-bump solution in the left
panel of Figure 25.

Remark. The solution in the left panel of Figure 26 is computed at b = 0.25. As
r — 0%, our computations indicate that this solution is unstable and tends to the
2-bump solution shown in the right panel of Figure 7.
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F1G. 25. Solutions on T'a™ at Py (left) and Py (right) in Figure 24.

F1G. 26. Solutions on I'2~ at Pa (left) and Ps (right) in Figure 24.

[$) 1 =

FiG. 27. Solutions on T2T at Ps (left) and Py (right) in Figure 24.
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F1a. 28. Solutions on I'a™ at Ps (left) and P; (right) in Figure 24.

max
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Fic. 29. Bifurcation curve for 2, 4, and 6-bump solutions of (7.1)—(7.2). This figure is an
extension of Figure 24.

Next, along the middle branch T'y™ in Figure 24 we find a family of 2-bump
solutions, some of which are conjectured to be stable, between Ps (b= 0.187) and P
(b = 1.23). As b decreases along I's ™, solutions cease to be 2-bump solutions at Ps
(shown in the left panel of Figure 27). The solution in the right panel of Figure 27
corresponds to Py (b = 0.25) in Figure 24. As r — 0% this solution tends to the
2-bump solution shown in the left panel of Figure 7.

We let 'y~ denote the upper branch in Figure 24. Along this branch our com-
putations indicate that solutions are unstable 4-bump solutions. The solutions at Py
(b = 0.25) and P; (b = 0.99) are shown in Figure 28. We have also found another
family of 4-bump solutions, as well as 6-bump solutions. These solutions lie on a
second branch leading to the original curve in Figure 24. The lower and upper curves
on this branch are given by T'y™ and I's~ in Figure 29. In Figure 30 we give specific
solutions on I'; ™ and '™ at b = 0.25. Our computations indicate that the solution
in the left panel of Figure 30 is stable and tends to the solution in the left panel of
Figure 9 as r — 0%.
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Fic. 30. Solutions on Ty™ (left) and T¢~ (right) at b = 0.25 in Figure 29.

FIG. 31. The same curves as in Figure 29, but the vertical awis is now the L? norm of the
solutions.

As in the previous section, we redraw in Figure 31 the bifurcation curve shown
in Figure 29 but using the L? norm for the vertical axis. This allows us to see the
separation of branches and, once again, a snaking diagram results.

While we have only looked at multi-bump solutions for which successive maxima
of u monotonically increase and then decrease as a function of x, there may also exist
“(n + m)-bumps” for integer n,m > 1. These would have the approximate form of
an n-bump “glued” to an m-bump, with sufficient low-amplitude oscillations between
them. The linearization of (5.8) about the origin has the form necessary for these
“composite” orbits to exist, and to confirm this conjecture one would need to check
that the N-bump orbits studied above were formed by transverse intersections of the
stable and unstable manifolds of the origin (a generic property). See [7] and references
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Fi1c. 32. Coupling function w(z,y), (8.2), for b = 0.3, centered at the center of the domain.

therein for more details.

In this section we extend our model
to include two spatial dimensions. The system we study, an analogy of (

the following;:

imensions.

.

8. Extension to two space d

—(3.3), is

)

3.1

- S)f(u(q7 S, t)) dq dS,

Y

)

ffe-s

(bsin( x? +y2> +cos( x? +y2>) ,

+

t)

Y,

du(z,y,t)
o -

(8.1)

where

2+y2

w(z,y) =e V"

(8.2)

and

= Qefr/(ufth)QH(u —th).

f(u)
The coupling function (8.2) is the same as (3.2), with distance in one dimension now

(8.3)

replaced by distance in two dimensions. An example is shown in Figure 32. The rate

function, (8.3), is identical to (3.3).

A typical stable solution of (8.1)—(8.3) is shown in Figure 33 for the parameters
r = 0.1, th = 1.5, and b = 0.45. The initial condition was u(z,y,0)

x < 25.6 and 8 <y < 24, and u(x,y,0)

5 for 16 <

0 otherwise. The domain, €2, is a square of

are no constraints on u or any of its derivatives at the boundaries, and the integral

side-length 40, discretized by a regular 50 x 50 grid, with open boundaries; i.e., there
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FI1G. 33. A “6-bump” stable solution of (8.1)—(8.3). Parameters are b= 0.45, r = 0.1, th = 1.5.

in (8.1) is taken over only €. Note that while the coupling function (8.2) is radially
symmetric, the domain is not, and so we do not expect the resulting solutions to
have radial symmetry. The equation (8.1) was integrated using an Euler step until
the solution converged to a steady state, and at each time step the double integral
was approximated by a Riemann integral using the values of v on the grid mentioned
above. Note that the convolution can be performed more efficiently by using the
two-dimensional fast Fourier transform.

Figure 33 shows the resultant 6-bump solution, and the distance between local
maxima is approximately the same as the distance between successive maxima of the
coupling function (27). The regularity is a reflection of the initial condition; more
irregular initial conditions lead to an irregular cluster of bumps with similar spacing
between local maxima (not shown). That is, keeping » = 0.1, th = 1.5, and b = 0.45,
it is possible to find other stable clusters with small numbers of bumps, with the exact
number and position being determined by the initial condition. This is analogous with
the one-dimensional model (3.1)—(3.3) where stable multi-bump solutions coexist for
b = 0.25 (see Figure 19 (left), Figure 23, Figure 27 (right), and Figure 30 (left)). In
the two-dimensional model, as b is decreased from b = 0.45 it seems more difficult to
find localized clusters of multi-bump solutions. Instead, for smaller b, either an initial
set of u values will die down to u = 0 if b is too small or else the entire domain will
be filled with bumps. An example with b = 0.3 and the other parameters the same
(i.e., r = 0.1 and th = 1.5) is shown in Figure 34. This “progressive recruitment”
phenomenon is the same as that seen by Gutkin, Ermentrout, and O’Sullivan in a one-
dimensional model [16]. Similar patterns were also found by Usher, Stemmler, and
Olami [34] in a neural model with short-range excitation and long-range inhibition.

For larger b, stable attractors also form, but they do not seem to retain the
structure of a cluster of bumps observed in Figure 33. However, there still appears
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Fic. 34. A stable solution of (8.1)—(8.3). Parameters are b= 0.3, r = 0.1, th = 1.5. The initial
u was spatially localized.

to be a characteristic length similar to the interbump spacing seen for lower b. In
Figure 35, keeping » = 0.1 and th = 1.5, we increase b to b = 0.7 and illustrate an
example of this type of stable attractor. For still larger b values, the whole domain
becomes active and there are no structures with characteristic length 27. This is
probably due to the lack of a significant inhibitory component to w when b is large—
see Figure 4, right panel, for an illustration of this effect in the one-dimensional setting.

In this section, we have presented only numerical results. We leave the possible
derivation of a differential equation problem whose solutions describe steady states
of (8.1)—(8.3), and any further analysis, as open problems. Although few mathematical
results exist for two-dimensional neural models, some interesting results have been
obtained relating to the study of circular stationary solutions [2, 31, 36].

9. Proof of Theorem 2.1. In this section we prove Theorem 2.1 concerning
the nonexistence of a class of 2-bump solutions of problem (2.2)—(2.3). Recall from
section 2 that u(z) is a 2-bump solution of (2.2)—(2.3) if there are values 0 < a < b < ¢
such that

u>0 on (0,a)U(b,c),
(9.1 u(0) = u(a) = u(b) = u(c) = 0,

u < 0 otherwise.
We define the “distance between bumps” to be b — a. Also, we recall from section 2
that under hypotheses (H;)—(Hg), the function w(z) is symmetric with respect to
x = 0, that w(z) attains a unique local minimum on R at a value xg > 0, and that

w(x) is increasing on (xg, 00) (see Figure 1). We will use these properties in our proof
of the following result (a restatement of Theorem 2.1).
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F1G. 35. A stable solution of (8.1)—(8.3). Parameters are b= 0.7, r = 0.1, th = 1.5. The initial

condition was random but spatially localized.

Under hypotheses (Hy)—(Hg) there is no value h € R for which

the problem (2.2)—(2.3) has a 2-bump solution satisfying (2.9) such that the distance

between bumps satisfies b — a > xg.

THEOREM 9.1.

Proof. We assume that there is an h € R for which (2.2)—(2.3) has a solution

0. Using (H;)—(Hg), we will obtain a contradiction of

this assumption. From (2.2), (2.3) and (2.9), it follows that u(x) can be written in

the form

with b —a > x

satisfying (2.9),

vz € R.

u(x)=/Oaw<x—y>dy+/bcw<x—y>dy+h

(9.2)

Next, recall from (2.4) that W (x) is defined by

Vr € R.

(9.3)

Hypotheses (H;)—(Hg) imply that W (z) is odd. That is,

Using (9.3), we write (9.2) as

(9.4)

+ h.

)

Tr —cC

(

0, it follows from (9.5) that

u(z) =W(x)—W@—a)+W(@-0b)-W

(9.5)

u(c) = W(0)

Because u(b)

u(e) =W(e) = W(e—a)+W(c—>b)+h=0,

(9.6)
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and
(9.7) u(d) =W(b)—Wh—a)—W({DH-—c)+h=0.

We note that W(c—b) = —W (b — ¢) since W(z) is odd. Thus, a subtraction of (9.7)
from (9.6) leads to

(9.8) Wi(c) —W(b) =W(c—a)—W(b-—a).
Recalling the definition of W (z) from (9.3), we write (9.8) as
(99) | ey = [ s
Also, our hypothesis that b — a > x¢ implies that

(9.10) zo<b—a<c—a.

We need to consider two cases to complete the proof. The first case is
(9.11) ro<b—a<c—a<b<ec

From (Hg) and (9.10) we conclude that w(z) is increasing on (b —a, ¢). Thus, w(x) >
w(b) on (b,¢), and w(z) < w(c—a) on (b — a,c — a). This implies that

(9.12) | wtn> v,

and

(9.13) /bi ’ w(y)dy < w(c—a)(c—0b).
Combining (9.9), (9.11), (9.12), and (9.13), we conclude that
(9.14) w(b) < w(c—a).

However, since (Hg) implies that w(x) is nondecreasing on [c — a,b], it follows that
w(b) > w(c — a), contradicting (9.14). The second case we need to consider is

(9.15) zo<b—a<b<c—a<ec
Then (9.9) can be written as

/b )y + / Caw(y)dy = /b baw(y)dy+ /b T ).

This reduces to
c b
(9.16) | vy~ [ wwa.

Again, we use the fact that w(z) is increasing on (zo, ¢), together with (9.15), and
conclude that

(9.17) /i w(y)dy > w(c—a)a
and

b
(9.18) /b_ w(y)dy < w(b)a.

From (9.16)—(9.18) it follows that w(b) > w(c — a). However, this is a contradiction
since w(zx) increases on (b, ¢ — a). The proof of Theorem 2.1 is now complete.
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10. Proof of Theorem 5.1. In this section we prove Theorem 5.1 and deter-
mine a global parameter regime over which nonconstant solutions of the problem

10.1) { w" = 2(0% — Du” + (0% + 1)%u = 4b(b® + 1) f (u),

limg 400 (u, v/, w” ") = (0,0,0,0)
might possibly exist. We recall that f(u) is defined by
(10.2) Fu) = 2e7/ =t [ (4 — th),

where H(u — th) is the Heaviside function (see Figure 5). For convenience we restate
our result (Theorem 5.1) below.

THEOREM 10.1. Let r > 0 and th > 0. If there is a value b > 0 for which
(10.1)—(10.2) has a nonconstant solution, then

4+ /|16 — th?

Proof. Suppose that u(z) is a nonconstant solution of (10.1)—(10.2) for some
4+ /|16 — th?
(10.3) r>0, th>0, and b> %

We will obtain a contradiction of this assumption. First, we observe that

4+ /|16 — th?
(10.4) % >1  Vith>0.
It then follows from (10.3) and (10.4) that b > 1. Next, from (10.1)—(10.2) it is easily
verified that w(z) must satisfy the first integral

(W)

10.5 /i _
( ) u'u 5

— (0 = 1)(W)* + (b* +1)*Q(u) = 0,

where Q(u) is defined by

(10.6) Q(u) = /0 ’ (s - ( bfi 1) e/t (s — th)) ds.

Over the range given in (10.3), we claim that the integrand in (10.6) satisfies

(10.7) u— <b28_|li 1) e_r/(“_th)QH(u —th) >0 Yu > 0.

First, suppose that 0 < u < th. Then f(u) = 0 by (10.2), and therefore the left side
of (10.7) must be positive. If u > th, then

8b > 8b
— /=t H(y — th) > th — ——— > 0
u (62+1>e (u ) > b2+1> ,

since we assume that th > 0, r > 0, and b > (4 + /|16 — th2|)/th. Thus (10.7) is
proved. From (10.6) and (10.7) we conclude that Q(0) = 0,

(10.8) Qu) >0 if |u| >0, | lim Q(u) = oo,

u|—o0
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Fia. 36. Q(u), (10.6), for parameter values r = 0.005, th = 1.5, b =5.2.

and

(10.9) % <0 Vu<O0, % >0 Vu>0.
For example, the parameters r = 0.005, th = 1.5, and b = 5.2 satisfy (10.3), and in
Figure 36 we graph the corresponding Q(u).

Next, because (10.1)—(10.2) is autonomous, we may assume that the solution u(z)
attains its global maximum at x = 0. We claim that «(0) > th. If, on the contrary,
u(0) < th, then u(z) < th for all x € R, and it follows from (10.2) that f(u) =0
for all z € R. This reduces the integral equation (5.1) to u(z) = 0, and we arrive at
a contradiction since we assume that u(x) is a nonconstant solution of (10.1)—(10.2),
and solutions of (10.1)—(10.2) also are solutions of (5.1). Thus, at = 0 it must be
the case that

(10.10) uw(0) > th, ¥'(0) =0, and «”(0)<0.
Substituting (10.10) into (10.5), and using (10.8), we conclude that

(10.11) u”(0) = —(b® + 1)/2Q(u(0)) < 0.

Without loss of generality we may assume that «”/(0) < 0. Otherwise, if «//(0) > 0,
then it would suffice to consider the function v(z) = u(—x) which also is a solution of
(10.1)—(10.2) and satisfies the initial conditions

v(0) > th, v'(0) =0, v"(0) <0, and 2" (0)<0.
Thus, it may be assumed that the solution u(x) satisfies
(10.12) w(0) > th, v'(0) =0, v"’(0) <0, and u"(0)<0.

Our goal in the remainder of the proof is to show that there is an Z > 0 such
that w(Z) > u(0). This will contradict the fact that u(x) attains its global maximum
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at x = 0. Thus, we need to follow the solution as z increases from x = 0. Throughout
we will make extensive use of the first integral (10.5) and the associated functional
Q(u(x)). In Figures 37 and 38 we follow u(z) and Q(u(x)), respectively, and keep
track of the points where the solution u(x) attains its maxima and minima.

From (10.1)—(10.4), (10.7), and (10.12) it follows that «””"(0) < 0. This and (10.12)
imply that v’ (x) < 0 on an interval (0,¢). We set

(10.13) o =sup{z > 0[u""(z) <0 Vz e (0,2)}.

If 0 = oo, then u”’(z) < w”(0) < 0 for all © > 0, hence u”(00) < 0, contradicting
the condition u”(c0) = 0 given in (10.1). Thus, it must be the case that o < oo,
u" (o) =0, and

(10.14) wu(z) < u(0), v/(z) <0, and u”(z)<u”(0)<0  Vz e (0,0].

Next, it follows from (10.8) and (10.9) that there is a unique, negative value u; < 0
(see Figure 38) such that

(10.15)  Qu) <Qu(0))  Vu € (u1,u(0)), and Qu1) = Q(u(0)).

We need to show that u(o) < uy. If u(o) > wy, then from (10.11), (10.14), and (10.15)
it follows that (u”)? increases on (0,0) so that

(10.16) % > (02 +1)2Q(u(x)) Yz € (0,0].
Setting = ¢ in (10.5), and using (10.3), (10.4), (10.14), and (10.16), we obtain
—(u'(0))*(0* = 1) > 0,

a contradiction since u/(0) < 0 and b > 1. Therefore it must be the case that u(o) <
up. Thus, there is an z1 € (0,0) such that (see Figure 37)

(10.17) ' (x) < 0, v”’(z) <0, "' (z) <0  Vx e (0,x1], and wu(z1)=wu;.
Since u(oo) = 0, it follows from (10.17) that there is an x5 > x7 such that
(10.18) u'(z) <0 Vz € [r1,22), and u'(z2)=0.

We conclude from (10.5) and (10.18) that

(10.19) u(zo) < uy <0, v/ (x2) =0, and u”(22) = (b* + 1)/2Q(u(x2)) > 0.

We need to determine the sign of u”/(x2). Because u”(z1) < 0 and v’ (z2) > 0, there
is an & € (z1,x2) where v”(Z) = 0 and «"(Z) > 0. This, (10.3), (10.4), and (10.18)
give

(10.20) u”' (%) — 2(b* — 1)/ (%) > 0.

Next, because u(z) < u; < 0 on [Z,x2], it follows from (10.1)—(10.2) that
(10.21) (" —20* = 1)u') = —(b* +1)%u >0 Vr € [7,2a).
From (10.19), (10.20), and (10.21) we conclude that

(10.22) u" (z2) > 0.
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>

th

F1a. 37. A sketch of u(z) for (10.1)—(10.2): u(z1) = w1, u(z2) = u2, and u(x3) >

Fia. 38. Q(u), (10.6): up = u(0), u1 = u(z1) = uwo, uz = u(x2), uz = u(xs).

In Figure 38 we set u; = u(x;) and us = u(xz2). As u(x) decreases from u; to us,
properties (10.8) and (10.9) imply that Q(u) increases, and therefore

(10.23) Qu(r2)) > Q(u1) = Q(u(0)).

In the final step of the proof we follow u(x) as x increases from x = x5, and we show

that there is an x3 > @9 such that u(xs) = us > u(0) (see Figures 37 and 38). We first
observe from (10.8)—(10.9) that there is a unique @ > 0 such that Q(a) = Q(u(z2)).
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It follows from (10.23), and the fact that Q(uw) is increasing for v > 0, that

(10.24) u > u(0).
Next, define
(10.25) xg = sup{® > xo|u'"(z) > 0 Vx € (x2,7)}.

Because of (10.24), if we show that u(x3) > 4, we will obtain a contradiction of the
fact that u(z) has its global maximum at = 0. From (10.19), (10.22), and (10.25) it
follows that

(10.26) o'(z) >0, u”’(x) >u"(z2) = (b +1)/2Q(u(z2)) >0  Va € (w2, 73]

If 3 = oo, then (10.26) implies that u'’(c0) > 0, contradicting the condition u” (c0) =
0 given in (10.1). Thus, z3 < co and it follows from (10.25) that

(10.27) u" (x3) = 0.
Finally, suppose that
u(ze) <u(z) <a Vo € (z2,x3).

Then (10.8) and (10.9) imply that

(10.28) 0 < Q(u(z)) < Qu(zz)) Vr € (x2,x3).
Combining (10.26), (10.27), and (10.28), and setting x = x5 in (10.5), we obtain
12 / 2 _ (u"(x3))? 12 2
(b7 = (' (23))" = —5=— = (0" + 1)°Q(u(a3)) > 0,

a contradiction since u'(x3) > 0 and b > 1. Thus, it must be the case that u(zs) >
@ > u(0) as claimed. However, as described earlier, this contradicts the fact that u(z)
has its global maximum at z = 0. This completes the proof.

11. Summary. In this paper we have studied steady states of a partial integro-
differential equation that has been used to model working memory in a neuronal
network. We have extended previous results for “Mexican hat” coupling to the case
where the connectivity function changes sign infinitely often, in the hope of more
realistically modeling the connectivity known to exist in the prefrontal cortex. Our
main results include (a) a proof of the nonexistence of a type of “multiple bump”
solution when the connectivity is of Mexican hat type, (b) an upper bound on the
decay rate of an oscillatory connectivity function, above which only trivial solutions
exist, and (c¢) a numerical investigation of the possible solutions and the bifurcations
they undergo for a particular oscillatory connectivity function.

For the one-dimensional model, many of the numerical results were obtained as
a result of noting that stationary solutions of the partial integro-differential equation
(5.1) are equivalent to homoclinic orbits in the related fourth order ordinary differ-
ential equation problem (5.8). This property allowed us to use the software package
AUTO97 [12, 13], with its facilities for continuing homoclinic orbits, to follow both
stable and unstable solutions as parameters were varied. We are presently pursuing a
rigorous proof of existence of the families of N-bump solutions found here. Already,
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it has been proved in [23] that any bounded solution of the ordinary differential equa-
tion in (5.8) also is a solution of the integral equation (5.1). Thus, in addition to
homoclinic orbits, we are also investigating the existence of other families of solu-
tions, including periodic, aperiodic, and chaotic solutions. While many of our results
were derived by exploiting the specific form of an oscillatory connectivity function,
we believe that the qualitative aspects of our results will hold for any qualitatively
similar function.

For the two-dimensional extension of our model we used a MATLAB [28] code
to generate stable multi-bump solutions. For appropriate parameter values we found
that N-bump solutions exist and that they retain many of the characteristic qualities
of solutions of the one-dimensional model. However, we also found stable solutions
which were not predicted by our one-dimensional studies. In future research we will
continue our investigation of the different types of stable patterns of solutions of the
two-dimensional problem.

Acknowledgment. The authors thank Edward Krisner and the referees for mak-
ing several helpful suggestions.
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DESORPTION OVERSHOOT IN POLYMER-PENETRANT
SYSTEMS: ASYMPTOTIC AND COMPUTATIONAL RESULTS*
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Abstract. Many practically relevant polymers undergoing desorption change from the rubbery
(saturated) to the glassy (nearly dry) state. The dynamics of such systems cannot be described by
the simple Fickian diffusion equation due to viscoelastic effects. The mathematical model solved
numerically is a set of two coupled PDEs for concentration and stress. Asymptotic solutions are
presented for a moving boundary-value problem for the two states in the short-time limit. The
solutions exhibit desorption overshoot, where the penetrant concentration in the interior is less than
that on the surface. In addition, it is shown that if the underlying time scale of the equations is
ignored when postulating boundary conditions, nonphysical solutions can result.
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1. Introduction. Over the past few decades, much experimental and theoretical
work has been devoted to the study of polymer-penetrant systems. In particular, the
desorption of penetrants from saturated polymer matrices has been examined due to
its wide industrial applicability. One unusual feature of such systems is the change
in the polymer from a rubbery state when it is nearly saturated to a glassy state
when it is nearly dry. As part of the drying process, a glassy skin often develops at
the exposed surface of a polymer whose properties are significantly different from the
rest of the polymer-penetrant solution [1], [2], [3], [4], [5]. This phenomenon, called
skinning [6], [7], [8], has many industrial applications [8], [9], [10], [11], [12], [13], [14],
[15], [16].

There are many different theories for why the skinning process occurs, including
phase separation [17], crystallization [18], and diffusion-induced convection [19]. Nev-
ertheless, for the systems we wish to study, most scientists agree that one important
factor is a viscoelastic stress in the polymer entanglement network, which can be
as important to the transport process as the well-understood Fickian dynamics [20],
[21], [22]. The size of this stress is related to the relazation time of the viscoelastic
polymer matrix. In the glassy skin, the relaxation time is finite, so the stress is an
important effect, but in the rubbery region the relaxation time is nearly zero [15], [20],
[23]. Nevertheless, we will show that in order for the mathematical model to yield
physically meaningful results, at some level the short relaxation time in the rubber
must also be taken into account.

Numerical and analytical solutions are derived here for model equations for the

*Received by the editors June 6, 2001; accepted for publication (in revised form) January 21,

2002; published electronically August 5, 2002.
http://www.siam.org/journals/siap/63-1/39042.html

fDepartment of Mathematical Sciences, University of Delaware, Newark, DE 19716-2553 (edwards@
math.udel.edu). The work of this author was supported by the National Science Foundation grant
DMS-9972013.

fDepartment of Chemical Engineering, Drexel University, 3141 Chestnut Street, Philadelphia,
PA 19104 (cairncro@coe.drexel.edu). The work of this author was supported by a 3M Non-Tenured
Faculty Grant.

98



DESORPTION OVERSHOOT IN POLYMER-PENETRANT SYSTEMS 99

system described above. Our equations are the same, to leading order, as those for
general polymer-penetrant systems derived in detail by Edwards and Cohen [24], [25],
Edwards [26], Cairncross and Durning [8], Durning [27], and Durning and Tabor
[28]. These models, which are presented in section 2, consist of a set of coupled
PDEs for the concentration and stress. The parameters in the numerical simulation
vary smoothly with concentration, so the glass-rubber interface z = s(t) between the
two states is simply an isocline of concentration. In contrast, the parameters in the
analytical model are assumed to be piecewise constant in the rubber and glass. Thus,
a moving boundary-value problem similar to a Stefan problem results. In each of the
regions a different partial differential operator holds, and continuity conditions at the
glass-rubber interface dictate its motion.

In section 3 we construct a perturbation solution to the equations. The solutions
are expressed as integrals of Green’s functions convolved with fictitious boundary
conditions which provide the new unknowns for which we must solve. In section 4 we
construct short-time asymptotic solutions of the concentration and stress fields. The
form of the short-time solutions necessitates a corner layer, where the full system of
equations holds. The solutions exhibit desorption overshoot, where the minimum in
the concentration occurs in the interior of the domain.

In addition, if we use a standard high-mass-transfer-coefficient approximation
common in diffusion and heat conduction problems, it is possible for the concentration
to become negative. This result is confirmed numerically in section 5. In section 6 it
is explained that the unphysical negative concentration appears because the limit of
high mass transfer coefficient imposes a jump in the exterior concentration faster than
the underlying time scales of the operator. Physically, the polymer is self-regulating
for desorption as well as sorption [24]. A new boundary condition is postulated which
incorporates the time scale in the stress evolution equation, and it is shown that such
a boundary condition does not lead to negative concentrations.

2. Preliminaries.

2.1. Governing equations. We examine the following dimensionless system of
equations for anomalous desorption in a polymer of finite dimensionless length L:

oC 0 oC  Oo
. — — 4+ — <z<
(2.12) ot Ox (D(C) ox * 8:17) ’ Osesl,
oo BC) ac

where C' is the dimensionless concentration of penetrant in the polymer, v is a dimen-
sionless constant, and L is the length of the slab scaled with the length scale of stress
evolution [29].

The system is described in general in [29] and specialized in [26], but some discus-
sion is required. The flux in (2.1a) can be derived by postulating that the chemical
potential is a function of both C' and ¢ [24], which in one dimension corresponds to
the stress in the polymer network [24], [30], [31], [32]. In (2.1b), the coefficient of
0o /Ox has been chosen constant, in contrast to the models of Durning and colleagues
[8], [28], [33].

D(C) is a normalized diffusion coefficient measuring the ratio of the Fickian to
non-Fickian effects in the flux. Also 3(C) is the inverse of the relaxation time, which
measures the speed at which changes in one part of the polymer are communicated
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to other parts of the polymer. Both increase dramatically as the polymer goes from
the glassy to rubbery state [15], [20], [23], [34], [35], [36]. In contrast, the differ-
ences in these parameters within states are qualitatively negligible. Therefore, for our
numerical work we assume the following forms for these functions:

D, — D,
D(C) = Dy — gT [1 + tanh(a(C — CY))],
(2.2) 8. — 8 a>1,

B(C) = g — PE P 1+ tanh(a(C - C))),
where C, is the value of the concentration at which the glass-rubber transition occurs.
Other physically appropriate forms for 8 and D are presented in [4], [8], [28], [33],
341, [35], [36], [37].
We examine a polymer that is initially saturated (and hence rubbery) and un-

stressed, which leads to the initial conditions

(2.3) C"(z,0) =1, o"(x,0) =0.

The end = = L is insulated, while at the exposed surface x = 0, the flux is proportional
to the difference between the surface concentration and the environment concentration
Cext:

(a0 (002 2 (o,
(2.4b) (D(C)?; + g‘;) (0,8) = k[C(0,1) — Coxe]

where £ is a constant measuring the mass transfer coefficient of the exposed interface.

2.2. Two-state formulation. We solve (2.1)—(2.4) numerically in section 5, but
in order to obtain direct dependence of our solution on the physical parameters in the
system, we will solve the problem analytically, which necessitates some simplifications.

As a — o0, the parameters in (2.2) become piecewise constant:

o l)()E7 OSCSC*,
D(C)‘{Dr, c.<c<1,

_ B 05C<C,

The rubber is closest to the Fickian regime because the relaxation time is almost
instantaneous; thus 3,/6; = € < 1. It has been shown experimentally [16] that the
diffusion coefficient in the glassy region is quite small, so we let Dy = Dge, where Dy
is an O(1) constant.

With the functional forms in (2.5), it is natural to model the physical system as
a two-state problem with a moving boundary = = s(t) representing the glass-rubber
interface. Thus, making our substitutions into (2.1), we obtain the following in the
glassy region:

(2.5)

ocs 0%ce %ot
(26&) W = DOE 6:1’;2 + 83’;2 y
g g

(2.6b) 9% + 0% = veC® + oce

ot '’
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while in the rubbery region we have

ocr 92Cr  9?%0"

(2.72) o = Prae T e
do" o' . oC"
(2.7b) o+ T et

With such a formulation, we must have conditions that hold at x = s(t). We impose
continuity of concentration at the glass-rubber transition value C,:

(2.8) Cr(s(t),t) = CE(s(t), t) = C..

In addition, we require continuity of stress and flux:

(2.9a) o' (s(t),t) = a8(s(t),t),
(2.9b) (D,raacx(r + %:) (s(t),t) = (Doeaacgc(g + 6;;) (s(t),1).

3. Perturbation solution. We assume perturbation expansions for our depen-
dent variables in €, the small ratio of the relaxation times:

(3.1) C ~ Cy+O(e), o~ o9+ O(e),

where the same expansions hold for the rubber and glass.

3.1. The glassy region. Substituting (3.1) into (2.6) yields

OCE  9%0%
(3:22) ot o2
dog . OC§

It is simpler to solve for the stress in the glassy region first; hence we combine (3.2)
to obtain

dog . 0%
(33) W + 0y = ax2 , << S(t)

In many industrial applications, fast drying is desirable in order to reduce pro-
duction time and cost. Thus, we consider the case where k — 0o, which corresponds
to high mass transfer coefficient or large driving force. (In certain scaling limits, this
can also correspond to thick films.) Making this substitution in (2.4b), we obtain

(3.4) CE(0,1) = Cox < Cl,

which locates the glass-rubber interface at the origin for ¢ = 0. This sort of Dirichlet
condition is routinely used in diffusion or heat conduction problems, instead of the
more physically realistic flux or activity balance conditions. Nevertheless, we shall
see that in this context, imposing such a simple boundary condition can produce
unphysical results.
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Equation (3.4) implies that the concentration jumps discontinuously at the origin
from 1 to Cuxt, so we have the following:

ac
(35) E(OJ) = (Cext - 1)6(t),
and upon substituting this result into (3.2b) evaluated at x = 0, we obtain
(3.6) 058(0,t) = (Coxt — 1)e™".

Note the exponential decay of surface stress from its initial value, reflecting the mem-
ory effects in the glassy polymer.

In order to solve the problem, we use an integral method first introduced by Boley
[38] and used extensively in this context by Edwards and Cohen [24] and Edwards
[26], [29], [39], [40]. Essentially, we wish to write the solution of (3.3) and (3.6) as a
Green’s function convolved with a fictitious initial condition of(z,0) = fi(z). This
condition is fictitious because the polymer is not glassy at ¢ = 0. Thus we extend
our domain beyond the region 0 < x < s(t). By writing our solution in this form, we
reduce the problem from a PDE to an integrodifferential equation.

Since all expressions for x > s(t) are fictitious anyway, we embed the problem in
the semi-infinite domain « > 0. The solution then is found to be

a5 (2,t) = (Coxt — 1)e " erfe (2?/%)

4 i [ o e [ 2) e [

3.2. The rubbery region. In the rubbery region we substitute (3.1) into (2.7b)
to obtain

(3.8) oy(z,t) =0.

Since the 7 term does not contribute to the dynamics in either the glassy or the
rubbery regions, our model (2.1) contains exactly those dynamical processes as in the
models of Cairncross and Durning [8], Durning [27], and Durning and Tabor [28].
Substituting (3.1) and (3.8) into (2.7a) yields
oCy 92C}
where s(t1,) = L. To use Boley’s method to rewrite our solution, we note that upon
substituting (3.1) and (3.8) into (2.4a), we obtain

oC§
3.9b O(L,t)=0
(3.90) (L) =0,
and hence x = L is a line of symmetry. Thus by the method of images
(3.10a) Colz,t) =1— [T (x,t) + T (2L — x,t)]

is a solution to (3.9) and (2.3) if 7"(x,t) is a solution of the heat equation. Since the
rubber occupies the region s(t) < 2 < L, the fictitious condition is 7%(0,t) = fP(¢),
so T™ is given by

2

Wi /Ot (t{bzg/z exp [wjt — z)} dz.

(3.10D) T (2,t) =
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Substituting (3.1) and (3.8) into (2.8) and (2.9), we obtain

(3.11a) Ci(s(t),t) = CE(s(t),t) = Cy,
(3.11Db) og(s(t),t) =0,
(3.12) D, 88? (s(t),t) = %(s(t),t).

Upon substitution of (3.7) and (3.10) into (3.11) and (3.12), we will obtain three
integrodifferential equations for the unknowns fi, f°, and s.

4. Short-time solutions.

4.1. The outer solution. We examine the small-time asymptotics of our ana-
lytic solution as in Edwards [26] by letting
(41)  fia)~f, PO~ fE, st)=2st", t—0, x—0.

We substitute (4.1) into (3.10) and (3.7) to obtain expressions for our unknowns for
L = O(1). Substituting these expressions into (3.11) and (3.12), we obtain

Sotn_l/Z
(4.2a) C,~1— fherfc <Dr> ;
(4.2b) 0 ~ (Cexy — 1) exfe(sot™ /%) + fo exf(sot™1/2),
Dl”f(%3 s i et 52
(43) m exp ( 4Drt ~ [fo - (Cext — 1)}\/? exp 747t .

Equation (4.2a) can be satisfied if and only if n > 1/2. Equation (4.2b) can be
satisfied if and only if n < 1/2. Therefore n = 1/2 and initially the front moves in
a purely Fickian way because the nonlinear memory effects have not yet had time to
develop. Using this result, we obtain

(4.4) (5):1/Diex fﬁ 7177%6)( (752): (s0)
. g1\So) = rerfC(SO m) p Dr - erfS() b 0 = Gg2(S0)-

Figure 4.1 shows plots of go — g7 for various values of C,. The sg-intercept marks
the value of the front speed. Note that as C, increases, the front speed increases since
not as much penetrant has to desorb to move the front along.

Figure 4.2 shows the variance in the front speed as D, and Cext vary. Note that as
Cext decreases, the front speed increases because of a larger driving force. In addition,
as D, increases, the front speed decreases because it is easier to diffuse penetrant to
the front.

Using (4.4), we may derive the value of f» and hence obtain

1-C, T 2L —x
4.5 Cylx,t) =1 — ——— |erfe | —— fc| —— || -
49 it =1~ e e () + o (G )
As L — oo, the second term drops out and we are left with exactly the expression in

Edwards [26] for the case of a semi-infinite domain. In addition, as ¢ — 0 the second
term modeling “reflections” from z = L is negligible.



104 DAVID A. EDWARDS AND RICHARD A. CAIRNCROSS
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Fi1c. 4.1. g2 — g1 versus so for Dy =7, Cext = 1/3. Thin line: Cx = 1/2. Thick line: Cy = 2/3.
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Fic. 4.2. g1 and g2 versus so for Cx = 1/2. Thick lines: Dy = 0.4, Cext = 1/4. Thin lines:
Dr = 7, Cext = 1/3

We may also use (4.4) to derive the value of fi and hence obtain

(4.6) (1) ~ (Cot — 1)e" {1 - erfISO orf (;ﬁ)] .

Substituting (4.6) into (3.2a) and solving using (3.11a), we have the following:

Ot t) = €, 4 Cor =1 {ew [erfc <\/E+ x> — erfe (so - xﬂ

2erf s 2Vt 250

+e® {erfe (\ﬁ+ 2%) — erfe <so + 2;)} } ,

(4.7)
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where the z/sp terms come from the asymptotic expansion of s~1(x), the inverse
function for the front position:

(4.8) s7H(z) ~ ( a >2, z— 0.

20
Unfortunately, we note that if we substitute = 0 into (4.7), we obtain

(4.9) lim C§(2,1) = C. + Cox = 1 # Cot = C¥(0,1).

The discontinuity near x = 0 must be resolved by a boundary layer, but even the solu-
tion to the full problem near x = 0 will be less than Cey;. We call this excessive drying
near the exposed surface desorption overshoot, as the minimum of the concentration
now occurs inside the film. The terminology is motivated by the related phenomenon
of sorption overshoot, where the concentration rises above its equilibrium value during
a sorption experiment [41].

Moreover, it is certainly possible for C, + Coxy — 1 < 0, which would yield the
physically unrealistic result of a negative concentration. This unphysical aspect is not
an artifact of the asymptotics; rather it is the direct result of the Dirichlet condition
(3.4), as discussed in section 6.

4.2. The corner layer. The discontinuity about x = 0 is caused by the form
of the operator in (3.2a). As long as the evolution equation for C' has only a 9C/dt
term in it, then ¢ and C will differ everywhere only by a function of z. Since both C
and oy are constants along the front, that difference must also be a constant at the
front. This causes a discontinuity because

lim C(s(t), 1) # im C(0, ).

ot does not vary along the front due to the ¢! term in (2.7b). This term can be
counteracted if we introduce a corner layer near the origin via the following substitu-
tions:

(4.10) C*(z,t) = CT (&, 1), o' (z,t) = ot (&, 7),

Substituting (4.10) into (2.7), we obtain

oCct 0?Ct %ot
4.11 =D
(4.11a) or o g
dot ., aCt
(411b) W + g = 87’ s

which is just the full system (2.7) without the v term. Hence even in the corner layer,
our model matches that of Cairncross and Durning [8], Durning [27], and Durning
and Tabor [28]. Note that 7 is the time scale for relaxation in the rubber.

To solve this system, we must proceed numerically. Nevertheless, we note that
due to the exponential decay inherent in (4.11b), curves of constant C' are not curves
of constant o. This fact will remove the discontinuity, which was caused by the fact
that the front was an isocline for both outer solutions.
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5. Numerical computations. We compare our asymptotic results to those
from a finite-element code previously used to solve a similar model [8]. The code
solves (2.1)—(2.4) using finite elements with quadratic basis functions. In order to
resolve the boundary layer, the domain was discretized into sixty fixed but unequally
spaced elements, with more elements placed near x = 0.

Application of the finite element method to the model results in a system of non-
linear coupled ODEs for the nodal values of concentration and stress. The system of
ODEs was integrated in time using a stiff DAE solver, DASSL [42]. DASSL uses an
Adams—Bashforth—Moulton predictor-corrector algorithm with a variable-order back-
ward differentiation formula. The corrector is implicit and the nonlinear system is
solved by Newton’s method with an analytical Jacobian matrix. The time step is
automatically updated to control the estimated error within a specified tolerance.
The error tolerance and number and distribution of elements were adjusted until the
results were insensitive to the size of these parameters.

5.1. Comparison with asymptotics. The parameters chosen for use in both
the analytical model and the numerical simulations were as follows:

(5.1a) C, =1/2, D, =4, Coge = 1/4, L =3, Dy =4x107*,
(5.1b) By = 1, B = 104, a = 80, k=1.33 x 10%.

These parameters essentially correspond to an e value of 1074, Also, with these
parameters, s ~ 0.4550.

Figure 5.1 shows a comparison of the asymptotic and numerical predictions of the
front position for small time. The speed of the front decreases with time as predicted
by both methods. The agreement between the asymptotic and numerical results is
excellent.

In Figure 5.2 we show a graph of the concentration for the parameters in (5.1) and
the times listed. The interval in x is restricted near x = 0; the grid spacing decreases
as we reach that endpoint. There is excellent agreement between the numerical and
outer solutions in the region away from the boundary layer, and the discontinuity in

0.14

0.12 "PEEﬁE

0.1 ﬁ
_EFFFEEFFF‘:F — Asymptotics ||

JEFFFFF'T O Numerics

0.04 ZPZFPG7

0.02 'fﬂ

g

0 0.004 0.008 0.012 0.016 0.02
Time

o
o
=3
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o
>

Front Position

F1G. 5.1. Asymptotic and numerical calculations of s(t) for the parameters in (5.1).
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1.2

Concentration

Fi1G. 5.2. Aymptotic solution Co(z,t) (lines) and numerical solution (symbols) versus x. The
numerical and asymptotic solutions are indistinguishable beyond x = 0.2.

OC'/ Oz at the glass-rubber transition is accurately predicted by both techniques. Note
that at ¢ = 0.0103 even the numerical solution goes negative, so we have confirmed
that negative concentration values are not an artifact of the asymptotic solution. We
shall examine the root causes of this phenomenon in the next section.

Figure 5.3 shows a graph of the stress versus z for the times listed. There is
excellent agreement between the asymptotic and numerical solutions for the glassy
stress. In addition, the zero-stress approximation (3.8) and the numerical calculation

0.1

-0.1

-0.2

Stress

O0+0¢
— e+
1§yl
OO0
OO0
ONOCO
QINON

0.1 0.15

Fic. 5.3. Aymptotic solution of(z,t) (lines) and numerical solution (symbols) versus x. The
rubbery stress is zero. The numerical and asymptotic solutions are indistinguishable beyond x = 0.15.
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F1c. 5.4. Comparison of asymptotic (from equation (3.6)) and numerical expressions for surface
stress.

in the rubbery region match for larger times. From the graph at t = 2 x 10~ we
see that due to the rapid drop in C' at the surface, the stress in the rubbery region is
initially O(1), as shown in section 4.2. For longer times, the stress decays exponentially
as predicted by (4.11b), until at ¢ = 2.2 x 1073, the numerical calculation is virtually
indistinguishable from (3.8).

Figure 5.4 shows a graph of the surface stress at x = 0. Though the outer and
numerical solutions decay on the same e~! scale, there is a persistent gap because
the outer solution in (3.6) assumes an instantaneous change in C' at ¢t = 0, while
the numerical simulations follow (2.4b). Thus, initially the surface concentration and
surface stress evolve on a time scale roughly proportional to k~!. This time scale will
become important later on when we examine the reason for the negative concentration
values.

5.2. Long-time results. Though the validity of the asymptotics ends for mod-
erate times, we can certainly continue the numerical calculations into that region.
Figure 5.5 shows the computed concentration profiles for various times. Note that
between ¢t = 2 and t = 4, the film becomes entirely glassy. (For more discussion of
the time at which the front reaches the back of the film, see the appendix.) Since the
glass has a longer relaxation time, the change in the concentration between ¢ = 2 and
t = 4 is relatively small.

The unphysical negative concentration is not a brief anomaly; it continues for
moderate time, and the size of the dip actually increases. It should be noted that the
desorption overshoot disappears if k is smaller, which corresponds to a slower change
in the surface concentration. For more discussion of this topic, see section 6.

Figure 5.6 shows the computed stress profiles for the same series of times. The
nearly linear stress in the glassy region implies a constant non-Fickian flux. Thus,
the evolution of the concentration in this region is dominated by the Fickian flux.
Note that the surface stress continues its exponential decay to a final limiting value
of zero.
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F1G. 5.5. Computed concentration profiles versus x for the times listed in the legend.
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Fic. 5.6. Computed stress profiles versus x for the times listed in the legend.

6. Explaining negative concentrations. The unphysical negative concentra-
tion is not an artifact of the asymptotics, as the numerical solutions in Figure 5.2
show. To explain the phenomenon, we solve (2.6b) for short times, using (3.6) and
(3.2). After some work, we obtain the following expression:

(6.1) lim C§(x,t) = lim 0%(0,t) + C..
z—0 t—0
Hence the discontinuity in the outer solution exists for all time unless

(6.2) lim 05(0, ¢) = Cxt — Ch.
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Moreover, the concentration will go negative whenever
(6.3) PI% 08(0,t) < —C..

How then to avoid satisfying this condition?

Following common practice for diffusion and heat transfer problems, we took
k — oo in (2.4b) to obtain the Dirichlet condition (3.4). The resulting discontinuous
jump at t = 0 forces 0(0,07) = Cext — 1, as can be seen from (3.6), and this value
can violate (6.3). Why does the standard Dirichlet trick not work for this model?

In a standard diffusion problem, lines of constant ¢ are characteristics. Thus these
equations transmit disturbances with infinite signal speed to the entire domain. As
can be intuited from the leading-order outer equations (3.3) and (3.9a), the same
is true for this model. This explains why the solution does not break down in any
mathematical sense; it just goes negative, which offends our physical sensibilities.

The key difference rather is the delay term inherent in (2.1b). When a jump
occurs very quickly, the stress cannot relax fast enough (even with an O(e) relaxation
time in the rubber) to equilibrate it. Once a large stress gradient has been introduced
at the exposed surface, there is no mechanism in (3.2a) to stop the concentration
from going negative. This is related to the observation in [41] that other models for
anomalous diffusion will have negative concentration values if a “retardation time” is
not included.

There are several mechanisms one can introduce to moderate the concentration
dip. For instance, consider the case where the do/0x term in (2.1a) is multiplied by
a “stress diffusion coefficient” E(C), where E(0) = 0. This term would remain at
leading order in the equation analogous to (3.2a), causing C§/0t(C' = 0) = 0 and
preventing the concentration from going negative. Moreover, preliminary numerical
calculations indicate that if F(C) < 1 in the glassy region, this change can eliminate
negative concentrations while maintaining desorption overshoot.

Another remedy is to slow the change so that it occurs on the fast relaxation time
scale of the rubbery polymer. Thus we replace (3.4) by

(64) C(O,T) = cht + (]- - cht)ei)\Ta >‘ 7é 1,

where 7 is the time scale defined in (4.10). The exponential form is chosen to match
the analysis in Edwards [24] and the forms in Hui et al. [34] and Long and Richman
[43]; A # 1 is taken for simplicity. As A increases, the driving force increases and the
transition between rubber and glass steepens.

As given by (6.4), the interface is now rubbery for some interval. We may substi-
tute (6.4) into the leading orders of (2.6b) and (2.7b) and solve to obtain the stress
boundary condition. Since 7 is an initial-layer variable, we may take the limit of this
condition as 7 — oo to find the limiting value of the outer boundary condition. This
is found to be

1 g _
(6.5) lim 0%(0, 1) =

_C* - Cext + )\<1 - Cext) C* - Cvext 1/)\
1—-A 1—A 1 — Cext '

Thus our matching condition, and hence C#8(x,0), depends on A\. As A — oo,
(6.4) approaches a step function and our result from section 3 holds:

(6.6a) }irr(l) 08(0,t) = —(1 = Coxt), A — 0.
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If instead A — 0, we obtain the following:

(6.6b) }in(l) 08(0,t) = —(Cx — Cext), A — 0,

which from (6.2) is exactly the condition required to eliminate the boundary layer
at the exposed surface. In this case the exterior concentration varies on a time scale
slower than that of the rubber relaxation time, so the entire polymer can equilibrate
to the exterior.

Last, we note that from (6.3) that in order to maintain a positive concentration,
the expression in (6.5) must be greater than —C\. Hence the generation of negative
concentrations in our model can be remedied by imposing more physically realistic
boundary conditions. If changes in the exterior happen on a faster time scale than
the rubber relaxation time scale, the surface cannot immediately equilibrate. Thus,
the polymer exhibits a sort of “self-regulation” which puts restrictions on the speed
at which the surface concentration can change. This sort of self-regulation has been
seen in similar models of sorption processes [24].

7. Conclusions. During the desorption of saturated polymers near the glass-
rubber transition temperature, a glassy skin will form near the exposed surface. One
mechanism for the formation of such a skin is viscoelastic relaxation in the polymer
network. The mathematical model presented here has captured this behavior in pre-
vious numerical [5], [8] and analytical [26], [29] studies. However, never before has
the model been studied in both ways simultaneously. This merging of techniques in-
volved restricting the analytical study to a more realistic finite domain and adapting
the numerical parameter scheme to approximate a piecewise-constant approach. By
approaching the solution in two ways, we validated both approaches. In particular,
we established that negative concentrations were the result of neither a computational
bug nor an erroneous asymptotic approximation, but were rather the predictable and
robust result of a mathematically simple, but physically unrealistic, boundary condi-
tion.

In the asymptotic work, the parameters are taken as piecewise constant and the
system is treated in a manner similar to a Stefan problem. Since the system is not
amenable to similarity solutions, an integral method based on the one in Boley [38]
is used. The finite domain is extended to a semi-infinite one in both cases, and the
method of images is used to handle the insulated boundary condition at x = L.

The asymptotic and numerical results match well, showing a quick transition to
the glassy region near the exposed surface. The glass-rubber interface initially moves
like ¢t'/2, reflecting the fact that the viscoelastic memory effects have not yet had
time to develop. The numerical solutions demonstrated desorption overshoot, where
a minimum in the concentration occurs in the interior of the domain. This is mirrored
in the asymptotic outer solution, which is less than the imposed surface concentration
as r — 0.

The overshoot can be traced to our replacement of a flux balance condition with
a Dirichlet condition. Such approximations are routinely used in diffusion and heat
conduction problems instead of the more complicated (but physically realistic) activity
or flux conditions. However, in our case taking the limit of large k leads to negative
concentrations. Essentially, we are attempting to force the surface concentration to
vary faster than the polymer can adapt. The intrinsic time scale in the model then
reduces the set of boundary conditions that can lead to physically meaningful results.

In section 6 we proposed two remedies for negative concentrations. A stress
diffusion coefficient can be introduced which shuts down further penetrant diffusion
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when the polymer is dry. Alternatively, if we vary the surface concentration on the
fast 7 time scale, we eliminate the negative concentrations. Essentially, the 7-variance
is the fastest that the actual physical system can accommodate. This type of self-
regulation has been demonstrated in sorption models [24].

Though the numerical and asymptotic profiles match well for small ¢, the ap-
pendix shows that due to the diffusive nature of the operators considered, the fictitious
boundary conditions must be approximated very closely to guarantee accurate results
for moderate t. Nevertheless, the agreement for small time provides a sturdy back-
ground on which to base further work. Not only do the asymptotic solutions verify
the numerics, but they also demonstrate parameter ranges which produce unphysical
results.

Appendix. Some remarks on the intersection point. We conclude by
examining the solution near the time ¢ = ¢;, where s(t;,) = L. Due to the symmetry
about the line z = L, s~!(z) should be even about z = L, so the first terms in our

expansion for s(t) should be
(A.1) s(t) ~ L — s1/T, r=tr—t>0, s1 > 0.

Using (3.10a) and (A.1) in (3.11), we may construct an expansion in r, eventually
reaching the following terms at O(r):

aQTr
(A.2a) (s — 2Dr>W(L7tL) =0,
2 2.8
s .\ 905 _
(A.2b) <2 > 5, (i) =0.

It can be shown that if the second derivative of T™ vanishes at © = L, all even
derivatives of 7" must vanish there. But the numerical solutions shown later in

Figure A.1 do not support this transcendental vanishing. Thus, we set s = v/2D,.
3 =
|
25
H
o
2 -
O Numerics
c
i=l
5 ——Small T
o
o
= First-Order
° Correcti
T orrection
4 6 8 10

Time

Fic. A.1. Comparison of short- and intersection-time expressions for s(t) with true front
position. Here s1 = /8, s;, = 1.0634, and t;, = 1.990.
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(Formally, this must be done in a limiting way by setting the stress in the glass equal
to a small quantity representing o}, then taking that term to zero.)

To determine ¢, we introduce another degree of freedom into our fictitious con-
dition as follows:

(A.3) Fi@) ~ fi+ fix.

Substituting (A.3) into (3.10a) using (4.8), we may combine the resulting equations
to obtain the following equation involving %y, :

(A4) erf so = erf s, — 25771_;675%, sr, = 257

Note the underlying parabolic nature of the operator, as evidenced by the relationship
between the definition of s;, and the diffusion equation similarity variable. It can be
shown that (A.4) has exactly one root s;. In addition, s;, > sg, so the front must
speed up as time passes. Figure A.1 shows a graph of the short- and intersection-time
expressions for s(t) as compared with the numerical calculations.

By replacing the one-term expansion for f!(x) with a two-term expression, we
obtain closer agreement near x = L, as desired. In particular, we note that by
combining the asymptotic results, we obtain the change in concavity of the graph and
an acceptable estimate of the inflection time.

Unfortunately, though the two-term expansion provides an improved estimate of
tr, it is still not very accurate. Due to the diffusive nature of the underlying problem,
the estimate of the initial condition must be highly accurate to obtain reasonable
predictions for moderate t. In addition, the constructed solution does not work well
for small times (r = O(1)). Thus, as a next step one should construct a three-term
expansion for fi(x) that satisfies the leading-order conditions at both = 0 and
x = L. This sort of iterative process, where one continually improves the form of
f1, should converge to the correct solution on finite domains. Infinite domains are
fundamentally different since ¢ — oo. This case can be treated asymptotically using
appropriately chosen expansion functions [26], [29], [39], [40].
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A SIMPLE PREDICTION ALGORITHM FOR THE LAGRANGIAN
MOTION IN TWO-DIMENSIONAL TURBULENT FLOWS*

LEONID I. PITERBARG!T AND TAMAY M. OZGOKMEN#

Abstract. A new algorithm is suggested for prediction of a Lagrangian particle position in
a stochastic flow, given observations of other particles. The algorithm is based on linearization of
the motion equations and appears to be efficient for an initial tight cluster and small prediction
time. A theoretical error analysis is given for the Brownian flow and a stochastic flow with memory.
The asymptotic formulas are compared with simulation results to establish their applicability limits.
Monte Carlo simulations are carried out to compare the new algorithm with two others: the center-
of-mass prediction and a Kalman filter—type method. The algorithm is also tested on real data in
the tropical Pacific.

Key words. stochastic flow, Lagrangian motion, prediction, stochastic simulations, oceano-
graphic applications
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1. Introduction. The problem discussed is motivated by applications to rescue
and search operations in the sea. An important part of such operations is to properly
narrow the search area based on the best possible prediction of the position of a lost
object, given its approximate initial position (Schneider (1998)). It is hard to make a
reasonable prediction based only on knowledge of the mean current, because of strong
velocity fluctuations drifting the object away from the path indicated by the mean ve-
locity field. One can expect more realistic help from other floating objects in the same
area, like debris or drifters (human-made floats), which can be observed from planes or
satellites. We consider here a simplified model of such a situation, as follows. Several
current following floats are released simultaneously at different known positions in a
stochastic flow. One of the floats, called the predictand, is unobservable, while the
remaining floats, called the predictors, are observed. The problem is to predict the
position of the unobservable float, given the above observations. In addition to prac-
tical needs, this problem is of great importance from a theoretical viewpoint since it
addresses the predictability issue for the Lagrangian motion in turbulent flows. Here,
by turbulent flows, we mean velocity fields with fluctuations described by stochastic
differential equations. Thus, a kinematic approach is employed: given flow statis-
tics one should conclude with the mean square error of a prediction algorithm. The
mathematical framework we set up here is as follows.

Let u(t,r) be a random velocity field varying in time. By the method of ap-
plications we consider only the two-dimensional case: u,r € R2?. Consider M > 1
Lagrangian (current following) particles starting at time ¢t = 0 from different positions
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rd, vy, ..., 1}, . Their motion is covered by the following system of 2M equations:
dr;
0 B ) ) =,

j=1,..., M. Assume that trajectories of the first p = M — 1 particles r(t), ro(¢),. ..,
r,(t) are completely observed during time interval (0,7"), while the trajectory of the
last one, rjs(t), is not observed. The problem is to find a reasonable prediction of the
position of the unobserved particle, given the above predictor observations and the
initial predictand position. The optimal prediction in the mean square sense,

E[Fp(T) = rpr(T)|* — min,
is given by the conditional expectation (e.g., Liptser and Shiryaev (1978))
ty(T) = E(rj(T) | ri(t),ra(t),...,rpt), 0<t<T),

based on all the observations. Alas, this general formula gives too little in the consid-
ered situation. Normally, this conditional expectation cannot be explicitly found even
in the simplest case when the velocity fluctuations are delta-correlated in time. How-
ever, it can be approximated (with an uncertain accuracy) for some Markov models of
stochastic flows (Piterbarg (2001b)). This approximation resulted in a Kalman filter—
type prediction algorithm which was tested on synthetic (OZgékmen et al. (2000),
Piterbarg (2001b)) and real (Castellari et al. (2001), OzgSkmen et al. (2001)) data.
In general, that algorithm, called henceforth the KF algorithm, performs well, but
its essential drawback is that it requires knowledge of some statistics of the underly-
ing stochastic flow such as the Lagrangian correlation time and the space correlation
radius of the Eulerian velocity field.

The goal of this paper is to introduce and investigate a new model-independent
prediction algorithm. At first glance, the suggested prediction method looks a little
bit naive. Roughly, we linearize (1) in a vicinity of the initial cluster, obtain a linear
regression model where regressors are the initial particle positions, then estimate the
regression coefficients at any given moment based on the observations of the predictor
positions, and, finally, use them for predicting the unknown particle. The idea for the
new algorithm emerged when we found from real data that the position of the cluster
center of mass is a not bad alternative to the KF algorithm. The trouble is that the
center-of-mass algorithm (CM) performs poorly at the initial stage if the predictor is
located far from the cluster center of mass. In fact, the suggested algorithm, called
here the regression algorithm (RA), can be viewed as a CM algorithm adjusted to the
initial position of the predictand. As it will be shown, the RA performs very well at
the initial stage if the cluster diameter is essentially less than the space correlation
radius of the velocity fluctuations and performs as well as the CM algorithm in the
long term. The good predictive skill of RA demonstrated in real data processing
has had an impact on development of theoretical and Monte Carlo error analysis
for RA. Such an analysis is based on investigating the second moment p(t,ry) of
the difference between positions of two particles initially separated by rg, called the
separation process. The quantity p(t,rg) can be effectively studied for two important
models: the well-known Brownian flow and a stochastic model with memory recently
developed in (Piterbarg (2001a)).

The Brownian stochastic flow arises when the Eulerian velocity field is delta-
correlated in time. In this case a closed partial differential equation for p(t,rg) is
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readily written and the asymptotical prediction error is obtained for a tight initial
cluster by expanding the equation solution in rg. It is interesting that the prediction
error is not determined by the second Lyapunov moment, but rather by the fourth
order term in rg. Asymptotical behavior of the error for large t is determined by the
top Lyapunov exponent of the stochastic flow. In the case of a positive Lyapunov
exponent, the behavior of the mean square error is close to that of the dispersion,
v2Dt, where D is an effective diffusivity. In fact, it is even a little bit worse due to
the bias between the predictand initial position and the cluster center of mass. For a
negative Lyapunov exponent the growth order is 1/t/logt. It is worthwhile to notice
that our algorithm is not designed for long-term prediction.

Being an important mathematical example, the Brownian stochastic flow is not a
realistic model for upper ocean turbulence. We focus instead on the second model in
which a joint vector of the positions and velocities form a Markov process. For this
reason it is called the first-order Markov model to distinguish it from the zero-order
model determined by the Brownian flow. The first-order model implies an additional
important parameter, the Lagrangian correlation time 7, which can be estimated well
from real data (Griffa et al. (1995)). In the framework of the model, the Lagrangian
velocity of a single particle is an Ornstein—Uhlenbeck process with parameter 7. In
this case the variance of the separation process p(t,rg, vp) also depends on the differ-
ence of the initial velocities. As a consequence, the prediction error for close initial
positions and velocities is determined by the expansion coefficient of p at vZ. The
equation for p in the first-order model is a standard Kolmogorov equation. An expan-
sion of the solution in both rgy and vg results in an approximate mean square error for
the prediction. The proposed approximation is in good agreement with simulations.
A special focus is on a linear shear mean flow determined by the stretch and rotation
parameters v and w, respectively. It is shown that the relative prediction error de-
creases as v and w increase. Comparison with the KF algorithm shows that the RA
performs essentially better in the presence of a deterministic linear shear flow, while
for a pure stochastic flow they are equivalent or KF is better.

The main points of this work are (1) formulation of the new prediction algorithm
(section 2); (2) formulas for the prediction error which are in very good agreement
with stochastic simulations (sections 3-5); (3) comparative analysis of RA and KF
performance based on synthetic and real data (sections 6 and 7).

The main investigation tools used are stochastic simulations, together with stan-
dard diffusion process analytic techniques. For the simulations we take real values
of model parameters and show the error in dimension units to give an idea of the
usefulness of the real prediction.

2. Prediction formula. Assume the following classical regression model for
motion of M particles:

(2) ri(t) = A(t)ri(0) + b(t) + yi(?),

where A(t) and b(¢) are an unknown, random in general, 2 x 2 matrix and 2-vector,
respectively, and y;(t) are stochastic processes with zero mean uncorrelated for any
fixed ¢. Notice that this model does not follow from the model (1) in the general
case. Moreover, it even contradicts (1) for a nonlinear velocity field. The idea is to
construct a prediction algorithm based on (2) and then forget (2) and investigate the
algorithm performance for some important particular cases of the model (1). The
reason to expect a good performance is that the system (1) can be linearized on short
times, and then the obtained formula would be useful for the short-term prediction.
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Recall that the first p = M — 1 particles (predictors) are supposed to be observed
and the Mth one is to be predicted. To identify six unknown parameters at each
time (four entries of A and two entries of b) one should have p > 3. We accept
this assumption for the rest of the paper. The underdetermined situation p = 2 is
of practical interest as well, but it requires a special consideration which is outside
the scope of this paper. The least square estimators of A(t) and b(¢) based on the
observed particles at the moment ¢ are given by

A() =s(t)S(0)", b(t) =re(t) — A(t)r.(0),

where

re (t) = r; (t)

i=1

ESE R

is the center of mass of the predictor cluster and

P

S(t) =Y (ri(t) — re(t))(xs(0) — r(0))7,

i=1

the superscript T stands for transposition, the vectors mean column-vectors, and it
is assumed that p > 2 to have nondegenerate matrix S(0). The obtained estimators
then are used to predict the unobservable particle

3) Ear(t) = re(t) + S()S(0) ™ (rar(0) — rc(0))-

This prediction formula is optimal in the framework of the model (2) if A and b
are supposed to be deterministic. Further we reject the regression model and study
its performance for some specific models of the velocity field u(¢,r) appearing in (1).

If the velocity field is smooth enough in time, then it is worthwhile to include
the initial velocities as regressors as well. We do not do that in the present paper for
two reasons: first, this does not make any sense when considering the Brownian flow
since it implies infinite velocities, and second, determining initial velocities in practice
is a very hard problem. However, a study of an initial velocity—based formula is of
theoretical interest and will be considered in a further work.

Once again we underscore that the prediction formula (3) does not include any
parameters except the initial particle positions. Of course, it is not always a strength.
Including well-known parameters would probably improve prediction essentially, but
the problem is that statistical estimates of mean currents and turbulence parameters
are often not reliable in oceanic conditions. Therefore, apparently, sometimes it is
better to use a rough prediction algorithm than fine algorithms with misspecified
parameters. Further we try to evaluate limits of this “roughness.”

3. General error analysis. Let
(4) s(t) = Bltu () — rar(t)]?

be the mean square error of the prediction (3). Introduce the variance of the separation
process by

pij (t) = Elr;(t) — r;(t)[>.
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For the sake of brevity we call p;; the separation. Then (see appendix)

()

l\.')\»—l

p p p
- % Zpk:M(t)—zi > pult)— Z bepi(t +Zbkﬂw 2 bibuprat)
k=1 k,l=

1 P = k=1

where coefficients

(6) bi = (ri(0) — rc(0))"S(0) " (rar(0) — r(0))

are defined by the initial positions only, while the behavior of p;;(t) also depends on
the flow properties. Notice that the deviation E|r.(t) — ras(t)]? of the predictand
from the cluster center of mass is determined by the first two terms in (5).

In the next two sections we will consider two different asymptotics of (4): first,
small initial distances between particles and, second, the long time asymptotic. As
one will see, in the first case the problem is reduced to a factorized separation

pij(t) ~ po(t)cij,

where py is independent on the initial configuration and c;; are completely determined
by the initial conditions. In the second case under common conditions, the separation
is independent of the initial conditions:

pij(t) ~ p(t)(1 = bi;),

where ¢;; is the Kronecker delta. Hence, in the first case (5) becomes

(7) s%(t) ~ Copo(t),
where
1 p
(8) Co= ];chM - 72 Z Chl — — Z brcr + ZbkaM -5 Z brbicki
k=1 k=1 Pz 205

is a function of the initial conditions only. A similar formula appears in the second
case:

) 2(0) ~ Cplt),
with
(10) C = 5+ 50+ 5 Ear(0) = 1o (0)S(0) (rar (0 - 1.(0))

Notice that this algorithm is not designed for long time prediction and the formula
(9) is of theoretical interest only.

4. Brownian flow. Assume that the velocity field is decomposed into mean
circulation and fluctuation:

(11) u(t,r) = U(t,r) + u'(t,1),
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where Ug(t,r) is a deterministic velocity field and u’(¢,r) is a random vector field
with zero mean, Fu'(t,r) = 0. The Brownian flow is determined by the assumption
that the velocity fluctuation u’(¢,r) is a Gaussian white noise in ¢, i.e.,

(12) Eu’(t,r) = 07 Eu’(tl,rl)u/(tg,rg)T = (5(lf1 — tQ)B(I‘l,I‘g) s

where 6(t) is the Dirac delta-function and B(ry, rs) is the spatial covariance tensor of
the velocity field. Introduce the state, drift, and noise vectors:

Ir U(t7l‘1) W1
Zz = "2 y A(t,z): U(t7r2) ) W(t): w2 ;
'y U(t,rM) W\

where r;(t) are the positions of M particles at time ¢ starting from different locations
and w,(t) are independent standard Wiener processes. Then a rigorous interpretation
of (11), (12) is as follows. The process z(t) is a 2M-dimensional Markov process
satisfying the stochastic Ito differential equation (Kunita (1990))

dz = A(t,z)dt + D(z)"/*dW (¢),
where the 2M x 2M diffusion matrix is given by
D(z) = (B(ri,r;)).

Another equivalent formulation of this model is as follows: z(t) is a Markov process
with the generator given by

1
L= U(t,I’Z) . Vri + ivrl . B(ri,rj)Vrj.

In the homogeneous case characterized by the assumptions that the mean flow is
constant U(t,r) = U and that the covariance is a function of the position difference
B(ri,ry) = B(r;—r2), the separation process r(t) = ri(t) — ro(t) (the difference
between displacements of two different particles) is also a Markov process with the
generator

Ls = vr . (B(O) - B(I‘)))Vr

Further we assume that the velocity field is isotropic (that is, U = 0) and the entries
b;j(r) of B(r) are given by (Monin and Yaglom (1975))

(br(r) —bn(r)),

XTilj

bij(r) = bn (r)éij + =5

where r = |r|, r = (21,22). Assume that the longitudinal and normal covariances are

four times continuously differentiable:
(13) b(r) = D — 58.r% + 3yt + O(r®),
by (r) = D — 38872 4+ 871t 4+ O(r9),

where D, B, vL, BN, YN are positive parameters whose physical meaning is explained
below. For the isotropic Brownian flow the squared dispersion is expressed as

(14) d*(t) = E(r(t) — r(0))* = 2Dt;
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hence, D means a diffusivity. Introduce the space correlation radius of the velocity
field by

R2:D/5L

and set r;; =r;(0) —r;(0), 7;; = | r;;|. First, consider the “tight cluster” asymptotic
characterized by

ri; LR, 1,7=1,M.
Under this approximation each separation p;;(t) = p(t,r;;) is expressible in form
(15) pt,r) = pr(t)r? — po(t)r* + O(r°),

where (see appendix)

(16) pi(t) = exp(Bt), po(t) = K(exp(Bot) — exp(fit)),
where

7
581 + BN’

After substitution of the expansion (15) into (5) the terms quadratic in r;; disappear,
and we get

(17) s%(t) ~ Copo(t),

where Cj is given by (8) with

Bo=2Bn+68L, B=0L+0n, K= Y=L+ IN-

= |k (0) — 17 (0)|

and po(t) is given in (16)
For the incompressible Brownian flow, characterized by by (1) = (d/dr)(rbr(r)),
with the longitudinal covariance

br(r) = Dexp(—r?/R?),
we have
p1(t) = exp(8DE/R2),  po(t) = %(exp(%Dt/RQ) _ exp(8D1/R2)).

Assume that initially the predictors are located at the vertices of a right polygon
at a distance Ry from the center and the predictand is at a distance ry from the
center. We call such an initial configuration perfect. In this case (17) becomes

(18) s°(t) ~ (3rg + 2Ry — 413 R§)po(t)
for p > 3 and
s%(t) ~ (3rg + 2R3 — 3ra R2 — 2Rgrg cos(3a))po (t)

for p = 3, where « is the angle between the directions from the center to the predictand
and from the center to one of the predictors. The approximation (18) was checked via
simulations, and the results are presented in Figure 1(a) and (b). For the simulation
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it was assumed that R = 250 km, Rg = 50 km, and D = 2000 km?/day. In the first
case the predictor is distanced by rg = 25 km from the center, and in the second case
it is initially located at the center. The dispersion d(t) (diamonds) and experimental
prediction error s(t) (circles) are obtained from the simulations by averaging over 100
independent runs. A modest sample size is used on purpose to illustrate graphically
how large the noise is under a moderate sample volume typical in oceanographic
measurements. The line marked by squares expresses the suggested error formula (18).
This approximation performs pretty well up to 7' = 5 days. After that the theoretical
curve sharply diverges from the experimental one. The simulated dispersion is in
good agreement with formula (14): it behaves as v/t and the value d(5) ~ 139 is
very close to that of given by (14), d(5) = 100v/2. In the second case (Figure 1(b))
the prediction is slightly worse in full agreement with (18). Notice that the relative
prediction error for small ¢ is approximately constant:

s(t)  \/3(3rd+2R; — 4r2R2)
d(t) 2R? '

As for large t, we have two different situations depending of the sign of the Lya-
punov exponent for the underlying flow. The Lyapunov exponent, A, characterizes the
exponential divergence (convergence) of initially close particles. It can be expressed
in terms of the flow parameters (Baxendale and Harris (1986)):

A= (Bn —BL)/2.

If A > 0, then for large ¢ the difference between the positions of two particles goes to
infinity with probability 1, and the mean square distance between them grows as

p(t) ~ 4Dt.

From (9), (10) it follows that the relative error is also approximately constant,

50(0) ~ /14 1+ (a0 (0) = 7. (0))TS(0) " (rar (0~ . (0),

and greater than one.

In the opposite case A < 0, the picture is more sophisticated: the difference goes
to zero with probability 1; however, the mean square distance still grows, but at a
lower rate (see Zirbel and Cinlar (1996)):

ct
logt

p(t)

with constant ¢ depending on the initial distance. Thus, the relative error goes to

zero slowly as t goes to infinity:
[ 1

with constant C' depending on the initial cluster configuration.

5. Stochastic flow with memory. As we already noticed, the Brownian flow
is not an appropriate model for the upper ocean turbulence, since it is based on the
white noise assumption for Lagrangian velocity. In fact, numerous observations clearly
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demonstrate that Lagrangian velocity is well approximated by the first-order Markov
process (Thomson (1986), Griffa (1996)). The following model of multiparticle motion
suggested by Piterbarg (2001a), (2001b) generalizes the above experimental fact.

In addition to the decomposition (11) assume that there is a deterministic accel-
eration a(v,r) depending in general on the particle velocity and position such that
the motion equations take the form

dr = (U(t,r) + v)dt,

(19) dv = a(v,r)dt + dw(t,1),

where
Ew(t,r) =0, EW(tl,rl)W(tQ,rQ)T = min(t1,t2)B(r1,re) .

In other words, now the velocity field is not a white noise itself but rather is driven
by a white noise with a space covariance structure determined by tensor B(rj,rs). A
rigorous formulation of (19) is given in the above-mentioned references. For a cluster
of M particles, introduce a state vector containing the particle velocities as well as
positions and a drift vector:

Vi al
ry Ui +vy
V2 az
7 = | ) R A(t, Z) = Us + vy R
VM apn
v Uy + v

where U,, = U(t,ry), am = a(vp,rn). The model (19) implies that the motion
of any M particles is a Markov process in 4M dimensions described by a stochastic
differential equation. Namely,

dz = A(t,z)dt + D(z)/2dW,

where W () is a standard Wiener process in 4M dimensions and the diffusion matrix
D(z) is given by

with 4 x 4 blocks

B(r;,r;) O
Dij:< (OJ) O>

Recall that now B(ry,rz) is the covariance tensor of the forcing, not the Eulerian
velocity field itself. The equivalent formulation is given by the generator

1
L= (U(t,r;) +v;) Vi, +a;-Vy, + §Vvi ‘B(ri,r;)Vy,.

For our purposes the following homogeneous case is most important:

a(v,r) = —7r by, U(r) =U+ Gr, B(ri,r2) =B(r; —rg),

o=(L %)
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where 7 is the Lagrangian correlation time and the mean velocity field is a divergence-
free linear shear flow characterized by constant drift U, stretching parameter ~, and
rotation parameter w. The one-particle motion in this case is described by the well-
known Langevin equation for the Lagrangian velocity and the standard motion equa-
tion for the displacement

dv = —7 lvdt + O'UT_l/de(t)7

(20) dr = (U+ Gr+v)dt

where w(t) is a two-dimensional Brownian motion and 02 = Ev? is the velocity
variance. To obtain (20) we assumed that B(0) = (02/27)I. In particular, for the
dispersion we get (see appendix)

(21)

d*(t) = E(r(t) —r(0))* =

t ot
d3(t) + 03/ / cosh(y/72(2t — 51 — 52)2 — w2(s1 — 52)2) exp(—|s1 — s2|/7)ds1ds2,
0 Jo

where dy(t) is determined by the mean flow and initial position rg only. An explicit
expression is given in the appendix. Further we assume that U = 0 and rg = 0, which
results in d3(t) = 0. Notice two partial cases of (21): if w = 0, then

2

(22)  d*(t) = 123 0”772- 5 (y~! sinh(2vt) — 7 cosh(2yt) — 7 + 27 cosh(7t) exp(—t/T));
— 2T
if v =0, then
2 2.2
9 oiT 7(1 — w?r?)
= _ 1 _ _
d=(t) T wir? ( T2 (1 — exp(—t/7) cos(wt))

Qw2 .
1T exp(—t/T) sm(wt)) .

Finally, for the zero shear (Zambianchi and Griffa (1994))

(23) d*(t) = o%7 (t — 1 (1 — exp(—t/7))).

The stochastic equations for the separation process,
r=rj—re, V=Vi—Va,

take the form

dv = —7~tvdt + (2(B(0) — B(r)))2dw(t),
dr = (Gr + v)dt.

In other words, the generator of the separation process is
(24) Ly =(Gr+v) -Vo—7'v.-V, + V- (B(0) - B(r)))Vy.

Assume that the forcing is isotropic, i.e.,

XTilj

bij(r) = bn(r)i; + (br(r) — b (1)),

r2
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with twice differentiable covariances

o2 o2

1
(25) br(r) = 2—“ — gﬂyg +0(rY), by(r) = 2— — fﬁNr +0(r).
T
Let p = p(t,u,v,z,y) = Er(t)?, where r(0) = (z,y),v(0) = (u,v). For small
x,y,u,v expand

(26)
p= a1x2 + 2a02y + a3y2 + a4u2 + 2asuv + (161)2 + arxu + agxrv + agyu + a1pyv
and set a = (a1, a9, ...,a10). It is shown in the appendix that
da
(27) = Aa, ali—o = ay,

dt

where matrix A and vector ay are given. In particular, for the zero shear

(29) ) = plt,7,¥) = pr(OF + pro(t)(xv) + po(t)v?,
where

W0 — r-1p0(t) + prolt)
(29) P 50 ),

108) — o) 2011,

where 3 = 81, + Bn. Assume that the initial velocities are Gaussian random values
with zero mean and independent components with the same variance o2. Additionally
assume that the velocities are independent for different particles and are independent
of the forcing. Averaging (28) over the ensemble of initial values gives

(30) pij(t) = p(t,rij,vi;) = pr(E)ry; + 2p0(t)od (1 — 6ij).

After substituting (30) into (5), the terms containing the distances disappear, and for
the “tight cluster” asymptotic in the case of the perfect predictor, we get the initial
configuration

1 4r
(31) $2(t) ~ 202 <1 + -+ R%) o(t),
0
where pg(t) is obtained from (29). In the presence of the mean shear flow we get a
similar formula:

2

(32) s3(t) ~ o} <1 + -+ 4R2> (as(t) + ag(t)),

where ay4(t), ag(t) are obtained from (27). The asymptotic (31) is compared with sim-
ulations in Figure 2(a) and (b). For the simulations we used Lagrangian correlation
time 7 = 3 days, the velocity variance o2 = 0.12 x 10* km?/day?, initial velocity
variance 03 = 0.25 x 102 km?/day?, number of predictors p = 6, initial hexagon ra-
dius Ry = 50 km, velocity space correlation radius R = 250 km. In Figure 2(a) the
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Dispersion (d), simulation (o), theory (s), R=2.5, Ry-0.5, ry=0.25, 1=3, v4=0.05, D=0.04
350 T T

dispersion and error (km)

observation time (days)

(a)

300

200

150

dispersion and error (km)

100

50

observation time (days)

(b)

Fi1G. 2. (a) Dependence of the dispersion, d(t) (diamonds) and prediction error, s(t), obtained
from simulations (circles) and from theory ((31), squares) on the observation time, for the stochastic
flow with memory. The Lagrangian correlation time T = 3days, the velocity variance o2 = 12 x
102 km? /day?, initial velocity variance vg = 0.25 x 102 km?/day?, number of predictors p = 6,
tnitial hexagon radius Ry = 50 km, wvelocity space correlation radius R = 250 km, distance of the
predictand from the hexagon center ro = 25 km. (b) Same as in (a) with ro = 0.
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Relative error vs ry, 100 runs, 100 experiments, T=15

0.38 T T T T T T T

0 10 20 30 40 50 60 70
ro (km)

Fic. 3. Dependence of the relative error s, on ro for the observation time T = 15 days. The
remaining parameters are the same as those as in Figure 2(a).

predictand is distanced from the hexagon center by ro = 25 km, while in Figure 2(b)
it is located exactly at the center. We take oy much less than o, because the approxi-
mation (31) requires both small initial distances and small initial velocity differences.
The dispersion d(t) is shown as diamonds; the prediction error, s(t), obtained from
simulations, as circles; and the prediction error asymptotic (31) as squares. First,
notice a good qualitative agreement of the simulated dispersion (100 runs) with the
theoretical formula (23): for small ¢ we have the ballistic regime ( d ~ t), and for
larger time the diffusion regime (d ~ v/t). The quantitative agreement is also sat-
isfactory. Then these figures show that the theoretical error formula works well for
the ratio cluster radius/velocity correlation radius of less than 5 and for prediction
periods of fewer than 15 days. The agreement is clearly better in the first case. In
this regard, notice that unlike the Brownian flow case, the suggested approximation
(31) does not give a correct dependence of the prediction error on the initial distance
ro from the center. Indeed, in accordance with (31) the error in the second case
should be less, but the simulations show the opposite. To get a correct dependence
one should account for terms of higher order in the expansion of p. We do not do
that here but instead study the dependence of the relative prediction error s, on ¢
by the Monte Carlo method. Figure 3 demonstrates this dependence. The curve was
obtained by averaging over 100 experiments with the same parameters 7 = 3 days,
02 =0.12 x 10* km?/day?, o2 = 0.25 x 102 km?/day?, p = 6, Ry = 50 km, R = 250
km, while each experiment included 100 runs to obtain s,. This figure supports the
previous observations that the error first decreases as 7y increases, then assumes a
minimum between 0 and Ry, and finally increases approaching Ry. For ry > Ry the
prediction worsens drastically. The obtained curve is affected by sampling variability,
and the exact dependence s, on rg is still to be investigated. It is interesting that the
analytical dependence of s, on the ratio x = r2/R2 obtained for the zero-order model
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(19) describes pretty well the experimental curve for the first-order model. Indeed,
from (19) f(z) = s(x)/s(0) = 1.522 — 2z + 1 assumes f(0.5) = 0.375, f(2/3) = 1/3
(minimum point), and f(1) = 0.5. Approximately the same values for that ratio fol-
low from the curve in Figure 3. The reason is that for T' > 7 the first-order model
approaches the Brownian flow.

Having sufficiently good agreement between (31) and the simulations, at least for
values of rg close to Ry/2, we investigate the dependence of the prediction error on the
model parameters using the analytical formulas (31) and (32). Figure 4(a) illustrates
the dependence of the relative error s,.(T') on 7 for R = 200, 250, 300, 350, 400, 450 km
with the zero mean flow and T' = 15 days obtained from (21), (29), (31). The curves
line up with R: the larger the R, the better the prediction. As for the Lagrangian
correlation time, the error decreases with 7 whenever 7/T > 0.5. The effect of the
error increasing for small value of 7 is due to the regime changing in the dispersion
behavior from ballistic to diffusive. As before, Ry = 50 km and p = 6.

Figure 4(b) shows the dependence of s, on v and w for fixed 7 = 3 days, T'= 15
days, and R = 250 km, obtained from (21), (27), (32). The values of other parameters
are indicated in the figure captions. Obviously, s,.(y,w) as a function of the shear
parameters is even in both of them. The maximum relative error corresponds to
~v = 0 because of a strong growth of the dispersion with v (21), (22).

In the next series of experiments with zero mean flow we try a different initial
configuration of predictors and a different velocity initialization to determine how the
initialization affects the prediction skill. An eventual goal is to find an initial predictor
configuration ensuring the best prediction. This problem is very complex and is
beyond the scope of this paper. The goal of the present experiments with randomly
distributed predictors is to understand the extent of the prediction error’s dependence
on the initial configuration and velocities. Namely, the alternative configuration we
consider is a random initial configuration of predictors with the uniform distribution
in a square with side of a. Now we compare four cases, the first two of which were
discussed before: (1) perfect configuration (Rg = 50 km) with the predictand ro = 25
km from the cluster center; (2) perfect configuration with the predictand at the center
(ro = 0); (3) random configuration with a = 2Ry and predictand ro = 25 km from the
square center; (4) random configuration with a = 2R, and predictand at the square
center (rg = 0). First, we consider the dependence of the error on the number of
predictors for these four cases (Figure 5). As one can see there is not much difference
in the algorithm performance when the number of predictors is 6 or more. It is worth
noting that the random case is slightly worse than the perfect case for low p, but they
quickly converge at p = 6 and do not change much as p increases. The error does not
decrease significantly as p grows for all the initializations. This is in agreement with
the theoretical formula (31).

Next we compare the statistical moments and histograms of the prediction error
for 6 predictors and prediction time of 15 days (Table 1 and Figure 6(a)). The
table gives the statistical moments of the relative deviation £ = |ray — raz|/d, and
the histograms are histograms of £. Thus, s, = /FE£2, and it is also given in the
table even though it can be found from the first two columns. First, it can be seen
that for the perfect predictor configuration (series la, 2a) the initial location of the
predictand is essential. Approaching the predictand to the predictors (rg = 25 km,
series la) diminishes the mean from 0.275 to 0.249. This is in agreement with the
previous experiments shown in Figures 2, 3, and 5. As for the random distribution of
predictors, the initial position of the predictand almost does not make a difference,
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Relative prediction error vs T, R=200-450 km
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Fic. 4. (a) Dependence of the relative prediction error s, on the Lagrangian correlation time
T for different values of the Eulerian wvelocity correlation radius R obtained from the asymptotic
formula (31) for observation time T = 15 days. Initial hexagon radius Ro = 50 km, distance of
the predictand from the hezagon center ro = 25 km, R wvaries from 450 km (lower curve) to 200
km (upper curve) with step 50 km. (b) Dependence of the relative prediction error s, on the shear
parameters v and w obtained from the asymptotic formula (32) for observation time T = 15 days.
Lagrangian correlation time T = 3 days, Eulerian velocity correlation radius R = 250 km, initial
hezagon radius Ro = 50 km, distance of the predictand from the hexagon center ro = 25 km.
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s, Vs p: rp=25, perfect (triangle down), ry=0, perfect (up), r,=25, random (left), r,=0 random (right)
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F1G. 5. Dependence of the relative prediction error on the number of predictors (simulation) for
different initial configurations. (1) Perfect configuration with the biased predictand (triangle down),
(2) perfect configuration with the predictand at the center (triangle up), (3) uniformly distributed
predictors with the biased predictand (triangle left), (4) uniformly distributed predictors with the
predictand at the center (triangle right).

TABLE 1

Mean STD Median Error
Series la 0.249 0.1947 0.203 0.3161
Series 2a | 0.2751 0.2032 0.2294 0.342
Series 3a | 0.2601 | 0.2088 | 0.2117 | 0.3335
Series 4a | 0.2716 | 0.1981 0.2175 0.3362
Series 1b | 0.2443 | 0.1923 0.198 0.3109
Series 2b | 0.2792 | 0.2008 | 0.2329 | 0.3439
Series 3b | 0.2525 | 0.2133 | 0.1998 | 0.3305
Series 4b | 0.2601 0.202 0.2155 | 0.3293

as can also be seen from the histogram (series 3 and 4). In contrast, the histograms

in the case of perfect configuration (series 1 and series 2) look quite different. The

mode of the first distribution is essentially higher, and the tail decays much faster.
Now introduce the alternative method of the velocity initialization as follows:

(33) v;(0) = kr;(0),

where k is a constant independent of j =1,2,..., M.

For the experiments we took k& = 0.1 day~! to have the same order of the initial
velocities as in the case of the random initialization. Table 1 and Figure 6(b) demon-
strate the statistical moments and histograms for the four cases discussed above,
corresponding to the new velocity initialization (33). Regarding the predictand loca-
tion, the conclusion is as before: for the perfect configuration of the predictors it is
better to distance the predictor from the center, and for the random configuration it
does not matter.
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Fic. 6. (a) Histograms of the relative prediction error for 500 runs with different initial configu-
rations and random initial velocities: (1) perfect configuration with the biased predictand (series 1),
(2) perfect configuration with the predictand at the center (series 2), (3) uniformly distributed pre-
dictors with the biased predictand (series 3), (4) uniformly distributed predictors with the predictand
at the center (series 4). (b) Same as in (a) with the initial velocities proportional to the positions:
v;(0) = kr;(0).
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In general, there is not any visible difference in the prediction skill for the dif-
ferent velocity initializations. However, this conclusion is relevant only to 15 days’
prediction. In practice we are more interested in a 3- to 5-day forecast, and in such
time scales, the difference could be essential.

6. Comparison with KF and CM algorithms (simulations). The goal of
the experiments discussed in this section is to compare the performance of RA and KF
in both cases: the zero mean flow and a linear shear mean flow. The KF algorithm
is based on the system of stochastic differential equations (19) for the M-particle
motion. Since the diffusion matrix depends on the state variable z, the classical
Kalman filter cannot be applied to this system. What was proposed and studied in
Ozgokmen et al. (2000), (2001) and Piterbarg (2001b) is as follows. Pretend that the
diffusion matrix is constant and write the KF equations for the optimal prediction
of the unobserved particle velocity and position. Of course, these equations include
the diffusion matrix. Then recall that it depends on the positions of all the particles
and simply plug the observed positions for predictors and predictand forecast at the
previous time step. We call this procedure a Kalman filter—type algorithm or, for
short, the KF algorithm. An exact theoretical error analysis for the KF is very
difficult. A Monte Carlo study showed that it gives a reasonable prediction if the
model parameters are known (Piterbarg (2001b)). We follow the same approach here:
the Lagrangian correlation time 7 and the forcing covariance tensor B(ry,ry) are the
same for generating Lagrangian trajectories and prediction formulas. However, the
time steps are different: 1 hour for simulations and 12 hours for prediction. Thus,
the KF has a big advantage over the RA, which does not use any information on the
flow statistics.

In the first series of experiments we considered the zero mean flow and fixed
7 =3 days, R = 250 km, Ry = 50 km, M = 7. Initially, the predictors are located in
the vortices of the right hexagon, and the velocities are proportional to the position
vectors; that is, the initialization (33) and the perfect configuration were used.

If the predictand is placed some distance from the center (ro = 25 km), then the
mean square error of the regression algorithm is slightly lower than that of the KF
(Figure 7(a)). Both algorithms are doing quite well compared with the dispersion
(diamonds). This is because the initial cluster radius is 5 times less than the spatial
correlation radius. The center of mass prediction (crosses) gives clearly worse predic-
tion. After 22 days the performance of KF and regression is pretty much the same
(Figure 7(b)).

If the predictand is placed at the center under the same experimental conditions,
then the KF prediction turns out to be better (Figure 8(a)). As we mentioned before
and which follows from the analytical formulas, the regression and center of mass
methods give the same result in this case. For the midterm prediction (up to 30
days), this trend is confirmed (Figure 8(b)). For observation time T' = 30 days the
KF error is about 165 km, while the regression error is around 270 km under the
dispersion 450 km. After changing 7 to 2.5 days the general picture almost did not
change (Figure 9(a)) and the conclusion is the same: KF performs better. However,
if we introduce a mean flow, not very strong, the picture changes drastically. For a
gyre given by w = 0.1 and v = 0 the performance of KF is very poor (Figure 9(b)).
The error reaches 160 km for a 15-day forecast, almost 80% of the dispersion (230
km), while the error of the regression algorithm is acceptable (60 km). Consider a
different shear with no rotation: w = 0 and v = 0.05. The conclusion is the same:
the performance of the regression is clearly better (Figure 9(c)). The error of KF is
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300 Dispersion (diamond), regression (0), center of mass (x), KF (*), R=250, Ry=50, r=25, T=3
T T

dispersion and prediction error (km)

observation time (day)

(a)

dispersion and prediction error (km)
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Fi1c. 7. (a) Comparison of the dispersion (diamonds) and prediction error for the RA (circles),
the CM (z), and the KF method for the mazimum observation time T = 15 days and zero mean flow.
The number of predictors p = 6. The predictors are located in vertices of a right hexagon. Lagrangian
correlation time T = 3 days, Eulerian velocity correlation radius R = 250 km, initial hexagon radius
Ry = 50 km, distance of the predictand from the hexagon center ro = 25 km. (b) Same as in (a)
for the mazimum observation time T = 30 days. A different experiment.
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(a) Same as in Figure 7(a) with the predictor initially located at the center (ro = 0).

(b) Same as in Figure 8(a) for the mazimum observation time T = 30 days. A different experiment.

Fic. 8.
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Fi1G. 9. (a) Same as in Figure 8(a) with slightly different Lagrangian correlation time 2.5 days.
(b) Same as in Figure 9(a) for a nonzero shear: v = 0.05day™ !, w = 0.
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Fic. 9. (c) Same as in Figure 9(a) for a nonzero shear: v =0, w = 0.1day~ . (d) Same as in

Figure 9(a) for a nonzero shear: v = 0.05, w = 0.1day~!.
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about 140 km, while for the regression it is the same: 60 km. Finally, combining both
cases (w = 0.1 and v = 0.05) we observe that the KF error is almost twice as much as
the RA error (Figure 9(d)). Thus, with no doubt the regression algorithm performs
better in the presence of a deterministic linear shear flow. This is because it is based
on the assumption of linear dependence of the particle current position on the initial
position. In fact, for purely linear flow the RA gives the exact prediction. Thus, the
presence of the mean flow implies the better performance of the regression algorithm.

7. Comparison with KF and CM algorithms (real data). The final stage
in this study is to apply RA to predict the motion of oceanic drifters released in a
cluster and compare its performance with that of the simulations. It was found in
Ozgokmen et al. (2001) that during the period in which drifters remain close to one
another as a tight cluster (quantified by the number of drifters within the velocity
space correlation scale R), the CM method is a simple yet effective means of predicting
the drifter location. However, how the prediction accuracy of RA compares to that
of CM and the far more complicated technique KF for oceanic drifters needs to be
investigated.

The drifter data are obtained from the NOAA Atlantic Oceanographic and Mete-
orological Laboratory, Global Drifter Center, by searching the entire 1988-1996 data
set for a group of 5 or more drifters released within the velocity space correlation scale
R. The drifter data are used as provided by the Global Drifter Center, which lists the
drifter positions in six-hour intervals after standard quality control procedures (e.g.,
Hansen and Poulain (1996)) and no further processing has been applied. A total of
7 clusters, each consisting of 5-10 drifters, has been analyzed. In the following, we
concisely present results from 3 of these clusters, since the main conclusions remain
the same for others. These 3 drifter clusters have been released in the tropical Pacific
Ocean, which is a region characterized by strong currents and shears and lacking the
effect of coastlines or boundaries. The mean currents (Figure 10) are calculated using
the technique described in Bauer et al. (1999) from the entire drifter data set collected
under the World Ocean Circulation Experiment (WOCE) during 1988-1996. This fig-
ure depicts the general circulation pattern in this region, which is governed by the
westward North Equatorial Current north of 10°N, the eastward North Equatorial
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Fi1G. 10. The climatological mean flow field depicting the major currents in the tropical Pacific
Ocean and the initial release locations of clusters 1, 11, and III.
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Countercurrent between 4° N and 9°N, and the westward South Equatorial Current,
which extends across the equator to 10°S. Drifters in the first cluster (cluster I) have
been released in the South Equatorial Current, whereas the others in clusters IT and
IIT have been launched just south of the North Equatorial Countercurrent. The mean
currents, however, are not a good indicator of drifter motion (Ozgékmen et al. (2000),
(2001)) and are discussed here only to provide the general surface flow characteris-
tics of this oceanic region. It is also important to point out that in order to be able
to deploy these drifters on tight grids, a real-time analysis of a variety of data sets,
including current meter profilers and satellite data images, has been necessary for a
detailed dynamical analysis due to strong currents in this region (e.g., Flament et al.
(1996)). Finally, the space correlation radius of the velocity field in the tropical Pa-
cific Ocean is taken as the Rossby deformation radius R = 250 km (Cushman-Roisin
(1994)), and the Lagrangian correlation time is taken as 7 = 3 days, based on the
analysis of drifter motion in the WOCE data set (Bauer et al. (1999)).

Clusters I-III are sorted according to the difficulty of prediction, quantified by
the initial scale of the cluster, the velocity variance and prediction period. Cluster I
consists of 5 drifters launched within a scale (~ Ry) of approximately 10 km from each
other (Figure 11(a)), and the prediction algorithms are applied for 7 days of parti-
cle motion, during which the velocity variance is approximately o2 = 430 km?/day?.
During 7 days of motion, these drifters do not spread apart significantly. Given
Ry < R and the low velocity variance, one can anticipate very good performance by
RA based on the results from theory and stochastic simulations. Dispersion d(t) and
prediction errors s(t) from RA, CM, and KM are calculated by sequentially select-
ing each drifter as predictand and the remaining others in the cluster as predictors,
corresponding to the root mean square of that of all cluster particles. The results
are shown in Figure 11(b) for cluster I for an observation time of 7 days. This figure
shows that prediction errors of both KF and RA are less than that of CM during the
observation period and that RA is as accurate as KF. More quantitatively, dispersion
reaches approximately 51 km at 7' = 7 days, error from CM is 8 km (s, = 0.16), and
error from KF and RA is about 5 km (s, = 0.1).

Cluster II consists of 7 drifters that are also released with a mean diameter of
approximately 10 km, but disperses much faster than Cluster I due to a higher velocity
variance of o2 = 720 km?/day?, and the mean cluster diameter reaches 25 km and 50
km after 7 and 14 days of observation time, respectively (Figure 12(a)). Dispersion
and prediction errors for cluster II over an observation period of 14 days are shown in
Figure 12(b), and the conclusion remains the same as for cluster I; prediction errors of
both KF and RA are less than that of CM during the observation period, and RA is as
accurate as KF. Dispersion reaches approximately 136 km at 7" = 14 days, error from
CM is 44 km (s, = 0.32), and errors from KF and RA are about 26 km (s, = 0.19).
The sensitivity of the prediction accuracy of RA to the number of predictors p is
investigated by randomly eliminating drifters from cluster II. Figure 12(c) shows the
dispersion curve based on the entire cluster and prediction errors calculated for p = 6
(same as in Figure 12(b)), p = 5, p = 4, and p = 3. When p = 3, a drastic reduction of
prediction accuracy takes place, which is found to be independent of the combination
of chosen predictors in this cluster. Otherwise, the prediction accuracy gradually
decreases as the number of predictors is decreased from 6 to 4, but the accuracy of
the method using 4 to 6 predictors remains essentially constant for T < 7 or for T' < 3
days.

The motion of cluster III, consisting of 10 drifters, is investigated for 21 days
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Fic. 11. (a) Drifters trajectories in cluster 1. The circles mark T-day intervals. (b) Comparison
of the dispersion, d(t), and prediction errors, s(t), of RA, CM, and KM for an observation time of
7 days for cluster 1.
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F1a. 12. (c) Sensitivity of the prediction error of RA to the number of predictors in cluster 11.

during which velocity variance is 02 = 2240 km?/day?, or the highest of the three
clusters. These drifters were released over an area with an approximate diameter of 30
km, but this scale increases to approximately 100, 180, and 250 km after 7, 14, and 21
days, respectively (Figure 13(a)). Dispersion and prediction errors for cluster III are
shown in Figure 13(b). During the first 10 days, prediction errors of both KF and RA
are approximately the same and less than that of CM, but during the second half of
the observation period, the error of KF increases faster than that of RA. This increase
appears to be related to the inability of the KF algorithm to follow the bifurcation of
some drifters in a larger group as effectively as the RA technique. Dispersion is 426
km (543 km), error from CM is 99 km (235 km) or s, = 0.23 (s, = 0.43), error from
KF is 55 km (176 km) or s, = 0.13 (s, = 0.32), and error from RA is 54 km (80 km)
or s, =0.13 (s, = 0.15) at T =7 days (T = 21 days).

All in all, the real data comparison of different prediction algorithms is in good
qualitative agreement with the simulation results. Even the prediction error values
are of the same order, as our simple error theory concludes. Deviations are related to
oversimplifications accepted in the considered stochastic model such as the shear flow
linearity and fluctuations isotropy.

In summary, the algorithm described in this study presents several important sim-
plifications with respect to the KF method developed and investigated by Piterbarg
(2001b) and Ozgokmen et al. (2000), (2001): (i) This algorithm does not require any
parameters, such as the Lagrangian parameters describing the characteristics of the
underlying flow, the velocity correlation space scale R, and the Lagrangian correlation
time scale 7. (ii) RA does not utilize the mean flow field, the calculation of which re-
quires large data sets and the associated subgrid scale interpolation introduces further
errors. (iii) RA does not need to be initialized with turbulent velocity fluctuations at
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Drifter Trajectories of Cluster III
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F1G. 13. (a) Drifter trajectorie in cluster III. The circles mark 7-day intervals. (b) Comparison
of the dispersion, d(t), and prediction errors, s(t), of RA, CM, KM for an observation time of
21 days for cluster I11.
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the launch location. (iv) RA is not based on the integration of velocity field to esti-
mate the particle position, which necessarily leads to accumulation of velocity errors
as errors of drifter location. (v) Consequently RA is computationally far simpler than
KF. Despite these simplifications, it is found on the basis of several oceanic clusters
that RA outperforms CM and that RA is as accurate as KF. Also, predictions from
RA appear to remain applicable over a time scale of T' > 7, or much longer than one
would anticipate. In future studies, it will be investigated theoretically and numeri-
cally how this method performs when Ry ~ R, which is likely to be the case in mid-
and high-latitude oceans and for bifurcating clusters.

Appendix.

A.1. Prediction error in terms of separation. Using the definition (4) and
expression (6) for by, obtain

2= Elu(t) - ru @)
= E{(rc(t) + S()S(0) " (rar(0) — r(0)) — rar(t)” (re(t)
+8(t)S(0) " (rar (0) — r(0)) — rar(t))}

= B{(rc(t) —rar ()" (re(t) —rar(t))}
(A1) +2B{(rc(t) — rar(t))TS()}S(0) " (rar(0) — rc(0))
+ (r21(0) — re(0))"S(0) T E{S (1) TS () }S(0) 7 (ras (0) — c(0))
= E{(r(t) —ra(t) " (re(t) — T (t))}
+ 2300 beE{(re(t) —rar ()T (ru(t) — re(t))}
+ 2= bebr E{ vk (t) — re(t))T (ru(t) — re(t))}-
Then, dropping the time argument for brevity,
B{(ry —re)"(ri —re)} = 55 200 o B{(rr — )" (v — 1)}
(A2) = —5p7 2ot =1 (PR + Pij = Pri — pi)
= 5Pk + g5 2oy (Pri + 1) — 357 2oy =1 Pij-
In the latter we used the relation

E{rk r} = ( pkH—E{I‘k I‘k}+E{rl r1}).

By substituting (A2) into (A1), using the obvious relation
P
D b=
k=1

and changing the summation indexes, we obtain (5).

A.2. Separation for Brownian flow (close initial positions). The function

p(t,r) = B{(r:1(t) — r2(t))*},

where |r1(0) — r2(0)| = r, satisfies

0
ge = Lsp s p(O’T) = 7”2,

(A3) N
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where in the isotropic case the generator for the separation process is

_bo—by(r) 0 0?
L, = Y o + (bo — bL(T))W :

Substitute expansions (13), (15) into (A3). The result is

dpl — dpo _
7 Bp1,  p1(0) =1, 7 Bopo +7p1,  po(0) =0,

where

B=0n+BL, fo=20n+66L, =75+
Solving the latter equations we obtain (16).

A.3. Dispersion for the flow with memory in presence of linear shear
flow. For simplicity assume U = 0. From (20) it follows that

r(t) =r(t) —l—/o exp(G(t — s))v(s)ds,

where v(t) is a two-dimensional Ornstein-Uhlenbeck process with the covariance
o2 exp(—t/7)I and

T = exp(Gt)rg + (exp(Gt) —I)GU.
Set
d% = (T —ro)%

then
t ot
d? = d(z) + 03 / / Sp(exp(G(t — s1)) eXp(GT(t — $2))) exp(—|s1 — s2|/7)ds1dsa,
0o Jo

where Sp(A) means the race of matrix A. Then we use the following relations:
Sp(A) = M(A) + A2(A),  Alexp(A)) = exp A((A)),

where A(A) is an eigenvalue of A and arrive at (21).

A.4. Separation for the flow with memory (close initial positions and
velocities). In the case considered, the separation satisfies

dp

(A4) e

:Lspa p|t:0 :$2+y2,

with the generator (24) written in the coordinatewise form

Lo = (yy+we +u) o — (g +wz+v) o — ut = 1.2
s = \yrerT YW ”ay T Ou T Ov
x2 82 y2 82
b0~ b (r) = T3 (1) — b ()55 + (o — b (r) = 5 (b1(r) = by () 5
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Substituting expansions (25), (27) into (A4) we obtain (27), where

2y —2w 0 20t 0 28N 0 0 0 0
w 0 —w 0 -2 0 0 0 0 0
0 2w =2y 20N 0 281 0 0 0 0
0 0 0 —2/T 0 0 1 0 0 0
A_| 0 0o o 0 -2/t 0 0 1/2 0 1/2
- 0 0 0 0 0 —2/T 0 0 0 1
2 0 0 0 0 0 y—=1/7 0 —w 0
0 2 0 0 0 0 0 y—1/T 0 —w
0 2 0 0 0 0 w 0 —y—=1/7 0
0 0 2 0 0 0 0 w 0 —y—=1/7

where 3 = By — B,
ap=(1010000000)7.

For the zero mean flow v = 0, w = 0, and (27) reduces to (29) for po = as + ae,
p1 = a1 + asz, and po1 = ar + aio.
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A RIGOROUS TREATMENT OF A FOLLOW-THE-LEADER
TRAFFIC MODEL WITH TRAFFIC LIGHTS PRESENT*

BRENNA ARGALL', EUGENE CHELESHKIN', J. M. GREENBERG!, COLIN HINDET,
AND PEI-JEN LINT

Abstract. Traffic flow on a unidirectional roadway in the presence of traffic lights is modeled.
Individual car responses to green, yellow, and red lights are postulated and these result in rules
governing the acceleration and deceleration of individual cars. The essence of the model is that only
specific cars are directly affected by the lights. The other cars behave according to simple follow-
the-leader rules which limit their speed by the spacing between them and the car directly ahead.
The model has a number of desirable properties; namely, cars do not run red lights, cars do not
smash into one another, and cars exhibit no velocity reversals. In a situation with multiple lights
operating in-phase, we get, after an initial start-up period, a constant number of cars through each
light during any green-yellow period. Moreover, this flux is less by one or two cars per period than
the flux obtained in discretized versions of the idealized Lighthill-Whitham—Richards model which
allows for infinite accelerations.

Key words. traffic flow, follow-the-leader, relaxation models, conservation laws
AMS subject classification. 35

PII. S0036139901391215

1. Introduction, model description, and statement of results. In this
note we examine the behavior of traffic on a unidirectional highway when multiple
traffic lights are present. For simplicity we assume the lights operate in-phase.

The model postulates the dynamics of individual cars but may also be thought
of as a coarse discretization of a continuum model introduced recently by Greenberg
[1], Aw and Rascle [2], Aw, Klar, Materne, and Rascle [3], and Zhang [9] (details of
this correspondence may be found in section 4, (4.6)—(4.8)).

We assume we are presented with an empirically determined function s — V(s)
on L < s which satisfies

(11) V(L) =0,
dv 2y
. —_— <
(1.2) T (s) >0 and 72 (s) <0, L <s< oo,
and
. v, - d?Y
(1) tim (V) P, 950 = x> 0,00

The independent variable s is interpreted as the spacing between cars, L is the
minimum car spacing (a lower bound for L is the length of typical car), and V,, > 0

*Received by the editors June 22, 2001; accepted for publication (in revised form) March 1, 2002;
published electronically August 28, 2002.
http://www.siam.org/journals/siap/63-1/39121.html
fDepartment of Mathematical Sciences, Carnegie Mellon University, Pittsburgh, PA 15213
(greenber@andrew.cmu.edu). The research of the third author was partially supported by the Ap-
plied Mathematical Sciences Program, U.S. Department of Energy and by the U.S. National Science
Foundation.
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is the maximum allowable speed of a car. A typical function, and one we shall use in
simulations, is

(1.4) V(s) = Voo (1 - i), L <s<oo.
In this classic Lighthill-Whitham-Richards model [4, 5, 6, 7] the function V(-) gives
the velocity of individual cars; in ours it provides an upper bound for the velocity of
an individual car. An extensive discussion of suitable functions V(-) may be found in
[8, Chapter 4] and the references contained therein. Suffice it to say that the functions
V(+) in our model are consistent with those used in practice.

In this model x(t),1 < k < N, denotes the position of the kth car at time ¢, and
0 < ug(t) is the velocity of the kth car. Throughout,

d.’L‘k

(1.5) =

= Uk, 1§k§Na

and the cars are ordered so that (xg41 — zx)(t) > L, 1 < k < N — 1. Dwring time
intervals where the lights are green we assume that

(1.6) o= V(e —m)(O) +ax,  1<K<N,!
where ag(t) < 0 satisfies

(1.7) €e—— = —Q, 1<k<N.

The parameter ¢ > 0 may be thought of as a relaxation time. Equations (1.6) and
(1.7) imply that during the green light periods the velocities, ug, satisfy

du V(x —TE) —u
@m)gfzvumrﬂ@wﬂrmg+((“*ek) W g<k<n-1,
and
(1.7b) duy _ Voo —un)

dt €

The interesting feature of our model is how yellow or red lights effect the dynamics
of an individual car. Our traffic lights cycle from green to yellow to red, and the
numbers 0 < TG, 0 < TY, and 0 < TR denote the duration of the green, yellow, and
red lights. At time ¢ = 0 we assume we have a sequence of N cars located at

(18) LL‘k(O) = (k‘ — ko)Ll, 1 S k S N,

where Ly > L (again L is the minimum allowable auto spacing), and we assume these
cars are all at rest; i.e.,

(1.9) ug(0) =0, 1<k<N.
Finally, we assume they are at traffic lights located at x = 17,1 < I < M, where
(110) (N*ko)L1<l1<lg<"'<lM.

IWhen k = N, uny = Voo + an.
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We further assume that each intersection is of width w > 0 and let
(1.11) tym = (m—1)(TG+TY +TR), m=1,2,...,

denote the start of the mth light cycle.

During the time interval t,,, <t < t,, + TG all cars satisfy (1.5)—(1.7). At time

ty def tm + TG, the green lights turn yellow, and this will have an effect on the traffic

flow.
We start by describing what happens to the lead car, the one indexed by N, when
it encounters a light at x = [. We assume that

(1.12) zn(ty) <.
If
(1.13) zn(ty) +un(ty)TY >1+w+ L,

then the lead car will be able to completely clear the intersection if it travels at its
current speed un(t,). We allow it to clear the intersection by following its standard
dynamics; that is, over the time interval t, <t < t¢,,11 the Nth car satisfies

dmN
1.14 — =
(114 Ny,
where
(1.15) un = Voo + an
and ay < 0 satisfies

dOéN
1.16 =N _an.
(1.16) e aN

Following these dynamics the lead car accelerates through the intersection.
On the other hand, if

(1.17) e (ty) +un(t,)TY <1+w+ L,

then it will be impossible for the Nth car to clear the intersection during the yellow
phase if it continues to travel at its current speed. If

(1.18) zn(ty) +un(ty)(TY + TR) <,
then over the time interval ¢, <t < t,,41 we require it satisfies the modified dynamics

d d
"TN:uN and ﬂ=0;

1.1 —
(1.19) dt dt

i.e., we insist that it travels at its current speed. This strategy avoids the Nth car
accelerating and then possibly having to decelerate as it nears the light.

If (1.17) holds and (1.18) is violated, the lead car will have to slow down and
possibly stop. When it satisfies the additional inequality

(1.20) on(ty) +un(t,)(TY + TR)/2 >,



152 ARGALL, CHELESHKIN, GREENBERG, HINDE, AND LIN

the lead car is mandated to satisfy

2 _
uy (ty) <t <t,+ 2(l —zn(ty))
2(l —zn(ty)) un(ty)
d:Z?N duN
0,t, + w <t<t 1 2
Y UN(ty) -

This constant deceleration strategy brings the Nth car to rest at * =l at t = ¢, +

2l—anty) < tm+1, and it then sits at the light until t = t,,, 1.

Finally, when
(1.22)  zn(ty) +un(ty)(TY +TR) >1 and xn(ty) +un(ty)TY +TR)/2 <1,
the lead car is mandated to satisfy

dxr N
dt

B duy  —2(xn(ty) +un(t,)(TY +TG) —1)
=un(t) and == = (TY + TG)?

over the whole interval ¢, < ¢ < ¢,,11. This strategy brings the car to the light at
x =1 at t,, 41 with velocity

2(l = =n(ty))

(1.23) un(tms) = <y

—UN (ty) > 0.

We note that if the lead car satisfies (1.17), then the cars with indices k¥ < N —1
follow their standard dynamics (1.5)-(1.7) over [t,,tm41] unless they happen to be
influenced by some other light at © =1’ < I.

Having described what happens when the lead car encounters a yellow light at
x = [, we turn our attention to what happens when other cars encounter the same
light. We let k; < N — 1 be the largest integer so that

(1.24) xp, (ty) <1,
and we let p; < k; be the largest integer so that

(1.25) Zp, (ty) + min  u;(t,)TY <Ii+w+ L.
n<j<k
The p;th car will be the first one that does not get through the light at x = [.
We first consider the situation when p; < k;. We assume the existence of a number
A > 1 such that cars travelling with the maximum speed V., can safely brake at a

2
constant deceleration rate a = ;}\)f over a road segment of length AL.

We first focus our attention on the situation in which

(1.26) Zp, (t,) <1—AL.

2The dynamics described by (1.21) are equivalent to

_ 1/2
den _ un(ty)(l—an(®) /7 1, <t<t,
dt 2(1 — zn (ty))1/2

2(1 — =N (ty))
un (ty)

+

and

d 2(1 - t
don g,y 2= ()

<t <ty
dt un(ty) — =
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Our basic strategy is to let cars with indices k > p;+1 follow their standard dynamics
(1.5)-(1.7) over t, < t < t,41. The cars with indices p; +1 < k < k; will clear

the intersection by t,, + TG + TY def ty; i.e., they will satisfy xg(¢.) > 1 +w +
L. This follows from the observation that local spatial minima in the velocity are
nondecreasing in ¢ (for details see (2.79)—(2.81)).

Rules for the p;th car. So long as t, <t < t, and xp,(t) < — AL we let the
pith car follow its standard dynamics (1.5)—(1.7). If there is a first ¢,, < t, so that
Zp, (tp,) =1 — AL, then the driver must decide what to do. In the unlikely event that

(1.27) Up, (tpz)(thrl —tp,) <AL,

then over the interval [tp,, ;1] the pith car is required to satisfy

o iy (1,). Uy () "2y, (1)
and
dU.
(128) dtpl = V/ ('rpl-i-l - xpl) (upl+1 - UPZ)
(V (xpz—‘rl - l'pl) — Upz)
Jr
€
and

Upi(ty) = up, (ty)-
On the other hand, if
(1.29) Up, (tp,) (tmt1 — tp,) > AL,

then the p;th car will have to slow down and possibly stop.
When the p;th car satisfies the additional inequality

(1'30) Up, (tpl)(tm+1 - tpz)/Z > /\La

the p;th car is required to satisfy

dxpl R Up, (tpl)(l - zpz)1/2 def
(1.31) a — M < R
where
dU, V(z —xp,) — U,
(1'32) sz = V,(xpz-i-l - xpz)(upz-i-l - Upz) + ( ( pitl p pz) pz)
and
(133) Lp, (tpz) =1—AL and Upz (tpz) = Up, (tm)'

When (1.31) reduces to

dzm _ Up (tpz)(l - xpl)1/2 def
(1.34) = AT ef s
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we see that

dvpl _ 7”12)1 (tpl) < _ Vgo

(1.35) dt ~— 2\L —  2\L’

2L
T ) and the

and thus we apply this constant braking strategy over ¢, <t <t, +
strategy xp, (t) =l over t,, + —22 o <t <ty .

uPz (tPl )

If instead of (1.30) the p;th car satisfies
(1'36) Up, (tpz)(tm-i-l - tpz)/Q < AL,

the p;th car is required to satisfy

dx . 2AL—up, (tp, ) (Em+1—1p,)
—L = min (upl(tpl)+ (:in-f-pll_tpl)gl Pl (tftpl),UpJ

(1.37)

def
= Upy, lp, STt

and (1.33), and again U, satisfies (1.32) and (1.33),.

The dynamics for U, postulated in (1.28) and (1.32) might seem a bit strange.
What we are insisting is that the p;th car must travel no faster than the minimum
of its braking speed and the speed that it would travel at if it disregarded the light
and allowed its velocity to be determined by the car ahead. The latter speed Up, is
computed from the standard dynamics equation (see (1.6), (1.7), (1.7a), and (1.7b)).

If there is no such time ¢,, < t, so that z,,(ty,) = | — AL, then we know that
Zp, (tr) <1 — AL. In this situation we replace t,, in (1.27)—(1.37) by ¢, and the terms
AL in all inequalities and identities by I — zp, (t,).

Finally, if (1.26) does not hold, i.e., if

(1.38) 1= AL < ap,(t,) <1,

we set tp, to ¢, in (1.27)—(1.37) and replace AL in these formulas by [ — x,, (¢,).

The rules when p; = k; are similarly amended.

The cars with indices p;_1 < k < p; — 1 are required to satisfy their standard
dynamics over [ty, ty41].

Our first result deals with the model’s consistency; we shall show that for all
t > 0 and all indices, L < (zr11 — zx)(t) and 0 < ug(t) < V((xr41 — xx)(t)). We
also have the theorem that no cars run any red lights. With two in-phase lights, the
number of cars through an intersection during the green and yellow phases is, after
a start-up period, a constant. This constant is less than the constant obtained with
models which allow for infinite accelerations, i.e., discrete Lagrangian versions of the
Lighthill-Whitham-Richards model [4, 5, 6, 7].

One surprising observation about the model just described is that the largest
decelerations are not necessarily associated with the cars indexed by p; but rather
cars with indices k < p; — 1 which are forced to slow down because the p;th car has
stopped. Equation (1.7a) implies that the latter cars’ decelerations are determined
by the negative velocity gradients ugy1 — u.

Finally, we note that though we have been quite specific in postulating our stop-
ping rules for the p;th car, it would have sufficed to have chosen any rule of the
form

. def
—, T min (vma Upz) = Up, by <t <tmyr,
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where U, satisfies

v,
Wp = V/(po—l - ‘rpl)(upul - Upz) + (V(xpl-u - xpl) - Upz)e

and Up, (t,) = up, (ty) if pp <N —1, and

dU. Voo — U
dtN - ( € v and Un (ty) = up, (ty)

if pp = N, and where v,, > 0 is chosen so that if

dxpl
dt

= Up,, ty <t <tm1 and xp, (t,) <,

then zp,(t) <1, ty <t <ty

2. Model consistency. In this section we turn our attention to the issue of
model consistency. The central issue before us is to show that for 1 < k£ < N — 1 and
0<t

(2.1) L < (xk;Jrl — xk)(t) and 0< uk(t) < V(($k+1 — !,Ek;)(t))
and that for k=N and 0 <¢
(2.2) 0 < un(t) < Voo

We are also interested in knowing that the distinguished cars indexed by p; do
not run the red lights over the intervals ¢, = (m—-1)(TG+TY +TR)+TG+TY <
t<m(TG+TY +TR) s tm+1 and that the (p; + 1)st car clears the intersection by
t,., i.e., satisfies

(2.3) ZTp41(tr) > 1+ w+ L.

Once again x = [ is supposed to be the leading edge of the intersection, w the width
of the intersection, and L the length of a car.

There are two natural approaches that one can take to establish the above claims.
The first is to show that the desired conclusions follow directly from the governing
differential equations and initial and constraining conditions while the second is to
show that approximate solutions, generated by numerical discretization, satisfy the
desired consistency results. Noting then that these consistency results are sufficient
to guarantee that the approximate solutions converge (as At — 0) to solutions of
the original model, we are guaranteed that these limiting solutions satisfy the same
consistency results. We adopt the latter procedure here since in the next section we
shall perform computations with the discrete approximating system.

Throughout, At will denote our time step and the quantities (z},u},a}) will
denote the values of the approximate solutions at ¢, = nAt. To keep matters simple
we shall assume that the numbers TG/At, TY/At, TR/At, and €¢/At are all integers
and we shall assume that At < min (¢, (V'(L) = maxp<s V'(s))71).

Our first result deals with the traffic flow over the time intervals

def def

(2.4) tw & (m— 1)(TG+TY +TR) < t, =nAt <t, “t, + TG



156 ARGALL, CHELESHKIN, GREENBERG, HINDE, AND LIN

when all lights are green. Over such intervals we replace (1.5) by
(2.5) gt =2 +upAt,  1<k<N,

and this yields

(2.6) St = s+ (uftyy —up)At, 1<k<N-1,
where
(2.7 sp=(2py, —ap) and spt = (zZIll — .

The u’s and s’s are related by

(2.8) up =V(sp) +ap

and
At

(2.9) uptt = V(s + (1 - > al.
€

These updates hold for indices n satisfying

(2.10) (m —1)(TG +TY +TR)/At Y nyy <n < + TG/AL - 1.

THEOREM 1. Suppose that

(2.11) L<spm™ and 0<uy™ <V(sp™), 1<k<N-1,
and
(2.12) 0 <uj" < Vi = lim V(s).

Then, the same inequalities hold for

(2.13) N, <N < 0y, + TG/ AL = Ny.

Proof. The identity (2.6) implies that if s > L and ug,; —uj > 0, then SZH >
sp > L. In the situation in which u}/,, —uf <0, (2.6) implies that

(2.14) S = S 4 (ufyy — of — V(sP)At

and the natural induction hypotheses of < 0, 0 < u} < V(s}), and sp > L imply
that up — oy > 0. In the situation in which 0 < “Z—H —ap < Vs we are guaranteed
a unique 5}, , € [L,00) satisfying

(2.15) up ey — o = V(Sgi),

and here (2.14) reduces to

(2.16) spth = sp 4+ (V(5141) — V(sp)) At
or

(2.17) sPH = (1= V/(s.)At)sy + V' (s.) Ats]
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for some s, € (min (s}, 57, ), max(sy, 3}, ,)). The latter identity, together with
(2.18) AtV'(L) <1 and min (s}, 55,,) > L,

yields SZH > L. When up, —up < 0 and up,, —ap > Vs, the identity (2.14)
implies that

(2.19) ST > s+ (Voo — V(s])) At

The inequality (2.18); guarantees that s — s 4+ (Vo — V(s))At is strictly increasing
on [L,00) and thus (2.19) implies that st > L 4+ VAt > L as desired.

The induction hypothesis ajf < 0 together with At/e < 1 and (2.9) guarantees
that uZ‘H < V(SZH). What remains to be shown is that uZ‘H > (0. To establish this
assertion we combine (2.8) and (2.9) to obtain

At

uZH = V(s + (ug , —up)At) + (1 - e) (up — V(sp))-

Noting that
V(si + (uky — up)At) = V(si) + V' (s4) (u g — ug) At

for some sy > L, we find that

At
up ™t =V (sp) Atu + — V() = u) + (1= V(sg) At)uj.
The last identity, when combined with

AtV (sy) <1, Atfe<1, up >0, wup,, >0, and V(sp)—uf >0,

yields u} ™ > min (u,u} ;) > 0 as desired. O
We now turn our attention to what happens over the yellow and red phases, i.e.,

when

(2.20)

t, & (m— D)(TGC+TY +TR)+ TG < t, = nAt < tps1 < m(TG+TY +TR).

The results of Theorem 1 imply that when n = n,, = (m=1)(TG+TY+TR)+TG /At

the following inequalities are valid:

(2.21) L<s¥ and 0<u” <V(sp), 1<k<N-1,
and
(2.22) 0 <upf < Voo = lim V(s).

§—00

Our next goal is to show that (2.21) and (2.22) hold for indices

(2.23) Ny << i1 2 m(TG+TY + TR).

For definiteness we assume the lights are located at [y < Iy < - < lpy where M << N
and that L << ljy1 —1l;, 1 < T < M—1. For 1 < I < M, k; will be the largest
integer less than or equal to IV, so that

(2.24) xp! < g



158 ARGALL, CHELESHKIN, GREENBERG, HINDE, AND LIN

and p; will be the largest integer less than or equal to k; so that

(2.25) xpv + < min u’?y) TY <ly+w+ L.

pr<j<kr ’
It can and does happen that for some I < M

(226) p]:p[+1:--'=pM:N.

Our first task is to establish the desired inequalities for indices (p;—1 +1) < k <
pr = N for ny, <n < ny,q1. This is the situation that is obtained when the lead car,
indexed by N, has passed the (I — 1)st light but not the Ith light.

The rules laid out in (1.17)—(1.23) imply that xy(-) satisfies

d e
(227) % = min (’UN7 UN) d:f UN, ty S t S tm+1,
where Uy satisfies
dU -U
(2.28) v W mON) g U(ty) = unlty),

dt €
and vy (+) > 0 is chosen so that if z(-) satisfies

dZL‘N

(2.29) -

= vy and JCN(ty)<l],

then xx (tm+1) < lr. We replace this system with its discrete analogue,

(2.30) ot = 2% Ul AL, ny <n < npp — 1,
At
(2'31) UJT\LT—F1 = VOO + (1 ; 6) (U}\If - Voo) ) Ty <n< Nm+1 — 17

and these are solved subject to the initial conditions

(2.32) xX,y <l and 0< u?;’ < U;\L,y < Ve
The discrete velocity ufR; is given by

(2.33) upn = min (v, Uy),

and vy > 0 is a discretization of vy with the property that if
(2.34) 2t = 2% oAt and 2y <
for n, <n < nypqq — 1, then

(2.35) ot <.

The identities (2.31), (2.32)3, and (2.33) guarantee that

(2.36) 0 <uly < Voo, Ny <N < Nppy1.-
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If we assume that (p;—; +1) < N — 1, then the (N — 1)st car will follow the
standard dynamics (1.5)—(1.7) on t, <t < t,,11, and thus for n, <n < n,q1 — 1 we
have the approximating discrete system:

(2.37) TN = aR +uf A, uy_y =V(sh_1) +oj_q,
and “Xftll = V(S’&tﬂ) + ( - %) N1
where

(2.38) sk =aRk — 2Ry and syt =2 -2 =Ky + (uly —u_y) AL
The inequalities (2.21) and (2.22) imply that oy’ ; < 0, ay’ < 0, and sy, > L.
The identities (2.37) and (2.38) imply that

A" 5
(2.39) shtl = s |+ <u§§, - (1 - 6) an | — V(S?V_l)) At,
and (2.37)2 and (2.39), together with
(2.40) L<si ,, oy <0, ul >0, AWV(L)<1, and At<e

and the arguments used to establish Theorem 1, imply that
(2.41) L <sW_q, Ny <N < Ny

The arguments used to establish Theorem 1 along with (2.40) and (2.41) also yield
0<uly_; <V(sh_y), ny <n <npt1. An induction on k for indices (pr—1 +1) < k
then yields

(2.42) L <sy=(xp, —xp) and 0 <wuy <V(sy), Ny <N < N1

This situation when p;_; = N — 1 is handled similarly, provided that one adopts
the proper first order integration scheme for Uy _;1. The governing equation for Uy _1
is

dUn - V(ry —xn—1) — Un-—
(2.43) c]i\; ! :V/(xN*xN—l)(UN*UN_l)%»( (zn N€ 1) —Uxn 1),
where
(2.44) doy —aNa) o

dt

and vy_1 > 0 is chosen so that if

(2.45) dzlc—tN =uvy_1 and ay_1(ty) <Ii,
then

(2.46) an_1(tms1) <11
Additionally

(247) UN -1 déf min (UNfl,UNfl).
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The integration scheme we use is

248)  URT = Voo + (o~ U3 )80+ (1= 2 ) (01 - Vish ).
where
(2.49) Sy =2z — TN

To complete the proof one does an induction on the index I, first replacing I by

I—1. One knows that the car with index (p;_; +1) has a velocity Uy, 1) satisfying

(250) 0= U?PI—HJ) =< V(Sgl—1+1)’ Ty SN < Npyr

We first focus on the p;_ist car and note that

dx — . def
(2.51) dpz - = min (’UPI—17UPI—1) = Up;_1
and
ds,,
(2.52) —a = W)~ Up ).

The rules laid out in (1.7)-(1.23) imply that

du,,_ V(Swr_141)) = Upr )
o = V/(s(pl—l))(u(PI—1+1) - UPI—I) + 1o t]) z

2.
(2.53) dt €

and that the velocity field 0 < v,,, , is chosen so that if x,,, , evolves as

(2.54) dt_ =uvp,, and x,, ,(t,) <,
then
(2.55) Tp;_y (tmt1) <l

The discretization we apply to the p;_ist car is

+1 _ +1 _
(2'56) x;}—l - 1‘2171 + u2171At and 82171 - 52171 + (u?p171+1) - ugl—l) At

for ny, <n < mnp41 — 1. Moreover, for some n, <ng <n, +TY/At -1

(257) up;ill — V(Spill) + (1 — 6> (up171 — V(Spf,l))
and
(2.58) Uyt = ups

3This scheme is essentially a first order Euler scheme applied to (2.43). The scheme implies that

Uit =UR_ 4+ AV (s%_y) (uly —UR_)) + - (V(sh_1) —UN_1) +0(A1)%
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whereas for ng <n < npq1 —1

(2.59) UZ,,l = min (U;Lplngz 1)

At
(200) Ut =Vish_, + (o = Uy )80+ (1= 20) W, = Visp,_ ).

pr Pr—1 pPr-1 Pr—1
and
(2.61) Uyt =wuy? and z,0 <l
Finally vy, | is chosen so that if
(2.62) ng_ll =z, , tv,, Al no <n<npmy1— 1,
then
(2.63) xym it <.

The arguments employed to establish Theorem 1 guarantee that for n, <n < ng

(2.64) L<sy,  and 0<uy,  <V(s, )

and that for n = nyg

(2.65) O<ule  <UM <V(st ).

br—1 pPr—i1 —

LeEMMA 1. Forng <n < npya

(2.66) L<s,  and 0<u,, <U;  <V(s;, )

pPr—1 — Pr—1

Proof. The identities (2.56) and (2.60) imply that

(2.67)
V(sp ) = Upth = Vsp,_y + (ufy, 41y = Up,_,)AD)
_V( Spr_s <u22171+1) UIZLI 1)At>

+ (1 — A:) Vlsp,) = Upiy)

= AV (sy) (Up,, —up, ) + (1 _ At) V(2 ) —=Un )

€

for some sy > min (sp, |+ (u?pFIH) —uy, At sy + (u?pFﬁU Uy, )At). If
we now make the induction hypotheses that

(2.68) L<sy,  and 0<U), | <V(s; ),

then (2.59) implies that

(2.69) 0<u,,  <U;  <V(sp,_,)

4See Footnote 3.
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and (2.69) and (2.42) with k = py_1 + 1 implies that

(2.70) min (SZ,,I + (u?pl,l-ﬁ-l) - UITJLlfl)At7 SITJLI—I + (U?PI—1+1) B Uglfl)At)
: n def n
—V(sp,_ )ALt = F(sp, )

n
Z S pPr—1

Pr—1
This constraint AtV'(s) < 1, L < s guarantees F(-) in nondecreasing on L < s, and
this fact, together with F(L) = L, guarantees that s;}l‘tll and sy are both greater than
or equal to L. Moreover, (2.67) also yields U}t1 < V(s ). The defining relation

(2.60) and (2.70) and Uy, 41y = 0 also implies that

At
2.71) Uyt = AtV (sa)up,, gy + (1= AV (s))Uy, |+ ?(V(s” )y =Uur )

pr—1 Pr—1 pr—i

for some s, > L and (2.71) guarantees that Us"! > 0. The last inequality and (2.59),
with n + 1, guarantees that

(2.72) 0 <upt <UST < V(sp),
and this completes the proof of Lemma 1. 0

Once again an induction on k for indices (pr—o + 1) < k yields
(2.73) L <sp=(xp —ap) and 0 <uy <V(sp)

and additionally yields the following theorem.
THEOREM 2. Forny <n < Ny =m(TG+TY +TR)

(2.74) L<sy and 0<uj; <V(sp), 1<k<N-1,
and
(2.75) 0 <uly < Voo = lim V(s).

Moreover, for 1 <1< M
(2.76) x;‘;"“ <. O

Theorems 1 and 2 go a long way towards establishing the consistency of our
model. What remains to be shown is that cars with index p; 4+ 1 clear the light, i.e.,
that they satisfy

TY
Ny + Xy

(2.77) A

>lr+w+ L.

The reader should recall that the cars with these indices satisfy

(2.78) x(;Hl) < Iy and x(;1+1) + ( min ujy ) TY >l +w+ L
(pr+1)<j<kr

and that cars with indices (pr+1) < k < kj evolve by the standard discrete dynamics
for ny, <n <n, +TY/At—1;ie,

At n—"ny )
Pt =2 +up At and ul = V(s}) + (1 - e) (u” = V(s™)),
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where
0< uZ“ < V(szy) and L < sj.
It is a straightforward calculation to show that cars with these indices also satisfy

n n Ui n At n v
ukJrl = V(s + (upy —up)At) + (1 - e> (up = V(sy))

= AV (s + (1= AV (s + V5 — )
from some sy > L, and that this identity, along with
AtV'(L) <1, At <e, and 0<V(s})—up
implies
(2.79) uptt > min (uf, upy ).

We now note that at t = t, (equivalently n = n,) the cars with indices p; < k
typically satisfy

. in ulY =u," <k <
(2.80) , in, u,”, where (pr+1) <ko <kp,
and
(2.81) uty —upt >0, ko <k <ky,

where ky is greater than k;. Moreover, if the spacing of the lights is sufficiently
large, then the spatial monotonicity of the velocities is preserved for n, <n < n, +
TY/At and kg < k < kgz. When this is the case, the inequalities (2.78)—(2.81)
guarantee (2.77).

3. Simulations. In this section we present some simulations of the system out-
lined in section 1. We chose

Voo =50f/s, L=20f, L =25f, A=5e=5sand N = 600.

Our maximal velocity was given by

V(s) = Vo (1—L>, L<s

S
We restrict our attention to a roadway with two in-phase lights located at
Iy =1 mile =5280f and Iy =2 miles = 10,560f,
and we assume that the width of each intersection is
w = 20f.
Finally, the durations of the green, yellow, and red lights were chosen to be

TG = 25s, TY =5s, and TR = 30s.
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Our initial data are taken to be
2 (0) = 25(k —400) and wug(0) =0, 1 <k < 600.

Snapshots of the solution are shown at times 30, 147, 151, 179, and 191 seconds
in Figures 1-5, respectively, and a film may be seen at http://www.math.cmu.edu/
users/plin/21380/traffic.html.

In the first frame of each snapshot we plot the auto velocity wuy (in miles/hour)
versus current auto position zy (in miles), and in the second frame we plot the em-
pirical density py = m (in cars/mile) versus current auto position zj (in miles).

After an initial startup period we are able to get 18 cars through each light during
each green-yellow-red cycle. This number should be contrasted with what one obtains
in the singular limit, where e = 07, TY = 0s, TG = 30s, w = 0f, and A = 5. In this

limit
L
weve (1o )
Te41 — Tk

and if, perchance, we have a car satisfying
2p((tm + TG)™) =17, I=1or2,
and

up((tm +TG)™) > 0,
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then for times t,, + TG <t <t,, + TG+ TR,
2k (t) =1 and ug(t) = 0.

For this singular model we declare a car through the light at [ if xx(¢,) > {. The
singular model has the potential for infinite accelerations. In steady state the singular
model allows us to get 20 cars through an intersection during each green-red cycle.

We note that our choice of which car must stop is made at times ¢, = t,, + TG
(when a green light turns yellow) and is conservative when the car chosen to stop
satisfies x,, (t,) < [—AL. A more aggressive strategy would have been to allow the p;th
car to follow its standard dynamics until time ¢, < t, +TY, where z,,(t,,) =1 — AL,
and then reevaluate whether the p;th car can get through the light in the remaining
time t, +TY —1,,, i.e., check whether

t i t t TY —t,)>1 L.
xm(pl)—’_plgkngl}c?(tm)Uk( Pz)(y+ Pz)— +w+

If the latter inequality holds, the aggressive strategy would allow the p;th car through
and stop the (p; — 1)st car. We avoided this strategy because it did not seem to be
worth the effort to get one more car through the intersection during the green-yellow-
red cycle.

The attentive reader will by now realize that once we have determined which
car will slow down or stop at a given light the particular braking strategy adopted
is immaterial; all that is required is that the velocity associated with the braking
strategy, vp,, be such that if x,, satisfies

then zp, (tm+1) < l. We adopted constant braking strategies here because they were
simple and realistic.

4. Concluding remarks. There are some obvious connections between the dis-
crete model studied in this paper and the continuum or macroscopic models of Aw,
Klar, Materne, and Rascle [3].

If one assumes that the maximal velocity V() introduced in (1.1)—(1.3) is actually
a function of v = ¢ defined on v = > 1, i.e,,

s

(4.1) V(s) =W (Z) ,
then (1.1) and (1.7) take the form

dxk duk ’ Uk+1 — Uk (W(’yk) - uk)
4.2 — = — =
(42) ar e and g =W L * € ’
where again

Tyl — T

(43) o ( k+lL k)
and
(4.4) CALCTES Sl

dt L
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The connection between the follow-the-leader system (4.1)—(4.4) is now clear. One
introduces reference coordinates

(4.5) X, = kL,

lets

(4.6) X(Xp,t) = z(t) and u(Xg,t) = uk(t),

and interprets y; and “#—"* as the downwind finite difference approximations to

g—ﬁg and g—;‘( at the reference point Xy; i.e.,

82( T4+1 — Tk (9U Uk+1 — Uk
4.7 — (X, t) =y = —— d —(Xg,t) = ——.
( ) 8X( k> ) Tk L an 8X( ks ) L

With these identifications one obtains, at least formally, the Lagrangian traffic equa-
tions

oxX oxX
(4.8) E(X,t):U(th) and 3727()(@7
where
v _ou oo (W)
(4.9) 5 = BX and 5 = W'(v) X + . )

This correspondence is faithful if one restricts one’s attention to initial value problems
exclusively. We have not seen how to incorporate the traffic light problem into a
continuum format.
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AN ASYMPTOTIC FINITE DEFORMATION ANALYSIS
FOR AN ISOTROPIC COMPRESSIBLE HYPERELASTIC
HALF-SPACE SUBJECTED TO A TENSILE POINT LOAD*
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Abstract. The nonlinearly elastic Boussinesq problem is to find the deformation produced in
a homogeneous, isotropic, elastic half-space by a point force normal to the undeformed boundary,
using the exact equations of elasticity. For this core problem of elasticity and engineering, the 1885
linear elasticity solution of Boussinesq is still used in a variety of applications. In [SIAM J. Appl.
Maith., 62 (2001), pp. 107-128], we addressed the case of a tensile point load under the constraint of
incompressible finite elasticity. Here we consider an analogous asymptotic analysis of this problem
within the context of compressible finite elasticity. Asymptotic tests are developed to determine
whether an isotropic hyperelastic material can support a finite deflection under a tensile point load.
The results are then applied to a variety of particular constitutive models for compressible nonlinearly
elastic materials. It is found that, for many of the well-known strain energy models for compressible
hyperelastic materials proposed in the literature, a tensile point load cannot be supported. For
models which may sustain a tensile point load, we determine the remaining equations and conditions
for the asymptotic solution, and numerically compute this solution for a particular case.

Key words. point load, concentrated load, Boussinesq, asymptotic analysis, compressible hy-
perelasticity, material formulation of equilibrium, conservation laws

AMS subject classifications. 73G05, 73C50, 73V99, 35Q72, 35B40

PII. S0036139901394955

1. Introduction. In this paper, we continue to study the axisymmetric defor-
mation of an isotropic, nonlinearly elastic half-space subjected to a tensile point force
normal to its undeformed boundary. The present authors have considered this problem
in the context of incompressible hyperelasticity [1] and here treat the unconstrained
problem. In 1885, Boussinesq solved the analogous problem within the linear the-
ory of elasticity, determining the following nondimensional solution to the linearized
equations in the case of a unit point load (see, e.g., [2] for a discussion of the linear
Boussinesq problem and solution):

(1-2v) zZ 1 R*Z

1 R,Z)=R— -1

() 7'( ) ) ATR ,7R2+ZQ + (1721/) (R2+Z2)3 )
1 zZ? 2(1—v)

2 R2)=Z- NN

As discussed in [3], the classical Boussinesq solution is deficient in that it not only
predicts an infinite displacement under the point load, thereby violating the basic
premise of linear elasticity, but also implies, in the case of compressive loads, that
some particles on the line of action of the load pass through one another. To rectify
these fundamental physical defects, Simmonds and Warne [3] treat the concentrated
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tensile load problem posed within the nonlinear theory of elastostatics and also further
study additional interesting aspects of this core problem. In [3], the authors invoke
two hypotheses (H1 and H2), which describe the role played by (1), (2) in the context
of the fully nonlinear, exact formulation and provide for unique asymptotic solutions
near the point load. We shall again adopt these hypotheses as we did in [1], and list
them below:

H1: As the dimensionless distance from the point load grows, the solution(s) of the
nonlinear Boussinesq problem approaches the solution of the linear Boussinesq
problem.

H2: The strain-energy density is bounded everywhere except at the point load;
the displacements are bounded everywhere.

In [3], Simmonds and Warne use the principle of stationary potential energy to
derive the associated Euler equations from a variational formulation, and then employ
known conservation laws of elastostatics [4] and a third hypothesis (H3), successfully
used by Knowles and Sternberg [5, 6] for asymptotic analysis of the finite-deformation
elastostatic field near a crack tip. In [3] it is shown that the special Blatz—Ko material
cannot support a point load and that the generalized neo-Hookean material considered
by Knowles [7] with dimensionless stiffening parameter k can support a finite deflection
under a point load provided that the material is sufficiently stiffer (k > %) than the
conventional neo-Hookean material (k = 1).

In [1], we address the nonlinearly elastic Boussinesq problem using a material for-
mulation of the governing equations in terms of nominal stresses. Upon invoking the
hypotheses which proved useful in [3], simple criteria to determine if a hyperelastic
material can support a point load are developed in [1] for incompressible isotropic ma-
terials, and the results are then applied to a variety of models in the literature. There
have been very few works considering the nonlinear Boussinesq problem. The related
problem of a tensile concentrated load acting on a cone composed of a particular com-
pressible hyperelastic material proposed by Gao has been treated asymptotically by
Gao and Liu [8]. In [3], a case-by-case asymptotic analysis of the governing equations
was carried out, and there it was noted that much remains to be done for this problem,
including determination of criteria of the type established in [1]. Thus, in this paper,
we consider the corresponding problem to that considered in [1] for compressible fi-
nite elasticity and establish, in this context, asymptotic tests which allow for a much
simpler way to determine whether a compressible hyperelastic material can support
a finite deflection under a point load. In subsequent work, we shall similarly address
the even more complex problem of an inward (compressive) point load.

In section 2, we briefly review our material formulation of this traction boundary-
value problem (developed in [1]) which, in the authors’ view, sets up this problem in a
rather tractable and explicable form, and then give the governing equations of equilib-
rium in terms of nominal stress components. Section 3 considers hyperelasticity and
restates the basic boundary-value problem for compressible nonlinearly elastic mate-
rials upon using a representation for the strain energy which proves more convenient
than the standard principal isotropic invariant expression. In section 4, we exploit
our material formulation of this problem together with several conservation laws for
nonlinear elastostatics, and upon linearizing and invoking H1 as in [1], implications
of the linear solution (1), (2) for the conservation integrals are obtained. In section 5,
the development and use of simple asymptotic tests for compressible materials is pre-
sented, and many of the strain-energy density functions proposed in the literature for
compressible hyperelastic material models are tested for the ability to support a finite
deflection under tensile point load.
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2. Problem formulation. We consider, from the outset, nondimensionalized
quantities (see, e.g., [3]), where the position vector x in the deformed configuration of
the body has cylindrical polar coordinates (7,0, z) and the position vector X in the
reference configuration, the half-space defined by Z > 0, can be described in terms
of cylindrical polar coordinates (R, ©, Z) or spherical polars (¢, ®,0). Our interest is
thus in axisymmetric deformation fields given by

(3) r=r(R,Z) or r=r(®o),
(4) =0,
(5) z=2(R,Z) or z=2z¢,P),

where the orthonormal bases (Er,Eg,Ez) or (E¢, Eg, Eg) in the reference configu-
ration are such that

Er = cosOEx + sin OEy, Eo = —sinO®Ex + cos OEy
and
E; =sin®ERg + cos PEz, Egs = cosPER — sin PE,

respectively, and R = {sin®, Z = cos®. In the deformed configuration, we thus
have orthonormal bases (e, ey, e,) with

e, = cosfle; + sinfe,, ep = —sinfe, + cosfe,,

and x = re, + ze,. In the above, (Ex,Ey,Ez) and (e;, ey, e;) are orthonormal
Cartesian bases for the reference and deformed configurations, respectively.

The corresponding deformation gradient tensor F referred to the appropriate
right-handed coordinate system is then given by either

™R 0 Tz s ¢ 0
r
r
(6) F=10 5 0| o F= 0 O ol
0 ! 0
%R 2z e 7z29
3 3

where here and elsewhere a comma denotes differentiation.
The point load is applied via a dimensionless tensile concentrated load normal
to the surface Z = 0, and thus the dimensionless applied surface traction vector in a
cylindrical basis is given by
—6(R)

™) S(R) = e

This implies a boundary condition for the nominal stress tensor S (= (det F)F~!T;
see, e.g., Ogden [9]) of the form

s=S"N=ST(-Ey)

= _SZrer - SZze27

on Z =0.

as the component forms of S are similar to those of F in that they contain the same
null components. Thus, the boundary conditions at Z = 0 in terms of components of
the nominal stress tensor referred to a cylindrical polar basis are

6(R)

(8) San:O and SZz:m on Z =0.
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As determined in [1], the equations of equilibrium DivS = V - S = 0 governing
deformation fields of the type (3)a, (4), (5)2, where S, represented in a mixed basis,
takes the form

S=5E:®e, +S5:.:E:®e, + 50, Es @ e, + So.Eo @ e, + SegEe @ eg

and V is the usual spherical gradient operator, reduce to the two equations

(9) sin ®(£25¢,.) ¢ +&(sin @Sy, ),0 —ESep =0
and
(10) sin ®(£25¢, )¢ +£(sin @Sg.),0 = 0.

Equation (10) can be written in divergence form and implies the existence of a function
v(&, @) such that

(11) v, = E2sin ®Se, and —v,e=EsinPSs,,

while regularity requirements at the origin £ = 0 and along the axis of symmetry
P =0 give

(12) v(0T,®) =0 and wv(£07)=0.
Also, converting the boundary condition (8);, we obtain

(13) cos PS¢, —sin®Sp, =0 at @ = %,

(14) —  Spr=0 at@zg, £>0.

The implications of the boundary condition (8)s will be considered in section 4.

3. Hyperelasticity, equilibrium equations, and boundary conditions.
We now consider the implications of hyperelasticity and thus assume the existence of
a (dimensionless) stored-energy density function W (F) such that

(15) S = %—Z‘j and S;; = g;z

Then the equilibrium equations (9) and (11) become

(16) sin ®(E2W, ) )re +E2(sIn OW,( ) )y —E sin @W,, = 0
and

(17) v,e=Esn®W,, ) and —wv,e=EsndW,, ),

recovering the Euler equations derived in [3] (see [3, (18) and (24)]).
For isotropic hyperelastic materials, the stored-energy function is such that

W =W (I, I, Is),

where Iy, I, I3 are the standard principal isotropic invariants of the left and right
Cauchy-Green deformation tensors FFT and FTF, respectively. We note that the
usual normalization conditions,

207

2
W(3,3,1) =0 and (3W oW aW)
L=I,=3,Is=1

on, "o, T on
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require that both the strain energy and the stress, respectively, vanish in the reference
configuration. Upon computing the invariants I7, o, I3 with F given by (6)2, it is
convenient, as in [1] and [3], to use the representation

(18) L =A+C,

(19) I, = AC + B2,

(20) I3 = B%C,

where

(21) A= r,f —l—z,g +€72(r% +2,3),
(22) B = 5_1(T7¢' 2,6 —Te 2,0 )7
(23) C = (&£sin @) 22

We consider a general nondimensionalized representation of the strain-energy den-
sity function for compressible isotropic hyperelastic materials given by

(24) W =W(A,B,C),

where here and elsewhere we shall neglect to introduce a new symbol for W on the
right-hand side for ease of notation. Then the equilibrium equations (16) and (17)
and the boundary condition (14) become

(25) sin ®(28%r,e W4 — E2,0 Wi) e +[(21,0 Wa + E2,e W) sin @], —27 csc @We = 0,

(26) v, = sin <I>(2§2z,5 Wa+Ere Wp), —v,e =sin®(2z,6 Wa — &r,e Wh),
and
(27) 2o Wa+&2,Wp=0 atd= %, &E>0,

respectively, where here and subsequently W, = %—VX, and similarly for Wg, We.

4. Conservation laws and implications of the linearly elastic Boussinesq
problem. We next consider three integral identities which have proven useful in the
asymptotic analyses carried out in [1] and [3] for this problem. The first, a direct
application of the divergence theorem

/ S'NdA = / Div SdV
a0 Q
and equilibrium (Div S = 0), states that
(28) / STNdA =0,
o9

where here and subsequently we take 2 to be the hemisphere of radius £ = a which
is centered at the source, and thus the unit outward normal to the top surface of
the hemisphere is N = —E, while the unit outward normal to the lateral surface is
N = E¢ =sin ®Egr + cos PEz. Thus, as in [1], the above along with (8), yields

x
(29) 1 = 27a? / Se. sin ®d®,
0
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which expresses, in dimensionless form, overall force equilibrium. As before, (11);,
(12)2, and (29) further imply that

1

(30) v(f,g>:% at £ = a.

The second conservation law, related to Eshelby’s energy-momentum tensor, is
derived from an application of the divergence theorem to the tensor WI— SF. As the
divergence of this tensor also vanishes (see Chadwick [4]), we obtain

(31) / (WI—-SF)NdA =0,
o0
which, as shown in [1], results in

@ 1
/ WRAR — —z,5 (R=0,7 = 0)
0 2

x D
(32) = /2 |:COS OW + Sep <Smr,<p — cos <I>7',5>
0 a
sin & 9 .
+ Sez —, & —cos Oz, || a”sin @dP.
The third relation we shall use is the integral identity
(33) 3 / Wdv = / [WX N+ (STN) - (x — FX)]dA,
Q 0

which is contained among conservation laws of elastostatics derived by Chadwick [4]
from the energy-momentum tensor used above. Specializing to the problem under
consideration here, we recall from [1] that this determines the relation

1

3/ / We2sin ®dédd + — 2(R = 0,7 = 0)
o Jo 2w

™

(34) .
= a? / [aW + Ser(r — ar,e ) + Se.(2 — az,¢ )] sin @dP.
0

To conclude this section, we restate the implications of the linearly elastic Boussi-
nesq problem solution (1), (2) for this problem. The solution (1), (2) can be repre-
sented as

r(&,®) =&sin® + 4—;[(1 —2v) csc D(1 — cos @) — sin P cos P,

2(§, @) =EcosP + ﬁ[Z(V— 1) — cos® @].

Invoking H1 and letting a — oo, we have the following asymptotic results for
the terms contained in the above conservation laws:
(35) W — 0(a~),
(36) S — O(CL72),
(37) (r—€re)le=a — O(a™),
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(38) (z=&2¢ )|e=a — O(a™),
(39) <S”;‘I’r,<p ~cos @7’,5) e — O(a™?),
(40) <Sh;‘bz,¢ - cosq)z,g) leca — —1 4+ O0(a"2).

On converting the conservation law results (32) and (34) to spherical representations
in the reference configuration, letting a — oo, and employing the above, we obtain

(41) 0< 277/0 Wlp—z&dé +1 =2, (07,0)

and

(42) 6m / / " WE sin ddedd = — (0%, 0),
0 0

respectively. The results (41) and (42), which relate the deflection of the half-space
and its partial derivative at the point of application of the load to the stored-energy
function, will be useful (as in [1, 3]) in the asymptotic analysis to follow.

5. Asymptotics. We now adopt a third hypothesis (H3) successfully used pre-
viously for asymptotic analyses of problems involving singularities in finite elasticity
(see [1, 3, 5, 6]):

H3: The unknowns r, z, and v have the following asymptotic forms as & — 0:

(43) r(&, @) =E{YF(®) +0(§*) with F(0) =0, F(®)>0 for0<®<7F,
(44)  2(6, @) = 2(07,0) + £7G(@) +0(¢”), G(0) £0,
(45)  w(E, @) =€ 1(D) +o(€"), I(P)#O.
Partial derivatives also have analogous asymptotic forms.
As discussed in [3], the above restrictions on F' ensure that particles on the z-axis

remain there and that particles do not pass through the z-axis, while the restriction
on G(0) follows from (41). Additionally, the exponents in (43)—(45) must be such that

(46) a>0,
(47) 6 >0,
(48) B<1,
(49) §=0.

These restrictions result from requiring no cavity to form beneath the point load, a
finite deflection under the point load, (41), and (30), respectively.
Following the development of [1, 3], we define for brevity

1, z>0,

50 =

(50) o(z) {O, Ty

(51) w = min{a, B},

and thus from (21)-(23) and the above, we have that, as & — 0+,

(52) A— VAR F GG,
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(53) B — ¢P2B(F F,G, G,

(54) C — 2o D2 e5c? @,

where A and B are defined for convenience as

(55) A=0(8 - a)[0?F?+ F? + o(a — B)[B*G? + G,
(56) B=BF'G—-aFG #0
and the final restriction on B is necessary to preclude the unacceptable conclusion that

F = 0. Similarly to [1], we consider the asymptotic forms for the partial derivatives
of a strain energy function W (A, B, C), given generally as

(57) Wy — DN F' G G sin®),
(58) Wg — MO N(F F' G, G sin ®),
(59) We — PP P(E F' G, G sin®),

where m, n, and p are functions of « and 8 and M, N, and P are functions of the
arguments shown.

5.1. Asymptotic tests: Derivation. We consider now general compressible
hyperelastic materials and derive in what follows some simple asymptotic tests on
the form of its stored energy to determine whether such a material can support a
tensile point load. In section 5.2, we apply our tests to a variety of well-known
material models. We remind the reader that the equilibrium equations and boundary
condition for this problem are given by (25)—(27), respectively. We now consider the
asymptotic implications of these equations.

On substituting (43)—(45) and (57)—(59) into (25), differentiating, and collecting
like powers of &, we obtain the following asymptotic form of the equilibrium equa-
tion (25):

26" a(n +a+1)sin®FN + (sin®F'N)'] — 26PT* csc ®F P

(60 + EmHB(Bsin®GM) — (m + B + 1) sin G’ M] = 0.

Next, substituting from (43)—(45), the asymptotic forms of (26) are

(61) I' = (26" TPHIGN 4 ¢m Tt M) sin @
and
(62) 0=2""PG'N — at™FM,

respectively. Finally, the boundary condition (27) becomes
(63) 2A"TOFIN 4 BEMTPGM =0 at @ =T, £>0.
In addition, the Jacobian
J=detF = I3

for the deformation of concern here is given by the above, (20), (22), and (23) as

r

(’ra<I> 2, —The 2,0 )
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On substituting from (43) and (44), we have that asymptotically
(65) J — 2B BR(BF'G — aFG ) esc®  as £ — 0.

Thus, to maintain the fundamental physical and mathematical restrictions that det F
is positive and bounded, we must have

3—
(66) 2a—|—ﬂ—3=0:>a:Tﬁ
and, noting (43)2 3 and (56),
(67) B =pF'G—aFG >0, FB csc ® bounded.

Recall from (47), (48) that 0 < 8 < 1, and thus (66) requires 1 < o < 2, andso 3 < a
and f =1« a = 1. Thus from (51)-(54), A, B, and C are independent of £ when
a = =1, and hence the invariants (18)—(20) would not depend asymptotically on
&, which is clearly unphysical. Thus we restrict attention to values of 3 such that

(68) 0<pB<1,

which together with (66) gives 1 < a < 3, and so by (51), w = 3. Thus the asymptotic
forms (52)—(54) of A, B, and C reduce to

(69) A— E2B-VAFF GG,
(70) B— ¢ B(F,F,G,G"),
(71) C— g1-0¢,

where, using w = 3, (50), (55), (56), and (67),

(72) A=32G*+G7,
(73) B =BF'G—aFG >0,
(74) C = F%csc? @,

and « is given in terms of § by (66). The asymptotic forms for the partial derivatives
of a strain energy function W (A, B, C) can then be given generally as

(75) Wi — "ON(F, F',G, G, sin®),
(76) Wg — e"PM(F, F',G, G, sin®),
(77) We — O P(F F' G,G sin ).

Consider (62) first. As & — 0+, if m + a < n + 3, then the coefficient of £™m+
dominates, implying

0= F(®)M.

However, recalling (43); and (75), F(®) is not identically zero, nor should Wg be
identically zero for a reasonable strain energy. Thus

(78) m+a>n+0.
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In view of (78) then, the £"*#*+! term(s) dominate the right-hand side of (61). Thus
we must determine now whether the exponent n + 3+ 1 can be > 0, < 0, or = 0.
If n+ 841 >0, then the term on the left in (61) dominates as { — 0+, resulting
asymptotically in I’ = 0 so that

(79) I=1I,

where I is an unknown constant. However, (12), and (30) asymptotically imply via
(45) and (49) that

(80) 1(07)=0 and I (f) -1
2 27

and thus (79) is not possible. If n + 8 + 1 < 0, then terms on the right of (61)

dominate as £ — 0+, and hence I has no influence asymptotically on the solution

of the problem since (61) is the only governing equation containing I. However, by

(8)2, the point load is applied through Sz, and

(81) Sz, = cos®Se, —sin®Sp, = &2 cot Pv,p +& Tv,e

upon using (11). Therefore, by (45) and (49), the point load manifests itself through
I, making the above alternative for the case n + 5+ 1 < 0 unacceptable. Thus, in a
manner analogous to [1], we arrive at the important result that

(82) n+B+1=0.

Recalling that n = n() was introduced in (74), the function n(5) is known for a given
strain energy function W, and thus (82) is an equation to determine 3. This brings us
to our first result, which is analogous to the situation for incompressible hyperelastic
solids treated in [1]: For a given strain energy function W, if B8 calculated through
(82) (where n is determined from (74)) does not fall in the range 0 < 8 < 1 given by
(68), then the material modeled by W' cannot sustain a point load.

We now continue our analysis under the assumption that § satisfying (82) is
consistent with (68); i.e., n(8) + S+ 1 =0 and 0 < 8 < 1. Recall that by (78)
determined above, m + a > n + 8. We consider first the possibility that

(83) mt+a=n+p

so that the two terms on the right-hand sides of (61) and (62) balance. We will show
below that (83) can occur only for special material models. The final case of when
strict inequality holds in (78) will be treated last in the section.

We proceed under the requirement of (82) and suppose that (83) holds as well.
Then (61) and (62) reduce asymptotically to

(84) I'=(2BGN + F'M)sin ®
and
(85) 0=2G'N — aFM,

respectively, where by (66), o = % Similarly, the powers of £ appearing in (60) are
given by

1

7/67

1 3 3 ) 3
(86) n+a*§7§ﬁa m+ﬂ*§67§7 and P+Q*P+**2

2
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and so (60) takes the form

223 [2(3 —B)(1 — B)sin®FN + (sin @F’N)’] —2¢P 330 g OF P
(87) 5
+E30°3 [(ﬁsin ®GM)' = (8 —1)sin @G’M] =0.

In view of (68), the €203 term dominates the £2~ 27 term in (87). Now if the
£r+3-30 term dominates the £2°=3 term, then

(88) cscPFP = 0.

However, as before, F/(®) is not identically zero, nor should W¢ be identically zero

for a reasonable strain energy. On the other hand, if the & 263 term dominates the

3 1 . . . .
€330 term in (87), the final term in brackets must be zero, which results in the
equation

(89) a(sin®M)G’ + BG(sin®M)" = 0.

Solving (89) yields

Jax 283
o

(90) G = k(sin®M)~& = k(sin®M) 57,

where k is a constant of integration. However, the boundary condition (63) will
contradict this possibility. Using (68) and (86)1,2, we have m + 8 < n + «, and thus
the second term on the left in (63) dominates, implying that either

(91) G (g) —0 or Mlg—z =0.

The latter of (91) would imply from (90) that G(5) — oo, which violates our second
hypothesis H2 and thus is unacceptable. The former of (91) is equally unrealistic, as
this would imply from (44) that z(¢,%) = 2(0%,0), and thus in some neighborhood
of the origin, the deflection of the top surface of the half-space would be exactly the
same as the deflection at the point of application of the point load. Thus, for (83) to
hold, the £#+5-28 and £€26-3 terms in (87) must balance, requiring

(92) p=20—4.
In this case, (87) becomes
(93) —2csc®FP + a(sin®M)G + BG(sin®M)" = 0.

In view of (92), however, p(f), introduced in (76), is a specific function of 3 for a
given strain energy, and (82), which determines [, has already been derived. Thus
if p does not satisty (92), then (83) is not possible. From (92) and (82), (83) is thus
possible only in the special case where p and n are related by

(94) p=—2(n+3).

Thus, in the special case of the material model where (94) occurs and thus p does sat-
isfy (92), the above asymptotic analysis gives a system of coupled first-order ordinary
differential equations for F, G, and I introduced in (43)—(45) with hypothesis H3.
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This system consists of (93), (84), and (85), which followed from asymptotic anal-
ysis of the governing equations (25) and (26), where (66)—(68), (82), and (83) also
hold. This system is subject to the boundary conditions in (43), (44), (80), and (91),.
Accordingly, here and subsequently, we have that near the point load, the deformed
radius r(§, ®), deflection z(&, ®), and v(&, P) are such that

(95) 7 — O(E37%7), 2 —2(07,0)+0("), v—O0(°) as¢— 0T

This concludes our study of the case (83) since if (92) does not hold, then this,
together with our previous analysis, precludes the possibility of (83). Thus it remains
to consider the case of (78) when strict inequality holds, assuming that (92) is violated.

Given the above discussion, we now assume (92) does not hold, and hence, neither
does (83). Thus, from (78),

(96) m+a>n+f.

Before proceeding, we remind the reader that the exact governing equations (25) and
(26) and boundary condition (27) have resulted in (60)—(63). Consider first (62),
for which the inequality (96) implies that the first term on the right dominates,
resulting in

(97) 2G'N = 0.

We note that N # 0, as this would imply from (61) (see (99) below) that I is constant,
which violates (80). Thus (97) results in

(98) G(®) = Go # 0,

where Gy is an unknown constant with the latter restriction following from (44).
We next consider (61). The inequality (96) further indicates that the first term on
the right in (61) also dominates. Since 8 must be chosen so that (82) holds, (61) gives

(99) I' =2BGN sin ®,

which along with (98) implies that
(100) I =28G, / N sin ®d® + I,

where I is an unknown constant and the expression N indicates that the arguments
of N are to be evaluated at G, given by (98), and F, which is yet to be determined.
Assuming that the integrand in (100) can be integrated, we express I in the form

(101) I =28Gy¥ (D) + Ip.
Imposing the boundary condition (80);, we have
(102) Io = —26Go¥(0"),
while (80)2 determines

1
Amf (¥ (3) - 2(01))

(103) Go =
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We remark that by virtue of (44), Go > 0. Thus [ is given in terms of ¥(®) =
J N(®)sin ®d® as

(W(P) —¥(0"))

(o4 = o (W (5) - w(0H)

Thus G and I of hypothesis H3 are completely determined in terms of .

What now remains is to determine F'(®) and to consider (60) and the boundary
condition (63). We first note that the second term of (60) cannot dominate the other
two, as this would imply that P = 0 and thus W would not depend on C, which is
unacceptable. Similarly, the third term of (60) cannot dominate the other two, as
this would imply that M = Sin%, K # 0 constant, while (63) would in turn require
Mlg==z = 0, which is contradictory. Thus five remaining possibilities exist for (60),
corresponding to all three terms balancing, pairs of terms balancing, and the first
term dominating. However, our representation of the strain-energy density function
in terms of A, B, C or I, I, I3 is also advantageous to rule out two of these five
possibilities. In view of (18)—(20), we have

Wy =W+ CWs,
Wi = 2B(Wy + CWs),
We = Wy + AW, + B2Ws,

where the usual notation W; = %—IW is employed. Since W; — &7, Wy — £,

W3 — €% for some v, 7,8, the above along with (66), (68), (69)(71), and (75)—(77)
can be used to determine that the £"T¢ term in (60) cannot dominate alone, nor can
the €7t and £™*# terms balance and dominate the remaining term.! Thus the only
remaining cases are the following: the £"7* and £PT° terms balance and dominate
the remaining term (case I), all three terms of (60) balance (case II), and the &P+
and ¢™*# terms balance and dominate the remaining term (case IIT).

Consider first case I. Then the asymptotic form of (60) yields the following ordi-
nary differential equation for F':

5 (1-p8)(3—B)sin®FN + (sin®F'N)' — csc®FP = 0.

(105) .

In addition, the boundary condition (63) for this case becomes
(106) N|¢:g =0.

Thus, for a given material model, (105) and (106) provide a first-order ordinary dif-
ferential equation and boundary condition to determine the final unknown F' in the
asymptotic solution of this problem. In case II, the asymptotic form of (60) im-
plies that

(107) g(l —B)(3—B)sin®FN + 2(sin ®F'N)' — 2csc ®FP + fGo(sin®M) =0

IWe note that if W = W (I3) only, then W4 = 0. Reanalysis of (26); immediately results in
I(®) = constant, which violates (80), and thus compressible materials of this form cannot support
a tensile point load. As a related matter, this paper will not consider special compressible materials
of the form W = W (I1) only.
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while the boundary condition (63) gives

(108) 2F (g) Nlo=z + GoM|g—z = 0.
Finally, case III gives

(109) —2csc ®F P + BGo(sin®M) =0

along with the boundary condition

(110) M|¢:% =0.

We remark that the superposed bars on M, N, P denote that these are to be evaluated
at G given by (103). Note that M, N, P also depend on the unknown F(®) and its
derivative. In addition, in each of the above three cases, F' must satisfy (43)2 3 and
(67), and thus we collect below the additional conditions, which require

(111) F(0)=0, F(®) >0, and F'(®) >0 for 0 < ® < Z, FF'csc® bounded.

27

On using (66), (82), and (96), we note that

1 5 1
(112) m+a>n+ﬂ@m>§5—§@m>—§n—3,

and thus the three cases above correspond to

1 5
I m>§—§6 and p=—-F-1,
1 5
(113) II: miifiﬂ and p=-—-0-1,
1 5 1
11 —B—=,=—= = —(B—1).
e (3315wt pmme 3

Alternatively, in view of (82), we may write the above equivalently as

5
I m>§n+3 and p=n,
5
(114) 1I: m:§n+3 and p=n,

1 5 3
III: m€<—2n—3,2n+3> and p—m—ﬁn—?).

We recall that it was shown earlier (see the discussion and analysis containing
(83)-(94)) that a material for which m < 18 — 2 or, equivalently, m < —in —3
cannot support a tensile point load. When m = %ﬂ — % = f%n — 3, the material
must be such that p = 26 — 4 = —2(n + 3) to sustain the point load. We present
below tables summarizing the main tests to determine whether a material can sustain
a tensile point load (Table 1) and the remaining differential equation(s) and boundary
condition(s) to solve for the complete asymptotic solution when the point load can be
supported (Tables 2 and 3). We remind the reader that n, m, and p are determined
from a given material model W via (74)—(76), respectively, and that g is determined

from (82), i.e., n+ 8+ 1 =0, which always applies.
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TABLE 1
Asymptotic tests for the ability of a compressible material to support a tensile point load.

Material ma; Material cannot
+ 1=0 Y . :
() + B+ sustain a point load sustain a point load
8 €(0,1) ¢ (0,1)
m > }-3=dn-8 | <lp-§-—fn-s3
m=18-53=—1n_3 p=23—-4 p#28—4
= —2(n + 3) (Case IV) =—-2(n+3)
me(36-35.5- 3P p=m+3(B-1) p#m+3(8-1)
_(_1 5 _ 3 _ 3
=(—5n—3,3n+3) =m — 5n — 3 (Case III) =m-—5n—3
m=g—36=3n+3 p=—B—1=n (CaseII) p#-B-1=n
m>%—%ﬂ:gn+3 p=—F—1=n (Casel) pAt—B—-1=n
TABLE 2
Asymptotic equations when a material may support a point load.
Case m D Unknown(s) ODE(s) BC(s)
I >1-353 =-p-1 F(®) (105) (106)
no|=1-3g - 41 F(®) (107) (108)
I | e(3p-2,1-33 | =m+3(B-1) F(®) (109) (110)
v | =18-3 =284 F(®), G(®), (93), (85), (43)2, (44)2,
1(P) (84) (80), (91)2
TABLE 3
Asymptotic equations when a material may support a point load.
Case m D Unknown(s) ODE(s) BC(s)
I >35n+3 =n F(®) (105) (106)
I | =3n+3 =n F(®) (107) (108)
I | €(-4in—3,3n+3) | =m—3n-3 F(®) (109) (110)
Y — omis) | F®), G@), | (93), (85), | (43)s, (4412,
1(®) (84) (80), (91)2

Table 1 should be interpreted as presenting sequential tests on the material to
determine whether it may sustain a tensile point load. Thus, in testing a particular
material, one must first ensure that 3 € (0,1), then determine if m > %5—3 = —%n—
3, and based on this result, continue with the appropriate test(s) for cases I-IV. If a
material is not excluded somewhere along this process, then the material can support
the point load provided that the remaining ordinary differential equation(s), boundary
condition(s), and restrictions following Tables 2 and 3 can be satisfied. Tables 2 and 3
summarize the remaining differential equation(s) and boundary condition(s) when
the material modeled by W may sustain a point load. Categories in Table 2 present
the results when comparing m, p with 3, while Table 3 presents the results when
comparing m, p, and n.

For cases I-1II, G and I are given by (103)—(104). In addition, we have the addi-
tional conditions in (111) for cases I-1I1, while for case IV, (43)3 and (67) must hold.
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5.2. Asymptotic tests: Applications. The asymptotic tests derived above
can easily be applied to particular constitutive models in order to test a material’s
ability to support a finite deflection under a tensile point load. Below we present
the results obtained from invoking our tests. The remainder of this subsection is
divided into two sections according to hyperelastic materials that (i) cannot sustain
the point load and (ii) may sustain the point load. The materials tested encompass
many well-known compressible material models proposed in the literature.

5.2.1. Materials that cannot support a tensile point load: Examples.
(a) Special Hadamard materials of the form

(115) W =ci1(I1 —3)+ H(I3), ¢ >0 constant,

with H(1) = 0 and ¢; + H'(1) = 0 for vanishing stored-energy and stress, respectively,
in the undeformed state: On substituting from (18) and (20) we can see directly
that W4 = ¢1, and thus by (75), n = 0 for materials of the form (115). However,
from Table 1, (82) (n + @+ 1 = 0) implies that 5 = —1 ¢ (0,1), and thus we can
immediately conclude that compressible materials of the form (115) cannot support
a finite deflection under a tensile point load. A variety of strain-energy functions
proposed in the literature, including models of Blatz, Ogden, and Christensen (see
[10] and references cited therein), have the form (115).
(b) The generalized Blatz—Ko material [11]:

p L 1= =5
=-flhL-1—- I3
2f<1 1/+ v 3

I 1 1-2v v
116 Fo— 2 _4_2 [
(116) + 5 f><13 R ——

1
with p > 0, 0<V<§, 0<f<I.
On substituting from

(18)—(20), differentiating, and employing (70), we have
(117) Wa =5l + (1= DB — Glf + (1= DB

Considering (75), f = 1 implies n = 0, which was ruled out in (a) above, while f =0
implies that n = 1 — 8, which clearly violates (82). Finally, since by (68) we have
0 < B < 1, the remaining case 0 < f < 1 implies again that n = 0. Thus the
generalized Blatz—Ko material cannot support a finite deflection under a tensile point
load for any range of its parameters. We note that for the special Blatz—Ko material
(f =0, v=1) given by

(118) w==Ct (? Vorp —5> >0,
3
this result was obtained by a different argument in [3]. Here it follows immediately
as a consequence of the above asymptotic tests. As another example, we note that
the polynomial material proposed by Levinson and Burgess (see [10, reference [24]])
also contains parameters p, v, f and has Wy given exactly as in (117). Thus for
the polynomial material, we obtain the same conclusion as that for the generalized
Blatz—Ko material, regardless of the choice of material parameters.
(c) Generalized Hadamard materials:

(119) W = Hi(I3)(I1 — 3) + Ha(I3) (12 — 3) + Hs(I3),
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with H3(1) =0, H1(1)+2H>(1)+ H4(1) = 0, and Hy(1)+ H2(1) > 0. Using (18)—(20)
and (69)—(71), it follows that

(120) Wa = Hy(B%C) + Hy(B>C)C — Hy(B*C) + Hy(B?C)¢=9¢.
From (68) and (75) it is follows immediately that n = 0 if Hy(I3) Z 0, whilen =1—7
it Hi(Is) = 0, Hy(I3) # 0, and thus as before, we see that generalized Hadamard

materials cannot support a tensile point load.
(d) A model proposed by Gao (see [8]):2

k
I )

(121) W=a (1) — 3k +b(Is — 1)1 a,k>0, b,j,q>0.
I3

The material (121) is used by Gao and Liu [8] in an asymptotic analysis of a rubber
cone under a concentrated tensile force. On substituting from (18) and (20) into (121)

and differentiating, we obtain
A c\*
(B20)5 <B>

while employing (69)—(71) and factoring results in

k—1
ak

(BC)}

(122) Wy =

k A
123 Wa — £2(B=1(k=1) 7a7 4 1 k—1
( ) A 5 (BZC’)% (BQC)% [ +77] ;
where
L (C\F (B2O)}
124 =¢30=0) (= .
(124 =0 (3) 5

Thus, in view of (68) and expanding (123) in powers of 1, we obtain that, as £ — 07,
the asymptotic form (75) for W, yields

akAF-1
(125) n=2(8-1)(k-1), N:W7

where A, B, C are given by (72)—(74), respectively. Solving (82) determines

2% _
k=3 and so 0<B<1<:>k>§.

(126) P= %1 2

Thus proceeding with Table 1, we must now determine m (see (76)) and test for
m > %5 — % or, equivalently, m > —%n — 3. Calculating Wpg, factoring, expanding,
and taking the dominant term imply that for the material (121) we have (76) with

_(B-D(Ek—1) 24N
(127) m= - M=

2We note that the variable K is used in place of I3 for the material model in [8]; however, K is
readily seen to be equivalent to the I3 in this paper by application of the Cayley—Hamilton theorem.
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where (3, k, N are as above. It is simple to check that m = é;—f’f = —35 — 3, which
then determines that the remaining conditions are those of case IV. Thus we must
next determine p (see (77)) and test for p = 23 — 4 or, equivalently, p = —2(n + 3).
In a similar manner, we consider W and determine that the material (121) implies

that (77) is such that

AN
(128) p=(B-DEk+1), P=-2N
3C
from which it then follows that p = —2 (gzi) = —2(n+3), and so case IV is satisfied.

Thus, turning to Tables 2 and 3, we must be able to satisfy the system of ordinary
differential equations and boundary conditions imposed for this material, as well as
the additional conditions (43)s and (67). However, one can deduce that this is not
possible by examining the boundary condition (91)s (traction-free condition on the
surface of the half-space), which from (125)s and (127)2 becomes

_ —2akA*
3B(B2C)% |, _

(129) Moz

jusy
2

In view of (43)s, (44)2, (67), (72)—(74), and (121)s, the traction-free boundary condi-
tion (129) is satisfied only if B — +o00 as ® — 5; however, (67) and continuity of
F would then imply that F'(3) = 0, which violates (43)3. Thus, under the hypotheses
of this paper, a half-space consisting of the material (121) cannot support a finite
deflection under a tensile point load and maintain a traction-free boundary.

(e) A model for biological tissue (see [10, 16] and references cited therein):
W= g[f(%)@k(h*h)(fl = 3) + g(Iz)e M (L, — 3) 4 h(Iy)],

where v > 0,k # 0 are constants, h(1) =0, f(1)+2¢(1)+Ah'(1) =0, and f(1)+g(1) >
0. As was the case in [1] for the incompressible biological material model of Fung, W
and its partial derivatives go to infinity faster than £ raised to any power, and thus W
is not integrable, which from (42) violates our second hypothesis H2 (displacements
must be bounded everywhere). Thus the biological tissue model given above cannot
support a tensile point load.

We remark that, as we shall continue to see in the remainder of this subsection,
a great utility of the present treatment is the ability to test large classes of materials
and quite simply determine whether they may be capable of sustaining the point load.
As demonstrated above, many of the well-known models for compressible hyperelastic
materials are not able to support a finite deflection under a tensile point load. This
seems to be consistent with the results of [1] in the sense that, in [1], it was noted
that incompressible hyperelastic materials were able to sustain the point load only
when they were sufficiently stiff, and thus it is not surprising that many compressible
materials fail to do so. To consider the variety of materials treated in this paper (or,
similarly, in [1]) within the contexts of the analyses of [3] or [8] would require com-
plete rederivations of the asymptotic forms of the governing equations and subsequent
reanalysis for each material model.

5.2.2. Materials that may support a tensile point load: Examples.
(a) An Antman [12] material:

(130)

M1 I 2 B B
W=k (2) + ko (é) kI 4 kgl + ks(IT — 21) + keIo + krIs,
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where the k;, 11;, and v are all constants satisfying the usual conditions for normal-
ization and physically reasonable response (which we omit for our purposes here).
The material (130) is used in [12] to study a class of boundary-value problems for
nonlinearly elastic deformations, and it is also attractive for the problem considered
in this paper. At this time, we shall not make an exhaustive study of the material
(130) for our tensile point load problem, as the potential cases are too numerous for
our purposes here, and instead determine the varied possibilities for the exponents n,
m, p of (75)—(77). On substituting from (18)—-(20), we represent (130) in the form

Wen (A s ) i (A L H2+l-c(BQC)"‘3+k(A+C)%
(131) SR \B2C " B? ’ !
+ k5(A? — B? 4+ C?) + k¢(AC + B?) + k;B%C.

On computing W4, substituting from (69)—(71), factoring, and expanding, we
obtain the asymptotic form

(132)

klﬂl A 1 p1—l _ _ kguz A p2—1 _ _
W L 2z B-1)(m—2) | Rtz [ A 2(6-1)(u2—1)
AT TR < + ) ¢ t 5o \pe) ¢

B2 C
1 _ _
+ §k4yATZg<ﬁ*1><”*2> + 2k5 A2 4 e CE 0

In view of (68), the final term in (132) can never be dominant and so the asymptotic
form of (132) depends on which of the four remaining terms balance and/or dominate
the others. There are 15 such possibilities, corresponding to the various cases within
each of the four categories below:

(133)
(n1): ”:2(5—1)j5=%, v<4, <4, and py <2
(na): nz(ﬁ—l)(y—Q)ﬁﬂzzi:?, v >4, w1 < v, and po < %,
(na3): n=28-1)(p2—1)= = ;Zj : ?7 v <2p, p1<2p2, and pg > 2,
() n=(-Dn-2=>F=0 v p>a ad <

In each equation of (133), we have 8 € (0,1), while N will vary depending on the
case (n1)—(n4) and the particular combinations of restrictions placed on v, pi, and
2. Next, to determine m, we calculate the asymptotic form of W, which yields

_ p1—1
Wy 2w < AL 1> ' -1 -1)

B \B2 C
(134) B ?kzm é: Hzg%(ﬁ—l)(@tg—l)
B2u2t+1l \ C

+ 2(kg — 2ks) B2

The asymptotic form of (134) depends on which of its three terms balance and/or
dominate the others, creating seven such possibilities corresponding to the follow-
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ing cases:
1 1
(my): m = 5(67 1), py <1, and o < 3
1 1
(135) (m2):  m= 5(5 —1)(4p2 — 1), w1 <2pz, and pp > 2
1 M1
(m3): m= 5(6— D2u —1), w1 >1, and po < e

Again, M will vary with each of the cases (mi)—(ms) and the particular combinations
of restrictions placed on u; and ps. Finally, to determine p, the asymptotic form of

We results in
RN
A 2€<5—1>(2u2+1>
B2C

We — _kil’ul i + i ' 5(5—1)(H1+1) _ @
(136) C? B2 C C

" %kwg%zf(ﬂ—l)(u—@ + kg Ae205D),

and thus we have four possibilities for p corresponding to the 15 combinations of the
parameters v, pui, and po (and thus P) given below:

(137)

IN

(p]-): p= 2(ﬁ - 1)7 v < 47 H1 < L, and H2

(p2): p=(B-1r-2), v>4, p <v—=3, and pz <

1
(ps): p=(B-1Cu2+1), v<2u2+3, <2, and pz>c,

(pa): p=B-D(+1), v<m+3, m>1, and  pg <

Thus the material (130) offers an array of possibilities for study of the asymptotic
equations associated with this problem, which, as mentioned above, we shall explore
elsewhere.

(b) A recent model due to Gao [13]:3

I\ F
(138) W=a (If + (;) ) , a,k >0 constants.
3

Gao [13] studies the asymptotic large deformation elastostatic field near a crack tip
for a compressible hyperelastic material described by (138). For the material (138),
the asymptotic form (75) for Wy is such that

(139) n=2(83-1)(k-1), N = akA* 1,

where A is given by (72). Solving (82) determines

2k —3 3
(140) B=2""00 andso 0<fB<lak> s,

2k —1 2

3We remark that this material does not satisfy the usual normalization condition of zero strain-
energy in the undeformed state (W (3,3,1) = 0). A simple remedy would be, e.g., to include a term
of the form —2a3* in (138) or replace I1, Iz with I; — 3, Iz — 3, respectively.
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Thus, for the point load to be supported, we must have k& > % in (138). In continuing
with the asymptotic tests, one finds that when % < k < 3, the corresponding m and p
satisfy case III; when k = 3, m and p satisfy case II; and when k > 3, m and p satisfy
case I. However, upon further examination, one finds that the boundary conditions
(106) and (110) consistent with cases I and III, respectively, cannot be satisfied for
the associated N and M in these cases. Thus, under the hypotheses of this paper, a
half-space consisting of the material (138) with % < k < 3 or k > 3 cannot support
a finite deflection under a tensile point load and maintain a traction-free boundary.
The boundary condition (108) for the case k = 3, however, is not incompatible with
the associated N and M. In this case, it can be seen that

3 8 6
(141) k—3:>5—g, m=—1, n=p=-g, a=g
and that
(142) N =3aA? J\Z/——6£ £+l : P—3q|a2_ L A_Jrl i
coeds METME\ETe) 0 T c2\p2"¢c) |

where
(143) A = (BGo)? = (12ma)~5,
(144) B = BG,F'(®) = (12ra) 5 F'(®),

- F*(®)
145 C=
(145) sin? ®
and

5 _1
(146) G((I))EG0=§(127TG) 5,
1

14 I(®) = — (1 — cos ®).
(147) (@) = 5-(1—cos®)

The remaining equations and conditions that must be satisfied are the ordinary dif-
ferential equation (107), which in this case results in the nonlinear second-order dif-
ferential equation for F'(®) given by

25 sin ¢

25 [ 22 - (e ) }

the traction-free boundary condition (108), which implies that

(127a)"? {Q(Sinbe')’ + %sin@F _ 2 }

(148)

(149) (12ma)~% [F' (g)r = 1 + 1

F0)=0, F(®) >0, and F'(®)>0 for0<® <%, FF csc® bounded.
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(¢) A Jiang-Ogden [14] material:
(151) W = f(I1)hi1(I3) + ha(I3),

where f(3)h1(1) +hao(1) =0, f'(3)h1(1) + f(3)R1(1) + h5(1) = 0, and f'(3)h1(1) > 0.
Jiang and Ogden [14] consider materials of the form (151) in their study of azimuthal
shear of circular cylindrical tubes, where the function f(I;) has the form f(I;) =
c1(l —1)7 with j > 1. Here we shall similarly treat materials of the form (151) with
f(I;) = e1(Iy — 1)%, k > 0 constant. Thus we consider

(152) W =ci (I — 1)Fhy(I3) + ho(I3), k>0,

for which the asymptotic tests developed earlier determine the following:
(153) n=2(6-1)(k—-1), N=ckA* 1 hi(B%C),

where A, B, C are given by (72)—(74), respectively. Solving (82) determines

2k-—3
T2k —1’

3
(154) I6] and so O<ﬁ<1<:>k;>§,
and via (66), a = % We note that [14] treats four special cases of (152) with k = 1,
1, %, %, and thus by (154),, none of these special cases can support a tensile point
load. Continuing with k > %, it can be seen that

B-1)4k—-1) 1. 5

(155) m=——————=3f-5, M= 2¢, A* BCh} (B*C)
and
(156) p=@B-1)2k+1)=23—-4, P=c,A*B?n}(B*0),

and thus case IV is satisfied. By Tables 2 and 3, we must then satisfy the system
of ordinary differential equations and boundary conditions imposed for this material,
as well as the additional conditions (43)3 and (67). We note here that the material
(121) is a special case of (151), and we recall from section 5.2.1(d) that the traction-
free boundary condition (91)2 (M|s=z = 0) could not be satisfied for (121). Noting
(155)2 and the fact that A, B, and C are all strictly positive at ® = 7, (91)2 can then
be seen as a condition on the form of the function hi(l3) such that a traction-free
boundary is possible. As an example, note that Is = B>C' = B2C and that

(157) I3|q>:% =cC

for some ¢ > 0 constant. Suppose now that

(158) hy(I3) = %13 {m (i”) - 1] :
and so
(159) W (I3) = éln (Ij) ,

which, in turn, implies via (157) that
- B
(160) hi(B*C)la=z =0,
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and thus the traction-free boundary condition (91)s is identically satisfied for the
material (152) with hq(I3) given by (158), where ¢ is as in (157). With this choice for
hi(I3) and N, M, P, 3, and « given above, the remaining equations to be satisfied
are (93), (85), and (84), along with boundary conditions (43)a, (44)2, and (80), with
the additional conditions (43)s and (67).

(d) A Beatty—Jiang-type material [15]:

(161)
W = Hi(I3)(I1 — 3) + Ha(I3) (I — 3) + H(I3)
+e3(l = 3)2 4 ca(la — 3)* + es(I — 3)(Iy — 3) + c6(I1 — 3)3
4 c7(Iy — 3) + cg(I1 — 3)(Is — 3)% + co(I — 3)*(Iy — 3) + c10(I1 — 3)(Iy — 3)3,

where the ¢; are all constants. Beatty and Jiang [15] consider the material (161) with
c10 = 0 in their study of azimuthal shear of nonlinearly elastic compressible solids.
When ¢1¢ = 0, the material (161) satisfies the conditions on n, 3, m, and p for case III;
however, again we find that the associated traction-free boundary condition (110)
cannot be satisfied. Thus we augment the material considered in [15] by including
the ¢y term so that (110) might be satisfied. Following the considerations of [15], we
require H3(1) =0, Hy(1) + 2H2(1) + H5(1) =0, H1(1) + Ha(1) > 0, ¢34+ ¢4+ ¢5 > 0,
and cg + ¢7 + cg + cg + c19 > 0 for physically reasonable material response. Proceeding
with our analysis, we find that

(162) n=4(8-1), N = 3¢ A?,
while solving (82) determines
(163) ﬂzgﬁn:fg and a:g.
In addition, one can determine that
9 9 o o
(164) m = 5(5—1) =5 M = 2AB[cgA + 3¢19(AC + B?)?,
where we recall that A, B, C are given by (72)-(74), respectively, and
12 3
p=6B-1)=—F =m+3(8-1),

(165) I
P = 1212[69121 + 3010(1‘10 + 32)2] = EM

Thus case III is satisfied, and it then follows that
5
(166) G(®) =Gy = 5(127rc6)—%,
1
(167) I(®) = —(1 — cos D).
27

Further, from Tables 2 and 3, F(®) must then satisfy the conditions in (111) as well
as the ordinary differential equation (109) and traction-free boundary condition (110),
which for the material (161) become

F? 2\’
C9 +3610ﬁ203 ( 5 + F’ >
sin® ®

sin ®
(168)

F? ?
+ {sin q)Fl Ccg + 3C]_Oﬁ2G(2) (2 + F/2>
sin” ¢
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and
71' 2 (T\]2 C9
169 7 G) Q)] = e
( ) 2 + 2 3Cloﬂ2Gg

respectively, where by (163); and (166), 3°G3 = (127rcs)_%. To conclude this paper,
we consider the special case of (168), (169) when

F2
(170) —— + F?=¢ ¢ # 0 constant,
sin® ¢
and
(171) co = —3c108°Gact.

Since (168), (169) follow automatically if (170), (171) hold, we will take ¢y in (161) to
be given by (171) and consider the first-order nonlinear ordinary differential equation
(170) subject to the conditions in (111), which we repeat here as

(172)
F(0)=0, F(®) >0, and F'(®)>0 for0<® <%, FF'csc® bounded.

While (170) is a significant simplification over (168) and appears deceptively simple,
we have not found (170) to be amenable to analysis for determining a closed-form
solution. Instead, we present in Figures 1 and 2 plots of the direction fields along
with the solutions of (170) satisfying (172);, as well as the remaining conditions in
(172), for representative values of the constant ¢ > 1. We remark that Figures 1 and 2
were generated for simplicity using Maple. The solutions plotted for various ¢ agree
with data obtained from computing a numerical solution implementing a fourth-order
Runge-Kutta backwards shooting method.

Thus with our numerical solution for F(®), the unknown functions and param-
eters from (43)—(45) are determined according to (163) for o and 8 and (166) and
(167) for G and I, respectively, where we recall § = 0 from (49). In addition, with
(170), (171), we have M = P = 0, and thus the asymptotic forms of the nonzero
stress components are as follows (where we note that Se, = 0, Sgp = 0):

12 _
(173) Sep — —%ENF@),
(174) Sg. — €2 NGy,
(175) Ser — E52NF' (D),

where by (162), (73), and (166), N = 3cg A% = 3c6(3Go)* is constant. The asymptotic
forms of the nonzero stress components, on using the more traditional cylindrical polar
coordinates and bases for both the undeformed and deformed configurations, are then
computed for this problem as

(176) Sgr — sin @S,
(177) Sgr; — sin @S,
(178) Szr — cos DS,
(179) Sz, — cos DS,

where Sg,, S¢, are given in (173)-(174) and £sin® = R, {cos® = Z, €2 = R? + Z2.
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FIG. 2. Plot of the direction field and solution of (170) when c? = 10.
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HYDRODYNAMIC CLEANSING OF PULMONARY ALVEOLI*

DAPHNE ZELIGT AND SHIMON HABER#

Abstract. The inside wall of the pulmonary alveolus is lined with a thin viscous fluid layer
and a monolayer of surfactants. Inhaled foreign particles that reach the lung alveoli are normally
neutralized by macrophages and remain inside the lung. Nevertheless, Podgorski and Gradon [Ann.
Occup. Hyg., 37 (1993), pp. 347-365] suggested that a hydrodynamic cleansing mechanism may exist
in which particles are swept out by the net fluid flow from the alveolar viscous layer to the adjacent
airways. Hawgood [The Lung: Scientific Foundations, 2nd ed., R. G. Crystal and J. B. West,
eds., Lippincott-Raven, Philadelphia, 1997, pp. 557-571] has also reported that surfactants exit the
alveoli during every breathing period. Based upon the foregoing observations, we examine a possible
mechanism of hydrodynamic cleansing and predict its effectiveness. Our central assumption is that
the amount of surfactant remains periodic during breathing and that a certain regulatory mechanism
exists that causes excess surfactant (reported by Hawgood) to leave the alveoli. Owing to the latter,
surfactant concentration gradients are induced inside the alveoli, which in turn generate fluid motion
(a Marangoni effect) and concomitant fluid discharge. Our analysis predicts that a typical value of
the outflow velocity is 107%[m/sec]; i.e., it takes a fluid particle almost two days to travel a distance
equal to an alveolar radius. It is also shown that the outflow velocity depends almost linearly on
the discharge rate of the surfactants. Hence, a small artificial addition of surfactants into the lung
may enhance alveolar cleansing, provided that a biological mechanism exists that maintains normal
surfactant concentration over the lining fluid layer.

Key words. lung alveoli, hydrodynamic cleansing, surfactants
AMS subject classifications. 76705, 92C35

PII. S0036139901386090

1. Introduction. Zeltner et al. [29] observed that a nonuniform pattern of par-
ticle deposition exists within the rodent lung. Specifically, the density of particles
deposited on the alveolar entrance rim is five times higher than that on septal alveolar
surfaces. Are hydrodynamic forces driving the particles from their initial deposition
locations toward the entrance rim? The fluid dynamical problem addressed in this
paper is motivated by the search for such a possible cleansing mechanism inside the
lung alveoli.

Environmental and occupational hazards resulting from aerosol inhalation have
been the subject of intensive research (see Harvey and Crystal [14]). An understanding
of aerosol kinetics may also prove to be a meaningful step towards improving diagnos-
tic and therapeutic methods [1], [5]. In humans, the respiratory airway system consists
of the nasal cavity, the throat, the voice box, the trachea, the two primary bronchi
that bifurcate from the trachea, the bronchi, and bronchiole that divide and subdivide,
becoming steadily smaller until there are about 20-23 generations of branching. From
the sixteenth generation, the airways become increasingly alveolated. The bronchi-
oles terminate with berry-shaped group of sacs and acinar ducts (the acinus). During
breathing, the alveoli and the alveolar ducts expand and contract in a way roughly
consistent with geometric similarity. Thus, all dimensions scale approximately as the
1/3 power of the lung volume (Gil and Weibel [8], Gil et al. [7]; Weibel [27]; Ardila,
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Horie, and Hildebrandt [2]). Tsuda, Henry, and Butler [25], Tsuda, Otani, and Butler
[26], and recently Haber et al. [12] considered the effect of alveolar expansion and
contraction on the fluid flow inside the alveoli. In [25] and [26], the authors assumed
that the pulmonary acinus could be viewed as a self-similar expanding axisymmetric
thoroughfare surrounded by a toroidal sac, a configuration that simplified the numeri-
cal calculations. In [12], the alveolus was geometrically approximated by a self-similar
expanding spherical cap attached at its rim to the alveolar duct (see also Gil et al.
[7]), a geometry that is likely to represent a more faithful portrayal of the acinus.

Little attention has been paid in the past to the effect of alveolar expansion
and contraction, since in the case of gas exchange the Peclet number controlling the
transport of the gas molecules is much smaller than unity. Thus, convection due to the
acinar flow is negligibly small when compared with the diffusive transport. (It takes
only a few milliseconds for a gas molecule to reach the alveolar wall from its entrance
ring.) However, in the case of aerosol transport, the Peclet number is much larger,
and particle convection and diffusion may play a comparable role. Under normal
conditions, particles 0.5 to 4 ym in diameter may often reach the acinus and pose the
greatest hazard to human health (see, e.g., Dockery et al. [6]).

Particles that enter the respiratory system and are deposited over the airway walls
are mechanically removed by the rhythmical motion of cilia (Sleigh, Blake, and Liron
[20]). Particles are forced upwards along the bronchiolar tree and are finally removed
from the respiratory system by forced convection of air (coughing). Nonetheless, a
similar cleansing mechanism does not exist within the acinus. Generally, particles that
reach the alveoli are neutralized by macrophages [4] and remain deposited inside the
acinus. Indeed, several experimental studies (e.g., Zeltner et al. [29], Heyder et al. [16],
Schultz et al. [24]) have investigated such aerosol mixing and deposition. However,
Gradon and Podgorski [11] proposed that a purely hydrodynamic effect may assist
in cleansing the alveoli. They suggested that gradients in surfactant concentrations
induce the thin fluid lining that covers the inner alveolar wall to flow slowly outside
the alveolus rim. Thus, particles deposited on the alveolar wall are carried with the
fluid toward the entrance rim. They predicted a characteristic clearance time of about
one hour.

Scarpelli [23] described the main stages of the surfactant’s transition between
the air-fluid interface and the fluid body as follows: During expiration, the alveolus
contracts and the distance between the surfactant molecules decreases; in other words,
their concentration increases and consequently the surface tension diminishes. When
the alveolar radius reaches a threshold value, some of the molecules of the surfactant
leave the interface and penetrate the fluid. During inspiration, the alveolus expands,
the concentration of the surfactant decreases, and concomitantly, the surface tension
increases. In addition, surfactants return to the interface from the bulk of the fluid
by diffusion. More detailed models for surfactant transition can be found in [9], [10].

In [15], the metabolism of surfactants is explained, and the secretion rate is evalu-
ated. There is clear evidence for the existence of a regulatory mechanism for surfactant
production and clearance rates that keeps it from excessive accumulation or dilution
[15]. Surfactants are created in Type II cells, which form part of the alveolus wall.
After diffusing to the interface, most of them (about 80%) return to these cells and
are then recycled for additional use. About 10-20% are consumed by macrophages,
which lie at the alveolar wall, and the remaining few percent exit the alveolus.

In this article the alveolar hydrodynamic clearance mechanism is analyzed. We
adopt the spherical model that has been extensively used in the past (e.g., Podgorski
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and Gradon [22] and Haber et al. [12]) to describe the alveolus configuration. We
also use measured experimental data for alveoli expansion/contraction rates and the
known measured correlation between surfactant concentration and surface tension.
We focus on the dynamical behavior of the surfactants, the main mechanism that
controls the lining fluid flow, and assume that no surfactants are accumulated or
depleted inside the alveolus during a breathing cycle. The boundary condition at
the alveolar rim is based upon the known experimental value of the small amount
of surfactant exiting the alveolus per breathing cycle. An open and valid question
is what the specific mechanism that causes surfactant to exit the alveolus might be.
One might assume, for instance, that airflow in the adjacent airway contributes to
the sweeping effect, and reformulate the boundary conditions accordingly. Another
possibility is that there is a biological mechanism that discharges excess surfactant
from inside the alveolus. We try to avoid such ad hoc assumptions and focus on
a cleansing mechanism that is based upon known and validated experimental data.
The solution methodology is based on the assumption that, had no fluid been driven
through the alveolus opening, surfactant concentration would have been uniform and
the lining fluid would have expanded and contracted in a radially symmetric manner
to conserve fluid mass. Thus, scaling of the cleansing mechanism is based upon the
amount of surfactant leaving the alveolus, a markedly different approach from that
used by Podgorski and Gradon [22], who relate the continuity of the fluid and the
surfactant layers at the alveolar rim. A source term is also added to the surfactant
mass conservation equation to account for surfactants entering or leaving the interface
from the bulk fluid, and this facilitates the condition that no mass accumulation or
depletion of surfactants per cycle occurs. As a result, the whole set of equations and
the solution differ markedly from that obtained by Podgorski and Gradon [22].

In section 2, we define the geometrical, kinematical, and physiological parameters
that scale the variables of the problem. In section 3, we obtain the resulting gov-
erning equations, boundary conditions, and parameters that control the problem. In
section 4, we present the asymptotic expansion of the flow variables in terms of two
smallness parameters and obtain the equations and boundary conditions that govern
the zero and first order approximations. In section 5.1, we present the analytic solu-
tion of the zero order approximation, and in section 5.2, a finite element analysis is
utilized to obtain a solution for the first order approximation. In section 6, we discuss
our results, and we present our concluding remarks in section 7.

2. The alveolus model: Configuration and typical parameters. Assume
that the alveolus can be approximated by a hollow spherical cap of radius R(¢) at-
tached at its rim to the alveolar duct (see Figure 1). Typical alveolar mean radius
ranges between 40 and 200um. The alveolus is rhythmically expanding and contract-
ing with a breathing rate of 12-14 breaths per minute for adults and about 33 breaths
per minute for infants. The expansion amplitude is about 0.1 alveolar radius. The
dependence of R on time is based on experimental data described in Podgorski and
Gradon [22] and approximated here by a natural cubic spline interpolation to achieve
continuity of its time derivatives (see Figure 2(a)).

A spherical coordinate system (r,0,¢) is located at the center of the spherical
cap, where r stands for the radial coordinate and 6 and ¢ denote the latitude and
azimuthal angles, respectively.

The alveolus rim location is defined by the half-cone angle 6,. (Henceforth, we
assume that 0, = 60° and that the subscript “b” denotes evaluation at the rim.) The
inside wall of the alveolus is lined with a thin fluid layer of thickness h(f, ¢,t). The
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Fic. 1. A schematic description of the alveolus.

fluid layer is lined with a single layer of surfactant that lies at the fluid-air interface.
During expansion, additional surfactants are produced at the alveolus wall and
diffuse through the fluid bulk into the fluid-air interface. Most of these retract to the
fluid layer when the alveolus contracts. A residual part is cleared through the alveolar
rim at § = 6. Thus, a useful partition of the total rate of surfactant production F'(¢)
is
(A Fy(t) 4+ AeeFec(t))

where T stands for the breathing period and 7 is the time-averaged amount of sur-
factants found in the alveolus. (Henceforth, the overhead-bar sign denotes either an
average or a typical value.) The first term mA,F,(¢)/T is the rate of production of
surfactants that are cleared from the alveolus rim at § = 6. The prefactor m\,/T
is used to scale the production rate so that the time dependent function Fj(t) is of
order unity.

The second term A..mF..(t)/T is a periodic function with zero mean that stands
for the rate of transit of surfactant between the fluid bulk and the air-fluid inter-
face during the expansion and contraction process. The prefactor A..m/T scales its
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amplitude.

Hawgood [15] provided experimental data pertaining to the total amount of sur-
factant cleared from the rim during a breathing cycle. However, there is practically
no data on how the production rate F(t) varies with time and location. With no such
prior knowledge, we believe that a leading order approximation can be obtained if we
assume that F'(t) is expanded in a time Fourier series with period T' and consider only
the first two leading terms with F,(¢) = 1 and F,.(t) = sin(2%t). This is equivalent to
assuming that surfactants are uniformly produced at the alveolus wall and that the
rate of excess surfactants leaving the rim is fixed and scales with g = mA,/T.

According to [15], the amount of surfactant secretion per hour is about 10-40%
of the total amount of the surfactant present at the alveolus. If we pick T" = 4 sec, the
amount of surfactant produced per breathing cycle is about 1.1- 10~%m to 4.4 - 10~ 4.
Hawgood [15] also reported that 1-10% of the secreted amount is cleared from the
alveolus. Thus, the range of Ay is 1-1075-4-1075, and that of Ao is 9-1075-3.9-107%.
Henceforth, we set Ay = 1-107° and A.. = 1.9-10~* as appropriate scaling values.

The surfactant surface concentration 7 scales with 5 = m/2m(R — h)2d, where

d =1+ cos(6) and thus g = 27r§2d/\b7/T. The velocity of the lining fluid and the
diffusion at the interface layer govern the surfactant flux through the rim. Thus, the
amount of surfactant leaving the alveolus per unit time is g = 27(R— h) sin(6p) (yug —
D%’}/)T:R_hﬁ:gb, where D = 1071%m? /sec is the surfactant surface diffusion coeffi-
cient (provided in [22]) and up is the tangential surface velocity. Hence, the surface
velocity scales with 1y = )\b% ~ 107Y m/sec since the flux due to diffusion is of a
lesser effect.

Table 1 furnishes a summary of all the additional physical parameters that are
employed in the analysis with mean numerical values taken from [10], [15], and [22].

3. Flow equations, boundary conditions, dimensionless parameters and
controlling variables. The differential equations that govern the flow of the lining
fluid layer are the following:

(a) The continuity equation for an incompressible fluid,

(1) V-u=0.

(b) The quasi-steady linear momentum equation (neglecting body forces and the
disjoint pressure),

(2) uViu = Vp.

Here, the local acceleration and convection terms have been neglected since
the Reynolds numbers, R.; = EQ/T”U =5x10719 Ry =tph/v =4 x 1071,
and Re, = |(@, — E)E/ v| = 1075, are much smaller than unity. The disjoint
pressure effect may be neglected since the time scale of an instability (Oron,
Davis, and Bankoff [18]) that may cause rupture of the thin lining layer is of

the order 96730 pva/A? = 100 sec (for a Hamaker constant A of the order of
1072 J and surface tension as low as @ = 1 dyne/cm), a much slower process
than the breathing cycle of 4 seconds. In addition, Wit, Gallez, and Christov
[28] concluded that the cutoff wave number is independent of the Marangoni
effect.

(¢) The mass conservation equation for the surfactant layer is (see Aris [3, p. 86]
for the Reynolds transport theorem in a two-dimensional curved space)
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TABLE 1
Geometrical and phenomenological properties.

Description Typical Value [units]
Lining fluid thickness h=5-10"8 [m]
Alveolar radius R=1.6-10"* [m]
Breathing period t =4 [sec]

MR
Lining fluid outflow velocity g = bT ~ 107 [m/sec]

Surface tension o=

-1072 [N/m]

2
Surfactant concentration at the fluid-air-interface | 7 = 3.3- 1076 [mol/m?]

Capillary pressure P=

~ 156 [N/m?]

Amount of surfactants in the lining fluid interface | m = 2rR dy ~ 5 - 10713d [mol]

-2

h
Ratio of lining fluid thickness to alveolar radius e= ﬁ ~3-107%
Ratio of amount of surfactant leaving the A\ = 10-5
alveolus during a breathing period to m b=
Ratio of amount of surfactant staying in the Aee = 1.9-10—4

lining fluid to m

Diffusion coefficient of the surfactants at the
fluid interface

D = 10710 [m?2 /sec]

—2

— R
Modified capillary number Cq = B— =0.0614
heoT
Alveolus fluid viscosity p=12-10"2 [Pa - sec|

d(n)
Y

2 F(t)
+us-Ve(m) n—n-(Vu) -n=DViy+ 27(R — h)2d’
where n is a unit vector perpendicular to the interface, Vs = (I — nn) - V is
the surface gradient, us; = (I — nn) - u is the surface velocity, and I is the
idem dyadic. The second term on the right-hand side of (3) is a source term
that accounts for the amount of surfactant entering the interface from the
fluid bulk.

The equation that governs the fluid layer interface location h(0,t) is

OF

i .VE =0

ot " v ’
where E =r — R(t) + h(0,t) = 0, n = VE/|VE]|, and the time derivative is
taken for r and 6 held fixed.

Assuming that the problem is axisymmetric, (1)—(4) constitute an appropriate
set of equations for the five unknown fields p, v and h, u,, and ug. The latter fields
are subject to the following boundary conditions:

(5a,b)

ug = O, r= R(t),
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ou,
(6a,b) 50 0, wug=0, 0=m,
(7) n-t7-t=t-Vo, r=R-—h,
(8) p—ps—n-T-n—0oV -n=0, r=R—h,
(9) % 0, f=m, r=R-—h,

. DY 0 mA
(10) 277 sin(6p) |:")/’U,9 - <r> 8g} = fTb, 0=6,, r=R-—h,

where o stands for the surface tension at the surfactant layer, T = u[Vu + (Vu)?] is
the viscous part of the stress tensor, and t stands for a unit vector tangential to the
interface.

Equation (5a) accounts for the unknown velocity of lining fluid U = A\, RU () /T
that is generated at the alveolus boundary and compensates for fluid leaving the
alveolus every period. We made here the reasonable assumptions that the production
rate scales with the amount of surfactants leaving the alveolus and that the fluid is
generated uniformly at the alveolus wall. Equation (5b) is a manifestation of the
no-slip condition imposed on the flow, (6a,b) and (9) result from the geometrical
symmetry of the alveolus, and (7) represents the jump condition in the tangential
component of the stress tensor due to surface tension gradients. Equation (8) considers
the jump condition in the normal component of the stress tensor stemming from
interface curvature, and (10) demonstrates that a given amount of surfactant leaves
the alveolus during every breathing period. (That excess amount is produced at the
alveolus wall and diffuses through the lining fluid toward the interface.)

To achieve closure of the problem, it seems that we need an additional boundary
condition at § = 6,. However, for very thin fluid layers, lubrication theory applies,
and such a condition is redundant. The initial conditions are

(11) h=h, y=7,

where h and 7 are constants and stand for the respective fluid layer thickness and
surfactant concentration evaluated at time ¢t = ¢ at which the alveolar radius R
assumes the value R.

It shall be demonstrated that a periodic solution is readily obtained for any phys-
ical values of h and 7. A specific set of initial conditions is required to initiate the
numerical scheme but is of no consequence in the final periodic solution. For the sake
of convenience, we shall assume that ¢t = 0.

Based upon experimental observations (Philips and Chapman [21]), a constitu-
tive equation o = o(7y) was suggested by Gradon and Podgorski [11], which correlates
surface tension to the concentration of DPPC (diacylphosphatidylcholine). The cor-
relation function (Figure 2(b)) includes two smooth regions and a dividing point (A)
at which the function is not differentiable. The latter fact results in an aphysical,
discontinuous velocity solution near the dividing point. To circumvent this difficulty,
we employ a smooth, natural, cubic spline interpolation function that matches well
with the Podgorski and Gradon [22] data outside A, predicts a slightly higher value
near A, and is differentiable everywhere (see Figure 2(b)).
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To render the differential equations and boundary conditions dimensionless, we
define the following dimensionless variables (denoted henceforth with a caret symbol):

_®-n) Lt oo . _ R(D)
=—", t=—, Vs = RV, R="—"-7,
y h T R
~ R—U)T . (o2 R UQT
12 _Bow _ _wT
() Uy 7 ) g 5’ Ug R7
N a E ~ 7 h
o 5 h

Substituting (12) into (1)—(11) yields an equivalent set of dimensionless equations
and boundary conditions, where the dimensionless unknowns depend on the indepen-
dent variables 7, 6, £ and parameters Ay, Aec, €, P., Cy, 0. Here e = h/R = 3 x 10™*
is the lining fluid depth ratio, P, = RQ /DT = 64 stands for the Peclet number, and
C, = pug/o = 4.8 x 10711 is the capillary number. Equations (1)—(4) are highly
nonlinear and couple the velocity field with surfactant concentration and the loca-
tion of the interface. In the next chapter, we employ an asymptotic expansion in
the two smallness parameters )y, €, which makes it possible to solve the problem
semianalytically.

4. The asymptotic formulation. A possible clue for a coherent asymptotic
representation of the unknown functions is that the cleansing mechanism results from
the generation of an excess amount of surfactant determined by A,, a parameter that
plays a paramount role in the solution. The value of ), is of the order of 10~°;
thus gradients in surface tension driving the flow are expected to be very small,
albeit not zero, resulting in a nonzero small tangential velocity. Had A\, vanished, the
lining fluid would have remained inside the alveolus at all times, covered the alveolus
wall uniformly, and grown thicker during exhalation and thinner during inhalation
to conserve mass. In this case, the unknown functions h, v, o, p, and u would have
been radially symmetric, i.e., depended upon ¢ but not upon 6. Consequently, the
following regular asymptotic expansions in Ay and ¢ are suggested:

(13b) ig = Mo[Ug(9,0,) + U5 (5,0,8) + - -]+ O(\2),

(13¢) ho=h () + ME0.8) + cHD(0,8) + -] + O(A2),
(13d) 5= (:6) + M0, 8) + LD (0,8) + -] + O(2),

(13¢) G =0 (He) + M[S0,1) +SDO,0) + -] + 0N,
(13f) P=D(i:2) + M[P(0, 1) +ePDG,D) + -]+ O(2).

Here, the naught symbol denotes the radially symmetric solution, and uppercase
symbols are used to denote asymptotic, first order fields in A,. Notice that the leading

0 . . . . . . . .
term up vanishes identically in expansion (13b); i.e., a tangential velocity component
stems solely from excess production of surfactant (see also section 3).
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Henceforth, we shall focus our attention on the first two terms in the foregoing
expansions and neglect the contribution of the third, order O(\ye), much smaller
term. Substituting (13) into the dimensionless form of (1)—(11) and collecting the zero
and first order terms in ), results in two respective sets of dimensionless differential
equations and boundary conditions.

4.1. The zero order approximation. For the zero order, radially symmetric
fields, the equations are as follows:
the continuity equation,

(14a) (% l(f% —e9)? (ZI; —€ &,)] =0,

the radial momentum equation,
1 P dR To\ 0P
wy L [2 (o)) (T2
(R—ep)? | 99 dt pR) 09

the mass conservation equation of surfactants,

0

ou
20 Uy
(R—¢9) 5

0 0
(14¢) 07 _§0uy) L\ (),
o8| hen

0
Oh o0
(149) =
Yy=h
The appropriate boundary conditions are
0 N
(158“) Uy=U, y=0,
0 2 0
(15b) p= 700 y=h.
(R—eh)

The initial conditions are replaced by the requirement that the solution be periodic.

Notice that the foregoing equations are not expanded with respect to ¢, since, as
shall be demonstrated in the next section, an exact solution of (14) is feasible for any
value of €.

4.2. The first order approximation. Substituting (13) into (1)-(10) and col-
lecting first order terms in )\, yields the following set of equations and boundary
conditions:
the continuity equation,

9 . 9 .
(16a) Ra—gUy + %Ug + cot()Up = 0,
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the momentum equation in the radial direction,

or
ay

(16b) 0,

the momentum equation in the tangential direction,

02U,

(16¢) R

:O’

the mass conservation equation of surfactants,

062

2L oppdt Uy 1

16d =
(16d) ot dt

oy P.

+ cot(@)] =1,

and the kinematic condition for interface location,

5'7H = [Uy]

16 . .
(16¢) ot g=h

Notice that time derivatives in (16d,e) are carried out for y and 6 held fixed.

appropriate boundary conditions are

205

The

(17a) U, =0, g =0,
(17b) U@ = Oa :l) == O,
(17¢) g—g =0, 0=m,
(17d) % ~0, o=,
(17e) Us =0, 0=m,
——10% LU, 1
17f e = i= —
( 7 ) Ca 60 R 8@ 0? y R27
A .1
(17g) P =0, b=z
. |o 4 1 or Oy
(17h) R ’YUe_ﬁ% —-COt(z), G—Gb,T—R—h,
where C, = £ B/ T% = 0.0614 is the modified capillary number whose inverse scales

the Marangoni effect. Notice that C,, is the governing capillary number that results
from the balance between the shear forces and the surface tension gradients at the
interface (17f). A velocity scale defined by R/T would be improper since it governs

the zero order radially symmetric fields.

In the next section, solutions for the zero and first order approximation fields are

addressed.
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5. The solution of the zero and first order perturbations.

5.1. The zero order, radially symmetric solution. The exact solutions for
the radially symmetric fields (14a-d) are!

i y o
(18a) &, =18 (1 - (R> _ —2%‘”? +0(e),

e di R—e)? di
(18b)  p= 2“(%)0
(R—eh)
(18) h= %[R (RBP4 (1— )3 = % +0(e),
(18d) 5= (1_53)22 (1 - ’;ﬂ cos |:27T (f ;)D = é + O(Aee) + O(e).

(R—¢h)

Notice that the radially symmetric pressure is uniform across the lining layer and that
for small values of ¢ the leading terms of the radially symmetric solutions are of order
unity.

5.2. The first order perturbation in Ap. The solution of (16a—e)—(17a-h) is
divided into two consecutive steps. First, an analytic expression is obtained for the
velocity Up, which is substituted into (16d). A numerical scheme is then employed,
in which a finite-element method is utilized along # and a finite difference predictor-
corrector method is employed along ¢ to solve the transformed equation (16d).

Integrating (17f) and (16¢) and employing boundary condition (17b) yields

(19a) Up = W(8,1)3.

From (16d), the unknown function W(6,%) can easily be determined in terms of 3
or I':

or

%.

4=1/R?

—1 A —1
. c 9y C. 05

1 174 = e = _ Za

(19D) (6.1) R 00 R 0¥

The latter equality stems from the known constitutive relation between surface tension
and surfactant concentration.

Introducing (16a) into (16d) and employing (19a) and (19b) yields the second
order partial differential equation in I,

a2ty [Tl o6 1| [o2r or
(20a) ~ 22— S| 1555 + cot(f)—| =1,
ot R4 09 e P, 00 o0
subject to the boundary conditions
ar
20b — = 0 =
(20Db) 20 0, m,

LAn easy route to obtaining the exact solutions is to consider the problem from a global point
of view in which the total fluid and surfactant mass during breathing is conserved.



HYDRODYNAMIC CLEANSING OF PULMONARY ALVEOLI 207

— 1 ~
c.' o6 1\ of 0, -
(20(3) <R48"§/ - E % = cot <2> s 0= eb,

4=1/R?

and the initial condition

(20d) r=o.

Notice that since 06/9% is invariably negative, (20a) possesses the form of a
diffusion equation with an effective time dependent diffusion coefficient that is always
positive.

To simplify the finite-element formulation of the problem, we rewrite (20a) and
(20c):

. or e [ 9 ar
(21b) g—g =G{t), 0=0,
where
A(t) = R?,
B(f) = 21%@,
dt
T 96 1
(21c) Ct) = = =
R4 0¥ 4=1/R? P,
—1 -1
R C. 0o 1 0y
G(t)=—< 2 - — cot().
R4 04 1B P, 2

The equation governing the deviation of the interface from its spherical shape H is

obtained from (16a,e) and (19a,b),
T or
) (892 + COt(Q)aG> .
1/R2

Little is known about the spatial distribution and the time evolution of U. A global
mass-conservation requires that the amount of fluid generated at the alveolus wall
equal the amount exiting the alveolus during a single breathing period. Consequently,

A ~ ——1 .
22) oH U C, 30’

ot R 2RS 04|

=

T h -5
(23) /0 <2szin(0b)/0 uady> dt = )\bg /27rR2[1 + cos(6,)]Udt.

Substituting (19a,b) into (23) yields

or

ob> L1 96 [] dt
0 5=1/R2 | 90 0=0,

Lo 1 ——1
24 20 di — - O [~ L oo
(24) /0 R2Udt 2eCa tan < 5 7197
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Hence U is of order &, and the second term in (22) determines the time evolution and
spatial distribution of H. Fortunately, the equations for ' and H are decoupled, and
we focus on solving f‘, which makes it possible to predict the tangential velocity.

A weak form of the equation for I' is obtained by integrating (21a) over the
solution domain

(25) /eieb w

where w is any differentiable weighting function. Integrating (25) by parts and utiliz-
ing boundary conditions (20b) and (21b) yields

Rt

:/7r wdf + w(0,)C(£)G(2).
o

=0,

A(D) ‘2? + B + C(f) (ﬂ + cot(e)‘;g> - 11 do = 0,

062

A(f)% + BT + C(f) cot(@)(;l;] - C(t)g;”gg} de

(26)

An element mesh is formed over the solution domain, and w and I are expanded in
the following Galerkin sums (see, for example, [17]) for arbitrary c4’s:

w = Z CANA(Q),
AeQ
(27)
f - Z dB(f)NB(9)7
BeQ

where 2 denotes the nodes index group and N4 and Np are the shape functions, Ny (6)
being the shape function of an element located at the alveolus opening. The unknown
time dependent functions dp(f) are to be determined as follows. Substituting (27)
into (26) yields

T

d R
Z —dp NAA(t)Npdo

BeQ d 0=0
. . dN
. NsB({)Np + NoC(f) cot(@)d—eB
(28) +Y dp / do
Ben 0=0, —C(A) dN4s dNp
do do
= Nadf + N1 (0,)C(H)G ().
0=0,,
Thus (28) possesses the form
d - .
(29) Md—fd(t) + Kd(t) =V,

where d is a vector consisting of the unknown functions d4(A € Q), M and K are
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F1G. 3. Error evaluation for various (a) mesh-sizes, (b) time-steps. The error is defined by the
equation LIcalculated = error, where L is the differential operator defined in (21a).

coefficient matrices, and V' is a vector defined as follows:

T

Mup = NAA(t)Npde,
0=0,
[T A . dNp dN4 dNp
(30) Kap = /”b {NAB(t)NB + NaC(#) cot(0) —= = C(t)—=— }da,
Vi = Nadd + Ny (6,)C(H)G(1).
0=0,

Choosing linear shape functions N4, the matrices M = [Map|, K = [Kap] and the
vector V = [V4] can be numerically calculated.

The time evolution equation (29) is numerically solved by a predictor-corrector
code. Convergence and error properties of the numerical scheme, the time evolution
of the surfactant distribution, the tangential velocities, and the effect of varying the
phenomenological parameters are all addressed in the next section.

6. Results. We examined the convergence and accuracy of the numerical scheme;
the results are illustrated in Figures 3-5. An L, norm was utilized to evaluate errors
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Here I'(n) is an Lo

mesh sizes, (b) time-steps.

Solution convergence for various (a)
norm of I' in the solution domain, and n defines refinement order.

5.

Fia.
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Fic. 6. Surfactant concentration I' as a function of position and time during five breathing
periods.

in the solution for I'. To that end, we used the parameter values defined in Table 1;
the solution domain was defined by 7/3 < § < 7; and comparisons were made for the
time interval 16 < ¢ < 20 sec. The chosen time span, the fifth breathing cycle, was
picked to avoid transient effects that may exist at earlier times and are affected by
the particular choice of initial conditions. The calculations were repeated for refined
time-steps and elements in the #-direction. We tested grids having 10 to 160 elements
in the #-direction, and time-step sizes ranging between 0.5 sec and 1.95 - 1073 sec.
The results are summarized in Figure 3, which demonstrates that the estimated error
decreases for both time and grid refinements. The best error estimate can be achieved
at the boundaries, where a comparison can easily be made between known exact val-
ues of the derivatives of I' and the respective numerical predictions (see Figure 4).
The figure makes clear that the error decreases monotonically with reduced values of
time-steps and increased number of elements.

To evaluate the convergence rate of the solution, an Ly norm was also calculated
for the difference between consecutive refined solutions (see Figure 5(a,b)). The figures
illustrate vividly that convergence is achieved even for high values of time-steps (of
order 0.1) and a small number of elements (of order 20).

Since the solution is approximated up to order €, no greater precision than 10=4
is required. Consequently, from Figures 3-5, a time-step size of 0.015 sec was se-
lected, and the #-domain was divided into 100 elements, a parameter set that yields
a converging solution with an estimated absolute error of order € or less.

The time evolution of the surfactants and velocity fields is illustrated in Figures 6—
10. Since R(t) is a periodic function and, consequently, the time dependent coefficients
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Fia. 7. Surfactant concentration I" as a function of position and time during the fifth breathing
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F1ac. 8. The evolution of surfactant concentration I' at 0y, during five breathing periods. Notice

the two-peak pattern occurring within every breathing period.
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Fic. 11. The spatial distribution of surfactant concentration T' for various values of 0.

of (20a~d) are periodic, we expect a periodic steady-state solution to the problem.
Indeed, Figure 6 demonstrates that I' reaches a steady state after a short transient
period of less than a single breathing cycle.

During every breathing period, r (at 0p) possesses a two-peak pattern (see Fig-
ures 7 and 8). We use, henceforth, the dimensional form of I', namely, I' = AT,
to describe the small perturbation in surfactant concentration. The peaks occur dur-
ing inhalation and exhalation when the derivative of the surface tension with respect
to surfactant concentration varies abruptly as 7 crosses point A in Figure 2(b) (see
Figure 9). The value of I" remains negative throughout the breathing process. Thus,

0
the total surfactant concentration v = 7% v + I is lower than its radially symmet-

ric concentration 7 ’?’. This is reflected in a higher than average surface tension at
0, and a net fluid motion toward the alveolar edge. The latter conclusion is also
illustrated in Figure 10, in which the time dependence of the tangential velocity at
the interface is depicted. Notice that a negative value for uy means a flow direction
toward the alveolar edge (Figure 1). It demonstrates that the velocity is a time-
periodic function that possesses a negative mean; namely, there is a net flow exiting
the alveolus.

Figures 11 and 12 illustrate a smooth spatial distribution of I' and uy for various
values of 0. Figure 11 validates the former conclusion that surfactant concentration
is lowest (surface tension is highest) at ), namely, fluid is drawn toward the alveolar
edge. Figure 12 illustrates that the tangential velocity increases (in absolute value) as



HYDRODYNAMIC CLEANSING OF PULMONARY ALVEOLI 215

x 107 (a)

u, for 6,= w2[rad]

uy for 6,= w3[rad]

Uy for 9b=ﬂ/5[rad]

uo[m/sec]
=)
(o]
T

0.8+ -
1L d
u, for 6,= w/10[rad]
1.2 I L L L I I
0 0.5 1 1.5 2 2.5 3 3.5
6 [rad]
x107° (b)
T T T T T T
4.5+ E
8,= 10[rad]
452+

6,=w>5[rad]

-4.54

A
(92
(o>}

6,= w/3lrad]

ue[m/sec]

-4.58

Gb= /2[rad]
4.6

4.62 1

[ [ 1 1 1 1 L 1 1 1

264 26405 2641 26415 2.642 2.6425 2643 26435 2.644 26445
g [rad]

Fic. 12. (a) The spatial distribution of the tangential velocity for various values of 6. (b) A
blowup of the dotted small rectangle shown in (a) that manifests the small contribution of the angle
0.
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Fic. 13. The temporal evolution of surfactant concentration I' at 0y for various values of the
diffusion coefficient D.

0 gets closer to 0. This result is consistent with the assumption that the fluid excess
is generated uniformly at the alveolar surface.

The surfactant concentration and the tangential velocity dependence upon 6 and
0, are also illustrated in Figures 11 and 12, respectively. Figure 11 illustrates that

v =% ’(; 4TI decreases and the surfactant concentration gradient increases as 6
decreases. Hence, smaller values of 6} yield a nonlinear increase in the magnitude of
ug at the alveolar rim. This result is not surprising since, from (17h), if the Peclet
number is large, ug varies like cot(6,/2). Figure 12 illustrates how ug increases (in
absolute value) as we approach the alveolar rim. It also illustrates that different values
of B result in almost identical values of ug, namely, all lines seem to collapse into a
single graph within their mutual domain. However, a blowout of a small domain
(shown by a small rectangle in the upper right corner of Figure 12) indicates that
small deviations do exist between different values of ), (Figure 12(a)), with slightly
smaller values of ug for smaller 6;’s.

The effect of the Peclet number upon surfactant distribution and the tangential
velocity field is summarized in Figures 13-14. Figure 13 illustrates a double peaked
pattern that results from the abrupt change in surface tension gradients at point A
of Figure 2(b). Figure 14 illustrates dependence of up upon time, with the highest
(absolute) value occurring at the end of inhalation and the beginning of exhalation.
Varying the diffusion coefficient has a minor effect on the results. This is not surprising
since the Peclet number is quite high (Pe = 64) and the inverse of the capillary
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Fic. 14. The temporal evolution of the tangential velocity Uy at 6y for various values of the
diffusion coefficient D.

number is about 16. A more significant effect would occur were D of the order of
D = 5 x 1078 m?/sec, a much greater value than the estimated physical value of
D = 1071 m? /sec.

Finally, the surfactant production rate, Ay, has a most significant effect on the
tangential velocity. An increase in the production rate causes a concomitant increase
in the tangential velocity.

7. Discussion and conclusions. The results in section 6 demonstrate that gra-
dients in surfactant concentration at the lining layer interface induce tangential flow
toward the alveolar edge (the Marangoni effect). Based upon experimental observa-
tions, we assumed that during every breathing cycle an excess amount of surfactant
was secreted at the alveolus wall and removed to the adjacent airway. This excess
amount is a given percentage of the existing average amount of surfactant that is
embedded inside the lining layer. The removal of surfactants and the concomitant
concentration gradients induce tangential flow inside the lining layer so that a small
amount of the lining fluid exits the alveolus with a typical low rate on the order of
10=2 m/sec. The flow rate varies periodically with time and depends strongly upon
how widely open the alveoli are. Pathologically wide cone angles 6y result in a strong
reduction in Ug and vice versa. However, since ug ~ )\bU@, the actual tangential
velocity may either increase or decrease with #,. To make a rigorous conclusion, ad-
ditional experimental evidence is required to correlate the flux of surfactant exiting
the alveolus (proportional to A,) with the cone angle 6.
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Fi1c. 15. Surface tension dependency upon concentration of surfactant TA from Otis et al. [19].

Particles that are deposited over the alveolus wall are subject to hydrodynamic
drag and may be swept out of the alveolus due to the induced tangential velocity. The
hydrodynamic cleansing rate is determined by particle velocity that, generally, need
not be equal to the fluid velocity. However, the predicted fluid tangential velocity
at the alveolar rim may provide a reasonable measure of the rate of hydrodynamic
cleansing. With an average sweeping rate, it will take a particle about two days to
move a distance equal to one alveolar radius, a very small rate indeed.

The effect of particle diffusion may add to the cleansing rate. However, this effect
may be quite small. The diffusion coefficient of a particle 1um in diameter in an
unbounded lining flow field is D, = 3.8*1071* m?/sec, based on the Stokes—Einstein
equation. Thus, it seems that the time it takes a particle to travel a distance equal to
one alveolar radius R = 10~%m is of the order of R?/4D,, ~ 10°s, a value similar to
the convection time. Notwithstanding this idea, Happel and Brenner [13] show that,
due to the close proximity of the particle to the alveolar walls, the hydrodynamic
drag coefficient can be several order of magnitudes higher than 6wur, (here r, is the
particle radius). Consequently, the value for the diffusion coefficient would be smaller
and the resulting diffusion time longer.

We also tried to compare DPPC with an artificial surfactant TA (also known as
Survanta; Ross Laboratories, Columbus, OH), widely used clinically to treat respira-
tory distress syndrome. From Otis et al. [19], a surfactant TA isotherm, relating the
surface tension to surface concentration, is obtained (Figure 15) and approximated by
two straight lines. Figures 16 and 17 illustrate the behavior of surfactant TA vis-a-vis
DPPC, provided that their Peclet number is of similar order.2 The time evolution of I’
differs markedly from that of DPPC; however, the calculated ug at 8y is very similar.

2Note that synthetic surfactants do not undergo cellular secretion and adsorption. Thus, the
results may depend on the time protocol by which TA is provided, but this is left for future work.
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The small deviations stem from the discontinuity in 96/0% assumed for surfactant
TA. In fact, Uy at 6, should depend approximately linearly upon R. Since, from (19a)
and (19b), at § = 1/R? we obtain that

B o6 or

6 — A72 ~ ph3 ~ an’
R R3 0% o1/ B8 00

a

g _ W _¢C

consequently, at the alveolus edge 6 = 0,, for large Peclet numbers, boundary con-
dition (21c) results in Up|g—g, ~ —Rcot(6/2). Thus, the major difference in the
tangential velocity ug ~ MUy between DPPC and surfactant TA stems from b,
provided that they possess similar diffusion coefficients.

In summary, a significant enhanced hydrodynamic cleansing can occur if the mech-
anism that keeps the surfactants from excessive accumulation or dilution functions
over a wide range of surfactant concentrations. Notice that a very small deviation
in surfactant concentration from the radially symmetric distribution is sufficient to
induce flow in the lining layer. Thus, artificial stimulation of surfactant production at
the alveolar wall tissue, or artificially administering a small excess amount of surfac-
tant by inhalation, may result in an increased flow of surfactants exiting the alveoli
and a concomitant sweeping flow of the lining layer. More research is required to in-
vestigate what the physiological mechanisms might be that cause surfactants to exit
the alveolus and thereby determine/control the important parameter A, for various
values of alveolus cone angle 6, and surfactant composition. We hope that an arti-
ficial process can be devised and experimentally tested so that people exposed to a
severe polluted environment could utilize the mechanism of enhanced hydrodynamic
cleansing to reduce particle deposition of hazardous materials inside the lung alveoli.
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ASYMPTOTIC SOLUTION TO AN INVERSE PROBLEM FOR A
SHARED UNBUFFERED RESOURCE*

JOHN A. MORRISONT AND K. G. RAMAKRISHNANf*

Abstract. We consider an unbuffered resource having capacity C, which is shared by several
different services. Calls of each service arrive in a Poisson stream and request a fixed, integral amount
of capacity, which depends on the service. An arriving call is blocked and lost if there is not enough
free capacity. Otherwise, the capacity of the call is held for the duration of the call, and the holding
period is generally distributed. The inverse problem of determining the traffic intensities in terms of
the measured values of the carried loads for each service is investigated. It is assumed that C' and
the traffic intensities are commensurately large. The inverse problem is solved asymptotically in the
critically loaded regime, and it involves the unique real solution of a nonlinear equation. An iterative
solution of this equation is shown to lead to a contraction mapping and to monotonic and geometric
convergence. A separate analysis is given for the overloaded regime, and it is shown that the result
matches asymptotically with that for the critically loaded regime. Numerical results are presented
for two examples.

Key words. asymptotics, carried loads, inverse problem, multiservice, traffic intensities, un-
buffered resources

AMS subject classifications. 60K30, 90B12

PII. S0036139901388799

1. Introduction. We consider an unbuffered resource having capacity C, which
is shared by S different services. Calls of service s (s = 1,2,...,.5) arrive in a Poisson
stream with mean rate Ay and request capacity ds;. An arriving call is blocked and
lost if there is less than dy free capacity. Otherwise, the call capacity ds is held for the
duration of the call, and the holding period is generally distributed with mean 1/,
and independent of earlier arrival and holding times. The traffic intensity of calls of
service s is vs = As/ps, and the product form and the insensitivity property hold (see
[4], [5], [7]); i.e., the joint stationary distribution of the number of active calls of each
service depends on the distributions only through v;.

Let Lg(d,v,C) denote the loss probability for each service s, where
d = (dy,ds,...,ds) and v = (v1,v2,...,vs). Then the carried loads are Y, =
vs[l — Ls(d,v,C)], s = 1,2,...,5. Of practical importance is the inverse problem
of determining the traffic intensities v from the measured values of the carried loads
Ys (s =1,2,...,5). Once the traffic intensities are known, the loss probabilities are
readily determined.

A particular application of such resource sharing is in telecommunication net-
works, where the provider wants to ensure that service level agreements with cus-
tomers are met [1], [2]. Specifically, the loss probabilities should not exceed prescribed
values. At the same time, the provider wants to verify that customers do not exceed
agreed-upon peak traffic intensities.
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The model considered above applies to each link of the network. The results
for links influence the design of the network and the routing of traffic through the
network, so as to optimize revenue while meeting the service level agreements with
customers [11], [12], [13]. The model also applies in policing, shaping, access, and call
admission control of customer traffic at the edge of the network [17].

In this paper we assume that the capacity C' and the traffic intensities v are com-
mensurately large and that C is an integer. We also assume that ds (s =1,2,...,.5)
are positive integers, not large relative to C, and, without loss of generality, that
the greatest common divisor of dy,...,dg is 1. There are three regimes in which the
behavior of the loss probabilities differs. The resource is overloaded, critically loaded,
or underloaded depending on whether the total traffic intensity Zsszl dsvs exceeds, is
close to, or is less than its capacity C, respectively.

In section 2 we consider the critically loaded regime in which C' — Zf:l dsvs =
8v/C, where § = O(1) may have either sign. The lowest order asymptotic ap-
proximation (see [3], [10], [16]) to Ly(d,v,C) implies that v, ~ Yi(1 + ds8/V/C),
s =1,2,...,5, where  is independent of s. Both § and § are determined asymp-
totically in terms of Y, (r = 1,2,...,5), where 0 < C — Zle d.Y, = O(V/C),
from the unique real solution of a nonlinear equation. This leads to a critically loaded
asymptotic approximation (CLAA) to the traffic intensities. We then use a refined ap-
proximation to Ls(d, v, C), which is obtained by specializing the uniform asymptotic
approximation [10] to the critically loaded regime. This leads to a refined critically
loaded asymptotic approximation (RCLAA) to the traffic intensities.

In section 3 we present an iterative refinement procedure for solving the nonlinear
equation and show that it leads to a contraction mapping and to monotonic and geo-
metric convergence. We also establish the connection between our iterative refinement
procedure and the one proposed by Mitra [9] for the case of general loading.

In section 4 we consider the overloaded regime in which 0 > C' — Zle dsvs =
O(C). Tt is shown that asymptotically v, ~ Y[(1 +v)/7]%, where 0 < v = C —
Zle d,Y, = O(1). It is also shown that this result matches asymptotically with
those for the critically loaded regime for v > 1 and 0 < v/v/C < 1.

In section 5 we present numerical results for the two examples considered in
[14]. We first compare the CLAA and the RCLAA to the traffic intensities with
the exact results. We emphasize that both the CLAA and RCLAA are valid only
in the critically loaded regime, and that the former uses O(1) and O(1/v/C) terms,
while the latter also includes the O(1/C) term in the expansion. The CLAA gives
moderately accurate values in the critically loaded regime, but less so in the overloaded
regime. On the other hand, the RCLAA gives quite accurate values in the critically
loaded regime, and moderately accurate results in the overloaded regime. Overall,
the RCLAA provides a significant improvement of the CLAA, with only minimal
additional numerical computations. Both results do become quite accurate in the
underloaded regime, since the loss probabilities, although not well approximated there
by the CLAA or RCLAA, are exponentially small. We also present the results of
some numerical experiments using the iterative procedure proposed by Mitra [9]. The
number of iterations required to obtain the required accuracy increases significantly
with the load.

The above asymptotic approximations may be applied to each link of a multirate
loss network [11] to determine the reduced load offered to the link.
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2. Critically loaded regime. In the critically loaded regime,

S
(2.1) C—> dws=6VC,
s=1

where C > 1, vy = O(C), s = 1,2,...,5, and § = O(1) may have either sign. In
Appendix A we derive a refined asymptotic approximation to the loss probability
Ls(d,v,C) for service s. The approximation is obtained by specializing the uniform
asymptotic approximation [10] to the critically loaded regime.

Let

5 s
(2.2) o?C = QZdiys, o >0, nC = Z vy,
s=1 s=1

so that o = O(1) and n = O(1), since v, = O(C), s =1,2,...,5, and

26_(6/0)2
o/ Erfc(=6/0)’

where the complementary error function is given by

(2.3) B

(2.4) Erfc (z) = % / e .

Then, asymptotically,
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Then, from (2.1)—(2.3) and (2.6), to lowest order,

S S
60 2
2.9 VO =C = dy, — 2L .,
S S
(2.10) opC =23 A, 09>0, nC =) dY,,
s=1 s=1
and

2.11 2e=0o/e0)"
(2.11) fo = oo+/T Erfc (=8¢ /00)

If we divide (2.9) by 09v/C and use (2.10) and (2.11), we obtain

—(60/00)? C— Ef: dsYs
(2.12) o, ¢ - ( ! ) :
o) ﬁErfc (760/0’0) 22;9:1 dzy—s

Intuitively, Zle dsYs < C, i.e., the total carried capacity is less than that of the
resource. We let

s (C-¥0,dY)

2.13 a >0

(213) =i
2 Es:l dEYS

and

(2.14) ¢

9(x) = VT Erfe (z) o

To lowest order, the inverse problem is asymptotically equivalent to solving the equa-
tion g(§) = a for £ = —6p/0p. Then, from (2.11)-(2.13),

(2.15) Booo = 2(€ + a),

and, from (2.6) and (2.10), we obtain the first order asymptotic approximation to the
traffic intensities v, in terms of the carried loads Y5,

(2.16) vy ~ Y, <1+d55°)ys Ly 2ds(Eta)
ve 230 &2,

We note, from (2.14), that g(0) = 1/y/m. We show in Appendix B that g(—o0) =
00, g(oco) = 0, and ¢'(z) < 0 for x < oo. Hence, there is a unique real solution
to g(§) = a > 0. Since g(—a) > a, it follows that £ > —a. In Figure 2.1, £ 4+
a is depicted as a function of a. Because of the monotonicity, the equation for ¢
may be solved numerically by any simple procedure, such as bisection or iterative
refinement. In the next section we present an iterative refinement procedure for
solving the equation, which leads to a contraction mapping and to monotonic and
geometric convergence. This is important, since Mitra [9] has conjectured that his
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proposed iterative procedure, for the case of general loading, leads to a contraction
mapping.
To the next order, from (2.6)—(2.8), we have

Bo B dsBobo [2n0 (263
2.17) v, Ys{l—i—ds<\/>+c>+ 26 {08 sop 1) a1

A3 T 2 [ 202\ &R
_ 1 1-=2 E b
2C { t32\"2)| T e

Hence, from (2.1), (2.9), and (2.10), we obtain

4

1 1 1 1 5060 268
(2.18) &1 = —=0aB1 + = Bobo + = B2 — = Bomo ( +—)-
270 2 47070 3 5 o

It follows that
ds 261d, 2
(2.19) vs~Y;[1+ bo _ 201 50(50+ )ds(ds—”f)+~.-].
a5

Nol e od
Also, from (2.2), we obtain
(2.20) o001 = Boo-

Next,

6 1 1 600’1
92.21 2= -
(2.21) o Uo[§0+\FC(61 00)+ ]
and

1

(2.22) Bo ~ Booo + —=(c0P1 + Boo1) +

Ve
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Hence, from (2.3), (2.4), and (2.11), after a straightforward calculation, it is found
that

boo o
(2.23) ooB1 + Poor = —Bo (51 - (t)fol> (20 + ﬁoao> )
If we use (2.18) and (2.20) to eliminate (; and o from (2.23), we obtain
1 ]
(224) 51 |:1 - *600’0 <20 + ﬁ00'0>:|
2 ago

Bono

1 1 1
i s P2 2 - 36 _ ~oho
250 o+ 46000 250 07lo 305

Q O'u
owOw
N——

(50 og + 4ﬂ060
Since 8p/0¢ = —&, it follows from (2.15) that
4
(2.25) (1—2a® —2a€)6; = (£ + a) {a + 3—772(2a52 +3a%¢ — & — a)} ,
90

and from (2.19) that

(2.26) v, ~Y, {1+ Qd;(i% @) _ 2d, 22C [51 + (€ +a)(§ +2a) <2;7O° ds>” .

Hence, from (2.10), we obtain the refined asymptotic approximation

a

2ds(E+ a) ds(E+a)
* (1—2a? 2a§)}

235 @2y, Lo &Y

r=1"r

ds(€ + a) (Zr 1 drY) [ a(l+ 2a?)
3 (Zr ) d%Y) (1 —2a% —2af)
We note, from (2.4) and (2.14), that

(2.28) 9'(&) =29()g(&) + ¢ — 1.
Since g(§) = a, it follows that

vs~ Y, 41+

|:ds(£ + 2a) —

(2.27) +

. 5a)}

(2.29) 1 —2a% - 2a¢ = —g' (&) > 0.

Once £ has been computed, the numerical calculation of the refined approximation
(2.27) is straightforward.

3. Iterative refinement procedure. Let f(z) = g(z) + z, where g(z) is given
by (2.14). Then, the inverse problem is asymptotically equivalent to solving the
equation

(3.1) &) —¢=a

We consider the algorithm

(3.2) Em+1) = f(&(m))—a, m=0,1,..., £(0) < co.
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In order to establish that this is a contraction mapping, we make use of the following,
which is proved in Appendix C.
LEMMA 3.1. Let

—a? —a?

(33) f(l') = ﬁEI‘fC (LE) = 2‘[:”00 e~ du

Then f'(z) >0 and f"(xz) > 0 for —oo < x < 0.

We remark that this lemma is of importance in another problem. Reiman [15]
observed that h(z) = /2 f(x//2) is the hazard rate of a standard (mean 0, variance
1) normal random variable. He made use of his assertion that h is strictly increasing
and strictly convex, but provided no proof of the latter.

From (3.1) and (3.2), we have

(3.4) Em+1) — €= f(E(m) - f(€).
Since f'(x) > 0, £(m) > € = €(m+ 1) > € and £(m) < € = €(m +1) < & By

induction,

(3.5) §0)>E=Em) =6 m=0,1,...,
and
(3.6) E0)<eg=¢&m)<g m=0,1,....

Now f/(x) = ¢'(z)+1 < 1, since ¢g'(z) < 0 for x < co. We suppose first that £(0) > £.
Then,

&(m)
(3.7) ongH4>—e=L F(2)dz < £(m) — €,

so that &£(m) is a monotonically nonincreasing function of m, and £(m) < £(0), m =
0,1,.... Hence, since f”(x) > 0, we have

(3-8) §0) = &= [E(m+1) =& < fEO0)] [§(m) =&, m=0,1,....
On the other hand, if £(0) < &, then

13
(3.9) 0§£—€WH4)=L()qux§§—ﬂmL

so that £(m) is a monotonically nondecreasing function of m. Hence, from (3.6), since
f"(z) > 0, we have

(3.10) §0) <¢=[6(m+1) =& < f1(§) [§m) =&, m=0,1,....
We let

(3.11) a = max {f'(€), /' [§(0)]} = f"{max [, £(0)]} < 1.
Then, from (3.8) and (3.10), we obtain

(3.12) [Em+1) = ¢ < alf(m) =&, m=01,....
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0 02 04 06 08 10 12 14 16 18 20
a

F1G. 3.1. Plot of the convergence factor f'(£€) as a function of a.

Hence £(m) converges geometrically and monotonically to £. We note, in particular,
that if £(0) = —a, then £ > £(0) and @ = f/(£). In Figure 3.1, f/(£) is depicted as
a function of a. Since f/(§) — 1 as a — 0, £(m) converges slowly for small values
of a. Note, from (2.13), that as a — 0 the total carried capacity approaches the
capacity of the resource, and we are exiting the critically loaded regime and entering
the overloaded one. Consequently, in the next section we analyze the overloaded
regime, in which 0 < C — Zle d;Ys = O(1).

We conclude this section by establishing the connection between the algorithm
(3.2) and the iterative procedure proposed by Mitra [9] for the case of general loading.
The general algorithm is

(3.13) vs(m+1) =Y +vs(m)Ls(d,v(m),C), m=0,1,....

Mitra conjectured that (3.13) leads to a contraction mapping, but its convergence for
any initial guess is an open question. If we multiply this equation by ds and sum on
s, we obtain, from (2.1),

S
(3.14) S(m+1)VC =C =Y dws(m+1)

s=1
s 5
=C = dY, =Y dws(m)Ly(d,v(m),C).
s=1 s=1
But, from (2.5) and (2.6), to lowest order,

(3.15) Ls(d,v(m),C) ~

and, from (2.2),

S
2
5ngys ~o(m+1).

s=1

(3.16)
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Hence, asymptotically, from (3.14)—(3.16), we obtain

(c-xi,ar)

s=1"s"$5

(3.17)

From (2.3) and (2.13), we have

§(m + 1) o 50m) /o (m)]?
c(m+1) e [~8(m)jo(m)]

(3.18)

~ Q.

Since £(m) ~ —8(m)/o(m), this corresponds asymptotically to (3.2), in view of (3.3).

4. Overloaded regime. In the overloaded regime, 0 > C — Zf:l dsvs = O(C),
and the loss probability Ls(d, v, C) for service s is asymptotically given by (see [6],

[10])
(4.1) Ly(d,v,0) =1— ()% +0 <é> ,

where z* is the unique positive solution of

s
(4.2) Y dw(z)t =0, 0<z" <1
s=1
Hence,
(4.3) Y, = vs[l — Lg(d, v, C)] = vs(2)% + O(1)
and
s
(4.4) 0<y2C-) dY,=0().
s=1
To determine z* in terms of Y (s = 1,2,...,5), we derive an asymptotic approx-

imation to the correction term in (4.4). In Appendix D we establish that

S *
z
Sz::l (1—2%)
Hence,
* Y
4.6 z o~ )
(+0) T+
and, from (4.3), it follows that
ds
1 .
(4.7) v ~ Yy (ﬂ) .
Y

We will show that this result matches asymptotically with those for the critically
loaded regime for v > 1 and 0 < v/v/C < 1. But v = acgV/C, from (2.10), (2.13),
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and (4.4), so this corresponds to 0 < a < 1. Since g(§) = a, it follows from (2.14)
and (B.1) that

1
(4.8) £ = %[1 —4a® + 0(a)],
so that

(4.9) 1 —2a% — 2a¢ = 2a® + O(a*).

Hence, from (2.10) and (2.27), we obtain for small a

(4.10) vy~ Y, {1 + Modf@[l +0(a®)] +

This matches with (4.7) for v = aooV/C > 1.

s o 2
72@2030[613 1+ 0(a )}} .

5. Numerical results. The CLAA to the traffic intensities vy, in terms of the
carried loads Y, (r =1,...,95), is given by (2.16), where £ > —a satisfies f(§) —& = a,
and a and f(z) are given by (2.13) and (3.3). Numerical values of £ were obtained
by the iterative refinement procedure (3.2), with £(0) = —a. The stopping criterion
[[€(m + 1) — £(m)]/[€(m + 1) + a]| < 10~* was used. The RCLAA is given by (2.27).

We present numerical results for the two examples considered in [14]. The first
example has capacity C' = 96 and two services with call capacities d; = 1 and ds = 6.
In Table 1, the CLAA and RCLAA to the traffic intensities 1 and vy are compared
with the values from which the carried loads Y; and Y5 were calculated, using the exact
values of the loss probabilities tabulated in [14]. These values are v4 = 0.86v/1.7 and
vy = 0.14v/1.7, where the total traffic intensity v = v; + 6vy = 96 + V96, and
B = —6(1)3, ranging from an underloaded resource to an overloaded one. The CLAA
gives moderately accurate values in the critically loaded regime, but less so in the
overloaded regime. The RCLAA, however, gives significantly better results in these
regimes. Errors of more than 1% are indicated in parentheses in Table 1. The results
become quite accurate in the underloaded regime, since the loss probabilities, although
not well approximated by CLAA or RCLAA there, are exponentially small. Also listed
in Table 1 is the number of iterations required to obtain £ 4+ a to the desired accuracy,
which increases significantly with the load.

Similar comparisons are made in Table 2 for the second example, which has
capacity C' = 130, and three services with call capacities d; = 1, ds = 3, and d3 = 10.
The traffic intensities from which the carried loads Y7, Ys, and Y3 were calculated
exactly are vy = 2v/13 = vy and v3 = v/26, where the total traffic intensity is
v = vy + 3y + 103, and v = 46.8(20.8)171.6, again ranging from an underloaded
resource to an overloaded one. (For v = 67.6, the exact value of L in [14] should be
4.9623 x 1073.) Similar comments apply to the CLAA and RCLAA here as for the
first example. Errors of more than 1% are indicated in parentheses in Table 2. Also
listed in Table 2 is the number of iterations required to obtain & + a to the desired
accuracy. All computations were performed with double precision.

The overloaded asymptotic approximation (4.7) gives less accurate results than
the RCLAA, even for the heaviest loads considered for the two examples. Thus, for
v = 125.4 in Table 1, (4.7) gives the approximations 64.9 and 11.3 for v; and vy,
respectively. For v = 171.6 in Table 2, (4.7) gives the approximations 26.8, 27.6, and
7.23 for vy, vy, and v3, respectively.



232 JOHN A. MORRISON AND K. G. RAMAKRISHNAN

TABLE 1
Comparisons of the CLAA and RCLAA to the traffic intensities v1 and vo with the exact results
for two services with C' =96, d1 =1 and d2 = 6, and total traffic intensity v = v1 + 6va.

Carried
loads CLAA (% err.) RCLAA (% err.) Exact v # of iter.

18.8249 18.8249 18.8249 18.8250  37.2 2
3.06434 3.0643 3.0644 3.0645

23.779 23.779 23.781 23.782 47.0 3
3.8668 3.867 3.869 3.871

28.709 28.72 28.74 28.74 56.8 4
4.6372 4.65 4.67 4.68

33.546 33.67 33.70 33.69 66.6 6
52964  5.42 (1.3) 5.48 5.49

38.180 38.64 38.65 38.65 76.4 8
5.7476 6.16 (2.1) 6.28 6.29

42.529 43.63 43.60 43.61 86.2 12
5.9537 6.8 (3.1) 7.07 7.10

46.574 48.63 48.55 48.56 96.0 17
5.9496 7.52 (4.9) 7.84 7.91

50.337 53.62 53.50 53.52 105.8 24
57967  8.07 (7.3) 8.59 (1.4) 8.71

53.848 58.61 58.45 58.48 115.6 31
5.5503 8.50 (10.7) 9.30 (2.3) 9.52

57.137 63.60 63.40 63.43 125.4 39
52494  8.81 (14.7) 9.98 (3.4) 10.33

We also performed some numerical experiments using the algorithm (3.13) pro-
posed by Mitra [9]. The loss probabilities Ly were evaluated by means of the refined
uniform asymptotic approximation (RUAA) derived in [14], which was shown to be
very accurate for the two examples considered. The initial values v4(0), s = 1,2,...,5,
were chosen either as Y (calculated exactly) or as Zs = Y;[(1 + v)/7]%, where 7 is
given by (4.4), corresponding to the approximation (4.7) for the overloaded regime.

In Table 3 we compare the results of the iterative procedure with the (more
precisely listed) exact values of the traffic intensities 11 and vy for the first example.
The corresponding carried loads are given in Table 1. Also listed is the number
of iterations required to obtain the desired accuracy. As indicated by our critically
loaded asymptotic analysis, the number of iterations increases significantly with the
load. For the most heavily loaded case considered, 8 fewer iterations were required
when v,(0) = Z, than when v4(0) =Y;, s =1,2.

In Table 4 we compare the results of the iterative procedure with the exact values
of the traffic intensities vy, 15, and v3 for the second example. The corresponding
carried loads are given in Table 2. Similar comments apply to the number of iterations
required.

Appendix A. We derive here the refined asymptotic approximation (2.5) to
the loss probability Ls(d, v, C) for service s, by specializing the uniform asymptotic
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TABLE 2
Comparisons of the CLAA and RCLAA to the traffic intensities v1, va, and vs with the exact
results for three services with C = 130, d1 = 1, d2 = 3, and d3 = 10, and total traffic intensity
v =1 + 3v2 4 10v3.

Carried
loads CLAA (% err.) RCLAA (% err.) Exact v # of iter.

7.19997 7.19997 7.19997 7.2 46.8 2

7.19989 7.19989 7.19990 7.2

1.79983 1.79983 1.79984 1.8
10.3970 10.3980 10.3998 10.4 67.6 3
10.3898 10.3928 10.3986 10.4

2.58710 2.5896 2.5959 2.6
13.5563 13.59 13.601 13.6 88.4 6
13.5491 13.57 13.603 13.6

3.24937 3.34 (1.8) 3.396 3.4
16.5875 16.80 16.798 16.8 109.2 10
16.1393 16.76 16.797 16.8

3.58302  4.04 (3.8) 4.180 42
19.4315 20.01 19.994 20.0 130 17
18.2869 19.93 19.986 20.0

3.57130 4.64 (7.2) 4.929 (1.4) 5.0
22.0957 23.23 23.192 23.2 150.8 26
19.9652 23.03 23.177 23.2

3.35269  5.07 (12.6) 5620 (3.1 5.8
24.6070 26.44 26.391 26.4 171.6 37
21.2824 26.03 (1.4) 26.364 26.4

3.04643 5.31 (19.5) 6.229 (5.6) 6.6

approximation [10] to the critically loaded regime. Let

(A1) vs=a,C, s=1,2,...,5,
where C'> 1 and o, > 0 is O(1) and bounded away from zero. Also, let
s
(A.2) f(z) = Zas(zds —1)—logz.
s=1
There is a unique positive solution z* of f’(z) = 0 so that
5
(A.3) D adi(z) =1, 2" >0
s=1
It follows from (A.2) and (A.3) that
s
(A.4) vE (222 = Zasdg(z*)ds.
s=1
We define
1 1—2*
(A.5) K = _Vvsen(=2) Ly

(1—2%) —2f(2")
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TABLE 3
Comparison of the final iterated values of the traffic intensities v1 and v with the exact results
for two services with C' =96, d1 =1 and d2 = 6, and total traffic intensity v = v1 + 6va.

v Exact vs(0) = Y5 # of iter. vs(0) = Zs # of iter.
37.2 18.8250 18.8250 3 18.8250 4
3.06454 3.06454 3.06454
47.0 23.7816 23.7819 3 23.7819 5
3.87143 3.87141 3.87141
56.8 28.7383 28.7381 5 28.7381 6
4.67832 4.67828 4.67829
66.6 33.6949 33.6947 7 33.6947 8
5.48521 5.48515 5.48515
76.4 38.6515 38.6515 10 38.6515 11
6.29210 6.29210 6.29215
86.2 43.6081 43.6081 15 43.6083 16
7.0990 7.0988 7.0991
96.0 48.5647 48.5645 22 48.5653 22
7.9059 7.9055 7.9065
105.8 53.5213 53.5208 31 53.5233 30
8.7128 8.7112 8.7141
115.6 58.478 58.475 43 58.481 39
9.520 9.517 9.523
125.4 63.435 63.429 57 63.442 49
10.327 10.320 10.333
1 1<
3
(A6) K:§+@Zasds, Z* :1,
s=1
and
(A7) L Ente [sgn (1 - =)/ G| + Lo
7 M:fErc[sgn 1-=2 - z*]—ki.
2 V2rCu

Then (see [10]),

(A.8) Ly(d,v,C) = %z%g;g [1 +0 (éﬂ .

Since f(1) = 0 and f/(z*) = 0, it follows from (A.4) that the expression for K in
(A.5) remains finite as z* — 1, and its limiting value is given by (A.6).

In the critically loaded regime corresponding to (2.1), z* is close to 1 and we
expand in powers of 1/4/C and let

C1 C2
A. ol L2
(A.9) z +\FC+C+



INVERSE PROBLEM FOR A SHARED UNBUFFERED RESOURCE 235

TABLE 4
Comparison of the final iterated values of the traffic intensities v1, vo, and vs with the exact
results for three services with C = 130, d1 = 1, d2 = 3, and d3 = 10, and total traffic intensity
v =uv1 + 3v2 4 10v3.

v Exact vs(0) =Y # of iter. vs(0) = Zs # of iter.
46.8 7.2 7.20000 3 7.20000 4
7.2 7.20000 7.20000
1.8 1.80000 1.80000
67.6 10.4 10.40003 4 10.40003 5
10.4 10.40000 10.40000
2.6 2.60000 2.60000
88.4 13.6 13.60003 7 13.60003 8
13.6 13.60005 13.60005
3.4 3.40000 3.40000
109.2 16.8 16.79996 13 16.79998 14
16.8 16.79998 16.80006
4.2 4.19991 4.19999
130 20.0 19.9998 22 20.0001 23
20.0 19.9996 20.0003
5.0 4.9994 5.0002
150.8 23.2 23.1995 37 23.2005 35
23.2 23.1987 23.2019
5.8 5.7982 5.8013
171.6 26.4 26.3985 57 26.4017 49
26.4 26.395 26.405
6.6 6.595 6.604

Then, from (2.1), (A.1), and (A.3), we obtain

S S
6 1 1
s=1 s=1

Hence, from (2.2), we find that

26 462 1,

(All) c1 = ;, Co = 7? <7] — 50’ ) .
Also, from (A.4) and (A.6),

1 4 26m 1 n
(A].Q) v 50’ +02\/5+"', K 54—@4‘

Since f'(z*) =0,
1 1

(A13)  0=f(1) = f(z")+ 51 =) f"(") + g1~ ZPL) A

However, from (A.2), we obtain

S
(A.14) 2f"(2) + f(2) =) adiz®
s=1
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and
(A.15) 2f"(2) + 2" (2 Zasdz dy —1)2%~2.

From (2.2), (A.4), (A.9), (A.11), and (A.15), after some algebra, it is found that

1 26
A16 () ~ =g o4
(A1 P ~ ot = )
and
1! 3
It then follows from (A.13) that
62 46%n
A.18 —Cf(z*) ~ = — +
(A9 e
Hence, since z* < 1 if 6 < 0,
. ” o 26m
(A.19) sgn (1 —2")/-Cf(z )N—; (1— 04\/> ) .
It follows from (A.18) that
. 2 4637
A.20 eCTE) e (8/0) (1 + ) .
(A.20) 5000 T

Also, from (2.4) and (A.19), we obtain

. 6 4% (602
(A21) Erfe {sgn(l—z ) fo(z*)} ~ B (=0 ) - e T

and hence, from (A.7) and (A.12),

1 §\ e @11 g 262
A .22 M ~ = Erfc | —— 1—- 2=
( ) 2 e < J>+ oV |: T 302 < 02)]+

Consequently, with § given by (2.3),

e—(6/0)? 8 2n 262
A2 —_— ~ 1l-— |1+ = (11— — R
wa Stk (2]
Next, from (A.12),

11 261

A.24 —~—|1- -]
20 e e t)
Finally, from (A.9) and (A.11),

()" 1] S
[(z*—l) | - Z(Z)
n=0

dsz—l (1+ 6 +>
- 02/ C

(A.25)
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From (A.8), (A.20), and (A.23)—(A.25), we obtain the approximation (2.5).

Appendix B. We here establish that g(—oc0) = oo, g(co) = 0, and ¢'(z) < 0
for ¢ < oo, where g(z) is given by (2.14), and Erfc(x) by (2.4). First (see [8]),
Erfc (—o00) = 2, so that g(—o0) = oo, and

2
e * 1 3 1
l1-—+-—+0(— 1.
v [ 222 4zt T <x6>} ) >

Hence g(oo) = 0. Next, we define

(B.1) Erfe (z) ~

(B-2) w(z) = ?ewz Erfe (z) = e;cQ/ e~ du = / e~V e 2 gy,
z 0

Then, w(x) > 0 for < oo, and

From (B.2) we obtain
wlr 2 _ > Ooe—(v2+w2) e—2w(v+w) v dw.
(B.4) wor= [ f dvd

If we make the transformation of variables

(5:5) v= =0, w=—0+0).
then
(BG) [w(x)}Q — /OOO /:7 e*(W2+C2) e*2\/§w77 dC dn.

Also, from (B.2),

1 / > —v? 2 > —2n® —2V2
(B.7) ov () =— ve U e “dy = -2 ne " e 1 dn.
0 0
Hence,
1 oo
(B3) 3@ + @ = [ e e iy
0
where
n 2 2
(B.9) ¥(n) :/ e S d¢—2ne ™ >0, n>0.

—n

It follows, from (B.3), (B.8), and (B.9), that ¢’(z) < 0 for x < oco.
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Appendix C. Here we prove Lemma 3.1. We consider —oco < = < oo. Then,
from (3.3) and (B.2),

Next,
(C.2) F'(z) = [w'(2)] B W (x

But, from (B.7),

1 = 2 -2
(C.3) iw”(;v) = 2/ vie " e dv.
0

= / / (4vw — v? — wz)e_(”er“’z) e” 2 gy duw,
o Jo

where we have expressed w(z)w”(z) in a symmetric form.
If we make the transformation of variables (B.5), then

(©5) @) - jela)s”@) = [ e eI an
where
(C.6) x) = [ o ~36 e e

Hence, from (B.9),

(C.7) X' (n) =2n(n) >0, n>0.

Since x(0) = 0, it follows that x(n) > 0 for n > 0. Hence, from (C.2) and (C.5), since
w(z) > 0, we have established that f”(z) > 0 for —oco < & < 00, and the proof of the
lemma is complete.

Appendix D. We here establish the asymptotic approximation in (4.5). Let

(D.1) G(d,v,C —n) = — / G
. wv,C—n)=— ——dz
21 Jisjcr (1= 2)

for integer values of m, where the integral is taken in a counterclockwise direction
around a circle of radius less than 1, and, from (A.1) and (A.2),

S
(D.2) Cf(z) = Z ve(z% —1) = Clog 2.

s=1
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Then (see [14]),

D.3 1 -L.(d.v.C 1 2l
(D-3) —Ls(dv, )_2m'G(d,u,C) /|Z<1 1—2

From (D.2) it follows that

S
(D.4) > dowezt = Clzf'(2) + 1.

Hence, since Yy = v,[1 — Ly(d, v, C)],

s
C f'(z) &

D.5 C-> dy,=— &gz,
(D-5) ; 2miG(d, v, O) /Z<1 1-2° ?
However,

Cf(z
(D.6) d [ 7O 1 T e,
dz | (1 —=2) (1-2) (1-2)
It follows that
il Cf(2)
1 e

D. - dYy = —————— ——dz.

(D7) ¢ SZ:; o 2miG(d, v, C) /|z|<1 (1—2)2 *

From (4.2) and (D.4), f'(2*) = 0. Moreover (see [10]), |z| = z* is a saddle-point
contour, and if h(z) is analytic in a domain containing |z| = z*, then

1 Crerg, - T [ 1
(D-8) 270 J |y = hz)e dz = 27C f(2*%) h=")+0 c)l

If we deform the contour of integration to |z| = z* and set n = 0 in (D.1), we obtain
the asymptotic approximations

(CH")
(D.9) G(d,v,C) ~
2rC " (z*) 2*(1 — z*)
and
o 1 I (CFE)
. - z ~ .
(D10 5 T~ VEOPET AT

The result in (4.5) follows from (D.7), (D.9), and (D.10).
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DERIVATION OF A CONTINUUM MODEL FOR EPITAXIAL
GROWTH WITH ELASTICITY ON VICINAL SURFACE*

YANG XIANGT

Abstract. In heteroepitaxial growth, the mismatch between the lattice constants in the film and
the substrate causes misfit strain in the film, making a flat surface unstable to small perturbations.
This morphological instability is called Asaro-Tiller—Grinfeld (ATG) instability, which can drive the
film to self-organize into nanostructures such as quantum wires or quantum dots. In practice, most
devices are fabricated on vicinal surfaces which consist of steps and terraces. In this case, the misfit
strain causes step bunching, and traditional continuum models for the ATG instability do not apply
directly. In this paper, we derive a continuum model for step bunching by taking the continuum limit
of the discrete models proposed by Duport, Politi, andVillain [J. Phys. I, 5 (1995), pp. 1317-1350]
and Tersoff et al. [Phys. Rev. Lett., 75 (1995), pp. 2730-2733].

Key words. epitaxial growth, step bunching, continuum model, elasticity
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1. Introduction. Nanostructures such as quantum wires and quantum dots ex-
hibit novel electronic and optical properties and have important potential applications
in semiconductor technology. How to fabricate them efficiently has raised intense in-
terest recently. One promising way is to employ the self-organization process during
heteroepitaxial growth of thin films where they are under stress. The mismatch
between the lattice constants in the film and in the substrate causes misfit strain
and stress in the film, driving the self-organization of surface morphology (see, e.g.,
[44, 46]). Therefore understanding the mechanism of misfit related self-organization
is an important step to make this technology a reality.

The stress-driven morphological instability was first studied by Asaro and Tiller
[1] and later independently by Grinfeld [17, 18] and Srolovitz [43]. It is called Asaro—
Tiller-Grinfeld (ATG) instability or Grinfeld instability. These authors studied the
linear instability of a planar surface of a stressed solid to small perturbations and
found that the planar surface is unstable for wavenumbers less than a critical value.
This instability is manifested by a mass transport via surface diffusion. The stress in
the solid is a destabilizing factor while the surface energy is a stabilizing one. This
linear instability was also studied by Gao [15], Spencer, Voorhees, and Davis [42],
Freund and Jonsdottir [14], Grilhe [16], and others.

The nonlinear evolution of the stress-driven instability for thick films will result
in the formation of cusps. It was studied by Yang and Srolovitz [54], Chiu and Gao
[5], Spencer and Meiron [40], and Kassner and Misbah [20]. If the films are thin and
wet the substrates, Stranski-Krastanow wetting islands will form. The steady states
of island shapes were studied by Spencer and Tersoff [41], Kukta and Freund [23],
Spencer [39], Rudin and Spencer [33], and Shanahan and Spencer [36], and others.
The nonlinear evolution of the surfaces of thin films and the formation of islands were
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studied by Chiu and Gao [6], Zhang and Bower [55].

These authors treated the surface as a continuum, neglecting the presence of steps.
This can be true only at relatively high temperature above the roughening transition,
when the surface can change continuously. The normal temperature for epitaxial
growth is below the roughening transition, when the surface will consist of steps and
terraces (see, e.g., [30]). In this case, the surface cannot continuously change, and it
has been shown that there is an activation barrier for the nucleation of steps [48, 53].
Therefore the continuum theories mentioned above do not apply directly. In practice,
most semiconductor devices are fabricated on vicinal surfaces. Such surfaces are cut
at a small angle to the atomic planes, creating a succession of terraces separated by
atomic-height steps. The self-organization driven by misfit elasticity is achieved by
step bunching [26, 28]. These bunches have uniform size and spacing, and they are
much straighter than single steps, which tend to meander (Bales—Zangwill instability
[3]) due to the Schwoebel barrier [35]. Therefore they can serve as superior templates
for growth of quantum wires and nucleation of clusters [32, 45].

The understanding of step bunching induced by misfit strain is not as complete
as that of the traditional ATG instability for a continuous surface. One important
model was proposed by Tersoff et al. [49] and Liu, Tersoff, and Lagally [24] describing
the dynamics of each step based on Burton, Cabrera, and Frank (BCF) theory [4].
In their model, the elastic effect of a step on a thick film is modeled by a force
monopole caused by misfit stress in the bulk and a force dipole caused by the step
[47]. The force monopole causes attractive interaction between successive steps, which
destabilizes a uniform step train. The force dipole causes repulsive interaction between
successive steps, which stabilizes a uniform step train. They analyzed the linear
instability toward step bunching from a uniform step train with small perturbations
and showed that it evolves by progressive coalescence of step bunches [49]. They also
studied the kinetic debunching effect and demonstrated numerically how to control the
size of bunches [24]. Another important model was proposed by Duport, Nozieres,
and Villain [8], Duport, Politi, and Villain [9], and Duport [7]. Besides the two
elastic effects between the steps considered by Tersoff et al., they also considered the
elastic interaction between adatoms and steps and the Schwoebel barrier. The elastic
interaction between adatoms and steps is stabilizing or destabilizing depending on the
sign of the misfit. The Schwoebel barrier is always stabilizing. Additional work was
done on the shapes of the islands which consist of steps. Duport, Priester, and Villain
[10] computed the equilibrium shapes of pyramid-like islands. Kaganer and Ploog
[19] studied the two-dimensional island shapes and growth kinetics of step bunches
by modifying Tersoff et al.’s model. All these models are two-dimensional based on
the observation that the steps are very straight in bunches. Kukta and Bhattacharya
[22] proposed a three-dimensional model for step-flow-mediated crystal growth under
stress. As far as we know, there is no continuum model for step bunching induced by
misfit strain.

There are three different levels of models for epitaxial growth: kinetic Monte
Carlo (e.g., [38]), BCF theory [4], and continuum theories, with length scales ranging
from atomic size, to terrace width, to mound size ([13], see also [11]). In most cases,
a continuum model is desired when we are interested only in the shapes of step
bunches or islands. The existing continuum models for the traditional ATG instability
follow Mullins’ chemical potential argument [27]. They do not incorporate the atomic
structure of the underlying crystal which plays an important role in epitaxial growth.

In this paper, we derive a continuum model for the elastically driving step bunch-
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ing by taking the continuum limit from the discrete models of Duport, Politi, and
Villian [9] and Tersoff et al. [49]. The underlying atomic features of epitaxial growth
reflected in the discrete models are kept in our model. This method of deriving
continuum models from small scale models has been used in the literature to obtain
continuum models for epitaxial growth without elasticity [50, 2, 31, 21, 29] (from BCF
models), [34, 12, 25] (from BCF models coupled with adatom density) and [51] (from
kinetic Monte Carlo models).

The rest of the paper is organized as follows. In section 2, we review the concept of
epitaxial growth on vicinal surfaces and the BCF model, and we present the discrete
models of Duport, Politi, and Villian [9] and Tersoff et al. [49]. In section 3, we
derive our continuum model from these discrete models. In section 4, we summarize
our results.

2. Epitaxial growth on vicinal surface and BCF-like models. In this
section, we review the concept of epitaxial growth on vicinal surfaces and BCF theory,
and we present the discrete models for elastically driving step bunching.

Epitaxial growth is the growth of crystalline film on a crystalline substrate fol-
lowing the same structure as the substrate. A vicinal surface consists of a succession
of terraces separated by atomic-height steps, and the angle between the surface and
the crystallographic plane is small. According to the BCF theory [4], the adatoms
diffuse on the terraces until they meet the steps and get incorporated into the steps.
The surface then grows (see Figure 2.1). The best way to grow a good crystal is to
grow it on an infinite vicinal surface with parallel, equidistant steps (uniform step
train) [30].

Steps and adatoms can interact elastically. The elastic interaction may be due to
different kinds of mechanisms. One mechanism is the broken bond mechanism, which
originates from the force dipole exerted by adatoms or steps due to the broken bonds
of the adatoms or along the steps. The other mechanism is the misfit mechanism,
which originates from the misfit between the lattice constants of the film and the
substrate. The misfit strain and stress exist in the bulk of the film. If the modulation
of the surface is small, the effect of this mechanism is equivalent to a surface stress

[J

i deposition

diffusion  attachment/detachment
/ e
terrace S/

step

Fic. 2.1. Schematic picture for the BCF theory.
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acting on a flat surface proportional to the modulation of the surface and the misfit.
In the case of isotropic misfit and Hooke’s law, the surface stress due to the misfit is
given by

ba FE

where a is the lattice constant in the substrate, a + 6a is the lattice constant in the
film, E is the Young modulus, v is the Poisson ratio, and dh is the modulation of the
surface.

The elastic interactions between adatoms and steps affect the diffusion of the
adatoms on terraces. The elastic interactions between steps modify the equilibrium
adatom density on steps and therefore modify the incorporating process of adatoms
into the steps if we assume the adatoms incorporated into the steps can detach from
them.

As far as diffusion alone is concerned, the adatoms prefer to go to the upper step
rather than to the lower step, since an energy barrier exists near the lower step; this
is called the Schwoebel barrier [35].

Now we present the model given by Duport, Politi, and Villain in [9] for a 141-
dimensional vicinal surface based on the BCF theory. The 1+41-dimensional model
assumes that the steps are straight and parallel, and the diffusion on the terrace is
uniform in the direction parallel to the steps. The vicinal surface is assumed to be
infinite and monotonic in the direction perpendicular to the steps. Without loss of
generality, it is assumed that the terrace on the left of a step is higher than the terrace
on the right. Letting {z,} with -+ < z,_1 < &, < Tp4+1 < -+ - be the step train, the
equations describing the adatom diffusion and step motion can be written as

Qg% :Dé% (%% E%%%) +F, x,<z<Xpy1,
(2.2) P (Lp; * kgLT %% =k pn = pn)s =20,

D (% kf;nT %%) =—k7(pn = Phs1), T =Tnyn,

80— 20t (pul e = )+ K (i — )

where p,, is the adatom density on the terrace between the nth step and the (n +
1)st step, F' is the deposition flux, D is the diffusion constant on terrace, kp is the
Boltzmann constant, T' is the temperature, and kT and k~ are the hopping rates of
an adatom to the upward step and downward step, respectively; the Schwoebel effect
stipulates

(2.3) kT > k.

pY is the equilibrium adatom density on the nth step; it is equal to the equilibrium
adatom density on a step in the absence of elastic interactions py with a local correction
due to elasticity

(2.4) PO = poe TET UG —1n).

The function U(x) is the elastic energy due to the interaction between an adatom and
the steps
+oo

(2.5) Uz)=- Y -2
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and f, describes the elastic interaction between the nth step and all other steps

(2.6 = (M- )

mn Tm — Tn (mnz - xn)g

The constants aq, s > 0, ap may be either positive or negative, and

2 ba
2.7 =21 —lga’,
(27) 00 = 2(1+1)
2E1+v (6a\” ,

2.8 = -
(2:8) a 71'11/((1) “
(2.9) g = i(1 —v?)uat

' *T 7E s

where a2y, is the force dipole moment due to the broken bond mechanism for an
adatom, apus is the force dipole moment due to the broken bond mechanism along a
step.

The first equation in the system (2.2) describes the deposition and diffusion pro-
cesses of adatoms on a terrace. The second and third equations describe the incorpo-
rating process of adatoms into the steps, which serve as the boundary conditions of
the diffusion problem. The fourth equation gives the velocity of the steps.

The function U(z) describes the elastic interaction between one adatom and the
steps. In this expression, the adatom has the broken bond effect and the steps have
the misfit effect, which is dominant among all possible combinations. The sign of
g can be either positive or negative depending on the sign of pg,da. The case of
teba > 0 means that the elastic interaction between an adatom with the broken bond
effect and a step with the misfit effect is repulsive for upper steps and is attractive for
lower steps. Thus the adatoms on a terrace prefer to go to the lower step than to the
upper step. On the other hand, p,6a < 0 means that the elastic interaction between
an adatom with the broken bond effect and a step with the misfit effect is attractive
for upper steps and is repulsive for lower steps. Thus the adatoms on a terrace prefer
to go to the upper step than to the lower step.

The function f,, describes the elastic interaction between steps. The first term in
it comes from the elastic interaction between steps in the step train due to the misfit
mechanism. It is an attractive interaction. The second term comes from the elastic
interaction between steps in the step train due to the broken bond mechanism. It is
a repulsive interaction. Here we do not consider the interactions between a step with
the broken bond effect and another step with the misfit effect, since they cancel. In
fact, consider two successive steps, one is higher than the other. Due to the misfit
mechanism (2.1), the higher step generates a surface stress with a sign the same as da
and the lower step generates a surface stress with a sign the same as —6a. However,
due to the broken bond mechanism, the two steps generate force dipole moments with
the same sign. Therefore the elastic interactions between one step with the broken
bond mechanism and another step with the misfit mechanism cancel and we do not
need to take them into consideration. In Duport, Politi, and Villain’s paper [9], they
did not notice this and they omitted these interactions by assuming either the broken
bond mechanism or the misfit mechanism is dominant.
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Now we solve the system (2.2). Usually in epitaxial growth, the deposition process
is much slower than the diffusion process, which means that the step velocity is
very small compared with the adatom hopping velocity. Therefore the quasi-static
approximation can be made:

9pn
ot

Under this assumption, we can get an explicit solution for the step velocity:

(2.10) ~ 0.

1 den(t)  _ Fm
2 dt 2
_ U(@p41) Ul;(a:%)
n pne BT —pres
U(zn) U(‘TnJrl)
e kT e kT 1 Tn+1 U(y)d
+ += e*sTdy
+ —
k k D J,.
U(zn) i U(zp—1)
- kT kT
Pn—1€¢ "B — Pn-_1€ B
U(zp—1) U(zn)
e FBT e BT 1 [ uvw
+ + = eFsT dy
Kt k- D/,
n—1
U(@p41) U(zn)
Fln e kT e k5T
2 k™ kT
+ U(zn) U(zp41)
e BT ¢ FBT 1 [T v
e tp) W
(2.11) Zn
U(xn) U(wpn—1)
Fln—l e kBT e kBT
2 k~ kT
T T U1 U(zn)
e kBT e kBT 1 In U
+ + = eFsT dy
Kt k- ' DJ,
n—1
F Tn+1 T+l + Tn g(yj{
D yo Ty ety
Tn
+ U(xzn) U(zpn41)
e FBT e kBT 1 [ontt ’[‘J(y%d
+ + = erBr dy
+ —
k k D J,.
F [*n T Ty U(y)
= y,% FET dy
Tn—1
T T UG@a_1) U(zn) ’
e kBT e kBT 1 Zn ]l;’(y)d
+ + = eksT dy
+ —
k k D J,,
where
(2.12) ln = Tpy1 — Tn

is the width of the terrace between the nth step and the (n + 1)st step.
If it is further assumed that the elastic energies are very small compared to the
thermal energy

(2.13) fn,U(z) << kpT,
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keeping the leading order terms of 1/kgT for each effect, respectively, we can write
the step velocity as

Ld(ﬁn(t) _ Fln + ln—l + po_ . ln . fn+1 — fn
2 di P BT T 1 ”
kt kD
_ _Po_ . ln—l . fn_fn—l
kBT i + i lnfl lnfl
kT kT D
Flo(1 1Y Pl (1 1
L2\ k) 2\ kT
i + i + lﬂ i + i bn—1
(2.14) e D W e D
E /rn-H y— Tpt1 + Tp U(y) dy
D/, 2 ksl
" T T
kKt k= D
F Tn n n—
D (y - +2m 1) (k](yT)dy
Tn_1 B
o 1 1 ln—1 ’
kT * k™ D

This step motion equation is simpler than that derived in Duport, Politi, and
Villain [9]. We keep only the leading order terms of 1/kgT for each effect, respectively.
(We neglect the O(1/kgT) corrections to the hopping rates k%, while they kept all
O(1/kpT) terms.)

If we consider only the attractive and repulsive elastic interactions between steps
and neglect the elastic interaction between adatoms and steps, as well as the Schwoebel
barrier, as was done in Tersoff et al. [49] and Liu, Tersoff, and Lagally [24], then we
have

(2.15) Lden _ pln+lni , poD (fnﬂ —fn  fa— fn1> .

a? dt 2 kpT I It

This corresponds to the case U(y) =0 and k* =k~ = +oco in (2.14).

3. Continuum equation. In this section, we derive our continuum model gov-
erning the elastically driving step bunching by taking the continuum limit from the
modified Duport et al.’s discrete model (2.14), of which Tersoff et al.’s discrete model
(2.15) is a special case.

Assume the lattice constant a is very small compared with the length scale in
which we are interested; then the surface can be considered as a continuous function
h(z). As in the discrete models, we assume that the overall slope of the surface
is negative. We also assume that the surface has only a bounded deviation from a
flat surface representing a uniform step train, so that those summations of the 1/r
elastic interactions in (2.5) and (2.6) are defined in the sense of principal value. More
precisely, we assume that h(z) € C*(R) satisfies the following:

2> Pazy Newe, and hgprr are bounded,
z <0
() =

h
(3.1) h
h —Ax + a bounded smooth function,
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where A > 0 is a constant.

Due to the monotonicity, we can also consider x as a function of h. Due to the
asymptotic property of h(z), we know that z(h) is defined for all A and therefore has
a similar asymptotic property. More precisely, z(h) satisfies the following:

x(h) has up to fourth order bounded derivatives,
(3.2) xp <0,
z(h) = —% + a bounded smooth function.

The step motion equation (2.14) can be considered as a numerical scheme for
a differential equation of x(h,t) with the grid constant a. We have the following
relations:

(3.3) Ty = x(hy,t)

(34) hn+1 - hn = —a,

where x,, is the position of the nth step, h,, is the height of the terrace between the
(n — 1)st step and the nth step. See Figure 3.1.

We obtain our continuum equation by letting a — 0 in the step motion equation
(2.14). We will first compute the continuum limit of each summation representing
each elastic effect and then derive the continuum equation.

3.1. Continuum limit of the 1/r3 interaction between steps. In this sub-
section, we compute the continuum limit of >
First, we have

a2
3

a
— 3 as a — U.
MFEN (T —2p )3 0

m;én(xm_xn)
+oo

- X (onir many)
el (xn-i-m_xn)3 (3711_$n—m)3

Yoo 2xn — Tn4+m — Tn—m
— a2
(35 = > g 3
m=1 anrm — T Ty — Tp—m
a a

. ((mn - l'nfm)z + Ty — Tpn—m xn+m — Ty _|_ (anrm - xn)z)
a a a a

+oo

S .

m=1

For each a,,, we can compute its limit

. 3 Thh 3
3.6 lim a,, = —— —F = —shshes.
(3.6) a—0 m? xﬁ m?

By the assumption of z(h) (3.2)

(3.7) R (%) .
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Fi1G. 3.1. Continuous surface profile h(x) and positions of steps.

Therefore the summation converges absolutely, and we can change the order of
the summation and the limit to get

a2 7r2
(3.8) lim D — T Z h hm 5 hahaa:
m#n

3.2. Continuum limit of the 1/r interaction between steps. In this sub-
section, we compute the continuum limit of ) inra asa— 0.

We use the following theorem obtained by Sidi and Tsraeli in [37]. They derived
it to estimate the error of computing a Cauchy principal value integral using the
trapezoidal rule.

THEOREM [37]. Let g(x) be 2N times differentiable on [a,b]. The interval [a, b]
is divided into n small intervals with Ax = (b—a)/n, z; = a+ (j — 1) *x Az, j =
0,1,...,n+1. Let G(z) = g(z)/(x — t), where t = x;, for some jo # 0,n+ 1. Then
as Ax — 0,

/G(m)dw = Az %G(a)—i— Z G(acj)—l-%G(b) + Azg'(t)

z;#t,1<5<n

“V(a) — GV (b)) Az + Ron[G; (a,b)],

ool

where the B,,’s are the Bernoulli numbers and

b
(310) |R2N[G; (a, b)“ S MQNA$2N/

iy (LEFON

da2N x—t

for a constant Mapy not depending on G(z) and [a,b].
Now without loss of generality, assume x(0) = z, and consider the function
G(h) = 1/(z(h) — 2(0)). Choosing the grid constant to be our lattice constant a and
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N =1, using the theorem in (—o0, +00), we have

+oo dh a a Thh
3.11 _— — _ = O 2 ,
(3.11) /_OO z(h) — x(0) m%;n Ty — T, 2 T3 +0(a)

where the integral on the left is in the sense of the Cauchy principal value at 0 and
oo. It is defined by

e an o dh Y dn
012 [ e </_Hx<h>—x<m+/e <h>—<0>>

Here we have used the assumption of z(h) (3.2) to guarantee the existence of the
Cauchy principal values at 0 and oo and the convergence of the integral in the error

term (3.10).
Therefore we have
a oo dh a Thh
3.13 _— = e — T O 2 .
(3:.13) mefxn /_Oo x(h)fx(0)+2x%+ (a%)

m#n

Now we show that change of variable from h to z does not affect the Cauchy
principal value integral. In fact,

H z(H)
—dh ﬁz dz
€ x(h) — 1‘(0) z(e) x Tn
(3.14) on—d rzatan(0)e  rale) b
)
a(H) on—H otz (0)e "
Since
xz(€) h Tn 425 (0)e4+0(€?) h
(3.15) / T —dr = / T —dx = O(e),
Tn4xp(0)e T —Tn Tpn+xp (0)e T —Tn

(3.16) / e g

(H) r — Tp

H 1 1
we have

H Tn+xp(0)e
dh " he 1
o [msm Ly mmrreo+o(x)

n

Similarly, we have

—e dh Tt h 1
3.18 / 7:—/ i dx + Ofe +O().
S 7 ) Rl A O ¥

Therefore a change of variable from h to x does not affect the Cauchy principal
value integral. From (3.13) we have as a — 0,

(3.19) 3 %xn - —/

x
m#n m -

o h, ahgy

d
T — T, v 2 hy

+ O(a?).

The integral is in the sense of the Cauchy principal value at 0 and oco.
We keep the O(a) term here because it has the same order as the 1/r3 interaction.
Summarizing the results, we have shown that as a — 0,

hl.L 2

oo, 1 T
2 2f z Za? — )
(3.20) afr aal/ x_mndﬂc—I— 50 ™ + 5 aohghay

— 0o
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3.3. Continuum limit of the interaction between adatoms and steps. In
this subsection, we compute the continuum limit of the interaction between the steps
and the adatoms on the terrace between steps x,, and z,,41:

[ ot Tn 1
(3.21) lim — <y . +; “) 3 dy.

a—0a [, mxmfy

This integral has singularities at the endpoints x,, and z,11. Duport, Nozieres, and
Villain [8], Duport, Politi, and Villain [9], and Duport [7] overcame this difficulty
by computing the integral on the interval [z, + a,z,+1 — a]. One reason for this
truncation of the integration interval is that the nearest lattice site to the step is one
lattice constant away from the step. Here we also use this approximation.

First, we compute

Tn41 T, + -Tn—i-l 1
3.22 — dy.
(3.22) /x ) (y 5 ) p—

Form#n,n+1

Tn41 1 —
/ y— Ty + Tpia dy -+ (z,, - Ty + Tpt1 1Og LTm — Tn )
. 2 T — Y 2 Tm — Tp+tl

(3.23)

Form=n

Tntl T + Tt 1 L, I

3.24 — dy = -1, + — log —.
( ) /In"l‘(l (y 2 Tn —Y Y + 2 o8 a

Form=n+1

Tnt1ma n n 1 ln ln
(3.25) / (y _Int2 H) dy = —l, + —log —.
o0 2 Tpy1 —Y 2 a

Therefore we have

1 Frrt Tn + Tn+1 1
5/1 (y - 2 ) me =y

n

m Lk !
n—+k n
+oo I Ly l Z a o
n+k k=1
= 3| (St dy e
m=1 k=1 Z ntk
a
k=1

(3.26) iln—k L

“+ o0 m
L, ln—r | 1, —1 ¢ a

+> —a+< - —|—2a>log iy

m=1 k=1 Z n—k

a
k=1
- 2%” + %" log %”
— ~— by Ly
= Zam—l— me—QE"—l—E”logE”
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Rewrite a,,, as

ln I 1 1+ 0,
2 =t . __
(3.27) tm a+2a Om, Oglfﬂm’
where
In
(3.28) O = ——20
Zln—i-k n In
a 2a
k=1

Using the assumption of z(h) (3.2), we can prove that

(3.20) O = O <1>

m

and
1
(3.30) am = O (mz> :

That means that Zjnozolam is uniformly convergent with respect to a. Therefore

+o0 +00 oo 1 m+1 1
(3.31) i%mZ:lam :n;ili%am :mZ:1 (1— (m—i— 2) logm) m

Similarly, we can prove that

+oo +o00 too 1 m+1 1
(3.32) ;%n;bm = g:‘lg%bm =2 (1 - <m+ 2) IOgm) ()

m=1

It is easy to compute the continuum limit of the other terms in (3.26):

. l, s In 2 4+ log |hy(xn)]
3.33 1 2—+ —log— | = ————M——=—.
( ) alir%)( a + a o8 a) he(zy)

Using the relation

+oo
1 m-+1 1
3.34 1 1— )1 ~ Z1log?2
(3:34) +m§_:1( (m+2)0g m) ~log 2,

which can be found in Duport, Politi, and Villain’s paper [9], we have

o1 fEn Tp + Tpat 1 1
@39) i [ (5= B Sty = s lonnlhu(n))

m

Therefore as a — 0, we have

1 Tn+1 xn+xn+1 1
3.36 - —— | U(y)dy = — —— log(27|hy(xy)]).
@a0) [ (= T ) UGy = o ez o)
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3.4. Derivation of continuum equation. Now we have the continuum limit
of f, (3.20) and the continuum limit of the integral containing U(x) (3.36) as a — 0.
To get our continuum limit equation, we approximate the finite differences in the
discrete model (2.14) by derivatives:

(3.37) Iy = Tns1 — Tp = —apa + O(a?) = —hﬂ 1+ 0(a?),
ln + lnfl
= Tp4+l — Tp—-1
(3.38) = —2zpa — szTpppa’ + O(a®)

2
- ek (i) v

(3.39) G”“l —Gn _ Glan + 17) —Glon) _ Gz + O(l,) = Gy 4 O(a),

and therefore

(3.40) Gpi1— G, = —a% + O(a?),
xT
where G is any smooth function of z and G,, = G(x,,).

We keep only the leading order terms of a in each finite difference, respectively, to
keep the main contribution from each effect, except for the term F(I,, 4+ l,—1)/2. Its
leading order term of a is the average growth rate of the surface due to the deposition
flux, and we keep a higher order term which has the same order as the term of elastic
interactions between steps.

We also use the relation

Div_ 0 ohds _
Dt ot Oxdt
where Dh/Dt is the material derivative. It means that adatoms can move only in the

horizontal direction.
Now letting a — 0, we get the continuum equation

2 02
_ .3 a“ 0 1
ht - aF(1+1281‘2(h326>)

n a27ra1p0D o 1 8f>

(3.41)

kgl 0z \T— (L/a)h, Oz

(3.42) ) 9 )
1.3 _ o (1
+gaF(l- — )5, (1 — (L/a)hy
T a3F040Q log(2m|h.|)
kgl O0x \1—(L/a)h; )’
where
1 [T hy(y) a hyy w2
4 = — — == xllxx
(3.43) (@) W/m Wy + 5= - b

and parameters

(3.44) le =4/ —,
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D
(3.46) L=1,+1.

The parameter [, represents the equilibrium distance between two successive steps
under the attractive misfit interaction and the repulsive broken bond interaction,
I+ and [_ represent the strength of the upward and downward step edge barriers,
respectively, and

(3.47) I_>1,

due to the Schwoebel effect.
The first term in f(z) is the Hilbert transform of h, with a negative sign. The
Hilbert transform of a function u(z) is defined by

(3.48) H(u) = E /+00 Mdy.

T) oo T—Y

We can write our continuum equation in a more convenient form:

(3.49) hy :F+a6—2 <1> 10 { ! <5W+A+olog(27rlhxl)ﬂ,

dz2 \ h2 Oz |1— Lh, \ 0z
1

where H(h,) is the Hilbert transform of h, and

(3.51) F =d°F,
a®F
- L
3.53 L=—
(3.53) 3
a27roz1p0D
3.54 ettt i
(3:54) g =T
L4
(3.55) A= 5(1 F(_—1y),
a®Fay
3.56 =
(3.56) o=
a
3.57 =
(3.57) n=g5-
7212
(3.58) Y= 2

where all the constants are positive except o, which may be either positive or negative.
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The constant F' and the %(h%) term are due to the deposition flux, where F

is the average growth rate of the surface and the 3‘3—;(}%2) term is the correction
due to the local surface profile. The function f represen%s the elastic interactions
between steps. The Hilbert transform term and the h,,/h, term come from the 1/r
misfit elastic interaction. The hyh,, term comes from the 1/73 broken bond elastic
interaction. The constant A\ and the factor 1/(1 — Lh,) come from the step edge
barriers; A is positive due to the Schwoebel effect. The constant A also depends on
the deposition flux. The log(27|h,|) term is due to the elastic interaction between
adatoms and steps. Its coefficient o also depends on the deposition flux. Its sign can
be positive or negative depending on the sign of agy. Recall that g > 0 means the
elastic interaction between an adatom and a step is repulsive for upper steps and is
attractive for lower steps. Thus the adatoms on a terrace prefer to go to the lower
step than to the upper step. On the other hand, ay < 0 means the elastic interaction
between an adatom and a step is attractive for upper steps and is repulsive for lower
steps. Thus the adatoms on a terrace prefer to go to the upper step rather than to
the lower step.
We can also write the continuum equation as

0
—_ 3 _ =
(3.59) hy =a’F B J(z, 1),

where the surface flux J(z,t) is

0 3}
(3.60) J(z,t) = B (hlz) + ﬁ (ﬂﬁi + A+ Ulog(27r|hm|)) .

If we neglect the Schwoebel barrier and the elastic interaction between adatoms
and steps, the continuum equation becomes

(3.61) h=F+ (L +ﬁa—2 —H(h,) + i+ he | h
' tT T Y2 \h2 D22 @) T\, T 0 | Naa )

It is the continuum limit of Tersoff et al.’s model (2.15).
If we do not take into consideration the deposition flux, in other words, we consider
only the elastic interaction between steps, the continuum equation becomes

(3.62) he= L b 40 (2 an ) b
. t_é)xZ T n hz Vg T | -

Here we have rescaled the time by (.
Equation (3.62) has a variational form. It can be written as

(3.63) he = i,

where the chemical potential p is the variation of the total elastic energy
1-
(3.64) E= / <2hH(hx) + n|he|log |ha| + ”67|hx|3> dz.

Here h = h—(—Az) is the deviation from the reference planar surface (see assumption

(3.1)).
Results on the linear instability, nonlinear evolution, and steady states using our
continuum equation are presented in [52].
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4. Summary. We have derived a continuum model governing the epitaxial
growth with elasticity on a 1 4+ 1-dimensional vicinal surface where the surface pro-
file is monotonic. We obtained our model by taking the continuum limit from the
discrete models of Duport, Politi, and Villain [9] and Tersoff et al. [49]. Compared
with the existing continuum models for epitaxial growth on a vicinal surface, our
model includes the effect of elasticity. Compared with the existing continuum models
for surface morphology instability induced by elasticity, our model incorporates the
atomic features of the stepped surface.

Acknowledgments. The author would like to thank Professor Weinan E of
Princeton University and Professor Robert V. Kohn of New York University for helpful
discussions.
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DERIVATION OF CONTINUUM TRAFFIC FLOW MODELS FROM
MICROSCOPIC FOLLOW-THE-LEADER MODELS*

A. AWT, A. KLAR!, T. MATERNE?, AND M. RASCLET

Abstract. In this paper we establish a connection between a microscopic follow-the-leader
model based on ordinary differential equations and a semidiscretization of a macroscopic continuum
model based on a conservation law. Naturally, it also turns out that the natural discretization of
the conservation law in Lagrangian coordinates is equivalent to a straightforward time discretization
of the microscopic model. We also show rigorously that, at least in the homogeneous case, the
macroscopic model can be viewed as the limit of the time discretization of the microscopic model as
the number of vehicles increases, with a scaling in space and time (a zoom) for which the density
and the velocity remain fixed. Moreover, a numerical investigation and comparison is presented for
the different models.

Key words. microscopic and macroscopic traffic models, Godunov scheme, hydrodynamic limit
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1. Introduction. Microscopic modeling of vehicular traffic is usually based on
so-called follow-the-leader models; see [16], [6]. A system of ordinary differential
equations is used to model the response of vehicles to their leading vehicle. These
models usually consist of a system of second order ordinary differential equations. For
instance (a more general nonlinearity could be considered as well), we consider

(11) CEZ = V;,
i+l — Ui 1 AX
oo tou 1T AX Y
(@ig1 — @)V TL T, Tit1 — Ti
where ;(t), v;(t),i = 1, ..., are location and speed of the vehicles at time ¢ € R, and

AX is the length of a car. The basic idea is that the acceleration at time ¢ depends
on the relative speeds of the vehicle and its leading vehicle at time ¢ and the distance
between the vehicles. The constants C' > 0, A > 0, v > 0 and the relaxation time 7T,
are given parameters. In the homogeneous case A = 0 we recover the usual form of
microscopic follow-the-leader models. For A > 0 a relaxation term is added, driving
the velocity of the car to an equilibrium velocity V', which depends on macroscopic
properties of the flow ahead of the driver. T, is the corresponding relaxation time,
different from (and typically much larger than) the reaction time of individual drivers.
The constants C, ~y are fitted to special situations (see [6]). A common choice is, for
example, v = 0. This case has to be treated separately from v > 0; see below. Initial
values z;(0) = 22, v;(0) = v} have to be described with v > 0 and ¥, > .
Sometimes, a time lag is included in the equations to account for the reaction times
of the drivers.
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Macroscopic modeling of vehicular traffic started with the work of Whitham [21].
He considered the continuity equation for the density p, closing the equation by an
equilibrium assumption on the mean velocity v. The equation is

9p+ 9:(pV (p)) =0,

where V' = V(p) describes the dependence of the velocity with respect to the density
for an equilibrium situation. An additional velocity equation has been introduced by
Payne [15] and Whitham [21] as an analogy to fluid dynamics. Recently Daganzo
[5] has pointed out some severe drawbacks of the Payne/Whitham-type models in
certain situations. In [2] Aw and Rascle did develop a new heuristic continuum model
avoiding these inconsistencies:

Op + 9z(pv) =0,
O1(pv) + apv?) = PP (p)0ov = A 2= [V (p) = v].

s

where P(p) is a given function describing the anticipation of road conditions in front
of the drivers, and P’ denotes its derivative with respect to p. In [2], the authors
considered the case of the homogeneous system A = 0, but one can also consider in
particular the case A > 0; see [17] and also [8]. Using the new variable

w=1v+ P(p)
the model can be written in conservative form as follows:

Op + 0. (pv) =0,

Or(pw) + Da(vpw) = A L [V(p) 0]

T

Initial conditions have to be prescribed: p(z,0) = p%(z) > 0 and v(x,0) = v°(z) > 0.
We note that the coefficients in the above models can be prescribed in an a priori
way or derived from microscopic considerations. See, e.g., [11] for a derivation from
a kinetic traffic flow equation.

In the present paper we show how the Aw—Rascle model can be viewed as the
limit of a time discretization of a microscopic follow-the-leader model. In particular,
the macroscopic coefficient P = P(p) is determined from the microscopic model.
The paper is arranged in the following way: in section 2 microscopic follow-the-leader
models and the Aw—Rascle continuum model are considered in more details. In section
3 scaling limits of the microscopic equation are considered and the formal connection
between microscopic and macroscopic model is established. Section 4 contains the full
space-time discretization of both models and rigorous relations between the models.
Section 5 considers numerically the convergence of the discretized system towards the
conservation law in the limit of small time steps and large number of vehicles. We refer
to [17] for a related discussion. Finally, when finishing this paper, we received from J.
Greenberg—whom we thank—a very recent preprint [8], based on quite similar ideas;
see section 4.1 for some comments and a comparison of the results. We have also
learned about closely related ideas in [22]. Clearly, these kind of ideas are on the rise.

2. The models. In this section we discuss the microscopic and macroscopic
models in more detail.
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2.1. The microscopic model. We reconsider the microscopic equations (1.1)
with constant C' = C,,. We introduce a new variable, the distance between, say, the
tails of two vehicles following each other:

li =mit1 — @5
One obtains the system
T; = v,
(Vit1 —v3) 1

ot Ai(v(ﬂi) - i),

v = O
where the local “density around vehicle i” and its inverse (the local (normalized)
“specific volume”) are, respectively, defined by

AX q 1 l;
= an =—= .
l; Cope AX

REMARK 1. The density is often defined as the number of cars per unit length;
here v := 1/l;, and therefore has the dimension of the inverse of a length. With
our definition, the density is already normalized, p = v.AX = v/v,,, and is there-
fore dimensionless, so that the maximal density is pm = 1/7m = 1, when cars are
“nose to tail.” We will often write expressions like p/pm, or T/Tm to emphasize this
normalization.

Now define the constant C', by

Cy = Vref(AX/ pm)” = Vref(AX 7)) = vpefAXT,

Pi

where v,.y > 0 is a reference velocity, and the coefficient (AX 7,,)7 allows us to
recognize in (1.1) the derivative of function P(7) defined below in (2.2). One obtains

the microscopic model
(21) 1’1 = V4,

1 Vpe f T,
. m
Ui = s (Vi1 = vi) 7
i

F A (Vo) — i),

s

T AX
where again 7, = 1 with our definition. We have

. . 1
li = Vj+1 —V; Or T, = E (Ui+1 — ’Ui).

Using the new variable

B N Yref (Tm Yy >0
(2.2) w; := v; + P(1;) with P(r;) := v (” ) ’ K ’
_U,,.efln(::n )7 v = 07

we get

i = A o (Vipi) —vi).

T

Altogether, one notices that (2.1) can be rewritten in the form

(2.3) T, = AX (’Uz‘+1 - 'Ui)a
w; =A Tir (V(pi) — i)
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2.2. The macroscopic model. In conservative form, the macroscopic system
under consideration is given by the following equations:

(2.4) Op + Ozpv =0,
Dupw + Dgvpw = A - [V (p) =],

.
where p is again defined as the (normalized) density, i.e., the (local) dimensionless
fraction of space occupied by the cars, and v denotes the macroscopic velocity of the
cars. Moreover, A = 0 in the case of the homogeneous model and A is a positive
constant, say A = 1, for the relaxed model, and

(2.5) w=v+ P(p).
The hyperbolic part of the above system is written as

(2.6) dep + 02(pv) =0,
O(pw) + Oz (vpw) = 0.

In the following, we consider a special class of functions P(p) := P(1/p), where P is
defined in (2.2). In other words, for p > 0,

(27) po={ 5 &)

Urefl pi Y= 0,

where, as in the previous subsection, p,, = 1 and v,¢¢ is a given reference velocity. The
function P is not a pressure. In fact, it is homogeneous to a velocity [11], [17]. In the
context of gas dynamics—completely irrelevant here; see [5], [2]—this pseudopressure
P would be homogeneous to the enthalpy, so that the exponent v here plays the role
of the usual (v — 1). In particular, the case v = 0 here would correspond to the
isothermal case, with the same mathematical advantages and difficulties; e.g., one of
the Riemann invariants is unbounded near regions of local vacuum; see section 4.1.
To obtain a well-defined problem for the case with relaxation—A > 0—we choose
the function V- =V (p), p > 0, such that

(2.8) —P'(p) <V'(p) <0

is fulfilled for all p > 0. This is the so-called subcharacteristic condition; see, e.g., [21],
[3], [7]. A typical choice would be V(p) = —c (P(p) — P(pm)), 0<c¢ <1, and a
description of the equilibrium curve v = V(p) in the (w,v) plane is shown in Figure
2.1 (left) for the case v > 0 and in Figure 2.2 (left) for v = 0. Of particular interest
is the characteristic case, where the equality holds in one of the above inequalities.
More precisely, if v > 0, we assume that

(2.9) V'(p) = —P'(p) (resp., 0) for p < p, (resp., px < p < pm),

where p, is some positive intermediate value between p = 0 and the maximal value
pm of p. The equilibrium curve is shown in Figure 2.1 (right); see [17].
In contrast, if v = 0, then in the characteristic case we will assume that

(2.10) V(p) = v (resp., — P(p)) (resp., 0)
for 0 < p < pu (resp., pu < p < pas) (resp., pax < p < pm),
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Zm p=0 Zm p=0

v(p) V)

e

v

Fic. 2.1. Invariant region R and equilibrium curve v =V (p) for v > 0, in the (w, z) = (w,v)
plane, in the subcharacteristic case (left) and in the characteristic case (right). In the first case, the
convexity of the equilibrium curve could be arbitrary.

z z

7,0 27,,f2>y$
a0, 77

Vimin o Win Weq D

F1G. 2.2. Invariant region R and equilibrium curve v =V (p) for v = 0, in the (w,v) plane, in
the subcharacteristic case (left) and in the characteristic case (right).

where p, and p.. are two positive intermediate densities; see Figure 2.2 (right). In this
case v = 0, Figure 2.3 shows examples of the same equilibrium curve and associated
bounded region (in the (p, p v) plane), which are invariant for the full system (2.4)
in the subcharacteristic case Figure 2.3 (left) and in the characteristic case Figure 2.3
(right).

Moreover, let 7 := p~! be the specific volume, and define the associated functions

(2.11) ( ) )V(j_), w=v + P().

We note that

~ Y
Pl(r)=—=LTn, >0,

where P’ denotes the derivative of P with respect to 7 and, as in Remark 1, 7, :=
pt = 1. For p > 0 we have P’ < 0 and P” > 0. For p > 0, using the specific volume
7, we now transform (2.4): we change the Eulerian coordinates (z,t) into Lagrangian
“mass” coordinates (X,T') (see [4]) with

0 X = p, 0¢ X = —pv, T=t
or

8Xx = p_l =T, 8xt = 07 8T$ =, 8Tt =1.
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ov Ve pv Vi

Fic. 2.3. Invariant region R and equilibrium curve v =V (p) for v = 0, in the (p, p v) plane,
in the subcharacteristic case (left) and in the characteristic case (right).

Thus, X = fw p(y,t)dy is not a mass. In fact, it describes the total space occupied
by cars up to point x. We obtain

(2.12) O — Oxv =0,

orw=A Ti [V(p) —v].
T

Since w = v + P(7), this is a hyperbolic system to the unknown functions w and 7,
with relaxation term if A > 0. We add initial conditions 7°(z) > 0 and v%(z) > 0.

We note that, as in the case of gas dynamics [20], even for weak (L) solutions,
this new system is equivalent to (2.4). This equivalence holds even in the vacuum case,
where the map  — X is not invertible, so that Oxx = 7 contains a delta-function.
However, in this case one must admit for (2.12) a larger class of test-functions, which
is an additional difficulty. In the numerical schemes described below, each cell moves
between two trajectories, so that the total mass inside this cell remains constant.
Therefore in each nonvoid cell, the (usual) weak solutions to (2.4) and (2.12) are the
same.

3. Scaling and formal macroscopic limit of the microscopic equations.
According to (2.3) the microscopic system can be written as

_ 1
Ti = i (Vie1 = vi),

1
w; = A T (V(pi) —vi),

where w; = v; + P(7;) is defined in (2.2). On the other hand, denoting time by t as
in Eulerian coordinates, the Lagrangian macroscopic system (2.12) is rewritten as

Oy = Oxv,
1
Oiw = A i [V(P) - ”} )

with again w = v+ P(7). Clearly, (2.3) is at least a rough semidiscretization of (2.12).

Now let us introduce the scaling. Obviously a macroscopic description for traffic
flow is only valid if we consider a large number of vehicles on a long stretch of the
highway. Therefore we introduce a scaling such that the size of the domain under
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consideration goes to infinity, as well as the number of vehicles, whereas the length of
cars shrinks to 0.

In other words, we “make a zoom,” i.e., we introduce a small parameter ¢, and we
multiply the space and time units by 1/e; i.e., we shrink space and time coordinates
x and t to

¥ i=cx and t:=¢t.
In particular, the length of a car is now AX’ := . AX.

Practically, the parameter ¢ is proportional to the inverse of the maximal possible
number of cars per (new) unit length. The space and time derivatives are multiplied
by €. Similarly, since X is the primitive of p in z, it is replaced by X’ := ¢ X,
and therefore the derivatives in X are also multiplied by €. On the other hand, the
normalized density and specific volume are unchanged, as well as the velocity and the
other Riemann invariant w = v + P(7):

P =p, =7, vV =, w = w.

Dropping the primed notation for these unchanged dependent variables, system (2.12)
becomes

or ov
(31) o = ox
ow 1
o =4 cT. [V(p) —v].

Now let us look at the microscopic system, with the same scaling. The only additional
modification is I} = ¢ l;, and the relation 7, = ;/AX is preserved with the primed
variables. Again dropping the primes for the unchanged dependent variables, system
(2.3) becomes

dTi 1
(3.2) o W(Ui-&-l — ;)
dt/ - € Tr (V(pl) - Ui) :

Now let us discuss the consequences of the above scaling on the equations. There are
two cases.

The homogeneous case A = 0. In this case, not surprisingly, the hyperbolic
system and the microscopic system remain unchanged with this self-similar scaling.
The only (important) difference is that in the new coordinates, the mesh size (see the
next section) AX’ = eAX tends to 0 when the zoom parameter € tends to 0.

Therefore, at least formally, the microscopic system “converges” to the macro-
scopic one when ¢ tends to 0. More precisely, in this homogeneous case A = 0, (3.2)
can be viewed as the natural semidiscretization of (3.1); see section 4—finer and finer
when ¢ tends to 0. Obviously, the scaling changes the initial data, see Remark 3
below.

The relaxed case A > 0. Then there are two possibilities. First, assume
that the positive constant A in front of the relaxation time depends nicely on some
macroscopic scale and is, in fact, proportional to €. In other words, let us assume
that the relaxation time is comparable in size to the number of cars per (rescaled)
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unit length. We note that for numerical purposes, we do not really need to let ¢
tend to 0, but we need only to consider a “small” ¢, so that the semidiscretization
(3.2) is “fine enough”; see Remark 2 below. In this case, the conclusion is the same
as in the homogeneous case: the macroscopic system is at least the formal limit
of the microscopic one. Second, on the contrary, assume that this constant A is
unchanged in the scaling; then we formally end up with a scalar Lighthill-Whitham—
Richards-type equation, but then the limit we are considering is the limit (AX’, At') =
(AX,At) e — (0,0), with AX and At constant.

REMARK 2. The size of the physical quantities allows for various possibilities to
scale nicely the equations, with relatively small (but finite) values of €, possibly with
different scaling constants in x and t. For instance, assume that the “old” units are
meter and second. Then, choose as “new” units (or reference length and time) 1500
m (or a mile) and 1 minute, with AX =5 m. Then we rescale as follows:

/ € / t
¥ T 1500° T 60

On the other hand, a typical velocity is 90 km/h, i.e., 25 m/s, or 1500 m per mn, i.e.,
1 in the new units, which is perfect. Moreover, in these new units, the length of a car
is AX’' =5/1500 = 1/300, whereas a good time step in the time discretization, of the
same order as the reaction time of the drivers, would be At = 1/5 second = 1/300
of the new time unit. Thus, in such a system of units, a typical (mazimal?) velocity
is of order 1, as well as the maximal (normalized) density, whereas typical space and
time steps are of the order of 1/300 of the corresponding unit, subject of course to
the CFL condition; see the next section. On the other hand, the relazation time is
typically found to be around 30 seconds, i.e., 0.5 in the new units; see, for example,
[12]. In such a scaling, the rescaled relazation time, i.e., %, would still remain finite,
and therefore we would still be far away from the zero-relazation limit, i.e., from the
Lighthill-Whitham—Richards model.

REMARK 3. So far, we have not discussed the problem of the initial data. Let
us restrict ourselves to the homogeneous case A =0, say, in Lagrangian coordinates.
(The discussion would be the same in Eulerian coordinates.) In this case, as we said,
the scaling preserves the system (2.12) (with A = 0), which we rewrite in the general
form

(3.3) ou + OF(U) = 0,

ot’ ox’
with U := U*® := (7¢, w®). However, this scaling modifies the initial data, where there
are obviously (at least) two scales: the microscopic one, i.e., the length of a car (a
few meters), and the macroscopic one (say, one kilometer). Therefore, it is natural to
extend the microscopic initial data defined in section 2.1 and to assume, for instance,
that in rescaled Lagrangian coordinates the initial data are written as

(3.4) UG (X') =3 U (X),

where the characteristic function x; satisfies x;(X') = 1 if and only if X' € I; :=
(Xj’,_l/Q, X]’,+1/2), with X :=IAX', and UjO is the average value of a “macroscopic”
function Uy over the same interval.

When & — 0, the initial data (3.4) provide initial numerical data to approximate

the solution of the initial value problem (3.3), (3.5), with
(3.5) U(X',0) = Up(X").
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4. Rigorous relations between the microscopic and macroscopic equa-
tions. In this section microscopic and macroscopic discretizations are discussed as
well as different convergence results.

4.1. The discretized models. In this section we will show that a standard
explicit Euler discretization of the microscopic model is equivalent to the classical
Godunov scheme applied to the macroscopic model. Moreover, this discretization is
investigated in more detail.

The discretized microscopic model. We first introduce an explicit Euler time
discretization of the new microscopic model, (3.2), using the rescaled time step At'.
With the above scaling we note that the new At and AX tend to zero when ¢ tends
to 0, with a fized ratio A := At/AX. Neglecting the primed notation, i.e., writing At
and AX instead of At and AX’, we obtain

At
(4.1) =y Ay (it — i)

with

UZTLJrl _ w:}+1 _ ]5(7_1_71+1)

)

and if A > 0, the relaxation is approximated by

—A At —A At

(4.2) with = wie ™ 4 (V) + P M) (1 —e75),

7

with p = 1/7*. Of course, (4.2) contains the homogeneous case—if A = 0, then

(4.3) witt =Wl

On the other hand, if A > 0, the relaxation term is correctly treated for e small,
i.e., for small relaxation times, where the equations are becoming stiff. Now let us
discretize the macroscopic model.

The discretized macroscopic model. As above, we consider the macroscopic
model (3.1) in rescaled variables z’, ¢/, with corresponding steps At’;, AX’, and we
again drop the primed notations. Then (3.1) is discretized using a splitting scheme
which treats separately the convection and the relaxation terms. Consider

(4.4) By — dxv =0,
w=0 if A=0,

and

(4.5) Orw = A [V(p)—v] ifA#£ 0.
eT
The most natural discretization to treat the convection part is the Godunov scheme.
The relaxation part is treated by the same time discretization as for the microscopic
model. Before writing Godunov’s method for the hyperbolic equation, we need a brief
description of the solution to the Riemann problem.
We consider the system (4.4), or the equivalent system (2.6) in Eulerian coordi-

nates. We recall that w = v + P(7). First, the eigenvalues of the system (4.4) are
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A = P'(7) <0 and Ay = 0. The Riemann invariants are w and z := v. They satisfy,
for smooth solutions,

8{0 + )\1851) = 0, 8tw + )\anw = 0.

Now, since P”(7) > 0, it turns out that the first eigenvalue \; is genuinely nonlinear
(GNL), i.e., for all (w,v), dA\1/0v # 0. On the contrary, dAz/0w = 0; i.e,, g = 0is
linearly degenerate (LD), as for the original system (2.6) in Eulerian coordinates.

Now let us denote the left and right Riemann data by (wr,vr) and (wg,vg),
respectively. Since the first characteristic speed is genuinely nonlinear, a state (w,v)
can be connected on its left (in the (X,T) plane) to (wr, vy ), either by a backward
1-shock if v < wp, which corresponds to braking, or by a backward 1-rarefaction
(acceleration) wave if v > vp,.

Moreover, see [2], these equivalent systems (2.6) and (4.4) are sometimes called
Temple systems [19]; see also [10]. Their shock curves and rarefaction curves coincide.
Therefore, even in the case of a shock, we have w = wy,.

On the other hand, (w,v) can be connected on its right to (wg,vr) by a sta-
tionary 2-contact discontinuity v = vr,. Hence, two states (wr,vr) and (wg,vg) can
be connected through a constant intermediate state (wp,vg), which is connected to
(wr,vr) by a 1-shock (braking) if vg < vg, or by a (continuous) 1-rarefaction wave
(acceleration) if vg > vy and to (wg,vg) by a 2-contact discontinuity. Moreover,
w, v are monotone functions of X/t for all values of this variable, whereas 7 is only
monotone inside each elementary wave. In general, (wp,vg) := (wp,vg), so that we
can easily solve graphically the Riemann problem in the coordinates of Figure 2.1 or
2.2.

PROPOSITION 1. We consider here the system (4.4), or the equivalent system
(2.6) in Eulerian coordinates, with the above data (wr,vy) and (wr,vr). Then we
have the following:

1. No local extremum of w or v is created fort > 0. Therefore, the total variation
in space of each Riemann invariant is nonincreasing in time. More precisely,

lfx = fol+1fo=Ff=1=If+—f=|, f=woruw.

2. In the case vy > 0, the density is nonnegative if and only if w—v = P(p) > 0.
Consequently, the intermediate state is at vacuum if the cars in front are “too
fast” with respect to the following cars, namely, if

VR > wp =vp + p(TL)~

In this case, p=1/7 =0, v and w are not physically defined, but if we insist
and mathematically define, for instance, vo = wy = wp, then statement 1
remains true.

3. In the same case v > 0, any region defined by the Riemann invariants

T :={0<v<w<wy="Plpp)}

is bounded and invariant for the Riemann problem and corresponds to
bounded nonnegative densities and velocities. An example of such a region
is the triangle represented in Figure 2.1. Moreover, any rectangle

(46) R:= {(’LU,’U),O < Wiin S W < Wy, = P(pm) , 0 < upin S0 < Umam}

inside T also is invariant for the Riemann problem, away from vacuum if
Wmin — Umaz > 0.
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4. In the case v = 0, vacuum corresponds to w = —oco. Therefore, any rectangle
(4.7) Ri={-c0<w, <w<0<v<v,}

is invariant for the Riemann problem and corresponds to bounded nonnegative
velocities and densities bounded from below by positive quantities.

Proof. Statements 2 and 3 are related to the case v > 0, which has been studied
in detail in [2]. Statement 1 is then obvious, including if vacuum appears. Now, let
us consider the case v = 0, which is often considered in the literature on microscopic
models; see, e.g., [16], [6]. In this case, it also is easy to check statement 4 again using
the relations wy = w_, vy = v4. So the proof is complete. ]

REMARK 4. In the case v = 0, when solving the Riemann problem, it is easy
to check that the mazximal possible speed that cars can reach in an acceleration wave
emanating from (wr,vy) is infinite. Therefore, the cars behind can always catch up
with the cars in front of them, without having to reach the vacuum; compare the
numerical results in Figures 5.2 and 5.3 in section 5 below. 0

Now (4.4) is discretized using the Godunov method for the hyperbolic problem:
We introduce grids in time and mass coordinates with (rescaled) stepsize At and AX
and grid points ¢, and X, /5. Let f{* denote the approximation of the function
f(t, X) for X € [X;_1/2, Xiy1/2), t € [tn,tny1). Let A = AA—;( be the grid ratio.

In view of the above discussion, the Godunov method for system (4.4) is given by

(4.8) wi ™ = w},
Tinﬂ =7+ A(”inﬂ/z - ”?71/2)

=7+ Aviy —of).
And if A # 0, the full discretization is then
(4.9) Tt =g Awit oy — i),

—A At —A At

wi = wile T + (V(pi ) + P(pf )1 — e,

so that we recover exactly the above system (4.2) (or (4.1) when A = 0). We have
therefore shown the equivalence between the discretizations of the microscopic and
the macroscopic system.

By the way, in the macroscopic view of this scheme it will be clear in Theorem
4.1 below that the (sub)characteristic condition is necessary for the stability. This is
far from obvious in the microscopic interpretation.

Classically, the above numerical scheme consists of three successive steps, de-
scribed here in Lagrangian coordinates for nonvoid cells:

1. Starting from piecewise-constant data U := (7', w!") in each cell, solve the
Riemann problem for ¢, < ¢t < t,41 assuming that the CFL condition is
satisfied. Let Up(X,t) := (7, wn)(X,t) denote the corresponding solution.
In fact, the index h stands for the couple (AX, At), and plays the role of the
scaling parameter € in section 3. We note that the intermediate state U’ | /2
in the Riemann problem satisfies

(4.10) wzn—l—l/Q = w?+1/2, U;L+1/2 =iy
2. At time t,,41, average this solution on each cell, i.e., solve (4.1). If A # 0, let

. . 1/2 1/2
us denote the average values of conservative variables by (7'47hL / w;” / ).

2 )
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3. If A # 0, approximate the ordinary differential equation as above to obtain
(Pt wi ) from (4.9).
Again, the formulas would be the same in Eulerian coordinates, except that now the
cells z;_1/2,7;11/2 would be moving with time. Since v?+1/2 = vj 1, we refresh the
position by
x?:11/2 = Ziy1 0 T ALV .
Now let I(a,b) := [min(a,b), max(a,b)). Using Proposition 1 and standard ideas, we
obtain the first important result.

THEOREM 4.1. We consider the above algorithm, under the CFL condition, as-
suming that if A # 0, the (sub)characteristic condition is satisfied and that the initial
data lie in an invariant rectangle R, away from vacuum. Then we have the following.

1. We first assume that A = 0. Then, as in Proposition 1, in each Riemann
problem the total variation of wy is nonincreasing in time. Moreover, in
each cell wy, remains constant: wp(x,t) = wl. Consequently, vy, and also
7, are monotone in each cell. Moreover, (wp(X,t), v, (X,t)) remains in the
invariant region R fort, <t <tpi1.

n+1/2

2. In step 2, w; wl'. On the other hand, since in each cell wy, is constant

/2 . . o
and T, monotone, the average TZH /2 s in I(TZL,TZ_L,'_l/Q). By monotonicity

the same result is true for the velocity. In fact,
+1/2
e T o) = 100 o).

3. Finally, the invariant rectangle R also is invariant for the Godunov scheme.
Moreover the total variation of the Riemann invariants, 3, |f — fI'|. f =
w or v, in space is still decreasing with respect to m. Since wy, is constant
and vy, monotone in each cell, the total variation in time of wy, and of vy, :
(z,t) — v + At(vPT — ) also is controlled from above.

4. On any time interval (tn,tn+1) the solution Uy, satisfies the (discrete) en-
tropy inequality in the sense of Lax: for any convex entropy n(U) = n(t,w)
associated with the entropy flux q(U), and for any n and j,

(4.11) n(U;™) <n(U7) — (At/AX)(@(Uy1)5) = a(USy o).

5. Now we consider the full problem, and we assume that the invariant rectangle

R is constructed as in Figure 2.1 or 2.2, e.g., in the subcharacteristic case its

upper left and lower right corner are at equilibrium. Then the region R also

is invariant by (2.12, 2) and by step 3, i.e., by (4.2). Moreover, under the

(sub)characteristic assumption, the sum of the total variations in space of the

Riemann invariants, Y ;( [w} —w}|+ |[vf —v?|), is still nonincreasing

in time, and the other conclusions of (3) remain valid for (4.2). Consequently,

since the inverse function P! is Lipschitz (away from vacuum), the total
variation of T, also remains uniformly bounded in time.

Proof. Statements (1) to (3) exploit, in particular, the monotonicity of v between

vi and v} 1, which is obvious since wy, is constant in each cell, so that there is only

one simple wave per cell. Note that v is not a conserved variable, so that an Eulerian

classical Godunov scheme the averaging step would not preserve the total variation

and the invariant regions.
Statement (4) is classical: on any time interval (¢,,¢n+1) the solution Uy is con-

structed by the Riemann problem and thus satisfies the entropy inequality in the sense
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of Lax [13]. Therefore, by the Jensen inequality, the new average values U;LH satisfy
(4.11).

Finally, besides the above-mentioned references, it is an exercise to show (5).
Indeed, in (4.9), compute the differences (w;ff — w1 and (v} — o™ 1) in terms

7 1+1 )
of the previous values f;L'H/ 2, f = w or v, multiply each difference by its sign and

add them. Then use the (sub)characteristic assumption to show the result. In the
characteristic case (see [8]) we note that the evolution of w in each cell does not
depend on the other cells, so that the total variation of each Riemann invariant w
and v is nonincreasing in time, whereas in the subcharacteristic case (see [1], [14]) we
can only control the sum of these total variations. |

4.2. Convergence results and hydrodynamic limit. There are three levels
of description: the fully discrete system (4.9), or (4.1), (4.3), the follow-the-leader
model (1.1), and the continuous system (4.4). In this section we discuss first the limit
from the fully discrete level (4.8) to the continuous macroscopic model. Moreover,
passing from the fully discrete level (4.8) to the semidiscrete one (1.1) and passing
from the latter to the continuous level (4.4) are considered.

With the above scaling, we state a first rigorous result of convergence of the
Godunov scheme when € — 0; i.e., we state a result dealing with the limit of (4.8) to
(4.4) when the rescaled At and AX tend to 0 with a fixed ratio A, fulfilling the CFL
condition.

For simplicity, we consider the homogeneous case A = 0, away from vacuum, and
we state the result in rescaled Lagrangian coordinates, again dropping the primed
notations. However, our result also is valid for system (3.1), in rescaled variables, in
the (less realistic) case where A is proportional to ¢, i.e., Ag € instead of A. Similarly,
the result also is the same for the two corresponding systems in Fulerian coordinates.
Using the above and standard compactness results, as well as standard results to
control the error in the projection steps, we obtain the following theorem.

THEOREM 4.2. Let us consider the rescaled initial data (3.5), and assume that the
associated Riemann invariants wy and vy are bounded, have a bounded total variation,
and lie in an invariant rectangle R, away from vacuum.

Then, using the piecewise-constant initial data (3.4) as initial data for this scheme,
at least a subsequence Uy, := (wp, ) produced by the numerical scheme (4.1) converges
to a weak entropy solution to the initial value problem (3.3), (3.5) as the rescaled At
and AX tend to 0 with a fixed ratio A\, fulfilling the CFL condition, as the zoom
parameter € — 0.

The above result deals with passing directly from (4.8) to (4.4). It strongly
suggests studying the two other natural limits: passing from the fully discrete level
(4.8) to the semidiscrete one (1.1), and passing from the latter to the continuous level
(4.4). Again we restrict ourselves to the case A = 0, away from vacuum.

THEOREM 4.3. Under the above assumptions, i.e., A = 0, and the initial data
lie in an invariant rectangle R, away from vacuum, we consider in Lagrangian co-
ordinates the values U := (7', w}) constructed by (4.8) or (4.1), (4.3), but now we
rescale only the time step. Therefore the rescaled time step At vanishes, with a fixed
space mesh size AX.

Moreover, we assume that the initial data are constant for X large enough, so
that there is a “first” car. Then we have the following:

1. The IVP for the (infinite) follow-the-leader system (1.1) (with A =0) has a
unique solution U(t) defined at least locally in time. Its natural first order
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approximation (4.1), (4.3) is stable and consistent, and therefore the whole
sequence is convergent for any fixed AX.

2. The values U}* stay in the invariant bounded region R and satisfy the uniform
BV-estimates as in Theorem 4.1. Consequently, the solution U of (1.1) is
globally defined and satisfies the same uniform estimates.

3. Moreover, set U; = (13, w;) and let Fiii/5 := G(Us,Uiy1) = F(Uip1/2) =
F(Uiy1) = (vi41(t), 0) = (wip1 — P(7i41), 0) denote the (well-defined)
Godunov flux at the interface X = Xiyy1/5. This nonlinear relation is pre-
served in the limit At — 0: for allt > 0, Fy 1/5(t) := G(Ui(t), Ui (t)) =
(Vit1, 0) = F(U;11(t)). Finally (1.1) is the semidiscretization of (4.4): for
any t > 0,

dau;
dt

(4.12) (t) = —(AX)™" (Fipaa(t) — Fiq2(t)).

Proof. The first part of this result can be adapted from standard textbooks (see,
e.g., [18]) to the case of infinite-dimensional systems of ordinary differential equations,
here with the [*° norm. The other results use the discrete BV estimates (in space
and in time) inherited from the Godunov scheme. o

Now, define Up (X, t) := > . (7:(t), w;(t)) xi(X), where x is defined as in (3.4).
We have the following theorem.

THEOREM 4.4. Under the same assumptions as in Theorem 4.3, consider the
IVP for the follow-the-leader system (1.1) (with A =0), and let AX tend to 0. Then
at least a subsequence of the sequence Uy, converges boundedly almost everywhere to
an entropy weak solution U := (1,w) to the macroscopic system, (4.4) for any smooth
d(X,t) with compact support,

/ mz / U(X,8) i6(X, 1) + F(U(X,t)) dxd(X,t)] dX dt
(4.13) +Z/ Up(X) ¢(X,0)dX :=A+B+D = 0,
i Y

and similarly the entropy inequality in the sense of Lax holds for any convex entropy.

Proof. Multiply (4.12) by an arbitrary test-function ¢(X,t), make a (discrete)
integration by parts in X and ¢, and let AX tend to 0. We obtain, for any smooth
function ¢(X,t) with compact support contained in [—L, L]x[0, T,

+oo
/ > / (N0D(X. 1) + (AXT)Frp1 o (1) (9(X + AX, 1) — 6(X, 1)) dX ds

+3° [ U0)¢(X,0)dX = Ay, + By + Dy, = 0.
(4.14)
By compactness, A, and Dy, respectively, tend to A and D when h — 0. As to By,

with an obvious first order Taylor expansion, we see that for any ¢, |B,—Ep| < C AX,
where

+o0
:/0 Z /1 Fipr1/2(t)0x ¢(X, t)dXdt,
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and C depends on the L> norm of F(U) and on L T||0% ¢||co-
Now (see Theorem 4.3), Fy1/2(t) = F(Ui41(t)), and F is Lipschitz continuous.
Therefore, adding and subtracting F(U;(t)), we obtain |E), — G| < C" AX, where

+oo too
G = /0 Z /IiF(Ui(t))axqﬁ(X,t)dth: /0 /\ F(U) (X, )0x6(X, t)dX dt

and |C'] < T [|0x oo [[F'[loo- sup{3_; [Uiga(t) = Ui(t)]}-

Finally, by compactness, G} tends to B when AX — 0, which shows that U
is a weak solution of (4.4). We would establish the entropy inequality in a similar
way. First, when At — 0 as in Theorem 4.3, the fully discrete entropy inequality
(4.11) is preserved at the limit and provides the semidiscrete entropy inequality, i.e.,
a relation similar to (4.14), with U, F(U), and the equality sign, respectively, replaced
by n(U), q(U), and the same inequality sign as in (4.11), which implies the Lax entropy
inequality by compactness as AX — 0. ]

REMARK 5. In other words, at least in the homogeneous case A = 0, and away
from vacuum, we have shown that the macroscopic system is the limit of a large
number of vehicles on a long stretch of a highway and a large time scale of the same
order. For a study of more general cases, we refer to [1]. We note, by the way, that
in this limit situation the time lag mentioned in the introduction vanishes.

In contrast, in the relaxed case A > 0, with a fixed constant A, we have to study
the limit of (4.1) and (4.2) when the three parameters At, AX, and € tend to 0
together, with fized ratios, and, of course, satisfy the CFL condition. So far, we have
not studied this limit.

REMARK 6. In terms of modeling, here we explicitly relate the semidiscretization
of the macroscopic system to the microscopic system (1.1) directly, i.e., without any
intermediate kinetic description. Although we already mentioned the derivation of
(2.4) from kinetic models [11], our direct derivation is conceptually important: just
imagine a similar result in gas dynamics! For the relation between weak solutions in
Eulerian and Lagrangian mass coordinates, we again refer to [20]. Finally, we have
also learned very recently of a preprint [22] with exactly the same formal derivation
of the same model.

5. Numerical methods and examples. For numerical investigations we con-
sider the equations in Eulerian and Lagrangian form. The time discretized microscopic
equations (4.1), (4.2) or, equivalently, the Godunov method in Lagrangian coordinates
(4.9) can be viewed as a particle method for the conservation law. Computing
(5.1) =y Aty — i),

_ At — At

Wit = TN (V (i) + P (1 - e

K2

9

one obtains the location of the vehicles as follows:

(5.2) it = 2 4 Aol

The density in Eulerian coordinates at the point z; is then given by the interpolation
pi = T_ﬁfﬂ . For discretization steps At and AX tending to 0, one obtains an
approximation of the conservation law (2.4) in Eulerian coordinates. From the particle
point of view this means that we have to increase the number of vehicles to obtain the

desired approximation of the conservation law. However, one could as well use any
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other methods to resolve the limiting conservation law in Eulerian coordinates. For
example, any second order shock capturing scheme could be used for the macroscopic
equations (2.4). Using such a scheme will lead to the same results as the solution of
the above discrete equations with a large number of vehicles. We use a relaxation
method as developed in [9]. The method is adapted to include the relaxation term on
the right-hand side of (2.4). This can be done in a straightforward way that preserves
the second order approximation.

In the following we will compare the microscopic particle approach and the above
second order scheme using two test problems.

In all cases the equilibrium velocity V' = V(p) is chosen as a function fitting to

experimental data:
p
Vip)=U ()
) o

5+ arctan(ll’j%lm)

U T arctan(11 - 0.22)

with

Ulp) =

where p,, is the maximal density and v,, is the maximal velocity. The function
P(p) is chosen by setting v = 0 and v = 1, i.e., mg = 1 and my = 2, respectively.
In order to fulfill the subcharacteristic condition (2.8), we choose the function P
as P(p) = 2In(p/pm) and P(p) = 6p/pm. The first test problem is the following:
We consider normalized quantities with maximal speed v, equal to 1 and maximal
density p,, equal to 1. From the macroscopic point of view we consider a Riemann
problem with left and right states given by pr, = 0.05, prvr = 0.0025, vy, = 0.05, and
pr = 0.05, prvg = 0.025, vg = 0.5. The discontinuity is located at x = 0. Note that
vr > wr, = vy, + P(pr). Thus, vacuum states appear during the evolution for the
continuous conservation law for v = 1; see [2].

The discretization size is chosen as Ax = AX = %. This leads to an initial
number of cars equal to 800. They are initially distributed equally, spaced with the
velocities 0.05 or 0.5, respectively. The time step is chosen according to the CFL
condition.

Figure 5.1 shows density p and flux ¢ = pu at a fixed time for the particle and
second order methods for v = 1 without the relaxation term. Figure 5.2 shows the
same for v = 0. Figure 5.3 shows the evolution for v = 1 with the relaxation term,
where V' and T are given by V(p) = U(p) and T(p) = constant = 20. Figure 5.4
shows the same for v = 0.

Finally, Figure 5.5 shows the results of our second test case, which is a more
complicated situation: The evolution at a bottleneck at * = 0 is simulated. The
number of lanes is reduced from three to two. This is achieved by setting the maximal
density equal to the number of lanes. This means that the fundamental diagram is
given by V(p) = U(pim), where inside the bottleneck the maximal density p,, is
reduced from 3 to 2. The boundary data on the left-hand side are chosen such that
the flux in the three-lane region is slightly above the maximal possible flux in the two-
lane region which creates the traffic jam. AX and Az are chosen as i, which yields
a number of cars around 5000 during the evolution. Figure 5.5 shows the evolution
for the microscopic particle method at different times. In particular, the development
of a traffic jam is observed in the figure. Identical results are obtained if the second
order method for the Eulerian equations is used.
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order method for v = 0 without the relazation term.



276 A. AW, A. KLAR, T. MATERNE, AND M. RASCLE

— - particie
PDE

—250 —200 —150 —100 —50 o 50 100 150

— - particie
o.01 PDE

—250 —200 —150 —100 —50 ) 50 100 150

Fic. 5.3. Time development of density and flur computed by the particle method and the second
order method for v =1 with the relaxation term.

Density, relax=1, v=0

or — - particie
PDE

—250 —200 —1s50 —100 —50 o 50 100 150
x

Flux, relax=1, y=0

| w

or — - particie | ]
— PDE

—250 —200 —as0 —100 —so ) s0 100 150

Fic. 5.4. Time development of density and flux computed by the particle method and the second
order method for v = 0 with the relazation term.



MICROSCOPIC DERIVATION OF CONTINUUM TRAFFIC MODELS 277

Density

e
/
o.6 — -
o.s |-
o.al-
—1600 —31ac0 —31zo0 —21o000 —soo —eoo —=oo
>
velocity
o.s T
75|
o.7
65 [ < ~
<
AN
o.e X
\
L \
\
0.5 — \
N
N\
.as - \
o.ab N
~
as |-
o.3
25100 —1ac0 —21z00 1000 —soo Er=oYeY —=oo =00 ) =00 Zoo0
ot
Flux
Laz T
o.a = e — -
~ N
N
38 \ A -
\
\ \
s6 |- \ \ —
\ \
L . \ 4
\ \
s2 | N -
N \
\ \
o= N N -
AN N
~
28 — ~ R < —
e P
e ; ; ; i i i i I i
“Z%c0 —1aco —31zc0 EERYSTS) —soco Er=STe) —aoo —Zco ) =00 Zoo
>t

Fic. 5.5. Time development of density, velocity, and fluz. Lane drop from 3 to 2 lanes at x =0

Q B >

Q U a=

B.

REFERENCES

. Aw, Modeéles hyperboliques de trafic automobile, Ph.D. thesis, University of Nice, Nice,

France, 2001.

. Aw AND M. RASCLE, Resurrection of “second order” models of traffic flow, STAM J. Appl.

Math., 60 (2000), pp. 916-938.

. CHEN AND T. Liu, Zero relazation and dissipation limits for hyperbolic conservation laws,

Comm. Pure Appl. Math., 46 (1993), pp. 755-781.

.. COURANT AND K. FRIEDRICHS, Supersonic Flows and Shock Waves, Springer-Verlag, 1976.
. DAGANZO, Requiem for second order fluid approximations of traffic flow, Transportation

Research B, 29B (1995), pp. 277-286.

. Gazis, R. HERMAN, AND R. ROTHERY, Nonlinear follow-the-leader models of traffic flow,

Oper. Res., 9 (1961), p. 545.

. Q. CHEN, C. LEVERMORE, AND T. Liu, Hyperbolic conservation laws with stiff relazation

terms and entropy, Comm. Pure Appl. Math., 47 (1994), pp. 787-830.

. GREENBERG, FEztensions and amplifications of a traffic model of Aw and Rascle, SIAM J.

Appl. Math., 62 (2001), pp. 729-745.

. JIN AND Z. XIN, The relaxation schemes for systems of conservation laws in arbitrary space

dimensions, Comm. Pure Appl. Math., 48 (1995), pp. 235-276.
KEYFITZ AND H. KRANZER, A system of mon-strictly hyperbolic conservation laws arising



278

A. AW, A. KLAR, T. MATERNE, AND M. RASCLE

in elasticity theory, Arch. Rational Mech. Anal., 72 (1979/1980), pp. 219-241.

A. KLAR AND R. WEGENER, Kinetic derivation of macroscopic anticipation models for vehicular
traffic, SIAM J. Appl. Math., 60 (2000), pp. 1749-1766.

R. KUHNE, Macroscopic freeway model for dense traffic, in 9th International Symposium on
Transportation and Traffic Theory, N. Vollmuller, ed., VNU Science Press, Utrecht, 1984,
pp. 21-42.

P. D. LAX, Hyperbolic systems of conservation laws and the mathematical theory of shock
waves, in Regional Conf. Ser. in Appl. Math. 11, STAM, Philadelphia, 1973.

R. NatTaLINI, Convergence to equilibrium for the relaxation approrimations of conservation
laws, Comm. Pure Appl. Math., 49 (1996), pp. 795-823.

H. PAYNE, FREFLO: A macroscopic stmulation model of freeway traffic, Transportation Re-
search Record, 722 (1979), pp. 68-75.

I. PRIGOGINE AND R. HERMAN, Kinetic Theory of Vehicular Traffic, Elsevier, New York, 1971.

M. RASCLE, An improved macroscopic model of traffic flow: Derivation and links with the
Lightill-Whitham model., Mat. Comput. Modelling, 35 (2002), pp. 581-590.

M. SCHATZMAN, Analyse numérique, InterEditions, Paris, 1991.

B. TEMPLE, Systems of conservation laws with coinciding shock and rarefaction curves., Con-
temp. Math., 17 (1983), pp. 143-151.

D. WAGNER, FEquivalence of the Euler and Lagrangian equations of gas dynamics for weak
solutions, J. Differential Equations, 68 (1987), pp. 118-136.

G. WHITHAM, Linear and Nonlinear Waves, Wiley, New York, 1974.

M. ZHANG, A non-equilibrium traffic model devoid of gas-like behavior, Transp. Research B, to
appear.



SIAM J. APPL. MATH. (© 2002 Society for Industrial and Applied Mathematics
Vol. 63, No. 1, pp. 279-298

DIFFUSION APPROXIMATION OF A SCATTERING MATRIX
MODEL OF A SEMICONDUCTOR SUPERLATTICE*
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Abstract. In this paper we derive a diffusion equation for electron transport in a superlattice.
The starting model is a quantum scattering matrix model which relates the phase space density of
each superlattice cell to that of the neighboring cells. Then, in the limit of a large number of cells,
a diffusion equation for the particle number density in the position-energy space is obtained, which
is of the “SHE” (spherical harmonics expansion) type. The diffusion constant retains the memory
of the quantum scattering characteristics of the superlattice elementary cell (like, e.g., transmission
resonances). An example is treated, for which the diffusion constants are analytically computed.
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ics expansion, drift-diffusion, energy transport, transmission resonance
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1. Introduction. Semiconductor superlattices are processed by growing peri-
odic layers of two different semiconductor materials like GaAs and GaAlAs [25], [37].
The electronic properties of the two materials result in the establishment of a periodic
electrostatic potential in the direction of the growth axis, which is discontinuous at
each of the interfaces between the two materials. Superlattices possess a number of
interesting physical properties, especially with respect to optoelectronics applications
[25], [37]. An application to infrared radiation detection is described in [35].

The electronic properties of solids are characterized by the existence of energy
bands [1]: the electron kinetic energy cannot take any arbitrary positive value, like
in a vacuum, but may only belong to certain intervals, called energy bands. The
bands are separated by forbidden energy gaps. Bloch’s theory of bands provides the
theoretical framework for this observation: it is a purely quantum mechanical effect
originating from the periodic potential created by the regular arrangement of atoms in
the crystal. In a superlattice, the periodic alternation of the two materials artificially
creates a similar periodicity (although on a larger scale). Therefore, it is natural to
expect that electron transport along the periodicity direction will exhibit the same
kind of “band splitting.” In this case, the bands are called “superlattice minibands,”
because the width of the energy bands is inversely proportional to the lattice period
(see [25], [37]). For a recent account of the mathematical theory of bands, see [27].

Being a quantum mechanical phenomenon, the existence of energy bands is tightly
connected with the notion of phase coherence: energy bands (or gaps) result from
the constructive (or destructive) interference patterns of the electron wave-functions
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between neighboring potential periods. A direct observation of the existence of energy
minibands in a superlattice can be made through the measurement of Bloch oscilla-
tions [25]: electrons subject to a constant electric field undergo a periodic motion in
space with zero mean. This is because each time the electron reaches the boundary of
the energy band through the action of the field, it reverses direction in position space
and goes backwards. Therefore, in theory, no transport in the direction of the field is
allowed in a superlattice.

In practice, the situation is not so ideal due to collisions (or scattering). Dur-
ing their motion, electrons can collide against ionized impurities, phonons, etc. [32].
Another source of scattering, which is negligible in bulk semiconductors but which
becomes extremely important in superlattices, is scattering by interface roughness
[25], [15]. Indeed, at each material interface (and there are at least two of them per
superlattice cell), the perfectly periodic arrangement of atoms is broken: the two ma-
terials very seldom have the same crystal constants, and this results in crystal defects
at the interface. Even if the lattice mismatch (difference of the crystal constants of
the two materials) is negligible, the growth process depends highly on the processing
conditions and may not produce perfectly clean interfaces. This is particularly true
for industrial processes, where cost constraints may contribute to poorer processing
conditions.

A first consequence of collisions is that they allow some transport in the field di-
rection, as they allow electrons to jump from one Bloch periodic trajectory to another
one. To account for this effect, the reference model for superlattices, developed by
Esaki and Tsu [21], is based on the hypothesis that quantum miniband theory applies
to electron trajectories between collisions.

However, a second consequence of such collisions, which is not fully accounted for
in the Esaki and Tsu model, is the breakdown of the phase coherence of the electron
wave-functions. After a few collisions, constructive or destructive interference patterns
can no longer be produced because wave-functions between neighboring cells have
random phases with respect to each other. Therefore, transport loses its quantum
mechanical nature over scales larger than a few mean free paths (the typical distance
a particle travels between two collisions) and becomes purely classical; the quantum
mechanical miniband theory still remains valid over shorter distances. The larger
distance over which quantum mechanical interferences can occur is called the phase-
coherence length. If the coherence length is of the order of the superlattice period, or
a few superlattice periods, Bloch’s theory can no longer be applied straightforwardly.
In this case, Esaki and Tsu’s model must be corrected to account for the fact that,
even between two collisions, electron transport is not purely quantum and does not
follow the miniband theory exactly. Instead, transport becomes classical on scales
larger than the phase coherence length. The aim of the present paper is to derive a
suitable transport model for such a situation.

2. General outline of the present work. Let ¢ denote the superlattice period.
For simplicity, we first assume that the phase coherence length is equal to £. We start
with a microscopic model that is quantum mechanical over distances less than ¢ and
classical over larger distances. For that purpose, we define the electron distribution
function fnJr%(k?t) on a periodic array of points Tpil separated by the period /.
fn +1 (k,t) is a purely classical concept and denotes the density of particles at point
Tpyt having wave-vector k at time t. We recall that, in the semiclassical picture of
electron kinetics, wave-vectors £ and momenta p are related by p = hk, where A is
the reduced Planck constant.
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Between the points z,, 41 the dynamics is quantum mechanical and must be de-
scribed by means of quantum wave-functions, solutions of the stationary Schrédinger
equation in the elementary cell. (We shall comment on this stationarity hypothesis
later on.) Among the possible solutions, we focus on the scattering states, which are
the quantum mechanical equivalent of the free moving particles. Knowledge of the
scattering states gives us access to two important sets of data: the scattering prob-
abilities, i.e., the probabilities with which particles coming into the elementary cell
are either reflected or transmitted, and the quantum time delays, i.e., the duration of
the reflection or transmission processes. The scattering probabilities reflect the fact
that quantum tunneling through the potential structure is enhanced for some specific
values of the wave-vector k called transmission resonances. Indeed, for these values
of k, the transmission probability becomes close to unity.

The microscopic model consists of relating f, , 1 (k,t) to its neighboring values
at previous times f,, 1 11(k,t — 7) through the scattering coeflicients. The resulting
model is referred to in the literature as a “scattering matrix model” [34]. It retains the
quantum nature of transport over distances less than or equal to the phase coherence
length (i.e., one or a few superlattice periods) through the use of the scattering data,
but reduces to a classical model over larger distances through the use of the classical
distribution functions.

If the superlattice period / is strictly less than the coherence length, we suppose
that the latter is an integer multiple N/ of the former, and we consider N{ as the base
period rather than ¢. Therefore, the Schrodinger equation is solved for a potential
structure that consists of an array of N elementary superlattice cells. As N increases,
the solution comes closer and closer to that of the fully periodic problem. As soon
as N passes above unity, the oscillations of the scattering data increase: transmission
peaks (i.e., values of k such that the transmission probability is close to unity) due to
resonant tunneling grow more numerous. Therefore, even at moderate values of N,
the model can capture the highly oscillatory nature of superlattices that is observed
in experimental measurements.

From the knowledge of f, 1, we have access to the electron concentration, to
the charge concentration (provided that the positive ion concentration is known), and
therefore, to the self-consistent electric potential through the resolution of Poisson’s
equations. The self-consistent potential, in turn, is involved in the Schrédinger equa-
tion which determines the scattering data. In this way, the problem is fully coupled.

It is useful to note that the scattering matrix model is a kind of space and time
discrete version of the Boltzmann equation [28]. In the same way that the continuous
Boltzmann equation can be viewed as the Liouville equation of a stochastic particle
system, the present model can also be viewed as a deterministic version of a random
walk process. We shall come back to this point later.

The goal of this paper is to investigate the limit of the scattering matrix model
when the total number of cells in the superlattice structure becomes large. Indeed, in
practice, superlattices possess a large (but probably not very large) number of cells
(on the order of 20), and it can be useful, at least for fast computations, to solve the
model obtained by taking the limit of a large number of cells. After space and time
rescaling, the scattering matrix problem appears as a perturbation problem which
bears strong similarities with diffusion approximation problems in kinetic theory or
with diffusion approximations of random walk processes.

We shall show that the limiting equation is a diffusion equation for the electron
number density in the position-energy space (or energy distribution function). This
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equation belongs to the class of spherical harmonics expansion (SHE) models, which
have proved extremely useful in the context of standard semiconductor modeling.
The present paper is the first (to our knowledge) to establish the SHE model in the
framework of superlattices. Our derivation furnishes a direct connection between the
quantum transport characteristics of the superlattice structure and the coefficients of
the SHE model. This model provides means to achieve fast simulations of electron
transport in superlattices. A related approach based on a continuous (rather than
discrete) model can be found in [8].

Alternate macroscopic models for superlattices have also been proposed [25], [12].
They are based on a space-discrete version of pure drift-diffusion in position space only,
while the present model deals with diffusion in a combined position-energy space.
Our model therefore describes the physics at a more microscopic level and is thus
expected to capture the highly oscillating nature of superlattices more accurately.
Furthermore, the diffusion constants involved in [12] are phenomenological, while we
shall provide an explicit methodology to derive these diffusion constants from the
microscopic data (scattering probabilities and time delays). For instance, in [12], the
reflection probabilities are ignored; on the other hand, a displacement current term is
included in the current equation there. According to the numerical values, it seems
that this term is small, and thus it will be neglected in our model. Globally, the
present model seems to give access to a finer description of the physics, but it is also
more complex in that it involves an additional variable (the particle energy).

We conclude this section with a few bibliographical comments. The diffusion
approximation is a theoretical tool which links the evolution of macroscopic quantities
like number or energy densities to the microscopic particle dynamics described by a
kinetic equation. The diffusion approximation methodology goes back to the work
of Hilbert, Chapman, and Enskog (see, e.g., [14] for an introduction to the subject).
Its application to bulk semiconductors is reviewed from a physics view point in [32],
[16]. The modern mathematical view of the theory was set up in [10] and [2] in the
context of neutron transport (the former using a stochastic description of transport,
the latter using purely deterministic models), and its application to semiconductors
was developed in [30], [24]. In these works, the resulting macroscopic model is the
drift-diffusion model, which is the basic tool in semiconductor modeling [28], [33] and
which deals with the electron number density in position space.

By analyzing the various collision scales, it has recently been possible to derive
a diffusion model for the particle number density in the position-energy space [20],
[4], [17]. This model is often referred to in the literature as the SHE model (the term
spherical harmonics expansion arises from its early derivation by physicists [36]). It
has proved very efficient in semiconductor device modeling [22], [23] and is also used
in plasma physics and gas discharge physics (e.g., [18]). An alternate derivation from
a stochastic description of individual particle transport is proposed in [13].

The outline of the paper is as follows: the scattering matrix model is proposed
in section 3 and appropriately scaled in section 4. Then, the formal diffusion limit is
stated in section 5. Comments on the diffusion model and examples are developed in
sections 6 and 7. Finally, the derivation of the diffusion model is (formally) proved in
the appendix.

3. A scattering-matrix model for superlattices. We now summarize the
previous discussion and set up the starting microscopic model. We consider a semi-
conductor superlattice consisting of layers of several materials periodically arranged
in the direction x and generating a permanent periodic potential of period ¢ in this
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direction. Since the superlattice period is usually very small (10 to 100 nm), electron
motion through such a structure must be described quantum mechanically. However,
we assume that various sources of scattering (e.g., interface roughness scattering due
to some crystalline disorder at the various interfaces [25], [15]) produce a phase deco-
herence of the electron wave-functions over distances comparable with the superlattice
period. In this context, quantum effects are limited within one superlattice period.

Let us denote the interval occupied by the nth superlattice pattern by C,, =
[(n — 3)¢,(n + $)¢]. Our assumption is that the state of the electron gas at each
pattern boundary z,,, 1= (n+ %)f can be described by a classical distribution func-
tion f,, +%(k, t), which represents the number of electrons at time ¢t with wave-vector
k € R at this point. Then, finding the motion of an electron through the elementary
superlattice pattern C,, reduces to a standard quantum mechanical scattering prob-
lem. Such a problem is characterized by reflection-transmission coefficients and time
delays [29].

To be more specific, we first need to introduce some additional definitions [1]. For
simplicity, we restrict our analysis to a one-dimensional geometry and assume that
the energy-versus-wave-vector relationship in each material is parabolic, i.e., is of the
form

h2k?
- 2m

e(k)

)

where € is the kinetic energy of an electron moving in the crystal with wave-vector
k € R, his the reduced Planck constant, and m is the electron effective mass. We shall
place the points x,, 1 in the middle of the largest layer and denote the corresponding
material by A. Unless otherwise specified, m will refer to the electron effective mass
in this material, while m*(x) will refer to the position-dependent effective mass at
any point z of the superlattice. (Of course, m*(x) = m in material A.) The electron
velocity v(k) is related to the wave-vector by
o) = £ I
hdk m

We assume that the electric potential ¢ is the sum of two contributions ¢ =
osr + ¢sc. The contribution ¢gy, is specific to superlattice structures and derives
from the presence of material discontinuities. It is piecewise constant with jump
discontinuities at the material interfaces and, of course, has the periodicity of the
superlattice structure. To fix it uniquely, we shall assume that it vanishes at the
points z,,, 1.

The contribution ¢gc is the self-consistent potential generated by the charges
and by the applied bias. ¢g¢ is a solution of the Poisson equation

(3.1) () = ptan

where p(z,t) is the charge concentration, given in terms of the positive ion concen-
tration p*(z) (supposed known and given) and of the electron concentration p~(z,t)
(the expression of which will be given below) by

p(l‘,t) = €(p+(l') - p7 (Ivt))7
where e is the elementary (positive) charge. The Poisson equation (3.1) is supple-
mented by boundary conditions

(32) ¢SC(au t) = 07 ¢S’C(ba t) = (bbiasu
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where a and b are the left and right boundaries of the superlattice and ¢p;,s is the
applied bias. The dielectric constant € is an ¢-periodic function of x, which may also
have jump discontinuities at the material interfaces. ¢g¢c is not periodic in general
and is time-dependent, as p generally is.

Now, we turn to the solution of the Schrédinger equation associated with the nth
pattern C,. Because of our assumption that the correlation length is of the order of
¢, the wave-functions of electrons belonging to the nth pattern C,, cannot interact
with the potential beyond the boundaries of C,,. To take this fact into account, we
modify the potential experienced by the electrons in C, into a constant potential
#" () outside C,:

o(x,t) Vxe[xnfé,anr%L
(33) 5@ = dz,y) V<7,

n

) Vo za,a.

i

Nl=

Now we consider t as a frozen time variable, and for £ € R given we solve the
Schrodinger equation on R for the wave-function ¢y (z):

n% d 1 d - h2k?
(34) v ey ) e = (et

where

on — J Oay) k>0,
FT b(,pn) ik <0

All the present discussion is classical and can be found, for instance, in [29]. We
summarize it below for the reader’s convenience. To uniquely specify the solution of
(3.4), we impose the following additional conditions: for & > 0,

b

[N

ek@—Tno12) 4 A(k)e~h@—on-1s2) g < g
wk B(k)eik+(m7wn+1/2)’ T > xn_i_%,

and similarly, for k < 0,

oy = e*ik(l’*%nﬂ/z) 4 A(k)eik(fﬂrnﬂ/z)’ T > Tpils
k B(k)e_Zk_(z_m"71/2)7 x < xn_%.

We have let

(35) ko= /B0, 80"(0) = By, ) — Gl t)

If the quantity inside the square root is negative, the choice of the pure imaginary
root is indifferent and leads to the same solution.

These solutions are called the scattering states and describe free moving particles
coming from infinity and entering the nth superlattice pattern C,,. The complex num-
bers A and B are the scattering amplitudes, from which one computes the reflection
and transmission probabilities R(k) and T'(k) according to

%|B(k)|27 k>07k+ GRa
Rk = AR, T() =1 SSIBHE k<0k cR
0, otherwise.
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The scattering probabilities satisfy the following relations:

R, T(k)=R,T(—ky), k>0ks €R,

(3.6) R+T=1, { R,T(k)=R,T(k_), k<O0k_ €R.

Introducing the phases of the complex numbers A and B,
A(R) = |AGR)SD, B(k) =[BRS,

we define the semiclassical reflection and transmission time delays 7g(k) and 77 (k)
according to the following:

1 dSgr 1 dSr
TR(k):mﬁ’ TT(k):mﬁ

We also have (see [29])

{ TR, T7(k) = TR, Tr(—ky), k>0,ki €R,

(37) TR,TT(k):TR,TT(k_), k<0,k_ c R.

Of course, all the scattering data depend on the index n, which has been omitted
in the previous discussion.

We now establish the dynamics obeyed by the discrete distribution function
fn +1 (k,t). First, consider f,, +1 (k,t) for k > 0, which corresponds to particles at point
x,,, 1 moving to the right; let us trace these particles back to previous times. Some of
them have been transmitted through the nth pattern and come from point z,, 1 with
a momentum k" > 0 corresponding to the energy shift —ed¢™. The crossing time of
the nth pattern being 77:(k” ), the number of these is T" (k™) f, _1 (K™, t — 77:(K™)).
The other contribution to f, L (k,t) is made of particles reflected by the nth pat-
tern and coming from point z,, 1 with a momentum —k. The number of these is
R"(=k)fny1(=k,t = 7p(=k)). Therefore, we obtain the total number f, 1 (k) by
summing up these two contributions. For k > 0, this leads to

(3.5) Fuey (b, t) = T (),
+ Rn(ik)ﬁﬂ—

(k™ t — T3 (k™))
(7k7t - Tg(fk))a

[N

N

and for k < 0, to

(3.9 Faey (b, t) = T™(=R) oy (Kt = TR
R (k) fy (it — TR(—)).

System (3.8)—(3.9) belongs to the class of scattering matrix models which are some-

times used in the literature [34]. These conditions were first proposed by Ben Abdallah

[3] as coupling conditions for classical and quantum models (see also [7]).

To preserve causality, we require system (3.8)—(3.9) to be a backwards difference
system in time, and consequently we assume that the time delays are positive. We
consider that (3.8)—(3.9) describes the evolution of the system for ¢ > 0, starting from
known states for all ¢ < 0, and prescribe the distribution functions for negative times:

(3.10) fas(kit) = (fr)n_s(kit)  VE<O,VneZ, VkeR,

where (f1),_1 is given.
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For a bounded structure, the incoming distribution function must be prescribed
at the boundary. Let us denote by a = z,, _1 and b = x,, .1 the left and right
"3 b+3
boundaries of the structure. Then, we prescribe

fn,,,—%(kvt) = fa(kvt)a fnb+%(7kvt) = fb(fkat) vt, Vk >0,

where f,(k,t) and fi(—k,t) are given functions of k > 0. Usually, f, are chosen to
be equal to thermodynamical equilibrium distribution functions (see the expression
in section 6).

In order to complete the model, we must say how the electron concentration is
computed. Following [3], we assume that the electron concentration in the nth pattern
is the sum of the concentration of the right-going scattering states (for k£ > 0) weighted
by the distribution function at the “left entrance” of the cell C,, i.e., nfé(k), and

that of the left-going states (for k < 0) weighted by f, +%(k). In other words, for
x € [xn7%7mn+%),

dk dk
1) @)= [ g0+ [ Gl oPs

The factor 7! stands for the one-dimensional momentum density of states (see [1]).

Let us now comment on the hypothesis of frozen time in the solution of the
quantum problem. This hypothesis is valid only if the time variation of the potential
is slow compared with the transit times of the particles through the pattern C,,. If
this is not the case, the potential varies significantly while the particle is crossing
the pattern, and the resolution of a time-dependent Schrodinger equation becomes
necessary. In such a case, not only would the computational cost increase, but the
coupling to the semiclassical distribution function would be much more complicated
(see, e.g., [5]). However, the frozen time assumption is acceptable in practice since
the self-consistent electric field is a highly averaged, and therefore slowly evolving,
quantity. In the present paper, we shall focus on this case. Therefore, all the scattering
data in formulas (3.8)—(3.9) must be understood as corresponding to time ¢.

We note that formula (3.11) also relies on the frozen time assumption: the distri-
bution function evolves on a slower time scale than the time delays, and therefore the
statistics of particles in the entire pattern C), can be approximated by the distribution
function at its boundaries at the same time. This approximation is consistent with
that made in the resolution of the quantum problem and is not in contradiction with
(3.8)—(3.9), where the time delays appear. Indeed, that the time delays are small
does not prevent the distribution function from evolving on larger time scales, as we
will see in the derivation of the macroscopic model (section 5). Also, removing this
assumption is possible, as in [5], but requires a much more complex model, which is
beyond our scope here.

Obviously, a stochastic interpretation of the dynamical system (3.8)—(3.9) can
be given. At a given time ¢, a particle sitting at point T, 1 with momentum k& >
0 (to fix the ideas) can jump to point z,, 1 with a probability T™ or can reverse
momentum with probability R™. The particle can perform its next jump after a
certain time delay 7z . Therefore, this model is a dynamical system version of
a kind of random walk. The connection between stochastic particle processes and
kinetic equations is a very active field, and it is not our aim to elaborate on this
relation here. Let us simply mention that, conversely, stochastic particle processes
lead to efficient numerical algorithms to solve kinetic equations (referred to as Monte
Carlo methods). An introductory monograph for this topic is [26].
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In view of this stochastic interpretation, we discuss why the time delays are
assigned deterministic values instead of random ones. Semiclassical scattering theory,
which is based on a high frequency limit [29], gives very few means for exploring the
possible random character of the time delays. Random time delays are likely to appear
if the high frequency assumption is removed. However, there exists very little physical
information on the probabilistic distribution of time delays in this case. In the absence
of such information, the simplest choice seems to be the deterministic semiclassical
value. Considering random time delays, however, would not lead to major changes
to the present work. An integral over the distribution of time delays would appear
in (3.8)—(3.9) and in the expression (5.4) of the density-of-states M of the diffusion
model (see section 5).

Finally, let us note that we exclude bound states, which could contribute to
trapping particles inside a given superlattice cell. If bound states were considered,
additional terms involving the populations of these states would have to appear in
(3.11). This would require a model of inelastic collisions, since only such collisions
can fill these states. Such collisions are discarded in the present work, as are bound
states.

4. Scaling. It is convenient to interpolate the discrete quantities into piecewise
continuous functions of the position variable x. We define

(4.1) flz, kt) = fn+%(k,t), fr(z, k,t) = (fl)n+%(k7t), x € [nl, (n+ 1)¢),

and

(4.2) (R, T,7mr,17)(2, k) = (R™, T", 118, 77)(kK), = € [xn_%,a:7l+%).
Similarly,

(4.3) 6p(x) = 69", ki(w,k) =kL(k), x€lr,_1,2,,1)

With these definitions, system (3.8)—(3.10) is equivalent to the following system:
for k>0,

(44) f <:c + g,k,t> =T(x, k_(z,k))f <a: - ;, k_(z,k),t— TT(as,k_(x,k))>
+ R(z,—k)f (az + g, —k,t — Tr(z, —k)) ,

and for k < 0,
(4.5) f <az — g, k,t) =T(x,—ky(z, k) f (m + ;, —ky(z, k), t — 7 (x, —ky(x, k)))

+ R(z,—k)f (a: — g, —k,t — TRr(, —k)) ;

with the initial condition

(4.6) flx ko t) = fr(z,k,t) YVt <0, V(x, k) € R%



288 PIERRE DEGOND AND KAIJUN ZHANG

The electron concentration takes the form

D) p@t= [ Fero@olPE [ fet ok oo
k>0 ™ k<0 ™

Vz € [a:n_%,xn),
dk dk
(48) p_(xvt) = f($—£,k,t)‘1/ig($7t)|27+ f(x,k,t)\wZ(%t)F—
k>0 ™ k<0 ™

Vo € [Tn, Tpy1)-
We now introduce macroscopic position and time coordinates according to
(4.9) Z = ax, t = a’t,

where v < 1 is a small parameter describing the ratio between the superlattice cell
and the typical size of the device. The time scaling characterizes diffusion phenomena.

Now we make the following assumption, which is classical in the homogenization
literature [9]. We suppose that the self-consistent potential can be written as a func-

tion of the macroscopic variables (Z,t) and of the microscopic variable z, and that it
is periodic with respect to the latter:

(4.10) dsc(x,t) = (2)50(@,.23,1?),

where ¢g¢ is periodic with respect to its second argument. Indeed, the self-consistent
potential may have large scale variations (which extend over the entire structure
width, like, e.g., the external potential) as well as subcell variations (related, e.g., to
the variations of the electron and ion concentrations or to the dielectric constants).
By supposing that the small scale variations are periodic, we assume that a departure
from periodicity can occur only on large scales or, equivalently, with small gradients
relative to the period. This is the key hypothesis that allows the derivation of a
macroscopic regime.

The dielectric constant ¢ as well as the superlattice potential ¢g; are purely
periodic functions and therefore depend only on the periodic variable x: e(z), ¢pgr ().
We could consider large scale variations of these quantities as well, but we discard
them here for the sake of clarity.

We now investigate how this assumption translates onto the Schrédinger scat-
tering problem. Using that ¢gz is periodic and vanishes at the boundary of the
elementary cell, and that ¢g¢ is periodic with respect to its second argument, the
potential (3.3) involved in the Schrédinger equation (3.4) now reads

¢s1.(7) + dsc(az, x,a’t) Vo € [z, 1,2,,1],
(4.11) " (x) = ¢Sc(axn7%,m7%7a2t) Vo <z, 1

¢Sc(awn+%,x7%,a2t) Vo > @, 1.

n—s

We consider this potential the following way: for a given value &, we look for the cell
C,, such that aZ € Cy, i.e., n(Z) = [(Z/al) + 1/2], where [-] denotes the integer part.
Then, we solve the Schrodinger equation (3.4) on R with the potential (4.11), where
x is now a variable independent from Z, the latter appearing only in n(Z). Therefore,
Z and £ are frozen variables in the Schrédinger problem.

Therefore, the wave-functions are such that ¢y = ¥y (Z,z,t) (but ¥y is not peri-
odic with respect to x), and the scattering data satisfy

(R,T) = (R,T)(%,k), (rr,7r)=a*(Fr,7r)(Z, k),

8¢ = 6¢(,1), ks = ki(, k1)
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The factor 2 in front of the time delays follows from the scaling of time (see the last
remark of section 3).

By (4.1), the distribution functions are constant over the period width and there-
fore do not depend on the fast variable x. However, the electron concentration,
because it depends on the wave-functions according to (3.11), may depend on z. Sim-
ilarly, the ion concentration may have variations within a period, and it also depends
on x. Both the distribution function and the concentrations are assumed to be small,
of order a?. This hypothesis is required for consistency with (4.10): if the charge
concentration is not small, strong potential gradients can occur on small scales, which
we want to avoid. Therefore, we assume the following:

f(a:‘7 k’ t) = O{Qfa(i‘, k’ f))
(050" ) (1) = o?(p, p*, p*)(F, z,1).
We shall now rename the variables to deal with nicer notations: the periodic
variable z will be denoted by y, while the rescaled position and time variables = and
t will simply be denoted by x and ¢. The tildes will be dropped, and the dependence

on the scaling parameter o will be recalled only when necessary. With this scaling,
the problem (4.4), (4.5), (3.1), (3.11) becomes: for k > 0,

(4.12) f (m + ag, k, t) = R(z,—k)f (x + ag, —k,t — o&’7p(x, —k:))

+ T(x, k_(z,k))f (x — ag k_(x,k),t — a’rp(x, k_(z, k))) ,

and for k£ < 0,
14 14
f (w —ag, l@t) = R(z,—k)f (CE —ag, —k,t — arg(z, —k))
(4.13) + T(x, —ky(z, k) f (x + ag, —ky (2, k), t — 21y (2, —ky (2, k))) ,
with the initial condition
(4.14) flx,k,t) = fr(z,k,t) ¥Vt <0, ¥(z, k) € R%
The Poisson equation reads
0 0 0 0

4.1 9,9 9,9 _
@i9)  (agot 5 ) (e (age+ 5 ) osc) = ot
(4.16) plz,y,t) = e(p*(z,y) — p~ (2,9,1)).

The electron concentration is given by

(417) Wy € [z_1,0),

_ dk dk
@t = [ fe ke 0P T 4 [ ferab k00T
k>0 T k<0 m
(418) Wy e [0,zy),
_ dk dk
P ('/anvt): f($—0¢€,k,t)|’(l)k($,y,t)|27+ f(x?k7t)|wk(xay7t)‘27
k>0 ™ k<0
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The goal of the present paper is to find the formal limit of model (4.12)—(4.18)
when « tends to zero. We note that, in this problem, all quantities depend on a. We
shall use a superscript @ when we want to emphasize this dependence. We state the
main theorem in the next section.

5. The diffusion limit. The aim of this paper is to prove the following theorem.

THEOREM 5.1 (formal). Assume that R, the reflection coefficient associated with
potential ¢s1,, is nonzero almost everywhere. Then, in the limit « — 0, the solution
£, 0%c, p¢ converges, at least formally, to f, ¢sc, p~ such that

(i)

(i)

(iii)

There exists a function F(z,e(k),t), which depends only on k through the
energy e(k), such that f(x,k,t) = F(x,e(k),t). Furthermore, F satisfies the
following diffusion equation (SHE model):

(5.1) M(a)%—f + <(,fx - eE;E) J=0,
(5.2) J(z,e,t) = —D(e) (8(1 — eEaag) F,
(5.3) F(x,e,t =0) = Fr(z,¢,0),

where E = —0¢gc/0x is the self-consistent electric field. M(g) and D(e) are
defined by

(54) M(&) = IRy (k) + R(k)a(h),
(55) D) = 5 7

where k = v/2me/h and T, R, 71, Tr refer to the scattering data of the
Schradinger problem with potential ¢ = ¢gr, on the cell Cy only.

dsc = ¢sc(x,t) does not depend on the fast variable y and is a solution of
the Poisson equation

d (_dosc) _
(5.6) — (6 o ) = p(x,t),
where the charge concentration p(x,t) is given by
p(z,t) = e(p™(z) — p~(,1)),

/2 d /2 d
v@=[ e sen= [ s,
—¢/2 —e/2

and the average dielectric constant € by

1o /”2 1y
—t/2 e(y) ¢
The positive ion concentration p*(z,y) is a datum; the electron concentration

is given by

(5.7) (0 4,1) = /k ERF<w7e<k>,t>|¢k<x,y,t>20”“.
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The coefficients M and D are, respectively, referred to as the “density-of-states”
and the “diffusivity.”

Let us comment on boundary conditions. The boundary conditions (3.2) may
also be used in conjunction with the Poisson equation (5.6). However, in order to
account for boundary layers in the homogenization process, more accurate boundary
conditions can be imposed, of Robin (or Fourier) type, namely,

(58) (¢SC - aAa(b{SC)(aa t) = Ov (¢SC’ + Oé)\b(blsc)(ba t) = ¢biasv

where \,, A, are positive extrapolation lengths (for expressions of A, and A, see, e.g.,
[9]) and « is the scaling parameter (4.9). Similarly, considerations of kinetic layers
lead to the following boundary conditions for F":

(5.9  (F+alad)(a.et) = Fu(e,t),  (F—ahyJ)(be,t) = Fye, t),

where Fy(e,t) = fo(k,t), Fy(e,t) = fo(—k,t), and Ay > 0. We refer to [19] for the
theory of boundary layers in the framework of the SHE model and for the computation
of Ay p. We shall not dwell on this point here.

The proof of Theorem 5.1 proceeds in three steps. The first consists of showing
that f¢ formally converges to a function of (z,e(k),t) only. The second and third
steps correspond to the derivations of the continuity and current equations (5.1),
(5.2). To achieve these goals, two methods can be utilized: the Hilbert expansion
method [2], [17] and the moment method [24]. We shall choose the latter because it
involves more straightforward computations. We shall defer the details of the proof to
the appendix. We shall take the existence of solutions for the original discrete model
(4.12)—(4.18) as well as the convergence of f*, ¢%, p—* for granted, and we shall
focus solely on the establishment of the limit model. In fact, proving convergence is a
very challenging mathematical problem which is far beyond the scope of the present
paper. In the next sections, we comment further on the model obtained and deal with
some practical examples.

6. Comments on the diffusion model (5.1)—(5.2). We refer to the intro-
duction for references on the SHE model (5.1)—(5.2). This model is of great practical
interest for semiconductor device simulations because it provides information about
the electron energy distribution function at a much lower cost than a Monte Carlo
simulation of the Boltzmann equation [22], [23]. To our knowledge, the present paper
provides the first derivation of this model in the framework of superlattices, when the
diffusion is induced by the scattering properties of the quantum potential structure
itself.

Another interesting property of this model is that it gives rise to a hierarchy of
moment models [4], [17], including the usual drift-diffusion model [28], [33] and the so-
called energy-transport model, which is an extension of the drift-diffusion model with
an additional energy balance equation (see [6] and references therein). We refer to
[4], [17] for the derivation of these models. Here, we first want to discuss the relation
between the number and energy densities n(z,t) and &(x,t) in position space, which
are obviously important macroscopic quantities, and the energy distribution F'. This
relation takes the form

(6.1) (Z)sz@@ﬂ(i)M@@@
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where, in drift-diffusion or energy-transport models, F' is approximated by a Fermi-
Dirac distribution (i.e., the quantum thermodynamical equilibrium distribution func-
tion of electrons; see [11]) F, r(¢) = (exp((e — p)/kgT) + 1)~!. The thermodynamic
parameters p = p(z,t) and kgT = kgT(x,t) are the chemical potential and ther-
mal energy and characterize the state of the electron gas. (6.1) furnishes a local
relationship between the pairs (n,&) and (u, T).

Here, the particular form of the density-of-states M makes this relationship fairly
different than in bulk semiconductor materials. M can be viewed as an “averaged
density-of-states” over the superlattice elementary period. It reduces to the usual one-
dimensional density-of-states (up to a constant factor) M = v(k)~! if the potential
o5, is constant in the elementary cell (since in this case T = 1, R = 0, and 7 is
equal to the classical transit time ¢/v(k)). But M may significantly differ from this
value if ¢gz, is not constant (see section 7).

Because of this particular form of M, the relationship between (n, &) and (p,T)
in the superlattice can significantly depart from that of bulk materials. In particular,
at resonant energies (see the example of square potentials below) the time delays are
significantly longer than the classical time delays. Symmetrically, at energies away
from resonances, they can be shorter. Therefore, in (6.1), M weights the resonant
energies more strongly and the nonresonant ones less strongly. The relation (u,T) —
(n, &) reflects these effects.

Next we discuss the value of the electron mobility in the superlattice, given by
), [17):

(&

6.2 —
(6.2) ML=

/ D($7€)FH7T(1 — Fu,T)d5~
R

We recall that the mobility is the coefficient of Ohm’s law j,, = pspnFE, which is the
expression of the drift-diffusion law when the chemical potential 1 and the temper-
ature T are constant in space. The mobility is one of the most important transport
parameters in semiconductors as it is easily accessible to measurements and charac-
terizes the ability of electrons to react to an external electric field. In the present case,
the mobility of the electrons is induced solely by their scattering by the superlattice
potential pattern. A realistic expression of the mobility must also include the influ-
ence of “bulk interactions” like phonon or impurity interactions. As already pointed
out, this is not yet done in full rigor in the present work, but a rough estimate of the
total mobility utot can be obtained from

1 1 1
Htot Hbulk  MSL

where ppyk is the mobility under the influence of bulk collisions alone (see [32],
[16]). Formula (6.3) can be understood by a circuit analogy, in which the resistances
(proportional to the reciprocal of the mobility) of the bulk and of the superlattice
add up in series. It provides a first answer to the problem of determining the electron
mobility in the superlattice. This question was left open, for instance, in [35], where
by default, the superlattice mobility was assumed to be equal to that of the bulk.
As a conclusion, the diffusion model (5.1)-(5.2) can be used in two ways: either
for direct simulations or as a way to access analytical values for the parameters of
macroscopic (drift-diffusion or energy-transport) models. In the latter case, the ana-
lytical values of M and D give rise to easily computable values of the drift-diffusion
mobilities or density versus chemical potential relationships. (See the example in the
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next section.) Through the specific values (5.4), (5.5), the obtained parameters of the
drift-diffusion model retain information about the quantum nature of transport in the
superlattice base cell in a rigorous way.

7. Example: Square wells or barriers. In this section, we analyze the simple
case in which ¢gy is equal to a simple square well or barrier. More precisely, we
suppose that the presence of a second material (called B) results in potential and
effective mass jumps at the A — B interfaces. We denote by m 4 and mp the effective
masses in materials A and B. We denote by V' the potential ¢g;, in material B, with
V > 0 if B produces an (energy) potential well, and V' < 0 if it produces a potential
barrier. We assume that the B layer has width a. Therefore,

‘/3 m(x) :{ mp, S (_gaé)a
272

(71) (JSSL(.Z‘) = { 0. j; ((_3{21:5):

We note that

h2E? mp 1/2 2em 4
I TG ) R 2

Note that k% > 0 and k2 > k? in the case of a well, and k¥ < 0, k? < k? in the
case of a barrier. In the barrier case, x? can be negative, in which case x is a pure
imaginary number k = ik.

The resolution of (3.4) for the scattering states in this case is an elementary
quantum mechanics problem, the solution of which can be found in any textbook
(see [29], for instance). Here we just note that, to account for the effective mass
discontinuity, the continuity of ¥ and m~'1’ must be enforced at the interfaces z =
+a/2.

With (7.1), we find for a well (k% > 0) and any value of k > 0, or for a barrier
(k‘z/ < 0) and incident energies above the barrier energy k? + k%/ > 0, that

(7.3) _ 1 B ((mB —ma)k? — mAk%,)2
' 1+ yosin®(ka)’ xo= dmampk?(k? + k3,)
and
1
(7.4) Tr = TR = quZ@(é—a—kdsq),
with
i = ax1(1 + cot?(ka)) — k™2 cot(ka) = (ma +mp)k® + mak?
o X3 + cot?(ka) ’ 2ma(k? + k) ’
\ ((mA —mB)k2+mAk‘2/) k%, . ((mA+mB)k2+mAk‘2/)2
2 = 3=

2ma(k? + k% )k? ’ dmampk?(k? + k%)

The value of ds, has to be compared to the corresponding value d; for classical motion:

k mp

do = — "B 4
' A 2+ k)2

At resonant energies (i.e., when sin(ka) = 0), Tsq > 7, while the reverse inequality
holds at nonresonant energies (i.e., when cos(ka) = 0); see [29].
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In the case of a barrier (k% < 0) and incident energies below the barrier energy
k% + k% < 0, we find

1 axi(coth?(ka) — 1) + &~ 'x4 coth(ka)

I'=s —5—, dsq = 20~
1+ xo sinh*(%a) X3 + coth®(%a)

)

with x0, X1, and x3 obtained by changing k% + k% into |k? + k%| in the denominators
of the formulas above and with o unchanged.

With (7.3) and (7.4), equations (5.4), (5.5) give the expression of the density-of
state and diffusivity in the case of square wells or barriers:

Y4 1
75 - fork2>0,
(7.5) A xo sin?(ka) onn
4 1 2 ~2
(7.6) D=——+—— forr" =—-F" <0,
h7 o sinh®(ka)
_ 27Tsq
(7.7) =

As already pointed out, the diffusivity has infinite peaks at resonant energies (sin(xa)
= 0). These peaks are due to resonant tunneling and are reminiscent of the conduction
minibands in an infinite superlattice.

If more than one well or one barrier is present within a period (i.e., when the
coherence length is larger than the period), the scattering data become increasingly
complicated (but still can be computed numerically) and resemble even more closely
the energy band structure of the infinite superlattice.

This example shows that the coefficients M and D of the diffusion model can
be computed easily from the resolution of the Schréodinger equation in a single cell.
The most important characteristics of quantum transport (like the existence of trans-
mission resonances) translate into specific behaviors (like singularities at resonance
energy) of these constants.

8. Conclusion. In this paper, we have presented a scattering matrix model
describing electron transport in semiconductor superlattices when the electron phase
coherence length is of the order of the superlattice period. Then, we have investigated
the limit of a large number of superlattice cells. We have shown that, at the diffusion
time scale, the scattering matrix model formally converges to a diffusion model in
the position-energy space, the so-called SHE model, and have explained how it can
be used to model electron transport in superlattices. In particular, the model takes
into account the electric potential self-consistency through a quantum model of the
charge concentration. An analytical example shows how the diffusion constants can
be explicitly computed from the scattering data of the base cell.

The scientific merit of this model can only be assessed in light of numerical simu-
lations and comparisons with other experiments or numerical models. In the present
paper, we have focused on the derivation of the diffusion model and will defer its
numerical validation to future work. However, we feel that the present model has
promising capabilities. It will be easy to solve numerically, while giving access to
finer physical details than conventional drift-diffusion models. In particular, we have
shown how the diffusion constants retain some of the essential features of quantum
transport in the superlattice base cell. Beyond their use in the SHE model, these dif-
fusion constants can be used in turn to improve our knowledge of diffusion constants
of conventional models of the drift-diffusion type when applied to superlattices.
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Appendix. Proof of Theorem 5.1. We shall give only the formal calculations
below, supposing that all unknowns have a limit in a convenient function space. The
proof of this point is a very difficult one (given the nonlinearity of the problem and
its highly oscillating character) and will not be tackled here.

A.1. The potential and the Schrédinger equation. It is a classical matter
in homogenization theory [9] that

¢(§C(‘T7y7t) = ¢SC(xat) + O(Oé) as o — 07

where ¢sc(x, t) does not depend on y and satisfies the homogenized Poisson equation
(5.6).

Then, standard perturbation theory for the Schrédinger equation applies (see
[31]), and we get, at least formally,

¢?(33,ya t) - wk(mvyat)v RaaTavTI%vT’% - R7 T7 TRyTTy -«

where Yy, R, T, Tg, 7r are the wave-function and scattering data associated with
the potential ¢ = ¢psc(x,t) + ¢dsr(y). However, since ¢pgc does not depend on y, the
wave-function is deduced from the solution of the Schrédinger equation with potential
¢sr.(y) by multiplication by a constant (in y) phase factor (Gauge transformation),
and the scattering data are unchanged. Furthermore, a simple coordinate translation
allows us to consider the problem in the elementary cell Cy again without changing
the scattering data. Therefore, R, T, 7r, 77 do not depend on x. From now on, ¥y
will denote the wave-function associated with the cell Cy, which also does not depend
on x.

Now we estimate the potential shift 6¢® across a cell. Following section 4, we
consider a point x and let n = n®*(z) = [(x/af) + 1/2], where [] is the integer part.
According to (4.11), across the cell Cpa(,) associated with x, 6¢ is equal to
) t)'

6¢a = ¢g0(azn+%7x—%vt) - (bgC(azn—lam—

1
2 2

We can define 6_ and 64 such that
= 1 {= o = L (= )
aT,_ 1 =« n—i =T+ ao_, ATpl =« n+§ =T+ ao4.

We obviously have —¢ < 6_ < 0,0 <y <¥, 64 —6_ = L. Therefore,

9¥5c
ox

(A1) é9% = ¢§C(x+a6+,x_%,t) — %oz + aé_,x_%,t) =l +0(a?).

In particular, 6¢® — 6¢ = 0. From this, we note that

eml 1 0¢%~ 9
R |k| oz (a).

(A.2) kS (z, k) = k| £«
Finally, taking the limit a — 0 in (4.17) and (4.18) leads to (5.7), provided that

f is a function of e(k) only. This point is proved in the next section.

A.2. f depends only on the energy. We consider problem (4.12), (4.13) and
formally let @ — 0. We have, using (A.2),

(A.3) flz, k,t) = R(=k)f(x, =k, t) + T(k)f(z,k,t), k>0.
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Now, considering that R and T are the scattering data associated with the limit
potential, which has no potential shift (6¢ = 0), formulas (3.6) lead to

(Ad) R+T=1, RT(k)=R,T(-k), tr,mr(k)="1r,7r(—k) Vk e R.
Using these relations, (A.3) leads to
(A-5) R(K)(f (2, k,t) = fz, =k, 1)) =0, k>0.

With the assumption that R > 0 almost everywhere, we deduce that f is even
with respect to k or, equivalently, that it is a function of £(k). Therefore, we have
f(’l,‘,k,t) = F(:L‘,€(k),t).

A.3. Current equation (5.2). We introduce the current

2em
T

(A6) Ja(xagyt): %(fa(gj7k’t)—fa(aj7—k,t>), k=

We show that J¢ — J, where J is given by (5.2).
For k > 0, we rewrite (4.12) by shifting the position variable by a half-period:

(A.7) [z, k,t) = R" (:v — ag, —k) (2, —k,t — a?18)
oY ¢ « @ feY 2, _«
+T zfai,k_ ¥z —al, k2t — a13),

where we have not repeated the arguments of k¢ and 73 7. We rewrite (A.7) according
to

f¥(z, k,t) = R® <x — ag, k) Nz, =k, t) +T¢ (:v — ag,kf> f(x, k2, t)

2
1 af af
(A.8) + 7 <x —ag, kf) (—aéaj;(m, k,t) + (B2 — k)%(x, k,t)) +0(a?).

We note that, by (3.6), T%(z — a£,k*) = T%(z — af, —k). Now, using (A.2), we
deduce from (A.8) that

R® (:c - ag, k) (fo(x, b, t) — fo(z, k1))

ot (o — ol ke (982 em 1995 0/ 2
= —aodT (a: a2,k_)(ax (a:,k,t)+h2k % Ok (z,k,t) ) + O(a?),

or, dividing by R%,

em 1 903 0f

J¥(z,e(k),t) = % B Ok (x,k,t)) + O(a).

L T(x —ag, k* o
77(15—04%&) (af(x,k’t) +
2Rz —as5,k>) \ Oz
Now, taking the limit &« — 0 and noting that

05 _ oF Wk

% ocm k20

we easily obtain (5.2).



DIFFUSION MODEL FOR SUPERLATTICES 297

A.4. Continuity equation (5.1). To prove the continuity equation (5.1), we

evaluate
1 / {
o __ T « _ _ (0% _ _ _ (o3
I = (J (x—l—az,&,t) J (:C a2,5 ed¢p ,t)).

First, using (A.1) together with a Taylor expansion, we readily see that

o (0T  0¢%s 0%
I _(ﬁx +e B ag)(x,s,t)—&—O(a).

Now, using (4.12), (4.13), we compute

20201% = T(a, k%) f (ac - ag, Kt — a2 (x, ka))

+ R(x,—k)f (:c + ag, —k,t — a?78(, k)> —f <x + ag, k,t)

14
+ T(x,—k)f (x + ozg, —k,t — o?7%(x, —k:)>

1 I/
+ R(z, k) f (x — aa,k‘ﬁ,t - a%’ﬁ(m,kﬁ)) —f (Jc —ag, kﬁ,t) .
By Taylor expanding with respect to ¢ and using (3.6), we finally get

20201% = —o® (T2, k*) 7 (2, k%) + R(z, k)T (z, —k)
+ T(z, —k)7¢(z, —k) + R(x, k*)7H (2, k) %L:(x, k,t) +O(a).

Taking the limit & — 0 and using (A.4) then easily leads to (5.1).
This conclude the proof of Theorem 5.1. ]
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RELAXATION OSCILLATIONS IN A CLASS OF DELAY
DIFFERENTIAL EQUATIONS*
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Abstract. We study a class of delay differential equations which have been used to model
hematological stem cell regulation and dynamics. Under certain circumstances the model exhibits
self-sustained oscillations, with periods which can be significantly longer than the basic cell cycle
time. We show that the long periods in the oscillations occur when the cell generation rate is
small, and we provide an asymptotic analysis of the model in this case. This analysis bears a close
resemblance to the analysis of relaxation oscillators (such as the Van der Pol oscillator), except that
in our case the slow manifold is infinite dimensional. Despite this, a fairly complete analysis of the
problem is possible.

Key words. relaxation oscillations, delay differential equations, hematopoiesis, stem cells,
chronic myelogenous leukaemia
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1. Introduction. The understanding of periodic behavior in nonlinear ordinary
differential equations is reasonably complete. Near Hopf bifurcation, periodic solu-
tions are generically of small amplitude and can be analyzed using the methods of
multiple scales. At more extreme parameter values, oscillations are often strongly non-
linear, and it is frequently the case that the dynamics are relaxational, in which case
they can be understood through the existence of slow manifolds in phase space and
the associated asymptotic analysis of the resulting relaxation oscillators. The classic
example is the relaxation oscillation of the Van der Pol oscillator, whose analysis is
ably expounded by Kevorkian and Cole (1981).

The situation is much less satisfactory for delay differential equations, which are
frequently used to model populations, for example, in ecology (Gurney, Blythe, and
Nisbet (1980)) or physiology (Mackey (1997)). One example is the delay recruitment
equation

(1.1) et = —x + f(z1),

where z; = z(t — 1). For unimodal f (i.e., f(0) = 0, (z — 2*)f'(x) < 0 for some
x* > 0), periodic oscillations can occur for sufficiently small e. In some circumstances,
a singular perturbation analysis of periodic solutions when e < 1 is possible (Chow
and Mallet-Paret (1982); Chow, Lin, and Mallet-Paret (1989)), but the results have
been limited in scope.

Although linear and weakly nonlinear stability methods are straightforward for
delay differential equations, singular perturbation methods appear difficult to imple-
ment in general. Much of the work that has been done, such as Chow and Mallet-
Paret’s work cited above, is concerned with systems with large delay (thus (1.1) or
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its generalizations (Chow and Huang (1994); Hale and Huang (1996))). Artstein and
Slemrod (2001) place their discussion of relaxation oscillations in the context of slow
and fast manifolds familiar from ordinary differential equations and draw a distinction
between systems where the delay is “fast” or “slow.” (In this context we will find
that the delay in our system is fast.)

Actual constructive asymptotic methods are less common. Fowler (1982) ana-
lyzed the delayed logistic equation ex = x(1 — 1), and Bonilla and Lifian (1984)
analyzed a more general system having distributed delay and with diffusion. In a
sequence of papers, Lange and Miura (e.g., 1982, 1984) provided asymptotic analyses
of models with delays and exhibited boundary layer behavior, although they were
exclusively concerned with boundary value problems, and their systems were linear.
More recently, Pieroux et al. (2000) analyzed a laser system when the delay was large
but dependence on the delayed variable was weak, using multiple scale techniques.
In this paper, we show how a constructive relaxational perturbation analysis can be
carried out for a particular class of delay differential equations describing stem cell
dynamics, when the net proliferation rate is small.

2. A mathematical model of stem cell dynamics. Hematological diseases
are interesting and have attracted a significant amount of modeling attention be-
cause a number of them are periodic in nature (Haurie, Dale, and Mackey (1998)).
Some of these diseases involve only one blood cell type and are due to the destabi-
lization of peripheral control mechanisms, e.g., periodic auto-immune hemolytic ane-
mia (Bélair, Mackey, and Mahaffy (1995); Mahaffy, Bélair, and Mackey (1998)) and
cyclical thrombocytopenia (Swinburne and Mackey (2000); Santillan et al. (2000)).
Typically, periodic hematological diseases of this type involve periodicities between
two and four times the bone marrow production/maturation delay (which is different
from the delay considered in this paper).

Other periodic hematological diseases involve oscillations in all of the blood cells
(white cells, red blood cells, and platelets). Examples include cyclical neutropenia
(Haurie, Dale, and Mackey (1999); Haurie et al. (1999); Haurie et al. (2000)) and
periodic chronic myelogenous leukemia (Fortin and Mackey (1999)). These diseases
involve very long period dynamics (on the order of weeks to months) and are thought
to be due to a destabilization of the pluripotential stem cell (PPSC) compartment
from which all of these mature blood cell types are derived.

In Figure 2.1 we have given a pictorial representation of the PPSC compartment
and defined the important variables. The dynamics of this PPSC population are
governed (Mackey (1978), (1997), (2001)) by the pair of coupled differential delay

equations

dP
(2.1) S = AP+ BN — ¢ T BN,
for the dynamics of the proliferating phase cells and

dN oy
(2.2) E% = —[BN) + BN + 26BN

for the nonproliferating (Go) phase cells. In these equations, £ is time, 7 is the time
required for a cell to traverse the proliferative phase, N, = N(f — 7), and the resting
to proliferative phase feedback rate 3 is taken to be a Hill function of the form

en
(2.3 BNy = G
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Céllular Death (Apoptosis) Cellular Differentiation

Fic. 2.1. A schematic representation of the Go stem cell model. Proliferating phase cells (P)
include those cells in S (DNA synthesis), G2, and M (mitosis) while the resting phase (N) cells
are in the Go phase. 6 is the rate of differentiation into all of the committed stem cell populations,
while v represents a loss of proliferating phase cells due to apoptosis. [3 is the rate of cell reentry
from Go into the proliferative phase, and T is the duration of the proliferative phase. See Mackey
(1978), (1979), (1997) for further details.

The origin of the terms in these equations is fairly obvious. For example, the first
term of (2.2) represents the loss of proliferating cells to cell division (8(N)N) and
to differentiation (§N). The second term represents the production of proliferating
stem cells, with the factor 2 accounting for the amplifying effect of cell division while
e~ 7T accounts for the attenuation due to apoptosis (programmed cell death) at rate ~.
It is clear that in investigating the dynamics of the PPSC we need only understand
the dynamics of the Gy phase resting cell population since the proliferating phase
dynamics are driven by the dynamics of N.

Typical values of the parameters for humans are given by Mackey (1978), (1997)
as

(2.4) §=0.05d"1, By=177d"%Y, 7=22d, n=3.

(The value of # is 1.62 x 10% cells kg~!, but this is immaterial for dynamic consider-
ations.) For values of v in the range 0.2d ™!, the consequent steady state is unstable
and there is a periodic solution whose period P at the bifurcation ranges from 20—
40 days. It is the observation that P > 7, which arouses our curiosity, and which
we wish to explain. (In differential delay equations, periodic oscillations have periods
bounded below by 27 and under certain circumstances the period may be in the range
27 to 471.)

We rewrite (2.2) in a standard form as follows. First scale the nonproliferating
phase cell numbers by 6 and the time by 7 so that

(2.5) N — 0N, t=1t*
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F1G. 2.2. Solution of (2.6) with e = 0.11, b= 3.9, and p = 1.2.

and (2.2) becomes

(2.6) N = g(N1) — g(N) + €[pg(N1) — N,
where N = dN/dt*, N; = N(t* — 1),

bN
2. N)y= —
( 7) g( ) 1+ N©’
and the parameters are defined by
2777 —1
(2.8) b= 0Bor, =61, p= i
ot

The biological interpretation of these is as follows: b represents the rate at which cells
migrate round the loop in Figure 2.1, ¢ represents the rate of loss through differenti-
ation, and p represents the net proliferation rate round the loop. The dimensionless
time t* is measured in units of the proliferative time spent in the loop. If we take
~v ~0.2d7!, then typical values of the parameters are

(2.9) b~39, p~26, &~0.11.

On this basis, we suppose b,u = O(1). The long periods are associated with the
relatively small value of e, and so the aim of our analysis is to solve (2.6) when ¢ < 1.
Figure 2.2 shows the periodic behavior when ¢ = 0.11, b = 3.9, and p = 1.2 (the
steady state is stable when p = 2.6).

3. Singular perturbation analysis. The first order delay differential equation
(2.6) is an infinite dimensional system. For example, defining the function

(3.1) u(s) = N({t* +s), se[-1,0],
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we can consider (2.6) as a sequence of ordinary differential equations on the Banach
space C[—1,0] of continuous functions on [—1,0]. Singular perturbation analysis is
therefore not necessarily straightforward, but we shall see that a formal procedure is
indeed possible.

The key observation for our investigation is that a solution of (2.6) can be slowly
varying, on a slow time scale

(3.2) t = et

or on a rather loosely defined “slow manifold” on which N =~ Nj. In terms of ¢, which
represents time measured in units of the slower differentiation time scale, we have
N(t* —1) = N(t —¢); thus (2.6) is (N’ = dN/dt)

N = g(Na> - g(N)
€

(3.3) + png(Ne) — N.

Also, by expanding N, for small ¢, we have

Ne =N —eN'+ 3e2N" ...,
g(N.) =g(N) — [eN' — %EQNH + %531\[”’...]9'(]\7) + [%EQN’Q...]g”(N) +oee
(3.4)

note that N’ = dN/dt, while ¢'(N) = dg/dN. We thus have

(35)  [1+g (NN =pug(N) = N +e[—pg'N' + 3N"g' + 5N?g"] + -,
and successive terms in the expansion

(3.6) N~ Ng+eNy+---

satisfy the equations

pg(No) — No
37y N, =)~ T
(3.7) 0 1+ g¢'(No)
[14 g'(No)INT + g (No) No Ny
(3.8) = pg' (No)N1 — N1 + [—pg' (No) Ny + $Ng'g'(No) + 3 Ni2g" (No)],

and so on. Note particularly that in this slow region N; denotes the second term in
the expansion for N and does not represent N(t* — 1); it will revert to the former
meaning when we consider the dynamics in the fast “shock” layer (when the expansion
will use v and v as first and second order terms). Equation (3.7) states that the rate
of change of the resting stem cell population is due to net proliferation (the first term
in the numerator) and loss by differentiation (the second). The effect of the delay in
the proliferative cycle is to mediate the rate by the denominator. In our procedure we
now begin to follow Kevorkian and Cole’s (1981) exposition (pp. 67 and the following
ones) quite closely.

The function g = bN/(1 + N™) is unimodal. If ¢’ > —1 everywhere, then N will
evolve on the slow time scale to a steady state. Suppose now that

4n
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Fic. 3.1. Graphs of g(N) and N/p for b = 3.9, n = 3, and p = 1.2 in the range (p—,p+) =
(0.52,1.48). Also shown are graphs of N/u— and N/p4.

which is the criterion for ¢’ to reach —1. Then there are two values N_ < N, at
which ¢’ = —1; for (2.7), we have, explicitly,

(3.10) NE=2Li(n—1)[b+ (b*—bb) /] — 1.

If ub < 1, N = 0 is stable, by consideration of (3.7). If ub > 1, then there is a
positive steady state N* in which N* = ug(N*). We define the two values of p where
N* = Ny as py; thus,

Ny
3.11 Pt = s P < g
(8.11) g(Nx) "

be 1/2
1£(1—— .
(-5

The situation which is of interest is when p_ < p < py, and this is depicted in Figure
3.1. In this situation, the graph of N/ versus Ny is as shown in Figure 3.2, and it is
apparent that the fixed point in (N_, N ) is unstable, because the slope of the graph
at the fixed point (where N’ = 0) is positive. (Conversely, there is a stable fixed point
when p is outside this range.)

Suppose that NV > N, initially. Then Ny decreases and reaches N, at finite time.
Define this time to be when ¢t = 0; then

- [ b

Using (3.10), we have, explicitly,

(3.12) pe = 1n—1)
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F1G. 3.2. Graph of Nj(No) given by (3.7) when n =3, b=3.9, and p = 1.2.

Since 14 ¢’ (N4 ) = 0, the first term in the expansion of the integral in (3.13) for small
Ny — N, is quadratic, and from this we find, as —t — 0+,

(3.14) No ~ Ny + qi(=t)'/? + q2(—t) + O[(=)*?].

Detailed expressions for the coefficients are given in the appendix.
Rearrangement of (3.8) using (3.7) allows N7 to be obtained in the form

~ ( No — pg(No) 9'(No) Mo
= (SEae) [Al Tairg o) Sy, AN o = N

(3.15)
where hy = h(N),
g'(N{L = g’ (N)}(N — Ny )
2{N = pg(N)H{1 +¢'(N)}
(with the singularity at N, removed), and
A(N) = h(N:)  pg/(N)

(3.16) h(N) = —

3.17 k(N) = — .
(3.17) () N—-N. N — pg(N)
In particular,

1
(3.18) hy = s

294 (N+ — pg+)’

where g4 = g(N4), etc. Higher order terms can be obtained in a similar way. Note
that, since Ng— Ny ~ (—t)"/? as —t — 0, and ¢'(Ny) = —1, it follows that 1+¢'(Ng) ~
(—t)'/2 as —t — 0, and therefore (3.15) implies that N; = O(1/(—t)) as —t — 0+,
and the validity of the expansion breaks down when (—t)'/2 ~ ¢/(—t), i.e., when
—t ~ g2/3,
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3.1. Transition layer. The solution becomes disordered as —t — 0, and specif-
ically when —t ~ £2/3. In this section we analyze this “transition” layer. In addition,
we might anticipate the existence of a region in which N changes on the fast (delay)
time scale t*, and this will indeed turn out to be the case. However, it transpires that
such a fast region cannot be matched directly to the slow outer region, and, just as for
the Van der Pol oscillator, the inability to match slow and fast regions also suggests
that there is a transition region which joins the two. In terms of the outer time scale
t, we shall find that the slow solution is valid for —t ~ O(1), the transition region
for —t ~ O(?/?), and the fast “shock” layer for —t ~ O(¢). Indeed, the dynamics of
these three regions are essentially the same as those of the corresponding regions in the
analysis of the Van der Pol equations, and we follow the exposition in Kevorkian and
Cole (1981) closely. In particular, consultation of this book is strongly recommended
for those less familiar with the basic procedure of matched asymptotic expansions.
(Note that there are some algebraic errors in Kevorkian and Cole’s exposition.)

A distinguished limit exists in which we put

(3.19) t=ple) + (if) t,

where we assume ¢ is O(1). The definition of (2 is
(3.20) Q= (g1q)*”,

and p(e) is a (small) origin shift which is introduced to allow matching to be carried
out. Since N — Ny ~ (—t)1/? as —t — 0+, this requires N — N, ~ £/3, and we
define f via

1/BQ
(3.21) N=N, + (E,,> f.
9+

It is still appropriate to expand the delay term, and we find, from (3.3), that f(t)
satisfies

(322) [+ 2ff +1=e"Plnf + Q" + QU + £1) = M2F]+ O(¥/?),

where
Qg//l 2
(3.23) A= 91; , K= ﬁ(l + ).

We expand f in powers of !/3, thus
(3.24) f~f1+51/3f2+...;
then from (3.22) we find that

{/+2f1f{ +1 :Oa
(3.25) 3 +2(fif2) = —wfi+ 3+ QAR — AR

and so on. The first of these may be integrated to yield

(3.26) fil+fi+t=0,
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where the constant of integration is absorbed into the time shift p(e) in (3.19). The
solution of the Riccati equation (3.26) is

(3.27) fi=—-

where V' satisfies the modified Airy equation
(3.28) V' +tV =0.

The solutions of (3.28) are Ai(—t) and Bi(—t), whose leading order behaviors as
t — —oo are V ~ exp [:I:%(—f)S/Q] (minus for Ai). Thus if V contains any Bi, it will
dominate as f — —oo, and hence f; = V'(£)/V (f) ~ —(—t)*/? in this limit. Therefore,
in order to obtain f; ~ (—£)*/? as { — —oo, which is required for matching purposes,
we must suppress the Bi component and choose

(3.29) V(t) = 2/7TAi (—1),

where the premultiplicative constant is chosen for later algebraic convenience (it does
not affect the definition of fi). Since f; ~ (—)'/? as t — —oo, fi is monotonically
decreasing for large —, and hence from (3.26) f; > (—f)'/2. If f{ first reaches zero for
some value of £ = f, < 0, then at that point (3.26) implies that f; = (—)/? and also
that (since f{ is continuous and f; > (—£)/? for £ < t.) fi < 0, which contradicts the
assertion. Thus f] < 0 for all £ < 0, and (3.26) implies this directly for # > 0. Thus
we find f; is monotonically decreasing while it is finite, which is in the region £ < £,
where g ~ 2.338 is the first zero of Ai(—t). The solution will break down as t — t,
where it will match to an inner region, or shock layer, in which ¢* = O(1) (with a
suitably chosen origin for t*).
The first integral of (3.25)s is (using f1 = V'/V)

(3.30) fi4+2f1fs = —clnV 4+ 2Qf + Qfi f{ — 3Af} + O,

where C5 is constant. By differentiation of (3.26) we find that —C> f is a particular
solution for (3.30) when only the C5 term is present on the right-hand side. Using
f1=V'/V, we have

(3.31) (V2 fo) = CoV? — kV2InV + LQV2 7 + QV2fi f — 2AV2 £,

Next we make use of the following identities, which can be obtained by integrating
by parts and using (3.27) and (3.28):

[vensi=yveg - [veg,
[vie=vi-vig v [vig,
(3.32) /Vfo’ =V?mV+ VvV -ivii- /(v2 InV —1v?).

The comment after (3.30) implies that

1 f

(3.33) v

V2d£: 7f{7
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and use of (3.26) and integration by parts in (3.32) implies that

1 1
(3.34) W/Vfo’:—f{InV—W/VQInV—i—%ff.
Hence we obtain the solution

fo=fl-Co+ 20+ 2 Q4+ N InV] - IAf]

1/t _
(3.35) +[3(Q+A) — K] 7z / VZInV dt,

where we have set the integration constant Dy (in a term Do /V'?) to zero to prevent
exponential growth as t — —oo.

3.2. Matching. In order to match the outer solution to the transition solution,
we expand the latter for large —t and the former for small —t. Equation (3.14) gives
the behavior of Ny for small (—t), while if we expand (3.15) for Ny near Ny, and use
(3.14), we find

ri r21(Ar) + o2 In(—t)
3.36 Ny ~
(330 T R S
where the constants r1, 21,722 are given in the appendix; 1 and rq2 are known, while
r91 involves the unknown constant A; in (3.15).

Next we need the behavior of f1 and fz ast — —oco. The function V' = 2\/wAi (—t)

has the following asymptotic behavior as t — —oo:

+O(1),

. . 5
(3.37) V ~ (—1) 1/4 exp [—%(—t)?’/?} 1— W 4o
Since f; = V'/V, we have
(3.38) fi~ (=Y 4 02,

A(=t)

and thence we find from (3.35) that

~ 821(02) + S22 hl(*t) ln(ft)
(339) fg ~ 81(*0 + (_5)1/2 + 0 |: :| 5

(—1)?
and the coefficients s, s92, and so; are given in the appendix. Again, s; and sqo are
known, and sg; involves the unknown constant Cs in (3.35).

We match in an intermediate region where

~ Q
(3.40) t=nt, +p), t= ({52/3) Nty

and we take £2/3 < 7 < 1 and also presume that 7 > p. Writing both expansions

(3.6) and (3.24) in terms of ¢,), the outer expansion is given by

N~ Ny qgp(—mt /2 PIL
++ @ (=nty) 2( 771577)1/2 a2(—nty) +
+ rogIn(—nt,) ...
(3.41) + i S e[ra1 4 a2 In(—nty) ],

(=nty) (_ntn)l/Q



RELAXATION OSCILLATIONS IN DELAY EQUATIONS 309

while the transition expansion is

€
N~ Ny 4 qi(—nt))V2+ ——— .
+ ( 77) 495'/_(777@7)
5102 Q2 [591 + 592 {In(Q/2/3) 4 In(—nt,)}]
(342) + T(—ntn) + m 1/2 n ceey
9+ 9+ (=ntn)
and matching requires
1 5102 0L/2
r = ma Q2 = ?, T22 = ﬂsﬂ,
Ql/Q
To1 = —5—[S21 + 522 In Q)
9+
491/2
(3.43) p= # elne
394 q

The first three of these are satisfied identically (see the appendix), while the fourth
and fifth determine ss; and p, given ry; in the outer solution.

3.3. Matching to the shock layer. The transition solution governed by (3.22)
breaks down as t — ty. Near ty, we have that

(3.44) Vx —K(t—to) + §Kto(t — 0)® + O[(t — 10)*],
where K = 2/TAi’(—1y) ~ 2.486, and thus

(3.45) flw—%la+;fo(£0—f)....

N — N, becomes of O(1) when 5 — ~ €!/3 (this follows from (3.45) together with
(3.21)), and this suggests that we put

(3.46) [ =10+ Q{3 + o(e)},
and we anticipate that ¢ < 1. In terms of ¢,
22/3\ _
(3.47) t=pe) + (Q) to+ 230 () 4 et*,
so that in the transition layer N(t*) satisfies (2.6), i.e.,
dN
(3.48) g = 9WN1) = g(N) +elpg(N1) = NI,

and N; reverts here to its original meaning as N (t* —1). The behavior of fy as t — o
follows from (3.35), which implies

) n(fo—1) Oy
(3.49) for SR QN T

where
I
(3.50) CszCz—éﬁ—%(Q+A)1HK—%A+[§(Q+A)—H]K%,
%
(3.51) Iy = / V2IlnV dV.
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If we expand N in a transition region where e'/3t* = nt, < 1, and we suppose o < 1,
then from (3.45) and (3.49) we find that

N ~ N +£ L 1 9 lQQtN( t, + )
+ gi 7’}@7 T}tn 3 o\Mty g)...

62/3 1 ) .
+ 7991 7(77%)2 [{03 —3(Q+A)InQ} - 3(Q2+A) ln(—nt,,)] e

The presence of the term in £2/3 formally requires that we expand (3.48) as

(3.52)

(3.53) N ~u+ 230+ 0(e)

and that u, v satisfy

(3.54) v =g (u1)v1 — ¢ (u)v,

where the suffix 1 indicates a delayed argument.
Evidently, u — Ny as t* — —oo, and its asymptotic behavior can be determined
by writing

(3.55) u=Ny +¢

and expanding for small ¢, together with a Taylor expansion for ¢; = ¢(t* — 1) as
¢ — ¢ +---. This leads (with the ansatz ¢ > ¢’ > ¢ ...) to

(356)  0=[-3¢" —glod |+ [0 + 39 (8 + ¢¢") — 39 P> ¢ ] +- -,
where the brackets enclose terms of similar order. Two terms of the solution of this
as t* — —oo yield

1 [El — E2 ln(—t*)] +
git* t*2 ’

(3.57) ¢

where E; is an arbitrary constant, and FEs is defined in the appendix. The equation
for ¢ is autonomous, and an arbitrary constant can be added to t*. It is clear that
this is equivalent to changing the value of Ey; therefore the value of E; fixes the phase
of ¢.

The asymptotic behavior of v can then be found in a similar way, and we find that
(3.58) 0=[—3v" — g (pv)] + [gv" + 391 (v8)" — 591 (#*v)] + -,
whence
(359) v~ —Eg[t* + giEg ln(—t*) — E4 + - '],

where Fj3 is arbitrary and Fj is given in the appendix. As in the Van der Pol analysis, v
has a “homogeneous” solution v = ¢’(u)u’, which is O(1/t*?) as t* — —oo, and (3.59)
comes from the “particular” solution of (3.54)s, which does not tend to zero at —oo.
The behavior of N as t* — —oo is thus
1 E; — E>ln(—t*
[B1 = Bxln(=t*)] |

N~ N;+ -
+ gi{.t* t*2

(3.60) — 2B E3[t" + ¢/ BoIn(—t*) — B4,
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and putting £'/3¢* = nt, in the matching region gives

el/3 2B[E) + Eylnel/3 — EyIn(—nt,)]

N~ N; +

ginty (nty)?
(3.61) — e B3Es(nty) — €*3 Eslgl Ex In(—nt,) — gL E2 Ine'/? — By ...

Terms in (3.52) can be matched to the corresponding terms in (3.61) if

o= —¢t/3 {%gg’_Eg Ine — E4}7
_Cg—%(Q‘i‘/\)an E4

E -
1 le 917
0%,
Es = 3 //O7
9+
Q+ A
.62 FEy = —:;

these determine Fy, F3, and o, while the equation for Fs is satisfied automatically.

3.4. Shock layer. To compute N for t* = O(1), we must solve for N = u+¢£2/3y
the equations

u' = g(u1) = g(u),
1 [El - EQ ln(—t*)]

UNN++glt*+ 2 +-0 as 17— —o0,
v' =g (u1)v1 — ¢'(u)v,
(3.63) v~ —E3[t" + ¢} B In(—t*) — E4] as t* — —oc.

The solutions of these must be obtained numerically. Note that the value of Ej
determines the origin of t*, i.e., varying E; in (3.63)y simply phase shifts the solution.

It is at this point that the solution method deviates significantly from the Van
der Pol procedure. The Van der Pol shock layer equation admits a first integral, and
the solution can be written as a quadrature. The important point, however, is the
existence of this first integral. Remarkably, an analogous procedure can be followed
for the delay equations (3.63).

First, numerical integration of (3.63) indicates that u tends to a constant as
t* — oo. This is shown in Figure 3.3. The phase of the solution depends on the
location of the initial interval, as shown in Figure 3.4. For the purposes of our analysis,
we need to know this constant, and it can be found as follows. A trivial integration
of (3.63); shows that

(3.64) u(t?) + / glu(s))ds = Ny + g4

is constant, where the right-hand side is evaluated from the asymptotic expression
for u as t* — —oo. This immediately implies u is bounded (by N + g4 + maxg) as
t — 00, and if we suppose that u tends to a constant N, (as in Figure 3.3), then the
value of the constant is easily found from (3.64) to satisfy

(3.65) Np+gr = Ny + g+,
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Fic. 3.3. The solution ua (t*) of (3.63)1 for u with the initial data taken from (3.63)2 on the
interval [-A — 1, —A). The solution ug(t*) shown is obtained using E1 = 0 and A = 20. The
choice of A affects the phase of the solution, as indicated in Figure 3.4. This phase shift does not
affect the analysis since the solution tends to a constant exponentially, so that only exponentially
small terms in the slow recovery phase are affected.
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Fi1G. 3.4. The variation of the computed value § where u = 1 (i.e., a measure of the phase of
the solution of (3.63)1) as a function of the location A of the initial interval [—A — 1, —A).
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where gr, = g(Np).
Next, we study the behavior of u near Ny, by writing

(3.66) u=Np+U,

so that

(3.67) U gy (U - U,

where ¢} = ¢/(Ny), and solutions are e~ for a denumerable set i, g, ... of ex-

ponents. It is straightforward to show that, if these are assigned in order of in-
creasing real part, then ReA; > 0, and Im A\, € ((2k — 1)7, 2kw) if g7 > 0, Im X\, €
(2(k = D), (2k — 1)m) if =1 < ¢} < 0 (we can assume g7 > —1) except that Im A\; = 0.
In any event u = N, is stable, and

(3.68) u=Np+0( ™M) as t* — .

Integration of (3.63)3 with the matching condition (3.63)4 now shows that

(3.69) N+ [ gluslo(s)ds = B [§ + 4 Ba].

and therefore
(3.70) v=—vp+0(e ™M) as t* — oo,
where

E3[3 + ¢/l E»)

3.71 v, =
(3.71) T

Thus as t* — o0,
(3.72) N ~ N, —?/3v, + O(e, TST),

where TST denotes the transcendentally small exponential terms.

3.5. Recovery phase. The second part of the oscillation resembles the first.
There follows a slow recovery phase, terminating with transition and shock regions,
and then the first slow phase is repeated. As Kevorkian and Cole (1981) point out,
it is not worth the effort to compute the O(elne) terms without also computing the
O(e) terms, which requires solving for further terms in the expansions. Having shown
that the matching procedure does indeed work, we now abandon the O(elne) terms,
and thus we do not require all the detail presented previously. Since the details of the
recovery phase are similar to those of the preceding (initiation) phase, we summarize
the relevant results much more briefly.

In the recovery phase, we revert to the slow time defined by (3.47):

(3.73) t=oa+et",

where

2/37
(3.74) a="S ) 2 4+ O(elne),
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bearing in mind the definitions of p and o. As before, N satisfies (3.5), although
the 0(52/ 3) term in the shock layer requires a corresponding term in the expansion.
However, it is convenient (since there is no forcing term at O(¢2/3)) to lump this
correction into the O(1) term, accommodating the O(2/3) correction by a further
phase shift in the time origin. Specifically,

(3.75) N No+eNj 4+,

and the solution for Ny can be written as

N_ 1+g/
3.76 / { } dN =t_ —t.
( ) No pg — N

Note that Ng — Ny, as t — «, and (cf. Figure 3.2) N, < N_; thus in the recovery
phase 1+ ¢ > 0 and pg > N. In (3.70), t_ is the time when the second transition
region occurs.

We match (3.76) to the preceding shock layer by writing N ~ Ny ~ Np, —2/3vy,
t =a+et* in (3.76), and we find that matching requires that

N 1+ g(N) to 1+ g,
377) = AN e [+ {LHJrOsl o).
(8.77) /N {ug(N)N} Q" g — N, (elne)

Ast —t_, (3.76) gives, analogously to (3.14),
(3.78) No~N_ —Qi(t- —t)"2 +Qa(t_ —t) +---,
and in the transition region at t = t_, we get

el/3u
N=N_+——/,

(3.79) t=t_+r()+ %f,
where
(3.80) w=[-g" Q%3

(note g” < 0 and Q; > 0).
This leads directly to (3.22), but with k,,w replacing &, A, Q; k and [ are defined

in the appendix as x and A, but with w, ¢”, ¢’ replacing 2, ¢/, ¢/’. Hence

—Ai'(—1)

iy o

(3.81) [~

and matching occurs automatically at leading order (and r = O(elne)).
The transition layer leads to a shock layer where we write, by analogy to (3.47),

£2/3f,

(3.82) t=1t_+ + [r(e) + €¥/35(e)] + et*,

and r +¢2/3s = O(eln¢e). Now, notice that to obtain the O(¢?/?) shift in (3.77), we
need to know vy, and thus Es and E3 in (3.71). Similarly, we find that, putting

(3.83) N ~u+e?30+0()
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in the recovery shock, then

1 e1 — egln(—t*)
gzt* t*2 )

(3.84) v~ —eg[th +eag” In(—t*) —eq...]

u~ N_+

as t* — —oo, and we will need ey and e3. Since the equation for f in the recovery
transition region is of the same form as in the first transition region, e; and ez are
found in the same way, and thus

w+1 w2ty

(385) €9 = W, €3 = 397”

Finally, as t* — oo in the recovery shock,
(3.86) N ~ Ny —23vy + O(e, TST),
where
Ny+gu=N_+g-,
(3.87) S es[5 + g e
‘ v L+gp

At this point, we reenter the first slow phase, and if the motion is periodic, with
period P(g), then we should regain the slow phase solution (3.13) with ¢ replaced by
t+, where

(3.88) ty =t—P(e);
thus
N /
1+g¢
3.89 / { }dNNt = P(e) — t,
(3.89) AN +=P)

and we match this directly to the recovery shock as t; — 0. We have N ~ Ny—e?/3uy,
t =t_+e*/3%y/w+et* +0(eIne), and matching of the two expressions requires, using
(3.77), that

Ny 1 / N_ 1 /
P(a):/ ( +9g )dN+/ ( +9 )dN
N \N —nug N, \pg—N

- (1 1 1+ ¢} 1+g;
+52/3[t <+)+v (>_ (U
“\w ' 0 "\ gL — N. Y\ Ny - pgu

(3.90) +O0(elne),

and this completes our analysis of the periodic solutions.

4. Discussion. The model we have sought to understand is (2.6):

(4.1) N = g(N1) — g(N) + e[ng(Nr) — N].

If written in terms of the slow time ¢t = et*, this is

(4.2) eN" = g(N:) — g(N) + e[ug(N:) — NJ.
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Fic. 4.1. Numerical solution for N(t*) when b = 3.9, p = 1.2, n = 3, and € = 0.0001. For a
choice of origin for t at the minimum, the subsequent value t— at the next transition is shown, and
also shown is the phase resetting origin for t4 =t + P.

The analysis applies generally for unimodal functions satisfying ¢’(Ny) = —1, and
oscillations occur for p € (pu—, py), where

_ Ns
~ g(Ns)

(4.3) fis

As € — 0, we predict periodic solutions having periods (in t*) of P(g)/e, where P is
given by (3.90). The maximum and minimum values are approximately

(44) Nmax = Ny — 52/3'UU
and
(45) Nmin = NL - 82/31)[,,

respectively. Figure 4.1 shows an example of the solution at very low e, while Table 4.1
and Figures 4.2-4.5 show how these predictions compare with numerical solutions, for
the particular choice of g = bN/(1+ N™). It can be seen that the agreement improves,
as expected, as € becomes small.

In terms of the original dimensional quantities of the model, we see that the
maximum and minimum values of N depend asymptotically entirely on the form of
the function g(N). The dimensional period is given to leading order by Py7/e, where

NU 1 ! N_ 1 /
(4.6) PO:/ < +9 )dN+/ ( +9 >dN.
Ny \N —pug N \Hg—N
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TABLE 4.1
Numerical and predicted values of Nmax, Nmin, and period P given by (4.4), (4.5), and (3.90).
Upper figures in each row are the values from numerical solutions; lower figures are analytical results.
Parameter values used are n = 3, b = 3.9, and p = 1.2. A fourth order Runge—Kutta method is used
to solve the equation, and results vary somewhat with step size, as can be seen in Figures 4.4 and
4.5. All these results are using a step size of 0.01.

€ Max Min PJe P
0.11 2.401 0.753 9.8 1.078
0.1 2.393 0.760 10.31 1.031

3.546 0.578 16.14 1.614
0.05 2.342 0.778 15.03 0.7515
3.060 0.645 21.91 1.095
0.02 2.300 0.776 26.17 0.5234
2.681 0.698 34.58 0.692
0.005 2.260 0.765 69.11 0.34555
2.410 0.736 80.47 0.402
0.001 2.237 0.762 260.14 | 0.26014
2.293 0.753 277.12 0.277
0.0001 2.223 0.763 2220.9 0.2221
2.245 0.759 2260.6 0.226
0.00002 2.220 0.763 | 10738.0 | 0.21476
2.236 0.760 | 10841.6 0.217

Ple

100000 T T . .

10000 | . ]
1000 ]

100 T ]

l 1 1 1 1
1e-05 0.0001 0.001 0.01 0.1

€

F1G. 4.2. Variation of the actual period (int*) of the numerical solution (crosses) as a function
of €, together with the theoretical prediction (solid curve) from (3.90), for b=3.9, u =12, n = 3.

Py essentially depends only on the shape of g(/V), and thus the period is

Py

4. Pimzia
(47) i =

that is, it is controlled by the rate of differentiation. However, oscillations do not
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15 ¢ [

O L L L L
1e-05 0.0001 0.001 0.01 0.1

€

Fic. 4.3. As for Figure 4.2, but plotting the period in t, P, versus .

N

max
2.5 T T I,T T

245 | ]

235 | . ]

2.25 | $ A
22+ A
215 + A
21t A
205 t A

1 1 1 1

2
1le-05 0.0001 0.001 0.01 01

€

Fi1G. 4.4. Numerical values of Nmax (crosses) and predicted values (solid curve) from (4.4) as a
function of € for b=3.9, u = 1.2, n = 3. When more than one cross is plotted, as at € = 0.001, the
different values come from the use of different step sizes in the integrator. Specifically, at e = 0.001,
decreasing step sizes 0.01, 0.005, 0.001 gave increasing values of Nmax.
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N

min
0.8 T T T T

078 ! 1
0.76 ke 1 ]
0.74 ]

0.72 1

07 1 1 1 \ 1
1e-05 0.0001 0.001 0.01 0.1

€

Fia. 4.5. Computed and predicted values for Nyin, similar to Figure 4.4. Here decreasing step
size at € = 0.001 leads to decreasing Nmin-

occur at all unless p is a finite range of O(1), and this requires that 7 is increased
over normal values, which can be due either to an increased proliferation delay 7 or
to an increased apoptotic rate 7.

It is difficult to give a useful characterization of the dimensional maximum and
minimum values of N. These are simply N2 ~ Ny and NJD ~ ONy. The easiest
interpretation of Ny and Np, is that shown graphically in Figure 4.6. We can get a
crude idea of the magnitude of the maximum and minimum values, however, if we
consider the specific proliferation rate G(IN) to be adequately represented by the two
quantities 3y, which is the maximum specific proliferation rate, and 6, which gives an
estimate of the value of NV where the proliferation rate “turns off.” Our crude estimate
idealizes (3 as being piecewise constant, with a switch off occurring at N = 6, and will
generally be reasonably accurate if the switch at N ~ 6 is sharp. Then we have the
estimates

: 0
N p———
dim 1 +ﬂ07_
(4.8) NEx~ (14 BoT)0,

and these could in principle be used to constrain the appropriate form of 3 in the
model. The amplitude of the oscillation is, very roughly, 28,76.

From a mathematical perspective, the most interesting feature of the analysis
is that it is completely analogous to that of a second order relaxational differential
equation. In fact, Figure 4.6 indicates the similarity which can be drawn between the
present model and that of the simple system

gNl = _g(N)7
(4.9) N +v" = pug(N) = N —euv'.
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F1G. 4.6. Phase diagram of the relazation oscillations of both (4.9) and (4.13). g(N) is plotted
forb=>5n=23.

In (4.9), the slow manifold is v = g(N), and on this
- N
(4.10) N~ 1
1+4

just as for (4.2). For (4.9), there is a fast phase as N — N or N — N_, and in the
fast phases, N + v is approximately constant; since v — g(N) at either end we have
the same results

Ny +g(Ny) = Np +g(Ny),
(4.11) N_+g(N_) = Ny + g(Nv),

as for (4.2).
The analogy can be slightly tightened by defining the functions

v = g(N:) +e[ug(Ne) — N,

g(N) — g(N.)
9

(4.12) b=

Evidently ¢ is functionally dependent on v, and for slowly varying N, we have v ~

g(N), v~ [g(N)]', i.e., b = v'; clearly this is inappropriate when N is rapidly varying.

The definitions (4.12) allow us to write (4.2) in the suggestive form
eN'=v—g(N),

(4.13) N' +9=pg(N)— N — eud,

and we see that the functional equation reduces precisely to the second order system
(4.9) under the identification ¥ = v’. What appears to be extraordinary is that the
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infinite dimensional breakdown of this approximation in the fast shock layers does
not affect the analytical description in any significant way.

Apart from the mathematical novelty of solving a delay differential equation,
there are some physiological ramifications of our analysis. The model for stem cell
proliferation in (2.2) is a reasonable synopsis of the process, but the rate function of
progress through the cycle, B(IV), is not well constrained. Nor is it possible to access
this function directly, since the stem cell population itself is hidden, and oscillations
are manifested in the differentiated products, which are themselves dynamically con-
trolled by peripheral controlling mechanisms. Therefore it is useful to be able to
characterize the oscillations of the resting stem cell population for a variety of differ-
ent progression functions S(NV), and our analysis allows us to do this. It will also allow
us in future work to analyze how oscillations in the stem cell population propagate
through the maturing cell types, so that in principle we can use resulting observed
cell cycles as a constraint on the stem cell dynamics.

Appendix. In (3.14), we find ¢; and ¢o:

2N, — 1/2
(A1) a = [(Jrﬁ/‘u‘”)} ’
9+

L+ p g%
ety ) 58],
(8.2 SO ANy —pgs ) 2
hy is defined in (3.18):

14 p

A3 hy=——r—"—
(4-3) T 290Ny — pgy)
Q) is defined in (3.20):
(A4) Q=q;g?";
k and X are defined in (3.23):

2

Qg”/
(A.6) A= ,,;' ;

g¥
r1, 21, and 799 are defined in (3.41):

1
(A?) T = M,
q1 g2 91’

A8 rog = — [A1 + -1 +hylng |,
(A.8) 2= 5 |4 i@ 1gP +1nq
(A.9) roo = Lqihy;
$1, 821, and sg9 are defined in (3.42):
(A.10) s1 = %Ii — %)\,
(A.11) 501 =3Cy — 10 — A+ 155,
(A12) S99 = %Ii.
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E5 and E, appear in (3.57) and (3.59):

3¢'{ g%
g//I
(A.14) Ey=1¢1F+ g,% + g1
+

In (3.78) we find @; and Qa:

AN — o )12
(A.15) 0, = [(N“g)} ’
g_
14+p q”
A.16 =102 —C ) —
( ) QQ 3Q1 |:(N_,U/g> 2gz ’
and then w, k, and [ are introduced in (3.80) and are restated below:
(A17) w=(~Qug")*?,
2
wg!”’
A19 l=—3.
(A.19) =
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A FINITE ELEMENT METHOD FOR AN EIKONAL
EQUATION MODEL OF MYOCARDIAL EXCITATION
WAVEFRONT PROPAGATION*

KARL A. TOMLINSONT, PETER J. HUNTER', AND ANDREW J. PULLANT

Abstract. An efficient finite element method is developed to model the spreading of excitation
in ventricular myocardium by treating the thin region of rapidly depolarizing tissue as a propagating
wavefront. The model is used to investigate excitation propagation in the full canine ventricular
myocardium. An eikonal-curvature equation and an eikonal-diffusion equation for excitation time
are compared. A Petrov—Galerkin finite element method with cubic Hermite elements is developed
to solve the eikonal-diffusion equation on a reasonably coarse mesh. The oscillatory errors seen
when using the Galerkin weighted residual method with high mesh Péclet numbers are avoided
by supplementing the Galerkin weights with C° functions based on derivatives of the interpolation
functions. The ratio of the Galerkin and supplementary weights is a function of the Péclet number
such that, for one-dimensional propagation, the error in the solution is within a small constant factor
of the optimal error achievable in the trial space. An additional no-inflow boundary term is developed
to prevent spurious excitation from initiating on the boundary. The need for discretization in time is
avoided by using a continuation method to gradually introduce the nonlinear term of the governing
equation. A simulation is performed in an anisotropic model of the complete canine ventricular
myocardium, with 2355 degrees of freedom for the dependent variable.

Key words. eikonal equation, myocardial excitation, wavefront propagation, Petrov—Galerkin
method, Hermite interpolation, numerical continuation
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1. Introduction. In developing a computational model of the electrical behavior
of the ventricular myocardium, it would be unreasonable to expect to be able to model
every microscopic biological process that occurs within and between each and every
cell. Such detail in the model is also unnecessary: the ventricular function and the
electrical fields induced in the torso are not so much affected by the activity of one
ion or one ion channel or even one cell as by the collective activity of many cells.
Instead of resolving the small spatial detail of the microscopic processes, the collective
macroscopic effect of these processes can be modelled.

The most intense electrical activity is the depolarization of cells, which leads to
the activation of the mechanisms that cause the myocardium to contract and the heart
to pump. Depolarization occurs quickly and in only a narrow region of cells at a time,
so this narrow region can be considered as a propagating ezcitation wavefront. An
eikonal model may be used to approximate the propagation process, describing the
motion of the wavefront by the time at which it excites every point in the myocardium.

A finite element method with cubic Hermite elements is developed to determine
excitation times on a fairly coarse mesh for large scale simulations. Petrov—Galerkin
weighted residual equations, developed in section 2, are supplemented with a no-
inflow term, developed in section 3, to prevent spurious excitation on boundaries, and
are solved by a continuation method with Newton’s method (section 4). Section 5

*Received by the editors May 16, 2001; accepted for publication (in revised form) April 9, 2002;
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TBioengineering Institute, The University of Auckland, Private Bag 92019, Auckland, New
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employs the computational method to simulate excitation in the complete ventricular
myocardium.

1.1. The bidomain model. As a means for collecting together the microscopic
functional elements of the myocardium to model their macroscopic effects, Schmitt
[21] suggested the concept of two interpenetrating domains. One domain was to
represent the volume-averaged properties of the intracellular contents and their inter-
connections, and the other domain was to represent the volume-averaged properties
of the surrounding extracellular tissue and fluid. These domains were to coexist spa-
tially, and the behavior of current flow between them was to be based on the volume-
averaged properties of the cell membrane. This approach is now generally referred to
as the bidomain model [12]. The two domains are referred to as the intracellular and
extracellular domains. Each is treated as a continuum.

A reaction-diffusion system of equations for the potential ¢, in the extracellular
domain and the difference in potential V},, across the membrane between the domains
can be derived from conservation of current under the assumptions that capacitive,
inductive, and electromagnetic propagative effects within the domains are negligible
and that the current in each domain obeys Ohm’s law:

V- (G'VV) ==V ((G'+ G°)V.),

(1.1) Tion + Cm% = -V (G°Ve).

The intracellular potential ¢; is the sum of the extracellular potential ¢, and the
transmembrane potential V;,. G' and G¢ are intra- and extracellular effective con-
ductivity tensors. The fibrous and laminar structure of the myocardium is modelled
under the assumptions that the conductivities are orthotropic and that they share the
same principal axes, aj, at, and a,, where a; is parallel to the fibers (longitudinal),
a is transverse to the fibers but in the plane of the sheets, and a, is normal to the
sheets. ijon represents the sum of the (outward) membrane ionic currents per unit
tissue volume, and c,, is the membrane capacitance per unit volume.

It is assumed that the extracellular space is in direct contact with the outside
volume. Continuity of the extracellular potential ¢, with the potential ¢, in the
outside volume and conservation of current between the volumes leads to the boundary
conditions

(12) ¢e = ¢oa
n- Giv(¢e + Vm) =0,
(1.3) n-GVo.=n-7, on 092,

where n is the unit normal to the boundary and j, is the current density in the
outside volume [15].

If the intra- and extracellular conductivity tensors were related by a constant
scalar factor (equal anisotropy), then system (1.1) could be reduced to a simple mono-
domain reaction-diffusion equation in one variable:

W

1.4 ‘ion m- o, : m m)-
(1.4) fion + . = V- (G Vi)

G™ has the same principal axes as G' and G®, and the reciprocals of its eigenvalues
equal the sums of the reciprocals of the intra- and extracellular principal conductivi-
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ties. The boundary condition on V, would be
(1.5) n-G°VVy, = —n-G°Vo, on Of).

If the anisotropic ratios are not equal, the monodomain equation (1.4) may still be
used as an approximation of the bidomain system (1.1). For plane wave propagation in
any of the three principal directions, both (1.1) and (1.4) predict the same propagation
speeds, but the predicted speeds may differ for intermediate directions.

It is convenient to scale (1.4) so that the parameters give indications of the im-
portant spatial and temporal scales. This can be done by dividing the equation by
a characteristic conductance per unit volume. During the depolarization phase of
the action potential, consideration of the large difference between the activation and
inactivation time constants of the dominating fast sodium current leads to the approx-
imation of 4, as a time-independent function of the transmembrane voltage [5]. That
18, 4ion = %ion(Vm)- If the transmembrane potential V;, is near its resting potential V,
the behavior of the ionic membrane currents can be approximated by assuming the
membrane has a passive conductance per unit volume defined by

1 diion
1.6 — = VL).
(16) = =)
(The symbol “:=” denotes definition.) Multiplying the terms in (1.4) by an average

(space-independent) value Ty, of rp, gives

W

(17) Tmlion + Tm ot =V- (MVVm),
where
(1.8) M :=1,G™ and Tm = TmCm

are the coupling tensor, which has dimensions of space squared, and the membrane
time constant, which has dimension of time. The eigenvalues of M are squares of
the space constants Aj, Ay, and A, in each of the principal directions. They may be
expressed in terms of conductivities using

(1 9) 1 1 < 1 4 1 ) .
) —=——+—, etc.
At \g1 ga

These space and time constants are appropriate when the behavior of the tissue
is largely passive such as in the early stages of the action potential. The behavior
in these stages is important for propagation as it initiates the change in transmem-
brane potential that leads to activation of the active currents. The time and space
constants relevant in the fastest stage of depolarization, however, may be different.
The magnitude of the maximum slope of 4o, (Vi) is much larger than the slope at
Vin = V; used to define 1y, in (1.6). The appropriate multiplier for scaling the system
of equations is then smaller than T,,,, and so the appropriate space and time constants
are also smaller. The space constants A, A\, and A, probably provide an indication
of the region of influence that the excitation wavefront has, and, together with 7,
they provide an upper bound on the relevant spatial and temporal scales.

Solution of the reaction-diffusion equation (1.7) is very computationally demand-
ing due to the important spatial scales being much smaller than the dimensions of
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the ventricles. As discussed in [23], the space constants for the passive behavior of
canine myocardium are probably A\] ~ 0.8 mm and A, < A{ = 0.5mm. Reasonable
approximation of the potential would probably require at least 5 degrees of free-
dom to represent changes over the distance of a space constant. This implies that
at least 5% degrees of freedom would be required to represent a volume of about
0.8 x 0.5 x 0.5 = 0.2 mm3. For the full canine ventricular myocardium with a volume
of about 0.2 x 10° mm?, at least 10® degrees of freedom would be needed.

1.2. An eikonal approach. Given the difficulty in the numerical solution of
a reaction-diffusion equation for transmembrane potential, a governing equation is
sought for the motion of the excitation wavefront. It is expected that the speed
of propagation can be assumed to vary more slowly and over much larger spatial
scales than the transmembrane potential. This assumption is probably reasonable
most of the time, but there are abrupt spatial changes in propagation speed where
a wavefront collides with the boundary or another wavefront. The fine details of the
wavefront shape in these small collision regions are not, however, expected to have
much influence on the overall ventricular function.

The wavefront motion can be described by the ezcitation time u(x), defined as
the time at which the wavefront passes through the point & (or, more specifically, the
time at which the transmembrane potential at that point crosses the value midway
between its resting and plateau potentials). The position of the wavefront at any time
t is then given by the surface along which u(x) = ¢, and the excitation time can be
described numerically on a stationary mesh. A governing equation for u is referred to
as an eikonal equation.

Many myocardial excitation models have been based on Huygens’ principle (re-
viewed in [19]) and are effectively approximating an eikonal equation. In such models,
the heart is represented by a matrix of cells or grid points. At fixed time intervals
after any cell is excited, its quiescent neighboring cells are excited. The time interval
before excitation of each neighboring cell depends on the distance to the cell and the
propagation speed for that direction. This method requires little computational effort
but has the disadvantage that the numerical treatment of the eikonal equation is very
low order and propagation can occur in only a finite number of directions. The result
is that the wavefronts generated are polyhedral instead of ellipsoidal.

More accurate numerical solutions for excitation wavefront propagation have been
obtained using wavefront propagation equations derived from the reaction-diffusion
equation (1.7) under the assumption that the profile of the depolarization upstroke
varies slowly in space.

An alternative approach for describing wavefront propagation is to use a function
o(x,t), defined so that, at any time ¢, the level set of points @ such that ¢(x,t) = 0
gives the position of the wavefront at that time (see [22]). Keener [13] derived an
equation for ¢ from (1.7) by selecting a moving coordinate system such that V;, is
a function of only a spatial variable normal to the wavefront and then requiring the
current conservation equation to be satisfied at the wavefront. The resulting equation,

MVu dp
1.10 v [ —— )| Ve MV = 7y 22,
(1.10) [CO (\/VU-MVU)} YoMV =Ty

is parabolic and time-dependent. ¢ has a physical interpretation only at its zero
contour, so the selection of initial conditions is unclear. If, however, ¢(x,t) is chosen
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to be t —u(x), then (1.10) reduces to a parabolic eikonal equation for excitation time:

MVu
(1.11) coVVu - MVu — VVu - MVu V (\/m) Tm-

The numerical solution to (1.10) was found using finite difference discretizations
in space and time. Second-order central differences were initially used for the spatial
discretization [13], but [14] later replaced these with first-order upwind differences to
stabilize the numerical solution.

An elliptic eikonal equation was derived by Colli Franzone, Guerri, and Rovida [8]
and Colli Franzone, Guerri, and Tentoni [9] using singular perturbation techniques.
The equivalent eikonal equation for reaction-diffusion equation (1.7) is

(1.12) coVVu-MVu—V - (MVu) = 7.

As the equation is elliptic, a boundary condition is required around the entire bound-
ary. Without a model of the surrounding tissue, it is not possible to predict the
current flux from the outside domain, and thus the boundary condition (1.5) for the
reaction-diffusion system is not helpful. However, experimental evidence suggests that
epicardial isochrones are unaffected by surrounding conducting volumes [11]. Without
a surrounding volume, boundary condition (1.5) leads to the simple no-flux boundary
condition

(1.13) n-MVu =0,

where 7 is the unit normal to the boundary.

In their numerical solution of the eikonal equation, Colli Franzone and Guerri [6]
added a time derivative term to give a related parabolic equation in space and time.
The time-dependent equation for (1.12) is

ou

(1.14) o

+coVVia-MVa— V- (MVa) = 7y

The steady-state solution for @(x,t) is the excitation time u(x). To find this solution,
spatial discretization was performed using finite element—like integrals of quantities
calculated by finite differences, and a finite difference scheme was used to step through
time until @ approached its limiting value. The spatial discretization was later mod-
ified [7] so that traditional finite element integrals were used for most terms, but
a first-order upwind finite difference was used for the first-order spatial derivatives.
A purely explicit finite difference scheme in time gave a method that was similar
to Jacobi successive overrelaxation. In order to avoid instability, the time step (or
relaxation parameter) had to be small, and thus convergence was very slow.

When compared to the reaction-diffusion equation (1.7), the eikonal equations
(1.11) and (1.12) have the advantages that the domain is reduced by one dimension
(because the dependent variable is no longer a function of time) and that the important
spatial scales are much larger. In order to make use of these advantages, a numerical
method needs to be found that requires only a spatial discretization and will work
effectively when this discretization is reasonably coarse.

Both the level set and relaxation methods discussed above fail to take advantage
of the fact that excitation time depends only on spatial position. The use of either
of the time-dependent equations (1.10) or (1.14) increases the size of the domain
by one dimension. For this reason, the method investigated here uses numerical
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continuation, with Newton’s method applied directly to a spatial discretization of
an eikonal equation, to converge from an initial guess to the solution. Each Newton
iteration requires not much more work than that required in an iteration of an implicit
time stepping scheme for either (1.10) or (1.14), yet makes a considerably better
attempt to go directly to the required solution.

1.3. Interpretation and comparison of eikonal equations. Interpretations
of the two suggested eikonal equations (1.11) and (1.12) for wavefront propagation
can be made from each of the terms involved.

The contours of u give the positions of the wavefront at time ¢t = u. The gradient
of w at any point along one of these contours is therefore normal to that wavefront
surface and has magnitude equal to the reciprocal of the speed of that point on the
wavefront. That is,

1
(1.15) Vu = P
where 6 is the local wavefront speed and p is the unit normal to the wavefront pointing
away from depolarized tissue. A space constant p in the direction of propagation p
may be calculated from the square root of the component of the coupling tensor in
that direction:

(1.16) p:=+/p-Mp.

The first term in both governing equations (1.11) and (1.12) is a nonlinear advec-
tion term, which may be written as

(1.17) COVVU~MVUZCO§.
This term is an anisotropic generalization of the left-hand side of the standard eikonal
equation |Vu| = 1 and is a function of the local speed of the wavefront surface.

The second term in the parabolic equation (1.11) may be written as

MVu p <1 > P
1.18 VVE - MVU V- [ ) =Ly (2Mp) =Lk,
(1.18) v (Vu~MVu) 6\, P) 78"

where « is an anisotropic generalization of the mean curvature. It is positive when the
wavefront is convex if viewed from ahead of the wavefront. The parabolic equation is
therefore called an eikonal-curvature equation.

Using expressions (1.17) and (1.18) in the eikonal-curvature equation (1.11) gives

-
1.19) 20 =cy— K.
< :

For a given propagation direction, this equation states that the speed of the wavefront
is a linear function of its anisotropic mean curvature. Propagation is faster when the
wavefront is concave, and slower when it is convex. This reflects the dependency of
tissue depolarization on the diffusion of charge from already depolarized tissue. If
there is more depolarized tissue in close proximity to a region of quiescent tissue,
then that region will be depolarized faster.

If there is no curvature, the speed of propagation is cg space constants per time
constant. The constant ¢y is therefore the dimensionless propagation speed for a
planar wavefront in homogeneous tissue.
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The second term in the eikonal-curvature equation may also be expressed as
(1.20)

MVu MVu
vVVu- MV V-():V-MV —VvVu- -MVu » ———,
" " vVu-MVu ( w) " “ vVu-MVu

where the right-hand side is an anisotropic generalization of the Laplacian of v minus
the component of this term in the direction of propagation. The eikonal-curvature
equation is parabolic, as it lacks this second derivative in the direction of propagation.
Propagation is effectively determined only by information at the wavefront. It is
unaffected by boundaries or approaching wavefronts until a collision occurs.

The eikonal equation (1.12) is elliptic, as it contains the full generalized Laplacian.
Although it is difficult to comprehend diffusion of excitation time, it is not too sur-
prising that there is a Laplacian in the governing equation, as the propagation process
depends heavily on the diffusion of charge. The elliptic eikonal equation is therefore
called an eikonal-diffusion equation. Under this equation, propagation speed depends
not only on information at the wavefront but also on the activity of the surrounding
tissue. The constant cg is still the dimensionless speed of steady planar wavefront
propagation in infinite homogeneous tissue.

It is interesting to investigate three-dimensional analytic solutions to these two
governing equations for a wavefront spreading out from the origin in an infinite ho-
mogeneous domain. There exist solutions that may be written as functions of only
the dimensionless distance from the origin,

(1.21) r:=vx -M'z.

The solutions describe ellipsoidal wavefronts having the same principal axes as the
coupling tensor. Both eikonal equations predict that an initial wavefront of this shape
will retain the same shape as it propagates. Under the eikonal-curvature equation,
the propagation speed 6 = p/g—:f satisfies

(1.22) Y = gy —0

and under the eikonal-diffusion equation,

r2

Tm

(1.23) p0 COT2+%T+C%.
For very large r, both equations predict that the ellipsoid grows at the same constant
speed, but for small r the equations differ in the way they predict propagation under
large curvature. The eikonal-curvature equation has a change in propagation direction
at r = %, suggesting that the initially depolarized region must have a radius of at
least % space constants in order for the region to be able to supply enough current
to surrounding tissue for propagation to proceed. If the initially depolarized region
is smaller than this threshold size, then the equation predicts that the wavefront
will retreat and the region will repolarize. The eikonal-diffusion equation, on the
other hand, predicts a zero propagation speed only at the origin, suggesting that if
enough current has been injected into the tissue to depolarize a region of tissue, then
propagation will proceed however small this region may be.

As a wavefront approaches a no-flux boundary or another approaching wavefront,

there is less quiescent tissue to drain current from the depolarizing tissue, and thus
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the reaction-diffusion model predicts an increase in propagation speed. The eikonal-
curvature equation, however, does not include any effects of the boundary or collision
on wavefront propagation. Solutions to the eikonal-diffusion equation, on the other
hand, much more closely approximate the variations in propagation speed due to
another approaching wavefront [8]. The eikonal-diffusion equation is selected as the
governing eikonal equation for the work presented here and shall be referred to simply
as the eikonal equation.

1.4. Solution spaces and interpolation. In the finite element method the
numerical solution U () is represented by a linear combination of known interpolation
functions ;(x):

(1.24) Ulz) == Us vi().

The finite element method selects the unknown parameters U, in an attempt to ap-
proximate the exact solution u(x). The domain is divided into a number of elements
so that, within each element, U depends on only a subset of the parameters. For each
element, a local coordinate system £ is defined, and thus, within that element,

(1.25) U(x(&)) = Uy(e,j)V;(),

where U;(£) are the element’s local basis functions, and v(e, j) is a known function
mapping the local parameter j in element e to its corresponding global parameter. The
interpolation functions v¥;(x(€)) are therefore equal to corresponding basis functions
VU, (&) in elements influenced by U; and zero elsewhere.

Cubic Hermite elements are used here for discretization of the geometry and de-
pendent variables. One-dimensional basis functions are cubic polynomials that inter-
polate the value and first derivative of U at the two adjacent nodes. Multidimensional
basis functions are obtained from tensor products of the one-dimensional functions.
Hermite elements have the advantage over cubic Lagrange elements that all nodes lie
on element vertices, and thus parameters can be shared by surrounding elements, and
a high-order interpolation is achieved with fewer parameters. This also provides first
derivative continuity (C!) in U.

Because the exact solution u satisfies an elliptic differential equation with predom-
inantly smooth space-dependent coefficients and boundary conditions, it is expected
to be sufficiently smooth for the first derivative continuity of the interpolation. Across
any surface where the coefficients of the equation are not sufficiently smooth, similar
interpolation can be used but with the elements on opposing sides of the surface using
separate derivative parameters.

The time and location of excitation wavefront initiation is specified by Dirichlet
boundary conditions for excitation time u on I'p, where I'p denotes the portion of
the boundary in which w is known from the initiation process. These boundary con-
ditions are enforced by specifying the values of the parameters U; that describe U on
I'p. The set D is defined as the list of indices j for these parameters U; and their
corresponding interpolation functions ;. The set N is defined as the list of indices
7 for the remaining parameters, which do not influence the value of U on I'p and are
free to be determined by the finite element method.

The trial space Sg is defined as the space of possible numerical solutions U sat-
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isfying the Dirichlet boundary conditions,

(1.26a)

Sp = ¢ V:3v; €Rforj € N such that (s.t.) V = Z Ui + Z v o,
jED JEN

and the space S% is defined as the space of possible variations in the approximation,

(1.26b) Sp=(V:3v; eRforje Nst. V=> v
JjEN

The exact solution u is expected to lie in the Sobolev space H'(€2). The spaces
H}, and H},  are defined for the exact solution in a manner similar to that for Sf} and
Sk for the approximate solution:

(1.27a) Hpy:={ve H(Q):v=uonTp},
(1.27b) Hp, ={veH(Q):v=00nTp}.

Note that for either Lagrange or Hermite interpolation S C H}DO, and, assuming
> jepUjthj =uonTp, SP C Hfy. Under these conditions we also have u—U € Hp, .

2. A Petrov—Galerkin finite element method. The space constants in the
coupling tensor M for myocardium are several times smaller than the dimensions of
the tissue, and thus the advection term in the eikonal equation tends to dominate
the diffusion term. Care must be taken in selecting a spatial discretization to prevent
oscillatory errors such as those that can occur in numerical solution of the steady-
state linear advection-diffusion equation (e.g., [24]). A Petrov—Galerkin finite element
method that avoids this problem is developed here for eikonal equation (1.12).

The general Petrov—Galerkin finite element method for determining an approxi-
mation U for u may be formulated as finding U € S§ such that

(2.1) B(UW) = (1, W) VW eTh,
where T" is the test space,
(2.2) B(v,w) := (coV Vv - MVv,w) + (MVu, Vw),

and (-,-) denotes the inner product over the domain .

In this section, a means for estimating the quality of a test space T" is described,
and a set of weighting functions, which form a basis for T", is selected on the grounds
of keeping the expected error in the solution to a minimum and facilitating numerical
solution of the resulting weighted residual equations.

2.1. Approximate symmetrization. The performance of the Galerkin finite
element method is poor when diffusion is small due to the asymmetric nature of B(-, -).
The object of selecting a Petrov—Galerkin scheme is to choose a mapping from S§ to
T" so that it compensates for this asymmetry. Barrett and Morton [2] showed how
an error bound can be derived for a test space T" if B(-,-) is bilinear. This form is
bilinear for the eikonal equation if and only if propagation is in only one direction,
but analysis of this simple case leads to one-dimensional weighting functions that can
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be extended to higher dimensions. A summary of the key points in the error bound
derivation follows.

If Th C H]1307 then the exact solution u satisfies the same weighted residual
equations (2.1) as the numerical solution U. Therefore, if B(-,-) is bilinear, the error
u — U satisfies the orthogonality property

(2.3) Bu—UW)=0 VYWeT"

The convergence properties implied by this orthogonality property depend on T".

If Bs(+,-) is any symmetric continuous coercive bilinear form on Hlljo X H]1307 then,
from the Riesz representation theorem, there exists a representer Rg: H]1DO — H]%)O
such that

(2.4) B(v,w) = Bs(v, Rsw) Yo, w € H}, .

Assuming u — U € HIIDO, this means that the orthogonality property (2.3) may be
written as

(2.5) Bs(u —U,RsW)=0 VYW eTh.

The performance of the method depends on how closely S% can be approximated
by RsT". Define the norm [l g, such that

2
(26) ol = Bs(v,v).
If T" C Hf, and there exists a constant Ag € [0,1) such that

(2.7 Jnf [V = RsWip, < As|[VIlg, WV €5,

then it is possible to determine a bound for the error in terms of the optimal error
and the constant Ag:

(2.8) lu—Ulls, < inf flu— 2.

1
V1—AZ zesp
The ratio of this bound on the error to the optimal solution error is therefore described

by the error factor (1 — A%)’%. This factor is 1 if the test space T" is chosen to be
equal to T"* C H},  defined such that

(2.9) RsT™ = Sk

If the representer Rg is known, then the constant Ag may be calculated for given
Sk and T". In the Petrov—Galerkin finite element method, S} and T" are both of
dimension N. Define the N x N matrices A, B, and C with entries

Aij = Bg(sti, stj),
B’ij = BS(RSwia 7/}]) = B(dj_ﬁ wi)v
(210) and Cij = Bs(wi,’(/}j),
where the weighting functions w; (usually based on ;) form a basis for 7". The error

factor (1 — A%)_% is the reciprocal of the square root of the smallest eigenvalue A of
the generalized eigenvalue problem

(2.11) BTA"'BV = \CV.
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2.2. One-dimensional optimal weighting functions. Consider a one-
dimensional problem on a domain of length L. with a Dirichlet boundary condition at
x = 0 and a Neumann boundary condition at = L so that wavefront propagation is
only in the direction of increasing x. The excitation time u(x) is required to satisfy

(2.12a) coVMu' — Mu” = 7, on (0,L),

(2.12b) u(0) = 0, and M/ (L) = 0,

where ¢ and M are positive constants and -’ denotes the derivative with respect to
xX.

With propagation in only one direction, the form B(-,-) is bilinear. For constant
co and M, it simplifies to

(2.13) B(v,w) := coVM W', w) + M0, w').
The second inner product is symmetric and can be used for Bg(:,-):
(2.14) Bs(v,w) := M0, w').

For this problem the Riesz representer Rg may be easily found. From its defining
relation (2.4) and definitions of B(-,-) (2.13) and Bg(-,-) (2.14),

coVM(v',w) + M(v',w') = M{v/, (Rsw)’)

; Co / A 1
= <Mv ﬁuﬂrw (st)>0 Vo, w € Hp, .
With the Neumann boundary condition at x = L, v is only confined to be zero at
z = 0, and thus

(2.15) (Rsw) =yw+w'  VYw € Hp,

where v = % This and the boundary condition (Rgw)(0) = 0 due to Rsw € H},
uniquely determine Rgw for any given w.
If each of the weighting functions w; were chosen such that Rsw] = v;, they

would form a basis for the optimal test space T"*.

2.3. One-dimensional approximate symmetrization. The expressions for
optimal one-dimensional weighting functions w; become rather complicated, particu-
larly for irregular meshes or variable coefficients. Extension to more than one dimen-
sion and to the nonlinear eikonal equation does not seem feasible. Instead, therefore,
the weighting functions are chosen to be simple combinations of the optimal functions
when ~ approaches 0 and co. For the one-dimensional problem (2.12), the weighting
functions are

(2.16) w; = Agw) + Asows®,

where

(2.17) w? =1, and w® =y

and Ag and A, are functions of the mesh Péclet number,
Co dx

2.18 Po=——.

These weighting functions are local and easily evaluated. With the C! continuity
of cubic Hermite interpolation, they all lie in Hllj0 except the function corresponding
to the derivative at x = 0. This will be discussed and corrected below.
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2.3.1. Selection of coefficients. The proportionality coefficients Ay and A,
are chosen with the intention of making the factor in the error bound (2.8) as small
as possible. This contrasts with the work of Christie et al. [4], in which weighting
functions were assembled to cancel truncation errors in difference equations for one-
dimensional equal-length elements. The error factor depends on the closeness with
which RsT" approximates S as measured by the constant Ag in bound (2.7). (RsW)’
is given by expression (2.15), and thus bound (2.7) is equivalent to

(2.19) St IV =W =W, < As |V, YV €S

Bounds for error factors in terms of P, have been obtained for meshes of equal-
length one-dimensional linear elements using eigenvalue problem (2.11) (see [17]), but
extension to cubic Hermite elements is difficult. Analysis is therefore simplified by
considering only the function in S that is expected to be most poorly approximated
by functions in RgT™.

With cubic Hermite interpolation, each V' for V' € S{} is piecewise quadratic
with C° continuity. V'’ may have discontinuities in derivatives at element boundaries.
If advection dominates (v is large), each V/ must be approximated by a W € T".
With Galerkin weights 1);, each W is piecewise cubic with C! continuity and cannot
approximate discontinuities in first derivatives. If elements are equally spaced, the
function V' € S} with the largest discontinuities in first derivatives of V' relative to
IV, s

(2.20) Vi= > 4y,

JEN!

where N! indexes the interpolation functions corresponding to first derivatives. V7 is
orthogonal to every 1; except those corresponding to derivatives at the boundaries.
This explains the poor performance of the Galerkin method in advection-dominated
problems. Of course, on the other hand, the space spanned by derivative weights
;" allows any V' for V € S to be represented exactly. If diffusion dominates (y
is small), each V'’ must be approximated by a W’ such that W € T". Galerkin
weights achieve this exactly because T" = S?. With derivative weights, however, each
W' is piecewise linear. These W' are therefore orthogonal to the highest frequency
(piecewise-quadratic) function V' such that V € S&. The function that cannot be
approximated is again V.

Here Ao and Ao are selected so that V7 is approximated as closely as possible
by 'yW + W , where W is a simple combination of the W’s that provide an exact
representation when P, approaches 0 and oo:

(2.21) W= AoV + Aoy 'V,

The smallest eigenvalue in eigenvalue problem (2.11) is estimated by considering only
V and W. This leads to an estimate of the error factor in bound (2.8),

1 Vil IBsW g, VIl I(RsW) I,

VISATT B (V" (Bs W)
where, from (2.15) and (2.21),
(RsW)' = 7 AoV + (Ao + Ac)V' +77 A V",
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If elements are of equal length h and boundary effects are ignored, the integrals may
be evaluated to give

1 @A+ 0+ B)A%
VI-AZ ™ Ag+ Ao '
This estimate is minimized when

A P2+42
Ao 42(P2+60)

(2.22)

(2.23)

With coeflicients in this optimum ratio,

1 |PY4+102P2 +2520
V1-AZ  \ Pr484P2+2520°

As expected, the estimate of the error factor approaches 1 as P, approaches oo or 0.

Tts maximum value is g%ﬂ; ~ 1.05, which is predicted at P, = v/6y/70 ~ 7.1.

(2.24)

2.3.2. Dirichlet boundaries. The weighting function corresponding to the
derivative at © = 0, where the Dirichlet boundary condition is applied, is nonzero
on that boundary. This means that the weighted residual equations (2.1) are not
satisfied if the exact solution u is substituted for U, and so the error orthogonality
property (2.3) does not hold. This is corrected by changing the definition of the
derivative term w{® to include a multiplier ¢ € H, ]130 so that all weighting functions lie
in H 11)0:

(2.25) wi® = Oy

The multiplier is chosen to be an exponential ramp,
1—e™*

(2.26) ¢:= 1_eh’

in the element adjacent to x = 0, and one elsewhere, so that for large y the behavior of
wi® near = 0 is similar to that of the optimal weighting functions w} in section 2.2.
These weighting functions still become optimal when v — oco.

2.3.3. Verification of error estimates. The estimates of the optimal ratio
of A to Ap (2.23) and of the error factor (2.24) rely on the assumption that Vv
is the function in S¥ that is most poorly approximated by functions in Rg7T". To
investigate the validity of this assumption, error factors were calculated from the
smallest eigenvalues of problem (2.11) with the full trial and test spaces for various
P, and numbers of elements. The weighting functions w; in (2.16) were defined using
(2.25) for w® and (2.17) for wy. ‘j‘f’ was given by (2.23). The resulting error factors
are compared with estimates from (2.24) in Figure 2.1.

In all cases investigated, the calculated error factors approached the estimate
(2.24) as the number of elements became large. The eigenvector of (2.11) corre-
sponding to the smallest eigenvalue was, in each case, dominated by components
corresponding to w; for j € N, which were almost constant in the middle of the do-
main but smaller nearer the boundaries. This affirms that, without boundary effects,
V is indeed the most poorly approximated function in S%. Near boundaries, V can
be approximated better, but the estimate (2.24) based on V and ignoring boundary
effects appears to provide a good upper bound on the error factor.
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Fic. 2.1. Comparison of calculated and estimated one-dimensional error factors. The data
points are calculated values, and the lines are the estimates from (2.24).

2.3.4. Variable lengths and coefficients. The terms in the approximately
optimal weighting function (2.16) are optimal weights when P, approaches 0 and
00, even with unequally spaced elements and variable equation coefficients, but the
ratio ’%" given in (2.23) is based on constant element lengths and coefficients. With
variable lengths or coefficients, the best choices of Ay and A, are no longer constant.
It is assumed that weighting functions (2.16) are still close to optimal if the ratio
(2.23) is used, but the variation over z in the total magnitude of Ay and A is yet
to be determined. Note that with weighting functions (2.16) and propagation only in
the direction of increasing x, if boundary effects are ignored, the error orthogonality
property (2.3) may be written as

(W —=U", AgyMV) + (v = U’, (Ap + A MV") + (t/ = U",; Asoy " MV") =0
YV € Sp.

If we aim for a small error in the sense of the [|-[| 5, norm, then the left-hand side
should resemble Bg(u — U, V). The second term is therefore the desirable term, and
its dominance is achieved by appropriate selection of ’?4—": in (2.23). The second term
is equivalent to Bg(u — U, V) if

(2.27) Ag+Aso = 1.

2.4. Extension to three dimensions. For modelling the excitation of the
heart, the definitions of the terms in the weighting functions need to be extended
to the three-dimensional case with wavefronts travelling in any direction. Weighting
functions are still based on the simple combination (2.16) of terms selected for their
performance when P, approaches 0 and oo, but the Riesz representer theory of sec-
tion 2.1 can no longer be applied because the form B(-,-) defined in (2.2) is no longer
bilinear.

2.4.1. Selection of weight terms. When P, — 0, B(-,) becomes bilinear,
and thus w) are defined as the optimal weights in the sense of ||| Bs» Which are still

;. When the advection term is present, its nonlinearity means that the techniques
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used in section 2.2 can no longer be used to find a weight that guarantees minimum
error in the sense of the |- 5, norm. However, when P, — oo, making the residual

VVu - — i _VUMVY:  inimi
covV Vu - MVu — 1, orthogonal to the least squares weight VS TAoD winimizes

H\/VU-MV _Tm

Co

= |vVUMYT - vV MV
Lo L2
These weighting functions compare with the derivative weighting functions of Brooks
and Hughes [3] in their solution of the multidimensional steady-state linear advection-
diffusion equation with linear elements.

As in the one-dimensional case, a multiplier ¢ € H%)O is included with the least
squares weight to ensure that the weighting functions are zero on Dirichlet portions
of the boundary. ( is based on the one-dimensional expression (2.26) and is defined
by

B 1 —exp (—%)
(2.28) ¢:= — (f:)

where k¢ is a constant and p¢ is a simple nonnegative function in H1130~ In elements
adjacent to Dirichlet boundaries, p¢ is a polynomial function of §; in other elements,
p¢ = 1. This means that ¢ is equal to one over most of the domain, and thus most
weights are unaffected by the multiplier. Near Dirichlet boundaries, the weights have
similar behavior to one-dimensional optimal weighting functions for large P, if p,¢
increases from zero at the boundary with slope [Vep¢| = k¢. A cubic interpolation is
used for p¢, and k¢ is set to 3. Away from Dirichlet boundaries, nodal values of p,¢
are set to 1, and derivatives to 0. On Dirichlet boundaries, nodal values are 1, and
derivatives are set so that the slope of ps at the boundary is as close to 3 as possible.

The least squares term is discontinuous at wavefront collisions, which makes it
difficult to design an integration scheme such that the residuals in the resulting discrete
system of nonlinear equations are continuous with respect to the nodal parameters
U;. In order to keep the integration scheme simple, the smooth term,

b

VU - MV,
V= 000)co?VU -MVU + aoerin?

(2.29) wi® =

7

is used instead with the constant a. € (0,1). This term is close to the least squares
term when advection dominates and U is close to u. At a collision, however, the
denominator remains greater than zero, and so the term vanishes. The best value for

(s has not been thoroughly investigated, but a. = i seems to work well.

2.4.2. Mesh Péclet number. The one-dimensional expression for P, in (2.18)
included the equation space constant v/M and an element spatial scale g—’”. In more
than one dimension, these quantities are not scalar, and thus the intention is to base
P, on suitable space constants in the direction of propagation.

It is convenient to define at each point in space a dimensionless natural coordinate
system v in which the coupling tensor M transforms to the identity matrix and the
advection term becomes isotropic:

coVVU - MVU = ¢ |V,U|,
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where V,, denotes the gradient operator with respect to v coordinates. The one-
dimensional scalar ratio of vM to ‘31—”” corresponds to a multidimensional tensor V,,&.
A scalar quantity is selected from this using the rate of change of £ arc length with

respect to v arc length in the direction of propagation:

Vo U
(2:30) ’(mw | V”) 5‘ '

A smooth P, is defined by

co\/(l — Qoo )Co? |VvU\2 + Qoo Tm 2

(2.31) P, = :
V1 = as)eo? (VU - V) € + anomn?it
where
e 106 0m
2.32 f=o 22T
(2.32) a 3 dv, Ovp

(which is an average of the diagonal elements of the coupling tensor in the & coordinate
system).

2.4.3. Discontinuous derivatives of U. Expressions (2.23) and (2.27) for the
coefficients Ay and A, are only useful if U is C' continuous. There are, however,
places in the ventricular myocardium where u is not expected to be C* continuous [23].
The coefficients in (2.23) and (2.27) and w$® in (2.29) depend on first derivatives of U,
so, with only C° continuity in U, the weighting functions (2.16) may be discontinuous.
To retain continuity in the weights, Ao is made constant and p¢ is set to zero on
interelement boundaries where C! continuity in U is not expected. The nodal values
of p¢ on interelement boundaries without C!' continuity are set in the same manner as
if they were on Dirichlet boundaries. In this way, Agw? retains the C° continuity of
the interpolation functions, and A. w® approaches zero at interelement boundaries
where derivatives of U are not expected to be continuous.

With constant Ay, keeping the ratio of A, to Ag similar to the one-dimensional
optimal ratio (2.23) would mean that for large P, the weights would be heavily de-
pendent on the direction of propagation, making the weighted residual equations very
nonlinear. Instead, Ay and A, are defined by

2 Ag:=1 d Ay = it

(2.33) 0= an ~ =P 150’

where the constant kj;;,, determines the maximum magnitude of the derivative term.
It is chosen to be 2 (discussed below). The weighting functions are therefore given by
the sum of Galerkin and supplementary weighting functions,

(2.34) w; = i + W,
where the supplementary weighting functions are defined by

Pe C()va . VU'I,ZJZ

(2.35) Wi = C .
26150 [0 — 0c)eo? | (VU - Vi) € + amerunii€
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Fic. 2.2. Comparison of one-dimensional error factor estimates from (2.22) with % deter-

mined by the derivative-limited expressions (2.33) (solid line) and the optimal expression (2.23)
(dashed line).

For large P,, the magnitude of the supplementary weighting functions, which are
dependent on U, is similar to that of the Galerkin weighting functions, which are
independent of U. This reduces the effects of nonlinearity in the weighted residual
equations, facilitating their solution.

To estimate the error introduced by not using the optimal ratio of A, to Ag
(2.23), one-dimensional error factor estimates for ratios from (2.33) and (2.23) are
compared in Figure 2.2. These error factors are calculated from expression (2.22),
which is based on constant equation coefficients and assumes a large number of equal-
length one-dimensional elements. The maximum predicted error factor with (2.33) is
less than two percent greater than the maximum with the optimal ratio (2.23). The
constant kjiy, in (2.33) was set to 2 to keep the nonlinear term in the weight as small
as possible while not significantly increasing the expected error factor.

3. No-inflow boundary condition. For large Péclet numbers, the no-flux
boundary condition derived from the diffusion of charge is not necessarily enough
to sufficiently constrain the solution.

3.1. Inflow boundaries. The lack of stability under large Péclet numbers of
the Petrov—Galerkin method developed in the previous section is demonstrated in the
situation shown in Figure 3.1. The tissue is stimulated in such a way that the wave-
front is initially concave (when viewed from inactive tissue). Note that for P, = 10 the
curvature of the wavefront reduces as it propagates across the tissue, but for P, = 100
the curvature increases.

The nature of the solution for P, = 100 is in some ways quite reasonable. The
residual in the eikonal equation (1.12) is very small. An inwardly propagating circular
wavefront becomes a smaller circle, so an initially concave wavefront becomes more
concave. The problem with the solution is that the no-flux boundary condition (1.13)
is not satisfied.

The no-flux boundary condition is not very well satisfied on the boundary at
the right-hand end of the tissue in the solution for P, = 10 either. Such boundaries
where the wavefront extinguishes shall be referred to as oufflow boundaries. The
boundary condition at these boundaries only affects a small boundary layer of tissue,
so failure to satisfy the boundary condition does not introduce much error into the
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Fic. 3.1. Ezxcitation contours calculated by the Petrov—Galerkin method for a slice of tissue
stimulated unevenly at the left-hand edge. Stimulus times are specified by a quadratic function so
that the corners are stimulated first and the center of the edge last. The tissue is represented by two
unit square cubic Hermite elements. Equation parameters are selected for unit plane wave speed in
any direction. Contours are at intervals of 0.2.

solution. The boundaries where the wavefronts enter the domain shall be called inflow
boundaries. The boundary at the left-hand end of the tissue is an inflow boundary
because tissue is stimulated on this boundary. In the P, = 10 solution, the no-flux
boundary condition on the other boundaries is satisfied very well.

In the P, = 100 solution, the no-flux boundary condition on the boundaries at
the top and bottom of the domain is not satisfied. The boundary condition (1.13) is
derived from prevention of diffusion of charge across the boundary. For large Péclet
numbers, diffusion effects are small, and so the emphasis on satisfying the boundary
condition is small. Because the discretization does not allow U to exactly represent
u, the numerical method selects a solution that closely satisfies the eikonal equation
but almost ignores the boundary condition. As the effects of diffusion are small, the
propagation speed should be almost unaffected by curvature and should be almost
equal to the unit plane wave speed. This is reflected in the solution through the
magnitude of the gradient of activation time which is close to one over the entire do-
main. Note, however, that the average propagation speed along the top and bottom
edges of the domain is about 1.1. This is due to the fact that the method does not
recognize that tissue needs to be excited by other excited tissue. It is assumed that
the propagation direction is normal to the wavefront, but, because the boundary con-
dition is not strongly enforced, the wavefront normal is not parallel to the boundary.
The wavefront is propagating from outside the boundary into the domain, and the
boundary is an inflow boundary. Tissue is being excited by nonexistent tissue outside
the boundary.

Without a mechanism to prevent wavefronts from entering the domain through
unwanted inflow boundaries, excitation can initiate at arbitrary points on the bound-
ary and totally corrupt the numerical solution. This problem occurs when the diffusion
term becomes insignificant, and thus the nature of propagation without diffusion is
now investigated to determine a prevention mechanism.

3.2. Propagation without diffusion. For large Péclet numbers the numerical
scheme behaves as if it is solving the eikonal equation without a diffusion term and
without the associated no-flux boundary condition. Without these, the solution to the
eikonal equation (1.12) is not unique. To reflect the fact that tissue must be excited
by neighboring tissue, the governing equation should instead be

3.1 sup {lim
( ) acA(z) a0 &

u(x) —u(x — aa)

} = T (x) Ve e Q—Tp,
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where, for m dimensions,
(3.2) Alz):=={a€R™:a-M'a=c’; Ja€Rst.a>0, z—aa € Q}.

Restricting the vectors a to the set A(x) determines the directions in which propaga-
tion can occur at the point @ and the propagation speeds for these directions.

In regions where the solution is smooth enough, this governing equation is equiv-
alent to

(3.3) sup {a - Vu} = 7y.

acA
(If A is replaced with Aqo defined below, this equation is a special case of that used
by Falcone, Giorgi, and Loreti [10] in their analysis of front propagation problems.)
For a point not on the boundary, the definition of A simplifies to

(3.4) Ago:={a€R™:a -M"'a=cy’},
and the supremum in (3.3) occurs when

MVu
0 VVu-MVu

Away from the boundaries, therefore, (3.3) is equivalent to the eikonal equation (1.12)
without a diffusion term.

Without diffusion, there is no Neumann boundary condition, but the notation I'y
will be used for 92 —I'p, the portion of the boundary in which no Dirichlet boundary
condition is applied. For a point on this portion of the boundary, A is equivalent to

a = ¢

(3.5) Apo:={a€eR™: a-M'a=co®, n-a>0},

where n is the unit outward-pointing normal to the boundary.

In order to investigate the nature of the solution to (3.3) near boundaries, consider
two points, xgo € 'y and o € Q — 91, such that xqo is an infinitesimal distance
from xyq. As discussed above, the solution at xqo satisfies

o MVu o
O\/Vu-MVu "

If the solution is smooth enough in the vicinity of the points, one would expect that
Vu(zan) is equal to Vu(xgo) and should satisfy the same equation. This is only
consistent with (3.3) if

. MVu
0 vVVu-MVu

and thus the direction of propagation on I'y is restricted by

€ Asq,

(3.6) n-MVu >0

If some diffusion is included, it can be assumed that u is smooth enough that the
governing equation becomes

(3.7 Slelg {a-Vu} = V- (MVu) = 7.
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The limit of the solution to this equation as the diffusion term vanishes satisfies (3.1).
The no-flux boundary condition on I'y ensures that MVu is either parallel to the

. . _ MVu
boundary or zero. The supremum in (3.7) therefore occurs when a = O
and (3.7) is equivalent to the eikonal equation (1.12). The limit of the solution to
the eikonal equation (1.12) and its no-flux boundary condition (1.13) as the diffusion

term vanishes satisfies the diffusionless governing equation (3.1).

3.3. A no-inflow boundary term. Although the exact solution of the eikonal
equation (1.12) approaches the solution of the diffusionless propagation equation (3.1),
the same is not necessarily true for the numerical solution. Unfortunately, with the
Petrov—Galerkin method, when diffusion effects become small, they are swamped by
discretization errors. The method behaves as if it were solving an eikonal equation
without a diffusion term and without the no-flux boundary condition. Without these,
the solution is not unique, and so the scheme becomes unstable. To prevent this,
the numerical treatment of the advection term needs to more closely represent the
corresponding term in (3.1).

With a finite difference method this is easily done by using an upwind difference
scheme [18]. Such schemes can select the grid points used in the difference expressions
for the advection term so that the excitation time of each grid point is calculated as
the expected time for a wavefront to arrive from neighboring grid points with lower
excitation times. As there are only grid points in the domain, the wavefront can only
arrive from points in the domain, and there are no unwanted inflow boundaries. None
of the so-called upwind finite element methods for steady-state problems provide the
same restrictions on the solution. Finite element methods only evaluate the advection
term at sample points in the domain, and thus the boundaries have no influence on
propagation.

The approach used here to stabilize the Petrov—Galerkin solution of the eikonal
equation is to add to the weighted residual equations a boundary integral term that
encourages the solution to satisfy the boundary inequality (3.6). If this is satisfied,
the supremum in (3.3) occurs when a = co\/%, and thus the residual in the
eikonal equation (1.12) is equivalent to the residual in (3.3).

The satisfaction of boundary inequality (3.6) is encouraged by including a penalty
term when it is not satisfied. This penalty term is constructed from minimization of
an integral over I'y of the square of a residual,

(3.8) / Ay r2dl,

I'n

where ry, is a residual that is zero if and only if (3.6) is satisfied, and Ay, is a coefficient
independent of U. The minimum occurs when the derivatives with respect to each
parameter U,

a’l’b
. Ay ry ——dl’
(3.9) / b7 r O

I'n

are zero. These integrals are added to the left-hand side of the Petrov—Galerkin
discrete equations (2.1) to encourage the numerical solution U to satisfy the boundary
inequality (3.6).
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The natural coordinate system v of section 2.4.2 may be used to express inequality
(3.6) as

(310) nv . VUU 2 07

where n¥ is the unit outward-pointing normal to the boundary in this coordinate
system. When 7, was defined as the direct residual in this inequality, the penalty term
was found to place too much emphasis on satisfying this inequality at the expense
of satisfying the eikonal equation. The expression for r, was therefore selected to be
more closely associated with the advection term. Consider the residual

(3.11) ry = VU] = \/[VUJ? — min(n® - ,U, 0.

If (3.10) is satisfied, this expression is zero. If (3.10) is not satisfied, the expression is
essentially the difference between the advection term and what it would be if it were
calculated from only the components of V,,U in the surface of the boundary. With
this residual, the expression 7, gg" has a discontinuity when |V, U| = n?-V,, U, which
corresponds to propagation into the domain normal to the boundary. It is not likely
that this will occur, but, to ensure that the discrete equations are smooth enough for

solution by Newton’s method, the modified residual

(3812) 1=/ [VUP +ap s — \/[VUP - min(n® - V,U,0)° + ay, o7

is used. As with a, in section 2.4, a value of i is used for ay,.
The boundary integrands are of similar magnitude to the products of the advec-
tion term and the weights in (2.34) and (2.35) if they are multiplied by

Pb
b
Fe <1+2P§150>'

To retain the symmetric and positive semidefinite nature of the boundary terms (3.9),
an expression that is independent of U is used for the Péclet number:

v
9%x

where &, is the local element coordinate that does not vary over the boundary. The
expression is based on the spatial properties in the direction normal to the boundary
instead of in the direction of propagation used in (2.31).

Even with the integrands dimensionally consistent, there is still a difference be-
tween the dimensions of the boundary and domain integrals in the order of one spatial
dimension. An appropriate multiplier needs to be found for the boundary term to
balance the emphasis on satisfaction of the eikonal equation and of the boundary
inequality. This should reflect the depth of the region of influence that the boundary
terms should have. The parameters U; that are included in the boundary terms have
a significant direct influence on the solution over about half an element. If the bound-
ary terms are given a multiplier that resembles half the width of the element, then
the equations involving these parameters should put even emphasis on satisfaction of
the domain equation and the boundary inequality. The multiplier is chosen to be

v

(3.13) PP i=c¢y|n

e )

3

L. oz
2" o
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Fic. 3.2. Ezcitation contours calculated by the Petrov—-Galerkin method with the additional
boundary term (3.9). The slice of tissue is described in Figure 3.1.

so that the width of the element is estimated from information at the boundary. The
coefficient Ay, in the boundary terms (3.9) is therefore

PP PP oz
(314) Ab = 7 (]. + w) "I’L . E

The numerical solutions obtained by this modified scheme in solving the test
problem of section 3.1 are shown in Figure 3.2. For P, = 10, the solution is very
similar to the solution in Figure 3.1(a) obtained without the additional boundary
term. For P, = 100, the solution satisfies both the eikonal equation (1.12) and
boundary condition (3.6) reasonably well, given the coarse discretization. Although
the wavefront is not perpendicular to the top and bottom boundaries, the propagation
speeds along these boundaries are sensible, and the satisfaction of (3.6) improves with
distance from the initiation point.

4. Summary of the method. The numerical method developed for the simu-
lation of excitation propagation in ventricular myocardium uses Newton’s method to
solve a system of weighted residual equations that are sums of the Petrov—Galerkin
weighted residuals of section 2.4 and the no-inflow weighted residual of section 3.3.
Newton’s method requires a sufficiently good initial guess on which it can iteratively
improve. If the diffusion term dominates, the equation is close to linear, and thus
almost any initial guess leads to rapid convergence. An initial guess of U; = 0Vj € N
is sufficient. If the advection term dominates, however, the significant nonlinearities
may prevent the method from converging if the initial guess is not good enough. Ap-
proximate solutions to equations with more significant diffusion are used as initial
guesses for equations with more advection in a numerical continuation method [1] on
the continuum of equations,

(4.1) acCoVVu-MVu — V- (MVu) = acT.

Here a. is the continuation variable, which is increased from 0 to 1 to transform a
diffusion equation into the desired eikonal equation.

From Petrov—Galerkin weighted residual equations (2.1), no-inflow weighted resid-
ual equations (3.9), and governing equation continuum (4.1), the weighted residual
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equations are

(4.2) / (aC(CO\/VU MVU — 70)(1h; + 1) + VU - MV, — V - (MVU) w) o

Q
A ary, .
+ n-MVUw; + Apr, — | d’ =0 Vi € N.
ouU;
'y

The boundary inequality residual definition (3.12) is used for ry,.

When the value of the continuation variable is less than one, the influence of the
diffusion term is increased, and thus the supplementary weights w; and the boundary
integral coefficient Ay, are calculated using the apparent Péclet number. The supple-
mentary weighting functions w; are defined by (2.35), with the Péclet number defined
by (cf. (2.31))

o/ (1 — Qo0 )c02VeU - MEVEU + Qoo T2
VI = @o0)co?VeU - MEMEVU + oo in2i€

(4.3) P, =

The boundary integral coefficient A}, is defined by (3.14) with the Péclet number
defined by (cf. (3.13))

Jv
b v,
(4.4) P n 6, |

e -— QcCp

The integrals in (4.2) are evaluated using Gauss—Legendre quadrature schemes.
A grid of quadrature points with four points in each direction is used within each
element. The system of linear equations for each Newton iteration is solved using the
generalized minimum residual (GMRES) iterative solver [20] with a simple diagonal
preconditioner and no restarts.

5. Simulation. Numerical simulation of excitation propagation through the full
canine ventricular myocardium was performed using the method developed here to
solve eikonal equation (1.12). The model of the canine ventricular geometry and
the selection of material parameters for the governing equation (1.12) are discussed in
[23]. Parameters used were A} = 0.8 mm, Ay = Ay = 0.5 mm, 7, = 3ms, and ¢g = 2.5.
There were 2355 degrees of freedom for the dependent variable. The method was pro-
grammed primarily in extended FORTRAN 77 as part of the CMISS (an acronym
for Continuum Mechanics, Image analysis, Signal processing and System identifica-
tion) software package. It was executed on one 195 MHz MIPS R10000 processor of
a Silicon Graphics Octane.

A point stimulus site was chosen to match the pacing site used for epicardial-
sock activation time recordings by Le Grice [16], so that results could be compared
with experimental measurements. This site is on the epicardial surface of the anterior
aspect of the left ventricular free wall and located at a distance from the apex about
one third of that from apex to base.

Snapshots of wavefront locations from the simulation are presented in Figure 5.1.
Epicardial isochrones are similar to those from the experimental recordings for times
from about 20ms to 60 ms after stimulation but start to differ considerably outside
this interval. Near the stimulus site, experimental recordings showed much slower
propagation in the direction transverse to the fibers. The difference in simulation
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(e) 100 ms (f) 120 ms

Fic. 5.1. Wavefront locations at 20 ms time intervals in a simulation of propagation from an
epicardial point stimulus at time 0. For each sample time, two opposing views are shown.

results is probably due both to the coarse discretization and to the inability of the
eikonal model to reproduce the transient effects near a stimulus. The distance over
which slow initial transverse propagation was observed experimentally is less than
one quarter of the element length in this direction. For times greater than 65ms
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after stimulation, experimental recordings showed much earlier epicardial excitation,
particularly in the more basal and posterior areas on the left ventricular free wall. The
region of latest recorded excitation was at the pulmonary conus, which was excited
about 125 ms after stimulation. In simulations, the latest excitation occurred about
180 ms after stimulation in the basal posterior region of the right ventricular free wall.
The discrepancy is most likely due to the lack of Purkinje fibre representation in the
computational model. If the effects of this fast conduction network are not included
in the model, results cannot be expected to be realistic. More realistic simulations
are presented in [23].

The solution to the discrete system of equations (4.2) was obtained after seventeen
Newton iterations and required just less than four minutes of CPU time. One Newton
iteration was performed for each increment of the continuation variable a. until it
reached one, then four Newton iterations were required before the relative change in
the solution reduced to less than 107°. The time required for each iteration ranged
from 10.7 s to 16.9s. Of this, the time for calculation of the Jacobian was consistently
7.2's, but the time for solution of the linear system of equations ranged from 3.0 s when
diffusion was significant, to 5.3s when «, reached one, to 9.2s in the final iteration.
Most of the remaining 0.5s in each iteration was spent evaluating the residual in the
nonlinear equations.

In the solution of the linear system of equations for each Newton iteration,
GMRES iterations were performed until the residual in the linear system was re-
duced by a factor of 1073, There was an increasing trend in the number of GMRES
iterations required to achieve this, from 111 iterations when diffusion was significant,
to 170 when «. reached one, to 251 in the final Newton iteration. This suggests that
the condition number of the Jacobian may increase as the effect of diffusion decreases.

Although convergence in the solution to the nonlinear system was achieved reason-
ably easily in this simulation with these material parameters, when . was increased
to represent a reduction in the effects of diffusion, convergence could be achieved for
a. = 1.06 but not for a. = 1.07. This means that, if the material parameters were
changed so that the relative magnitude of the diffusion term was reduced by more
than six percent, artificial diffusion would be required to obtain convergence.

Part of the reason for the inability to achieve convergence when the diffusion
term is small may be related to the lack of C! continuity in U at certain places in the
mesh. A close inspection of the wavefront near the apex in Figure 5.1(c) reveals that
the front is starting to form a point as it approaches the apex. This feature of the
wavefront vanishes when more diffusion is introduced into the equation.

As discussed in section 3.3, when the diffusion effects become very small, the
numerical method behaves as if it were solving an eikonal equation without a dif-
fusion term. The appropriate equation to solve in this situation is the diffusionless
propagation equation (3.1). Although the discrepancy between this and the eikonal
equation was dealt with on boundaries in section 3.3, it was assumed that inside the
domain the residuals in the two equations were equivalent. The residuals are only
equivalent, however, if first derivatives are continuous. The C! constraint vanishes
at the apex because the element widths vanish. Without C! continuity, the eikonal
equation admits solutions where tissue is not necessarily excited by neighboring tissue.
Wavefronts can initiate and spread out from any point in space where C! continuity
is not enforced. This lack of uniqueness in the solution makes the Jacobian for New-
ton’s method singular and therefore convergence unlikely. If simulations are to be
performed with less diffusion, the numerical treatment of the advection term needs to
more closely represent its form in (3.1).
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If diffusion needs to be added to the equation in order to obtain a stable solution,
high-order convergence rates can no longer be expected, and thus one might ask the
question of what the advantage of high-order elements might be. To address this
question, the cubic Hermite Petrov—Galerkin finite element scheme is compared with
a simple finite difference scheme using first-order upwind differences for the advection
term. A simple Taylor series analysis of first-order upwind differences shows that the
coefficient of numerical diffusion is half the coefficient of the advection term multiplied
by the grid point spacing, which resembles %co)\h. When doubling the physiological
diffusion to stabilize the cubic Hermite scheme, the coefficient of additional diffusion
resembles A2. In order to make the additional diffusion in the first-order scheme of
similar magnitude, the grid point spacing must be given by h = %, or equivalently,
the grid Péclet number P, must be equal to 2. In the cubic model, the volume average
of the geometric mean of the mesh Péclet numbers for each direction is 22, and the
maximum Péclet number in any direction at any point is 116. An optimally designed
first-order grid would have grid spacings of 0.64 mm in the fibre direction and 0.4 mm
in the other directions. The 0.2 x 10 mm?® myocardial volume would need to be
represented by about 2 x 108 grid points. This is a factor of about 10® greater than
the 2355 degrees of freedom in the cubic Hermite mesh.

6. Conclusions. An efficient computational model has been developed for the
excitation process in ventricular myocardium. The need to represent the small-scale
ionic activity is eliminated by modelling the excitation process as a propagating wave-
front of depolarizing tissue.

A Petrov—Galerkin method using cubic Hermite elements has been developed to
enable numerical solution of an eikonal equation for excitation time on a reasonably
coarse mesh. The method is a weighted residual method with weights that are linear
combinations of Galerkin weights and C° continuous supplementary weights based
on the derivatives of the interpolation functions in the direction of propagation. For
one-directional propagation, the error in the solution is within a small constant factor
of the optimal error achievable in the trial space. To estimate the constant factor
in the error bound, it was only necessary to consider the function in the trial space
with highest frequency first derivative and its corresponding weighting function. A
function of the mesh Péclet number was selected for the ratio of the Galerkin and
supplementary weights so that this error factor is small for all values of the Péclet
number.

For high Péclet numbers, the numerical solution of the eikonal-diffusion equation
behaves as if there is no diffusion term. An eikonal equation determines the speed
of propagation at each point in space but provides no constraint on the direction of
propagation. Without the diffusion term, there is no longer any no-flux boundary
condition, and spurious excitation can initiate at any point on the boundary. A
no-inflow boundary term has been designed to provide a penalty on such spurious
excitation.

Using a continuation method to gradually introduce the nonlinear term of the
governing equation, seventeen Newton iterations were required to obtain the solution
for a simulation in the full ventricular myocardium. The method showed instabilities
when the effect of diffusion was very small, but the level of diffusion required for
stability was much less than the level of numerical diffusion that would be introduced
in a first-order upwind finite difference scheme with the same number of degrees of
freedom.
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INTERACTION OF THERMAL EXPLOSION AND NATURAL
CONVECTION: CRITICAL CONDITIONS AND NEW
OSCILLATING REGIMES*
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Abstract. In this paper we investigate, numerically as well as analytically, the influence of
natural convection on thermal explosion in a two-dimensional square vessel, filled with a reactant
mixture, whose vertical walls are adiabatic and horizontal walls are infinitely conducting, preset
at an equal temperature Tp. Natural convection enhances the heat losses at the boundaries while
large temperatures tend to promote natural convection, thus yielding two competitive phenomena.
The governing equations are taken to be the Navier—Stokes equations in the Oberbeck—Boussinesq
approximation of low density variations coupled to the heat equation with an exponential chemical
source term. This is valid because we consider a 1-step reaction with high heat release, we use the
Frank-Kamenetskii transformation under high activation energy asymptotics, and we do not take
into account thermo-diffusion as well as the different molar masses of the species. We solve the
vorticity-stream function-temperature formulation with an alternating direction numerical method
on finite difference approximations. The numerical results show the coexistence of 1-vortex and
2-vortex regimes, from which thermal explosion can occur. New regimes of thermal explosion are
found when the Frank-Kamenetskii and Rayleigh parameters are close to the critical conditions for
explosion and convection. Periodic-in-time solutions can exist from which thermal explosion can
also occur. Linear stability analysis allows us to predict the onset of convection not too close to the
explosion limit. Finally, we propose a model problem through a system of two ordinary differential
equations which is able to reproduce the bifurcation behavior of the global system close to critical
conditions for both explosion and convection.

Key words. thermal explosion, natural convection, stability and bifurcation analysis
AMS subject classifications. 76E30, 76R10, 80A32
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1. Introduction. The theory of thermal explosion has been investigated in nu-
merous works (see [7], [15], [17], [21], [22], [24]). Thermal explosion denotes the rapid
buildup of energy in systems subject to exothermic reactions, the rate of which rises
with temperature. It is of practical importance in problems of fire and explosion
safety.

The theory of thermal explosion begins with the works by van ’t Hoff who formu-
lated the basic principles of chemical reactions in the end of the 19th century. The
first part of the development of this theory was terminated by 1930 due to the work by
Semenov with collaborators (see [21], [22], [24]). They explained the physical mecha-
nism of thermal and chain explosion and offered a simple mathematical model in order
to get the critical conditions of explosion with a space-independent temperature.

The next step in the development of the theory begins with the works by Frank-
Kamenetskii [7], [8] who proposed to consider a space-dependent temperature dis-
tribution with Dirichlet boundary conditions in a motionless fluid. He considered a
1-step reaction in the framework of large activation energy asymptotics under the
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large heat release assumption, so that the reactant depletion can be neglected. Ther-
mal explosion is viewed as the nonexistence imposibility of a stationary solution. The
study of this highly unstationary problem is then reduced to the study of the existence
of stationary solutions. This approach was developed in a large number of physical
and mathematical works (see [2], [17], [24], and the references therein).

Many other models have been developed further to take into account heteroge-
neous media [1] or coupling with hydrodynamics [15], [18]. This paper is a contri-
bution to the latter. The influence of free convection on thermal explosion has not
received much attention yet. In [15], Kagan et al. considered a forced convection in
a two-dimensional (2D) vessel with a large aspect ratio and weakly conducting walls.
Surprisingly enough, it is shown that convection can promote explosion. Merzhanov
and Shtessel in [18] have investigated the influence of natural convection on thermal
explosion in a 2D square vessel with infinitely conducting horizontal walls and adia-
batic vertical walls. If the fluid is motionless, the maximal temperature is then at the
center of the vessel, and if it is large enough, free convection appears. Free convection
can inhibit explosion by enhancing the heat losses at the walls. Critical conditions
for both explosion and convection have been investigated numerically as well as ana-
lytically with simple models using a single variable: the averaged temperature [18].

In this paper, we study the influence of natural convection on critical conditions
for thermal explosion and extend the work by Merzhanov and Shtessel [18]. First,
from the modeling point of view, we discuss the assumptions underlying the use of
the Navier—Stokes equations for a frozen mixture composition under the Oberbeck—
Boussinesq approximation with an exponential source term in the temperature equa-
tion. Second, for the considered configuration, with an aspect ratio of one, we show
the coexistence of 1-vortex and 2-vortex modes and analyze the corresponding bifur-
cation diagrams; explosion can occur from both of these regimes. Third, the behavior
of the system in a neighborhood of the point where the critical conditions of explosion
and convection coincide is studied through comprehensive numerical simulation which
was impossible 30 years ago. New regimes of thermal explosion are found when the
Frank-Kamenestskii parameter is close to the critical one. Periodic-in-time solutions
can exist so that thermal explosion can occur either from these oscillating solutions
or from a stationary solution where natural convection is present. Numerical simula-
tions in this neighborhood face several difficulties: high parameter sensitivity, possible
oscillations, very slow convergence to stationary or periodic solutions, and possible
explosion. Fourth, we perform a linear stability analysis on a simplified model which
allows us to obtain a good description of the onset of natural convection far from the
critical conditions for thermal explosion. We thus validate the code and gain physical
insight into the main difference between the present situation, where the chemistry is
coupled to the hydrodynamics and the classical Rayleigh-Bénard problem. Fifth, we
propose a simplified model in order to describe the complex bifurcation behavior of
the system: a system of two ordinary differential equations for the mean temperature
and the maximal stream function. In the spirit of Semenov’s theory, this simplified
system contains a phenomenological heat losses coefficient. We show how the model
problem is able to describe the appearance of stable limit cycles and explain the
possible explosion either from oscillating or stationary solutions.

The paper is organized as follows: the modeling assumptions are detailed in
section 2. Numerical method and simulations obtained with the comprehensive model
are presented in section 3. We then propose simplified models in order to describe the
observed phenomena. In section 4 we propose a linear stability analysis of a simplified
model in order to find the onset of convection away from the critical conditions of
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thermal explosion. Finally, section 5 is devoted to the bifurcation analysis of a model
problem close to the critical conditions for both explosion and convection, and section
6 provides a discussion which makes the link between sections 3, 4, and 5, thus
completely describing the qualitative behavior of the global system by the model
problem.

2. General modeling of the problem.

2.1. Configuration. The configuration studied here is a 2D square vessel whose
vertical walls are adiabatic and horizontal walls are infinitely conducting, filled with
a reactant mixture. An equal constant temperature T is preset at the horizontal
walls. This configuration is similar to the one considered by Merzhanov and Shtessel
in [18]. At the starting moment the fluid is at rest at temperature Tp. Either the
fluid can encounter thermal explosion (a rapid buildup of temperature modeled in the
Frank-Kamenetskii theory by a temperature blow-up) or, after a characteristic time,
there exists a slowly varying solution (modeled in the Frank-Kamenetskii theory by
a stationary solution at frozen composition) where chemical heat release is balanced
by the heat losses through the walls. When no gravity is present, the stationary one-
dimensional (1D) concave temperature profile possesses an analytical expression, the
characteristics of which are given in subsection 2.2.

In the presence of gravity, the upper half-part of the domain is heated from below
by the reacting mixture and beyond a certain stability limit, like in the Rayleigh—
Bénard problem [6], [11], convection appears and enhances the heat losses.

The purpose of the present study is to couple the heat equation which governs the
classical explosion limits to the hydrodynamics through natural convection. Before
dealing with the modeling of the coupled problem, let us come back to the classical
results.

2.2. Frank-Kamenetskii theory of thermal explosion. In the Frank-
Kamenetskii theory, the explosion limit is determined by studying the existence of
stationary solutions to the nondimensional heat equation:

0

RTy ’

(2.1) 8,0 = 0,.0 + Fy exp 20,2, 6(0)=6(2) =0,

where T is the temperature and 6§ = (T — T)/RT; /E is the temperature scaled by
the Frank-Kamenetskii temperature RTj/E; t* is the time variable and 7 = t* /7,
the nondimensional time associated with the diffusion time 7, = L?/k; 2 = 2*/L,
2L is the size of the domain and z* the dimensional space variable; Fi is the Frank-
Kamenetskii parameter defined as the ratio of the diffusion time 7, and of a chemical
ignition time 7.p:

T, RT? 1 E
2.2 Py = & S S
(2.2) T Teh E(TbTo)Bexp(RT())’

where &, is the thermal diffusivity at T' = To, T, — Ty = Q/pocpo is the adiabatic tem-
perature of reaction, () is the heat of reaction, pg is the density of the mixture, ¢, is
the heat capacity at constant pressure, and at T' = T, F is the activation energy, R
the universal gas constant, and B the frequency factor of the Arrhenius-type reaction
rate. Reactant depletion has already been neglected due to the fact that the charac-
teristic time of reactant depletion is much longer than the characteristic time of tem-
perature buildup under the assumption of large heat release, (T, — 1) /1o >> RTy/E.
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The explosion limit will be described by the only Frank-Kamenetskii parameter. Un-
der the assumptions of large activation energy E/RTy >> 1, we can perform the
Frank-Kamenetskii transform so that the nonlinear reaction rate in (2.1) is taken to
be Fx exp(6) [8], [24].

Thermal explosion is defined as the nonexistence of a stationary solution of equa-
tion (2.1) [7], [8], [24]. It can be shown that there exists a critical value Fk . such that
a stationary temperature profile exists if and only if the Frank-Kamenetskii parameter
is below the critical value Fx < Fk.. In this case an analytical expression of the sta-
tionary temperature profile as well as an exact formula for the maximal temperature
as a function of Fx are available. The value of Fk, is approximately 0.88. Beyond
this value no stationary solution exists and the system is said to encounter thermal
explosion. It is worth noting that the maximal temperature increase at the center
of the vessel when a stationary solution exists is of the order of magnitude of the
Frank-Kamenetskii temperature, which means that it is small compared to Ty under
the large activation energy assumption.

When gravity is present, fluid motion should be taken into account. For large
Rayleigh numbers, free convection will possibly increase heat losses through the walls,
thus yielding two competitive phenomena. In order to proceed with the study of
such situations, we have to first provide a model for both hydrodynamics, dissipative
phenomena, and chemical reactions. This is the purpose of the next section.

2.3. Governing equations. The most general set of equations governing multi-
component reactive fluid mixtures is a system of mixed hyperbolic-parabolic equations
describing hydrodynamics, complex dissipation phenomena such as viscous dissipa-
tion, multicomponent mass, and heat diffusion, as well as chemistry [5], [12], [13].

The model chosen for the chemistry is a 1-step exothermic reaction in the con-
text of negligible composition effects as in the original Frank-Kamenetskii theory.
Consequently, out of the various coupled complex phenomena described by the com-
prehensive equations, we want only to retain hydrodynamics, viscous dissipation, heat
conduction, the effect of gravity, and the heat release of the single chemical reaction as
a heat source term. Composition effects due to complex chemistry, multicomponent
diffusion, thermal diffusion, as well as stratification of the fluid due to the effect of
gravity on species of different molecular weights, are out of the scope of this study.
We further assume, for the sake of simplicity, that the heat capacities at constant
pressure and at constant volume of the various components of the mixture are con-
stant. The thermal conduction coefficient is assumed constant, A = Ag, as well as the

thermal diffusivity, x = K, = po’\c‘)o7 the shear viscosity, i = pg, and the kinematic
P
viscosity, v =1, = ; éﬁ;o. We neglect the bulk viscosity. The resulting set of equation

is the usual compressible Navier—Stokes equations for a single fluid coupled to the
heat equation with a chemical source term.

This system of equations is then considered in the limit of small density variations,
also called the Oberbeck-Boussinesq approximation:

(2.3) 00 +u 0,0 +v 9,0 = Oz + 0..0 + Fgexp(0),
(2.4) O-u+u Opu~+v Oyu = —0;P + Pr, (0ppu + 0;,u) ,
(2.5) 0-v 4+ u Opv 4+ v 0, = =0, P + Pr, (0pyv + 0,,v) + Pr, Ra, 0,
(2.6) Ozu+ 0,v=0.
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The nondimensional quantities involved in the problem are

(27) T = w07 U:(uﬂ))t: ) 7):27 9:7207
L w, Po RIZ/E
K, R v
2. =2 = pog—T, Pr =2
( 8) ’U)U I3 ) Po Pom 0, 0 K, )

where t*, U* = (u*,v*)!, and P* are the dimensional quantities, respectively, time,
velocity vector, and perturbation of the pressure, and where m is the molar mass
of the mixture. Also, Pr, is the Prandtl number,  and z are the horizontal and
the vertical coordinates, u and v are the horizontal and the vertical components of
the scaled velocity, and Ra, is the Rayleigh number. Denoting by g the gravity
acceleration and recalling that the thermal expansion coefficient « of a perfect gas is
the inverse of the temperature and that the typical temperature increase is of the order
of the Frank-Kamenetskii temperature RT;/FE, the Rayleigh number then reads as

Ra, = minO/E. Problem (2.3)—(2.6) is considered in the square domain 0 < z < 2,

0 K,

0<2<2 svioth the boundary conditions
(29) zz=0,2: 9,0 =0,u=0,0,v=0; 2=0,2: 6=0,0,u=0,v=0.

The justification of the Oberbeck—Boussineq approximation of small density vari-
ations has been investigated in many works, under different assumptions on the state
law of the fluid and on the geometry of the vessel [14], [19], [20], [23]. In a recent work
by two of the authors [9], it is investigated for a general divariant state law, and a
unified approach is presented for both liquids and gases. We restate the fundamental
assumptions in the framework of thermal explosion in the following proposition.

PROPOSITION 1. Let us consider a fluid layer of thickness 2L under gravity con-
ditions, the vertical temperature field of which Ty(z) is given by a stationary solution
of equation (2.1) under the assumption Fx < Fk,. Let xo = vgL/c¢ and assume that

(2.10) Yo < RTy/E < 1,

where ¢y is the velocity of sound in the mizture and 7y is the ratio of the heat capacity at
constant pressure over the heat capacity at constant volume. Then there exists a static
solution (i.e., a solution without convection) of the compressible Navier—Stokes equa-
tions (pg, g, I, Us = 0) with 0,pg = —pgg, z € [0,2L], ps(2L) = po, pg = psRIy/mm,
which satisfies (pg — po)/po < 1. Further assume that

(211)  w/VGLRT,/E=0(1), Pr,=0(1), xo=0(™), j>1,
RTy

where € = =2, Then the solution of the nondimensional compressible Navier—Stokes
equations can be formally represented in the form

(2.12) u=u+ O(e), v =v+O0(e), 0 =6+ 0(e),

(2.13)  p=1+pjp1e Tt +pjraed T+ O(€7?), p=1—0c+0(),

where (g )\ Dj+1 = —xoe YUtV e, e, being the vertical unit vector directed upwards,

and where the variables 0, u,v and P = M satisfy the system (2.3)—(2.6). The
yw?

nondimensional pressure 1+pj+1ej+1 and density 1 in equations (2.13) correspond
to the static solutions pg and pg.
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3. Numerical simulations. For the model introduced in the previous section,
we first present the numerical method and devote the next subsection to the results.

3.1. Numerical method. We consider a w — v formulation of the equations;
the problem (2.3)—(2.6) with (2.9) becomes

(3.1) 0,0 + ud, 0 +v0,0 = Opzl + 0.0 + Fgexp(0),
(3.2) O0rw + u0yw + v0,w = Pr, (Ozew + 0,,w) + Pr, Ra, 0,0,
(3'3) 83:9“/) + 8zz1/} = —Ww,

where 1 is the stream function, w the vorticity,
u=20.p, v=—0z1.
The free surface boundary conditions become
(3.4) z=0,2: 9,0 =0,9% =0,w =0; 2=0,2: 0=0,v=0, w=0.

Problem (3.1)—(3.4) is discretized using finite differences with an alternating directions
method. For (3.1), this yields

+1/2 +1/2 +1/2
o2 — oy, L O =0 L i1 — i
/2 i oh T

+1/2 +1/2 +1/2
Oir =200 "+ 0705 07 =207+ 07,

— = + 3 + Fx exp(6}';)
and
+1 n+1/2 n+1/2 n+1/2 +1 +1
O =0y e Gy~ Y O
7/2 i 2h i 2h
gt/ _ogntl/2 y gntl/2 gntl  ggntl | gt
— it 222 U= B ;l’j nizl 4 Fk exp(eﬁj),

where 7 is the time step and h the space step. Other equations are discretized similarly.

A continuation method is used to study existence and stability of stable stationary
and periodic-in-time solutions. Among the three parameters of the problem Pr,, Ra,,
and F, the last two are more essential. So far, for a fixed value of the Prandtl number
(Pr, = 1) we vary Ra, and Fx.

3.2. Numerical results. This subsection can be considered at the heart of our
work: it introduces all the new physical behaviors of the considered configuration.
We first present the state of the art by recalling the results of Merzhanov and Shtessel
[18]. This allows us to roughly identify zones in the Ra, — Fx parameter plane where
explosion is to be found. Convection appears as a supercritical bifurcation from a
static solution when Fx < Fk,.; we present the first results validating our code and
emphasize that 1-vortex and 2-vortex convection regimes can coexist for a given value
of the Frank-Kamenetskii number. We then focus on the behavior of the system
around the bifurcation point of codimension 2 at Fk, and Ra.(Fk.), and identify new
oscillating regimes, which can be periodic or lead to explosion. We finally present
some results on the unstationary behavior of the system in the last subsection.
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3.2.1. The diagram of Merzhanov and Shtessel. Let us first come back to
the work by Merzhanov and Shtessel and summarize their results. They have shown
by direct numerical simulation the existence of four regions in the Rayleigh/Frank-
Kamenetskii parameter plane. In region I, there exists a stationary solution in a static
fluid while in region II, a stationary solution exists in a moving fluid. In region III,
thermal explosion arises from a moving fluid, whereas in region IV thermal explosion
arises from a static one. The boundary between regions I and IV is predicted by the
Frank-Kamenetskii theory and given by Fk,. =~ 0.88. The interesting scenario takes
place in region II for the Frank-Kamenetskii parameter bigger than the critical value.
Convection enhances the heat losses at the boundaries, thus inhibiting explosion. The
limit between III and 1V is difficult to locate since convection is always enhanced by
the blow-up of the temperature so that it is difficult to decide if convection started
just before or during thermal explosion. These regions were characterized in [18] and
several simple models were provided in order to describe the behavior of the solutions
in the various regions. However, the only convection regime considered in this paper is
a 2-vortex regime. Besides, because of computation limitations, the detailed behavior
at the point where the four regions merge is not studied. We first show, in the
next subsection, that there exists also a 1-vortex solution. Moreover, 1- and 2-vortex
regimes can coexist; explosion can occur from both of these regimes.

3.2.2. Two regimes: One or two vortices. Consider first the case where
Fk < Fk.. There exists a static solution. For Ra, sufficiently large, it loses stability
and a convective regime appears. The bifurcation diagram is usual for convection
problems. The maximum of the stream function . is roughly proportional to
2V Raoé — Ra, as represented on Figure 1 and as will be shown in subsection 5.5, where
Ra, is the critical value of the Rayleigh number and @ is the averaged temperature in
the vessel. The supercritical bifurcation can also be observed on a (¢max, Ra, )-plane.
At the same time the mean temperature decreases when Ra, increases. As can be
expected, an increase of Fk results in an increase of the mean temperature and of
the maximum of the stream function. It decreases the critical Rayleigh number (see
Figure 1).

In the present configuration (2D square domain), only 1-vortex and 2-vortex so-
lutions are observed. The solution bifurcating from the static solution has only one
vortex which fills practically the whole domain being slightly moved to its upper part.
For Ra, larger than a critical value Ra, ,, a transition from a 1-vortex solution to
a 2-vortex solution is observed. Decreasing Ra, and using the 2-vortex regime as
an initial condition, we observe a reverse transition to a 1-vortex solution but for
Ra,, < Ra,,. Note that the number and position of the vortices depend on the ge-
ometry of the vessel and that, in the present situation, there exists a parameter range
Ra, € [Ra, ., Ra, ,|, where the two regimes 1-vortex and 2-vortex coexist.

Now consider the case Fx > Fk,., which means that no static solution is to be
found. For Ra, large enough, a 2-vortex solution exists (see Figure 2; Fx = 0.9 and
Fx = 1.0). For Fx = 0.9, decreasing Ra, leads to a transition to a 1-vortex regime
and finally leads to explosion. However, for Fx = 1.0, decreasing Ra, directly leads
to an explosion from this 2-vortex regime. It can be shown by a proper choice of the
initial condition that a 1-vortex solution can still be reached; if we increase Ra, from
this 1-vortex solution, we jump onto the 2-vortex solution; a decrease of Ra, leads to
an explosion from this 1-vortex regime. Again, one can observe the existence of a Ra,
range for which the 1-vortex regime and the 2-vortex regimes coexist. It has to be
noticed that the symbols used in Figure 2 for a 1-vortex or a 2-vortex regime do not
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Fic. 1. Convective regime bifurcating from the static solution for five values of the Fk pa-
rameter below the critical conditions: mazimum of the stream function versus effective Rayleigh
number Ra 6.

reproduce any real temperature or stream function field.

For Frank-Kamanetskii numbers slightly above the critical value for the existence
of a stationary solution, a general scenario can be proposed. Decreasing Ra, leads to
a decrease of the maximum of the stream function (and to an increase of the mean
temperature) until a minimum is reached (see Figure 2). A further decrease of Ra,
yields a great increase of the mean temperature and of the maximal stream function
until explosion is obtained and the stationary solution disappears (see Figure 2).

3.2.3. Oscillating thermal explosion around critical conditions. From
the previous subsections, one could think that all scenarios have been covered. How-
ever, a closer look at the neighborhood of the point (Fk.,Ra.(Fk.)) reveals a rich
nonlinear behavior.

We consider three values of Fk, two above Fk., 0.8775 and 0.88, and one be-
low, 0.875. Starting from values of Ra, for which a convective stationary solution is
observed numerically, we continue this solution using Ra, as a bifurcation parameter.

For Fk = 0.88, decreasing Ra, successively yields a decrease and then an increase
of Omax, appearance of a periodic-in-time mode, an increase and then a decrease of
the oscillations amplitude, reappearance of a stationary solution, and explosion. For
the periodic solution, the maximal temperature also oscillates and can reach the value
Omax = 2.0, which is much larger than the critical value 1.2 of the Frank-Kamenetskii
theory (see Figure 3).

For Fx = 0.8775, one again observes the appearance of a periodic solution with an
increase of the oscillations, but then there is an explosion from the oscillating solution
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(see Figure 3). Using proper initial conditions permits us to follow the end of this
branch: oscillations decrease, stationary solution appears again, and then explosion
occurs from the stationary solution (see Figure 3). Let us mention that for this value
of Fk, the period of oscillations is very large as will be seen in the next subsection.
For Fx = 0.875, the branch on the right reaches the nonconvective stationary
solution at Ra, = 163. Further decreasing the value of the Rayleigh number results in
a straight line on Figure 3, since no convection is present and we plot only the max-
imal value of the temperature profile without convection for various values of Ra,.
We could think that for the parameter range Ra, € [110, 163], the previous branch
is the only branch. However, two striking scenarios also appear for Fx = 0.875 for
some Rayleigh numbers smaller than Ra.. Besides the stable static solution for this
value of Fx below the critical value, other stable solutions exist, both stationary or
with periodic oscillations, and can be reached by using proper initial conditions (see
Figure 3). One observes thermal explosion either from a periodic oscillating solution
(increasing Ra,) or from a stationary convective solution (decreasing Ra,). This is
all the more surprising since intuition predicts that convection should inhibit explo-
sion by enhancing the heat losses through the boundaries. In this case, convection
promotes explosion. An explanation for the presence of this branch of solutions can
be suggested. In the situation without convection, for Fx < Fk,., there exists two
branches of solutions, one stable and one unstable with higher temperature; these
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periodic solutions, we have plotted the mazximum and the minimum of the maximal temperature in

the vessel versus Ra0 (the branches of stationary unstable solutions corresponding to these periodic
solutions are not represented).

two branches join at the bifurcation point Fx = Fk,.. The piece of the stable branch
observed for small Rayleigh numbers at Fx = 0.875 could be the stabilization by
convection of this unstable nonconvective branch for Fx close to Fk..

3.2.4. Unstationary behavior. The purpose of this subsection is to describe
the unstationary behavior of the oscillating solutions previously identified. We focus
on value Fx = 0.8775, the richest scenario.

We first present the growth of the oscillations when we start from a stationary
convective solution at Ra, = 147 and set at ¢ = 0, Ra, = 145. Figure 4 describes
the path to the periodic oscillating solution. The very slow growth is related to the
closeness to the Hopf bifurcation. More interesting is the analysis of the periodic
solution; almost all the time (about 90%) the solution is close to a static one and
periodically, with a very long period compared to the nondimensional time, it almost
explodes, and 1. and 6 reach their maximal value.

The second point is related to the thermal explosion from a periodic oscillating
solution on the other side of the branch at Ra, = 117.5. In Figure 5(a) we have rep-
resented the mean temperature, the maximal temperature, and the maximal stream
function, first for the periodic oscillating solution at Ra, = 117.5. We then set, at
t = 0, Ra, = 118, and represent on the second figure Figure 5(b) the evolution of
the previous three quantities. The system goes on its periodic trajectory for another

period and then it explodes. The explosion behavior is very different from the one on
the other side of the branch.
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FIG. 5. (a) Periodic solution at Ra, = 117.5 and (b) oscillating explosion at Ra, = 118 (solid
line: mazimal stream function, dotted line: mean temperature, dashed line: mazimal temperature).

In conclusion, we point out that taking into account fluid motion when study-
ing explosion reveals new phenomena—periodic-in-time solutions and explosion ei-
ther from these solutions or from stationary solutions. These features happen for
Fk and Ra, close to their critical value. A simplified system is proposed in section 5

in order to investigate, analyze, and reproduce these

phenomena.

4. Linear stability analysis for a simplified model for Fx < Fgk.. The
purpose of this section is to perform a linear stability analysis on a simplified model,
which allows us to obtain a good estimate of Ra. (the critical value of Ra, for fixed
Fk < Fk.) for the onset of natural convection. It is another validation of the code, but
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more specifically it allows us to gain physical insight on the main difference between
the present situation, where the chemistry is coupled to the hydrodynamics, and the
classical Rayleigh-Bénard problem.

The linear stability analysis of system (3.1)—(3.4) around the nonconvective solu-
tion is well known for a nonreactive fluid in the Rayleigh-Bénard configuration (see,
e.g., 3], 4], [6], [10], [11]).

We start in the same manner; problem (2.3)—(2.6), (2.9) is linearized about a
static solution 64(z), v = v = 0, which depends only on the vertical coordinate. Using
simple algebra, pressure can be eliminated; it yields

(4.1) 8.0 = A0+ F'(6) 6 — Oqv,
(4.2) 9-Av = Pr, AAv + Pr, Ra, 0,.0,

where F'(6y) denotes the reaction rate. In the present section, it is assumed to be
affine with respect to 6,

(4.3) F(6s) ~Fk (14 06s),

which is valid for small 65 and leads to simple computations. The boundary conditions
are the same as in the classical analysis [6], [11].

We look for the solution of (4.1)~(4.3) of the form 6(z, z,t) = (z)e 7 cos(kz),
v(z,2,t) = 9(2)e” cos(kz), where k = mm/2, m = 1,2,..., which yields the eigen-
value problem

(4.4) — M =0" — k20 +Fg 0 — 05,

—A@ —K*0) =Pr, (0 —2k*" +k*3) — Pr, Ra, k%0,

0

with the boundary conditions

1"

(4.6) 2=0,2:0=0, 9 =7 =0.

The convective instability boundary can be found from the condition that the
eigenvalue A with the minimal real part is zero. In the present study, these eigenvalues
are not computed exactly but are approximated.

With the approximation (4.3) the static solution 6y(z) can be found explicitly.
However, even in this case, problem (4.4)—(4.6) does not give a simple expression
for A\. Hence 0(z) is approximated by the first term of its Fourier series (it can be
verified that the second term is already essentially less than the first one): 6(z) ~

2 (T2 ! ~ TZN < __ 8Fk .
#0osin(%5) so that 05(2) ~ o cos(%5*) with o = p Note that o is well defined

if Fx < m2/4, which is satisfied for Fx < Fk..
We look for the solution 6 and v of (4.4)—(4.6) in the form of Fourier series

= ™z R ™z
QZanSin(T), ﬁ:ZCnsin (7>
n=1 n=1
and assume A = 0. It leads to the infinite system for the coefficients c,,:

C2 = —71Cq,

Cn—1 +Cn+1 = —TnCn, TL:2,37....
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TABLE 1
Values of Rac given by (4.7) and by the numerical simulations.

Fx 0.4 0.5 0.6 0.7 0.8

numerical Ra. 1025 740 547 408 | 280
analytical Ra. 922 735 558 446 | 340
658/0max 2680 | 1999 | 1532 | 1178 | 879

Here

Ra 2Pr ™\ 2 2/ 2
oo B g 2 () (e k).
7= D1 Ra, k2 ( > ) 2) T K
The critical Rayleigh number Ra. is given by the condition that the determinant of

this infinite system of equations equals zero. To find Ra, explicitly we have to truncate
the system. Taking only two equations (c¢z = 0) leads to

(4.7) Ra? = Ra,Ra,,
while for three equations (c4 = 0),

Ra,Ra,Ra
2: 1 2 3
Ra Ra, + Ra,’

which is close to Ra,Ra, if Ra, >> Ra,.

It can be easily verified that if Ra,,, > Ra,, n = 2,4,..., then each successive
approximation will be close to the previous one. In the case k = 7/2 (m = 1), these
conditions are satisfied and one can use the approximation (4.7).

In Table 1, the values of Ra,. given by (4.7) are compared with the numerical
results for various values of Fi. It is interesting to note that the agreement is pretty
good far from the critical conditions for explosion; it gets worse when we get really
close to Fx, even if the estimate for Fx = 0.8 is still correct up to 20%.

Note that these values of Ra, are much smaller than 658/6™* as stated in Mer-
zhanov and Shtessel [18] and given in the third row. (658 is the critical Rayleigh
number for the Rayleigh—-Bénard problem in an infinite layer with free surface bound-
ary conditions.) Actually, 658/6™** would be a good approximation of Ra,. if the
temperature profile were linear in the upper part of the domain, as it is in the original
Rayleigh—Bénard problem. The present study shows that the nonlinear temperature
profile yields quite different values of Ra,.

5. Model problem, bifurcation analysis. In the previous section, we have
considered the behavior of the system away from the explosion limit. We investigate,
in the present section, a model problem to describe the observed oscillatory instability,
the Hopf bifurcations, and the oscillating explosion close to the critical conditions for
both convection and explosion (see subsection 3.2.3).

A similar attempt was performed in [18]; however, they wanted only to describe
the nonlinear variations of the heat losses at the boundaries due to natural convection.
Consequently, the authors used one differential equation on a variable representing
the mean temperature, and the heat losses coefficient o was a nonlinear function of
this characteristic temperature taking into account the effect of natural convection.

Here we want to describe a complex bifurcation behavior, and a single equation
is not able to reproduce, for example, the observed limit cycles. We thus consider the
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following model problem of two ordinary differential equations:

(5.1) 40 = F(0) — a(|tmax|) 0,
(5.2) d¢¥max = —aWmax (1/}12nax + & (90 - é))’

where 6 and ©max correspond to the mean value of the temperature and the maximum
value of the stream function, and a, 6, and . are positive constants. It has to be
noticed that «, a, ¢, and 6. also depend on the parameter Ra,.

Equation (5.1) describes the heat balance between heat production due to the
reaction and heat loss through the boundaries. It is almost the same as in Semenov’s
theory of thermal explosion with the difference that the coefficient « is not constant;
a(|tmax|) is now a function of the maximal stream function and depends on the
Rayleigh number as a parameter.

Equation (5.2) describes a supercritical bifurcation of convective solutions. If
0 < 0.(Ra,), then there is only one solution ¥ymax = 0. If § > 6., then there are also

two other solutions ¥max = £6/6 — 0,.

3
In the Rayleigh—Bénard problem, the Rayleigh number reads Ra = gL AT

RU
where the static temperature profile is a linear function of z leading to a tgrr[iper—
ature difference of AT, where « is the thermal expansion coefficient (1/Tp in the
present case of a perfect gas). In the present study, the static temperature pro-
file is highly nonlinear as already observed in the analytical study of the critical
Rayleigh number (section 4). We then consider an effective Rayleigh number based
37 3
gL ORTo/E (ZQV’;I’O/E = Ra 0, where Ra, = gL"R10/E Z;Z;O/E;
besides, from subsection 3.2, we know that for a stationary convective solution,
Ymax = byRa—Ra, = b\/Ra,\/0 — 0., with . = Ra./Ra,, so that 6 = b,/Ra,.
We then considerj/; = Ymax/6 With @ = a6%. In what follows we omit the tildes for
the equation on 1 and the bars for the equation on @ for the sake of simplicity and
the system reads as follows:

(5.3) 40 = F(6) - a(|y])9.
(5.4) detp = —atp(4® + 0 — ).

5.1. Various modeling of the heat losses a. In this paper, we consider two
models for the description of the heat losses coefficient a. The first one is a very
simplified model:

(5.5) a([¢l) = ao(1 + ulyf?),

where p is the sensitivity of the heat losses coefficient o on convection; it can depend
on the parameter Ra,. For this model, it is possible to define analytically the critical
conditions in terms of p, 6., and «q (see subsection 5.3). However, even if this model
reproduces the existence of stable limit cycles and Hopf bifurcations, it occurs in
such a narrow parameter range that it makes the comparison with the original partial
differential equation model difficult. This is the reason why we introduce a second
model; it is based on the study [18] where a formula is provided in order to approximate
the heat losses coefficient in the configuration of high Rayleigh numbers Ra and for a
nonreactive problem:

on the averaged temperature Ra =

(5.6) aa0<1+ “Ran>.

Ra +
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In the present situation, when Ra, is reaching Ra., where the supercritical bifurcation
is taking place, the modification of g should approach zero so that Ra, in (5.6), has to
be replaced by Ra, ¢ — Ra., which can be rewritten for stationary convective solutions:
Ra, (0 — 6.) = Ra,4?. Finally we consider the model:

uRaflw")
[9|* + v/Ra,

we will consider essentially n = 1 and assume that the sensitivity of the heat losses
coefficient to the convection p depends on the parameter Ra, .

For this second model, we will show that the parameter range for the existence
of a stable limit cycle starting at the Hopf bifurcation is larger; besides, this model is
able to reproduce the existence of a stable limit cycle between two Hopf bifurcations,
the oscillations amplitude of which are first increasing and then decreasing without
leading to explosion (sections 5.4 and 6).

)

(5.7) a([y]) = ao <1 +

5.2. Conditions for Hopf bifurcation. Let us now study the stability of a
stationary solution (fg, ). We will show that the presence of oscillations (as ob-
served in section 4) can be described by the model problem (5.3)-(5.4) under some
assumptions. Consider the linearized system

(5.8) def) = F'(05)0 — a(|vs])0 — o' (1¢s])0s %,
(5.9) e = ayhgh — 2aye.

It has purely imaginary eigenvalues +i¢ if

(5.10) F'(6s) — a(lys]) — 2a9§ =0,

(5.11) — 203 (F'(05) — a(|¥s])) + avsa’ ([9g])05 = ¢*.

Consider first equation (5.10). It cannot have solutions if 6, < 6*, where 6* is the
critical temperature for the Semenov’s theory of thermal explosion given by the equal-
ities

F(6%) = a* 0", F'(6%) = a™.
Indeed, in this case
F'(6s) — a(|¢s]) < F'(0s) —a™ <0.
If 65 > 6%, then F’(63) > o* and (5.10) may be satisfied. We have

(5.12) F'(0s) — F((fS) —2a(fg — 6.) =0,
S
(5.13) — da’y5 + aga’ (|¢s))0s = %,
Equation (5.12) and the inequality
da
Og >
()

obtained from (5.13) determine conditions when the system (5.8), (5.9) has purely
imaginary eigenvalues. These conditions can be satisfied on decreasing branches of
the maximal value of the stationary stream function ¢ (Ra,) due to the fact that 6, is
inversely proportional to Ra,.
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5.3. Analysis of the first model. Let us first define the critical conditions
as well as the conditions for Hopf bifurcation in the case of a(|v)|) = ag(1 + u|]?).
Concerning the critical conditions, 8, p (LP for “limit point” or critical point) satisfies

(5.14) (Orp —0.)* + (Orp —0.)(B+0)+Bo—1=0, B=0.—1, o=1/u—1,

which always has real solutions with only one above 6.,

2
(5.15) GLP—GCZ—B;—O.—F 1+<6g0> .

Conditions for Hopf bifurcation then read as

0 0110,
(5.16) xPO1) _ 14 (0 — 0,)) = 20-21%
Or 0 — 1
42,4 2 42 2a1ﬁ{
(5.17) 1a*gly + 2avhaopby = &%, by > L,
0

where the H subscript corresponds to the point of Hopf bifurcation. The last inequal-
ity reduces to 0y < foi:) if 2a — agpp > 05 it is always true if 2a — qpu < 0. For the
Hopf bifurcation to take place, it is then necessary that

2
(5.18) (—26‘ +8+ 1) > %.

The analysis of the trajectories of system (5.3), (5.4) using CONTENT [16] shows
that there exist three qualitatively different situations depending on the choice of pa-
rameters: decaying oscillations where a trajectory converges to a stable focus (Case A
of Figure 6), oscillations with increasing amplitude from an unstable stationary point
and an oscillating explosion (Case C of Figure 6), and, in between these two, slowly
decreasing oscillations from an unstable limit cycle decaying to a stable focus or slowly
increasing oscillations from this unstable limit cycle yielding to explosion (Case B of
Figure 6).

Decaying and growing oscillations were also observed for the complete problem
(section 3). Stable periodic oscillations apparently observed for it are not found
directly for the model problem by simply changing the parameters and following the
trajectories. This is due to the fact that the parameter range corresponding to the
existence of a stable limit cycle is extremely small even if we know from the Hopf
theorem that it is not reduced to an interval of zero length.

We then conducted a more detailed analysis using limit cycle continuation in order
to detect the point where an unstable limit cycle is merging with a stable one. The
complete bifurcation diagram is given on Figure 6, where the corresponding phase
portraits are provided at the bottom.

The main problem with this model is the very narrow parameter range where
a stable limit cycle is to be found. It is all the more difficult when «q is becoming
smaller. The idea was then to switch to another model where the parameter sensitivity
is a little lower due to saturation phenomena: model 2.

5.4. Analysis of the second model. The second model is introduced because
it brings three new features. The parameter range where stable limit cycles exist
is larger. It is also due to the fact that the stable limit cycle reaches the loop of
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Fic. 6. Bifurcation diagram for the first model with 6. as the bifurcation parameter with the
various phase portraits (C for converging trajectories and D for diverging trajectories).
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Fic. 7. (a) Continuation of the limit cycle with 0. as the continuation parameter in the phase
plane (0,) from the Hopf bifurcation point to the loop of separatrice. (b) Bifurcation diagram for
the second model with 0. as the bifurcation parameter. (c) Bifurcation diagram for the second model
with @ as the bifurcation parameter.

separatrice associated with the other (saddle) equilibrium instead of meeting with an
unstable limit cycle as in the first model (Figure 6). Finally, two Hopf bifurcations
are found in the neighborhood of the initial point for both bifurcation parameters 6.
and agp. The initial point oy = 2.7,6,. = 1.0 is the point we start the continuation of
equilibrium from.

We find the two critical points where the equilibria disappear at ag = 2.7,60, =
1.06 (denoted by “limit point” in Figure 7(b)) and ap = 2.688,6, = 1.0 (denoted
by “limit point” in Figure 7(c)). Besides, two Hopf bifurcations are identified at
ag = 2.695,0. = 1 and at ag = 2.7,0. = 1.019; at the initial point, the equilibrium is
stable and is destabilized through the Hopf bifurcations.

On Figure 7(a), we have used CONTENT [16] in order to represent the contin-
uation of the stable limit cycle with 6. as the bifurcation parameter. The various
lines starting from the Hopf bifurcation point and reaching the loop of separatrice
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represent the continuation of one point of the limit cycle. The bifurcation diagram is
presented on Figure 7(b), and we see that the stable limit cycle is present from the
value 6. = 1.01893, where the Hopf bifurcation is taking place until 6. = 1.02578,
where the stable limit cycle is merging with the loop of separatrice. Another possible
bifurcation parameter which brings a reparametrization of ¥ = 0 is p, the sensitivity
of the heat losses coefficient on convection, instead of ag. The corresponding bifurca-
tion diagram is presented on Figure 7(c), knowing that the initial point corresponds
to u=0.7.

5.5. Comparison with direct numerical simulations. The purpose of the
present section is to make the link between the direct numerical simulations of sec-
tion 3, on the one side, and the results on the model problem presented in the first
part of this section, on the other side. The fundamental point is to be able to use
physical values of the parameters in the model problem. The first step is then to come
back to the relationship between the Semenov and Frank-Kamenetskii theories and
extend the relationship to the other parameters when convection is present.

The link between the Frank-Kamenetskii and the Semenov theories has already
been considered in [24], thus showing that around the critical conditions for explosion,
if § is the averaged temperature in the layer, exp(f) =~ exp(f). Thus, integrating (2.1)
in z over [0,2] and changing the temperature scaling from the diffusion time L2/ K, tO
the chemical time 7. introduced in subsection 2.2 yields

(5.19) d-0 = —® + exp(0), T =t/Ten = Fk.7,

where ® is the total heat flux through the boundaries, modeled by ® = af. However,
the critical value of the mean temperature given by the Frank-Kamenetskii theory and
denoted 6 is .86, whereas critical conditions for (5.19) yield o} = e, §f = 1. Thus,
even if exp(f) is a good approximation of the value in the mean of the chemical source
term, it does not provide a good approximation of its derivative as a function of the
mean temperature. Consequently, we consider n = 0/6; and approximate exp(f)

by 05 exp(0/63), so that n satisfies
(5.20) dzn = —aon + exp(n),

the critical conditions of which are defined by n* = 1, af = e, or § = 0% = 0.86.
The change of variable then allows us, by changing the derivative of the chemical
source term at critical conditions, to recover critical conditions compatible with the
Frank-Kamenetskii theory.

We then have to check that the value of the heat flux at the boundaries is cor-
rectly predicted by our numerical model. We have computed the values of the heat
flux for various values of the Frank-Kamenetskii number below the critical value, for
two spatial discretizations 21 and 51 points, as well as the values predicted by the the-
ory. Numerical results and theory match very well and the error remains below 4%.
One can check from these numerical simulations of (2.1) that ag = 9:0|:—¢ * 9_3/5
approaches the value e in the neighborhood of the critical conditions.

It was proposed in subsection 3.2 that the convective instability is appearing as a
supercritical bifurcation and that the maximum of the stream function is proportional
to vRa — Ra. = /Ra /0 — 8., a property used in the model problem. On Figure 8(a),
we check this relationship for Fx = 0.6, Fx = 0.875, and Fx = 0.9; it thus makes the
link between the stream function observed with either model and the stream function
given by the direct numerical simulations.
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FK=0.6, direct simulation
FK=0.6, fiting -------

FK=0.875, direct simulation -
25| FK=0.875, fitting
FK=0.9, direct simulation —-—-
FK=0.9, fitting -+~

FK=0.6, direct simulation
FK=0.6, fitling -------

118 [ FK=0.9, direct simulation ------
FK=0.9, fitting

Maximum of the stream function
&
alpha

0 . . . . . . . . . . . . .
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Rayleigh number times mean temperature Rayleigh number times mean temperature

(a) (b)

F1G. 8. Comparison of model and simulations: (a) ¥Ymax at Fx = 0.6,0.875,0.9; (b) heat losses
coefficient at Fx = 0.6,0.9.

In order to justify the choice of the various models considered for the heat losses
coefficients, we have plotted a versus Ra 6 on Figure 8(b), comparing on the one side
the ratios of the heat flux over the mean temperature from the simulation and on the
other side the values given by the second model.

We have done that for various values of Fk; we isolate two cases on Figure 8(b) for
Fx = 0.6, below the critical value, and Fx = 0.9, above the critical value. For the first
one, starting from the constant analytical value «y which corresponds to the static
solution, we can fit very precisely, using the second model, the values coming from
the direct numerical simulations and then prove that the choice of a constant value
of p and + is possible. For the second one, there exists a region of the parameter Ra,
where the maximum of the stream function has a square root-like behavior; in this
region, we can still fit « very precisely as shown on Figure 8(b). However, in the
region where the maximum of the stream function separates from the square root-like
behavior, the fit for a is not valid anymore and the parameters p and ~ cannot remain
fixed.

6. Discussion. In the present section, we discuss three key points: the definition
of thermal explosion, the influence of convection on heat losses at the boundaries,
and finally the ability of the model problem described in the previous section to
reproduce the complete bifurcation diagram of the full partial differential equation
system with Ra, as the bifurcation parameter at fixed Fk.

Classically, thermal explosion is defined as the nonexistence of a stationary solu-
tion for (2.1). When gravity is present and convection interferes with heat production,
our study makes it clear that this definition of thermal explosion is not complete. Ac-
tually, there is a parameter range where there exists an unstable stationary solution
and where thermal explosion can still occur whatever the initial data (Fx = 0.8775,
which is below the critical value, and for the Rayleigh range between the two Hopf
bifurcations yielding oscillatory solutions; see Figure 3), whereas for some parameter
range, even if the stationary solution exists and is not stable, there exists periodic
oscillations and no thermal explosion is found in the attraction basin of the stable
limit cycle; however, the possible domain of initial conditions in order to converge to
these stable oscillations is limited. Due to the presence of this oscillatory instability,
we have to give a more complete definition: thermal explosion is the blow-up of the
temperature; it corresponds to three scenarios: there exists no stationary solution
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and no periodic solution; there exists a stable stationary solution or a stable periodic
solution with its attraction set of initial data (which can be bounded or not) and the
initial solution does not belong to this set; or, finally, there exists unstable stationary
solutions and the temperature blows up whatever the initial data.

The second point we want to come back to is the influence of convection on
heat losses. The convective instability due to the nonlinear profile of temperature is
difficult to relate to the linear one in the Rayleigh-Bénard configuration as shown in
section 4, where the critical Rayleigh numbers cannot be correlated. The modeling of
the heat losses in the context of thermal explosion coupled to convection was still an
open problem. It then becomes clear that using the direct numerical simulations and
linear stability analysis, we were able, first, to characterize the critical conditions for
the convective instability to appear, and, second, to model the heat losses through an
interpolation formula that was to be really precise (using p and ) on the square root-
like branches (either for Fx below the critical value or for large Rayleigh numbers).
There are two points still to be discussed here: first, what is the influence of the
transition from one vortex to two vortices on the heat losses? and, more generally,
depending on the aspect ratio, what would be the behavior of heat losses depending on
the modes?; second, what is the behavior of the heat losses in the regions of parameters
when we are close to thermal explosion and the stationary branch for ¢ goes away from
a square root-like profile? The latter point will be discussed in the next paragraph:
the model problem is able to reproduce the bifurcation behavior of the full system.
Finally, we would like to emphasize that we have chosen Dirichlet boundary conditions
on part of the boundary, thus influencing the heat losses. It would be necessary to
reproduce the same kind of study in the case of Robin boundary conditions.

The last point we want to discuss is the ability of the model problem to describe
surprisingly well the bifurcation diagram of the full system of partial differential equa-
tions. We have already seen that the heat losses coefficient is well described by the
second model proposed in comparison with the direct numerical simulations; the cor-
respondence between the two systems, when the Rayleigh number is small enough,
already has been shown by making the link between Semenov and Frank-Kamenetskii
theories. However, the bifurcation parameters used in the direct numerical simulation
were the Rayleigh number Ra, and the Frank-Kamenetskii parameter Fi. The second
model system, when Fx is given, thus setting ag, Ra., and ~, still has two parameters
depending on Ra,: 6. and u. We have seen that there can be two causes of Hopf
bifurcation: either when 6. is increasing on a decreasing branch of ¥ or when pu is
decreasing. It has been shown that p remains constant on a square root-like branch of
the stream function; however, we did not inquire as to what is the behavior of © when
the stream function leaves this square root-like behavior. It can be shown for various
values of Fx > Fk, that in the region where the stationary value of ¢ as a function
of Ra, changes its convexity, there is a strong variation of « as a function of 9. Let
us consider, for example, the case when Fx = 0.9, where no oscillations are found. It
is shown that for the same value of ¢, the value of o decreases for a smaller Ra,. We
can model this phenomenon by choosing a fixed « and considering the evolution of
p versus Ra,. The evolution of the heat losses coefficient sensitivity p as a function
of Ra, presents a strong decrease of 11 in the considered region. A similar result holds
for oscillating solutions.

The very striking fact is that this analysis provides a way of understanding why
oscillations can start growing and then decrease onto a stable stationary solution
before exploding, as is the case when Fg = 0.88. Let us refer to the bifurcation
diagram, Figure 7. It shows that an increase of 6. (which can be associated with a
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decrease of Ra, ) at given p can initiate the oscillations through a Hopf bifurcation. If,
in between the bifurcation point and the loop of separatrice, one encounters a strong
decrease of p, then the amplitude of the limit cycle can decrease until it goes through
another Hopf bifurcation so that the stationary solution is stable again. Decreasing
u further leads to an explosion from the stable stationary solution, which is exactly
the behavior of the full system for Fx = 0.88. It is interesting to note finally that the
model system is able to reproduce all the bifurcation diagram identified using direct
numerical simulations.

7. Conclusion. In this paper we have presented a comprehensive simulation,
bifurcation analysis, and modeling of the nonlinear interaction of thermal explosion
and natural convection in a 2D square configuration. New stable periodic-in-time
solutions and oscillating thermal explosion have been identified in the neighborhood of
the critical conditions for both explosion and convection. The stable periodic solutions
can be modeled by a simple system of two ordinary differential equations. We have
justified the modeling of the heat losses depending on the regimes of convection and
especially in the neighborhood of the oscillating solutions, where the sensitivity of heat
losses to convection encounters a strong decrease. Finally, all the identified regimes
and bifurcations can be qualitatively described by the proposed model problem.
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Abstract. This paper considers the asymptotic integration of a special class of initial value
problems involving a nonlinear regular perturbation scaled by a small parameter ¢ > 0. For t =
O(1/€), these problems were classically solved using either the method of averaging or of multiple
scales to remove secular terms that arise in the natural power series procedure. Our new ansatz is
straightforward and effective. Moreover, it indicates when problems might occur in providing the
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Background: The rise of secular terms. We shall seek the asymptotic so-
lution z(t) of the initial value problem for the weakly nonlinear nearly autonomous
vector system

(1) =Mz +eN(x,t,e)

on the semi-infinite time interval ¢ > 0 as the small positive parameter e tends to
zero. Such problems and their generalizations describe numerous electrical, mechan-
ical, and biological oscillations. Indeed, the asymptotic solution of related boundary
value problems for partial differential equations remains of substantial interest and
importance. Without further hypotheses, however, one can’t predict the time interval
on which the solution remains bounded. We shall assume that the matrix M has
only imaginary eigenvalues, that the fundamental matrix eM* for the unperturbed
problem has a period p > 0, and that the vector N is smooth in its three arguments
and p-periodic in t. We could even assume that M is a diagonal matrix having a
spectral decomposition M = iVAV ! with a real diagonal matrix A and introduce
the transformation = V.
By variation of parameters,

(2) ze(t) = e Ma(t)

will satisfy the transformed system

3) i=cf(zt6),
analogous to (1) with M = 0, for the p-periodic forcing
(4) f(z,t,e) = e MIN(eMiz ).
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Indeed, we will say the system (3) is in standard form. Moreover, anticipating that
(3) will have a nearly constant solution for bounded times, setting

(5) z.(t) = M (2(0) + eu(t, 2(0),€)) or ze(t) = x(0) + eu(t, (0), €)

shows that the scaled correction vector u will satisfy the nearly linear initial value
problem

(6) = f(z(0) + eu,t,e€)

on some interval ¢ > 0 with «(0,z(0),¢) = 0.
The natural starting point for obtaining an asymptotic solution z.(t) of (1) or
z¢(t) to (3) is to introduce the regular power series expansion

(7) u(t, £(0),€) = ug(t, £(0)) + eu (t, 2(0)) + 2ua(t, 2(0)) 4 - - -

for u, determining its terms u; uniquely and successively by equating coefficients of
like powers of ¢ in the differential equation (6) and the initial condition. Thus, the
u;’s must satisfy the resulting sequence of linear initial value problems

Uy = f(x(0),t,0), up(0) =0,
i1 = fz(2(0),¢,0)up + fe(x(O ,t,0), u1(0) =0,
(8) 1),2 = f ( (O) 3 O)U1 + 5 [fzac .’L‘(O) )UO =+ wae(x(o)vtao)]uo
+ 5 ee(2(0),£,0),  ua(0) =0,

etc.,

and thus integrating successively immediately provides the coeflicients
t
) un(t,(0)) = [ 7(a(0),5,0)ds
0

(10) ui(t,2(0)) = /O [f2(2(0), 5, 0)uo(s, 2(0)) + fe(2(0), 5,0)]ds,

etc., in (7). Using standard Gronwall inequality arguments (cf. Smith (1985) or Mur-
dock (1991)), it becomes clear that the regular power series (7) provides the asymp-
totic solution x(t) as € — 0 on bounded ¢ intervals.

Recall, however, that Lagrange, Laplace, Poincaré, and other developers of celes-
tial mechanics knew that ordinary resonance implies that these u;’s generally contain
secular terms that grow as polynomials in ¢ of degree j + 1. This implies that the
expansion (7) then loses its asymptotic validity on long time intervals since the terms
e/ Tlu;(t) of eu all attain the same asymptotic order when ¢ = O(1/e€). For this rea-
son, the power series (7) was called naive by Chen, Goldenfeld, and Oono (1996).
Many asymptotic methods have been developed to deal with this dilemma. The
most important classical techniques are the Krylov—Bogoliubov averaging method,
largely developed in Kiev in the 1930s (cf. Bogoliubov and Mitropolsky (1961)), and
two-timing or the method of multiple scales, developed at Caltech in the 1960s (cf.
Kevorkian and Cole (1996), but note independent early contributions of Kuzmak
(1959), Cochran (1962), and Mahony (1962)). Our work relates closely to the renor-
malization group method of Chen, Goldenfeld, and Oono (1996) and the invariance
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condition method of Woodruff (1993, 1995), though averaging and multiple scale con-
cepts remain essential to its development. Readers should note that Oono (2000) and
Nozaki and Oono (2001) simplify the earlier renormalization group method and that
Jarrad (2001) includes a promising variational perturbation theory. Chen, Goldenfeld,
and Oono (1996) began their paper by suggesting that “the practice of asymptotic
analysis is something of an art.” Like them, we seek to show that “the renormaliza-
tion group approach sometimes seems to be more efficient and accurate than standard
methods in extracting global information from the perturbation expansion.”

Simple resonance considerations show that ug will grow like a multiple of ¢ as
t — oo if and only if its known forcing f(x(0),¢,0) has a nonzero average

(11) (/(2(0),£,0)) —f/f

which conveniently coincides with the leading term in its Fourier series expansion
on 0 <t < p. Indeed, if we split f(x(0),t,0) into its average and supplementary
fluctuating zero-average part

(12) {£(2(0),2,0)} = f(x(0),¢,0) = (f((0),%,0)),
the response uy analogously splits into the sum
(13) uo(t,2(0)) = tag(x(0)) + Un(x(0),1)

of its corresponding secular part agt, with the average

(14) ao(2(0)) = (f(2(0),¢,0))

as a coeflicient and with the bounded secular-free part

(15) (/{f ), 5,0)}ds.

Substituting (13) into (10), integrating by parts, and splitting f, into its average and
fluctuating parts, we next get

s (t,2(0)) = ( / t sz(z(U)ﬁ,O)dS) a0(2(0))

n / [Fa(2(0), 5,0)Up(2(0), ) + fu((0). 5,0)]ds
~ (52020000 + ¢ 52(6(0).0) ) afa(0)
+/{hmm@m%mm@+ﬂ@@@m
0

- T (0 a(a(0)] .

Thus, u; has the predicted polynomial form

(16)  wi(t,2(0)) = L2 (2(0),1, 0))ao((0))

oUy

1 i @(0) + G000 ((0)] + V(e 0.0,
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where the coefficients involve the average

o1(2(0)) = { £2(2(0)£.0Ua(a(0).0) + £(a(0)£.0) = 0 (2(0). 0o (2(0)) )

and the supplementary term

(17) U1(z(0),t) E/O {fx(z(O),s,O)Uo(a:(()),s) + fe(2(0),s,0)

Uy
- T (al0) Jan(a(0)) fs

that remains bounded for all ¢ > 0. (Corresponding higher-order first and final
coefficients a; and U; won’t be so directly linked as when j = 0 and 1.)

Continuing in this manner, however, we ultimately learn that a bounded asymp-
totic solution z.(t) results on a longer time interval from using only the bounded
secular-free (or so-called bare) part

2(0) 4+ eUp(x(0),t) + Uy (2(0),t) + €*(-- )

of the regular power series for z.. Further, we must generally replace the initial vector
2(0) by a time-varying amplitude A.(7) depending on the slow-time

(18) T=¢t
and found by integrating the initial value problem
dA, 9
— = ap(Ae) + ear(Ae) + O(€?), A(0) = z(0),

on (possibly unbounded) 7 intervals where its solution remains bounded. (Observe
that one might interpret the replacement of 2:(0) by the slowly varying A.(7) as finding
an envelope of solutions (cf. Ei, Fujii, and Kunihiro (2000)). Likewise, one could be
motivated by Whitham’s success in using slowly varying functions to asymptotically
solve nonlinear partial differential equations (cf. Whitham (1974) and Debnath (1997))
or by the use of related amplitude equations in stability theory (cf. Coullet and Spiegel
(1983), Eckhaus (1992), and Promislow (2001)). The basic ploy is to eliminate the
secular terms from the naive expansion (7). Moreover, observe that replacing x(0) by
A.(7) also makes our leading-order approximation eM*A (1) to z(t) richer, although
such an improvement will not be asymptotically noticeable when ¢ is only finite.
We admit that this simple renormalization result still remains largely unmotivated,
but we shall now obtain it by using an effective ansatz that could be applied more
generally (e.g., in asymptotically stable contexts where M is a stable matrix and
%fé) f(x(0),s,0)ds converges as p — o0, allowing us to take an infinite p to again
define the averaged equation satisfied by the limiting Ag(7). When M = (70Q i%)
for an exponentially decaying matrix e~®?* and a periodic ¢*®, we would use such a
long-time average to approximate the first components of x).

The basic ansatz. We shall begin anew to solve (1) by directly introducing the
multiple-scale ansatz

2 (t) = eMiz (t) = eMA(T) + eU(Ac(T),t,€))
(19) or
ze(t) = Ae(T) + U (Ac(7), t,€)
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corresponding to the bare expansion of Chen, Goldenfeld, and Oono (1996). It can be

motivated for problem (1), at least for 7 finite, by substituting (19) into the differential
equation (3). Using the chain rule, we get

(20)

Ldee (1, OUN\dA. OU
e dt A, ) ar ot

We now split gTU and f into sums of their average and mean-free fluctuating parts,
respectively, using the leading term and the supplementary sum of their Fourier ex-
pansions on 0 < t < p, and asking that A, account for the nonzero average terms

({2

in (20), while the correction €U to A, in (19) handles its remaining terms

oU \ dA.  OU
6{&45} i T — W

with zero averages. (Readers might indeed recall that an analogous decomposition
occurs in the early comparison by Morrison (1966) of averaging and two-timing.)
Thus, A, should satisfy the autonomous system

dﬁe - ([ +e <g§i (AG(T),t,6)>>_ (f(Ac+ eU(Ac, t,€),t,€))
=a (A e)
(21) = <f(A67t70)>

+e [(fw(Ae, t,0)Uo(Ac,t) + fe(Ae, t,0))

(G0 Ao + )

and the initial condition A(0) = x(0), while U must satisfy

== g bataco

and the trivial initial condition U(A(7),0,€) = 0. We shall call the differential equa-
tion (21) the amplitude or first level RG (renormalization group) equation, noting
that an analogous evolution equation results when one uses the higher-order method
of averaging. The asymptotic integration of (21) on 7 > 0 is the appropriate candi-
date problem to replace the integration of (1) after ¢ becomes unbounded. In these
differential equations for A. and U, the times ¢ and 7 are taken to be independent
variables, as is typical in two-timing. Integrating the latter equation with respect to
t shows that U must satisfy the integral equation

U(Ac(7),t,e) = [ {f(Ac(T) + eU(Ac(T), 8,€), 8, €) }ds
(22) 0

< t { S50 fasala(r).o.
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That we have obtained the compact formulae (21) and (22) to all orders in € is quite
helpful, though we naturally next employ power series methods to get more explicit
asymptotic results for bounded 7 values. Note, in particular, that %—(t] has a zero
average, so its integral U in (22) will be bounded whenever the amplitude A.(7) is.
The resulting power series expansion

(23) U(A(T),t,€) = Ug(Ac(7),t) + eUr(Ac(T),t) + €2(---)
has coefficients successively and unambiguously given by

Uo(Ac(r), 1) = / {F(Ac(r), 5,0)}ds,

Ur(Ac(7),t) = /0 {f2(Ac(7), 8, 0)Uo(Ac(7), 8) + fe(Ac(7), 5,0) }ds

_ /Ot {ggz (Ac(7), s)} ds ag(Ae(T)),

etc., corresponding to the functions previously obtained in (15) and (17) for the non-
secular parts of the naive expansion (7). Note that U is p-periodic in t.

The remaining, and still formidable, task is to obtain the asymptotic solution of
the initial value problem (21) for the slowly varying amplitude A, on time intervals
where it will determine a bounded solution z. or z. via (19) and (22). We naturally
first seek A.(7) as a power series

(24) A1) = Ao(T) + €Ay (1) + Ao (T) + -+,
where (21) implies that its limit Ay must satisfy the limiting nonlinear problem

ddo _ ao(Ag) = ;/Op f(Ao,5,0)ds, Ag(0) = z(0),

(25) dr

exactly as in classical averaging, while the next term A;, for example, must satisfy a
linearized problem

dA1 - d(lo(Ao)

? = TI%Al + al(AO), Al(o) = O

The uniqueness of Ay implies the invertibility of the Jacobian matrix aé;“(lg), which
satisfies the homogeneous linear matrix system as long as Ay remains defined. If
Ap ever blows up, we must naturally limit our interval of approximation. Using a
variation of parameters, then,

(26) Ai(1) = 88110(3) /OT (88110(5)8))>_ ai(Ag(s))ds

and later terms A; also follow successively without complication. Using the regular
perturbation expansions for A.(7) and for U(Ac(7),t,€) in the ansatz (19) results
in an approximation for z. that agrees asymptotically with the naive expansion on
intervals where t is finite, and that extends that approximation to longer intervals, at
least as long as 7 remains finite and Ag(7) is defined. One possible further difficulty
is instability of Ag(7) as 7 — oo (if 2(0) isn’t restricted to the appropriate stable
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manifold). Another is encountering 7-secular terms in the power series generated for
A.(7). Note, indeed, that A; will be 7-secular if the forcing term a;(Ap) contains

a nontrivial projection in the range of the fundamental matrix aéi O(E)T)). A bounded
7, indeed, provides the usual time limit for obtaining asymptotic solutions by the
classical averaging and two-timing methods, which are quite intimately related (cf.
Morrison (1966)). Instability as 7 — oo cannot be overcome. If, however, Ay (7) exists
for all 7 > 0 and if it decays exponentially to an asymptotically stable rest point or
sink, the resulting expansion (24) for A.(7) and the resulting expansion (19) for x.(¢)
are uniformly valid for all ¢ > 0. Recall that Greenlee and Snow (1975) provided
an early discussion of such problems, while Murdock and Wang (1996) called this
the Sanchez—Palencia condition, in reference to related results for averaging. Indeed,
when ag(Ap) = 0, we can immediately seek the asymptotic solution z.(t) on O(1/€?)
time intervals, as Sanders and Verhulst (1985) and Murdock and Wang (1996) show
for averaging and multiple scales, respectively, by replacing the slow-time 7 in (21)
by the even slower-time

(27) K= er = €t.

Readers should realize that the successful ansatz (19) can be interpreted as a
near-identity transformation for z.. Such transformations, which generalize a classical
asymptotic procedure of von Ziepel, were introduced by Neu (1980). They are useful in
a variety of contexts, including many where our periodicity assumption doesn’t hold.
In this sense, the basic method of matched asymptotic expansions (cf. I'in (1992))
and the boundary function method of Vasil’eva, Butuzov, and Kalachev (1995) can
both be considered to be extensions of our renormalization technique, as will be
demonstrated below. Note further that the basic ansatz (19) is considerably more
direct than traditional two-timing, since the solution is not sought as an arbitrary
function of the slow-time 7, but rather as a function of ¢ and the amplitude A., which
is obtained asymptotically as a function of 7 by solving the renormalized equation
(21). At any stage, we have available a finite truncation

Un(A(1),t,€) = Zerj(Ae(T),t)

for the correction U to A, satisfying U(A((7),t,€) = U™(Ac(7),t,€) + O(e" ™). Like-
wise, we have the truncation

3

Al(r) =) Ai(7)
§=0
such that A (1) = A™(7) + O(e"*1). Substituting into the integral (22), this implies
that

(28) U(Ac(7),t,€) = UM (AL(7),t,€) + O(e") + O(em 1)

for any positive integers m and n, at least for appropriate bounded values of 7.

Our success in using the ansatz (19) for large times suggests that we might often be
able to asymptotically solve the amplitude equation (21) on long time intervals, even
when 7-secular terms in the series (24) for the amplitude A, need to be eliminated,
by using a secondary ansatz

(29) z(0) = Be(k) + eW(Be(k), T, €),
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analogous to (19), in (19). We can asymptotically solve the resulting second level RG
equation for the amplitude B¢(k) to get the resulting multiscale composite expansion

z(t) = eMA(T, Be(k) + €W (B (), T, €), €)
+ eU(A(7, Be(k) + eW (Be(k), T, €), €), t,€)],

where we have set
A (1) = A(r,2(0),€)

to emphasize its dependence on the initial vector (0). This expansion can be expected
to be valid at least for bounded « intervals. Moreover, we can consider the preceding
expansion (19) to be an intermediate asymptotic expansion in the sense of Barenblatt
(1996).

The critical idea behind the traditional (first level) renormalization group method
of Chen, Goldenfeld, and Oono (1996) is to replace the initial value z(0) in the naive
expansion (7) by a slowly-varying function A.(7) through a near-identity transforma-
tion

(30) x(0) = A(7) + €Z(A(T),t,€)

to eliminate secular (or divergent) terms in the naive expansion (7) by appropriate
selection of the correction terms Z; and to thereby obtain the secular-free expansion
(19), where A, remains to be determined. To lowest orders, we would, for example,
obtain the necessary cancellation by taking

A (Aea t) = —Qo (As)t

and

Z1(Act) = 57 (el Acst, 0))ao(A)

U (At 00U £0)+ o0 = an(a) (G240

Upon differentiating (30) with respect to ¢, the invariance condition dz(to) = 0 and
the chain rule immediately imply that A.(7) will satisfy

dA, B 0z \ "oz
(31) dT —a(Ae,E):—<I+€8A€> a

We did not take this approach above because it is more direct to immediately find
A, by asymptotically integrating (21), which turns out to ultimately be independent
of the secular correction Z introduced in (30). We nonetheless note how instructive
it is to see how the terms of the t-secular function Z can be selected to eliminate
successive secular terms in (7) and to learn how the function a(A.,¢€), generated by
using the intermediate Z, coincides with that already defined in (21). In some sense,
renormalization corresponds to a summing of secular terms. We note that Nozaki and
Oono (2001) get the RG equation from an intermediate proto-RG equation and that
they make a distinction between resonant and nonresonant secular terms. Indeed,
when no secular terms occur in (7), A will remain the constant x(0). Next, T-secular
terms in the resulting series (24) could analogously also be eliminated, if necessary, by
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replacing the initial vector z(0) by a slowly varying function B¢(x) of the slow time
k = €2t through use of another near-identity transformation (29), where B, (x) must
satisfy a second level RG equation

dB,
dr

(32)

oW\ oW
0B, or

=b(Bc,€) = — <I+e

and B.(0) = z(0) (cf. Mudavanhu and O’Malley (2001)). Assuming existence and
appropriate stability of By(k), this will allow the asymptotic solution for z. to be
defined beyond bounded values of k. One may again be stopped by either blowup
at finite k, instability as kK — oo, or by k-secular terms. The latter would require a
higher level renormalization, and that could determine the asymptotic solution on a
still longer time interval. We thus proceed in a leapfrog fashion. (Related applied
work is contained in Moise and Ziane (2001) and Wirosoetisno, Shepherd, and Temam
(2002).)

Two simple scalar examples. (a) Consider the simple example
(33) T =1ix + ex(a+ x)

for some bounded complex constant a. Direct integration of this Riccati equation
provides the exact solution

_ 0, .
34 (1) = (i+ea)t 1— 63:( (i+ea)t _ 1 0
(34) r(t)=e e )| #(0)
with a least period 172?5(1 when Rea = 0. When a # 0, secular terms become apparent
when e is expanded in its Maclaurin series about ¢ = 0. When Rea < 0, such

a naive expansion in powers of € is very misleading, since the actual solution decays
exponentially to zero as 7 = et — oo, while the Taylor-expanded series has unbounded
secular terms. When Re a > 0, however, the solution blows up algebraically like 72
as T — oo. Thus, we can’t expect an asymptotic approximation to the solution to be
defined on time intervals on which 7 becomes unbounded.

If we directly seek a solution to (33) of the form

(35) ze(t) = e (2(0) + eu(t, 2(0), €)),

the scaled correction u must satisfy the nonlinear equation

f(x(0) + eu, t,0)
= (a4 2(0)e™)z(0) 4 e(a + 22(0)e™ )u + ?e"u?

(36) !

and u(0, 2(0), €) = 0. The resulting regular perturbation series is determined termwise
through the successive linear initial value problems

o = (a4 2(0)e™)z(0), uo(0) =0,
) ‘ )uOv ul(o) =0,
0)euy + e,  us(0) =0,
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etc. Integrating termwise, we obtain the naive expansion
z.(t) = e [x(O) + e(at +iz(0)(1 — e))z(0)
(37) + €22(0) [;a2t2 +iaz(0)t(1 — 2¢')
~2(0)(1 = )+ 20)(1 - )| + 0.

valid asymptotically for bounded ¢ values. The anticipated secular terms occur, how-
ever, for a # 0, indicating the breakdown of the approximation (37) when 7 = et — oo.
If we instead seek an asymptotic solution z.(t) of (33), using our ansatz

(38) z(t) = e (A(T) + eU(Ac(T),t,€)),

the amplitude A, and the correction U will have to satisfy (21) and (22), respectively.
Since f(Ac(7),t,0) = (a+ A (7)e*) A (7), the average

(f(Ae(7),1,0)) = aAc(T)
is the leading term of its Fourier series, and it is supplemented by

{f(Ac(7),t,0)} = A2(1)e™.

This implies that both

d;f — ad, +0(e)
and
Uo(Ac(r),t) = iAZ(1)(1 — "),
and thus

A (1) = e“Tz(0) + O(e)

is defined on all 7 > 0, provided Rea < 0. Otherwise, the solution z.(¢) will be
bounded only for finite 7.
The next-order corrections to % and Uy involve the expression

fw(AeataO)UO(Aeat) - %(Aatﬂf(z‘lat’o»

= (—iaA? 4 2iA3e) (1 — ™).

Since its average part is —icA2, the O(€) improved approximations satisfy the ampli-
tude equation

dA,

(39) dr

= aA, — eiaA? + O(?),

and the corresponding secular-free correction to A, is given by

(40) U(Ac(7),t,€) = iA2(1 — ) — ei A2(1 — e™) (o + Ac(1 — €)) + O(€2).
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As expected, the latter coincides with the secular-free terms of the appropriately
truncated naive expansion, with the slowly varying amplitude A, replacing the initial
value z(0).

For Rea < 0, Ag(7) will decay exponentially to zero, and this allows us to obtain
the asymptotic solution (38) for all 7 > 0. The most interesting case occurs when
Rea = 0. Then, the two-term truncation of the amplitude equation (39) is essentially
the same as the original Riccati equation (33). To find the solution for kK = €2t =
O(1) generally requires another renormalization, so we will then obtain an asymptotic
representation of the solution in terms of the three scales, ¢, 7, and an amplitude B,
that is a function of .

A numerical verification of any presumed approximation X can be carried out by
employing the technique of Bosley (1996). We define the absolute error

E(t, 6) = |37exact - X‘v

although we often employ a carefully computed numerical solution in place of the
unknown exact solution. If E = O(e"1) for a fixed time, the value of log(E) as a
function of log e should be linear with slope n + 1 in the limit ¢ — 0. The slope is
readily determined by using a linear least squares fit. For the example, interesting
results are obtained by considering the three separate cases: a = 1, « = —1, and
a = i. (Comparable conclusions on longer time intervals naturally follow for the
example

& = iexr + 2x(a + ),

which we treat by immediately introducing 7 = et as a replacement for the given time

t.)

Figures 1-3 below are comparisons of the exact solutions in these three cases
with, respectively, regular perturbation and RG asymptotic approximations for (33),
together with their numerical verifications of asymptotic validity using Bosley’s tech-
nique for ¢ = 10.

(b) We next consider the nonautonomous equation

(41) i =eN(x,t) = e(—2® — 2% cost +sint),

introduced by Murdock and Wang (1996), together with a positive initial value x(0).
Since z& < 0 for |z| sufficiently large, the solution z.(t) remains bounded for all times.
Setting

xc(t) = 2(0) + eu(t, z(0),€),
it follows that u must satisfy the initial value problem

i = (—2(0) + 2%(0) cost + sint) + e(—322(0) + 2x(0) cos t)u
+ €2(=3z(0) + cost)u?, wu(0) =0,

for which a naive expansion could be readily generated. Alternatively, the ansatz (or
near-identity transformation)

(42) 2 (t) = Ac(7) + eU(Ac(T), t,€)
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involves, to leading order, the amplitude equation
dA
€ 3
= (N(A., 1)) + O(e) = —A7 + O(e),
dr €

predicted by averaging, and the secular-free correction term

Since the resulting limiting amplitude

(43)

t
Uo(Ae,t) = / {N(A,s)}ds = A*(T)sint + 1 — cost.
0
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decays only algebraically as 7 — oo, we naturally seek its O(e) correction determined

by using the average part of the expression

N, (Ap, t)Up(Ao, t) — (N (Ao, 1)Uz (Ao, t)
= —(3A% + Ag) — Agsint + (343 + 2Ap) cost + AJ sin 2t — Ag cos 2t.

Since this implies the more accurate amplitude equation

(44)

dA,
dr

the regular perturbation series

(45)

= fAf — 6(3Az +A)+ (9(62),

A(1) = Ap(T) + €A1 (1) + 0(62)
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will require that the first correction term A; satisfy the linear initial value problem

aA,
dr

We write its exact solution as

= —3A4%A; — (3A2 + Ap), A1(0)=0.

(46) AI(T)Z—W—H(

= —|—1>
4z(0) (\/2722(0) +1)3°

Since |A;| blows up like 7/2 as 7 — oo, we shall attempt to eliminate its secular term
and later ones in (45) by using a traditional renormalization. Setting

(47) 2(0) = Be(k) + €W (Be(k), 7, ¢€)
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in (45) and using a power series for W, we get the power series expansion

A(r) = B. + €W . \/QT(B€+€W)2+171+.” L
‘ V21 (B + eW)? + 1 4(Be + €W)
B 27 B2 V21B2 41
_ € Te WO . T EVV() _ T €+ T 4.

V21B2+1 2rB2+1 (\/21B?+1)3 4B,

Thus, we can cancel the troublesome 7-secular term at O(e) by picking

(27 B2 +1)2
B =7
WO( 677-) 4Be

The resulting second level RG equation (32) is

dBe 78Wo
dx Ok

2
+O(e) = 7;{33 — B+ O(e).

Solving the two-term approximate Riccati equation with the initial value B.(0) = z(0)
determines the exponentially decaying

e "z(0)
\/—””2“)) (1 —e=28 — 2ke=25) 4+ 1

€

(48) By(k) =

(with admitted abuse of notation) and the corresponding leading-order approximation

By(r)

(49) Te(t) = m
e Polk

+ O(e)

to the decaying solution, which is asymptotically valid for all £ > 0. We note that the
regular perturbation expansion is asymptotically correct for ¢ finite, that the series
(42) and (45) with 7-secular terms is likewise correct for 7 finite, but that the twice-
renormalized expansion corresponding to (49) is needed on longer time intervals. The
algebraic decay of the limiting solution with \//@7/6 = /et is unexpected, but it follows
from renormalization, as does the ultimate exponential decay as k — oco. Analogous
behavior was obtained in Mudavanhu and O’Malley (2001) in solving the second-order
equation

j+y+e)’ 43 =0,

introduced in Morrison (1966).

Figure 4 is a comparison of the numerical solution and the first and second level
RG asymptotic approximations for the solution of (41). The second level approxima-
tion is obtained by renormalizing the second-order amplitude equation as indicated.
Figure 5 shows the numerical verifications of the RG approximations using Bosley’s
technique for ¢t = 10.

Second-order scalar equations. Mudavanhu and O’Malley (2001) considered
scalar equations of the form

(50) J+y+eg(y,y,¢)=0
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on t > 0, with y(0) and g(0) prescribed. Such problems take the form (1) when one
introduces

o o) (52 o= ()

and thus their asymptotic solution on appropriate time intervals is determined by the
preceding.
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It is more traditional, however, to use the Priifer transformation

(52) y = pe(t)cos(t +¢e(t)),  §=—pe(t)sin(t + ¢e(t))

to obtain a system of differential equations for the nonnegative amplitude p. and the
phase ¥.. As in variation of parameters,

dp. ; i),
o= 2 cos(t ) = pesine ) (14 )

and

. dpe B dipe
i=— (t 4 1) pw&@+¢d<1+(ﬁ)

imply a linear algebraic system for dpe and dwe that yields

dt
dd’;s = esin(t + 1e)g(pe cos(t + ¥e), —pe sin(t + ),
(53)
dye € i
dt B [T cos(t + he)g(pe cos(t + Ye), —pe sin(t + 1e)).

The needed initial values p.(0) and .(0) for (53) are likewise uniquely specified since
(54) y(0) = pe(0) cos ¢ (0) and §(0) = —pe(0) sin ¢ (0).

Since 1. occurs in the combination z = t + ¢.(t), we can rewrite (53) as a 27-
periodic function of z:

dpe  €pe sin z g(pe cos z, —p sin 2)
dz  pe+ €coszg(pecosz, —pesinz)’

(55)
dpe  €coszg(pecos z, —pesin z)

dz  pe+ecoszg(pecosz, —pesinz)’

Our ansatz (19) suggests secking an asymptotic solution for (55) in the form

pe(t) = Re(7) + €U(Re(7), V(7). 1, ),
(56)

Ve(t) = V(1) + V(Re(7), Ue(T), t, €).

The advantage obtained is that the first-order renormalized system is triangular, i.e.,

2m
R = a(R.,€) = —/ sin z g(Re cos z, — R sin z)dz + O(e),
dr 2w Jo
(57)
d¥e = B(Re,€) = ! /27TCOSZ (Re cos z, —R. sin z)dz 4+ O(e)
dT - € € 727TR6 0 g € ) € €).

Note that a(R,, 0) and G(R.,0) are half of the corresponding first harmonic coefficients
in the Fourier series for g(R. cosz, —R.sinz) on 0 < z < 27. It’s an easy system to
solve implicitly as

R
(58) T:/ du and P ( / B(R €)dp,
R.(0) a(u,€)
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although specifying where R (7) is well defined involves all the anticipated complica-
tions. By the chain rule, it also follows that

(59)

Uo(Re(7), U (7),t) = /0 [sin(s + U (7))g(Re(7) cos(s + (7))
. — R (7)sin(s + U (7)) — a(Rc(7),0)]ds

Vo(Re(r), We(r) 1) = —

m /0 [cos(s + W (7))g(Re(T) cos(s + (1))
— R.(7)sin(s + ¥ (7))) — B(R(7),0)]ds.

Moreover, using the ansatz (56), we get the secular-free approximations

(60)
y = pcos(t + 1) = R cos(t + ) + e(Ug cos(t + U.) — R Vysin(t + U.)) + O(e?)
and
§ = —psin(t + ) = —Resin(t + V) — e(Ugsin(t + ¥,.) + RV cos(t + U.)) + O(e?).

Higher-order approximations follow without difficulty, even for many problems where
classical methods break down.
(a) As a first concrete example, consider the Duffing—van der Pol equation

(61) jtytes+EW"-1y=0,
introduced by Benney and Newell (1967). Seeking a solution as
y=pecos(t+1.) and y= —pcsin(t+ 1)

provides the periodic forcing g = y® + e(y? — 1)y as

o0, 5r€) = 7HBeos(t +0) + o3t + o)

3
te —%@mu+¢g+mm@+¢m

+ p?sin2(t + ) — pesin(t + ) |.

Since its leading term has a trivial sin z coefficient in its Fourier series and % p2 as the
cos z coefficient, we will have the amplitude and phase equations

dipe
dr

dp.
dr

= 0O(e) and

3
:§£+0@.

(Note that Cox and Roberts (1995) and Roberts (1997) attain such reductions ef-
ficiently by normal form transformations implemented using REDUCE. Mudavanhu
(2000) obtains the same results and corresponding higher-order terms via a renor-
malization method automated using MAPLE.) Indeed, our results suggest the more
efficient introduction of the slower-time x = €2t. Incorporating  and using the next
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terms in (57), we obtain

dR 1 1

e 1-= 2

I 2R < 4R5) + O(e)
(62) and

v, 3 _, 15¢ )

o SRE 256R5 + O(e%).

Solving the limiting Bernoulli equation determines an expansion for
(63) Re(k) = Ro(r) + eR(k) + €*(--+)
as an exponentially decaying amplitude for all x > 0, with leading term

2
VI (- 4/p2(0))e

The resulting limit cycle behavior follows with the phase

RQ(H)

t
(64) W (t) = . (0) + g / R2(e%) (1 - ;33(6230 ds + O(e).
0

In the integrand, it is clearly preferable to represent R.(k) as the sum of its steady-
state limit plus an exponentially decaying transient. Higher-order approximations to
the solution follow as in (60).

Alternatively, we can use the transformation (51) and the spectral decomposition
M = iVAV~! for a nonsingular modal matrix V = (} ') and A = (7' {). Directly
applying our basic ansatz,

(65) 2 (t) = Ve™MVTHA + eU(Ac(T), €)),

where Ac = (2°), for complex conjugates a. and a., involves, to leading order, the
amplitude equation
dA.
dr

€
Ge

) ) 3
(eTMYTIN (Ve Mz, 0)) + O(e) = §Z'|a€|2 <_a > + O(e)
and the secular-free correction term

t
Up(Ac, t) = / {e7 MV =IN(Versz,0)}ds
0

—2i _ it 1-3 4
1 afe 21t_3a6|a€|2627t+§a163€41t
= — _ . _ . 1 _ .

4\ a2e® — 3ac|ac|?e " + Lade it
_ Rc _—i

Letting ac = 5 Ve provides the amplitude and phase equations dj} = O(e), dd\l;‘ =

%Rf + O(e) as before and the corresponding asymptotic approximation

p 1
(66) y= Rccos(t+ V¥,)+ e% [3 cos(t + ¥.) + 5 cos 3(t+ \Ile)] +E2(--).

Higher-order approximations follow in a straightforward fashion.
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(b) We finally seek the RG equations resulting from two weakly coupled van der
Pol oscillators

(67) j+Qy+e(l —C?)j = eBlay + BY),
where

o ) - e ()

and I is an identity matrix (cf. Reinhall and Storti (2000) and Low (2002)). Here «
and (3 are coupling constants, and A is a detuning parameter related to the difference
in the natural frequencies of the two oscillators. We now seek asymptotic solutions of
the form

y1(t,€) = Ri(7,€)cos(t + Vq(1,¢€)) +€(---),
(69)
y1(t,€) = Ra(7,€) cos(t + Ua(r,€)) +€(--+)

for the slow time 7 = €t, where R; and ¥, for j = 1 and 2, represent the amplitude and
phase modulations. The functions y; are said to be phase locked when the difference

(70) ¢e = l:[/26 - \Ijle

is a constant. When the oscillators are running at unequal frequencies (i.e., A # 0),
¢ will grow unbounded, defining a condition known as a phase drift. An intermediate
situation exists when ¢, varies periodically, a condition known as phase entrainment.

Applying our basic ansatz, by first transforming to a four-dimensional system of
the form (1), we systematically obtain the RG equations

2 dTI = Ale(]. - |Ale|2) - ﬂ(Ale 26) Za<A15 A25) 6(. o )’
2 d: = AQE(]. — |A26|2) - /8(1426 - Alé) Za(AQE Alﬁ) v 2 le 6(. o )

Letting A = jee_“'f‘ for j = 1 and 2, we get the system of three slowly varying

RG equations

2% = (1= R?)Ric — B(Ric — Roc cos ¢ ) + Ry sin g, + €(---),
dRZe 2 .
(71) 2 dr = (1 - RQE)R2E - /B(RQe — Ry cos ¢e) — alRicsin ¢ + 6(' o )7
ngSE R2€ Rle . R25 Rle
9 —A_ _ . _ 3 )
e 16} (Rk Rze) sin ¢ — « (Rk + RQe) cos e +e(--+)

Stability analyses of (67) can be carried out based on these and higher-order amplitude
equations (cf. Chakraborty and Rand (1988)).

Relation to two-timing and other classical techniques. The asymptotic
solution of the initial value problem (3)

Z=c€f(z,t,€)
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(in standard form) could be obtained using the two-time ansatz
z=z(t,T,¢€)

for the bounded slow-time 7 = et. The chain rule implies that

~7%+ %
SRR TR W

and thus substituting a power series expansion

(72) 2(t,7,€) = 2o(t, 7) + €21 (t,7) + - -
into (3) requires that

029

(73) C
and

0z; 0~
(74) B = i1tz 21 ’Zj‘l)_#

for each j > 1. Here

o0
Fl(t,me) te) ~ > gt z0,. .., z7-1,2),

§=0
where
gi(t, 20,y 2j-1,25) — f2(20(t, 7),t,0)2;
is a known function of the earlier coefficients 2o, z1,... ,2;—1 and t.

We first obtain the representation
(75) z0(t, 7) = Ao(7)
from integrating (73), for some unspecified Ap(7). Taking j = 1, we then find that

621 dAO
76 — = fo(A t) — —.
(76) ot fo(Ao(7),1) dr
Recall that fj is a periodic function of t. To get the boundedness of z; as t — oo
requires the right-hand side to have zero average, i.e., Ag must be the unique solution
of the initial value problem for

dAy

(25) e (fo(Ao(T),1)).

This leaves 2L = {fo(Ao(7),t)}, and so
(77) Zl(t,T) :Al(T)+U0(AQ(T),t)

for an unknown A; and the bounded function Uy = fot{fo(AQ(T), s)}ds, already en-
countered. If we next consider (74) for j = 2, the boundedness of z5 will require the
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average of the right-hand side to be zero. This, however, shows that A; must satisfy
an initial value problem of the form

Lt — (% (aalr),t)) A+ o)
with a known inhomogeneity a; and the trivial initial value. The unique solution
follows as in (26). Continuing, in this manner, to use the Fredholm alternative to get
a bounded solution at every stage, we obtain our two-time expansion to any order.

Murdock and Wang (1996) prove that this result is asymptotically valid, to all
orders, for finite 7. An attempt to comprehend renormalization has thus provided
an opportunity to rethink two-timing. We point out, however, that a less restrictive
method of slowly varying amplitudes is often used in applications (cf., e.g., the final
chapter of Haberman (1998), in addition to the literature already cited). It compares
to our ansatz (19),

2e(t) = Ae(T) + €U (Ac(7), ¢, €),

rather than the more general two-timing expansion (72). The idea is to seek an
amplitude A.(7), varying with the slow time 7 and e, so that secular terms in the
resulting expansion are removed by appropriately selecting successive terms in the
power series expansion of the amplitude (or envelope or RG) equation

d;je = a(A,e€).

The relationship between asymptotic matching or boundary layer theory (cf., e.g.,
I'in (1992) or O’Malley (1991)) and renormalization can be illustrated by considering
the singularly perturbed initial value problem

. 3
(78) { T =Ty + eaxr”,

ey = —y + ebx?

(introduced in Kuwamura (2001)) on ¢ > 0 when the constants a and b satisfy a+b < 0.
The special case b = 0 is of special interest because it is exactly solvable. Because

ye(t) = e=*/y(0),
x must be the unique solution
eéy(o)e_t/ex(())

\/1 — 2aex2(0) fot ecu(0)e="/* dp

xe(t) =

of the resulting Bernoulli equation. Note that the solution decays algebraically to
zero when a < 0. It is nearly constant for ¢ = 0, and it blows up when

t
25y(0)efr/6d — 1
6/0 ¢ " 2a22(0)

if a > 0.
If we introduce the fast time



A NEW RENORMALIZATION METHOD 395

into the corresponding inner problem

dxr

2 .3
™ = exy + €“ax’,
dy 9
d\ —y + e,

we naturally seek the inner expansion

{ u(, €) = ug(A) + eur () + ug(A) + -+,
U()\76) = 'UO()\) + GUl(A) + 521)2()\) 4+

Proceeding termwise, in the naive manner, we get

uo(N) = (0), wo(A) = e *y(0),
ur(\) = —(1 — e Mz2(0), v1(A) = b(1 — e M)2?(0),

and then, from

duz _ + uyvo + auf
d\ = UQV1 U1V augy
and
dv
d—/\z = —vy + 2buguz,
we get
1
us(N) = (@ + b)z>(0)A + bz®(0) (e > — 1) + 5(67)\ —1)22(0)y*(0)
and

v2(N) = 2622 (0)y(0) [L —e™* — Xe™?].

The Tikhonov—Levinson theory applies for ¢ finite and guarantees that the inner
expansion can be written as the asymptotic sum

u(A ) = X(t,€) + €€(A €),
v(A,€) = €Y (t,e) +n(\e),

where (g/) is the outer expansion and (EUE) is the inner layer correction that decays to
zero exponentially as A — co. Replacing A by t/e defines the surviving outer expansion

X(t,e) = z(0) + e(z(0)y(0) + (a + b)x3(0)t) + (- - - ),
€Y (t,€) = ebx®(0) + €*(---).

Note the secular behavior visible as 7 = et — oo. It is not fixable using Hoppensteadt
(1966), because there is no asymptotic stability in t. We can eliminate the secular
term, however, by renormalizing. Setting

2(0) = Ac(7) + eP(Ac(7),t,e) and y(0) = Be(7) + €Q(Ac(T),t,€)
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and by picking
PO(A07 t) = _(a + b)A(g)t and QO(A07 t) =0,

we get a secular-free approximation. Constancy of 2(0) and y(0), however, forces Ag
and By to satisfy the limiting amplitude equations
dAg
dr

dBy
= b) A2 d —=0.
(a+b)A; an 7

This has the algebraically decaying solution

z(0)
V1=2(a+b)z2(0)7

Ao(T) =

when a + b < 0, already observed in the special case b = 0. Higher-order terms follow,
without difficulty. One could, analogously, also directly seek the asymptotic solution
as a function of the three times A, ¢, and 7.
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A DYNAMIC PRIORITY QUEUE MODEL FOR SIMULTANEOUS
SERVICE OF TWO TRAFFIC TYPES*

CHARLES KNESSLT, DOO IL CHOIf, AND CHARLES TIER

Abstract. We consider a priority queue with a dynamic, queue-length-threshold scheduling
policy. Customers are classed into two types (type-1 and type-2), and the service order of the two
classes depends on the queue length of the type-1 queue. The high priority (type-2) class (e.g., voice)
is served until the low priority (e.g., data) queue exceeds the threshold L, at which time service is
given to the low priority class until its queue length decreases to L. The arrivals of the two classes
follow independent Poisson processes, and the service time of each customer has an exponential
distribution with parameter p. We derive the balance equations in the steady state, and explicitly
obtain the joint probability generating function for the queue lengths of the two customer classes.
This gives the joint queue length distribution as an integral. We then obtain detailed asymptotic
results for the joint distribution. In particular, we study the tail behavior. We also discuss heavy
traffic diffusion approximations for this model.

Key words. dynamic priority queue, integral representation, asymptotic approximation
AMS subject classifications. 60K25, 34E05, 34E20
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1. Introduction.

1.1. Background. Due to recent applications in ATM (asynchronous transfer
mode) networks, there has been renewed interest in priority queues. Here we consider
the following model for providing simultaneous service to two classes of customers with
different service requirements. There are two classes of customers (called type-1 and
type-2 customers) and a single server. The arrivals of type-1 and type-2 customers
follow independent Poisson processes with rates A\; and As, respectively. The two
streams of customers are accommodated into two queues with infinite capacities.
Customers in each class are served on a first-come first-served basis. The service
order of the two classes is determined by the queue-length-threshold (QLT) scheduling
policy. First, we place a threshold L on the queue for type-1 customers. If the number
of type-1 customers in the queue is less than or equal to the threshold L, the type-2
customers are served. Otherwise, the type-1 customers are served. If one of the queues
is empty, the customers in other queue are served. The service time of a customer of
either type has an exponential distribution with parameter p. This queueing system
is called a dynamic (or hybrid) priority queue with QLT scheduling policy (Figure
1.1).

In many modern applications, some classes of customers may have different service
requirements than others. A method for supporting the different classes is the use of
priority queues. There are static and dynamic priority queues. Examples of static
priority queues, including nonpreemptive and preemptive queues, are given in [1],
[2], [3], [4]- In such systems, the high priority class (e.g., voice) has much more
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—)\1-’

—)\2-’

Fic. 1.1. Model of a dynamic priority queue.

stringent delay requirements than the low priority class (e.g., data). Therefore, the
high priority class may have better performance than its delay requirements, but the
low priority class may suffer from unacceptably long delays. In order to overcome this
shortcoming, dynamic priority queues have been proposed and studied in [6], [7], [8].
Such models make it possible to improve the performance of the low priority class,
while still meeting the service requirement (delay) of the high priority class.

This paper gives exact and asymptotic analyses of a dynamic priority queue with
QLT scheduling. The results can be applied to traffic control, and in particular to
satisfying the quality of service (QoS) requirements of real-time and nonreal-time
traffic in ATM networks [9]. For example, in ATM networks, data is loss-sensitive
but delay-insensitive, while voice is delay-sensitive but loss-insensitive. Thus, the
high priority class (type-2 customers) may be considered as real-time traffic such as
voice and the low priority class (type-1 customers) may be considered as nonreal-time
traffic such as data. The value of L is chosen to insure that the type-2 traffic is within
its delay requirements, i.e., the more stringent the delay requirement, the larger the
value of L. The QLT scheduling policy was shown in [5] to be able to provide higher
utilization and more flexible performance, with the proper adjustment of L, than
several other scheduling schemes. Also, when L = oo in our model (or L = 0 in
reversed priority), this is the well-known nonpreemptive static priority queue.

There has been much previous work on dynamic and static priority queues.
Queueing systems with static priority are discussed in [1], [2], [3], [4]. Fratini [6]
analyzed a dynamic single server priority queue, with the same scheduling policy as
ours. He assumed that the queue for type-1 customers had infinite capacity and that
the queue for type-2 customers had a finite capacity (K). The two classes had differ-
ent general service time distributions. Using a discrete-time Markov chain embedded
at service completion epochs, he identified the state transition probability matrix P
and numerically analyzed the stationary probability vector x defined by

zP =z, ze = 1.

As an application for real-time and nonreal-time traffic in ATM networks, Lee
and Sengupta [7] considered a dynamic priority queue. Their model is different from
ours in that if the queue length in the buffer of real-time traffic is greater than a
threshold, the next packet to be served is from the buffer of real-time traffic. Oth-
erwise, the server checks the type of the packet that it has just served, and serves a
packet of the other type. The real-time and nonreal-time traffic follow independent
Poisson processes, and the queues have infinite capacities. By using the embedded
Markov chain method at the service completion epochs, they obtained the joint prob-
ability generating function for queue lengths at these epochs. Then, they derived the
marginal probability generating function for each queue length at an arbitrary time
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using the obtained generating function and the PASTA (Poisson arrivals see time
averages) property.

Recently, Choi and Choi [8] considered the MM PP, M/G/1 finite capacity queue
with the same scheduling policy as ours. In this paper, the arrivals of type-1 cus-
tomers follow a Poisson process, and the arrivals of type-2 customers follow a Markov-
modulated Poisson process (MMPP) [10]. They applied this model to traffic control
for real-time and nonreal-time traffic in ATM networks and assumed that the arrival
of type-2 customers (real-time traffic) is MMPP, thus modeling the burstiness of real-
time traffic. By using the embedded Markov chain method, they numerically obtained
the marginal probability distribution for each queue.

Our model is in some respects simpler than those in [6], [7], [8]. However, we are
able to provide more explicit analytic expressions. We also give detailed asymptotic
results for the tail behavior of the joint queue length distribution. We first derive
the balance equations for our queueing system. In section 2, we consider a simplified
model in which the server leaves the type-2 queue only when the type-1 queue exceeds
L. We consider the full model in section 3. For both models, we explicitly obtain
the joint probability generating function for the queue lengths. By inverting the
generating function, we obtain the joint queue length distribution as an integral.
From this integral we compute asymptotic approximations for the tail behavior of
the joint distribution. This leads to simple formulas that reveal the basic qualitative
properties of the distribution. We also discuss heavy traffic diffusion approximations
for the models. The main exact results are summarized in Theorems 2.1 and 3.1, the
tail probabilities are given in Theorems 2.2-2.4, and the heavy traffic diffusion results
are summarized in Theorems 2.5, 2.6, 3.2, and 3.3. The numerical accuracy of our
asymptotic results is demonstrated in section 4.

1.2. Formulation of our queueing system. Let N;(¢) and No(t) be the queue
length of the type-1 and type-2 customers, respectively, at time ¢. We also let A; and
Ao be the arrival rates of the type-1 and type-2 customers, and p is the service rate
of both classes. The process (Ny(t), Na(t)) is Markov. We focus on analyzing the
stationary probability distribution for the joint queue length, defined by

p(m,n) = lim Pr[Ni(t) =m, Na(t) = n], m, n > 0.

t—o0
We then obtain the following balance equations for the queueing system,

(1.1) m>L+1, n>1:
(1 + A1+ A2)p(m,n) = Aip(m — 1,n) + Aep(m,n — 1) + pup(m + 1,n),

(1.2) m=L n>1:
(L+ M+ 22)p(Lyn) = Mp(L—1,n) + dap(L,n — 1) + pup(L + 1,n) + up(L,n + 1),

(1.3) 1<m<L-1,n>1:
(1 + A1+ A2)p(m,n) = Aip(m — 1,n) + Aep(m,n — 1) + pp(m,n + 1),

(1.4) m>L+1,n=0:
(/j‘ + /\1 + )‘2)p(m7 0) = Alp(m - 170) + /'Lp(m + 170)7
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(1.5) m=L n=0:
(14 M1+ A2)p(L,0) = Mip(L = 1,0) + pp(L + 1,0) + pp(L, 1),

(1.6) 1<m<L-1,n=0:
(4 A1+ A2)p(m,0) = Aip(m — 1,0) + pp(m + 1,0) + pp(m, 1),

(1.7) m=0,n>1:
(1 + A1+ A2)p(0,n) = Xop(0,n — 1) + up(0,n + 1),

(1.8) m=0,n=0:
(A1 +A2)p(0,0) = up(0,1) + up(1,0),

and the normalization

oo

(1.9) Z p(m,n) = 1.

m,n=0
We assume that the following stability condition holds:
(1.10) p1+p2 <1,

where p; = A\;/p,i=1,2.

2. A simplified model. We start by analyzing a simplified version of our queue-
ing system. We assume that if Ny(¢) < L and Ny(t) = 0, then the server becomes
idle. Thus the server remains at the high priority (type-2) queue and leaves only
when N;(t) > L. This model is reasonable if there is a large overhead associated
with switching between the two queues. We shall show that the solution to this sim-
plified model may be used as a “building block” to analyze the more complicated
system (1.1)—(1.9). In particular, the results in Theorems 3.1-3.3 in section 3 use the
corresponding results in this section.

2.1. Exact solution. For the simplified model, once N;(t) > L for some time ¢,
we have Np(t) > L for all future times. Then, p(m,n) is nonzero only for m > L,n >
0, and we may set p(L — 1,n) = 0. The boundary condition (1.5) is changed to

(2.1) (A1 + X2)p(L,0) = pp(L + 1,0) + up(L, 1),

and we need consider only (1.1), (1.2), (1.4), and (2.1).
To obtain the joint queue length distribution, we introduce the following gener-
ating functions:

G(z,w) = Z Z p(m,n)z™ " Lwm,

n=0m=L

H(w) = Zp(L,n)w".
n=0
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From (1.1), (1.2), (1.4), and (2.1), we obtain the equation

[/\12 +hw—(u+ M+ )+ g} G(z,w)

1 1 1
(2.2 (- 1)azoy e (2 1) ),
The left-hand side may be rewritten as
A -
— (2 =z (w))(z - 2(w))G(z,w),

where

2. (w) M+ D = dow = V(i A A — dew)? — Dup]

:271{

- 1
Z(w):TAl {M+)\1+)\2—>\2w+\/(u+)\1+)\2—)xgw)2—4>\1u}.

Noting that |z.(w)| < 1 and requiring analyticity of G(z,w) in the complex domain
{2 < 1, |w| < 1}, we set z = z,.(w) and obtain H(w) as

Ze(w)(w — 1)

(2.3) H(w) ===

p(L,0).
Substituting (2.3) into (2.2), we obtain

(2.4) Gz, w) = p(L,0) <w 1-w ) 1

o \w—z(w)) 2= W)’

Using the normalization condition G(1,1) = 1, p(L,0) is given by
p(L,0) =1—p1 —pa.

By inverting the generating function G(z,w), we obtain an integral representation for
the joint probabilities p(m,n), as given below.

THEOREM 2.1. The joint queue length distribution for type-1 and type-2 cus-
tomers for the simplified model is given by

_ p(L,0) 1-w L 1
(2:5) pL+mn) ==55 /c = prwi(e) B w1

m,n >0,
where Z(w) is given below (2.2), and

(2.6) p(L,0) =1—p1 — pa.

The contour C' is a small loop about w = 0.
Next we investigate the marginal probabilities defined by

B(m) = > p(L +m,n),

p(n) = 3 p(L+m.n).
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To obtain p(m), we shift the contour C in (2.5) to C' : |w| =1+ ¢€,e > 0. We choose
¢ sufficiently small so that the only pole inside C’ is at w = 1. Then we may sum
(2.5) over n, yielding

T)(m) — (1 - gjm_ p2) /C/ plwg(%w) - 1(2(w))_7’de

1

= (1—p1—po)————(5(1))™.
Recalling that 2(1) = p% and Z'(1) = W‘f’pl), we obtain
(2.7) p(m) = (1 = pr)p"-

Noting that Z(w) > 1 for w small, we obtain the other marginal as

_ (A =p1—p2) 1—w Z(w) 1
(2.8) p(n) = o /C 1— prwi(w) (2(w) - 1) w1 -

2.2. Tail behavior. We compute the probabilities of having large queue lengths
by evaluating p(L+m, n) asymptotically, for m and/or n large. For a fixed p1+p2 < 1
and m or n large, we shall show that the joint probability is exponentially small.
However, having accurate estimates of the tail of the distribution may be important
to analyzing system performance, as tail behavior may be used to estimate loss rates,
overflow probabilities, etc. In addition, the asymptotic formulas we obtain are much
simpler than the exact result (2.5) and thus yield qualitative insights into the structure
of the joint distribution.

We estimate (2.5) by using the saddle point and related methods for the asymp-
totic evaluation of integrals [11]. By writing 2~ "w ™" = exp[—mlogZ — nlogw],
the integral in (2.5) has the form [, G(w)emF (i) dy, where a = n/m and F =
—log Z(w) — alog w. This is the standard form for applying the saddle point method,
which yields the asymptotic behavior of the integral as m — oo, with « fixed. How-
ever, we will show that different results are obtained for different ranges of « = n/m
and also for different ranges of the parameters p; and ps.

The saddle point equation is

d n
— _1 z - 71 ==
» [ og Z(w) - ogw 0

or

(2.9) n__zwuw

3
/lﬁ
£

We recall that A\Z + /2 4+ dow = p+ A1 + A2, with which (2.9) simplifies to

\/(,u + )\1 + )\2 — )\2’[1))2 — 4)\1,LL = %IU))\Q,

whose solution is

v (2)

(/l + A1+ )\2)2 — 4\ p

1
Ao 2 2
\/(N+>\1+/\2)2:7;2_4>\1N<7:2_1) + o+ A+ A
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We then define

20 (%) = Z(wo) = i K%—l> /\2wo+u+>\1+/\2].

At the saddle point, we have
d? - n
me s [— log Z(w) — - log w} lw=ws
~/ 2 ~11
" m ({(wo)) . (wo)
Z(wo) Z(wo)

Wy
9 { no 2un® 1
wy “n ——

1+—+
m

Here we have used the quadratic equation satisfied by Z(w), and its derivatives. Since
D > 0, the steepest decent directions at the saddle are arg(w — wy) = £7/2, which
correspond to a steepest descent contour that is locally parallel to the imaginary axis
in the complex w-plane.

In addition to the saddle point, the asymptotic expansion of (2.5) may depend
on the singularities of the integrand. Setting

G(w)zl_pl_”"’( L-w )1,

271 1—prwz(w) ) w

we see that G(w) has branch points at

1 +v)?
(2.10) w=Wi =+ M+A1+Agiz\/A1M]:1+M.
2 2

Furthermore, the equation 1 = pjwZ(w) has the solution

Y NN
A A prtpe

W = Wy

if uhy < (M + )\2)27 and thus our integrand has a pole at w, for this parameter range.
In Figure 2.1 we sketch the parameter range in the (p1, p2) plane where the queue is
stable, which is the triangle T' = {(p1,p2) : p1 >0, p2 >0, p1 + p2 < 1}. We divide
this into two subregions, according to whether the pole at w, is present or absent.
Hence, we set

Ra={(p1,p2): 0<p1 <1,0<p2 </pi(1—+/p1)},
Rp={(p1,p2) : 0<p1 <1, V/pi(1 —/p1) < p2 <1}

and note that the curve separating R4 from Rp is precisely pul; = (A1 + X2)? or
p1 = (p1 + p2)? (see Figure 2.1).

We first consider region R4. For m — oo and the ratio m/n fixed, we shift the
contour into another circle about the origin, which passes through w = wg. Since
wy < W_ and there is no pole at w,, such a contour deformation is permissible. Fur-
thermore, the new contour traverses the saddle point in the steepest descent direction,
and then the standard estimate (see [11]) yields

mF(w;a) : 2r mF (wo; )
/CG(w)e dw ~ G(wo)i mF”(wo;a)e

(1= p1—p2)(1 —wo) wy "2y ™
1 — prwozg 2D
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p1tpo=1

‘Z (P1+P2)%= Py

! 1 P
Fi1G. 2.1. A sketch of the domains Ra and Rp in the (p1, p2) parameter space.

This approximation is no longer valid as m/n — 0, for then the saddle point wq
approaches the branch point at W_. It also becomes invalid as m/n — oo, as then
wg — 0, which is also a singularity of the integrand.

To construct expansions appropriate for m/n large or small, we first consider the
limit m = O(1) as n — co. Now the expansion of the integral in (2.5) is determined
by the singularity that is closest to the origin in the w-plane, and this is the branch
point at w = W_ (cf. (2.10)). We approximate the integrand near W_ using

H(w) = 2—/1\1 [2\/MT1+ Ao/ Wy — W\ /W_ —w+O(W_ — w)} :

(Bw)] ™ = o2 [1 -\ 2R m e o(r - w>] ,

/4
1—w 1- W N/
—— = 1+ F———/W_ —w+O(W_ —w)|.
1-—pwz(w) 11— /;W_ l 1—/piW_ ( )

Here we have used W, — W_ = 4,/A1u/X2. Using the above, we obtain the leading
order term in the expansion of (2.5) as

1/4

1-W_ o | /pap W I

(2.11) ——— (1 —p1 — p2)p /2 L—m @p}ﬂl 1,
1—‘/[)1W, 1—./p1W, P1

where

1

= f./w_”_lx/W, — wdw
27 Jp

and the contour T is sketched in Figure 2.2. Setting w = W_(1 + ¢/n) and parame-

I
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Im(w) w-plane

Re(w)

branch cut

Fia. 2.2. A sketch of the contour I" in the complex w-plane.

terizing I" as a real integral, we are led to

. n3/2 VW - / e=C\/2dc.

The last integral is equal to /7 /2, and hence (2.11) gives the leading term for n — oo
with m fixed.

Now comnsider the limit m — oo with n fixed. The major contribution comes from
small values of w. We scale w = u/m and use

I~

()] ™™ = [5(0) + Z/(0)w + - - - ]™ ~ [2(0)] ™ exp {— z 58)) mw] .

The integral (2.5) thus becomes (apart from the factor [Z(0)]~™)

1—p1—p2 m exp 0) yn—lgy — L= PPz ~Z(0) ,
2mi O) n! Z(0)

where

o

Z0) _ A2 0.
200) (At M+ A)?— 4

We summarize our main results below.

THEOREM 2.2. For (p1,p2) € Ra, the steady state probabilities in (2.5) have the
asymptotic expansions

(a) m, n — oo with 0 < m/n < oco:

1—p1—p2<1—w0) —n -
L+m,n)~ wy "2 ",
( ) 1— prwozo 0 %0

Ao 2 m2 ’
(u+)\1—|—/\2)n—4/\1u< 1>—|—,U—|—/\1+>\2

m 1 (4 A1+ A2)? —4Xp
wo = Wo (*) =
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20 = 20 (%) :i [(%—1))\21004-#-1-)\14-)\2}7

2 21
D=n|l4+—+ £ :
m Ay m2 zogwy

(b) n — oo with m = O(1):

1—p1—po W_ -1 VP2 VPIW- P;n/z -
L ~ w_w>-"
p(L +m,n) NG ( 71W—1) Rz m+ W 1| ni? V -,

Wf:/\iz{wmwm—%/W};

(¢) m — oo with n = O(1):

L+ mon) ~ (1= py = o) 2201 (2]

NE}
A A S
_ kTt 1—;)\2—1—f’ S:(u+)\1+>‘2)2_4)‘1u'
1

%(0)

We note that (a) gives the probability of having simultaneously large queue
lengths for both customer classes. Part (b) gives the probability of having many type-
2 (e.g., voice) customers, while part (c) gives the probability of having many type-1
(e.g., data) customers above the threshold L. We can easily show that /p;W_ > 1
precisely for (p1, p2) € R4, so that the formula in (b) is positive for all m > 0, as it
must be.

We next consider the region Rp. Now the integrand has a pole at w, in addition
to the saddle at wp, whose location changes with m/n. As m/n increases from zero
to infinity, the saddle moves from W_ to 0 and coalesces with the pole when

m _ 3 (A +X2)2—pdi (pr+p2)® —
n N A2 p2 '

Note that 8 > 0 precisely when (p1, p2) € Rp. For m/n < 3, we have w, < wq, while
if m/n > 3, we have w, > wgy. For m — oo and n = O(1), we again obtain the result
in part (¢) of Theorem 2.2. For m,n — oo with m/n € (3, 00), we shift the contour
C into the steepest descent contour and obtain the same result as in Theorem 2.2(a).
If m,n — oo and m/n € (0,3), we must take into account the contribution from the
pole at w, in deforming the contour. The residue at this pole is equal to

(1 - w.)

R Sl VA W, —m 1 9 n 1.
—pl(wi)’(w*)[ ( )] (P tp ) *

(2.12) (1—p1—p2)

From the definition of Z we easily obtain

A2 (1+ Ag/Ap)?
= Ar(14Xa/A1)%

Zwe) =142 Z(wy) =

By comparing (2.12) to the saddle point contribution, we can show that the contri-
bution from the pole is larger. Thus, for m/n € (0,8) and m — oo, p(L + m,n) is
asymptotically given by the negative of (2.12). The negative sign arises due to the
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fact that the saddle point contour (Jw| = wp) has a radius larger than the original
contour C'.

Finally, we consider the limit m,n — oo with m/n ~ . Note that the saddle
point approximation, as given by Theorem 2.2(a) for m/n > 3, becomes singular as
m/n | B, and 1 — pywpzp vanishes in this limit. The case of a saddle coalescing with
a pole is a standard problem in the asymptotic evaluation of integrals (see [11]). The

appropriate expansion for m/n & § may be obtained by expanding the integrand near
w = w,. In this limit we have

G(’U))Nl_pl_p2< 1— w, ) 1

2mi —p1(wz) (wy) ) w—w,’

nlogw + mlog[z(w)] = nlogw. + mlog[Z(w.)] + (1:* + mz((;}:))> (w — wy)
Uon 2w)  (Fwa))?
*2{@*2@» (Fe3)

(0 —w.)? + O((w — w.)?)
= —nlog(p1 + p2) +mlog (1 + Zi) + (p1 + p2) (n - rg) (w —wy)

2mp; m
+ J—
p23® B

We set w — w, = (p1 + p2) " [n +m/B% + 2mp1 /(p26°)]~/?n and obtain

; —pA2f3 P1 "
mF(w,a)d ~ (1 — . HA2 n
[ G~ (1= py = ) 5 1+ ) g

—§m+mﬁﬁ+ hw—mf+am—wm»

where J is the integral

J= i/ eA‘”’e"Z/Qd—?7 Ag = m/f —n
2 J e n’ Vn+m/B%+ 2mpy [(p253)’

and we assume that m/3 —n = O(y/m) so that Ay = O(1). Here C’ is a vertical
contour in the n-plane such that $(n) < 0. The last integral is easily evaluated as
J=—(2n)"1/? e ¢="*/2du, and we thus have the desired expression for p(L 4 m, n)
that is valid for m,n — oo with m/n = 3. Below we summarize the results.

THEOREM 2.3. For (p1,p2) € Rp, the steady state probabilities in (2.5) have the
asymptotic expansions

(a) n — 00 with 0 <m/n < 3, B = [(p1 + p2)* — p1]/pa:

(A1 +X2)% — uNy A\
L ~ 1 — — n,
p(L+m,n) ~ (1 —p —p2) EYESWE S (p1+p2)™;

(b) m,n — oo with m/n =+ O(m=1/?):

p(L+ m,n)

~ (1= p1—p2)

()\1 +)\2)2 —/1)\1 < )\1 )m 1 /oo _ 2/2
+ )" — e " /“du,
(A1 + A2)? AL+ Ao (pr+p2) Vor Ja

A:(m—nﬂ) 1 .
Vvn \/52—|—ﬂ+2,01/P27
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(¢) myn — oo with B < m/n < oo: the result is the same as Theorem 2.2(a); for
m — oo with n = O(1), Theorem 2.2(c) applies.

The expression in (a) shows that the solution is asymptotically of “product form”
for this range of m,n. We have thus identified two regions in the parameter (pi, p2)
space where the structure of the joint distribution is different. Theorems 2.2 and 2.3
furthermore show that the expansion of p(L + m,n) depends on the ratio m/n for
both of the regions in Figure 2.1.

We next consider the asymptotic behavior of the marginal distributions p(m) and
p(n). The former has a simple geometric form, but the latter is complicated, and
thus we evaluate it asymptotically for n — oo. We also note that for either region
R, or Rp, the saddle point approximation (i.e., the formula in Theorem 2.2(a)) can
be simplified for m/n ~ (1 — p1)/p2. To do so, we first compute the point at which
p(L + m,n) is maximal as a function of n, for a fixed large m. We write

—n_—m m
wy "2p ™ = exp (—mlog[zo(x)] - log[wo(x)]> , T=
At the maximum we must have

A)  dwp) 1,
Zo(.f) ;wo(:c) 33‘21 g[ 0( )] 07

and we can easily show that this is satisfied if

1—
r=p0= P .
P2
We then have wo(8x) = 1 and z9(8x) = 1/p1. After a lengthy calculation, we find
that

) 3
% log[zo(x)] + ilog[wo(aﬂ)]] & ;

e=p.  1—p1 (1= p1)2+p2(1+p1)

and

l—p1—p2  1—wo(x) _1-m (1—p1)32
1= prwo(z)20(z) V27D le=8.  V2mm \/pa\/(1 — p1)% + p2(1+ p1)

Using these expressions in Theorem 2.2(a), we obtain a simple form for p(L+m,n) for
m,n — oo with m/n = (., which we summarize below. We also give the expansions
for the marginal p(n) as n — oo. These are easily obtained from (2.8) by identifying
the singularity of the integrand closest to the origin, and this is w = W_ for R4 and
w = wy for Rp.
THEOREM 2.4. Further asymptotic properties of the distribution are as follows:
(a) m,n — oo with m/n = B, + O(m~?), B. = (1 — p1)/pa:

1 (1—p1)32
V2rm \/pa/ (1= p1)? + p2(1+ p1)

1 1—py)3 2
X exp | — (L-p1) (n_ pam ) ];

p(L+m,n) ~ (1 — p1)pt"

2m pa[(1 = p1)2 + pa(1 + p1)] 1—p

(b) n — oo with (p1,p2) € Ra:

(L-Wo)2 (L—p1— p) /W= /apy W™
=W (I=yp)? 27 w7’

p(n) ~ (
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(¢) n — oo with (p1,p2) € Rp:
1 —p1—p2
(n) ~ —————=
p2(p1 + p2)
We note that G, > g for all p; + p2 < 1. Thus when m/n =~ (3., we are always
in the case where the leading term in the expansion of p(L 4+ m,n) comes from the
saddle point. Part (a) shows that if the number of type-1 customers above L is large
and = m, then the number of type-2 customers is also likely to be large and close to
pam/(1 — p1). Furthermore, there is a Gaussian spread about this mean value. From
part (a) we also conclude that, for m — oo, Y 0" p(L +m,n) ~ (1 — py)pt*. This
result is of course not just asymptotic, but exact for all m > 0. This completes our

analysis of the tail behavior of the joint distribution and its marginals.

[(p1 + p2)* = p1](p1 + p2)™

2.3. Heavy traffic diffusion approximation. We study the system when it
becomes close to unstable, i.e., as p1 +p2 T 1. If py +p2 T 1 for a fixed p2 € (0, 1), the
probability mass becomes concentrated in the range where n is large but m = O(1).
More precisely, we define e = 1 — p; — po — 0 and obtain the limiting distribution
from (2.5) as

p(L+m,n) ~e(l —p)pite Y, Y =en.

Thus, in this limit there tend to be only a few type-1 customers above the threshold L,
while the number of type-2 customers tends to be large, of the order O(¢~!). Since the
latter customers may represent voice messages, this situation is clearly not desirable.
We next obtain another heavy traffic limit, whose behavior is much less trivial than
that above.

We again define the small positive parameter € by 1 = p; + ps + €, but we now
assume that

p2 = b= 0(e), 1—pr=ceb+1)=0(e),

where b > 0. This assumption means that the traffic intensity of type-2 customers is
relatively small, while the type-1 customer queue is close to instability. Even though
ps is small, with this scaling both of the queue lengths will tend to be large, so that
it seems appropriate to still classify this limit as one of “heavy traffic.” Even though
the load of type-2 customers is small, large queue lengths tend to develop since the
server is devoting a lot of time trying to service the large backlog of type-1 customers.

We thus scale m and n to be large, with
X Y
m=—, n=—.
€ €

In (2.5) we scale w =1 —es, and for € — 01 we have

é(w)—lwg[b+1+x/(b+1)2+4bs},

w—n—l ~ GSY,

[3(w)] ™™ ~ eXp{—;( [b+ 1+ \/m]}

with p(L,0) = . We can also approximate the contour C' by a vertical Bromwich
contour Br in the complex s-plane. We thus obtain the limiting density in the form

XY
(2.13) p(L+m,n)=p (L + - 5) ~e?P(X,Y),
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where

1 QSesyexp{—§ [b—f—l—l-\/(b-i-UW}}

(2.14) P(X,Y) = —/ ds
27 [y b+1+4+2s—/(b+1)%+4bs

and, on Br, R(s) > 0. We refer to P as the heavy traffic diffusion approximation.

An alternate approach to obtaining P is to introduce the heavy traffic scaling into
the difference equations. From these we find that P in (2.13) satisfies the parabolic
partial differential equation (PDE)

Pxx + (b+1)Px —bPy =0, XY >0,
with boundary conditions (BC)

Px(0,Y)+ Py (0,Y)+ (b+1)P(0,Y) =0, Y >0,
P(X,00=0, X >0.

Solving this problem using, e.g., Laplace transforms, we regain the expression in
(2.14). The approximation (2.13) may be refined to the series p(L+m,n) = e2[P(X,Y)
+ePD(X,Y) + e2P@)(X,Y) + ---], but the calculation of the higher order terms
PU) is tedious. Below we summarize the final results for the diffusion model and its
marginals and also give several alternate representations for P.

THEOREM 2.5. In the heavy traffic limit where p1 + po = 1 — ¢ and pay = &b,
b > 0, we have for e — 0%, p(L +m,n) ~ e2P(X,Y), where

1 / 2sesyexp{—§[b+l+\/m]}
Br

PX,Y)= — . ds
2mi b+142s—+/(b+1)2+ 4bs
1 3
=b-1e " e YI{b>1}+ e_(b'H)X/Q%i

o sinh n b+1 n
1 — ——cosh iV 2sinh | =
X/_Oo 4b(b+1)2coshn[ - coshn +iv2sin ()

(b :bl)Q %(H 1)i sinh (727)] dny

=(b—1)e eV I{b>1}
e~ (H)X/2=Y o0 A(X ) [ bX?  (b—1)? }
exp |———— — u| du,
2v/7b 1% Vu

X exp {— Y coshn —

4u 4b

b (3X ¥ —-1X  b2X%2  p2X3
AX =2 (22 ) - X |
(X, ) u<2u+ ) < i a e 4u3>

If b =1, the above simplifies to

_ 1 XN\ x v X? _
P(X,Y)\/ﬁ(l+2y>e e exp<), b=1.
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The marginals are given by

P(X) = i P(X,Y)dY = (b+ 1)e”O+DX

/ P(X,Y)d

LSRR ) B

where I{-} is the indicator function. When b = 1, the Y-marginal is P(Y) =
e”Y /Y.

From the result for P, we see that for any X > 0 the conditional density P(Y|X) =
P(X,Y)/P(X) is continuous. However, when X = 0, the conditional density carries
mass at the origin, and we have

P(Y]0) = b%é(y)

by b1 - (b-1?
— —I{b>1 /2 dul .
+b+1e 7 {b6> }—|— / exp< 4b u

Thus the mass at Y = 0is 1/(b+ 1), and the mass for Y > 0 is b/(b 4+ 1). We can
also study the tail behavior of the diffusion approximation as X and/or Y — oo. The
qualitative structure of P(X,Y) in this limit is similar to that in Theorems 2.2-2.4.
Below we summarize the results, omitting the derivations.

THEOREM 2.6. Asymptotic expansions of P(X,Y) and P(Y') in Theorem 2.5 are
as follows:

(a) Y — oco:
b>1: P(Y)Nb_Tle*Y,
€7Y
b=1: P(Y)N\/ﬁ,
2vb —3/2 [ (b+1)?

(b) X,Y — oo with Y —bX/(b+1) = VXU = O(VX):

bX (b+1)3/2 [ (b+1)3 ,
P2 L VXUIX) ~ 2L _ .
<b+1+ vl ) ovaxs P U

()Y -00, X =0(1),b< 1:

SNCAC I
(d) X,)Y 00 with0<Y/X < o0, b<1:

P(X,Y) ~ Vb (bﬂ) y—3/2 {X + 1 fbe} exp [);(H 1) — %(H 1)2} ;

P(X,Y) ~ K(X,Y)e oY),

X Y ,  bX?2
OXY) =S+ 1)+ 5 (0+1)° +
\fX (bX+(b+1)Y)_

KX.Y) = 2/mY3/2 —(b-1Y
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(e) X,) Y - o0 with0<Y/X < o0, b>1:

Y/X > (bf ok P(X,Y) ~ (b—1)e XY,
Y/X < (b—bl) : P(X,Y)~ K(X7y)ef¢(X,Y)’

b } Y S
Y/X ~ =k P(X,Y) ~ (b— 1)e—bXe—YE N e 2,

3/2
A= M (YbX) =0(1).
b2X b—1

Note that these results are closely analogous to the asymptotic results for the
discrete probabilities p(L+m,n). Theorems 2.5 and 2.6 show that the structure of the
problem is nontrivial in the heavy traffic limit where p;+p2 T 1 and ps — 0. We also
note that this limit corresponds to the vicinity of the “corner” point (p1, p2) = (1,0)
in the parameter space in Figure 2.1. The curve that separates R4 from Rp passes
through this point. The equation (p; +p2)? = p; is the same as (1—¢)? = 1—g(b+1),
which as ¢ — 07 becomes b = 1 + O(g). This further explains the dichotomous
behavior of P, according to whether b > 1 or b < 1.

3. My, M>/M/1 priority queue with a dynamic scheduling policy. We
now consider the full problem (1.1)—(1.9) in which the server serves type-1 customers
when Ny(t) = 0. We are able to use the results in section 2 as part of our analysis
here. For example, the solution in Theorem 3.1 uses the results in Theorem 2.5, and
the asymptotic results in Theorems 3.2(a) and 3.3(a) rely on the asymptotic results
in Theorem 2.5 in section 2.

3.1. Exact solution. In this subsection, we derive the joint queue length dis-
tribution. We use the same notation as in the previous section and introduce the
following probability generating functions:

G(z,w) = Z Z p(m,n)zm"Lwm,

n=0m=L
Hj(w) =Y p(,muw", 0<j<L.
n=0

From (1.1), (1.2), (1.4), and (1.5), we obtain

A1z 4+ dow — (4 A+ X)) + g}G(z,w)

(3.1) = Natfiaw)+a (2= 1) Hufw) + Lz

z

In order to determine G(z,w) in (3.1), we must know Hy_1(w), Hy(w), and p(L,0).
We first compute Hy,_1(w) and p(L, 0), and then derive Hy (w) by using the analyticity
of G(z,w).

From (1.3) and (1.6), we obtain the following equation, which relates H,,_1(w)
and H,,(w):

[t = (4 Ax o+ 2a) + 2 Hyn () + M Hoa (w)

(3.2) = —up(m+1,0) + gp(m,()), 1<m<L-1.
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From (1.7) and (1.8), we obtain an equation for Hy(w),

33 [rw— (ot 2+ 20+ 2] Haw) = 1.0+ (5~ 1) 90,0,

which can also be written as

A 1
(3.4) 5(10 —w_)(w —wy)Ho(w) = —up(1,0) + p <w - 1> p(0,0),
where w_ and w, are zeros of L(w) = w? — ”Xﬂw + £ =0and |w_| <1;ie,
2 2

(b + A+ X2) =/ (u+ X+ A2)? —dpdy

2o
C (A ) V(A Ae)? — dpdy
Wy = .
22
Letting w = w_ in (3.4), we obtain
1
(35) p(10) = (5= ~1) p0.0)
and then (3.4) yields
1
3.6 Ho(w) = ————p(0,0).
(36) () = TaTa?00)

Next we will calculate H;(w) for 1 < j < L — 1. We first take L = oo and show
how to use this solution to solve the problem for finite L. If L = oo, we introduce the
generating functions

F(z)= Z p(m,0)z™.
Then, using (3.2) and (3.3) with L = oo, we obtain

[)\gw —(u+ M+ X))+ Nz+ g]H(z,w)

= p(l - %)F(z) +u<% - 1)p(0,0).

w
Upon dividing by w/u, the above may be rewritten as
p2(w — w_(2))(w —wy(2))H(z,w)
w 1
(3.7) - (1 - ;)F(z) + w(; . 1)p(o,o),

where w_(2) and w, (z) are zeros of the equation w? — ’W\%’;r’\lzw + 4 =0 and
|lw_(z)| < 1; hence

(LL+)\1+)\2—)\12)—\/(M+>\1+A2—>\12)2—4,U)\2
2o ’
(/J-I—)q+)\2—)\12)+\/(M+>\1+A2—>\12)2—4,U)\2
2o '

w_(z) =

wy(z) =
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Setting w = w_(z) in (3.7), we obtain F'(z) as
w_(z)(1—=1/2)
1—w_(z)/z

Substituting (3.8) into (3.7), we obtain
1 z—1 1 1
39 Hamw) =007 ( - w_<z>> s () (1 = w/w+<z>) |

Finally, by comparing the coefficients of (3.9) to those of the probability generating
function, we obtain p(m,n) as

p(m’n):p(o,o)/c< 1-2 1 L 4 (L=oo)

271 1 — pazwy(2) ) [we(z)]® zm+L

(3.8) F(z) = (0,0).

Note that the above integral is the same as (2.5) with m and n (and also A; and As)
interchanged.

The above expression for p(m,n) satisfies (1.1)—(1.8) for all m,n with 0 < m <
L — 1. Hence for L < oo and 0 < m < L — 1 we obtain

(3.10) p(m,n)zp(o’o)/c< 1=z ) I 1 .

2mi 1—pozwy(2) ) [wy(z)]™ zmtl

and
0,0 1-— 1
(3.11) H, () = 2L00) / - w+(2) dz.
2t Jo 1 — pozwi(2) \ws(z) —w /) zm+l
Using (3.10) and (3.11), we can easily show that (3.2)—(3.6) are satisfied. In (3.2) and
(3.3) we let w =1, and we sum from m = 0 to L — 1 to find that p(L,0) is given by
p(L,0) = p1Hp_1(1)

(3.12) :plp(mo)/c L-= ( w+(2) );Ldz.

2mi 1— pozwy(z) \ws(z)—1

We next derive the probability generating function G(z,w). Equation (3.1) can
be rewritten as

p1(z = 2 (w)) (2 = 2(w))G (2, w)
(3.13) =—p1zHp_1(w) + = (i - i}) Hrp(w)+ %p(L,O),

where Hy,_1(w) and p(L,0) are now known in terms of p(0,0), and z.(w) and Z(w)
are the same as in section 2. In (3.13), we set z = z.(w) and thus obtain Hp(w).
Then, after some calculation, we obtain the joint probability generating function as

_ p(L,0) — pywHp_1(w) 1
(3.14) o) = BED ARSI ()

where p(L,0) and Hy_;(w) are given by (3.12) and (3.11), respectively. Finally, we
obtain the joint queue length probabilities p(m,n) by inverting G(z,w):

o p(0,0) 12 wi(2))? (1-w) 1
p(m. ) (27Ti)2p1/c/c(1—l)2zw+(z))(w+(z)—1) (ws (2) — w) 2
1
X

1 1
1 dzdw, m>L,n>0.

(3.15) 0 prwi@)) E) L
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The unknown constant p(0,0) can be obtained by the normalization condition

L—1
G+ Y Hp(1)=1.
m=0
A routine calculation yields
(3.16) p(0,0) =1 —p1 — p2.

We have thus obtained the following result.
THEOREM 3.1. The joint probabilities p(m,n) for the queue lengths are given by
(a) for0<m<L—-1,n>0,

~ p(0,0) ( 1—=z ) 1 1
pm = P52 [ (5= o
(b) form > L,n >0,

) 1=\ (P (-w) 1
plm, ) <2wi>2pl/(,~/cw<1—p2zw+<z>)<w+(z>—1) (0 () — w) &
1

1 1
X - dzdw,

where
p(0,0) =1 — p1 — pa,

and w4 (z) and Z(w) are given below (3.7) and below (2.2), respectively.

To study the tail probabilities, it is reasonable to assume that L — oo and then
to scale m and n using L. The expansions for Theorem 3.1(a) as m and/or n — oo
follow immediately from the results of section 2.2, simply by interchanging m < n
and A; <> A2 (or p1 <> p2). The expansion of the double integral in part (b) is more
complicated, and we have thus far not been able to enumerate all the different cases.
However, we were able to obtain detailed results in the heavy traffic case; these we
discuss next.

3.2. Heavy traffic behavior. We study p(m,n) in the heavy traffic case, where
N;(t) and Na(t) are likely to be large. There are now two distinct nontrivial heavy
traffic limits. We call these HTL 1 and HTL 2, and the precise scalings are

HTL 1. py+p2=1—¢,p1=ca=0(e), L= A/e = O(e7}),

HTL 2. py+po=1—¢,po=cb=0(), L=A/e = O(c7}).

Note that HTL 2 has the same scaling of p; and py as we used for the simplified model
in section 2. In both these limits we obtain a nontrivial, two-dimensional structure
to p(m,n). To achieve this it is also necessary to scale the threshold L to be large.

Below we give only the final results. The calculations are very similar to those
presented in section 2.

THEOREM 3.2. In the heavy traffic limit HTL 2, we have as € — 0T

(a)ym—L=(X—-A)/e,n=Y/e:

p(m,n) ~e2e A P(X — A,Y;b),

where P is the density in Theorem 2.5;
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b)ym<L-1,n=0(1), m=X/e, X >0:

p(m,n) ~ e(eb)"e;

1 1
p(m,n) ~ " F(m,n), F(m,n) = %/C A= @= e dz;
(d)m—L=¢//e=0@E"Y?),m>L,n=0(1):

1
—-A - ufnflefx/g\/lflmdu'

] ~ & .
p(m,n) ¢ 2mi Jo

Here the contours C' are small loops about the origin.

We see from Theorem 3.2 that in the limit HTL 2 the limiting distribution
becomes a two-dimensional diffusion in the region {X > A, Y > 0} coupled to a one-
dimensional diffusion along {0 < X < A, n = 0}. The total masses in the respective
regions are easily obtained from (a) and (b):

>3 p(m,n) ~ e—A/ / P(X — A, Y;b)dXdY =e 4,
0 A

n=0m=L

co L—1 L—-1 A
Z Z p(m,n) ~ Z p(m,0) ~ / e XdX =1—eA
n=0m=0 m=0 0

The masses in regions (c) and (d) are asymptotically o(1) as € — 0. Theorem 3.2 is
easily established from the exact representations in Theorem 3.1.

An alternate approach to the heavy traffic limit would be to analyze the difference
equations directly, with the HTL 2 scaling. Using this approach, it is easy to show
that if p(m,n) ~ e2Q(X,Y), then Q satisfies the PDE and BC:

Qx(A,Y) + QY(AvY) + (b+ 1)Q(A7Y) = Oa Y > 07
Q(X,00=0, X>A

Furthermore, by assuming a priori that p(m,n) ~ e"™ R, (X), we find that Ry(X)
satisfies

RIX)+Ry(X)=0, 0<X<A.

Then by considering separately the scale m,n = O(1), we derive the BC: R{(0) +
Ro(0) = 0. It follows that Ro(X) = Ke X and that Q(X,Y) = K.P(X — A,Y).
However, we have the two constants K and K., and normalization of p(m,n) will
give only one relation between them. Hence a second relation must be obtained;
i.e., the two-dimensional diffusion must somehow be coupled to the one-dimensional
one. By considering the scale m — L = O(e~'/?) and n = O(1), we obtain another
expansion that asymptotically matches to Ry(X) and to Q(X,Y) in the appropriate
limits. This yields the additional relation K, = Ro(A) = e “Ry(0) = Ke™*, and
then normalization shows that K = 1. The merit of the direct approach sketched
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here is that it should be possible to generalize to more complicated models, e.g., ones
with general service time distributions.

Next we give the HTL 1 results.

THEOREM 3.3. In the heavy traffic limit HTL 1, we have as € — 07

(a) m=X/e<L,n=Y/e:

p(m,n) ~e2P(Y, X;a)

e? 20e’X exp[-L(a+ 14+ /(a+1)2 + 4a9)]d

T 2mi Br a+1+4+20—+/(a+ 1)+ 4ab

b)ym>L, m—L=01),n=Y/e:

6A
pm,n) ~ (a1t | e
210 Jpr a+1+20 —/(a+ 1)% + 4af

6_ o —Y(a+1+\/(a+1)2+4a )/2
[a+14+/(a+1)%2+4ab]la— 1+ +/(a+ 1)% + 4ab)]

(c)m>L, m—L=0(1),n=0(1):

1 1
~ m+1—-L ~ d
p(m,n) ~ £(a) 21 /C (1 —w)2(2 — w)m—Lyn+l v

1 40?4

X
27m/3r[a+1+29—\/(a+1) 2+ 4af]la+ 1+ +/(a+1)2 + 4ab)

Thus, now the limiting distribution behaves as a two-dimensional diffusion in the
range {0 < X < A,Y > 0}, coupled to a one-dimensional diffusion along {m = L,Y >
0}. The mass in the first region is

co L—1

= Z Z p(m,n)

n=0m=0
4 eGA

%/Br [a+14+20—+/(a+1)?2+4ab]la+ 1+ +/(a+1)?+ 4ab]

where we have used part(a) of Theorem 3.3. The remaining mass is, using part (b)
with m = L,

~

a 80l
21 Jpr [a+1+20—+/(a+1)2+4ablla+ 1+ +/(a 2 + 4ab)]

Using contour integration, it is possible to show that these two expressions indeed
sum to one.

Finally, we discuss the direct approach to the diffusion model. In the limit HTL
1 we find that for x < A (m < L) we have p(m,n) ~ e2Q(X,Y), where

Qyy + (a+1)Qy —aQx =0, 0<X <A Y>0,
QX(X70)+Q_Y(X70)+(a+1)Q(X7O) =0, 0<X < Aa
Q(0,Y) =0
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and thus Q(X,Y) = K, P(Y, X;a), where P is as in Theorem 2.5. For Y = en > 0
and m = L,L+1,... we use p(m,n) ~ &*1Q;(Y), where [ = m — L. Then we find
that Qo(Y") satisfies the forced one-dimensional diffusion equation

CY)+ QoY) =—aQ(AY), Y >0.

From a careful consideration of the scale m — L = O(1), m > L, n = O(1), we obtain
the boundary condition Q¢(0) = 0. Then we can easily solve for Qo(Y) in terms of
the previously obtained Q(A,Y). Now both diffusions are known up to a common
multiplicative constant, which follows from normalization.

4. Discussion and numerical results. We demonstrate the usefulness of both
our exact and asymptotic results. The exact results for the two models are given in
Theorems 2.1 and 3.1. In both cases, the exact formulas for the stationary probabili-
ties are given in terms of complex contour integrals. These integrals can be evaluated
by computing the residue at zero. However, for m and/or n large, the residue calcu-
lation is not feasible. The asymptotic results for the tail probabilities (cf. Theorems
2.2-2.4) and the heavy traffic diffusion results (cf. Theorems 2.5, 2.6, 3.2, 3.3) provide
good approximations precisely when the computation of the exact solution is difficult.

We consider several examples of the simplified model in section 2. The marginal
probability p(n) for the number in the high priority queue is given by the exact formula
(2.8), while its asymptotic approximation is given in Theorem 2.4 (b) and (c). For
each of the tables, we evaluate the integral in (2.8) by computing the residue at w = 0
using the symbolic computation program Maple.

In Table 4.1, we consider a system with A\; = 1/4, Ay = 1/2, and p = 1. Thus,
p1 = 1/4 and py = 1/2 so that (p1,p2) € Rp (cf. Figure 2.1). As we see from Table
4.1, the asymptotic expansion is quite accurate for n > 5, where the relative error is
less than 5%. In Table 4.2, we consider the same queue as in Table 4.1 except that
A2 = 2/3. Again the asymptotic results are extremely accurate.

In Table 4.3, we consider a system with A\; = 3/4, Ao = 1/150, and p = 1. Thus,
p1 = 3/4 and pa = 1/150 so that (p1,p2) € Ra. For this case the results are not
as accurate as for those in Tables 4.1 and 4.2. As n increases, the accuracy of the
asymptotic expansion increases. For n > 30 the calculation of the exact formula is
difficult, and so we no longer have a basis of comparison. If we choose (p1, p2) closer
to the curve separating regions R4 and Rp in Figure 2.1, then the error is larger
for each n. However, for sufficiently large n, we expect the asymptotic result to be
very accurate. The difference in the size of the errors in these examples is due to the
fact that in region R4 the error (in Theorem 2.4(b)) is O(1/n), while in region Rp
the error is exponentially small. In fact, it can be shown that the error term for Rp
is the same as the leading term for the region R4. Neither expansion is valid at or
near the transition curve that separates R4 and Rg. There a new expansion must be
constructed. This new expansion involves hypergeometric functions, and we do not
consider it here.

As a last example, we compare the heavy traffic diffusion approximation for the
marginal probability p(n), as given in Theorem 2.5, to the exact expression (2.8).
In Figure 4.1, we present graphs of both (2.8) and the heavy traffic approximation
in Theorem 2.5 when p; = 4/5 and py = 1/10, so that e = 1/10 and b = 1. For
these parameters, the heavy traffic approximation is e P(Y) = ee=Y /v/7Y. As we see
qualitatively, the heavy traffic result provides an accurate approximation if n > 4. In
fact, the error is less than 3% for all n > 4.
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TABLE 4.1

p1 =1/4, po =1/2—Region Rp

n Exact Asympt. | Rel. err.
0 | 0.296535 | 0.208333 | 0.297441
1 0.195083 0.15625 0.199061
2 | 0.135762 | 0.117188 | 0.136819
3 | 0.097346 | 0.087891 | 0.097131
4 | 0.070956 | 0.065918 | 0.070998
5 | 0.052214 | 0.049438 | 0.053155
6 | 0.038647 | 0.037079 | 0.040569
7 | 0.028712 | 0.027809 | 0.031446
8 0.021385 | 0.020857 | 0.024685
9 | 0.015955 | 0.015643 | 0.019580
10 | 0.011919 | 0.011732 | 0.015669
11 | 0.008912 | 0.008799 | 0.012633
12 | 0.006668 | 0.006599 | 0.010251
13 | 0.004991 | 0.004949 | 0.008366
14 | 0.003738 | 0.003712 | 0.006861
15 0.0028 0.002784 | 0.005652
16 | 0.002098 | 0.002088 | 0.004674
17 | 0.001572 | 0.001566 | 0.003879
18 | 0.001178 | 0.001175 | 0.003229
19 | 0.000883 | 0.000881 | 0.002697
20 | 0.000662 | 0.000661 | 0.002258
21 | 0.000496 | 0.000496 | 0.001895
22 | 0.000372 | 0.000372 | 0.001594
23 | 0.000279 | 0.000279 | 0.001343
24 | 0.000209 | 0.000209 | 0.001135

TABLE 4.2

p1 =1/4, p2 =2/3—Region Rp

n Exact Asympt. | Rel. err.
0 | 0.096987 | 0.080492 | 0.170066
1 0.08173 | 0.073785 | 0.097212
2 | 0.071742 | 0.067636 | 0.057233
3 0.064245 0.062 0.034951
4 | 0.058116 | 0.056833 | 0.022081
5 | 0.052856 | 0.052097 | 0.014355
6 | 0.048216 | 0.047756 | 0.009552
7 | 0.044061 | 0.043776 | 0.006477
8 | 0.040308 | 0.040128 | 0.004460
9 | 0.036899 | 0.036784 | 0.003110
10 | 0.033793 | 0.033719 | 0.002192
11 | 0.030957 | 0.030909 | 0.001559
12 | 0.028365 | 0.028333 | 0.001118
13 | 0.025993 | 0.025972 | 0.000807
14 | 0.023822 | 0.023808 | 0.000586
15 | 0.021833 | 0.021824 | 0.000427
16 | 0.020011 | 0.020005 | 0.000313
17 | 0.018342 | 0.018338 | 0.000230
18 | 0.016813 | 0.01681 | 0.000170
19 | 0.015411 | 0.015409 | 0.000126
20 | 0.014126 | 0.014125 | 0.000094
21 | 0.012949 | 0.012948 | 0.000070
22 | 0.011869 | 0.011869 | 0.000052
23 | 0.01088 0.01088 | 0.000039
24 | 0.009973 | 0.009973 | 0.000029
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TABLE 4.3

p1 = 3/4, p2 =1/150—Region R4

n Exact Asympt. Rel. err.

1 0.078876 0.226964 1.877476

2 0.011338 0.021732 0.916778

3 0.001986 0.003204 0.612972

4 0.000385 0.000564 0.462403

5 7.96015e-05 0.000109 0.372002

6 1.71561e-05 | 2.25008e-05 | 0.311530

7 3.81328e-06 | 4.83583e-06 | 0.268156

8 8.67638e-07 | 1.07195e-06 | 0.235488

9 2.01078e-07 2.433e-07 0.209978

10 | 4.72974e-08 5.626e-08 0.189494

11 1.12622e-08 1.3207e-08 0.172677

12 | 2.70941e-09 | 3.13917e-09 | 0.158619

13 | 6.57536e-10 | 7.53991e-10 | 0.146690

14 | 1.60781e-10 | 1.82718e-10 | 0.136439

15 | 3.95733e-11 | 4.46202e-11 | 0.127533

16 | 9.79651e-12 | 1.09693e-11 | 0.119723

17 | 2.43757e-12 | 2.71258e-12 | 0.112818

18 | 6.09288e-13 | 6.74281e-13 | 0.106669

19 | 1.52919e-13 | 1.68388e-13 | 0.101158

20 | 3.85217e-14 | 4.22272e-14 | 0.096190

21 9.7365e-15 1.06292e-14 | 0.091689

22 | 2.46845e-15 | 2.68467e-15 | 0.087591

23 | 6.27566e-16 | 6.80184e-16 | 0.083845

24 | 1.59958e-16 1.7282e-16 0.080407

25 4.0868e-17 4.40246e-17 | 0.077240

26 | 1.04642e-17 | 1.12419e-17 | 0.074313

27 | 2.68481e-18 | 2.87705e-18 | 0.071601

28 | 6.90144e-19 | 7.37819e-19 | 0.069080

29 | 1.77717e-19 | 1.89576e-19 | 0.066731

marginal
0.2571
0.21
0.151
0.11
0.057
0 5 10 15 20

n

F1G. 4.1. Graphs of the exact formula (—) for the marginal probability p(n) given by (2.8) and
the heavy traffic result (---) from Theorem 2.5 when p1 = 4/5 and p2 = 1/10.
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MODELLING THE DYNAMICS OF TURBULENT FLOODS*
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Abstract. Consider the dynamics of turbulent flow in rivers, estuaries, and floods. Based on
the widely used k-e model for turbulence, we use the techniques of center manifold theory to derive
dynamical models for the evolution of the water depth and of vertically averaged flow velocity and
turbulent parameters. This new model for the shallow water dynamics of turbulent flow resolves the
vertical structure of the flow and the turbulence, includes interaction between turbulence and long
waves, and gives a rational alternative to classical models for turbulent environmental flows.
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1. Introduction. Consider the dynamics of a turbulent flow over ground, as
occurs in rivers, channels, or floods. In such flows it is the large-scale horizontal
variations which are important; the vertical structure of velocity and turbulence may
be expected to be determined by the local conditions of the horizontal flow. In
this situation we may seek a model of the flow which involves only “coarse” depth-
averaged quantities. Such models have been constructed before; for example, Fredsoe
and Deigaard [15, pp. 37-39] depth-average the k-equation model of turbulent flow
to model the dynamics of breakers on a beach, whereas depth-averaged k-e¢ equations
have been used by Rastogi and Rodi [37] to model heat and mass transfer in open
channels and by Keller and Rodi [24] to investigate flood plain flows. The need for
such sophisticated models was also indicated by Peregrine [35, p. 97], commenting that
an empirical friction law derived from channel flow underestimates the turbulence in
breakers and surf, and Mei [29, p. 485], observing that eddy viscosities need to be
different in and outside of the surf zone.

However, the recent development of center manifold theory and related techniques
presages a much deeper understanding of the process of modelling nonlinear dynamics
and foresees the systematic reduction of many nonlinear problems to an underlying
low-dimensional system. For example, the process of depth-averaging has been shown
to be deficient as a modelling paradigm [44]. In the context of turbulent flow, we show
in section 3 how the mean motions may be determined by a few critical modes which
have a nontrivial structure in the vertical; e.g., as a first approximation the horizontal
velocity u and turbulent energy density k are taken to have a cube-root dependence.
Moreover, the amplitude of these modes and their evolution may be expressed in
terms of depth-averaged quantities. We derive the following coupled nonlinear set of
equations to model the turbulent, large-scale flow of water over ground (see (28)):

ot ox ’
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Here 7 is the water depth and @, k, and € are depth-averaged flow velocity, turbu-
lent energy, and turbulent dissipation, respectively. The other variables appearing
are = C,k*/€, measuring the local eddy diffusivity (see (24)), and A = n%€?/k?,
being proportional to the ratio of the vertical mixing time to the turbulent eddy time
(see (25)). For example, in section 5.3 this model is used to predict the flow after a
dam breaks. See in Figure 6 the formation of a turbulent bore rushing downstream
from the dam. The turbulence in the bore is generally highest near the front and
decays away behind as seen in Figure 7. This gives one example of the variations in
spatial structure of the turbulence that underlies shallow water flows.

Modelling turbulent flow is one of the major challenges in fluid dynamics. While
large eddies, which can be as large as the flow domain, extract energy from the mean
flow and feed it into turbulent motion, the eddies also act as a vortex stretching mech-
anism and transfer the energy to the smallest scales where viscous dissipation takes
place. It is the scale at which the dissipation occurs that determines the rate of energy
dissipation. However, the inflow of energy into turbulent motion is a characteristic
of only the large-scale motion. In other words, the turbulent but small-scale motion
is often dominated and determined by the large-scale motion and can be treated as
a perturbation of the mean flow. The coupling of energy transportation and energy
dissipation with the mean flow is adequately described by widely used second-order
closure models. In particular, the most popular choice is the two equation k-e¢ model;
see, for example, Launder, Reece, and Rodi [26], Hanjali¢ and Launder [19], Rodi [50],
and Speziale [52] for reviews.

We base our analysis upon the k-e model (section 2) for the turbulence underlying
the free surface of a fluid in a channel or river or over a flood plain. The resultant
model (1) is basically a model for the evolution of vertically averaged quantities; the
model resolves large-scale, compared to the depth, dynamical structures in the hor-
izontal. It is important to distinguish between models obtained by depth-averaged
equations (which are known to be incorrect [44] for other similar long-wave dynamics)
and our model, which is, for convenience, written in terms of depth-averaged quanti-
ties.

In section 4 we derive the “coarse” low-dimensional model (1) from the “fine”
k-e equations. Despite the well-recognized limitations of the k-e equations as a model
of turbulence, we anticipate that the information retained in our coarse model is
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reasonably insensitive to deficiencies in the k-e dynamics. Further modelling may
be done via more sophisticated Reynolds stress models for channel flow, such as that
described by Gibson and Rodi [17]. One aspect to note is that the model we derive has
no adjustable parameters—all constants are determined from values established for
the k-e turbulence model and its boundary conditions. Thus the model predictions are
definitive. We describe some example solutions in section 5 to illustrate the dynamical
predictions of the model.

Penultimately, in Appendix A we comment on the status of the theory of center
manifolds in this development of a low-dimensional model of turbulent flow using
center manifold techniques. Finally, in Appendix B we list the computer algebra
program used to perform the intricate algebra in constructing the model.

2. The k-e model of turbulent flow. Consider the two-dimensional inviscid
k-e model of turbulent flow over rough ground. Distance parallel to the ground’s
slope is measured by z, while we measure distance normal to the slope by y. Molec-
ular dissipation is neglected because we anticipate little direct effect for it in flood
waves of a depth O(metre) over ground with roughness which may be many times the
length-scale of viscous dissipation. Turbulent eddies are proposed to be the dominant
mechanism for dispersion and dissipation. We denote the ensemble mean velocity com-
ponents and pressure by u, v, and p, respectively; that is, for simplicity, we omit any
distinguishing overbars (instead overbars will later be used to denote depth-averaged
quantities). Then the incompressible k-e¢ model (with ensemble means) is

o & ]-[E5]

where the vector u = (u,v,7, k, €)! is formed from the velocities u and v in the lateral
and normal directions, respectively, the height of the free surface y = n(z,t), the
turbulent energy density k, and its dissipation rate e. The nonlinear model governing
the evolution of the unknowns w and p is

(2b) F(p,u) =
[ o) o) d . 2 9k ) ) ) ) o) 1
—ua—;‘—v£—£+951n9_§%+2m(V£)"'a*y{l/(a*Z"‘aTz)}
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Here the eddy viscosity

(3) v==0C,—

is a result of the turbulent mixing and varies in space and time. Later we use the
approximate values of the constants

(4) C,=009, op=1, 0.=13, Cq=144, Cop=192,

I1We adopt the notation that a vector in parentheses, such as (u, v, n, k, €), is a shorthand for the
corresponding column vector.
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in order to form definite models. Also

ou\’ v\’ ou  ov\’
Po=v|2(= 2( = — 4+ =
" [ (f%) i (3y) i <5y " 5w>
describes the generation of turbulence through instabilities associated with mean-

velocity gradients. T is the time-scale of the turbulent eddies and is frequently defined
as

T = max {k/e,CT\/m} ;

the cutoff at viscous time-scales /v, /€ is to avoid a singularity in turbulent produc-
tion at a wall; see [14, p. 470], for example. However, here we eschew the incorporation
of direct viscous effects and so avoid this singularity by using 7' = k/€ as the typical
turbulent time-scale, where the overbars denote depth averages. The downward slope
of the bed, 0, is assumed to be small and to have negligible variation.

The boundary conditions on the bottom and the free surface are important in the
details of the construction of the low-dimensional model. The following arguments
lead to the given boundary conditions:

e The standard condition is that, in view of the extremely low density of air,
the pressure of the air on the fluid surface is effectively constant, which we
take to be zero without loss of generality. Thus the normal stress of the fluid
across the free surface should vanish:

(5) +gk_2iy @4_@_ @_ﬁ_@ =0 onuy=
PT3 1+n2 |0y Ox 2\ 5z oy )| y=n-

This is only approximately true—corrections should exist of the order of p'n/
in terms of fluctuations about the ensemble means and similarly for other
equations involving the free surface. However, the time-scale of gravity waves,

?/(27g), associated with the turbulent length-scale, £ o k3/2 /e, should be
typically much shorter than the turbulent eddy turn-over time, £/ VEk (true for
the scaling introduced in section 3.2), and, as in [22, section 2.3], we expect
there to be little interaction between the turbulent fluctuations and the free
surface dynamics.

e In this work we assume that the horizontal extent of the flood waves is small
enough so that wind stress is negligible. This is in contrast to large-scale
geophysical simulations, such as that by Arnold and Noye [2], where the wind
stress is very important. Thus the fluid surface is free of tangential stress:

ou Ov ov  Ou
— 2 — —_— — — — = f—
(6) (1-7n2) <8y + ax) + 20, <8y ax) 0 ony=n.

A wind stress could be incorporated into the model by appropriately replacing
the zero right-hand side.

e Symmetry conditions for turbulent variables k and € on the free surface (see
Arnold and Noye [3] or Fredsoe and Deigaard [15, p. 117] for examples) lead

to

(7) %:0 ony=r,
Oe

(8) and =0 ony=mn.

an
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These assert that the energy in turbulent eddies cannot be lost or gained by
transport through the free surface, and similarly for the turbulent dissipa-
tion. More sophisticated models of the free surface effect upon turbulence by
Gibson and Rodi [17, p. 238] use these zero net flux boundary conditions.
Spilling breakers on the water surface could perhaps be modelled by a turbu-
lent production term on the right-hand side of these boundary conditions.
At the ground, y = 0, there must be no flow across the flat bottom:

(9) v(z,0,t) =0.

Other boundary conditions on the ground are more arguable (compare our
treatment with that of Arnold and Noye [3, 4]). We are interested only
in the flow outside of any molecular boundary layer that may exist on the
stream bed—we imagine that the structure of any ordered viscous layer will
be broken up by the roughness. This is supported by recent experiments by
Krogstad and Antonia [25] who show that roughness of a wall, even on a
scale 1/100th the thickness of a turbulent boundary layer, tends to reduce
the overall anisotropy of the turbulence. A major limitation of the k-e model
is the high level of anisotropy near a wall, so such a reduction in anisotropy
due to roughness will favor the k-¢ model. Note that we treat the ground as
y = 0 in the mathematical model even though we imagine it to be rough. In
effect, ensemble means are also done over all realizations of a “rough” bed
with mean slope 6 and hence mean position y = 0.

We suppose that the bottom inhibits the turbulence in its immediate neigh-
borhood so that the turbulent energy falls to zero:

(10) k=0 ony=0.

In using the k-e model for near-wall turbulence, Durbin [12, 13] asserts that
0k /0y = 0 on the wall as well. However, Figure 1 by Durbin [12] shows this
latter condition is significant only for the viscous boundary layer—a layer we
ignore due to the roughness of the ground. Instead of this requirement, we
place the fairly weak constraint on the turbulent dissipation:

(11) 1/2—2%0 asy — 0.

This is weak because v oc k? — 0 as y — 0. In essence, this condition asserts
that the bed does not directly act as a source or sink of turbulent dissipation.
Although v o< k2 — 0 as y — 0, we suppose that v approaches zero slowly
enough so that turbulence is still an effective mixing mechanism near the bed.
Thus, the ensemble mean horizontal velocity should also vanish on the bed
(as also used by Lin and Falconer [27, p. 740]):

(12) u=0 ony=0.

These three boundary conditions on the bed are the same as those used by
“low Reynolds” k-e turbulent models [33, p. 64]. The difference here is that
we do not include the near-wall dependence upon local Reynolds numbers
R, = k? /€Vm and R, = \/Ey/ Vm because these involve molecular viscosity
Vin.
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The boundary conditions are different to those we used in an earlier treatment
of this problem [30]. The difference occurs because there we assumed that
the stress Ou/dy is small near the bottom and is more appropriate to weakly
turbulent flows. Here we seek the dynamics of flows with a strong level of
turbulence leading to the boundary condition (12).

3. Basis of the low-dimensional model. In this paper we consider flows that
vary “slowly” in the z and ¢ directions. In this context, the meaning of “slow” is that
the dynamics are slower relative to the vertical mixing time induced by the turbulence.
In particular, the derivatives of the flow variables with respect to x and ¢ are small
quantities that can be collected with the “nonlinear” part of the equations and treated
as perturbations. Hence we rewrite the equations as

T 0 0 & 0 0 0 1
2 0 g—y(ug—y) 0 0 0 0 P
ol _|-% 0o 25(vg) o 3% 0 v
0 0 0 0 0 0 0 7
/z 0 0 0 0 ig—y(ug—y) 0 1:
0 0 0 0 0 12 (vg).
) ou )
—u%—vg—zfg—ergsinG—a%%JrQ%(yg—g)Jr%(Vg;)
_u%—vg—Z—gCOSH—i—%{V(g—Z—i—% }
N —u(w,n, )52 + v(z,n,1)
—u%—vg—z+%(£%>+th)\e
I —ufe —vd+ 2 (é%) + GLP, — Cors ]
(13) = L(p,u) + F(p,u, ).

Treating the time and lateral variations and the “nonlinear” terms as small, we see
that £(p,u) comprises the leading term in the equation.

With a little adaptation, the operator £ has a critical space of equilibrium points
parametrized by the water depth 77 and the mean fields @, k, and €. To ensure that the
turbulent energy and turbulent dissipation are critical modes of £ and thus retained
in our model of turbulent floods, we need k and € to be conserved to leading order.
The parameter A € [0,1] is an artificial parameter which we use to adjust the rate of
decay of turbulent energy and its dissipation; by making A small we initially neglect
the natural turbulent decay, but when A = 1 we recover the standard k-e¢ model. This
is reasonable because the combined effect of k = —e and ¢ = — 6262/]6 is a slow
algebraic decay of turbulence [28, p. 277] that is appropriate for the long-term center
manifold dynamics.

3.1. Vertical mixing. The operator L is considered to be the dominant feature
of the k-e¢ model (2). It is primarily composed of the differential operator

9 (,9
oy \ oy)’

which represents vertical mixing by turbulent eddies. By identifying this as the dom-
inant term in the equations we are physically supposing that turbulent mixing in the
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vertical is stronger than the other processes that redistribute momentum and turbu-
lent energy. For example, Lin and Falconer [27, p. 738] comment that “the shallow
regions of tidal embayments are usually well mixed.”

The boundary conditions on the bottom, (10) and (11), in conjunction with the
k and e components of £ in (13) admit homogeneous solutions k oc '/ and € constant.
Such a cube-root profile in the vertical fits with arguments that the turbulence should
be weaker near the bottom due to its constraining effects. Given such a profile,
the turbulent diffusivity v o y?/? and so the horizontal velocity component of £
also admits homogeneous solutions u o< y'/3. Although our long-wave model will be
expressed in terms of depth-averaged quantities, we base the vertical structure that
they measure on these cube-root profiles.

Traditionally, many theoretical approaches have assumed constant or near con-
stant vertical profiles (see [15, section 4.3.1] or [36, p. 670] for examples), as indeed
we also have in an earlier treatment of this problem [30]. However, as seen in experi-
ments the horizontal velocity profile is typically curved (see [51, Fig. 12], [7], or [54,
Fig. 2]) as is the turbulent energy (see [15, Fig. 4.25]). A logarithmic profile is a well-
established approximation; here we work with the cube-root profile as it is compatible
with the k-e equations, is analytically tractable, and is a rough initial approximation
to the logarithmic profile.

These cube-root profiles result in downwards turbulent transport of momentum
and turbulent energy with constant flux and eventual removal from the fluid at the
bed. In order to maintain flow at leading order (only) we modify the conservative
free surface boundary conditions (6)—(7) to supply the requisite flux at leading order
and to remove the supply at higher order. We replace (6)—(7) with the boundary
conditions that on y =7

Ju Ov Jv  Ou 1—7

— — 2 _ R - e
- (G ) e (5 - ) = S

Ok Onok] 1-—n

where the artificial parameter ~, as for A introduced earlier, is small in the asymptotic
scheme but eventually will be set to 1 to recover the desired boundary conditions (6)—
(7). Such manipulation of the governing equations has worked well in developing
analogous models of the laminar viscous flow of a thin fluid layer [44, 47]; the resulting
model was found to be independent of the two different manipulations. The particular
choice (14)—(15) here enables us to develop the necessary asymptotic expansions purely
in polynomials of y/3.

The center manifold analysis forms a power series in v which needs to be summed
for v = 1. The parameter a # 1 is free for us to choose. Initially we omitted a,
equivalent to choosing a = 0, but after two years of exploration we determined that
an Euler transformation of the series in v greatly improves the convergence; e.g., see
Hinch [21, Chap. 8]. Introducing a # 0 is equivalent to such an Euler transformation.
Another view of a # 0 is that of an over-relaxation parameter in an iterative scheme.
In this problem it appears that ¢ &~ 1/2 is a good compromise between conflicting
influences and is used henceforth.

From the special structure of the vertical mixing operator £ with the modified
boundary conditions, we deduce that there are four critical modes of interest in the
long-term dynamics. These modes correspond to the leading-order conservation, and
hence long-life, of fluid mass, momentum, turbulent energy, and turbulent dissipation.
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These modes span the space M:

(16) o = (atn - v3(2) "0 w3 (1) B).

where U, H, K, and E are arbitrary functions of « and ¢. Note that the turbulent
diffusivity, v, then also varies slowly in x and t; to leading order it is

16 K2 2/3
ol (5)

As proven in Appendix A, the dominant operator £, linearized about the space
of equilibrium points, has eigenvalues which are all negative (due to the decaying
dynamics of turbulent dispersion), except for the four zero eigenvalues corresponding
to the four conserved modes. By continuity in the “nonlinear” perturbation F, the
center manifold is also exponentially attractive, at least for small enough nonlinearity.
Since all other modes decay exponentially quickly, the long time behavior of the flow
is determined by the functions U(z,t), H(z,t), K(x,t), and E(x,t). Respectively,
these represent the vertically averaged horizontal velocity, the surface elevation, the
vertically averaged turbulent energy, and the vertically averaged turbulent dissipa-
tion. In essence, we construct a “vertically averaged” model, but in v and k there is
structure in the vertical, roughly proportional to y'/2, whose amplitude we measure
by the vertical average.

3.2. Approximating the center manifold. Center manifold techniques sys-
tematically develop such a model in the vertically averaged quantities. Based on
the relatively low-dimensional space of exponentially attractive equilibria M, center
manifold theory [9] suggests that the nonlinear terms F “bend” M, to a nearby man-
ifold M of slow evolution. Further, M will similarly attract exponentially quickly
all solutions in its vicinity; in standard formulations M is called the center manifold.
Once on M, solutions evolve slowly according to a low-dimensional system of evolu-
tion equations—these evolution equations form the simplified model of the original
dynamics. This general approach to forming low-dimensional models of dynamical
systems is reviewed by Roberts [45].

We have never found it profitable to decompose dynamics into that on the null
space M and its complement. Many do this in order to write the center manifold as
a graph. We view the complement space as an artifice of the linearization, whereas we
are interested in a physically meaningful parametrization of the center manifold M.
Thus the appropriate geometric picture is simply the curving center manifold M em-
bedded in the original physical state space. Hence we construct the model in terms of
easily understandable physical quantities, namely the vertical averages. Nonetheless,
the physically relevant complement space at any point on M is the local direction of
projection of initial conditions [41, 11, 48]. Determining this projection is difficult for
nonlinear long-wave approximations and is beyond the scope of this paper.

In this problem, the center manifold M is parametrized by the four “amplitudes,”
U, H, K, and FE, which are functions of x and evolve in time. Due to the difficult
nature of the nonlinear terms in the k-e model (2) we have to be very careful about
these amplitudes and their derivatives. We introduce two independent small param-
eters: 6 as an amplitude scale and 9 to scale spatial derivatives. Then we treat the
flow fields and derivatives as

(17)  w,k=0(8%), e=0("), n=h+0(6*), and %:0(519).
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Note that in this scaling, the turbulent length-scale £ o k%/2/e = O(1). This ensures
that the turbulent eddies modelled by k and e are not asymptotically larger than the
water depth; large-scale horizontal eddies are resolved by variations in the amplitudes
of the model. Also from these scalings, the turbulent diffusivity v = O(k2 / 6) = (’)(6)
and thus the time-scale of vertical mixing is (9(1 / (5). Consequently, we must consider
horizontal scales larger than (’)(1 / 5), which accounts for requiring the product 6
in the scaling of horizontal derivatives. In standard applications of center manifold
theory, we are free to scale the amplitudes in any reasonable fashion or, indeed, to treat
the amplitudes as independent; as discussed in [40] a change in the scaling just reorders
the appearance of the same set of terms in the model. In this application of center
manifold techniques, physical considerations and the nonstandard nonlinearities place
the constraints on the scaling that derivatives % = (’)(619) and that the slope 6 =
(’)(6319). Nonetheless, we exploit usefully some of the capability of center manifold
techniques to treat amplitudes as independent variables by the above introduction of
two independent small parameters, 6 and 9.

Two other independent small parameters in this problem are -, the artificial
forcing at the free surface, and A, an artificial adjustment of turbulent interaction.
We treat all four of these parameters as independently small.

In terms of the field variables, we define the four amplitudes U, H, K, and F in
terms of physical quantities such that

(18a) u=6U,
(18b) n=nh+6H,
(18c) k=6°K,
(18d) E=06E,

where the overbar denotes a vertical average over the whole fluid depth at any = and t;
for example,

1 /"
(19) a 7/ udy.
nJo

Denoting the collective amplitudes by s(x,t) = (U, H, K, E), we pose the low-
dimensional assumption that the evolution of the physical variables may be expressed
in terms of the evolution of the four amplitudes (effectively equivalent to the “slaving”
principle of synergetics [18]):

(20) (p,u) =V(y,s) such that % =G(s).

In general, we cannot find these functions V and G exactly, as this would be tanta-
mount to exactly solving the original equations. Instead we determine asymptotic
approximations in the four small parameters.

It would be decidedly awkward to explicitly write out an asymptotic expansion
in the four asymptotic parameters. But it is also inappropriate to link their relative
magnitudes into one parameter as we need to find relatively high-order in « but not in
the others. Thus we apply an iterative algorithm in computer algebra to find the center
manifold and the evolution thereon, which is based directly upon the approximation
theorem 3 in [9, 46] and its variants, as explained in detail by Roberts [46]. An outline
of the procedure follows.
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The aim is to find the functional V and evolution G such that the pressure,
velocity, and turbulence fields described by (20) form actual solutions of the scaled
turbulent equations—this ensures fidelity between our model and the fluid dynamics
of the k-e equations. Suppose that at some stage in an iterative scheme we have some
approximation, ¥ and G. We then seek a correction, V' and G’, to obtain a more
accurate solution to the turbulence equations. Substituting

(p,u) =V +V' such that % =G+q

into the scaled turbulence equations, then rearranging, dropping products of correc-
tions, and using a leading-order approximation wherever factors multiply corrections
(see [46] for details), we obtain a system of equations for the corrections which is of
the form

(21) LY = R+£G,

where & = 0V/0s|g_g is the basis for the linear subspace My in (16), and, most
importantly, R is the residual of the scaled k-e equations using the current approx-
imation V and G. This homological equation is solved by choosing corrections G’ to
the evolution so that the right-hand side is in the range of L£; then the correction
to the fields V' is determined. The solution is made unique by requiring that the
amplitudes s have some specific physical meaning, here the vertical averages of the
fields as in (18). Then the current approximation ¥V and G is updated. The iteration
is repeated until the residual of the governing equations, R, becomes zero to some
order of error, whence the center manifold model will be accurate to the same order
of error (by the approximation theorem 3 of Carr [9]).

A computer algebra program was written to perform all the necessary detailed
algebra for this physical problem. A listing is given in Appendix B. The very impor-
tant feature of this iteration scheme is that it is performed until the residuals of the
actual governing equations are zero to some order of error. Thus the correctness of the
results that we present here is based only upon the correct evaluation of the residuals
and upon sufficient iterations to drive these to zero. The key to the correctness of the
results produced by the computer program is the proper coding of the k-e¢ turbulence
equations. These can be seen in the computed residuals within the iterative loop of
the program.

4. Constructing the low-dimensional model. As a first step in constructing
a dynamical model we discard any variation in z and any influence of slope 6. Thus
we first examine the dynamics of a uniform layer of turbulent fluid, k£ and € nonzero,
slowly decelerating, u — 0, due to turbulent drag on the bed.

4.1. The physical fields to low-order. As discussed in section 3.2 on the
vertical mixing operator, the leading-order approximation to the shape of the center
manifold is just the solutions to £V = 0. We deduce that

“%‘SgU(x’t)%(%)l/g, v 0, ke~ 62K (z,t )%(3)1/37

2 2/3
e~ §°E(z,t), and v~ 6C,L5E (%) .

At higher orders in the small parameters 6, ¥, A, and 7, we construct more refined
descriptions of the fluid flow and its dynamics through the evolution of the amplitudes.



MODELLING THE DYNAMICS OF TURBULENT FLOODS 433

However, we leave the influence of spatial variations through nonzero ¥ until the
next section.

By iterations of the scheme outlined in the previous section we obtain a basic
description of the turbulence production and decay. The nonlinear processes and
boundary condition corrections modify the cube-root profile and simultaneously de-
termine the slow evolution of the amplitudes.

It is useful to record the asymptotic expansions directly in terms of physical
quantities 7, @, k, and € rather than the corresponding artificially scaled quantities H,
U, K, and E. We find the following expressions for the first significant modifications
to the fields within the fluid, written in terms of a scaled vertical coordinate {( = y/n
which ranges from ¢ = 0 at the bed to ¢ =1 at the fluid surface:

(22a) wv=0,
-3
u = vo(Q)u + [Cerocv1(C) — orv2(Q)] %
9 _
(22b) + (Cez0c — %) v3(¢) M;Eue »
9
(22¢) k= wo(Q)k + [Caoevi(Q) + arva(Q)] @* + (Cezoe + o) v3(C) M,’; -
_o_ 22
(22d)  eme+ Celaeep(ﬁ)% + Ceaoe€a(() )\Z]; )
2 én’
VR I/()(C)? + [~Caoevi(€) + orva(Q)] 5
4
(228) + [CG2UEV3(<) - Ukl/4(<)} ek’Z

These expressions are correct to errors (9(56 + 23+ ’y3,19), where, for example, a
multinomial term

b
ayb.cod A B C 9D : el - > >
SN = O (6% + AP +49,97) if A+B+C landd > D.
The vertical structure functions occurring in the expressions on the right-hand side
of (22) are as follows:

e For the turbulent dissipation,

4 8 12

GP(C) = §<4/3 - §<2/3 + 35
23 405

calC) = —535¢ 128C 3584

as shown in Figure 1. See the effect of turbulent dissipation production, at
a rate proportional to #2, through the velocity shear. Since velocity shear is
largest near the bed, as seen in the shape of €,((), this enhances turbulent
dissipation € near the bed.

However, the natural turbulent dissipation within the fluid causes a greater
decay of turbulent dissipation near the bed, due to the smaller turbulent
energy there, and so counters this enhancement. Being proportional to 1/,
this effect on the e-profile is greatest in weakly turbulent flows.

e For the turbulent energy density,

vo(C) = %Cl/?’ +7 <112C1/3 _ égf)/i%) ’
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_ 16 5332 . 8 L3
vi(Q) = 735¢ 1358 Tt
1 4 3
va(C) = §C5/3 - §CQ/3 + T0<1/3’
_ 2T s 9 a9 g
vs(Q) = —555¢ + 51¢ 584"

as shown in Figure 2. Observe the cube-root structure in the vertical is mod-
ified to vp(C). As shown in Figure 2, when « is set to 1 to recover the original
boundary conditions from (15), the cube-root dependence is maintained near
the bed but is effectively flattened near the fluid surface to closely approx-
imate the absence of turbulent energy flux through the free surface. This
correction is simultaneously determined with a corresponding decay term in
the evolution equations, as seen below, due to the removal of the sustaining
flux. We look even closer at the effects of modifying the free surface boundary
conditions in section 4.2.

Also the effect of turbulent production, proportional to @2, through the ve-
locity shear is largest near the bed; as seen in the shape of vy (¢) and v3(¢),
this enhances turbulent energy k& near the bed.

However, the natural turbulent dissipation within the fluid causes a relatively
greater decay of turbulent energy near the bed as compared with the body
of the fluid, as seen in v3(¢), and so counters this enhancement. Being pro-
portional to 1/, this effect on the k-profile is greatest in weakly turbulent
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F1G. 2. The vertical structure functions for the turbulent energy density and horizontal velocity
fields within the fluid as a function of the scaled vertical coordinate { = y/n: , vo(CQ) (with
y=1); - - - 10 x v1(¢); ————, 10 x v2(¢); -+~ - - , 10 x v3(¢).

flows.

e The basic cube-root structure of the horizontal velocity is modified in exactly

the same way and for the same reasons as for the basic turbulent energy
k-profile.
Modifications of the velocity profile due to the turbulent production and
dissipation occur, but they occur primarily through the indirect effects of
modifications to the turbulent diffusivity profile v(¢). These are weak due to
the subtractions in (22b).

e The corresponding vertical structure of the turbulent mixing coefficient v is
shown in Figure 3, where the five components are

v(C) = ?@/S - §C2,

9
() = Dot = TG 4 T,
Q) = 220+ 26+ 2,
vo(Q) = S = 300 4 22,
() = o (P (= S,

Simultaneously with the determination of the above fields, the solvability con-
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dition for the linear equations of the form (21) supplies terms in the asymptotic,
low-dimensional evolution equations for the amplitudes of the four critical modes.
Writing these in terms of physical variables we find, with errors (9(66 + A3 + 43, 19),
that

(23a) n ~ 0,

ot

ot 56y A eu 16 [32 vl
23b a 7_706 [ = 7706 e T
L TR i T R [45 17 U’“} 2k

ok 7T Cuoll . 56y0 - 16 32C0.] 7
23 CANPY - =0 g e V.
@) 5 {8 1607 } T Blognz " 243 [ 1507 } ol

e 9 , & 256 Ve
2 =~ ACo——+ ——Co—it?
@3d) 7~ Al F ol g
where
]%2
(24) v(x,t) = Cﬂ?

is a measure of the local turbulent diffusivity. These form a crude approximation
to the evolution equations for the four amplitudes of the model when there are no
horizontal variations.
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TABLE 1
Terms in the series expansions in vy of selected coefficients in the model for homogeneous tur-
bulent decay. The last row is the sum of known terms at v = 1.

In Ou /0t In Ok/0t
—o/n? \ —ouX/n? \ a3 /n2k a2 /n? \ —€
1 0 +1.03889 | +0.06542 +0.72385 | +1.03100
v +0.69136 | —0.86096 | +0.01388 || —0.13682 | —0.05665
72 +0.22783 | +0.14923 | —0.01564 —0.02193 | +0.01602
’73 +0.07479 | +0.02700 | —0.00921 +0.00569 | +0.00250
’74 +0.02448 | 40.00462 —0.00333 +0.00814 | +40.00027
’75 +0.00801 +0.00069 | —0.00080 +0.00549 | —0.00002
~% || 40.00262 | +0.00006 | —0.00003 || +0.00300 | —0.00003
77 —0.00086 | —0.00002 | +0.00017 +0.00147 | —0.00001

[ > [ 102995 [ 035950 [ 0.05040 [[ 0.58892 [ 0.99307

The two fifth-order evolution equations (23¢)—(23d) summarize the turbulent pro-
duction and decay processes. Setting the artificial parameters A = v = 1 to approxi-
mate the dynamics of the original problem, observe, first, the natural decay of turbu-
lent energy and dissipation in the body of the fluid, second, decay of turbulent energy
with coefficient proportional to 7/n? via turbulent mixing transporting energy to the
bed, and third, the generation of turbulence energy and its dissipation through the
shear in the vertical, proportional to 7u?/n?.

The horizontal velocity evolution (23b) similarly includes terms 7i/n?, which
represents the effective drag of the bottom via turbulent mixing to the bed, and weak
cubic, proportional to 7u3/(n?k), and linear, proportional to éu/k, modification of
this drag through changes in the stress tensor in the momentum equations. (Note
that the coefficients are the difference of two terms, and that with the usual values
for the parameters (4) there is significant cancellation.)

The free surface stays horizontal, (23a), because there are no horizontal gradients
until we look at order ¥ effects in a later section.

4.2. Convergence in the artificial parameters. One limitation on the accu-
racy of the above model is that even within the k-e¢ model of turbulence the coefficients
are only approximate. This is due to both the modification of the free surface bound-
ary conditions on u and k to (14)—(15) and the introduction of X in (13). Although
setting v = 1 recovers the original boundary conditions (6)—(7) and A = 1 recovers
the original k-e model, there is no certainty that this will give a model which is a
good approximation to the “true” system. In essence the coefficients in the model are
multivariable Taylor series in v and in A. In this subsection we present evidence that
these series converge for v = A = 1, and so we can form a reasonable model.

Arbitrarily high-order terms in the center manifold expansion may be computed
in principle. Our computer algebra program currently is limited by memory and time
constraints to about 8th order in y and lower orders in other parameters.? This is
only attainable by the simplification of setting the k-¢ parameters to the conventional
numerical values in (4). By executing the REDUCE program and discarding terms
(’)(56, ~8, 22, 19), we discover more terms in the series in . Listed in Table 1 are the
expansions of some of the coefficients appearing later in the models.

Look down the columns in the table and see that the coefficients in each series

2In some applications [31, 43, 55] such routine computations can be performed to 30th order and
are convincingly used to show the convergence or otherwise of the series expansions.
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generally decrease by at least a factor of two. This suggests that the radii of conver-
gence of the series in v are roughly two or more. Thus simply evaluating the series at
~ =1 is reasonably good—some are shown in the bottom line of the table.?

The convergence in the parameter A is problematical because it seems to appear
always in the combination \n?€/(k), that is An?€2/k3. Thus convergence depends
upon the properties of the solution which are generally unknown beforehand. We
suggest that truncating to linear terms in A forms an adequate approximation. It
seems at least self-consistent to do this as later homogeneous solutions, namely (30)—
(33), show a balance for the relatively small value 7%€2/k® ~ 0.2. Thus the nonlinear
terms in A are generally expected to have a negligible influence in most flows of
interest.*

First, the series are summed for v = 1 as discussed in the previous subsection.
Then introducing

n? /v vertical mixing time
— X s
k/e turbulent eddy time

Anle? B

(25) A= 5

Cu

for brevity we write the model of decay of homogeneous turbulent flow as follows,
with errors (’)(66, A2, 19),

(26a) % =0,

(26b) % = —(1.030 + 0.359 X)% +(0.0504 — 0.243 x>f7§;’ :
(26¢) %’f — —(0.0927 + 0.993 X);i +(0.589 40516 X)ﬁg ’
(264) %i = —2.101 Z\f]z + (1552 — 3.215A) V/genuj ‘

Note that setting A = 1 to recover the original problem is just equivalent to using
A = n?€2/k3. Observe that the first terms on the right-hand sides of the above

equations represent decay terms through, for example, in the % and k equations,
turbulent transport to the stream bed. The last terms in the k and € equations
represent the production of turbulence through the velocity shear.

One feature of the model derived here is that it has no adjustable coefficients. All
constants are derived from well-known physical parameters and accepted constants
of the k-e equations. Despite its relative complexity, the model has been systemat-
ically derived and the constants which appear are well defined. However, there are
adjustable parameters, namely, the order of truncation of the series expansions. The
model (26), for example, contains just the low-order terms in expansions in § and .

3 Actually, the introduction of the parameter a, and the selection of a = 1/2, was motivated by
our original series in v exhibiting singularities for v &~ —1, as indicated by Domb-Sykes plots [21].
These singularities ruined the convergence at v = 1. However, an Euler transform of the series to
accelerate convergence is precisely equivalent to choosing nonzero a, and a few numerical experiments
lead to a ~ 1/2 causing good convergence.

4We noticed in simulations that if ever 772E2/l_c3 happened to become as large as approximately 3
at any point in z and ¢, then the dynamics became rapidly unstable. It may be that higher-order
terms in the parameter A, perhaps formed into a Padé approximant, could stabilize such a local
instability. However, this aspect has not been explored as it is likely to involve infeasible amounts of
algebraic computation.
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4.3. Dynamics of spatial structure. The leading-order effect of horizontal
gradients, such as that due to a sloping free surface, is found by computing terms of
order ¥ in the asymptotic expansions. We describe these in this subsection.

Dominantly, horizontal gradients affect the velocity and pressure fields. By com-
puting terms to order 639 we find that the velocity fields (22a)—(22b) are modified
to

.
(27a) v = —C4/3178—Z + (’)(66 + 23 +43 4 193)7
2
0
(27b) u:---+303(§)gg 6—Z+O(66+)\3+73+193),

where the - - - indicate the terms on the right-hand side of (22b) and where v3(¢) is
drawn in Figure 2. The shape of v is required by the continuity equation. The modi-
fication to u asserts reasonably that at low levels of turbulence, large 1/7, horizontal
accelerations through decreasing depth, n, < 0, cause the fluid to respond with a
flatter profile through a subtraction of v3(¢) from vo(¢), as seen in Figure 2.

The structure of the fields within the fluid rapidly become more complicated at
higher order. We do not detail the fields any more.

By executing the computer algebra program and discarding generated terms
(’)(66, ~6. 22, 192), we discover first-order effects of horizontal variations with sufficient
terms in the series in v to sum them reliably for v = 1. We find the same production
and decay terms identified in (26) and, in addition, extra terms in the horizontal
gradients. Using the accepted values (4) for the constants of the k-e¢ equations, we
obtain the following model with our best estimates of its coefficients:

on d(nu)
2 =
(282) ot ozr '’
ou - DU - pud
—— ~ —(1.030 + 0.359 \)— + (0.0504 — 0.243 \) —
T ( + )n2+( )772,€
+ 0961—0019§—(0019—0087X)a—2 _on
- 0u ~ U2 Ok
— (1.1 104 \)i— — (0.032 — 0. -
(1.105 + 0.10 )\)uax (0.03 0056/\)ka$
< u? Oe
28h 025 — 0.041 \) — —
(28b) + (0.025 — 0.0 )éax’
Ok k3 TR
o~ 0.0927—— —0.993€ + (0. 516 \) —
o 0.09 7772€ 0.993 € + (0.589 + 0.516 ) —
~ 877
—(0.02 011 \Ngu (0 — =2
(0.025 + 0.0 )gu( 8m>
-~ Ok -~ -0
— (1.106 — 0. i— — (0. . =
(1.106 0065)\)uax (0030+0056A)k8x
-k Oe
(28¢) (0,025 — 0.060 3)“F %€
€ Oz
0€ e2 < Deu?
-~ —2101— + (1.552 — 3.215 \) =
o 0 k+( 552 — 3.215 \) o

+ (—0.006 +0.562 X) g% < _ gZ)
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- 0u ~€u Ok <~ _O€
2 —0.173 X\e— + 0. — == _—(1+0. G
(28d) 0 73/\€8m+0533>\k o ( +0735/\)u8x

We expect that the coefficients in the above equations, when considered as a model
of the k-e¢ equations given in section 2, are accurate as shown. Except for the surface
equation (28a), the first line in each equation is the same as in the horizontally
homogeneous model (23); subsequent lines detail the additional terms needed to begin
modelling long waves. A simpler version of the above model, obtained by omitting
terms with small coefficients, is recorded in the introduction as the model (1).

Equation (28a) is an exact statement of the conservation of water and is not
modified by any higher-order effects. To order §2¥, it may be written as

(29a) L4 p— =0,

which is a linear description of the conservation of water. Similarly, with § = 0 and in
very low levels of turbulence (7 = 0), the horizontal momentum equation (28b) may
be written to order 639 as

ou on

29b — =—-0.961g—.
(29b) 5 0.96 9%

This describes the horizontal acceleration due to slope of the fluid surface. These last
two coupled equations form a standard description of linear wave dynamics except
for one remarkable feature: the effect of gravity is reduced by the factor 0.961. For
example, this would predict that even low levels of turbulence reduce the phase speed
of waves by about two percent. As in thin films of viscous fluid [44], the phenomenon
is due to the response of the fluid, approximately vo(¢) shown in Figure 2, being
at an angle to the forcing 1 (either due to gravity or horizontal pressure gradients)
when considered in the space of functions on [0,7]. Consequently, the forcing is less
effective. Such a depression in phase speed may be observable in the propagation of
long waves on turbulent flow.?

Returning to the order §° momentum equation (28b), we note several interesting
effects:

e The first line contains the turbulent drag terms identified in the previous
subsection.

e The second lines describe the effects of surface and bed slope. Within the
square brackets

— the first term gives the depression of wave speed discussed above;

— the second term very weakly enhances the phase speed correction in
turbulent flow;

— whereas it is difficult to ascribe one definite cause to the last term,
coefficient modifications of the form %2 /k are common in this model and
reflect the relative importance of the turbulence on the mean flow.

e The third and fourth lines are dominated by the nonlinear advection term @,
with coefficient approximately 1.1. This coefficient is larger than 1 because of
the shear: the maximum u(y) > @ advects itself faster than @. This third line
also shows small “cross-talk” effects in the advection through the %2 (log l_g)l
and u? (log€),, terms.

5This modelling approach shows that where there is vertical or cross-sectional structure, depth-
averaging or cross-sectional integration is generally unsound as a modelling tool. The reason is that it
is the size and structure of the dynamical modes which determine the evolution (here approximately
cube-root) and not the particular amplitudes used to measure the motion (here depth averages).
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The dynamics of k and ¢ averages are given by equations (28¢)—(28d).

e The first lines of each equation are the same turbulent production and decay
terms identified in the previous subsection.

e The next line in each equation may arise from the modification of the turbu-
lent production through the change of the velocity profile, seen in (27b), due
to horizontal acceleration.

e The remaining terms simply represent horizontal advection by the fluid veloc-
ity. Note that different properties are advected at different effective speeds®
as indicated by the different coefficients of the %d/dx terms—1.1 for @ and k,
and 1 for €

The model, (1), reported in the introduction is a simplified version of (28). The
solutions described in the next section show that the terms neglected from (28) in
writing (1) are relatively small, contributing at most a few percent in the numerical
balance of the terms, and so may be neglected at least for initial exploration.

The model (28) is purely hyperbolic, so a spatial diffusion is incorporated into (1)
to help stabilize simulations. It was physically appealing to incorporate the turbulent
diffusion (71, ), into the % equation, and similarly for k and € The coefficients of
these terms were determined by executing the computer algebra program to higher
order in spatial derivatives but lower order in the artificial parameter A\. That the
coefficients are larger than that of turbulent diffusion in the k-e-model is due to the
same process as that giving the enhanced Trouton vicosity in laminar flows, e.g.,
[38]. Such diffusion made hardly any difference to the simulations as a whole yet
usefully avoided the generation of unphysical and ruinous spikes in the numerical so-
lution. Higher-order terms in lateral derivatives may be able to refine the long-wave
expansion employed here and controlled by the parameter ¢. Although the long-wave
approximation has been shown to converge in some simple dynamical circumstances
[31, 43, 55], such higher-order derivative terms may easily destabilize the model (1),
would involve enormous algebra to compute, and probably add little to the struc-
turally stable model (1). An important parameter is the rate of attraction to the
center manifold of the model, here locally proportional to /n?: when this is large
the long-wave approximation is expected to be very good. Fortunately, in this appli-
cation relatively rapid lateral variations are closely associated with the generation of
turbulence; hence the local eddy diffusivity v is typically large exactly where needed
to resolve the lateral structure. Thus in this work we truncate the model (1) to the
lateral effective diffusion terms.

5. Predictions of the new model. In this section we investigate some of the
predictions the newly derived model (1) might make. We look at decaying turbu-
lence, uniform flow on slopes, approximation to the St Venant equations, and a dam
break simulation.

5.1. Decaying turbulence. Homogeneous turbulence decays algebraically. If
there is no slope (6 = 0), no variations in z, no mean flow (2 = 0), and no surface
waves (1 = const), then it is consistent to seek solutions of the model (1) in the form
kE oc t72 and € o< t~3. Substituting and solving for the constants of proportionality,
the model 1, or (28), predicts the turbulence decays according to

(30) k~897Tn%t2, &e~1287%°%, 0 ~05657°t"", X~ 0227

SThough due to the nonlinear interaction terms we should really report on the speeds associated
with the characteristics of the equations.
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for large time ¢. The turbulence ultimately decays with the balance € ~ 0.48 k3/2 /7.
However, the transients before this large time behavior may be long. There are
two regimes of interest characterized by large and small A compared to 0.227. (Recall
from (25) that ) is the ratio of the vertical mixing time to the turbulent eddy mixing
time.) )
e For small A\, high turbulence k, and low dissipation €, the dissipation is roughly
constant, actually

1

\/ 6 4+ 15.1/k3

as the turbulence decays to (30) on a time-scale of approximately 2(n?/€)

e For large 5\, the vertical mixing time is relatively rapid and the turbulence
decays with a different power law for some time. We find that € oc k',
which is only a little different from (30). The rate of decay towards (30) is
relatively slow,

€~

1/3

(k&) ~ A (t799,0.90¢ )

and forms a long lasting transient.

The above results are for a stationary fluid. Instead, if the fluid is moving with
uniform velocity on a horizontal bed, then the characteristics of the decaying bulk
motion and turbulence are different in detail. We seek solutions of the model (1)
in the form k o< t=2 and € o t~3, as before, but now with @ o t~!. Substituting
and solving for the constants of proportionality, the model (1) may be rewritten as
a generalized eigenvalue problem for A. It is then straightforward to determine that
the only positive solution is

u~6.24nt", kE~2320%72 €~49.67%t3,
(31) 7~ 0987271 X~ 0.198.

Numerical solutions show that there are long lasting transients of a similar nature
to those mentioned above for a stationary fluid. We do not elaborate further as this
class of solutions is less likely to be of interest in applications.

5.2. Roll waves on turbulence flow down a slope. Water flowing down a
slope generates turbulence that provides the drag to balance the gravitational forcing.
But if we suppose only the turbulent parameters are in quasi equilibrium, but not
the speed, then a St Venant approximation is obtained to the flow dynamics. When
the flow is fast enough and the turbulence weak enough, we see the spontaneous
development of turbulent roll waves. For flow down a slope the turbulent roll waves
appear with a finite wavelength (see Figure 4), whereas the St Venant approximation
predicts an infinite wavelength [34].

Let the downward bed slope be 6 # 0, but as in the previous subsection assume
there are no variations in z, that is, just a mean flow (@ # 0) with no surface waves
(n = const). Then it is consistent to seek solutions of the model (1) in the form
o n'/2603/2 k « nb, and € < n'/203/2. Substituting and solving for the constants
of proportionality leads to a nonlinearly perturbed eigenvalue problem for X which is
solved iteratively to give

w3112 (g0) 2, k~216n90, €~ 1.367%(g0)%/2,
(32) 7~ 0.3087°/2(g0)/2, X ~0.184.
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F1G. 4. The leading growth-rate, the real part of the eigenvalue o, for turbulent roll waves down
the critical slope 8 = 0.602 showing that an instability will first arise at finite wavenumber [.

We expect this flow to be established on a time-scale of the vertical mixing, which is

[V

The flow (32) appears to have a high level of turbulence consistent with flow along a
very rough channel.

Another interesting balance occurs when we assume that the production of tur-
bulence parameters, k and €, equals their dissipation through natural dissipation and
bed drag. This leads to a reduced model in the form of St Venant’s equation used in
open channel flow, e.g., [34]. Assume that at all times the production and dissipation
of k and € are given in the first lines on the right-hand sides of (1c) and (1d). That is,
assume that the bed slope is small enough and that the flow is evolving slowly enough
that spatial and temporal gradients are negligible. Then seek a balance with & o< @2
and € o< @? to find

(33) k~02240°, €~0.04530%/n, ©~0.0992na, A~ 0.184.

With this balance the momentum equation (1b) becomes

o u? on _ou 0 _ Ou
(34) 5 = —0.100? +0.96 g <0 — ax) - l.llu% + o <0'143w78x> ,
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which has exactly the same form as St Venant’s equation for open channel flow except
for the longitudinal diffusion term 0, (vot,) for coefficient vy = 0.143 an. Such a dif-
fusion term, with previously unknown but assumed constant diffusivity, was included
in St Venant’s model by Needham and Merkin [34]—that vy > ¥ is due to the same
process as that giving the Trouton vicosity in laminar flows, e.g., [38]. The three other
coefficients are worthy of comment: the self-advection coefficient of (1.11) accounts
for the vertical nonuniformity of the velocity profile with mean #; the influence of
gravity is reduced to 0.96 g because, as explained earlier for (29b), the response of
the fluid flow is not constant in the vertical so some of gravitational forcing is not
used; and lastly the bed drag u?/n has coefficient 0.100 which is larger than typical
values. However, note that such drag coefficients have to vary depending upon the
roughness of the channel bottom as often expressed by different roughness coefficients
in Manning’s law, e.g., [6, p. 246] or [23, p. 137]. We surmise that the flows we
describe with model (1) have strong mixing in the vertical due to strong turbulence
generated by a rough channel bed or other extremely turbulent flows such as breaking
waves or dam spillways.

Needham and Merkin [34] analyzed a model close to (34) and deduced that the
balanced turbulent flow (33) became unstable if the Froude number F' > 4. The in-
stability developed into roll waves propagating along the flow; long waves were most
unstable. Here the Froude number F' ~ 0.966/0.1 and so we might expect roll waves
to develop on flow down very steep slopes, 8 > 0.42, because of the effectiveness
of turbulent damping on lesser slopes. Analysis of the full model (1), rather than
the St Venant approximation (34), shows a slightly different picture. Seeking solu-
tions to the model (1) linearized about the equilibrium flow (32) for nondimensional
depth n = 1 and proportional to exp(ilz 4+ at) leads to an eigenproblem for the com-
plex eigenvalue a as a function of wavenumber [ and the slope 6. Plotted in Figure 4
is the growth-rate, the real part of the eigenvalue «, as a function of wavenumber [ for
the critical slope 6. = 0.602: observe the zero growth-rate at wavenumber [ = 0.551;
for larger slopes 0, R{a} becomes positive here. In contrast to the St Venant model,
the unstable roll waves are here predicted to have a finite wavelength 27/l = 11.4.
The roll waves have similar shapes to that found by Needham and Merkin [34] and
for many other roll waves on a fluid: see in Figure 5 the steepening at the front of
the roll wave and the relatively longer tail. Here see we predict the turbulent inten-
sity k is maximum a little behind the peak of the wave. In contrast to Needham and
Merkin’s model, we found no evidence for subcritical roll waves in our simulations.
One point of interest arose in the eigenvalue computations: over a wide range of slopes
and wavenumbers (< 1) we observed that the leading three eigenvalues were generally
well separated from the fourth. For example, for slope § = 0.1, three eigenvalues had
R{a} =~ —0.2 whereas the other had R{a} ~ —0.9. This suggests that for many
purposes a three mode model of turbulent flow may be sufficient rather than the four
mode model (1) derived here. We leave this for further research.

5.3. Simulate a dam breaking. One of the canonical flows of shallow water
occurs after a dam breaks. Here we simulate such a flow and resolve the water
slumping downstream and becoming extremely turbulent as it does so. For simplicity
we use the model (1) reported in the introduction.

Imagine a dam at = 0 initially holding back water of nondimensional depth n =
1. At time ¢t = 0 the dam breaks and releases the water to rush downstream. To
avoid overly poor conditioning in the numerics we let the water in front of the dam
be of depth n = 0.1 (all quantities will be nondimensional so that in effect g = 1).
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(2) 6=0.7

Fi1Gg. 5. Profile of two roll waves on different slopes obtained by numerical simulation of
model (1) until the solutions settled on a steadily propagating wave: solid, fluid depth n; dashed,
mean velocity @/3; and dot-dash, mean turbulent intensity k/2.

Also, to smooth the initial few time steps, we actually set the initial depth 7 to a
tanh profile that smoothly varies between these extremes such that the water slope
was a maximum of 2 (rather large under the slowly varying assumption) at the dam.
The water is assumed initially quiescent, w = 0 throughout, and has a low level of
turbulence, somewhat arbitrarily chosen to be & = 0.0001. Turbulent dissipation
is initially set such that A = 0.227 so that the balance of decaying turbulence (30)
holds throughout.

The model (1) is simply discretized on a regular grid in space-time with a time
step of At =1/10 and space step of Az = 1/10. The equations are discretized using
a stencil 3 points wide in space using second-order accurate centered differencing
in space. The resulting ordinary differential equations together with appropriate
boundary conditions are integrated forward in time (with constant time step) as a set
of differential algebraic equations using the robust, second-order, backward difference
solver of [49]. The domain of simulation extended from six dam heights to the left
behind the dam to six dam heights downstream. We integrated over a time t = 6,
which is long enough for the disturbance to nearly reach the ends of the computational
domain (linear waves on the dammed water having nondimensional speed 1).

The results of this simulation are shown in Figures 6 and 7. Observe that when
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(a) water depth (b) velocity

F1G. 6. Simulation of dam breaking showing (a) the water depth n and (b) the mean downstream
velocity u. Observe the formation of a bore with superposed waves.

(a) energy density (b) dissipation

Fic. 7. Simulation of dam breaking showing the time evolution of the turbulence parameters
(note the view point is rotated from Figure 6): (a) the turbulent energy density k is highest just a
little behind the bore and then tails away; (b) the turbulent dissipation € behaves similarly; (c) the
turbulent eddy viscosity U is greatest at the front of the bore; and (d) the parameter X, apart from a
peak at the front of the bore, is generally depressed from the decaying balance value of 0.227 in (30).
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F1G. 8. Compare model (1) (solid lines) with the experiments of Stansby, Chegini, and Barnes
[63, Fig. 8(c), p. 423] (dots), where water of depth 10 cm (n = 1) behind a dam rushes forward over

water of depth 4.5 cm (n = 0.45) after the dam (at © = 0) breaks. The time-scale T = \/H/g =
0.1 secs.

the dam breaks, the water slumps down and rushes downstream in a turbulent bore.
The bore appears undular but may be evolving towards a series of solitary waves—
they cannot be differentiated on this time-scale. The turbulent structure shown in
Figure 7 has interesting features. Apparently the energy density peaks a little behind
the bore, then decays approximately linearly with distance. It appears that up to
time ¢ = 7 the generation of turbulence is still significantly greater than its decay
as the peak is still growing. The turbulent dissipation and eddy viscosity behave
similarly, though the eddy viscosity appears to peak much closer to the front of the
turbulent bore. The parameter A plotted in Figure 7(d) reaffirms that relatively small
values appear relevant to such flows.” The peak of A at the front of the bore predicts
that there is a lot of vertical mixing at the front, but less so behind the bore where A
is smaller. All of the above seem physically reasonable.

A further similar simulation matches the experiments of Stansby, Chegini, and
Barnes [53]. In Figure 8 we plot a comparison of the water depth between the
model (1) and the experiment reported in Figure 8(c) of Stansby, Chegini, and
Barnes.® The model (1) was solved with Az = 1/6, At = 1/10 and initially n a

"We find that our model (1) becomes quickly unstable if ever the parameter A>3 approximately.
8Unfortunately it does not seem reasonable to compare with the other two experiments of Stansby,
Chegini, and Barnes [53] as in both it appears from our digitization that water is not conserved by
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tanh profile, @ = 0, A = 0.227, and k = 10~%, except for a bump in k to 0.018 to
represent the initial plunging jet seen in the experiments. The location of the turbu-
lent bore is reasonably well predicted. It appears that the height of the undulations
in the model’s bore is approximately that of the turbulent fluctuations seen in the
water level.

This model that we have derived and solved in some cases of interest explicitly
accounts for the spatio-temporal variations of the intensity and broad nature of the
turbulence underlying the flow of shallow water.

Appendix A. Comments on theory in this application. This appendix
addresses the connection to the rigorous theory of center manifolds in this applica-
tion. We emphasize that throughout this paper we describe the application of center
manifold techniques and not the application of the rigorous center manifold theory.
There are two main reasons for this which we elaborate on below.

First, here we construct an infinite dimensional center manifold. At each point
in x there are four degrees of freedom, parametrized by 7, @, k, and € but there are
an infinitude of x positions and so there is an infinite number of degrees of freedom
in the mathematical model. However, there is currently very little theory on infinite
dimensional center manifolds appearing via slowly varying approximations, e.g., [16]
and what there is does not rigorously apply here, nor does it apply directly to many
other physically interesting models such as dispersion in pipes [32], laminar long-
wave, thin-film flows [44], and the dynamics in flow reactors [5]; the principal reason
is that 0/0x is an unbounded operator, because of its small scale characteristics,
whereas the slowly varying approximation treats 0d/0x as small. Thus we use the
formal technique of constructing complete low-dimensional models [10, 39, 40, 41, 42],
techniques suggested and developed by standard applications of the theory. We expect
that eventually theory will be developed which supports the application of center
manifold concepts to slowly varying approximations.

But there is a second obstacle to supporting this model with theory. In standard
applications of center manifold theory the nonlinear terms in the original problem
are required to be smooth in the neighborhood of the equilibrium under consideration
(here the origin, a state of no flow, and no turbulence). However, here many nonlinear
terms are definitely not smooth; for example, turbulent dispersion terms such as

2 i . 2
% (Cﬂ%g—g) and interaction terms such as Ccp & are unbounded as (u,k,e) — 0.

In rigorous applications of center manifold theory, one may choose the various critical
modes and parameters to have any set of relative orders of magnitude. The resulting
asymptotic expressions are the same [39], it is only the sequence in which the terms
appear that changes with a change in relative orders of magnitude. Indeed, this
reflects a very desirable property of a modelling procedure, namely, that the results
are essentially independent of arbitrary human-made assumptions (such as order of
magnitude) in the analysis. However, in this application the highly nonsmooth nature
of the original equations means that in order to apply the center manifold techniques
we need to choose carefully the various orders of magnitudes of the variables and
parameters, via (17). The aim, as in all asymptotic analyses, is to obtain a tractable
and physically relevant leading order problem. The techniques of center manifold

up to 6-7%, compared to better than 1% for their Figure 8(c). This is a significant discrepancy
which, if associated with the identification of the bore, would correspond to an error in its location
of up to Az ~ 1.5 (15cm). The discrepancy is likely to be due to entrained air [53, p. 422] which we
have not attempted to model, and which is likely to be insignificant in a real dam break [53, p. 407].
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theorems are then applied, it is just that the current center manifold theorems cannot
give rigorous justification.

Notwithstanding these theoretical limitations we consider that the systematic
techniques are applicable because of the attractivity of the manifold of equilibria,
My, of the linear operator £. In the spirit of center manifold theory, we claim that
the “small nonlinear” terms on the right-hand side of (13) just perturb the shape
of My to a nearby manifold M and perturb the evolution thereon. Thus our last
task, and the one fulfilled in this appendix, is to prove the exponential decay to Mg
at a nonzero level of turbulence. The “small nonlinear” terms will affect the rate of
decay to M, perhaps slowing the attraction in some regimes, but by continuity, since
My is exponentially attractive, M will be attractive for small enough nonlinearity.

Linearizing the k-e equations (13) about My,

(35) (poruo) = (9(h =), 4 (1) "Ula,0),0. H(w,0), 3 (1) /K (@,0), E(w.1))

we obtain (0, 0u/0t) = L(p, w), where the linear operator L is

-0 0 % 0 0 0 7
9 d- 8 [ dug 2k 9 ([ oug k2

0 & () 0 0 G (%) -af(ed)

9- 1ol - 2 0-
0 0 0 0 . w0 . 0
o) 0- 2k Ok w0 Ok

0 0 0 0 Seg (Mg o) _Ceg (snk)
C.o (ko

L 0 0 0 0 0 037,(*37,) |

subject to boundary conditions

2
(36) p—&—gk:O ony=h,
(37) u=0 ony=0,
ou u
38 gty —h
(39) =0 oy =,
(39) v=0 ony=0,
(40) k=0 ony=0,
ok k
41 e —h
(42) yz/g(%% asy — 0,
(43) g—;:() ony=nh.

We seek solutions proportional to exp(At). The first thing to note is that we
address a generalized eigenproblem

o)=L

as the first row of £ comes from the continuity equation.
Thus the first row, with the boundary condition (39), gives v = 0 for any eigen-
value \. Furthermore, the third row, from the vertical momentum equation with the
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pressure boundary condition (36), then gives that p = —2k for any A. These con-
siderations give no constraint on the eigenvalue \. Ignoring the p and v components
of the eigenproblem then leads to a standard eigenproblem—one where the operator
is in block, upper-triangular form. Thus consider the components in turn, starting
from the last, and we show that all eigenvalues must be nonpositive and thus My is
attractive.

e For any eigenfunction w, if turbulent dissipation € # 0, then

hi/3 9 Oe
44 —(?P=) =
(44) To. Oy (y 5y> ©
where
_ow
160

is the time-scale of cross-depth turbulent diffusion. Multiplying (44) by e,
h . .
Jo -+ -dy, and integrating by parts we deduce

2
pass [ y?? (S—y) dy 0
= To'e foh ezdy — )

provided that the boundary conditions (43) (assuming € /4 oo for y — h) and

(45) eg—; = 0(y72/3) asy — 0
are satisfied. The equality A = 0 holds if and only if Je/dy = 0, which leads
to

€= E(z,1),

a function independent of y. Since (44) indicates nontrivial solutions near
y = 0 are of the form € ~ A 4+ By'/3, then the condition (45) is effectively
equivalent to (42).
Further, apply Sturm-Liouville theory to (44) under boundary conditions (43)
and (42). Changing the vertical variable from y = h2® to z, the eigenvalue
problem becomes

82

8—22 =9To \2%¢,
(a form of Bessel’s equation [1, (9.1.51)]) with the following normal separate
boundary conditions:

0

o ony=0andy=h.

0z
Applying standard Sturm—Liouville theory, see, for example, Birkhoff and
Rota [8, pp. 296] or Hartman [20, pp. 337 and the following ones], we see that
the eigenvalues are discrete and must tend to infinity:

0=A1>X > - — —00.
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Thus, linearly, solutions in the neighborhood of the manifold M are attracted
exponentially quickly to it (at a rate at least as fast as exp(Aat)).
Sturm—Liouville theory may be also applied directly for the v and k com-
ponents to show that any eigenvalues associated primarily with them are
discrete. We do not record the details in the following.

Similarly, for any eigenfunction w, if turbulent dissipation ¢ = 0 but the
turbulent energy k # 0, then

h1/3 9 ok 2k
46 (= = \k.
(46) Toy 0y (y 0y * 3y1/3)

Multiplying this by y?/® we rewrite it as

RS .0 )
——y AP (7R | = Mk
Toky oy {y Oy (y )] 4

Multiplying by k, foh ---dy and integrating by parts we deduce that

42
pasa fy v? [ R dy
- Toy foh y2/3k2dy

<0

)

provided (41) and
(47) k=o (y1/12) asy — 0

are satisfied. The equality A = 0 holds here if and only if g—y (y=1/3k) = 0,
which together with boundary condition (40) implies that

k=K@ ni($)"”
with a function K (z,t) independent of y. Since the indicial equation of (46)
indicates that nontrivial solutions near y = 0 are of the form k ~ Ay~—2/3 +
By'/3, then the boundary condition (47) is equivalent to (40).
e The only possible eigenvalue associated with nonzero 7 is 0.

e Last, for any eigenfunction u, if ¢ = k = 1 = 0 but the horizontal velocity u #
0, then

Y30 [ 550u
> v /322
(48) T oy <y ay) Au,

and we rewrite this as

RS .0 0
o139 | a9 (o —1/3 _
T Y by [y By (y “)] At

Multiplying by u, foh ---dy and integrating by parts we deduce that

2
N Jo y*? {% (y‘”%)} dy 0
T fohuzdy -
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provided (38) and
(49) u:0<y1/6) asy — 0

are satisfied. Similarly to the € and k equations, the equality A = 0 holds
here if and only if g—y (y='/3u) = 0. This and the boundary condition (40)
yields a unique solution

w=Uz,t)i(2)"*

with U(x,t) independent of y. Since the indicial equation of (48) indicates
nontrivial solutions near y = 0 are of the form v ~ A + By'/3, then the
boundary condition (49) is effectively equivalent to (37).

We have proven that if the boundary conditions (36)—(43) are satisfied, then,
except for the four-fold eigenvalue zero whose eigenfunctions span My, the eigenvalues
of L are negative and bounded away from 0. Thus we expect the manifold (35)
is locally attractive. Further, the time-scale of this attraction is the cross-depth
turbulent diffusion time-scale T

Appendix B. Computer algebra constructs the model.

Here we list the REDUCE® computer algebra program used to derive the long-wave
models of turbulent flow.

The algorithm is the iterative algorithm described in [46, 48] adapted to this diffi-
cult asymptotic problem. The program refines the description of the center manifold
and the evolution thereon until the residual of the governing differential equations are
driven to zero, to some asymptotic error. The key to the correctness of the results is
then in the correct coding of the residuals—see inside the iterative loop.

Note that because the thickness of the film is continuously varying in space and
time, and because of the cube-root structure in the vertical, it is convenient to work
with equations in terms of a scaled vertical coordinate z = {/y/n so that the free
surface of the film is always z = 1. However, the turbulence equations are not explic-
itly rewritten in this new coordinate because the computer handles all the necessary
details of the transformation.

COMMENT Constructs a model of turbulent 2D flow of shallow water flow
on a flat slope based on the k-epsilon turbulence dynamical equations.
Calculates the centre manifold & reduced dynamic system on it for the
k-\epsilon model with the following boundary conditiomns for u, v, p, k
and \epsilon: u=v=k=deps/dy=0 at y=0, dk/dn=deps/dn=0 on y=eta. Fiddle
the free-surface BC to linearly force u & k at the surface. This gives
roughly cube-root profile in the vertical structure of u & k, whereas

eps is roughly constant. Write results in terms of z=(y/eta)”(1/3).
Here scale derivatives as ddx*del for better control.

0N O WN -

e
= O ©

Created 11/11/94, last modified 8/6/99;

o
w N

% improve output appearance
on div; off allfac; on list; on revpri;
factor es,ks,eta,us,del,ddx,df,g;

= e
o O

17 % maximum order of calculation in del: linear=3; non-trivial=5
18 o0:=5;

9 At the time of writing, information about REDUCE was available from Anthony C. Hearn, RAND,
Santa Monica, CA 90407-2138, USA (reduce@rand.org).
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% truncate in parameters: d/dx; BC kludge; k-eps fudge

let { ddx"2=>0, gamm~4=>0, lamb~2=>0};

% let ddx=>0; gamm:=del”2*gam; lamb:=lam*del”2; 7% for initial results
cgam:=(1-gamm*1/2); J equivalent to an Euler transform of gam series
theta:=del~3*ddx*thet;

% turbulence constants---remove to get general formulae
C_m:=9/100; C_e2:=192/100; C_el1:=144/100; s_k:=1; s_e:=13/10;

% FOR ALL q SUCH THAT q>o LET del~q=0%
procedure ignore_order_gt(o); begin

IF o0=3 THEN LET del~4=0;

IF o=4 THEN LET del~5=0;

IF o=5 THEN LET del~6=0;

IF 0=6 THEN LET del~7=0;

IF o=7 THEN LET del~8=0;

IF 0=8 THEN LET del~9=0;

IF 0=9 THEN LET del~10=0;

IF 0=10 THEN LET del~11=0;

IF o>=11 THEN LET del~12=0;

end;

% amplitudes and their dependences ( eta=h+hs )

depend us,x,t;

depend ks,x,t;

depend es,x,t;

depend hs,x,t;

let {df(us,t) => gu,
df (hs,t) => gh,
df (ks,t) => gk,
df (es,t) => ge
};

% since z=(y/eta)”~1/3 we need the following for d/dx, d/dt & d/dy
etax:=del~2*del*ddxx*df (hs,x);

procedure dfdx(a);

begin scalar aa,bb;

aa:=ax*del”3*ddx; bb:=a*del*ddx;

return df(bb,x) +( df(aa,eta) -z/3/etaxdf(aa,z) )*df(hs,x);
end;
procedure dfdt(a);

begin scalar aa,ugh;
aa:=a*del~2+del*ddx; ugh:=if gh=0 then O else gh/(del*ddx);

return df(a,t) +( df(aa,eta) -z/3/etaxdf(aa,z) )*ugh ;
end;
depend z,y;
let df(z,y) => 1/(3*eta*z"2);
fs:={z=1}$

% procedures to solve for cross-stream structures

operator iav; linear iav;

operator ise; linear ise;

operator isk; linear isk;

operator isu; linear isu;

operator isp; linear isp;

operator isv; linear isv;

let {iav(z""p,z) => 1/(p+1)
,ise(z™"p,z) => ( z"(p+2) -3/(p+5) )/(p+1)/(p+2)
,isk(z""p,z) => ( z~(p+2) -z*4/(p+5) )/(p+1)/(p+4)
,isu(z""p,z) => ( z~(p+2) -z*4/(p+5) )/(p+1)/(p+2)
,isp(z™7"p,z) => ( z"(p+1) -1 )/(p+1)
,isv(z™"p,z) => ( z"(p+1) )/(p+1)
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,iav(z,z) => 1/2
,ise(z,z) => ( z"3 -1/2 )/6
,isk(z,z) => ( z°3 -z*2/3 )/10
,isu(z,z) => ( z°3 -zx2/3 )/6
,isp(z,z) => ( z°2 -1 )/2
,isv(z,z) => ( z72 )/2
,iav(l,z) => 1
,ise(1,z) => ( z°2 -3/5 )/2
,isk(1,z) => ( z°2 -zx4/5 )/4
,isu(l,z) => ( z72 -z*4/5 )/2
,isp(1,2z) => (z -1)
,isv(1,z) => (z )
};
procedure mean(a) ; 3*xiav(a*xz~2,z);
procedure solv_e(a); 9/16%9%eta”2*s_e/anuxise(z"2%a,z);

procedure solv_k(a); 9/16%9%eta”2*s_k/anu*isk(z"2*a,z);
procedure solv_u(a); 9/16*9*eta~2/anuxisu(z"2*a,z);
procedure solv_p(a); 3*etaxisp(z~2%a,z);

procedure solv_v(a); 3*etaxisv(z"2%a,z);

ToloToToTotototototototo oo oo o o tooto oot o oo oot ototototo oo o o o o o o oo oo oo o oo oo otote oo o o o o o o o oo

% initial approximation for the iteration

cbrt:=(4/3)*z$

vu:=del”2*xcbrt*us;

vv:=0;

vp:=g*eta*(1-z"3) +del”2*8/9%ks*(-z);
vk:=del"2*xcbrtxks;

ve:=del”3%es;

vnu:=c_m*xvk~2/ve;;

vmu:=c_e2*ve~2/vk;

vph:=0;

gu:=0;
gh:=0;
gk:=0;
ge:=0;

TotaTotoToTo foto o To o Toto o To o To o Fo o o o o oo Fo o o o o ot Fo o o o o To o Fo o o o o o o Fo o o oo Fo o Fo o o o o ot Fo o o o Yoo o o o
% iterate

anu:=c_m*ks"2/es$ J scaled typical diffusion
sinth:=theta-theta”3/6+theta~5/120-theta~7/5040%
costh:=1-theta~2/2+theta~4/24-theta”~6/720$

repeat begin

write "

NEXT ITERATION

begin scalar Eqc;
ignore_order_gt(o);

% continuity equation for v
Eqc:=dfdx(vu)+df (vv,y);
ok:=if Eqc=0 then 1 else O0;
vv:=vv-solv_v(Eqc);

end;

% kinematic equation for eta
gh:=SUB(fs, vv-vu*etax )/del"2;

% mu equation for mu of sufficient order
begin scalar Eqmu;
ignore_order_gt (0+3) ;
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Eqmu:=(vmu*vk-C_e2*ve~2)$

ok:=if ok and(Eqmu=0) then 1 else 0;
vmu : =vmu-Eqmu/ (del~2*cbrt*ks) ;

end;

% ph production equation of order m-1

begin scalar Eqph;

ignore_order_gt(o-1);

Eqph:=(vph- (df (vu,y)+dfdx (vv)) "2-2*df (vv,y) "2-2xdfdx (vu) "2) $
ok:=if ok and(Eqph=0) then 1 else O;

vph:=vph-Eqph;

end;

% epsilon equation of order m+l & BC of order m

begin scalar Eqeps,BCeO,BCeh,gep;

ignore_order_gt (o+1);

Eqeps:= -dfdt(ve) -lamb*vmu +C_el*(del*es/ks)*vnu*vph
+1/s_exdf (vnuxdf (ve,y) ,y) -vuxdfdx(ve)-vvxdf (ve,y)
+1/s_exdfdx (vnuxdfdx(ve))$

BCeO:=del*sub(z=0,z"2*df (ve,y))$

BCeh:=del*sub(fs, df(ve,y)-etax*dfdx(ve) )$

ok:=if ok and(Eqeps=0)and(BCe0=0)and(BCeh=0) then 1 else 0;

gep:=+mean (Eqeps)-160/117*anu/eta*BCeh;

ve:=ve-solv_e( Eqeps-gep )/del

+27*etaxes/ (32%ks~2*C_m*del) *BCe0* ((1-z) "2-1/10) ;
ge:=ge+gep/del”3;

end;

% nu equation of order m+1
begin scalar Eqnu;
ignore_order_gt(o+1);
Eqnu:=vnu*ve-C_m*vk~2$
vnu:=vnu-Eqnu/(del”~3xes);
end;

% k equation & (BC of order m-1)

begin scalar Eqk,BCkO,BCkh,gkp;

ignore_order_gt (o) ;

Egk:= -dfdt(vk) -lamb*ve +vnuxvph +1/s_k*df (vou*df (vk,y),y)
-vuxdfdx (vk) -vv*df (vk,y) +1/s_k*dfdx(vnu*xdfdx(vk))$

BCkO:=del*sub(z=0, vk )$

BCkh:=del*sub(fs, (df(vk,y)-etax*dfdx(vk))*cgam -(1l-gamm)*vk/3/eta )$

ok:=if ok and(Egqk=0)and(BCk0=0)and(BCkh=0) then 1 else O;
gkp:=7/4*mean(z~3*Eqk) -28/9*anu/s_k/eta*BCkh;
vk:=vk+solv_k( -Egk+cbrt*gkp )/del;
gk:=gk+gkp/del”2;

end;

% patch up nu again because of significant changes
% nu equation of order m+1

begin scalar Eqnu;

ignore_order_gt (o+1) ;

Eqnu:=vnu*ve-C_m*vk~2$

ok:=if ok and(Eqnu=0) then 1 else O;
vnu:=vnu-Eqnu/(del”3*es) ;

end;

% v equation of order m-1 for p

begin scalar Eqv,BCph;

ignore_order_gt (o) ;

Eqv:=del*( -dfdt(vv) -df(vp,y) -g*costh -2/3xdf(vk,y)
—vuxdfdx (vv) -vv*df (vv,y) +dfdx( voux(df (vu,y)+dfdx(vv)) )
+2*df (vouxdf (vv,y),y) )$
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BCph:=del*sub(fs, (vp+2/3*vk)*(1l+etax”2)
-2*vnux (df (vv,y) +dfdx (vu) -etax* (dfdx (vv) +df (vu,y)))
)$

ok:=if ok and(Eqv=0)and(BCph=0) then 1 else 0;
vp:=vp+(solv_p(Eqv) -BCph)/del;
end;

% u equation for u (& BC of order m-1)

begin scalar Equ,BCu0,BCuh,gup;

Equ:= -dfdt(vu) +g*sinth -dfdx(vp) -2/3*dfdx(vk)
—vuxdfdx (vu) -vv*df (vu,y) +2*dfdx(vnuxdfdx(vu))
+df (voux (df (vu,y)+dfdx(vv)),y)$

BCuO:=del*sub(z=0, vu )$

BCuh:=del*sub(fs, -(l-gamm)*vu/3/eta

+cgam* ((df (vu,y)+dfdx(vv))*(1-etax"2)
+2xetax* (df (vv,y)-dfdx(vu))) )$

ok:=if ok and(Equ=0)and(BCu0=0)and(BCuh=0) then 1 else O;

gup:=5/4*mean (z*Equ) -20/9*anu/eta*BCuh;

vu:=vut+solv_u( -Equ+gup*cbrt )/del;
gu:=gu+gup/del”2;

end;

showtime;
end until ok;

end;
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THE MCKEAN’S CARICATURE OF THE FITZHUGH-NAGUMO
MODEL I. THE SPACE-CLAMPED SYSTEM*

ARNAUD TONNELIERT

Abstract. Within the context of Liénard equations, we present the FitzHugh-Nagumo model
with an idealized nonlinearity. We give an analytical expression (i) for the transient regime corre-
sponding to the emission of a finite number of action potentials (or spikes), and (ii) for the asymptotic
regime corresponding to the existence of a limit cycle. We carry out a global analysis to study periodic
solutions, the existence of which is linked to the solutions of a system of transcendental equations.
The periodic solutions are obtained with the help of the harmonic balance method or as limit be-
havior of the transient regime. We show how the appearance of periodic solutions corresponds either
to a fold limit cycle bifurcation or to a Hopf bifurcation at infinity. The results obtained are in
agreement with local analysis methods, i.e., the Melnikov method and the averaging method. The
generalization of the model leads us to formulate two conjectures concerning the number of limit
cycles for the piecewise linear Liénard equations.

Key words. excitability, oscillations, limit cycle, piecewise linear model, bifurcation
AMS subject classifications. 34A05, 37G15, 34C05, 92C20

PII. S0036139901393500

1. Introduction. We consider the autonomous system

dv

E = p(’l}) - w,
(1.1)

dw _ .

a7

where t € R, b > 0, v(t) € R represents the system status variable at time ¢, w(t) € R
represents an additional variable, and p : R — R is a given function. These equations
are known as the Liénard system [23], [22]. Special cases of (1.1) provide mathematical
models for many applications in science and engineering. We mention here biology
[31], [17], electronics (e.g., the van der Pol model [38]), chemistry [19], and mechanics
(for instance, damped mass spring systems).

In this paper we consider the case of a cubic-like function for p. System (1.1) then
describes the behavior of an isolated excitable cell where v is the membrane potential
and w the recovery variable. When p is given by

(1.2) p(v) =v(l —v)(v—a), where 0<a <1,

system (1.1) is the polynomial FitzHugh-Nagumo model [8], [32]. It has given rise
to many studies and the reader is referred to the references given in [31] and [17].
There are no particular requirements with respect to the choice of p, except to have
a graphical representation similar to that given by (1.2). When p is a polynomial
function, it is difficult to obtain analytical results since exact solutions cannot be
obtained. In order to be able to go further with the study and the understanding of

*Received by the editors August 8, 2001; accepted for publication (in revised form) March 12,
2002; published electronically November 19, 2002.
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de Médecine, F-38706 La Tronche, France. Current address: Laboratory of Computational Neuro-
science, EPFL, 1015 Lausanne, Switzerland (Arnaud.Tonnelier@epfl.ch).
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the model, we will follow the choice originally proposed by McKean [29], considering
that

(1.3) p(v) = —v + h(v — a), where 0<a<1,

and h is the Heaviside function

0if x <0,
(14) Mz) = { 1if 2 > 0.

The study of model (1.1)—(1.3) with a diffusive term on v was initiated by McKean
[29] and developed considerably by Rinzel and Keller [34] and Wang [39], [40]. Their
analyses covered the existence and the stability of traveling wave solutions.

The use of idealized nonlinearity with the help of the Heaviside function has
become a classic procedure in the modeling of threshold effects in excitable media [3],
[6], [16]. This approach leads to analytical results concerning properties of the model
and provides a qualitative description for a more general class of functions. As far
as we know, no specific studies have been carried out on the model isolated in space
(1.1)=(1.3). More generally, we are going to study the following system:

d

d—v = —Xv+ ph(v —a) — w,
(1.5) ¢

dw _ bv

a
where
(1.6) A>0, p>0, a>0, and g > Aa.

The latter condition shows the restriction that must be imposed upon p to obtain a
shape similar to that obtained with (1.2). We are going to carry out a global analysis
of equations (1.5) considering (A, p1, a,b) as parameters. It should be noted that the
change of variables

- s 1
1.7 awaAala —>7t7wa)‘7/~‘b
(1.7) ( ) \/13( )
enables us to consider the case b = 1. Nevertheless, we will not make this choice given
the usefulness of the parameter b in the interpretation of the results. In addition, we
are going to consider the case b — 0.
Our study covers the case where a constant input [ is injected into the system:

dv

= —w T
i pv) —w+1,
dw

oo

We obtain (1.5) by putting @ = w — I, which, in the phase plane, corresponds to a
shift of the v-nullcline. The case of a variable current I(¢) will be discussed briefly
and will be the subject of another paper. It should be noted that the FitzHugh—
Nagumo model has an additional term in the recovery variable w = b(v — yw), and
the simplification v = 0 introduces an artifact in the sense that a constant current
does not change the behavior. However, since we are not interested in the bistable
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regime, this limiting situation allows a qualitative description of the excitable regime
and captures the bifurcations of the complete system as v — 0.

This article is organized as follows. In section 2, we present the context into
which we put our study and introduce the elements that are useful to our analysis.
In section 3, we discuss the so-called spike solution that corresponds to the emission
of a finite number of action potentials. Particular attention is given to the study
of the singular perturbed system obtained as b — 0. Section 4 is devoted to an
analytical study of periodic solutions, and a geometric analysis is given in section
5. We determine, in section 6, an approximation of the bigger limit cycle. Section
7 provides a mathematical link between excitability and oscillations. In the final
section, we summarize our results and we discuss the problem of the number of limit
cycles for the piecewise linear Liénard equations.

2. General. First, let us consider system (1.1) with p having a cubic shape
similar to that given by (1.2). For a smooth reaction function, p € C!, classical
results from dynamical systems theory enable us to state the following proposition.

PROPOSITION 2.1. The single fized point Ey = (0,p(0)) is locally stable if and
only if p'(0) < 0. If p'(0) > 0, a limit cycle, surrounding Ey, appears via a Hopf
bifurcation.

Proof. The single fixed point of (1.1) is (0,p(0)). Its local stability is given by the
eigenvalues of the Jacobian matrix of (1.1) at (0, p(0)):

J:[pléo) _01}

For p’(0) < 0, we obtain local stability of the fixed point. The equality p’(0) = 0
corresponds to the Hopf bifurcation equation. The second part of the proposition
is obtained by constructing an invariant set containing Fy and using the Poincaré-
Bendixson theorem. O

The Hopf bifurcation is a mechanism that is frequently encountered in the ap-
pearance of small-amplitude oscillations [13]. It is possible to specify the behavior
of the solution in the neighborhood of its Hopf bifurcation and to obtain, locally, an
analytical expression for the solution of system (1.1) [20]. However, the case that we
are going to look at is the so-called excitable one, which corresponds to p’(0) < 0.
There is no precise mathematical definition of excitability, and we say that a sys-
tem is excitable if a perturbation from its resting state leads to a large excursion for
the solution in the phase plane and a return to its resting state. This phenomenon is
characterized by a solution (v(t), w(t)) of (1.5) satisfying the following two properties:

(P1) 30 <t <tg, sothat v is increasing on [t1,t2],
(P2)  lim wo(t) =0.
t——+o0

Such a solution will be called a spike solution. It should be noted that (P2) is always
satisfied when the domain of attraction of (0,p(0)) is the whole phase plane. For
our study, property (P1) is sufficient to characterize the excitability of our system.
When p is the function involved in (1.5), property (P1) will be satisfied as soon as
(v, w) crosses the threshold segment [—Aa, —Aa + p] in the phase plane. These two
properties are in agreement with the characterization of excitability given in [1], i.e.,
the existence, in the phase space of the so-called amplifying set and decaying set.

We are going to examine the two phenomena associated with the emergence of an
action potential. These phenomena will be written according to the concept of spike
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solution and periodic solution. The spike solution is a transient regime characterized
by a finite number of action potentials. The periodic solution corresponds to the
emission of an infinite number of action potentials. It is an asymptotic regime that
shows the presence of a limit cycle. These two regimes represent the basic properties
of neuronal excitability [33], [15].

Before proceeding with an analytical study of these regimes, we are going to give
a qualitative interpretation of the dynamical behavior of system (1.1). This system
can be rewritten in a convenient form usually used within the context of self-excited
oscillations [30], [12]:

d*v PN
ﬁ—p(v)a—i—bv—o.

It is then useful to consider the energy derived from the harmonic oscillator (obtained

as p’ = 0) defined by
1 (dv\? b
E=- (&) ;2.2
2(dt> v

This gives a solution,

dE  ,  (dv\?
(2.1) =0 (%)
We find the stability of the fixed point (0,p(0)), provided by Proposition 2.1, when
p’(0) < 0, which corresponds to damped oscillations in the neighborhood of this fixed
point. As p’ is not negative everywhere on R, it is not possible to obtain a conclusion
concerning the global stability of (0,p(0)). In particular, it is possible that the added
energy, when p’ > 0, is sufficient to give rise to a limit cycle. Equation (2.1) provides
information concerning this cycle to the extent that it must contain at least one root
of p’. Note that this result can be found using the Poincaré-Bendixson criterion.
When p is the cubic polynomial proposed by FitzHugh-Nagumo (1.2), system (1.1)
does not have a limit cycle [24]. Nevertheless, while keeping a similar shape for p, it
is possible to obtain a limit cycle. For example, for

() = —x if x <0,
PRI = 102(z — 0.3)(1 — ) if not,

and b = 6, one observes, numerically, the existence of a stable limit cycle. Thus the
constraint on p, said to be of cubic shape, leaves a variability in the dynamical behavior
of (1.1). In the case we are going to study, where p is represented in Figure 2.1, we
will see that the energy input due to the jump discontinuity of v', Av’ = p when v
crosses the line v = a, may be sufficient to give rise to a limit cycle. In this case,
the limit cycle coexists with the fixed point (0,0) and this situation is termed as hard
self-excitation.

Before beginning this study, it is necessary to specify the meaning given to a
solution of (1.5) when p is discontinuous. Geometrically, a solution corresponds to a
trajectory in the phase plane (v, w). If this trajectory crosses the line of discontinuity
transversally, the solution is easy to define: for ¢ such that v(t) = a, v’(¢) has a jump
discontinuity (v'(t7) —v’(t7) = £u), and elsewhere the solution is C! and satisfies
(1.5) in the classical sense. In the case where the trajectory tangentially meets the
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p(v)

H-A bopw)

@) (®)

F1G. 2.1. (a) The nonlinear function p and (b) its distributional derivative p’.

line of discontinuity, the solution satisfies v(t) = a on a nonempty set. In this case,
we speak of a generalized solution and approach the problem from a geometrical
point of view. It is not the purpose of this article to give a precise mathematical
characterization of this solution, and the reader is referred to [7], [18]. It should be
noted that the problem of discontinuous vector fields is covered extensively in control
theory, e.g., [5], [14].

Our main results are given in the following summary. In section 3, we demonstrate
that the spike solution contains only one spike when A% > 4b and several spikes can
be emitted otherwise (depending on the initial conditions). In the former case, we
derive a simple expression for the solution as b — 0 and, in the latter, we give
the general expression for the spike solution. The next sections focus on the case
A2 < 4b for which we derive, in section 4, analytical results on the existence and the
expression of the periodic solutions. The periodic orbits appear via a double limit
cycle bifurcation that we compute in the plane (a,b). Using a geometrical analysis
(section 5), we characterize the two periodic solutions, represented in the phase plane
by two concentric limit cycles. We show how in the limiting situation A — O and p — 0
the periodic orbits can be obtained with the use of the Melnikov function. Moreover,
we discuss the existence of two different types of unstable limit cycles referred to
either as a classical or a generalized solution. The generalized solution is related to
the discontinuity of the vector field. In section 6, the study as A — 0 allows us to
capture and to describe the bigger limit cycle which is obtained as a Hopf bifurcation
at infinity. In section 7, we show how the spike solutions and the periodic solutions
are related.

3. Excitability and singular perturbation. The purpose of this section is to
study the spike solution. In particular, we characterize this solution by the number
of spikes that are part of the solution. This number corresponds to the number of
times that v crosses the threshold a, where v/~ > 0 (where v'~ designates the left-
hand derivative of v). This number includes the initial pulse corresponding to the
perturbation due to the initial condition, noted as (vg,wp). In order to simplify the
study we consider the case where wy = 0. We distinguish between several cases,
according to the value of A2 — 4b. We prove the following proposition.

PROPOSITION 3.1. For A2 > 4b, there is a spike solution when a < vy < &. This
solution only presents a single spike.

Proof. First, we look at the case where A2 > 4b. For vy < @ and as long as
v(t) < a, we have

V" () + M (t) + bu(t) = 0.
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The solution is then given by

o(t) = fﬂ, (A= r2)et + (A et

where
(3.1) re = %(—)\ + /A2 — 4b).

Let  be the time defined by ¢ = 1/(ry —r_)In(1+ %)/(1 +2A). Ifoy >0, vis
decreasing on [0,7] and increasing on [f, +oc[. In addition, we have lim;_. o, v(t) = 0
and thus Vi > 0,v(t) < a. When vy < 0, if Vi, v(t) < a, the study is completed;
conversely, if there is a time t* so that v(t*) = a, then the trajectory crosses the line
w = 0 for a value of v greater than a, and, given a time shift, the study corresponds
to the case where vy > a.

If vo > a, there is a time t* so that v(t*) = 0 and w(t*) = w1 > —Aa + p. If
we put ¢* = 0, this gives v(t) = —#L—(e"-' — ™) and thus V£ > 0, v(t) < 0 and
lithJroo U(t) =0.

The case where A2 = 4b is dealt with in a similar way. 0

For A2 —4b > 0, the response to an input I = Ip6(t—tp) is a single action potential
when Iy > a.

We will now obtain a simple analytical expression for the potential v. The previous
study showed the existence of several phases when a spike is emitted. This point can
be made more specific by studying the case b < 1. This situation models the behavior
of a system in which two time scales are involved; i.e., v is a fast variable and w is a
slow variable. The mathematical description of the excitability is a classical one (see,
for example, [17]) and is carried out using the singular perturbation theory. In our
case, the relevance is to allow explicit solutions that give a simple expression for v
according to the different phases of the spike solution.

Let there be (v, wq) so that a < vg < % and wg = 0. In addition, let us assume
that vg — § is of order greater than a O(b). The variations of v can be separated
into four phases. The first phase, which is the excited phase, is fast and the motion is
governed approximatively by the system

dv
= p(v) ~w,
dw
a =Y
which gives
1 —At
(3.2) v(t) = X (n+e Mo — p)) .

This approximation is valid as long as v(t) is at a greater distance from the v-nullcline
than a O(b) value. If not, we enter the second phase where the dynamic is described
using a new time scale 7 = bt. In this phase, v is adjusted to maintain a pseudoequi-
librium at w = p(v), and we have v(7) = § (1 — w). We obtain

L
(3.3) v(t) = N
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4

50 75 100 125

F1G. 3.1. Solution v(t) of (1.5) for (vo,wo) = (0.25,0), A =1, a = 0.2, b = 0.05, and p = 1.
Intervals To and Ty designate the durations of the two slow phases.

We enter into the third phase as v reaches a. We have a fast motion where v is given
by

(3.4) o(t) = Ee™ — 1) +a

The final phase is characterized by a slow return to the equilibrium state according
to

(3.5) o(t) = (a - %) e

>N

We can easily find these results by observing that the roots r; and r_ given by (3.1)
are written ry = —2+0(b?) and r_ = —A+O(b). The fast dynamic is obtained using
the zero order approximation, and the slow motion by using the first order one. The
different phases, (3.2)-(3.5), correspond to the charge and discharge of a capacitor,
and are graphically shown in Figure 3.1. They allow precise identification of the role
of each parameter. In particular, the amplitude of the potential is parameterized by
£ and a. In addition, it is possible to obtain an approximation of the duration of
a spike T using the durations of the slow dynamics of phases two and four, written
Ty and T}, respectively. We consider that the duration of phase four is the time for
which v(t) = O(b). This gives

T="1T,+Ty,
where
AL 1
T —_— - —
2 b hl )\a + O (b),
(3.6)
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For b <« 1, it is possible to obtain a simple description of the subthreshold response to
a variable input I(¢). This response is the one given by an RC filter, where \ = %

and is written
v(t) = e M ().

If we consider a train of impulses at regular intervals, the system reacts preferentially
at a high input frequency in that the higher the input frequency, the earlier a spike
is emitted. More precisely, with I(t) = I >, 6(t —t;), where t; = iT and i € N, the
subthreshold response is given by

—>\t1 _ ek(n-&-l)T

U(t) = I()e ﬁ,

where n is the index of the final pulse of I(t) before the system reaches the threshold.
Thus, for an input such as Iy < a with a small frequency

1 A

T~ (o)

the system cannot emit an action potential.

Now, and for the rest of this article, unless indicated otherwise, we are going to
consider the case in which A\ — 4b < 0. We shall see that the model presents a richer
dynamic in the sense that the spike solution is able to present several action potentials.
In addition, we will show in the following section the existence of periodic solutions.
We continue the case of a solution satisfying lim;_, o v(t) = 0 and, therefore, there
exists a constant C' > 0 and a time t* starting from which we have

()] < Ce™ 3",

We can then define the Laplace transform of v

L(v)(p) = /000 v(t)e Ptdt

for which the region of convergence is the half plane

D:{pE(C|Re(p)>—;\}.
We define the finite sequence of times, written (¢;)o.. 2n—1, S0 that tx = 0, and for
i # 0, v(t;) = a and Av'(t;) = (—1)'u. This sequence indicates the passage of
potential via the line of discontinuity and corresponds to a jump of the derivative of
v. An equivalent characterization of ¢; is given by v'(t5;) > 0 and v'(ty;,,) < 0. We
have, on |te;, ta; 1], v(t) > a with v(tg) = vgp > a. The number n corresponds to the
number of spikes emitted by the system. For wy = 0, we calculate

n—1
12 —pto; —pto; DPvo
E v — e pl2q __ e Pl2i41 + .
@)(®) p2+)\p+b§( ) p2+Ap+b
We write in the following r = v/4b — A2. Using inverse Laplace transforms gives

2n—1

(3.7) v(t) = voa(t) + Y (—1)'h(t — ti)p(t — t,),

=0
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v (t)

[
L
+

F1G. 3.2. Solution v(t) of (1.5) for (vo,wo) = (1.6,0), A=0.8, p =2, a = 0.4, and b= 1. This
spike solution presents two action potentials, or spikes.

where
20 _xp T
. t) = — —t
(3.8) w(t) 7‘6 2Sln2,
o3t cos it N t)
(3.9 alt)=e (cos 2t rsm2t .

The above expression characterizes the transient regime with (i) a term that depends
on the initial excitation, vg, and corresponds to damped oscillations of period \/%,

and (i) a sum of terms with the form (—1)%Sy, (hy) (where S is the shift operator)
reproducing an excitation when v'~ > 0 (even ¢) or an inhibition v~ < 0 (odd ).
This sum shows the different crossing v = a and is defined implicitly by the existence
of times ¢; such as v(t;) = a. It is clear that ¢; exists: it is given by the smallest
strictly positive solution of the equation

voa(t) + ¢(t) = a.

The sequence of times (t;) cannot be expressed with known functions and is im-
plicitly defined using expression (3.7). Figure 3.2 illustrates the case in which the
system generates two action potentials. The return to the resting state takes place
via damped oscillations and induces computational properties which differ from that
studied above. If we consider the case of a system that has not emitted a spike, its
subthreshold response to an input I(t) is given by

v(t) =axl,

corresponding to the response of an RLC filter, with A\ = % and b = %, when an

input [ is applied. In particular, the filter response is more significant for an input

signal having a resonant frequency close to Vb — )‘72.

4. Periodic solutions. Let us assume that system (1.5) has a periodic solution.
According to the expression of the vector field, this solution delimits a domain con-
taining the origin, which is a stable fixed point. In addition, when A #£ 0, it is possible
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to construct an invariant region large enough to include this limit cycle. Thus, there
are at least two limit cycles surrounding the origin, with an alternation of stable and
unstable cycles, the largest being stable.

We are looking for a periodic solution (v(t), w(t)) € (L? (O,T))Q, where T is the
period of the solution. This solution can be expressed in a Fourier series

v(t) = Zvne%”"%,
(4.1) " .
w(t) = anem’mf

The technique used, which is known as the method of the harmonic balance (see [2],
for example), involves identifying (v,,w,) using the differential equation satisfied by
(v, w).

In the phase plane, a periodic solution crosses the line v = a at two points, one of
which satisfies w > 0 and the other w < 0. We set ¢ and to as the two successive times
that satisfy v(¢;) = a, i = 1,2, so that V¢ €]t1,t2], v(t) > a. The time-translation
invariance of the periodic solution allows us to define the real 7 so that t; = —7,
to =7, where 0 < 7 < % The periodic solution looked for satisfies

(4.2) v(®) { “u o ][:TT[[T’[ Ul Z).

92
The function ¢ — h(v(t) — a) is a T-periodic function such as

{ 1 if te[-7, 7],

M) =a) =10 if not,

and we calculate that
2 1 o
Po(t) = a) = 2 + %:0 —sin (270 ) €2t

Therefore we obtain
(4.3) v(t) = zn: cp sin (27m%) T

where
B uTi
C —4Ar2n2 4+ 0T2 + i270Tn’

Cn

At this stage in the study, we may remark that the mean value of v is zero (which
could be seen directly with (1.5)). The mean value of w is wg = 2% The amplitude
spectrum of v is O(#), which ensures the normal convergence of the associated
Fourier series.

Let f be the function defined by
flt) = Zicnei%"%.

With the help of trigonometric transformations, (4.3) is written

1

(4.4) v(t) = 5 (ft = 7) = f(t +7)).
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We calculate

—24 A AT r AT r
45) f(t) = 4<T—2t)(—4 in D (T — ) + e si ft)
(4.5)  f(t) r(cosh%—cong)e e sm2( )+e sm2

for 0 <t < T, where r = v4b — A2 and f is defined on R by periodicity. Therefore,
f is continuous on R and has a derivative for ¢t # ZT. Note that f does not depend
on the auxiliary variable 7. A periodic solution exists if and only if there is T" and 7
such as 0 < 7 < %, solutions of

f(0) = f(27) = 2a,

(4.6)
f(=27) = f(0) = 2a,
so that v, given by (4.4), satisfies (4.2). We note = = % and y = 7. FElementary
operations show that (4.6) can be written in the form
F(z,y) = 0,
(4.7) (.9)
Flz,y—xz) = 0,
0<y<uz,
where

(4.8) F(x,y) = psinh Az sinry — psinra sinh Ay — ar(cosh Az — cos rz) cosh Ay.

The existence of periodic solutions for the differential system (1.5) is given by the
existence of roots for a system of transcendental equations. We have therefore reduced
the differential problem to an algebraic one that corresponds to a search for roots in
R. In contrast to perturbation methods, it is interesting to note that our analysis is
a global one and gives an analytical formula for a periodic solution.

Remark. A similar study can be carried out for A> — 4b > 0. We then write
r =2 —4b. We find that

—2p A AT r AT r
t) = 4(T‘2t>( ~ sinh - (T — ¢ T si hft)
1®) r(cosh%—coshgT)e N . 2( )+t sin 2/’

where T and 7 are given by the resolution of (4.7) with F' defined by

F(z,y) = psinh Az sinhry — psinhrz sinh Ay — ar(cosh Az — cosh ra) cosh Ay.
(4.9)

Using r < A, it is easy to show that F(z,y —z) < 0 when 0 < y < z, and, therefore,
there cannot be solutions of (4.7) with F' given by (4.9), which confirms the result of
the previous section.

Starting from the study carried out above, it is possible to state several simple
properties concerning a periodic solution. First of all, it is easy to see that its existence
is controlled by parameters r, A\, and ﬁ In addition, we have the following bound for
the periodic solution:

0] 400 <
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which is valid for e > 2. In particular, we can see that the smaller the period, the
larger the bound.

Based on (4.7), in the general case, it is difficult to give conditions for the existence
of (T, 7). More precisely, two phenomena appear to make the study tricky: (i) the
presence of solutions of (4.7) that do not correspond to a periodic solution, and (ii) the
presence of a periodic solution not detected by our analysis. We will look more closely
at the second point in the next section. The first point arises from the fact that the
existence of exactly two solutions for the equation v(t) = a on [0,7], corresponding
to (4.2), is not reported in system (4.7). These two situations can be illustrated by
looking at the solutions of (4.7) as a — 0. If we take a = 0, the resolution of (4.7)
leads to the family of solutions (Ty, 7y, )i, where k € N, k > 1:

T 2km
(4.10) LoV N
Tpk:ﬂ where pp, =1...k —1,

VAb = \2’

and the implicit functions theorem leads to the existence of these solutions for a
sufficiently small a. In fact, only the solution obtained for k = 2 is admissible; other
solutions do not satisfy the assumptions of our study (given by (4.2)). Numerically,
this solution corresponds to a stable limit cycle. As we have already mentioned, there
must be an unstable cycle separating the domain of attraction of the origin from the
stable cycle one. Therefore, we are in a situation where a limit cycle has not been
detected.

Before clarifying this situation, we carry out a numerical study of the specific case
used in [29], [34], and [39], where g = 1 and A = 1. The results are illustrated in
Figure 4.1, where we determine in the plane (a, b) the region where a periodic solution
exists. It appears that there is a value of a, noted a*, for which there is no periodic
solution for a > a*. When a < a*, the existence of a periodic solution is obtained for
b > bs(a). The curve by(a) is given by the resolution, in {(z,y) € R?/ 0 <y < z}, of

Fz,y) =0,
(4.11) F(z,z —y) =0,
det Fy, =0,

where F, , is the Jacobian matrix of the system above with respect to (z,y). Ge-
ometrically speaking, the latter condition corresponds to a tangential intersection
between the two curves defined by the equations F(z,y) = 0 and F(x,z—y) = 0. For
b =bs(a), there is a single unstable limit cycle. For b > by(a), there are two concen-
tric limit cycles. The larger one is stable, and the smaller one is unstable, separating
the different domains of attraction. At b = by(a) a fold limit cycle bifurcation (or
double limit cycle bifurcation) occurs. Several limiting situations can be analytically
specified. When a — 0, system (4.7) always has an admissible solution (given by
(4.10) with k£ = 2), and the only restriction on b is related to the existence of r. We
therefore have lim,_,0 bs(a) = 0.25.

We determine the value of a* using an asymptotic expansion of (4.7) as b — +oo.
More exactly, we use an asymptotic expansion as r — +00.

We write
1
T T
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F1G. 4.1. Curve of the fold limit cycle bifurcation C = {by(a), 0 < a < a*} so that there are
two periodic solutions if and only if b > by(a) with a < a*. Parameters are A = 1, p = 1. Curves
Cy and Cy,, correspond to the two approzimations given by (6.7).

as the expansion of z (it is easy to show that the zero order term is zero). The leading
order expansion of F(z,y) is

F(z,y) = a(coszy — 1)r + O(1),

which gives us the approximation

4
T:W+O(12).
T T

One notes the similarity with the expression (4.10) obtained above. In the same way,

if we write
1
Yy = & +O (2) 9
r T

the determination of y; is carried out by canceling the higher order term of the
expansion of F'(z,y). We find

(4.12) 27 sin(yy) — %x% —an® =0,

and it should be noted that the expansion of F(x,y — x) leads to the same expression.
We show that x5 = 0 (while remarking that x5 is the first order term in the expansion
of T as b — 0 and using the symmetries of the differential equations (1.5)). We
therefore find a solution of (4.12) if and only if

1
(4.13) a< —,
T
which enables us to obtain the value a* = 1 (Figure 4.1). When a < a* and r is
large enough, we found two values of 7 corresponding to exactly two limit cycles. We

remark that, asymptotically, both these cycles have the same period.
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We can now predict the behavior of system (1.5) for any (A, ). The change of
variables

~ - b A A
(ba &7 tv /Z}a IZD) = <2a —a, Ata ) w>
A% [T

enables us to find the case previously studied. Condition (4.13) is then written as

"
4.14 < —
(414) as L,

and the bifurcation curve obtained from by is given by
A

(4.15) b= A%, <fa>.
I

Thus, for sufficiently small A, the system has always a limit cycle. We will discuss

this point in more detail in section 6. For p large enough, the condition for existence
2

of a periodic solution is written as b > %.

5. Geometrical study. We are going to specify the dynamical behavior of the
system in the phase plane. We also will make use of a geometrical analysis to char-
acterize solutions of the transcendental equations system (4.7) in the sense that the
search for periodic solutions should be carried out among the intersection points of
the two curves Cy = {(,y), F'(z,y) = 0} and Cy = {(z,y), F(z,y —x) = 0} in the
space region 0 < y < z. Three configurations can then be distinguished.

5.1. No periodic solution. The simplest situation is obtained when the two
curves C7 and Cy do not present any intersections. In this case, the origin is globally
attractive. We already have illustrated such a configuration in Figure 3.2 and have
shown that this case still appears when A\? > 4b (in this case, C; and Cs are defined
using F' given by (4.9)).

5.2. Pair of admissible solutions. We have seen that when r — +o0, it is
possible to find exactly two pairs of solutions for system (4.7). When these solutions
lead to an expression for the limit cycle, given by (4.4), satisfying the hypotheses
(4.2), they correspond to solutions that are admissible. From numerical simulations,
it appears that this situation occurs when C; and Cs are two closed convex curves
(in the region of the plane where 0 < y < z). In this case, there are exactly two
intersection points, which correspond to the two limit cycles (stable and unstable).

This configuration can also be found using perturbation methods. In particular,
we will show a mechanism for the birth of these two limit cycles in the phase plane.
We consider the following Hamiltonian system:

dat
1
(5.1) d—w—bv
dt

for which the Hamiltonian function, written H, is given by

(5.2) H(v,w) =v? + %wQ.
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System (1.5) can be written as a perturbation of the Hamiltonian system (5.1)

dv

- = TWw— )\g(’l)),
(5.3) dt

d—w =bv

dat

where A < 1 and g(v) = v — h(v — a). We take u = A, but we have seen that the
study can easily be extended to any (A, ) of the same order. It is easy to see that
for system (5.3) the origin becomes a focus. In order to have a closer look at what
becomes of the periodic trajectory of the center, we are going to use the Melnikov
method [11]. This method, which arises from the averaging method, enables us to
determine the periodic trajectories that are transformed into limit cycles and thus
obtain an approximation of these cycles. The Melnikov function, associated with the
level curve H(v,w) = v+ jw? =2, is

27
M(l) = / dt vg(v)|v:l cost:
0

We obtain
M(l) = wl% = 2h(l — a) V12 — a2.

Level curves of the unperturbed Hamiltonian system which transform into limit cycles
are obtained as solutions of M () = 0. When [ < a, the only solution is I = 0 and we
find that the trajectories tend towards the origin. When I > a, M (l) = 0 is written
as

4 4
14—ﬁl2+pa2 =0.

There are solutions if and only if a < % We then have the following result:
—Ifa= %, there is a single limit cycle which corresponds to the level curve
defined by

(5.4) H(v,w) = %

- Ifa< %, there are two limit cycles which correspond to the level curves
defined by

(5.5) H(v,w) = % (1 +41-— 7r2a2) .

These results can be added to by using system (4.7). When p = A < 1, the second
order asymptotic expansion of F' gives

F(z,y) = 2aVb(cos(2Vbz) — 1)

+ ( —avb(z® + ) + 4—\/5(1 — cos(2vbz))

+ (% — y) sin(2\/l;w) + xsin(Z\/By) + aVby? COS(Q\[by)) X+ 0.
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Canceling the zero order term gives

2w
T= % + O(N).

To find a zero order approximation of 7, written 7q, it is necessary to use the second
order expansion of F. In this case, the first order term of the expansion of T', written
as T1, is involved and the cancellation of the second order term of F' (or of F(z,y—x))
is written as

—ab?T? — an® + 7sin(2Vbry) = 0.

Note that the system obtained by the transformation A — —X and ¢ — —t has a phase
portrait that is obtained from the original system taking the symmetric with respect
to the line w = 0. We then have T(—\) = T(\), 7(—A) = 7()\) and the expansion of
T and 7 have the form

T=Ty+ TN +T\ + -,
T:To+7'2)\2+7'4)\4+"'-

In particular, we have T} = 0 and, when a < %, we find two possible values for the
first term of the expansion of 7 corresponding to the two limit cycles obtained above:

1
179 = —= arcsin(an),

2v/b
1
2v/b
It is possible to obtain more refined approximations by continuing the series expansion
of T and 7 using (4.7). The approximation of limit cycles is then given from (4.4),
(4.5). It is interesting to note the similarity of the expressions obtained here and those
obtained for large r. This result is not surprising given the change of variables (1.7).
In Figure 5.1 and Figure 5.2, we show a typical configuration under study. The two

limit cycles that have just been characterized correspond to solutions in the classical
sense in that they satisfy hypothesis (4.2) and can be obtained by our Fourier analysis.

210 = (m — arcsin(am)).

5.3. Only one admissible solution. From numerical simulations, we observe
configurations where there is only one admissible solution for system (4.7). This
situation does not only appear when there is a single intersection between C; and
(5 since, as we have already mentioned as a — 0, there can be several intersections
so that only one of which is suitable. Moreover, it is possible to find exactly two
intersections between C7 and Cy only one of which is suitable. This situation is
illustrated in Figure 5.3. We have therefore detected a single limit cycle that appears
to be the stable one. Naturally, the unstable cycle still exists and here we talk about
a generalized solution, insofar as we cannot define it in the classical sense. From
numerical simulations, we observe that the appearance of this generalized solution
corresponds to a bifurcation of curves C7 or Cs in that at least one of these two
curves no longer corresponds to a single closed curve (see Figure 5.3).

In the phase plane, the study of the vector field enables us to specify the un-
stable cycle, called a separatrix because it is the boundary between two domains of
attraction. We write the coordinate points (a, —Aa), (a,yp) as A and B, respectively,
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Fic. 5.1. Unstable (dotted line) and stable (full line) limit cycles of system (1.5). The v-
nullcline is represented. The parameters are A = p = 0.1, a = 0.22, b= 1.

28 29 3 31

Fi1G. 5.2. Curves Ci (thick line) and Ca (thin line). The two intersections correspond to the
two limit cycles given in Figure 5.1 (the parameters are given in Figure 5.1).

where yp € 7 and Z designates the interval [—Aa, —Aa + p]. Let P be the parameter-
ized curve obtained when considering the solution of system (1.5) starting from A by
reversing the time. The equation for this curve is given by

z(t) = a(cosrt — 2 sinrt)e

y(t) = —a ()\ cosrt + 2(b — /\72) Sinrt) et

as long as z(t) < a. Let t* be the smallest real so that t* > 0 and z(t*) = a. If
y(t*) < —Xa + p, then we take yp = y(t*) and the curve ' = [A, B] U P is the
boundary being looked for. This situation is displayed in Figure 5.4. If we now have
y(t*) > —Aa + p, we again consider the solution of system (1.5) by reversing the time
but with (z(¢*),y(t*)) as the initial condition. This solution crosses the segment 7 at
the point B that is looked for. If this solution does not present an intersection with
Z, we are in the presence of an unstable cycle that can be defined in a classical sense
given by the resolution of (4.7). Nevertheless, we have not succeeded in establishing



476 ARNAUD TONNELIER

F1G. 5.3. Curves C1 (thick line) and C2 (thin line). The line y = x is represented. The
parameters are those of Figure 5.4.

Fic. 5.4. Stable limit cycle (full line) and unstable limit cycle (dotted line) marking the boundary
with the domain of attraction of (0,0). The parameters are A\=1, a =0.3, b =2, and p = 3.

precise links between the existence of the point B and the solutions of (4.7).

Another approach is to consider a family of near systems, the solutions of those
tending towards those of (1.5). From this technique arises the mathematical difficulty
of the notion of limit being considered. However, let us define the system

dv
& = po(v) —w,
14
(5.6) dw
oy
at ~
where ps(x) = —Az + phs(z — a) and hs is the continuous function defined by
0 ifx <0,
hs(x) =< % if0 <z <,
1 if x > 6.

Numerically speaking, for small values of 8, the orbits of (5.6) are a good approxima-
tion of those of system (1.5). This result requires careful study, which we have not
undertaken here. The convenience of (5.6) is that they allow the application of classi-
cal theorems of existence as well as the usual numerical integration methods like the
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Runge-Kutta method. In addition, it seems possible to extend the results obtained
for the discontinuous system to these continuous piecewise linear systems as 6 — 0.

6. Large relaxation time. In this section, we study the case of a small A which
corresponds to a system with a large time constant. When A < 1, the asymptotic
expansion of (4.8) is written as

F(z,y) = —2aVb(1 — cos(2Vbz)) + Au(x sin(2Vby) — ysin(2vbz)) + O(N\?).
(6.1)

Therefore we have

2

T
T=—%=4+0()\).
W (N
The existence of a periodic solution for small A has already been noted in section 4.
We obtain a single solution for 7 which is related to the big cycle. The small cycle

cannot be captured by this limiting situation. Using the third order expansion of
F(z,y) and F(x,y — x), we find that

2 T
T=""+ A+ 0N,
N TV AR
(62) ™ aT Vs

= - — 4 A2+ 0N,
TTovb 2w’ 166V (X

Using the first order expansion of T', we calculate
2
Ft) = =L sin Vot + 0(1).
AT
Calculation of the approximation of v, using (4.5), (4.4), (6.2), gives

2
(6.3) o(t) = £ cos Vit + 0(1).

AT
The approximation that is obtained coincides with the term carrying the fundamental
frequency in the Fourier series of v. Using wo = &, the limit cycle approximation is
given by

(6.4) v2+%<w—%)2: An

Numerically speaking, this approximation appears to be a good one, even for large
values of A. It is possible to refine the approximation obtained by using higher order
terms in the expansion (6.2). We then find

2
(6.5) v(t) = ﬁcos Vit + % <;§ t> cos Vbt + O(N).
Remark 1. The terms in the expansion of v have zero mean value.
Remark 2. Approximation (6.5) must be considered for ¢ € [0,T]. This raises the
problem of matching at T, a problem that we will not discuss here since we will use
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Fi1G. 6.1. Stable limit cycle of system (1.5) (thick line) and its approximations given by (6.6)
(thin line) and (6.4) (dotted line). The parameters are A =10.8, p =15, a = 0.4, and b = 2.

approximation (6.3). From a numerical point of view, this approximation appears to
be better for a wide range of values of A\. This is due to the appearance of secular
terms in the asymptotic expansion (6.5).

Remark 3. If the expansion of T is continued, there is no term of third order,
which leads us to believe that T presents an even power series expansion.

It is interesting to compare the approximation that has just been calculated with
the one previously obtained (5.5). The value found for the largest cycle, in the case
of small (\, u), gives

1 12 242 A272q?
2, 2 _ BN _
(6.6) v+ b (w 2) = 2.2 1+4/1 ,

112

which, for small values of a, corresponds to the approximation (6.4). Numerically
speaking, this approximation is very precise, as shown in Figure 6.1.

Using approximations (6.4) and (6.6), we can formulate an approximate necessary
condition for the existence of a periodic solution since the expression of the vector
field requires that the interior of the limit cycle contains the point (a, —Aa), which
yields to

(Aa +4)?

(6.7) b > o2

with d € {dy,dx,}, where d3 and d3 ., are the values of the right-hand term of equations

(6.4) and (6.6), respectively. Approximation (6.4) imposes the condition a < i—’;,
which is a requirement greater than that given by (6.6). Even far from its validity
domain, approximation (6.7) remains useful. When A = 1 and p = 1, Figure 4.1
shows the approximation (6.7) obtained from the study for small A (curve C) ) and

for small (A, ) (curve C,). For small values of a, the requirement appears to be a
little too strong, in that it imposes b > 7{—; when b > i would do.

Let us precisely give the bifurcation giving rise to the stable limit cycle for small
A. In this case, the system under study may be considered as a perturbation of

%:ph(vfa)fw,



MCKEAN MODEL 479

(6.8) "

dt
System (6.8) was previously considered as a perturbation of the Hamiltonian system
obtained for p = 0. However, in this analysis, p is not considered as a small parameter.

The harmonic balance method leads to the following two cases:
e 7 does not exist and we find a family of periodic solutions defined by

= bv.

(6.9) H(v,w) =c*, where c¢<a,

where H is given by (5.2).
e If we assume that 7 exists, we find that the Fourier series expansion of v is
divergent and therefore there is no periodic solution such as v > a.
For an initial condition outside the ellipse obtained with ¢ = a in (6.9), a solution of
(6.8) tends towards infinity since the orbits of system (6.8) are given by

1
v? 4+ ng =const for v <a,

v? + E(M —p)? =const for v>a,
and, if we consider the sequence (wy, )nen associated with the Poincaré section defined
by v = a, we have

Wy, = Wp—1 + 2.

Thus, the orbits spiral around the origin and move away from it. The addition of the
perturbation —Av leads to (i) the destruction of the family of periodic solutions so
that v < a (the origin becomes a stable focus) and (ii) the appearance of a limit cycle
towards which the orbits converge while spiraling. We have seen that the birth of the
limit cycle takes place at oo since the diameter of the ellipse can be made arbitrarily
large. We are going to specify this result in bifurcation terms.

We write (r,0) for the polar coordinates of (v, w) and, because we are interested
in the system at oo, we introduce the variable u = % Given a change of variables, we
can consider the case b = 1. Writing (1.5) using the new variables gives

d 0

& Nucos?0 — u?pcos Oh (COS - a> ,

dt U

a9 =14 Asinfcosf — upsin6h (COSG — a) .
dt u

We are interested in the behavior of the system for A <« 1 and u close to 0. In this
case, f is a fast variable, the dynamic of which can be approximated by #’ = 1. The
averaging theorem [11] enables us to consider the approximation given by the averaged
system

du 1 [

ou _ 1 29 _ 2
& o)) df Aucos® 0 — u”pcosfh(cosh),

where we have used the approximation h("oie —a) ~ h(cos @) for small u > 0.
We find

i~ (G-
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which shows the appearance of a stable limit cycle. The radius of this cycle is given

by u = % and is in agreement with the approximation (6.4). This is a supercritical
Andronov—Hopf bifurcation which appears at co. As far as we know, such a bifurcation

was mentioned for the first time in [37].

7. Excitability and oscillations. We may interpret the appearance of oscilla-
tions as the limit behavior of a spike solution when the number of action potentials
becomes large. We are going to give mathematical content to this statement by show-
ing that the periodic solution, written as v.,(t), can be obtained as the limit of the
spike solution, written as v, (t), when the number of spikes n tends towards +oco.
Most often, the birth of oscillations is shown in terms of bifurcations using equations
based on system parameters. Here, the characterization is directly obtained from the
system solutions.

We consider (3.7), omitting the transient regime containing vg, because we are
interested in the asymptotic state. Using a time shift, we consider the symmetrical
sum obtained from (3.7):

vp(t) = Z Pt — tag) — d(t — tagt1),

k=—n

where

¢(t) = h(t)p(t)

and ¢ is given by (3.8). If we assume that the spikes are produced at periodic time
intervals, there exist T" and 7 so that tof = kT — 7 and to;+1 = KT+ 7. The existence
of the pair (7, 7) is studied in section 4. We should also note that the assumption just
made is linked to vy insofar as not all orbits converge towards a periodic solution.

We have ¢ € L*(R), and the Poisson formula, in the space of tempered distribu-
tions &', gives us

1 Xk k
. _ y - ik
ngrfoo vp(t) = T _§OO¢ (T) 24 sin <27T7'T> e="hT

As ¢/, the distributional derivative of ¢, is in L!(R), equality occurs for every ¢, and
we have the uniform convergence of the series. We calculate that

~ 2#
plw) = 2b — 8m2w? + dir w’

giving
nll)r_{_loo U”(t) = ’U’Y(t)’

where v.,(t) is the periodic solution given by (4.3), which establishes the stated result.

8. Discussion. Estimation of the maximal number and relative positions of limit
cycles of a two-dimensional autonomous system is an open problem corresponding to
the second part of the sixteenth Hilbert problem. Given the difficulty of the general
problem, mathematicians have become interested in a particular system class, the
Liénard system:

dv
= p(0) —w,
dw

E—'D

(8.1)
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Most results concern the case in which p is a polynomial function. Even in this case,
there are no general theoretical results and most approaches are local ones insofar as
they determine only the number of limit cycles for certain parameter values. Limit
cycles are obtained using perturbation methods via a Hopf bifurcation or a global
bifurcation (see [28] and the references therein). Some global approaches make it
possible to link the number of limit cycles to the roots of a polynomial [10], [25], but
the results remain to be demonstrated.

We have studied the Liénard system where p is a piecewise linear function (linear
on | — oo,a[ and on Ja,+oo|) allowing a finite jump discontinuity at a > 0. We
have shown that the limit cycles are characterized by the roots of a system of two
transcendental equations. These roots correspond to the period of the oscillations
and to an additional parameter. We have obtained an explicit expression of the
limit cycles as a function of these two roots. Our results are in agreement with
the local methods in that (i) the fold limit cycle bifurcation can be obtained as a
perturbation of a center and (ii) the large size limit cycle can be obtained as a Hopf
bifurcation at co. We might also consider the limit cycle obtained as a — 0 as a kind
of degenerated Hopf bifurcation. We have shown the existence of at least two limit
cycles, and arguments similar to those used in [27] should enable us to demonstrate
that at most two limit cycles exist. When p is a polynomial function, such a result
can be obtained only for a polynomial of degree at least five [36]. It has already been
observed that discontinuous dynamical systems have a richer dynamic than regular
dynamical systems [9]. The obtained results, and numerical simulations that we have
carried out, lead us to formulate two conjectures concerning the number of limit cycles
of a piecewise linear Liénard system.

Congecture 1. The Liénard system (8.1), with p piecewise linear on n+ 1 intervals
and having n finite jump discontinuity, has up to 2n limit cycles.

Conjecture 2. The Liénard system (8.1), with p continuous and piecewise linear
on n + 1 intervals, has up to n limit cycles.

Conjecture 2 generalizes the result obtained in [26], [27] in which the authors
proposed a continuous, and piecewise linear on 2n + 1 intervals, function p so that
Liénard system (8.1) has exactly n limit cycles. The parity and periodicity of p appear
to be the two properties that limit the number of limit cycles.

Beyond mathematical interest of the system under study, it is of great importance
in mathematical biology where excitable systems are widely used [31], [17]. Our sys-
tem is a piecewise linear version of the FitzHugh—Nagumo equations with a simplified
version of the recovery process which provides an understanding of the behavior in a
transparent way. First of all, we have distinguished between two dynamics according
to the value of A2 — 4b. When A2 — 4b > 0, the system is termed leaky integrator and
only a single spike can be emitted in response to an excitation given by the input
I = Iy6(t —tg). When A2 — 4b < 0, the system is referred as being resonator. In this
case, the response is obtained as the superposition of

o(t) = e~ sin Qt,

where n = % and Q= Vb— )‘72 denote, respectively, the time constant and the natural
frequency of the system. When this response is a finite sum, we obtain what we call
a spike solution. In the case of infinite sum, we obtain a periodic solution for which
an analytical expression is given by

v=5(Sof~5.)
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where S is the shift operator Syg(x) = g(z + y) and f is a function that depends on
the period T'. In the general case, it is not possible to have an explicit expression for
T and 7. However, we have obtained a set of approximate solutions which shows that
the period is well approximated using

A
Vb — 22’

We have detected two possible mechanisms for the appearance of oscillations: a fold
limit cycle bifurcation and a Hopf bifurcation at infinity.

A significant biological interest is the extension of our analysis to the complete
system where the recovery process is given by

% =b(v — yw).

In this case, a change of variables allows us to rewrite the FitzHugh—-Nagumo system
as the generalized Liénard equation

dv
i F(v) — w,
(8.2) % = G(v).

When p is the polynomial function (1.2), the two functions F' and G are third degree
polynomial functions and, in contrast to the case v = 0, three limit cycles can be
obtained. We plan to explore the piecewise linear case for which an analytical study
is possible but yields much more complicated expressions than those obtained in this
paper. Results on such an extension will be reported elsewhere.

There remains much work to be done on our system. The simplicity of the model
allows us to hope for analytical results for bursting [35]. The coexistence of a limit
cycle and a stable fixed point favors the existence of such a phenomenon when an
additional slow variable is added to the system. Another aspect is the study of coupled
equations. In particular, we hope for promising results concerning the dynamics of
coupled oscillators using the approximations obtained for the periodic solution. As
a first step, we plan to explore the forced system in the context of forced piecewise
linear systems [4], [21].

Acknowledgments. The author thanks J. Demongeot and J. L. Martiel for
many helpful discussions.
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WAVE PROPAGATION IN SPATTALLY DISTRIBUTED
EXCITABLE MEDIA*
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Abstract. Consider wave propagation through regions of no excitability (gaps) in an otherwise
excitable medium. Propagation in the gaps takes place via simple diffusion. We extend the geometric
method for a one-gap system developed by Lewis and Keener to the case of two and three gaps, and
we obtain conditions for successful wave propagation and failure. We show that, like the one-gap
system, steady-state multiplicity for the case of two gaps arises via a limit point bifurcation. We
also demonstrate that in some cases the presence of a large number of gaps promotes wavefront
propagation.

Key words. spatially heterogeneous excitable media, bistable, successful propagation/failure
AMS subject classifications. 34B40, 35K15, 35K20, 35K57, 35R05, 92B05, 92C30
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1. Introduction. Wave propagation in spatially distributed media is relevant
to a large variety of biological and chemical systems, including nerve signal transmis-
sion, population dynamics, and combustion. There are many different ways in which
spatial inhomogeneity can be created. In all cases, spatial variation of the parameters
in reaction-diffusion equations has been shown to have important consequences for
traveling wave propagation and pattern formation. For example, Kay and Sherratt
[1, 2] considered the effect of spatial variation of the demographic kinetic parame-
ters on predator-prey systems. They were able to demonstrate that a small amount
of noise has no appreciable effect on the die-out of the regular oscillations after the
invasion of a front of predators with an irregular wake. However, moderate to large
levels of noise could lead to the persistence of regular oscillations, but generally with
a spatial frequency different from that which would normally be generated behind the
invasion front. For a scalar reaction-diffusion equation with a cubic kinetic term and
with a spatially varying diffusion coefficient, Xin [3] showed that, if the variation of
the diffusion coefficient from its mean is sufficiently large, traveling waves no longer
exist, so that a wavefront will begin to propagate from given initial conditions but will
then stop advancing—a phenomenon known as “quenching” or “wave-block.” Several
other authors have analyzed propagation with spatially varying diffusion coeflicients
including wave-blocking phenomena in bistable reaction-diffusion systems [4, 5] and
the excitable FitzHugh—-Nagumo equation [6].

In this paper we study wave propagation through localized regions of no excitabil-
ity in an otherwise excitable medium. Following Sneyd and Sherratt [7] and Lewis and
Keener [8], we will refer to these regions of no excitability as the “gaps.” Such a gap
model has relevance in several areas. For instance, the role of the gaps is analogous to
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that of fire breaks in flame propagation [9]. In the context of Ca>" wave propagation
between inositol 1,4,5-trisphosphate (IP3) receptors [7], the gaps correspond to regions
of low IP3 concentration. The propagation of electrical excitation in cardiac tissue
also encounters regions of depressed excitability. For instance, the atrioventricular
node, the normal electrical pathway between the atria and ventricular myocardium,
is a localized region of low excitability and conductivity [8]. Finally, gaps can be
used to model demyelination of nerve fibers [10, 11] resulting from diseases of the
central nervous system [12]—in this case, the loss of myelin slows or even stops the
transmission of action potentials through the nerve cells.
Our excitable medium model is the bistable reaction-diffusion equation

(1a) U = Ugy + g(u, )
on —oo < x < 400, t > 0, where the function g(u,x) is defined piecewise as follows:

_ f(u)v _OO<II»'SJ:17x2<x§x3""’x2n<x<+oo’
(Ib)  g(u,z) = { 0, otherwise.

The kinetic term f is taken to be the cubic function
1
(1c) f) =u(l —w)w—a), 0<a<]

that describes excitation outside the n gaps, [x;, z;41] fori = 1,3,... ,2n—1. Equation
(1la) is subject to the boundary conditions

(1d) u — 0, T — +00,

with all the z derivatives tending to zero as * — 4o0o. The bistable equation is
essentially a version of the nonlinear cable equation that has been used to describe
the flow of electricity along nerve axons [12]. Within the context of nerve impulse
transmission in particular, the bistable equation can be used as a model for myelinated
nerve axons. The same equation was also adopted by Lewis and Keener [8] as a model
system for the atrioventricular node in the heart. These authors studied the existence,
stability, and bifurcation properties of the steady states of the bistable equation (1a)
in the presence of a single gap. They developed a phase plane/geometric method that
allows the derivation of criteria for wave-block: their analysis indicates that wave-
block is associated with a limit point bifurcation; i.e., there exists a minimal gap
width above which wave-block occurs. Furthermore, they considered different gap
dynamics, including a leaky gap with a linear decay of u in addition to diffusion, and
a gap with small but nonzero excitability. A gap with linear decay was also considered
by Grindrod and Sleeman [10] and Grindrod [11] to describe leakage of ionic transport
from the axoplasm into small pockets of plasma held within the myelin sheath, while
a general analysis of the steady states of the bistable equation with a spatially varying
reaction term has recently been performed by Salazar and Sola-Morales [13].

The mechanism for successful propagation and failure through an active medium
with localized regions of no excitability was studied in detail by Poptsova and Guria
[14]. These authors performed initial-value computations of the bistable equation
as well as the two-variable excitable FitzHugh—-Nagumo model, to demonstrate the
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existence of a critical gap width for a single-gap system above which wave-block
(referred to by the authors as “locking-up”) occurs. They also performed initial-value
computations for a periodic sequence of gaps and spacings between the gaps, and they
demonstrated the existence of a critical separation distance below which wave-block
oceurs.

The problem of wave propagation in the presence of several gaps separated by
different spacings is considered here. This is a substantially more complex situation
than propagation in a heterogeneous medium with a single gap. Our analysis parallels
the work by Lewis and Keener [8] and extends their geometric method to a hybrid
geometric-algebraic method for the case of multiple gaps. The method allows us to
obtain criteria for propagation failure in the bistable equation (1), where gap dynamics
is governed purely by diffusion, and to gain insight into the underlying dynamical
structure of the problem. Although the geometric method facilitates the visualization
of the steady states in the phase plane, setting up the equations governing these
steady states and solving for the critical quantities directly does give a systematic
way to construct these steady states. For two gaps with lengths less than the critical
length for a medium with a single gap, our analysis reveals the existence of a critical
spacing between the two gaps, below which the system approaches a steady state and
propagation is suppressed. However, if the first gap length is larger than the critical
length, with the second gap still being less than the critical length, there are two
critical values for the spacing: for values of the spacing less than the smaller critical
value and greater than the larger critical value, the system approaches a steady state.
The same phenomenon occurs in a medium with three gaps, provided that the final
gap length is less than the critical length for a medium with a single gap. For a given
value of the spacing between the first two gaps, there are two critical values for the
second spacing: for values of the second spacing less than the smaller critical value
and greater than the larger critical value, the system approaches a steady state. This
somewhat surprising result implies that the final spacing has a profound impact on
wave propagation and, in fact, promotes propagation across purely diffusive regions
only when its value is between the two critical values.

Hence, the bistable equation behaves in a dramatically different fashion than the
system we studied previously [15], in which a heterogeneous medium was considered
using a cubic autocatalysis model with autocatalyst decay in the gaps, which were
defined as the regions where the reactant concentration was zero. In this two-variable
model, the autocatalyst was taken to diffuse and react with a reactant loaded at a
constant initial concentration throughout a reaction domain except in the gap regions.
One of our main findings was that if any gap length is larger than a critical value,
wave propagation will be suppressed; unlike the case studied here, for three gaps in the
reaction domain there was only one critical value for the second spacing. Finally, our
predictions from the hybrid geometric-algebraic method are in excellent agreement
with numerical solutions of the system in (1) as an initial-value problem.

2. Wave propagation: Success and failure in a single-gap domain. In
the absence of heterogeneities, the bistable equation in (1) admits traveling wave
solutions that connect the two stable rest states, u = 0 and u = 1 (see, for example,
Keener and Sneyd [12]). The solution is of the form

(2) u(e) = u©) = 5 [1 —tann(vae/9)]. o= 2

where £ = x — ¢t. Note that the direction of propagation changes at o = 1/2. This
traveling wave solution is a heteroclinic trajectory that connects the two saddle-points
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(0,0) and (1,0) in the (u, u¢) phase plane. In addition, the bistable equation exhibits
threshold phenomena (see [16]). Specifically, if the initial data is sufficiently small,
the solution of the bistable equation approaches zero uniformly in the limit ¢ — oo.
However, there are initial conditions with compact support lying between 0 and 1
for which the solution approaches 1 uniformly for large times and, as a consequence
of the comparison theorem for scalar parabolic operators, any two solutions of the
bistable equation that are ordered at some time remain ordered for all subsequent
times. Hence, initial conditions larger than the threshold will initiate a solution that
approaches 1 for large times. Finally, the traveling wave solution of the bistable
equation has been shown to be stable by Fife and McLeod [17], and in fact, starting
from any initial data that lies between 0 and « as * — +o0o and between a and 1
as x — —oo, the solution will become arbitrarily close to some phase shift of the
traveling wave solution (2) for sufficiently large times.

The impact of a single gap, of width W = x5 — x1, on the propagation of an
established permanent-form traveling wave was considered in detail by Poptsova and
Guria [14] and Lewis and Keener [8]. For W small but nonzero, the dynamics is
similar to the spatially uniform case with W = 0. Poptsova and Guria [14] and Lewis
and Keener [8] demonstrated that, as the front of the wave approaches the gap, it
slows down because there is no excitability within the gap. For W sufficiently small,
the front is able to supply sufficient u across the gap to excite the upstream side
of the gap. Thus, after a delay, the wavefront can propagate through the gap and,
after a sufficiently large distance, the front is able to recover fully and reestablish its
permanent waveform. As W is increased, the delay increases, but the wavefront is
still able to penetrate across the heterogeneity. Eventually, for W larger than some
critical value W,, the solution approaches a spatially inhomogeneous steady state of
system (1), with u; = 0 and without any wave development beyond the gap. A similar
wave-block phenomenon was observed in the cubic autocatalytic system with decay
studied in [15].

This behavior is confirmed from a full numerical solution of the bistable equa-
tion (1) as an initial-value problem in an extended domain, with long intervals before
the first gap and after the last gap, to establish domain independence and to ensure
that u approaches the two rest states 1 and 0 on the space spanned by the eigen-
vectors obtained from the linearized version of (1) at the infinities. We utilize a
standard Crank—Nicolson-type implicit scheme for solving parabolic equations, with
the z-derivatives approximated by central differences. (The advantages of an implicit
scheme over an explicit scheme are obvious, as an explicit scheme would require very
short time steps for a reasonable spatial accuracy.) The translational invariance of
the system in x allows us to take x = 0 as the starting point of the computations.
We start the integrations with u = 0 everywhere except in the first 100 grid points,
where we set u = 1.0. The time-discretization uses a two-level scheme. In advancing
from time ¢ to time t + At, we replace the time derivative terms by first-order dif-
ferences involving the solution at the old time level and the as-yet-unknown solution
at the new time level. We evaluate the other terms using a weighted average of the
solution at the two time levels. At each time level, the fully discrete system is a set of
nonlinear algebraic equations, which we solve using Newton—Raphson iteration. The
accuracy of the numerical simulations was determined by careful convergence tests
under mesh refinement and time-step sizing. In all cases, grid sizes and time steps
were kept smaller than 10~!, while in some cases grid sizes and time steps as small
as 1073 were employed to accurately resolve critical gaps and spacings.

Our results confirm the value W, ~ 6.5 for « = 0.3 obtained by Lewis and
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Fic. 2.1. Numerical solution of (1) for a = 0.3 as an initial-value problem on a domain with
L =90.0 and a gap of width W = 7.0 > W.. Here u is plotted at equal times starting at t = 25.5.
The time lapse between any two successive curves is 22.5 time units.
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Fic. 2.2. Phase-portrait of uge + f(u) = 0 in the (u,uz) phase plane for the steady-state in
Figure 2.1. 'H indicates the homoclinic orbit emanating from the saddle point (0,0), and 1 the
transfer map of H. Solid curve: curve of 1 tangential to the stable manifold of the saddle (1,0)
occurring at W = W, = 6.402. Dashed curve: curve of 1 with W = 7.0.

Keener [8]. Figure 2.1 depicts the evolution of the wavefront towards a gap with
width W = 7.0. The wavefront slows down and eventually stops. The final result of
the evolution is a steady-state solution of the bistable equation. Lewis and Keener
developed a phase plane method to construct the steady-state solutions and to predict
the critical width W,.. Their method is essentially based on piecing together in the
phase plane the invariant manifolds that constitute the steady-state solutions. Below
we offer an algebraic version of the geometric method of Lewis and Keener.

Figure 2.2 shows the steady state of Figure 2.1 in the (u,u;) phase plane. Three
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curves in the phase portrait are of particular interest: (i) the curve H, which is
a portion of the homoclinic orbit emanating from the saddle point at (0,0) and is

described by u, = —V —2 fou f(v)dv; (ii) the transfer map of the homoclinic orbit by
the flow in the gap which maps points on H onto a new curve ¥y defined by ¥y :

[, ug] — [—us W + u, u,]; (iii) the stable manifold of the saddle point (u,u,) = (1,0)

described by u, = —V 2 ful f(v)dv. Hence, the equations describing the steady state
are

a UBZ— — " v)av
(3a) L \/2/0 f(v)dv,

(3b) u® = —uPW 4+,
1
(3c) uf = — 2/ f(v)dv,
el
(3d) uf = ug’

where the superscripts B and C' refer to points B and C, respectively, in the phase

plane and in Figure 2.1. The above are four equations for the five unknowns u2, u?, u¢

) x
u®, and W. The existence of real solutions to these equations ensures that the trans-
fer map and the stable manifold of (1,0) intersect. However, the intersection can be
either tangent or transversal. To ensure a tangent intersection, and hence intersec-
tion at only one point, the slopes of the transfer map and the stable manifold must
coincide at point C'. For this purpose we must express 1 as a function of u. However,
it is not possible to obtain an explicit expression for ¥ (u), and therefore we resort to

the parametric representation

u= —W“—Q/Otf(v)dv-i-t,
b=y = \/2/()tf(v)dv,

where 0 < t < tpax With tmax = (2/3)(1+a)+(1/3)v4 — 10« + 4a?. Hence, the slope
1, can be easily obtained: v, = (du,/dt)/(du/dt). At point C, u, evaluated from

C
P, Uy = —\/ —2 fot f(v)dv, must be equal to u, evaluated from the stable manifold,

Uy = —V2fulc f(v)dv. A comparison of \/—2 fgc flw)dv = Vv 2fulc f(v)dv with

(3a), (3c), and (3d) indicates that t“ = u”. Hence, the condition of equal slopes at
C,
fu®)

v/ =2 fluc f(v)dv’

Yy (tc) =
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can be expressed in terms of u” and u“ and, after being combined with (3a)—(3d),
gives a system of three nonlinear algebraic equations:

(1a) / * foyo - / * oo,

uB _ uC u®
(a0) ) pe) =2 =T [ popae,
UC—UB

(40) W= S
V _2fou f(v)dv

The first two equations can be solved with a simple trial-and-error procedure to obtain
uB and u®. The critical gap width W,. can then be obtained explicitly from (4c). For
a = 0.3, W, = 6.402. An asymptotic analysis of these equations as o — 1/2 shows
that W, ~ 2v/2[(1 — 2a)/12]'/3 with u®¢ ~ 1 —[(1 — 2a)/12]'/3.

Finally, two points of interest in the phase portrait are u;, the maximum wu value
on the homoclinic orbit H (see Figure 2.2), and us, the u value on the stable manifold
of (1,0) with a slope the maximum of —u, on the homoclinic orbit. Lewis and Keener
[8] pointed out that different kinetic terms f that are the same on the intervals
0 <u<wu; and us < u < 1 would give the same W, and the same steady states for
W > W,.. This is simply due to that fact that f does not play a role in the purely
diffusive gap. The kinetic term f, however, is critical in determining the shape of
the homoclinic orbit and the stable manifold. The same argument can be readily
extended to the case of two- and three-gap systems studied in the next two sections.

3. Propagation in a domain with two gaps. We consider the propagation
of a wavefront in a domain with two gaps of widths W7 and W5. The region of
excitability of length S between the two gaps will boost any wave passing through
the first gap before it encounters the second gap. Hence, we seek to determine the
minimum separation distance S, between the two gaps that allows the wavefront to
propagate successfully through the whole domain. Numerical integration of (1) for
a = 0.3 suggests that S. ~ 0.68 for W; = Wy = 5. Figure 3.1(a) shows wave-block
for W3 = W5 = 5.0 (less than the critical value W, = 6.402 for a domain with a
single gap) with a spacing S = 0.66. Figure 3.1(b) shows successful propagation of
the wavefront for S = 0.69 (for the same values of W; and Ws).

We now extend the geometric method developed by Lewis and Keener to the case
with two gaps. Figure 3.2 shows the phase portrait of the steady state in Figure
3.1(a). As with the one-gap case, we can compute the transfer map ¢, : [u, u,] —
[, W2 + u, uz] to obtain the mapped curve ¢ and the stable manifold of the saddle-
point (1,0). Notice that the transfer map of the homoclinic orbit is now defined by
the last gap W5, while the first gap W; corresponds to curve DE emanating from
the stable manifold of (1,0) in the phase plane. Another curve of interest in Figure
3.2 is the phase orbit ¢ tangent to ¢. The monotonicity of ¥, in Wy and the
continuity of 1) and any orbit in the phase plane ensures that, for a given W5, there
will be only one orbit tangent to the mapped curve @. This phase orbit is given
by u, = —V—=2 [ f(v)dv + B, where B = u2 at u = 0 for the phase orbit ¢. We
shall demonstrate that this phase orbit determines the critical spacing for propagation
failure.
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Fic. 3.1. (a) Failure of wavefront propagation in a domain with two gaps, W1 = Wa = 5.0 <
We for a spacing between the two gaps of S = 0.66 with o = 0.3; (b) successful propagation for
W1 =Ws =5.0 and S = 0.69. Here u is plotted at equal times from time t = 22.5. The time lapse
between successive curves is 22.5 time units.

The condition of equal slopes for ¢ and ¢, along with the fact that u$ evaluated
from ¢ must be equal to u$ evaluated from ¢, gives

C uC
5a) 1) IO

Wa f(t€) + \/—2 fgc f(v)dv \/—2 fgc f(v)dv

)
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Fic. 3.2. Phase portrait of uzs + f(u) = 0. The phase orbit ¢ determines the critical spacing
between the two gaps. The tangent intersection between ¢ and 1 occurring at B = 0.04949 cor-
responds to the steady state in Figure 3.1(a). The phase orbit through C' and C" corresponds to
B =0.0357. The curve AB'C'D'E'F is a stable steady state for S = 0.49 < S. and W1 = Wy = 5.0.
The curve AB"C"D'E'F is an unstable steady state for W1 = Wa = 5.0 and S = 0.13. Here uy
corresponds to the intersection of the homoclinic orbit with the u-axis.

where

(5b) u® =

—2/0t f(v)dv +t°.

The above form a system of two equations for the two unknowns € and t¢, which
can be easily solved numerically. The constant 3 for the phase orbit ¢ can then be
obtained from

(5¢) §=2 /O"Cﬂv)dv— /Otcfw)dv ,

which fully determines point C' and the orbit ¢. Point B can now be determined

from the second gap, which is purely diffusive: u¢ = u® — uBW,, where uf = uf =

—/ =2 fgc f(v)dv, or

tC

(5d) uP = u® — Woy| -2 f(v)dv,
0

which fully determines point B. We can now locate points D and E from the require-
ment that uZ evaluated from the stable manifold must be equal to u? evaluated from
¢, which when combined with (5¢) yields

(6a) /Ouc flu)dv — /Otc fv)dv = /OuD f(v)dv — /ul f(v)dv.
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TABLE 3.1
Lower critical spacing between two gaps of width W1 and Wy obtained from the initial-value
problem and the geometric method for a = 0.3.

[ Wy [ Wo [ Equation (7) ]

4.0 | 4.0 0.32
5.0 | 5.0 0.65
6.0 | 6.0 1.36

The final equation is then obtained from the first gap: u” = u? — WiuZ, with

x )

uf = —4/2 fulE f(v)dv as obtained from the stable manifold. We therefore have

(6b) uf —uP = Wu/?/; f(v)dv.

B C
A comparison of uf = —\/=2 [* f(v)dv with uf = —\/ -2 fg f(v)dv shows that

uP = t“. We then have four equations, (5a), (5d), (6a), and (6b), for the four
unknowns u?, u®, u”, and u”. We can now utilize the phase orbit ¢ to obtain an

explicit expression for the critical spacing S. between the two gaps:

(7)

_ u” du -
SC_/uO NETIOIEY

For S < S., wave-block occurs. The dashed-dot line in Figure 3.2 depicts one such
steady state for S = 0.49; as in the single-gap case, there are actually two steady
states, one of which stable (associated with C’) as we shall demonstrate later on.
The steady state in Figure 3.1(a) can also be constructed with an alternative
method. The phase orbit ¢ in Figure 3.2 can be mapped by the flow in the first gap
W1. The mapped curve, say 1, can be easily obtained as follows: simple diffusion
in the first gap implies u? — uP = —Wluf , which, with uf evaluated from ¢, gives

uf —uP =W, \/72 fouD f(w)dv + 3, the equation for ¢’. This curve, not shown in
Figure 3.2, will intersect the stable manifold transversally exactly at point E. (It can
be shown that the point at which ¢ intersects the —u, axis will be mapped into the
region to the right of the stable manifold of (1,0).) We can then easily locate point
D (DE is parallel to the u-axis), and hence a simple integration on ¢ from C to D
will give S..

Table 3.1 shows the critical spacing obtained from (7) (obviously one must first
use (5a), (5¢), (5d) and (6a), (6b) to obtain u?,u® uP uF, and B) and the initial-
value problem for different values of W; = W5. We notice that S. increases as the
gap width increases. The variation of S, as a function of W5 for given W7 (< W,) as
obtained from (7) is given in Figure 3.3. Clearly, for a domain with two equal gaps,
wave propagation will fail at the final gap if W7 = Wy > W, where W, is the critical
gap width for the single-gap domain. On the other hand, if W, = Wy = W,/2, the
wavefront will propagate even if both gaps are brought together, so S. — 0 in this
limit. All curves in Figure 3.3 blow-up to infinity as W7 approaches W, from below:
from Figure 3.2, as Wy approaches W,, point C' moves close to the stable manifold of
(1,0), while the segment DFE moves closer to the u-axis.

For a domain with two unequal gaps, with Wy < W, and W; < W, it is clear
that, with Wy fixed, S, — oo as Wy — W,.. Also if Wy < W, — Wy, S. — 0 and
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Fic. 3.3. Critical spacing Sc for a two-gap system as a function of Wa for different W1 values
with W1 < We, obtained from (7).

the wavefront will propagate successfully in this case even if the two gaps merge.
However, for W7 > W, the situation can be dramatically different: from Figures
3.4(a) and 3.4(b), where Wi = 7.0 > W, and Wy = 5.0 < W,, we see that there is
a critical spacing length between the two gaps for successful propagation. From the
initial-value problem, we obtain S. ~ 0.765 in this case. This phenomenon is quite
different from what we found in [15], where we showed that, if any gap length is larger
than the critical length for a domain with a single gap, wave propagation is always
blocked. Of course, the fundamental differences between the two systems are that the
system in [15] is a two-variable model and the dynamics in the gap is characterized by
a linear decay of the autocatalytic intermediate species in addition