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Abstract. By using a Lagrangian renormalization formulation, the effective diffusion equation
is rigorously derived for a tracer in a homogeneous, isotropic, stationary, multidimensional and zero-
mean Gaussian velocity field with a known two-point/two-time correlation tensor. The basic idea is
to find the appropriate representation for the averaged small-scale solute distribution, to express it
in terms of large-scale variables, and then to evaluate the limit of the infinite separation between the
dissipation and the integral scales of turbulence. Key to the derivation is the validation of Corrsin’s
independence hypothesis for the selected velocity field at any diffusion time. The requirement of the
nontrivial limiting behavior for the averaged solute distribution then results in the determination of
the appropriate time scale for the averaged effective large-scale long-time spreading problem and in
the evaluation of the effective transport coefficient. Unlike the simple shear flow case of Avellaneda
and Majda, multidimensional velocity fluctuations ensure a constant eddy diffusivity in the limit of
infinite time for any spectral parameters. By adjusting a single decorrelation time spectral parameter
for a velocity field with Kolmogorov spectrum, the effective evolution equation is shown to produce
the same time-evolution of the lateral mean-square displacement as a numerical simulation of planar
flow and experimental heat-transfer data in turbulent pipe flow. The predicted constant asymptotic
eddy diffusivity at infinite time, ED = 7.26 × 10−3νRe7/8, agrees with experimental data for eddy
diffusivities in pipes and ducts over three decades of Reynolds numbers.
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1. Introduction. It is well known that the effective diffusivity of a turbulent
flow can be a thousand times larger than the molecular transport coefficient. Hence,
the computation of eddy diffusivity in a fully developed turbulence is an extremely
important practical problem in both engineering and environmental science. Macro-
scopic description of the dispersion enhancement is a complex problem due to large
fluctuations in the scalar field caused by the turbulent flow, where the velocity involves
a continuous range of excited space and/or time scales and admits only a statistical
description. The goal of eddy diffusivity theories is to assess the effects of the con-
tinuum of energetic smaller scales on the large scales through an effective equation
without resolving this effect explicitly. Mathematically, it requires the statistical av-
eraging of the small-scale fluctuations and then the determination of new appropriate
time scales for the resulting effective transport equation such that the desired solution
behaves nontrivially in the large-scale long-time limit.

Unfortunately, because of the presence of convective term u ·∇(. . . ) in transport
equations, all statistical quantities are coupled up to infinite order. To find the average
value 〈C〉, for example, one needs to know the correlation 〈Cu〉; if one tries to write
down the equation for 〈Cu〉, terms like 〈Cuu〉 will appear in it, and so on. Hence, one
needs to close somehow this infinite hierarchy of statistical moments. The fluctuations
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in turbulent flows are typically large, however, and the usual perturbation expansions,
which simply neglect higher-order moments, will completely fail to predict something
reasonable for problems of such kind. Instead, these problems have been attacked
through a wide variety of renormalized perturbation theories that mimic ideas from
field theory and the renormalization group theory from critical phenomena, both
involving partial summation of the perturbation series.

The basic idea of the renormalized perturbation theories (RPT) is in the replace-
ment, after ensemble averaging, of the zero-order terms in a formal widely divergent
perturbation expansion by the exact values. It should be mentioned that convergence
is not ensured for the renormalized perturbation series. However, even if it does not
converge, it is much more accurate than widely divergent primitive perturbation se-
ries. The application of renormalized perturbation theories to turbulence has been
pioneered by Kraichnan in a series of papers during the late 1950s, cumulating in
the direct interaction approximation (DIA). (See Kraichnan [16], for example.) The
“direct interaction principle” means that the strongest coupling occurs between the
“nearest neighbors” in the wavenumber space. Consequently, only terms responsible
for such interactions should be taken into account, summed, and averaged. As a
result, the renormalized perturbation series is truncated at the second order.

Note that in its original formulation, DIA fails even to reproduce the Kolmogorov
“k−5/3” energy spectrum and results instead in a k−3/2 decay for the inertial range
of wavenumbers. Further development of this theory that includes reformulation
in mixed Eulerian Lagrangian coordinates (see Kraichnan [17]) results in at least
qualitative agreement with spectral measurements. Unfortunately, as the performance
improves, the length and complexity of the final equations grow dramatically. Until
now, different modifications of DIA remain the most popular among all renormalized
perturbation theories. As an example of the application of DIA to scalar transport
problems, one can mention the study of Koch and Brady [14]. They use DIA to
predict the rate of growth of the variance of a tracer for a slowly decaying velocity
covariance ∼ x−γ . Their analysis indicates that the spread will be nondiffusive with
the mean-square displacement growing like t4/(2+γ) as t → ∞ for 0 < γ ≤ 2, and this
result is qualitatively consistent with numerical simulation. However, higher-order
moments obtained from this approximation are incorrect.

In general, the strength of the renormalized perturbation theories lies in their
generality and the absence of ad hoc assumptions or disposable constants. However,
the unpredictable error of all RPT’s (because of unknown mathematical properties of
renormalized perturbation series) on one hand, and the enormous complexity when
formulated for inhomogeneous turbulence on the other, restrict using these theories in
both fundamental and engineering applications. A partial answer to the first of these
problems lies within the renormalization group approach, which is quite distinct from
RPT.

The renormalization group method (RNG) already has some success when applied
to problems in critical phenomena. The pioneers in the development of the RNG for
turbulence are Forster, Nelson, and Stephen [9]. Their theory is later generalized
by De Dominicis and Martin [6]. The RNG involves iterative averaging over the
small bands of modes and progressive scaling away from the highest wavenumbers
(short waves), whose effect on the lowest wavenumbers (long waves) can be retained
in an average form as a contribution to the transport coefficients. If the system
becomes invariant under the mode elimination procedure, the scaling transformation
is said to have reached a fixed point. One can then eliminate all fluctuations, and
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the value of the new transport coefficient at the fixed point corresponds to enhanced
diffusivity. Using the RNG, Yakhot and Orszag [23] obtain the turbulent viscosity and
the relation between turbulent Prandtl number and turbulent viscosity for unbounded
homogeneous turbulence and applied these results to heat transfer in a pipe, using
an empirical model for the viscosity in a wall region (Yakhot, Orszag, and Yakhot
[24]). It has been reported that the proposed formula gives good agreement with
experimental data in a wide range of Prandtl number, 10−2 < Pr < 106.

From both a physical and mathematical point of view, the RNG is more rigorous
than the RPT, and at the same time, the RNG is simpler: at the end, the mathe-
matical problem reduces to the study of a system of first-order ordinary differential
equations. However, it should be mentioned that the RNG mode elimination pro-
cedure is valid to any order only if the neglected higher-order terms (they are truly
negligible only when the first band of modes is eliminated) remain negligible after
scaling transformations. In turbulent flow calculations, the above condition often re-
quires the space dimension to be “slightly higher than 3,” with the best performance,
for example, in seven-dimensional space (Yakhot and Orszag [23]). Consequently, it is
hard to expect the RNG to give the correct prediction for any case, Yakhot, Orszag,
and Yakhot’s claim notwithstanding.

For scalar transport problems, perhaps the most rigorous and accurate approach
has been suggested by Avellaneda and Majda [1]. They consider an advection-diffusion
of a passive scalar in a simple shear flow u = (0, u2(x1, t), 0), where u2(x1, t) has sta-
tionary Gaussian statistics. This model problem admits an explicit representation of
the solution through the Lagrangian formulation. Using the above representation and
some properties of stochastic differential equations, Avellaneda and Majda develop
a complete renormalization theory for this exactly solvable model with full mathe-
matical rigor. They found several regimes of anomalous diffusion that depend on the
parameters of the velocity spectrum, such as time-dependent diffusivities and even an
effective equation with a random nonlocal diffusion coefficient.

With this exact result, the capability of the RNG, Lagrangian RPT, and DIA in
predicting turbulent transport for the same model flow is also examined (Avellaneda
and Majda [2]). It is found that all these approximate theories give incorrect predic-
tions for some regions of renormalization, which depend on the parameters defining
the velocity spectrum.

The RNG always predicts a simple local diffusion equation with constant diffusiv-
ity and often erroneously determines the appropriate time scale for the effective trans-
port problem. More importantly, it has been found that the RNG is barely acceptable
for velocity spectra pertinent to turbulent transport problems. The important exam-
ple of the Kolmogorov velocity spectrum belongs to the boundary of applicability of
the RNG, where this method can still give the correct long time scale for the effec-
tive diffusion problem. However, in this case RNG can only provide the infinite-time
asymptotic value of effective diffusivity and cannot resolve the time-evolution of the
mean-square displacement. Hence, the application of the results of Yakhot and Orszag
[23] to nonsteady turbulent transport problems seems questionable.

In contrast, both RPT always reproduce the correct time scale for effective dif-
fusion problems. However, the resulting effective equations can vary from the simple
wave equation to some complicated integro-differential equation instead of the local
diffusion equation with time-dependent diffusivity predicted by the exact renormal-
ization theory of Avellaneda and Majda [1].

For the more general case of turbulent transport by isotropic homogeneous ran-
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dom velocity fields, Avellaneda and Majda [3] investigate a part of the spectral pa-
rameter space in the vicinity of the Kolmogorov value. They find that the anomalous
long-time scale for the effective transport process remains the same as for a simple
shear flow model considered earlier [1], regardless of flow dimensions. The govern-
ing equation may, however, differ. If the temporal fluctuations are not irrelevant in
the large-scale long-time limit, Avellaneda and Majda suggest a nonlocal diffusion
equation but do not present details in their report [3].

Recently, Fannjiang [8] invokes variational principles to analyze scalar transport
by the same three-dimensional turbulent flow for the entire range of spectral parame-
ters. He also investigates the effect of the cut-off wavenumber on the resulting scaling
laws. (In fact, this introduces a third dimension in the parameter space.) While this
method produces a long time scale for anomalous diffusion, consistent with earlier
results of Avellaneda and Majda [3] at identical values of the parameters, it provides
only an upper bound for the effective diffusion coefficient. The limiting long time
scale is found to be dependent on the wavenumber scaling. However, it should be
noted that the actual wavenumber range, important for the scalar transport, is not
arbitrary. Instead, it should be determined from physical arguments (as has been done
by Avellaneda and Majda [1]) like the velocity spectrum, spatial scales of initial data,
requirement of finite (not only bounded) eddy diffusivity, etc. Hence, the applicability
of Fannjiang’s results [8] to practical turbulent transport is quite limited.

It also should be noted that none of the earlier works relate the main scaling
parameter (the ratio of dissipation to integral length scales of turbulence) to other
typically reported physical quantities (like Reynolds number, friction velocity, pipe di-
ameter, etc.). For the Kolmogorov spectrum, this relation is well known (see McComb
[19], for example, or any other textbook on turbulence), but it is not obvious for other
spectra. Also, there are almost no comparisons of suggested theories with experimen-
tal data. The only exceptions are the work of Yakhot, Orszag, and Yakhot [24] and
in the fundamental book of McComb [19], where some of the predicted infinite-time
asymptotic values of effective diffusivities are compared to data. If, however, the the-
ory suggests time-dependent eddy diffusivity or nonlocal scalar transport, one needs
to use data on the time-evolution of mean-square displacement to check the prediction
adequately.

The investigation of full two-dimensional (2-D) and three-dimensional (3-D) tur-
bulent transport using an extension of exact renormalization theory of Avellaneda
and Majda is the subject of this report. With the usual idealization for the turbulent
core, the zero-mean unbounded turbulent flow in the inertial range of length scales
is assumed to be stationary, homogeneous, and isotropic. The spreading of the pulse
of the solute in 2-D or 3-D isotropic random flow is examined as the simplest exam-
ple, allowing the derivation of large-scale long-time effective transport equation and
the associated effective diffusivity, which is time-dependent in general, in terms of
parameters defining the velocity statistics.

The basic idea is to find the appropriate representation for the averaged small-
scale solute distribution, to express it in terms of large-scale variables, and then to
evaluate the limit of the infinite separation between the dissipation and the integral
scales of turbulence. (In fact, this is the limit of infinite Reynolds number). The
requirement of the nontrivial limiting behavior for the averaged solute distribution
(it is never equal to zero nor the initial data) then results in the determination of
the appropriate time scale for the averaged effective large-scale long-time spreading
problem and in the evaluation of the effective transport coefficient.
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Since the whole idea of renormalization in this case is based on the appropriate
rescaling, the initial nondimensionalization of the small-scale transport problem and
the statistics of the random velocity field are defined precisely in sections 2 and 3.

Section 4 describes the Lagrangian formulation of the advection-diffusion problem
through Ito’s stochastic differential equation. It provides the solution for the distri-
bution of the evolved concentration field that, however, has to be averaged over the
distribution of random velocity field and over the Brownian motion that represents
the molecular diffusion effect in Ito’s formulation.

This averaging is completed in section 5, and it is shown that the resulting aver-
aged concentration distribution and the evolution equation for the effective diffusivity
are exact for the selected stationary homogeneous isotropic Gaussian velocity field.
With some physically plausible assumptions, the above result also can be applied to
the more important case of non-Gaussian velocity statistics.

In section 6 the rescaling of the derived equations is carried out. The large-scale
long-time limiting behavior of the averaged solute distribution is evaluated and the
effective diffusion equation is derived, provided that the effective diffusivity can be
properly renormalized.

The renormalization procedure for different parameters of the velocity spectrum
is described in section 7. It includes the evaluation of the distinguishing limit for
the evolution of rescaled enhanced diffusivity and hence the determination of the
appropriate time-rescaling function for the effective large-scale long-time diffusion
equation.

The summary and discussion of results of the renormalization analysis are offered
in section 8. The Kolmogorov velocity spectrum is chosen to compare the predicted
transport coefficient with experimental data on turbulent scalar transport and with
earlier numerical simulation. Both quantitative and qualitative agreement seem to be
satisfactory, taking into account the strong limitation of the assumed homogeneous
and isotropic Gaussian statistics.

2. Initial nondimensionalization for the transport problem. Consider the
dispersion of a solute/temperature field by a well-developed turbulent flow. Away
from the boundaries, in a turbulent core, the mean velocity profile is often assumed
to be flat. Consequently, such mean flow results only in the translation of the initial
solute distribution. Hence, in a frame of reference moving with the constant mean
flow, the spreading of the pulse is governed by the advection-diffusion equation

∂C ′

∂t′
+ u′ ·∇′C ′ = D′

0∇′2C ′, C ′(x′, 0) = C ′
0(x

′),(2.1)

where u′(x′, t′) is the random velocity field with zero mean, D′
0 is the molecular

diffusivity and primes denote dimensional variables. Because only the turbulent core
will be considered here, no boundary conditions are imposed. Since the goal of this
study is to average the effect of all inertial range fluctuations of the velocity field, the
problem should be made nondimensional with the smallest possible scale of turbulence
initially. Hence, the dissipation length scale Ld for the fluctuation velocity field u′ is
taken as the characteristic length. The characteristic velocity Ud is then defined by
the requirement that the dissipation Reynolds number Rd = UdLd/ν is equal to 1,
such that Ud = ν/Ld. This results in the characteristic time τd = Ld/Ud = Ld

2/ν,
which corresponds to the viscous dissipation time scale. The inverse of the Schmidt
number defines the nondimensional diffusivity D0 = D′

0/ν = Sc−1.
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For the renormalization procedure, it also is necessary to define the macroscopic
scales for the problem. The macroscopic length scale L0 is defined as the integral
length scale of the turbulence. For the realistic systems, L0 is of the order of the
lateral dimension of the flow. Since the effect of constant mean flow in this idealized
problem has been eliminated and only the inertial range of the turbulence will be
considered, the large-scale Reynolds number R0 = U0L0/ν is defined through the
root-mean-square velocity U0 for the large-eddy motion.

The ratio between the dissipation and the integral length scales increases with R0

and it is represented by the small parameter δ = Ld/L0 � 1. The actual dependence
of δ on the large-scale Reynolds number R0 depends on the spectrum of the velocity
fluctuation and will be specified later.

The advection-diffusion problem (2.1) is linear in C ′ and, because there are no
boundary conditions, the characteristic value of the concentration difference 	C ′ used
for nondimensionalization is not important. However, several restrictions should be
imposed on the initial nondimensional solute distribution C0 = C ′

0/	C ′. Since (2.1)
describes the solute dispersion in the unbounded domain, C0(x

′) should decay to
infinity fast enough such that the integral of the initial distribution over the entire
n-dimensional space is finite,

0 < L′−n
∫ ∞

−∞
C0(x

′)dnx′ < ∞,

where an appropriate length scale L′ is added for dimensional reasons. Consequently,
C0(x

′) can be defined by its Fourier integral

C0(x
′) = (2π/L′)−n

∫ ∞

−∞
Ĉ0(K

′) exp(ıK′x′)dnK′,(2.2)

where K′ is the n-dimensional wavevector.

If one would like to describe a large-scale long-time behavior of the spreading
process, it is necessary to assume large-scale initial data for the advection-diffusion
problem (2.1). This implies that C0(x

′) varies only over the integral length scale L0.
Consequently, one should set L′ = L0 in (2.2) such that C0(x

′) = C0(x
′/L0) and

Ĉ0(K
′) = Ĉ0(K), where K = K′L0 is the large-scale nondimensional wavevector.

Hence, with the nondimensionalization on dissipation length and time scales Ld
and τd, the governing equation (2.1) and the initial distribution (2.2) becomes

∂C

∂t
+ u ·∇C = D0∇2C,(2.3)

C(x, 0) = C0(δx) = (2π)−n
∫ ∞

−∞
Ĉ0(K) exp(ıδKx)dnK,(2.4)

and all nondimensional variables and parameters introduced in this section are sum-
marized below:

x = x′/Ld, u = u′/Ud, K = K′L0, t = t′/τd,
τd = Ld/Ud = Ld

2/ν, D0 = D′
0/ν = Sc−1,

Rd = UdLd/ν = 1, R0 = U0L0/ν 
 1, δ = Ld/L0 � 1.
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3. Velocity statistics. Let us specify the random velocity field u(x, t). The
fluid is assumed to be incompressible, such that the continuity equation ∇ · u′ = 0
holds. With the usual idealization for the turbulent core, the zero-mean unbounded
turbulent flow in the inertial range of length scales (Ld � L′ � L0 or, in nondimen-
sional form, 1 � L′ � 1/δ) is assumed to be stationary, homogeneous, and isotropic.

It also is assumed that the random flow field u(x, t) has Gaussian statistics. In
general, this is a very strong and, moreover, nonphysical assumption for the turbulent
flow. It is well known that real turbulence is never Gaussian. More importantly, the
nonzero triple correlation 〈ui(x, t)uj(x, t)uk(y, t)〉 is responsible for turbulent energy
transfer. At the same time, the Gaussian statistics for zero-mean u(x, t) immediately
leads to the vanishing of all odd-order moments. For the problem of a scalar transport,
however, this is a rather common approximation (see Kimura and Kraichnan [13],
Koch and Shaqfeh [15], or Avellaneda and Majda [2], for example) if one is not
interested in how the random flow field has been created and sustained.

With the above assumptions, the m-dimensional Gaussian velocity field u(x, t) is
specified by the spectral form of two-point two-time correlation tensor R,

〈ui(x, t)uj(y, s)〉 = Rij(|x− y|, |t− s|)

= (2π)−m
∫ ∞

−∞
Q̂(k, |t− s|)P̂ij(k) exp(ık(x− y))dmk,(3.1)

where k = |k|, P̂ij(k) = δij − kikj/k
2, and the spectral amplitude Q̂(k, |t − s|) is

defined in the inertial range of wavenumbers

Q̂(k, |t− s|) = α2k1−m−ε exp(−akz|t− s|), δ ≤ k ≤ 1,

Q̂(k, |t− s|) ≡ 0 otherwise.
(3.2)

One should mention that the correlation of the Fourier-component of the velocity field
is given by

〈ûi(k, t)ûj(q, s)〉 = δ(k+ q)R̂ij(k, |t− s|)
= δ(k+ q)Q̂(k, |t− s|)P̂ij(k).

(3.3)

Note that for the simple shear flow considered by Avellaneda and Majda [1] (m = 1,
u(x, t) = (0, u2(x1, t), 0), k = (k1, 0, 0)) the spectral correlation tensor R̂(k, |t − s|)
reduces to a single component R̂22 = Q̂(k, |t− s|) and in this case the requirement of
the isotropy of the velocity field should be omitted.

For the realistic turbulent core, the spatial dimensions m and n for the velocity
and concentration field should always be set equal to 3 because fluctuations are always
3-D. However, the general form of the isotropic spectrum (3.2) and the initial condi-
tions (2.4) with m = n = 2 or 3 will be considered, keeping in mind other possible
applications and the comparison with earlier works.

If the experimental data on the two-point two-time correlation are available, all
parameters in the model spectrum, as well as the value of the scale ratio δ, can be
determined directly. However, most velocity measurements provide only the energy
spectrum. Hence, it is useful to discuss the physical meaning of the parameters of
the model spectrum (3.2) and to establish some relations between values of these
parameters and more common measurable quantities, like the Reynolds number, for
example. The parameters ε and α are related to the kinetic energy spectrum (per
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Fig. 1. Schematic of the model energy spectrum (log-log plot). (a) For positive ε, the energy is
supplied by the large-eddy motion, with k < δ, and is dissipated in small-scale fluctuations k > 1,
with the energy cascade along the spectrum. (b) In the case of negative ε, the spectrum should
necessarily have a peak, where some additional stochastic forcing is applied.

unit mass of liquid)

Ê(k)dk =
1

2
trR̂(k, 0)km−1 S(m)

(2π)m
dk,(3.4)

where S(m) = 2πm/2/Γ(m/2) is the area of the m-dimensional unit sphere. For 2-D
or 3-D flow, the model energy spectrum (3.4) becomes

Ê(k)dk =
α2(m− 1)

4πm−1
k−εdk, δ ≤ k ≤ 1, m = 2, 3.(3.5)

The energy spectrum (3.5) is shown schematically in Figure 1(a) for positive values of
the exponent ε. Hence, ε defines the strength of the infra-red divergence of the kinetic
energy at low wavenumbers, and α is the nondimensional amplitude parameters which
are assumed to be independent on the separation of scales δ. The values of ε = 5/3,
m = 3, and α2(m− 1)/(4πm−1) = α0 in (3.5) provide the nondimensional version for
the Kolmogorov energy spectrum

Ê′
(K)(k

′)dk′ = α0ε
2/3k′−5/3

dk′,(3.6)

where α0 ≈ 1.5 is the Kolmogorov constant and ε is the energy dissipation rate.
With the nondimensionalization on the dissipation length scale, the kinetic en-

ergy of the small-scale fluctuations (k, dk ∼ O(1)) should be of the order of O(1).
Consequently, the amplitude for the energy spectrum α2(m − 1)/(4πm−1) ∼ O(1).
The universality of the spectrum in the inertial range of wavenumbers implies that
(3.5) should remain invariant under the scaling transformations (Ld ↔ L0, Ud ↔ U0).
Consequently, in the large-scale limit (k, dk ∼ O(δ)) expression (3.5) should provide
the kinetic energy for the largest eddies included in consideration, without rescaling
of the amplitude α. This requirement gives the relation between the integral and
dissipation scales

U0
2

Ud
2 ∼ δ1−ε(3.7)
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or, in terms of the Reynolds number for the large-eddy motion,

δ ∼ R0
−2/(ε+1).(3.8)

With ε = 5/3, (3.8) reduces to δ ∼ R0
−3/4, i.e., provides the correct dependence for

the scales ratio δ on the Reynolds number of the large-eddy motion for well-developed
isotropic turbulence.

Several remarks should be made here. As is evident from (3.7), a physically
meaningful spectrum for the flow with an energy cascade from the large to the small
scales should have ε > 1. It is unlikely for the speed of the large-eddy motion U0 to
be smaller than the root-mean-square velocity of the smallest scales Ud, unless some
additional small-scale stochastic forcing is applied. In such a case, when the system
presents both “slow” large eddies and “fast” small fluctuations, (3.8) provides another
restriction: ε > −1 because the separation of scales δ should increase with R0. For
negative values of ε, the spectrum should necessarily have a peaked shape, like in
Figure 1(b), and the functional form of the decaying part of the spectrum may be
important.

The integration over k in (3.5) results in the total kinetic energy of the inertial-
range fluctuations

E =

∫ ∞

0

Ê(k)dk =
1

2
trR(0, 0) =

m

2

U2
rms

U2
d

and provides the relation for the parameters of the model spectrum with the root-
mean-square velocity Urms,

U2
rms

U2
d

=
α2(m− 1)

2mπm−1

{
1
ε−1 (δ1−ε − 1) ε �= 1,

− ln δ ε = 1,
(3.9)

or, in terms of the root-mean-square Reynolds number Rrms = UrmsL0/ν,

R2
rms =

α2(m− 1)

2mπm−1

{
1
ε−1 (δ−(1+ε) − δ−2) ε �= 1,

−δ−2 ln δ ε = 1.
(3.10)

In the limit δ → 0, (3.8) and/or (3.10) allow us to relate the amplitude parameter α in
the model and the ratio of scales δ with Rrms and R0 for ε different from Kolmogorov’s
5/3 value.

Now let us consider the time-dependent part of the two-point two-time correlation
(3.2). The decorrelation time T = 1/akz corresponds to the turnover time for different
spatial modes. The parameter z > 0 represents the fact that low-wavenumber modes
have larger turnover times than the short waves. Larger values of z increase the
separation of the decorrelation times for long and short waves. The nonnegative
parameter a defines the decorrelation time 1/a for the shortest waves with k = 1.
The value of a = 0 corresponds to the spatially random steady flow u = u(x). The
limiting value a → ∞ (provided that α2 scales as a) corresponds to fluctuations that
are completely decorrelated in time. In such a case, the exponential term should be
replaced by a delta-function δ(kz(t − s)) = k−zδ(t − s). Similar to the amplitude of
the spectrum α, a is assumed to be independent of the scale ratio δ.

The physical association of T with the turnover time for different modes û(k)
implies that 1/T ∼ ku(k). Since the speed of the mode u(k) can be estimated as a
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root-mean-square fluctuation velocity in the range of wavenumbers q > k,

u(k) ∼
(∫ ∞

k

Ê(q)dq

)1/2

,

the kinetic energy spectrum (3.5) results in the estimate for 1/T ,

1/T = akz ∼ αk(3−ε)/2,(3.11)

and, consequently,

a ∼ α, z =
3 − ε

2
.(3.12)

The above estimate prescribes the particular relationship (3.12) between z and ε.
Note that, according to the Kolmogorov similarity hypothesis, in the inertial range of
wavenumbers, T can depend only on the energy dissipation rate ε and the wavenumber
itself. Dimensional analysis then leads to the well-known result for the frequency-
response function ω′(k′) ∼ 1/T ′ and turbulent viscosity νT (k′):

ω′(k′) = νT (k′)k′2 ∼ 1/T ′ ∼ ε1/3k′2/3.(3.13)

As can be easily seen, for the Kolmogorov value of the exponent ε = 5/3, (3.11) is
just a nondimensional version of (3.13).

Measurement of the decorrelation time T from two-time correlations are rare.
Hence, (3.12) provides a welcomed estimate of z from ε. However, the spectral pa-
rameter a remains unknown as a ∼ α is only an order estimate. We shall determine
a parameter a empirically in section 8.

Hence, the Kolmogorov energy spectrum (3.6) corresponds to ε = 5/3, z = 2/3,
m = 3, α2(m− 1)/(4πm−1) = α0 ≈ 1.5, and a ∼ O(1) in the model spectrum
(3.2). However, regardless of solute dispersion by a well-developed turbulent flow,
different “velocity” statistics are possible. In a subsequent analysis, the general form
of the two-point two-time correlation function (3.1)–(3.2) for the isotropic stationary
Gaussian velocity field u(x, t) will be used. The possible values of parameters in (3.2)
are m = {2; 3}, −1 < ε < 3, z ≥ 0, a ≥ 0, α ∼ O(1).

4. Lagrangian formulation for statistical advection-diffusion problem.
The advection-diffusion problem (2.3)–(2.4) for the concentration field C(x, t) is essen-
tially the Fokker–Planck equation for the probability density function to find a fluid
particle in a particular location x at time t for given initial condition C(x, 0) = C0(δx).
The equivalent representation for a Fokker–Planck equation is an Ito stochastic dif-
ferential equation for the trajectory of the fluid particle

dX(s) = u(X(s), s)ds +
√

2D0dW(s),

X(s = 0) = x,
(4.1)

where the Gaussian white noise W(s) represents the displacement of the fluid par-
ticle due to molecular diffusion. Hence, equation (4.1) is, in fact, the Lagrangian
formulation of the advection-diffusion problem (2.3)–(2.4), where the molecular dif-
fusion is replaced by a random walk

√
2D0W(s) of a fluid particle. Note that the

Lagrangian velocity u(X(s), s) depends on W(s) while the realization of the Eule-
rian velocity field u(x, s) is, of course, independent of molecular diffusion. The goal
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Fig. 2. Schematic of the Lagrangian formulation for the advection-diffusion problem. (a) The
concentration in point x at time t is determined by the initial solute distribution, averaged over all
possible initial points x(i) of fluid particles trajectories X(i)(t) = x. (b) Transition to the inverse
problem allows us to find the distribution of the initial points (x(i), 0) with respect to the final state
(x, t).

now is to find the representation for the average concentration distribution for any
x and t. For each fixed realization (i) of the “composed” random “velocity field”
V = u +

√
2D0Ẇ (of course, Ẇ is only a formal notation because the trajectories

of the Brownian motion are nondifferentiable), there exists a particular trajectory
X(i)(s|x(i), 0) which begins at some initial point x(i) at s = 0 and arrives at x at
time s = t, such that x = X(i)(s|x(i), 0), as shown schematically in Figure 2(a). Since
in such formulation (2.3)–(2.4) is reduced to a pure convection problem, the concen-
tration does not change along the trajectory X(i)(s|x(i), 0) and is equal to C0(δx

(i)).
The corresponding realization of the random concentration field is then

C(i)(x, t) = C(X(i)(s|x(i), 0)) = C0(δx
(i)),
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and the averaging over all possible trajectories gives the solute distribution

C(x, t) =
1

N
lim
N→∞

N∑
i=1

C0(δx
(i)).(4.2)

In order to compute (4.2) one needs to determine the evolution of the initial points
(x(i), 0) with respect to the final state (x, t) = (X(i)(t|x(i), 0), t)—in other words, to
find the inverse trajectories Y(i)(s) = Y(i)(s|x, t), which begin at (x, t) at s = 0 and
come to (x(i), 0) at s = t. The schematic of the inverse problem is shown in Figure
2(b): for any fixed realization of u andW one can go on the trajectoryX(i)(s|x(i), 0) in
the opposite direction, such that the inverse trajectoryY(i)(s|x, t) = X(i)(t−s|x(i), 0),
and, consequently,

C(x, t) =
1

N
lim
N→∞

N∑
i=1

C0(δY
(i)(t|x, t)).(4.3)

Hence, it is possible to write down the stochastic differential equation for the
inverse problem:

dY(s) = −u(Y(s), t− s)ds +
√

2D0dW(s),

Y(s = 0) = x.
(4.4)

The solution for the average concentration distribution is then given by (4.3) and
(2.4) with the replacement of the empirical averaging in (4.3) by the averaging over
the distribution of trajectory Y (t|x, t),

C(x, t) = (2π)−n
∫ ∞

−∞
Ĉ0(K)〈exp(ıδKY(t|x, t))〉Y dnK

= (2π)−n
∫ ∞

−∞
Ĉ0(K)〈〈exp(ıδKY(t|x, t))〉〉u,W dnK.

(4.5)

Note that since Y (s|x, t) is related to u and W by (4.4), the above averaging is
equivalent to the averaging over independent distributions of the Eulerian velocity
field u and W, 〈. . . 〉Y = 〈〈. . . 〉Y (u|W )〉W = 〈〈. . . 〉Y (W |u)〉u = 〈〈. . . 〉u〉W = 〈〈. . . 〉W 〉u.

The representation of the advection-diffusion problem (2.3)–(2.4) by (4.4)–(4.5)
is exact regardless of whether the velocity field is stochastic or not. For example,
in the case of time-periodic linear planar flow field (ulinear = Ax cosωt), where the
constant matrix A has zero trace), equation (4.4) describes a 2-D time-dependent
Ornstein–Uhlenbeck process (see Gardiner [10], for example). The solution of (4.4)
then becomes

Ylinear(s = t) = B(t)x+
√

(2/Pe)

∫ t
0

B(t− s)dW(s),

where the matrix B(t) = exp(−A sinωt/ω). Since Ylinear is linear in dW, and B(t)
is nonstochastic, Ylinear is a Gaussian random process. The averaging over W in (4.5)
then gives a solute distribution (equation (6) of Indeikina and Chang [12]) in terms
of the Fourier transform.
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5. Evaluation of the partially-averaged enhanced diffusivity tensor. Un-
fortunately, explicit solution of the stochastic differential equations can be easily done
only for several special cases, mostly including linear equations or some simple ex-
plicit form of coefficients. In the present case, the random velocity field is specified
by the spectral correlation function (3.1) and hence (4.4) is, in fact, a system of cou-
pled stochastic integro-differential equations. Hence, one should make some possible
simplifications.

Note that the “final” time t is only a parameter in (4.4) containing only u(Y(s), t−
s) and that u(Y(0), t−0) = u(x, t). Hence, because of the stationarity of the random
velocity field (everything depends only on |(t−s)−(t−0)| = s), the statistical proper-
ties of the random functionY(s|x, t) also cannot be dependent on t. Consequently, the
replacement of u(Y(s), t− s) on u(Y(s), s) in (4.4) changes nothing in the statistics
of Y. It can be easily shown that the absence of the mean flow and the requirement of
the homogeneity of the velocity field leads to 〈〈Y(s|x, t)〉〉u,W = 〈〈Y(s|x, t)〉u〉W = x.
The homogeneity of the velocity field then gives rise to the independence of all statis-
tical properties of the zero-mean function Y(s|x, t) − x on x. Also one can partially
separate the influence of Brownian motion W and focus first on the averaging over
the distribution of Eulerian velocity u in (4.5). Hence, (4.4) can be rewritten as

Y(s|x, t) = x+
√

2D0W(s) + Z(s,W(s)),(5.1a)

dZ(s) = −u(x+
√

2D0W(s) + Z(s), s)ds,(5.1b)

Z(s = 0) = 0,(5.1c)

and, without loss of generality, one can set x = 0 in (5.1b) for Z. It should be em-
phasized that all these changes are possible only for the stationary and homogeneous
velocity field with zero mean. For example, the linear flow field of Indeikina and
Chang [12] does not satisfy the homogeneity condition and one should use (4.4).

Invoking the representation of Eulerian velocity u(x, t) by the spatial Fourier
transform, one can formally integrate (5.1b)–(5.1c) to get

Z(t) = (2π)−m/2
∫ t
0

∫ ∞

−∞
û(k, s) exp(ı

√
2D0kW(s)) exp(ıkZ(s))dmkds.(5.2)

With the representation of trajectory Y(s|x, t) by (5.1a) and (5.2), the averaging in
(4.5) also can be partially decomposed on the independent averaging over distributions
of û and W:

〈〈exp(ıδKY(t|x, t))〉〉u,W =

exp(ıδKx)〈exp(ıδ
√

2D0KW(t))〈exp(ıδKZ(t,W(t)))〉Z(u|W )〉W ,
(5.3)

where the averaging over û should be made first.
For the simple shear flow u(x, t) = (0, u2(x1, t), 0), analyzed by Avellaneda and

Majda [1], integral (5.2) provides the exact solution. In this case, without coupling of
the fluctuations of the velocity field, Z(t) is a Gaussian random variable in the sense
of averaging over the distribution of û because û is assumed Gaussian. In several
dimensions, the nonlinear coupling of the fluctuations in different directions may result
in the deviation of the distribution of trajectories from Gaussian at intermediate times.
However, according to the central limit theorem, in the long-time limit, Z(t) again
approaches a Gaussian variable regardless of the distribution of û as a result of the
summation of a large number of random steps (McComb [19, pp. 446–447], Gardiner
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[10, pp. 37–38]) and this fact is well supported by numerous experiments on turbulent
transport of passive scalar (for example, Shlien and Corrsin [21], McComb and Rabie
[18], Groenhof [11], and many others).

Hence, one can simply assume that the Gaussian distribution of trajectories
Z(t,W(t)) for a fixed W(t), that is strictly valid in the long-time limit (and it is
the topic of interest), is not in great error also at intermediate times. In such a case,
the averaging over the distribution of the velocity field in (4.5) reduces to

〈exp(ıδKZ)〉Z(u|W ) = exp

(
−δ2

2
〈(KZ)2〉Z(u|W )

)
= exp

(
−δ2

2
KiZ̃2

ijKj

)
,

Z̃2
ij = Z̃2

ij(t,W(t)) = 〈Zi(t, û,W(t))Zj(t, û,W(t))〉û,
(5.4)

where the tensor of “convective” mean-square displacement Z̃2
ij is obviously symmet-

ric.
Now it is necessary to determine the partially averaged tensor Z̃2

ij . As is evident
from (5.2), it requires the evaluation of the quantity

〈ûi(k, s1)ûj(q, s2) exp(ı(kZ(s1) + qZ(s2)))〉û,Z|W(5.5)

if one cannot solve (5.1) explicitly. Unfortunately, Z and û are dependent and, in
general, one cannot separate the averaging in (5.5) into two independent averagings
〈ûiûj〉û〈exp(· · ·)〉Z|W , as is suggested by Corrsin’s independence hypothesis for long-
time turbulent diffusion (Corrsin [5]).

However, we show (details are given in Appendices A and B) that, for the selected
stationary homogeneous isotropic Gaussian Eulerian velocity field u, (5.4) provides
the exact result. (We invoke the symmetry of the velocity field and the factorization
property of higher-order moments of the Gaussian distribution to show the Gaussian
distribution of trajectories Z(t,W(t)) at fixed W(t).) By introducing the “deviation
variables” for trajectories and velocity and utilizing the stationarity of both Eulerian
and Lagrangian Gaussian velocity fields, we also have shown (see Appendix C for
details) that, despite the dependence of Z on û, averaging in (5.5) leads to the same

expression for Z̃2
ij as if Corrsin’s independence hypothesis holds for any diffusion

time. Hence, using the above result and the two-point two-time correlation (3.1)–

(3.3) yields the representation for Z̃2
ij in terms of the enhanced diffusivity tensor

D̃ij(t) ≡ D̃ij(t,W(t)). In the 3-D case (m = 3 below) it is given by (see Appendix C)

1

2
Z̃2
ij(t,W(t)) =

∫ t
0

D̃ij(s)ds,(5.6)

D̃ij(s) =
α2

(2π)m

∫ π
−π

∫ 2π

0

∫ 1

δ

k−εF̃ (k, s)

(
δij − kikj

k2

)
dkdφdθ,(5.7a)

dF̃ (s) = (1 − [akz + k2D0 + kiD̃ij(s)kj ]F̃ )ds− G̃
√

2D0kndWn(s),(5.7b)

dG̃(s) = −[akz + k2D0 + kiD̃ij(s)kj ]G̃ds + F̃
√

2D0kndWn(s),(5.7c)

D̃ij(0) = 0, F̃ (k, 0) = 0, G̃(k, 0) = 0,(5.7d)

and for 2-D flow one should set m = 2 and omit integration over θ in (5.7a).
Note that without molecular diffusion (D0 = 0), the enhanced diffusivity tensor,

as well as the concentration distribution, is already fully averaged. After the inte-
gration of angular dependence in (5.7a), D̃ij(s) reduces to an isotropic one, D̃ij(s) =
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δijD(s), and, consequently, kiD̃ij(s)kj = k2D(s), as it should be because of the
isotropy of the velocity field. It is clear that, since the Brownian motion W(t) also
is isotropic, there does not exist any interaction that can create some preferred direc-
tion. However, formally one cannot integrate out the angular dependence in (5.7a)
and hence reduce the tensor to a single scalar before the molecular diffusion effect is
averaged or neglected because of the presence of the last term in the right-hand side
of (5.7b).

Hence, invoking (5.3) and (5.6), one obtains for the average concentration distri-
bution (4.5):

C(x, t) = (2π)−n
∫ ∞

−∞
Ĉ0(K) exp(ıδKx)

×
〈

exp

(
ıδKW(t)

√
2D0 − δ2

∫ t
0

KiD̃ij(s)Kjds

)〉
W

dnK,

(5.8)

where D̃ij is given by (5.7).
As also is evident from (5.7b) and (5.7c), in the limit of infinite time, the average

value of F approaches fixed point value [akz + k2D0 + k2D̃∞]−1 while the average
value of G → 0. The dispersion of F , which is determined by k2D0〈G2〉W , can
remain finite in general or even large in comparison with (〈F 〉W )2. Such an effect has
been found by Avellaneda and Majda [1] for the simple shear flow for some range of
spectral parameters that are, however, very far from the region of interest of turbulent
problems. Fortunately, this is not the case for isotropic 2- or 3-D flow. In several
dimensions the coupling of fluctuations in different directions results, from one side,
in a larger enhanced dissipation and, from the other side, in the necessary existence
of the “random walk” limit with constant diffusivity. Hence, any nonlocal behavior
due to the interaction of the flow with molecular diffusion, as in the Avellaneda and
Majda [1] case, can only be a transient effect.

It has been specially checked that in the large-scale long-time limit the contribu-
tion of dWm terms in D̃ and, consequently, the dispersion always remains negligible
in comparison with the average for all values of spectral parameters. This means
that the fluctuations of D̃ due to the interaction with the molecular diffusion are
the higher-order effect and only the mean value affects the solute distribution (5.8).
Hence, in order to simplify the presentation of the renormalization procedure, the av-
eraging in (5.7) and (5.8) will be taken independently now since the cross-interaction
terms always become irrelevant in the large-scale long-time limit. As a result, (5.7)
and (5.8) become

D(s) =
α2(m− 1)

2mπm−1

∫ 1

δ

k−εF (k, s)dk,(5.9a)

∂F

∂s
= 1 − [akz + k2D0 + k2D(s)]F ,(5.9b)

D(0) = 0, F (k, 0) = 0,(5.9c)

C(x, t) = (2π)−n
∫ ∞

−∞
Ĉ0(K) exp(−ıδKx)

× exp

[
−δ2K2

(
D0t +

∫ t
0

D(s)ds

)]
dnK.

(5.10)
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6. Large-scale long-time behavior of the averaged concentration distri-
bution. It should be recalled that all variables in (5.9)–(5.10), except the initial data
wavevector K, are made dimensionless in the dissipation length scale, while the topic
of interest is the integral-scale averaged solute distribution. Consequently, in order to
find this large-scale long-time limiting behavior of the spreading process, one should
rescale other variables in (5.9)–(5.10),

x = x∗/δ, k = k∗g(δ), t = t∗/ρ2(δ),(6.1)

such that new nondimensional space and time variables become

x∗ = x′/L0, k∗ = k′L0

[
δ

g(δ)

]
, t∗ = t′/τ, where τ =

L2
0

ν

[
δ

ρ(δ)

]2
.(6.2)

The scaling functions ρ(δ) and g(δ) then must be determined from the requirement
that the averaged concentration distribution has nontrivial limiting behavior, namely,
it is never equal to zero nor the initial data,

C∗(x∗, t∗) = lim
δ→0

C (x∗/δ, t∗/ρ2(δ));(6.3a)

C∗(x∗, t∗) �= 0, C∗(x∗, t∗) �= C0(x
∗).(6.3b)

Note that the scaling ρ(δ) = δ results in the diffusion time scale τ = L2
0/ν and scalings

ρ(δ) = δb with b < 1 correspond to shorter time scales. This means that the spreading
occurs faster than pure diffusion motion.

The application of rescaling (6.1) to (5.9)–(5.10) then gives the representation for
the averaged solute distribution

C∗(x∗, t∗) =

∫ ∞

−∞
Ĉ0(K) exp

[
−ıKx∗ −K2

∫ t∗
0

D∗(s∗)ds∗
]

dnK

(2π)n
,(6.4)

which corresponds to the large-scale effective diffusion equation

∂C∗

∂t∗
= D∗(t∗)∇∗

2C∗, C∗(x∗, 0) = C0(x
∗)(6.5)

in nondimensional variables specified by (6.2). The conditions in (6.3b) imply that
the effective diffusivity D∗(t∗) must satisfy 0 < D∗(t∗) < ∞ and it is then defined by
the large-scale limit

D∗(t∗) = lim
δ→0

[
δ

ρ(δ)

]2 (
D0 + D (t∗/ρ2(δ), δ, g(δ))

)
= lim
δ→0

[
δ

ρ(δ)

]2
D0 + 	D(t∗),

(6.6)

where

	D(t∗) = lim
δ→0

δ2g1−ε(δ)
ρ4(δ)

α2
∗

∫ 1/g(δ)

δ/g(δ)

k∗−εF (k∗, t∗, δ)dk∗,(6.7a)

∂F

∂t∗
= 1 −

(
gz

ρ2
ak∗z +

g2

ρ2
k∗2D0 +

g2

δ2
k∗2	D(t∗)

)
F , F (k∗, 0) = 0,(6.7b)

0 < 	D(t∗) < ∞,(6.7c)
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and the new amplitude constant

α2
∗ =

α2(m− 1)

2mπm−1
(6.8)

is introduced only to simplify the notation since the spectral amplitude α2 is assumed
to be independent of δ.

In the next section the limits (6.6) and (6.7) will be evaluated with an appropriate
choice of scaling functions for all possible values of exponents −1 < ε < 3 and z ≥ 0
of the velocity spectrum (3.2).

7. Renormalization for different parameters of the velocity spectrum.

7.1. Mean field regime (region 1). This regime corresponds to the case when
the standard diffusive scaling ρ(δ) = δ describes a large-scale long-time behavior of
the average concentration field. Hence, one can expect that the molecular diffusion
also will make a contribution into the effective diffusion coefficient. With the choice
ρ(δ) = δ and g(δ) = 1 in (6.6) and (6.7) one obtains

D∗ = 	D + D0,(7.1a)

	D(t∗) = lim
δ→0

1

δ2
α2
∗

∫ 1

δ

k∗−εF (k∗, t∗, δ)dk∗,(7.1b)

∂F

∂t∗
= 1 −

(
ak∗z + k∗2D0 + k∗2	D(t∗)

) F

δ2
, F (k∗, 0) = 0,(7.1c)

0 < 	D(t∗) < ∞.(7.1d)

It is evident from (7.1c) that as δ → 0 the fixed point value F∞/δ2 = [ak∗z+k∗2D0+
k∗2	D(∞)]−1 is reached exponentially fast. Hence, for any t∗ > 0 one can set the
enhanced diffusivity equal to the limiting value 	D(t∗) = 	D(∞). Consequently,
(7.1b) and the fixed point value from (7.1c) provide the expression for 	D(∞):

	D(∞) = α2
∗

∫ 1

0

k∗−εdk∗

ak∗z + k∗2D0 + k∗2	D(∞)
.(7.2)

The integral in (7.2) is finite for ε < 1−z and z < 2 or for ε < −1 and z ≥ 2 which,
together with the lowest allowable value of ε > −1 define the boundary of the mean
field regime: −1 < ε < 1− z. For such spectra, there is no infra-red divergence of the
kinetic energy and the contributions of the individual fluctuations are, in fact, simply
summed. Instead, because the upper limit of integration in (7.2) remains finite, the
ultraviolet cut-off, which corresponds to the decaying part of the spectrum at large
wavenumbers in Figure 1(b), is important. Consequently, the simple cut-off by setting
the velocity correlation tensor equal to zero above some highest wavenumber may be
inappropriate for peaked spectra.

7.2. Superdiffusive regimes. These regimes describe spreading that is faster
than pure diffusion motion. As has been already mentioned, such dispersion requires
the shorter time scale in (6.2),

δ

ρ(δ)
→ 0 as δ → 0.(7.3)

Physically, this corresponds to convection-dominant spreading and to spectra with
infra-red divergence of kinetic energy of fluctuations. Hence, one can expect that
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molecular diffusion will be negligible under such conditions. Indeed, the term con-
taining D0 in (6.6) vanishes in this limit and the effective diffusivity D∗ = 	D(t∗).
However, since for larger values of ε the infinite-time enhanced diffusivity (7.2) di-
verges at low wavenumbers, one needs to introduce a nontrivial wavenumber rescaling

g(δ) �= 1, g(δ) → 0 as δ → 0(7.4)

in order to reach the convergence of the integral in (6.7a) and hence to satisfy the
condition of the existence of the nontrivial solution (6.7c). Consequently, for some
values of g(δ), the molecular diffusion coefficient still can enter into the expression for
D∗ through (6.7b).

However, let us consider first the natural choice of g(δ) = δ which is stipulated
by the infra-red cut-off of the spectrum. In this case, because of the requirement
(7.3), the molecular diffusion term in (6.7b) vanishes and the governing equations for
renormalization become

	D(t∗) = lim
δ→0

δ3−ε

ρ4(δ)
α2
∗

∫ 1/δ

1

k∗−εF (k∗, t∗, δ)dk∗,(7.5a)

∂F

∂t∗
= 1 −

(
δz

ρ2
ak∗z + k∗2	D(t∗)

)
F , F (k∗, 0) = 0,(7.5b)

0 < 	D(t∗) < ∞.(7.5c)

Because the dependence on δ still remains in (7.5b), it is necessary to analyze three
separate cases:

δz

ρ2
→ ∞,

δz

ρ2
→ 0, and

δz

ρ2
≡ 1 as δ → 0

I. δz

ρ2 → ∞ (region 2). Under such conditions, the fixed point value in (7.5b)

is again reached infinitely fast. Hence, similar to the mean field regime, the enhanced
diffusivity is effectively time-independent and can be set equal to its limiting value for
any t∗ > 0. The substitution of the fixed point value F∞ = ρ2/(δzak∗z) of (7.5b) into
(7.5a) and the straightforward integration gives the renormalized enhanced diffusivity

	D(t∗ > 0) = 	D(∞) =
α2
∗

a[z + ε− 1]
lim
δ→0

δ3−ε−z

ρ2(δ)
.(7.6)

The requirement of the nontriviality solution (7.5c) implies that 	D(∞) should be
positive and that the limit in the right-hand side of (7.6) should be finite. Without
loss of generality, one can set it equal to one, because any constant value can be
included into ρ or 	D.

Hence, these restrictions together with the definition of the case define the time-
rescaling function ρ(δ) and the boundaries for region 2 of renormalization

ρ(δ) = δ(3−ε−z)/2 for 1 − z < ε < 3 − 2z(7.7)

with the effective diffusivity

D∗ = 	D(∞) =
α2
∗

a[z + ε− 1]
.(7.8)
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II. δz

ρ2 → 0 (region 3). In this case (7.5b) is independent on δ and hence

the time-rescaling function ρ(δ) can be determined directly from the limit in (7.5a)
that gives ρ(δ) = δ(3−ε)/4, provided that the integral over k converges. Note that
the integral should converge for any time, 0 ≤ t∗ < ∞, since (7.5) predicts the time-
dependent effective diffusivity in this regime. The estimate of the limiting behavior
of the enhanced diffusivity at small time, t∗ → 0, gives

	D(t∗ → 0) ≈ t∗α2
∗

ε− 1

(
1 − δε−1

)
,

and the requirement (7.5c) then provides the lower bound for ε, ε > 1. The restriction
for the superdiffusive scaling (7.3) and the definition of the case give another bound:
3 − 2z < ε ≤ 3. Consequently, region 3 of the renormalization is finally defined by

ρ(δ) = δ(3−ε)/4 for max{1, 3 − 2z} < ε ≤ 3,(7.9)

D∗ = 	D(t∗) = α2
∗

∫ ∞

1

k∗−εF (k∗, t∗)dk∗,(7.10)

∂F

∂t∗
= 1 − k∗2	D(t∗)F , F (k∗, 0) = 0,(7.11)

with the following limiting behavior at short and long time:

	D(t∗ → 0) ≈ t∗α2
∗

ε− 1
, 	D(t∗ → ∞) → α∗√

ε + 1
.(7.12)

III. δz

ρ2 ≡ 1 (Kolmogorov boundary). This case corresponds to the boundary

between the regions 2 and 3 and it is defined by ε = 3− 2z, z < 1, where both scaling
functions (7.7) and (7.9) collapse into ρ(δ) = δz/2. From the order-of-magnitude
and dimensional analysis of section 3 one can conclude that the physically plausible
velocity correlation, which can provide the energy cascade and remain invariant under
the scaling transformations, should belong to this boundary. The Kolmogorov velocity
spectrum with ε = 5/3 and z = 2/3 also corresponds to this regime and that is why
this region is called the “Kolmogorov boundary.” The effective diffusivity D∗ is hence
given by (7.10), but (7.11) for F (k∗, t∗) becomes different,

∂F

∂t∗
= 1 −

(
ak∗z + k∗2	D(t∗)

)
F ,(7.13)

and in such a case one obtains the widest dependence on the parameters of the spec-
trum. The small-time asymptote in (7.12) does not change on this boundary, but in
the large-time limit t∗ → ∞ the evaluation of the integral in (7.10) with ε = 3−2z and

F∞ =
(
ak∗z + k∗2	D(∞)

)−1
results in the following implicit expression for 	D(∞):

a2(2 − z)

α2∗
=

a

	D(∞)
− ln

(
1 +

a

	D(∞)

)
.(7.14)

As is evident from (7.14), for any fixed z (or ε), 	D(∞)/a depends, in fact, on
one parameter, a2/α2

∗. It should be noted that, as has been established in section
3 (equations (3.11)–(3.12)), in this regime a ∼ α∗ and the proportionality constant
should not depend much on flow conditions, as is stipulated by the Kolmogorov simi-
larity hypothesis. The parameters α∗ and δ also are related to the root-mean-square
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velocity and the large-scale Reynolds number through (3.7)–(3.10). Hence, in fact, in
the dimensional version of (7.14), there are no free parameters to play with in order
to fit any experimental data.

Intermediate wavenumber scaling δ
g(δ)

→ 0 as δ → 0 (region 4). The

diffusive (g(δ) = 1) and convective (g(δ) = δ) wavenumber scalings have already been
considered. However, it still remains the part of ε–z plane, max{−1, 3− 2z} < ε ≤ 1,
where these scalings do not give successful renormalization. Consequently, one should
select some intermediate wavenumber scaling, something like g(δ) = δb with b < 1,
such that δ/g(δ) → 0 as δ → 0 slower than for pure diffusive scaling.

For simple shear flow (Avellaneda and Majda [1]), the requirement δ/g(δ) → 0
splits this remaining part of the ε–z plane into two regions by the line z = 2. In both
cases the integration over k in (6.7a) is extended from 0 to ∞ such that both cut-offs
are negligible, and the analysis of Avellaneda and Majda [1] results in an effective
diffusivity that grows as a noninteger power of time, 	D ∼ tc with 0 < c < 1.
The coefficient of proportionality is determined by time-correlation of the velocity
fluctuations (ak∗z term in (6.7b)) for z < 2. For z > 2, random nonlocal diffusivity
has been obtained because of nonlinear interaction of the velocity field with Brownian
motion

√
2D0dW (t), which describes the molecular diffusion.

In 2- or 3-D flow, however, the mathematical consequence of the coupling of
the fluctuations is the term 	D(t∗)k∗2g2/δ2 in (6.7b) for F and, consequently, for
	D(t∗) because they also are related by (6.7a). It can be easily seen that, under
the conditions of the superdiffusive time-scaling δ/ρ → 0 as δ → 0, for any choice of
the wavenumber scale satisfying δ/g(δ) → 0, this “feedback” term immediately leads
to the achievement of infinite-time limit in (6.7b). Hence, it is quite possible that
the effective diffusivity grows like a noninteger power of time at the beginning of the
spreading process, but in two or three dimensions this is a transient effect, and for
large-scale initial data the infinite-time limiting behavior will be seen for any t∗ > 0.
However, if the initial data vary in some intermediate scale between Ld and L0, it also
will require the rescaling of the initial data wavevectorK. This rescaling should reduce
the “feedback” term, such that the above transient behavior can become visible from
the point of view of large-scale motion. However, since such assumption effectively
adds a third dimension to ε–z parameter space, this analysis will not be pursued here,
mostly because this region of renormalization is far away from the turbulent transport
problems.

Instead, without changing the assumption of the integral-scale initial data, the
fixed-point value F∞ = (δ/g(δ))2[k∗2	D(∞)]−1 is utilized to determine the scaling
function ρ(δ). The integration in (6.7a) then results in the same scaling law as for
region 3 and the effective diffusivity is equal to the infinite-time asymptote in (7.12).
Because there is no convergence problem on the boundary ε = 1 with region 3 and
the scaling law also is continuous, this boundary can be included in region 4. The
remaining boundaries, however, should be considered separately.

Boundaries {ε = 1 − z, z < 2} and {ε = 3 − 2z, 1 ≤ z < 2}. Since all
these boundaries separate regions with constant effective diffusivity, one can expect
their behavior will not be different. In all these cases, the integral in (7.10) can
be evaluated explicitly with F (k∗, t∗) = F∞ and the requirement of the large-scale
long-time distinguishing limit provides expressions for the effective diffusivity and
time-rescaling function.

For the continuation of the Kolmogorov boundary into the region 1 ≤ z < 2,
the scaling function is continuous on the boundary between regions 2 and 4, and the
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enhanced diffusivity corresponds to the infinite-time limit (7.14) of the Kolmogorov
boundary.

For the boundary between regions 1 and 2 the analysis results in the logarithmic
dependence for ρ2,

ρ(δ) = δ(− ln δ)1/2, D∗ = 	D(∞) =
α2
∗
a

for ε = 1 − z, z < 2,(7.15)

and, consequently, (7.15) can be used at finite scale ratio δ only if δ is so small that
(− ln δ)1/2 is a large number.

8. Comparison and discussion. From the renormalization analysis of the
advection-diffusion problem (2.1) with Gaussian random velocity field defined by two-
point two-time correlation (3.1)–(3.2), it has been found that in the large-scale long-
time limit the averaged spreading process can be described by the effective diffusion
equation (6.5),

∂C∗

∂t∗
= D∗(t∗)∇∗

2C∗, C∗(x∗, 0) = C0(x
∗),

where nondimensional variables are specified by (6.2):

x∗ =
x′

L0
, t∗ =

t′

τ
, τ =

L2
0

ν

[
δ

ρ(δ)

]2
= τdiff

[
δ

ρ(δ)

]2
.

The effective diffusivity D∗(t∗) = D∗(t∗, ε, z, a, α∗) and the scaling function ρ(δ) have
been determined for different spectral parameters. It has been found that the func-
tional forms of D∗ and ρ(δ) depend only on the exponents ε and z of two-point
two-time correlation (3.2) and several different regions of renormalization in ε–z have
been determined. The regions of renormalization are shown in Figure 3 and the values
of D∗, ρ(δ) and τ(δ) are summarized below:

Region 1. −1 < ε < 1 − z.

ρ(δ) = δ, τ = τdiff , D∗ = D0 + 	D, 	D =

∫ 1

0

α2
∗k

∗−εdk∗

ak∗z + k∗2(D0 + 	D)
.

Boundary 1–2. ε = 1 − z, 0 ≤ z < 2.

ρ(δ) = δ(− ln δ)1/2, τ = τdiff/(− ln δ), D∗ = 	D =
α2
∗
a

.

Region 2. 1 − z < ε < 3 − 2z.

ρ(δ) = δ(3−ε−z)/2, τ = τdiffδ
ε+z−1, D∗ = 	D =

α2
∗

a[z + ε− 1]
.

Kolmogorov boundary (regions 2–3). ε = 3 − 2z, ε > 1, z < 1.

ρ(δ) = δ(3−ε)/4 = δz/2, τ = τdiffδ
(1+ε)/2, D∗ = 	D(t∗),

	D(t∗) = α2
∗

∫ ∞

1

k∗−εF (k∗, t∗)dk∗,

∂F

∂t∗
= 1 −

(
ak∗z + k∗2	D(t∗)

)
F , F (k∗, 0) = 0.
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Fig. 3. The regions of renormalization in the ε–z parameter plane. The dashed line corresponds
to the split of region 4 in the 1-D case. The separation of region 2 occurs only in terms of Reynolds
number because of the different dependence on the scale ratio δ for spectra with and without infra-red
divergence of kinetic energy.

Region 3. max{1, 3 − 2z} < ε ≤ 3.

ρ(δ) = δ(3−ε)/4, τ = τdiffδ
(1+ε)/2, D∗ = 	D(t∗),

	D(t∗) = α2
∗

∫ ∞

1

k∗−εF (k∗, t∗)dk∗,

∂F

∂t∗
= 1 − k∗2	D(t∗)F , F (k∗, 0) = 0.

Region 4. max{1, 3 − 2z} < ε ≤ 1.

ρ(δ) = δ(3−ε)/4, τ = τdiffδ
(1+ε)/2, D∗ = 	D =

α∗√
ε + 1

.

Boundary 2–4. ε = 3 − 2z, −1 < ε ≤ 1, 1 ≤ z < 2.

ρ(δ) = δ(3−ε)/4, τ = τdiffδ
(1+ε)/2, D∗ = 	D,

a2(2 − z)

α2∗
=

a

	D
− ln

(
1 +

a

	D

)
.

The case of spatially random steady flow u = u(x) (a = 0) corresponds to the line
z = 2 on the ε–z plane shown in Figure 1, because one should preserve the convergence
of all integrals with only diffusive terms ∼ k2. There also is no need to set a = 0,
because in regions 3 and 4 the effective diffusivity and the time-rescaling function are
independent of both a and z.

If u is a white noise in time (a → ∞, α2 ∼ a), one should cross the ε–z diagram
by the line z = 0 and evaluate the above limit for regions 1 and 2. Note that in
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the present analysis the exponent of the spectral correlation function Q̂ ∼ k1−m−ε,
introduced by (3.2), is defined in a manner that depends on the space dimension m in
such a way that the kinetic energy spectrum (per unit mass of liquid) depends only
on ε. Hence, 2-D and 3-D cases have the same ε–z diagram, and only the amplitude
constant α2

∗ of (6.8) depends on the space dimension. If one would like to work in
terms of exponent of the spectral correlation function instead of kinetic energy, one
simply has to move the ε–z diagram of Figure 3 to the right along the ε axis by one or
two units and make corresponding changes of notation in the definitions of the time
scale.

The ε–z diagram of Figure 3 is identical to that obtained by Avellaneda and
Majda [1] for the simple shear flow with appropriate changes of notation (ε ↔ ε̃ − 1,
such that the left boundary of the mean field regime corresponds to ε̃ = 0) except for
region 4. The effective diffusivities for two or three dimensions are different every-
where except in region 2. There the enhanced diffusivity is completely determined by
strongly correlated (low z) high-wavenumber fluctuations of the velocity field. The
above results also are consistent with earlier findings of Avellaneda and Majda [3] and
Fannjiang [8] for multidimensional flows.

In general, the one-dimensional (1-D) analysis of Avellaneda and Majda [1] pro-
vides a small-time asymptote for the spreading process in 2-D or 3-D flow when
enhanced diffusivity is small: a linear growth of effective diffusivity in time for region
3 and Kolmogorov boundary and noninteger power growth in time for two different
parts of region 4. Later on, coupling of fluctuations in several dimensions necessarily
results in the random walk limit, while this does not always happen in the 1-D simple
shear flow. However, for region 3 and the Kolmogorov boundary, Avellaneda and
Majda [3] suggest an effective nonlocal diffusion equation, while our analysis gives
the usual diffusion equation with a time-dependent coefficient (which approaches a
constant as t → ∞). At the least, our infinite-time limit for the Kolmogorov spectrum
(i.e., for usual turbulence) is well supported by numerous experimental data (see, for
example, McComb [19, pp. 470–471] or Sherwood, Pigford, and Wilke [20, pp. 124–
125] for data collections). Below, we also will compare our predicted time-evolution of
mean-square displacement with available data, which will provide additional support
for our results.

It has been shown in section 2 that the scale ratio δ and the spectral amplitude
α∗ are related to the large-eddy Reynolds number R0 = U0L0/ν and with the root-
mean-square Reynolds number Rrms = UrmsL0/ν by equations (3.7)–(3.10), and
these dependencies are different for ε >,<,= 1. It also is established in section 2
that, at least for the Kolmogorov boundary, a is of the order α. Hence, it also is
useful to provide the expressions for the time scale τ and the effective diffusivity D∗
in terms of the above Reynolds numbers. This summary is given below, where all
time scales are defined with respect to the convective time scale of the fluctuations
τconv = L0/Urms instead of the diffusion time scale τdiff = L2

0/ν, and the typically
unknown spectral parameter a has been replaced by

β = a/α∗(8.1)

such that β is unit order coefficient.
Region 1. −1 < ε < 1 − z.

τ = τconvR
2/(ε+1)
0 , D∗ =

D0

α̃
+ 	D, α̃ =

Rrms

R
−2/(ε+1)
0

,

	D =

∫ 1

0

(1 − ε)k∗−εdk∗

βk∗z + k∗2(D0/α̃ + 	D)
.
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Region 2.1. 1 − z < ε < 3 − 2z, ε < 1.

τ = τconvR
2(2−ε−z)/(ε+1)
0 , D∗ =

1 − ε

β[z + ε− 1]
.

Region 2.2. 1 − z < ε < 3 − 2z, ε > 1.

τ = τconvR
2(3−ε−2z)/(ε+1)
0 , D∗ =

ε− 1

β[z + ε− 1]
.

Boundary 2.1–2.2. ε = 1, 0 < z < 1.

τ = τconvR
1−z
0 lnR0, D∗ =

1

βz
.

Kolmogorov boundary (regions 2–3). ε = 3 − 2z, ε > 1, z < 1.

τ = τconv, D∗(t∗) = (ε− 1)

∫ ∞

1

k∗−εF (k∗, t∗)dk∗,

∂F

∂t∗
= 1 −

(
βk∗z + k∗2D∗(t∗)

)
F , F (k∗, 0) = 0.

Region 3. max{1, 3 − 2z} < ε ≤ 3.

τ = τconv, D∗(t∗) = (ε− 1)

∫ ∞

1

k∗−εF (k∗, t∗)dk∗,

∂F

∂t∗
= 1 − k∗2D∗(t∗)F , F (k∗, 0) = 0.

Region 4. max{1, 3 − 2z} < ε < 1.

τ = τconvR
(1−ε)/(1+ε)
0 , D∗ =

√
1 − ε

ε + 1
.

Boundary 2–4. ε = 3 − 2z, −1 < ε < 1, 1 < z < 2.

τ = τconvR
(1−ε)/(1+ε)
0 ,

β2(2 − z)

2(z − 1)
=

β

D∗
− ln

(
1 +

β

D∗

)
.

The boundary 1–2 with logarithmic scaling with respect to δ is not included
in this summary because the accuracy of the logarithmically distinguished limit is
already too low. It also should be mentioned that the above analysis is valid in the
limit of infinite (i.e., very large, in practice) Reynolds number. This is especially
true for spectra with weak infra-red divergence, when ε is close to 1. In such a case,
the |ε− 1| factor in the expressions for the effective diffusivity should be replaced on

|(ε − 1)/(1 − R
(ε−1)/(ε+1)
0 )|, and this will make transitions across regime boundaries

continuous.
Hence, depending on the data available, one can use any of these summaries

to scale variables in the effective diffusion equation (6.5). It should be emphasized,
however, that the integral scales L0 and R0 correspond to the largest possible eddies of
the inertial range and are not the same as the mean flow parameters of the real flows.
Because the lower limit of integration over k in the superdiffusive regimes has been
set equal to 1, the integral length scale L0 corresponds to the inverse of the maximal
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Fig. 4. Effective diffusivity at the Kolmogorov boundary ε = 3 − 2z. (a) Time-evolution of the
effective diffusivity for the Kolmogorov spectrum ( ε = 5/3) with indicated values of β. In the range
from 0 to 2, β increases with a 0.2 increment. (b) The dependence of D∗(∞) on β for ε = 7/6;
4/3; 5/3; 2; 7/3; 8/3; 3.

possible wavenumber. Hence, by the usual convention for spectral methods, one can
set L0 = L′/2π in the definition of the convective time scale, τconv = L0/Urms =
L′/2πUrms, where L′ is the conventional spatial dimension of the real flow (pipe
diameter, for example).

The most interesting regions for turbulence are the Kolmogorov boundary and
region 3, where the time scale τ does not depend on R0, as it should be in the limit
of the infinite Reynolds number. In other regions of renormalization, the physics that
cause the lower infra-red divergence of the spectrum should be invoked to determine
large-eddies characteristics.

The effective diffusivity depends on the molecular one only for the mean field
regime (region 1), which corresponds to the slowest rate of spreading. In the superdif-
fusive regimes (regions 2–4), the transport process is faster than pure diffusion motion.
The integral time scale for these cases takes the form τ = τdiffδ

b or τ = τconvR
c
0,

where b > 0, 0 ≤ c < 1. The shortest pure convective time scale belongs to region 3
and to the Kolmogorov boundary. These regions have the largest values of the param-
eter ε, which defines the strength of the infra-red divergence of the velocity spectrum.
For these regions, time-dependent effective diffusivity is obtained.

It is well known, beginning from the classical work of Taylor [22], that the mean-
square displacement of fluid particles 〈X2(t)〉 by turbulent flow is defined by the
convective scaling 〈X2(t)〉 = 〈V 2〉t2 initially and approaches the random walk limit
〈X2(t)〉 = 2〈V 2〉TLt for long diffusion time. Figure 4(a) shows the dependence of
the effective diffusivity on time for the Kolmogorov spectrum for the different values
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Fig. 5. Effective diffusivity in region 3. (a) Time-evolution of the effective diffusivity. The
lowest line corresponds to ε = 1.1 and others correspond to the increasing values of ε from 1.2 to 3
with 0.2 increment. (b) The dependence of D∗(∞) on ε.

of the parameter β. Recalling the definition of the effective diffusivity through the
“convective” mean-square displacement by (5.6),

Z
2

= 2

∫ t
0

D∗(s)ds,

one can conclude that the time-evolution of the effective diffusivity is qualitatively
consistent with the classical result: linear growth of D∗(t) at t → 0 and approach
to the constant value D∗(∞) at large times for all values of β. For other values of
ε = 3− 2z at the Kolmogorov boundary, the time-evolution of the effective diffusivity
occurs in a similar manner, as shown in Figure 4(a).

Increasing the parameter β corresponds to decreasing the correlation time for
the fluctuation of the velocity field. As one can see in Figure 4(a), the random
walk limit is reached faster when the correlation time decreases. The largest diffu-
sivity enhancement corresponds to the steady flow case β = 0, which produces the
D∗(t) dependence of region 3 for the corresponding value of ε. The dependence of
the infinite-time asymptotic diffusivity D∞ = D∗(∞)/2π on β for the Kolmogorov
boundary ε = 3 − 2z is shown in Figure 4(b) for several values of ε.

The dependence D∗(t) for region 3 has a similar shape as that for the Kolmogorov
boundary and is shown in Figure 5(a) for several values of ε. The stronger infra-red
divergence of the spectrum (higher ε) results in larger effective diffusivity and shorter
time to reach the random walk limit. The dependence of infinite-time asymptote D∞
on ε in Figure 5(b) confirms that the boundary ε = 1 does not belong to this region,
since D∞(ε = 1) = 0, and a different, slower time scale should be imposed in this
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case. Note that, for fixed β, the dependence of the effective diffusivity on ε for the
spectra from the Kolmogorov boundary is similar to one shown in Figure 5.

The superdiffusive regimes in regions 2 and 4 correspond to intermediate time
scales between diffusion and convection. In these time scales, the transition period
for D∗ = D∗(t) is short and one immediately sees the limiting value D∗(∞) in the
integral time scale.

We shall compare our theoretical predictions to experimental data for the trans-
verse (normal) diffusivity for turbulent channel flows. Due to the zero-mean velocity
assumption, we cannot capture the downstream diffusivity of the most common tur-
bulent flows. In order to make a comparison with earlier experimental and numerical
works on turbulent transport, the Kolmogorov spectrum is chosen, which is defined
by ε = 5/3, z = 2/3. Unfortunately, experimental measurements of the two-point
two-time correlation in well-developed isotropic turbulence has not been found. Dif-
ferent spectral theories suggest different relations between the value of β and the
Kolmogorov constant α0 (mostly like β = cα2

0, where the constant c varies from one
theory to another) and, at the same time, predict the value of the Kolmogorov con-
stant that is several factors off [19]. Hence, instead of selecting the appropriate value
of β from existing theoretical predictions, we shall determine it empirically from the
asymptotic diffusivity at infinite time.

Note that the values of D = D∗/2π and t = t∗/2π shown in Figure 4 are already
rescaled according to the conventional choice L0 = L′/2π, such that the dimensional
effective diffusivity and time are

D
′
= DUrmsL

′, t′ =
tL′

Urms
,

where L′ is the appropriate spatial dimension for the real turbulent flow. For pipe
flows, for example, the long-time effective diffusivity in the transverse direction scaled
on the friction velocity and a pipe diameter is about [3 − 4] × 10−2 [11], [18], [19].

Hence, it is already evident in Figure 4(b) that the infinite time asymptotic D∞
for the Kolmogorov spectrum provides a correct order-of-magnitude estimate for any
β < 10. Because the root-mean-square velocity near the center of the pipe is typically
about 0.8 of the friction velocity Uτ [19], one can expect a quantitative agreement
with the choice of β ≈ 1 − 2, and the selected value of β should not vary from one
particular set of data to another. Figure 6 reproduces experimental data collection
from the book of Sherwood, Pigford, and Wilke [20, Figure 4.11, p. 125]. The solid

line ED = D
′
∞ is calculated using the value of β = 1 for the Kolmogorov spectrum,

which gives D∞ = 4.55×10−2 and the typical value 0.8 for the ratio Urms/Uτ . Hence,
in terms of the friction velocity, the long-time effective diffusivity becomes

D
′
∞ = 0.8D∞(ε = 5/3, z = 2/3, β = 1)Uτd = 3.64 × 10−2Uτd,

where d is the pipe diameter. To express the friction velocity in terms of the average
velocity Uav, the well-known expression for the friction factor in a pipe flow has been
invoked,

Uτ = Uav
√

f/2, f = 0.067

(
Uavd

ν

)−1/4

,

because most of the data in the high Reynolds number part of the figure has been

taken for air flow in pipes. Hence, in variables of Figure 6, the line ED = D
′
∞(Uavd)
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Fig. 6. Eddy diffusion coefficient for transport normal to the flow direction in pipes and flat
ducts. The data are taken from Sherwood, Pigford, and Wilke [20, Figure 4.11, p. 125]. The solid

line indicated ED = D
′
∞ uses the Kolmogorov velocity spectrum with β = 1.

is given by

ED = 7.26 × 10−3νRe7/8 = 7.26 × 10−3ν1/8(Uavd)7/8 = 5.73 × 10−3(Uavd)7/8,

where in the last equality ν = 0.15 cm2/sec for air has been used and, consequently,
Uavd should be taken in the same units.

It is evident from Figure 6 that the choice of β = 1 gives a reasonable represen-
tation for the long-time effective diffusivity over a wide range of Reynolds numbers.
Lower values of β quickly lift up the calculated line, while a slightly higher number,

say β = 1.2, still gives a good representation. For β = 2, however, the ED = D
′
∞ line

is already outside most of data points in Figure 6. These data hence allow us to select
a very specific coefficient β for the decorrelation time spectral parameter. We shall
use this value of β = 1 in all subsequent comparisons, without further adjustment to
the particular flow conditions.

The usual measurable time-dependent quantity in turbulent transport experi-
ments is the solute/temperature profile. For diffusion from a point or line source,
it is well represented by a Gaussian shape. This allows the determination of the
mean-square displacement Z2(t), and the slope of the long-time path of the curve
Z2(t)/2 gives the long-time value of effective diffusivity. Unfortunately, the mean-
square displacement data are not reported so often as the long-time diffusivity and
the resolution of the small-time region are typically low.

The solid line in Figure 7 shows the small-time evolution of the nondimensional
mean-square displacement for the Kolmogorov spectrum with β = 1, and the dashed
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Fig. 7. Mean-square displacement of fluid particles by turbulent flow. (—) Current theory with
Kolmogorov velocity spectrum and β = 1. (- -) Experimental heat-transfer data of Baldwin and
Walsh [4] in turbulent pipe flow, scaled by the reported values of the root-mean-square velocity and
the pipe diameter.

line corresponds to one of the data point from Figure 6 (the lowest black square in the
high-Re range [4]). The experimental curve is scaled according to the suggestion of
the present theory, on the reported values of the root-mean-square velocity (Urms ≈
0.035U with U = 22 m/sec), and the pipe diameter (20 cm). It is evident that small-
time evolution of the mean-square displacement also is reproduced by the current
theory with reasonable accuracy.

Near the axis of the pipe, turbulence is approximately isotropic. In the numer-
ical experiment of Deardorff and Peskin [7], the trajectories of the fluid particles,
released at 1/4 of the channel height and well within the region of mean shear for a
turbulent plane air flow, have been calculated. The different statistical quantities, like
mean-square displacements in different directions, correlation functions, mean-square
particles separation, and so on, have been obtained by averaging the results for dif-
ferent sets of particles. All results are reported in nondimensional form, scaled on the
friction velocity and channel height.

Since diffusion starts from a region of appreciable shear, the effective ratio of
the root-mean square to friction velocity can vary significantly with time, even if
spreading in a spatially homogeneous lateral direction is considered. This is because
of the cross-influence of the fluctuations in different directions, included in the present
theory and also apparent in reported results of Deardorff and Peskin [7] for the mean-
square displacements in different directions for different sets of particles, before the
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Fig. 8. Mean-square displacement of the fluid particles by turbulent flow. (—) Current theory
with Kolmogorov velocity spectrum and β = 1. (- -) Numerical experiment of Deardorff and Peskin
[7], mean-square displacement in the lateral direction of a shear flow in a plane channel.

final averaging.
In Figure 8 the solid line again corresponds to the prediction of the present theory,

and the dashed line now represents the Deardorff and Peskin [7] numerical result for
the mean-square displacement in the lateral direction with no additional rescaling for
the adjustment of the root-mean-square to friction velocity. The agreement again is
quite good. Hence, one can expect that the above renormalization theory to yield
satisfactory prediction from the spectral data for the transport properties of nearly
isotropic random flows.

Appendix A. Distribution of convective trajectories (5.4). First of all,
let us establish some statistical properties for the Lagrangian velocity field U(t) =
−u(√2D0W(t)+Z(t), t). Invoking the representation of the Eulerian velocity u(x, t)
by its spatial Fourier transform, one can represent U(t) by

U(t) = −(2π)−m/2
∫ ∞

−∞
û(k, t)gw(k, t)f(k, t)dmk,(A.1)

where

gw(k, t) = exp(ı
√

2D0kW(t)),

f(k, t) = exp(ıkZ(t)) = exp

(
ık

∫ t
0

U(s)ds

)
,
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and the value of 〈f(δK, t)〉U |W gives the characteristic function of the distribution of
“convective” trajectories Z(t). The product of any N number of the components of
U(t) is then given by

N∏
n=1

Uin(t) =
(−1)N

(2π)
mN
2

∫
gw

(
N∑
n=1

kn, t

)
f

(
N∑
n=1

kn, t

)
N∏
n=1

ûin(kn, t)dmkn.(A.2)

Hence, in order to express any analytic function of the Lagrangian velocity U(t) in
terms of known random functions û andW(t), one needs to find such representation
for f(k, t).

Time-evolution of f(k, t) can be described by the equation

df = ıkU(t)f(k, t)dt, f(k, 0) = 1,

and formal integration with U(t) given by (A.1) yields

f(k, t) = 1 −
∫ t
0

∫ ∞

−∞
ıkû(q, s)f(k+ q, s)gw(q, s)

dmq

(2π)m/2
ds.(A.3)

Equation (A.3) is a linear integral equation for f with random but continuous and, in
the mean-square sense, bounded kernel. It should be recalled that û(q, s) is defined
on the domain δ < q < 1 and the dispersion of û, as is given by (3.3), is bounded for
any finite δ. The probability for û(q, s) to exceed essentially 〈ûû〉1/2 is really small
because a Gaussian distribution has an exponentially small tail. Consequently, one
can expect that the analogue of the Neumann expansion for (A.3) will converge, at
least for some finite values of t and δ.

Hence, by iterative substitution of f(k+ q, s) into (A.3) one can write the series
solution for f in terms of û and W:

f(k, t) = 1 −
∫ t
0

∫ ∞

−∞
ıkj1 ûj1(q

1, s1)gw(q1, s1)
dmq1

(2π)
m
2
ds1

−
∫ t
0

ds1

∫ s1
0

ds2

∫ ∞

−∞
kj1 ûj1(q

1, s1)(k + q1)j2 ûj2(q
2, s2)

× gw(q1, s1)gw(q2, s2)
dmq1dmq2

(2π)m
+ · · ·

+
(−ı)p

(2π)
mp
2

∫ ∞

−∞

p∏
k=1

∫ sk−1

0

(
k−1∑
l=0

qljk

)
ûjk(qk, sk)gw(qk, sk)d

mqkdsk + · · · ,

(A.4)

where s0 = t and q0 = k in the representation of general terms in (A.4). The
convergence of this Neumann series is established in Appendix B.

The substitution of (A.4) into (A.2) and averaging over û immediately gives that
all terms in the series, except the first one (which is equal to 1), vanish because of
the homogeneity of the Eulerian velocity field u and the continuity equation. Indeed,
with q0 = k =

∑N
m=1 k

m in (A.4), the general “pth” term in the product of “N”
U -components in (A.2) becomes

. . .
N∏
n=1

ûin(kn, t)

p∏
k=1

(
N∑
m=1

kmjk +

k−1∑
l=1

qljk

)
ûjk(qk, sk) . . . ,(A.5)
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where only dependencies on û and wavevectors are shown. The homogeneity require-
ment implies that only terms with

N∑
m=1

km +

p∑
l=1

ql = 0

can give nonzero average (compare with the δ(k + q) term in the spectral form of
velocity correlation (3.3)) and, consequently, one can set

N∑
m=1

km +

p−1∑
l=1

ql = −qp

in (A.5). The last two factors in the product (A.5) then become(
N∑
m=1

km +

p−1∑
l=1

ql

)
jp

ûjp(q
p, sp) = −qpjp ûjp(q

p, sp) ≡ 0

because of the continuity equation. Hence, only f0(k, t) = 1 contributes to the average

of (A.2), and the homogeneity restriction for the remaining term,
∑N
n=1 k

n = 0, also
leads to the disappearance of the dependence on W(t),

〈
N∏
n=1

Uin(t)

〉
=

(−1)N

(2π)
mN
2

∫
exp

(
ı
√

2D0

N∑
n=1

knW(t)

)〈
N∏
n=1

ûin(kn, t)

〉
dmkn

=
(−1)N

(2π)
mN
2

∫ 〈 N∏
n=1

ûin(kn, t)

〉
dmkn = (−1)N

〈
N∏
n=1

uin(0, t)

〉

= (−1)N

〈
N∏
n=1

uin(x, T − t)

〉
= (−1)N

〈
N∏
n=1

uin(0, 0)

〉
.

(A.6)

The last two identities follow from the original definition of the inverse trajectory and
from the stationarity of the Eulerian velocity field u(x, t).

Because any analytic function of the Lagrangian velocity can be represented by
a power series in the velocity components, it follows from (A.6) that

〈φ(U(s))〉U = 〈φ(−u(x, t− s))〉u
for any arbitrary analytic function φ(U(s)). This implies that U(s) and −u(x, t− s)
have the same distribution. Because u is assumed Gaussian, U(t) and the convective
trajectory Z(t), which is linear in U, also are Gaussian. Consequently, equation (5.4),

〈exp(ıδKZ)〉Z(u|W ) = exp

(
−δ2

2
〈(KZ)2〉Z(u|W )

)
= exp

(
−δ2

2
KiZ̃2

ijKj

)
,

Z̃2
ij = Z̃2

ij(t,W(t)) = 〈Zi(t)Zj(t)〉û =

∫ t
0

∫ t
0

〈Ui(s)Uj(s′)〉Udsds′,
(A.7)

provides the exact representation for the characteristic function 〈exp(ıδKZ)〉 at any
time t for the selected stationary homogeneous isotropic Gaussian Eulerian velocity
field u.
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Appendix B. Convergence of Neumann series (A.4) for the characteris-
tic function. For all the results in Appendix A to be correct, one needs to establish
the convergence of the series (A.4) for f(k, t). In fact, it is enough to estimate the
average of a general even term, |〈f(k, t)2p〉|. The absolute convergence of the series
〈f(k, t)2p〉 will then guarantee the convergence of (A.4) in the mean-square sense be-
cause of the structure of even and odd terms and because of the previously discussed
fast decay of the tail of Gaussian distribution. Hence, let us consider the detailed
structure of |〈f(k, t)2p〉|,

|〈f(k, t)2p〉| =

∣∣∣∣ (−1)p

(2π)mp

∫ t
0

ds1

∫ s1
0

ds2 . . .

∫ s2p−1

0

ds2p

∫ ∞

−∞
dmq1dmq2 . . . dmq2p

× exp

(
ı
√

2D0

2p∑
i=1

qiW(si)

)

× kj1(k + q1)j2(k + q1 + q2)j3 . . .

(
k +

2p−1∑
i=1

qi

)
j2p

(B.1)

× 〈ûj1(q1, s1)ûj2(q2, s2)ûj3(q3, s3) . . . ûj2p(q2p, s2p)〉
∣∣∣∣.

To calculate the average in the last line of (B.1), one can invoke the factorization
property of high-order moments of Gaussian distribution

〈ûiûj ûkûm . . .︸ ︷︷ ︸
2p

〉 =
2p!

p!2p


〈ûiûj〉〈ûkûm〉 . . .︸ ︷︷ ︸

p 2-nd moments




sym

,(B.2)

where the subscript “sym” denotes the arithmetic mean of all symmetrized products
of the ûiûj . For example, the fourth-order moment is

〈ûiûj ûkûm〉 =
4!

2!22

(
1

3
[〈ûiûj〉〈ûkûm〉 + 〈ûiûk〉〈ûj ûm〉 + 〈ûiûm〉〈ûj ûk〉]

)
.(B.3)

With the factorization (B.2) and the correlation of the Fourier-component of the
velocity field given by (3.3),

〈ûji(qi, si)ûjn(qn, sn)〉 =

δ(qi + qn)

[
δjijn − qijiq

i
jn

(qi)2

]
α2(qi)1−m−ε exp(−a(qi)z|si − sn|)

(B.4)

for δ ≤ qi ≡ |qi| = |qn| ≤ 1; 〈ûji(qi, si)ûjn(qn, sn)〉 ≡ 0 otherwise, (B.1) becomes
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|〈f(k, t)2p〉| =
α2p

(2π)mp
2p!

p!2p

p∏
k=1

∫ δ
1

(q̃k)−εdq̃k
∫ t
0

ds1

∫ s1
0

ds2 . . .

∫ s2p−1

0

ds2p

×

∣∣∣∣∣∣∣∣∣∣∣




exp

(
−a

p∑
i=1

(q̃i)z	is
) ∫

· · ·
∫

angles

exp

(
ı
√

2D0

2p∑
i=1

q̃i	iW
)

× kj1(k + q1)j2(k + q1 + q2)j3 . . .

(
k +

2p−1∑
i=1

qi

)
j2p

(B.5)

×
[
. . . δ(ql + qn)

(
δjljn − qljlq

l
jn

(ql)2

)
. . .

]
︸ ︷︷ ︸

p factors




sym

∣∣∣∣∣∣∣∣∣∣∣
,

where the symbolic notations 	is, 	iW, and q̃i correspond to the ordering of terms
in the symmetrized product

q̃1 = q1, 	1s = s1 − sk, 	1W =W(s1) −W(sk),

q̃2 =

{
q2, 	2s = s2 − si, 	2W =W(s2) −W(si) for k �= 2,

q3, 	3s = s3 − si, 	3W =W(s3) −W(si) for k = 2,

and so on.

It is evident that the homogeneity requirement and the fluid incompressibility
(product of p delta-functions and [δjljn − qljlq

l
jn

/(ql)2] factors, respectively, in the last
line of (B.5)) effectively eliminate most of the “q” terms in the third line of (B.5).
The symmetry condition of the velocity field, however, cannot be invoked completely
until Brownian motion effect is averaged or neglected. By explicit consideration of
angular integration for the fourth and sixth moments (they are relatively short but
already contain all representative combinations of even and odd powers of q̃i), it
can be shown that interaction with nonaveraged effect of molecular diffusion leads to
factors |g̃iw| < 1, like

g̃iw =
sin(

√
2D0q̃

i|	iW|)√
2D0q̃i|	iW| and /or g̃iw

	iW
|	iW| , g̃mw g̃iw

	iW + 	mW
|	iW + 	mW|

in the 3-D case, for example. More importantly, the first one with a nonzero average
always corresponds to terms with even powers in q̃i in the third line of (B.5). The
others, which contain an odd power of W and hence will vanish after averaging,
always appear only if odd powers in q̃i are present, i.e., they correspond to terms like
kj q̃

i
j and q̃ij q̃

m
j with i �= m and their odd powers in (B.5). Hence, the interaction of

random symmetric convection with molecular diffusion does not induce net coupling
between nonsymmetric terms q̃ij q̃

m
j with i �= m in (B.5) and it cannot lead to net

nonsymmetric effects.
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Consequently, one can set | exp(ı
√

2D0 . . . )| = 1 in (B.5) before the angular inte-
gration. As a result, the absolute value of the integral over angles in (B.5) yields∣∣∣∣∣∣∣

∫
· · ·
∫

angles

. . .

∣∣∣∣∣∣∣ ≤ Cpk2p,(B.6)

where the numerical constant C depends on the space dimension but is independent
on p. Now, because exp

(−a
∑p
i=1(q̃

i)z	is
)

is always less than 1, one can replace
it by 1 in the second line of (B.5) and complete the integration over s and q̃i. The
resulting estimate for |〈f(k, t)2p〉| is

|〈f(k, t)2p〉| ≤ α2p

(2π)mp
2p!

p!2p

(
δ1−ε − 1

ε− 1

)p
t2p

2p!
Cpk2p

=
1

p!

[
C(ktα)2

2(2π)m

(
δ1−ε − 1

ε− 1

)]p
.

(B.7)

With the Stirling’s formula, p! ≈ ppe−p
√

2πp, it is evident that for any fixed t < ∞,
k < ∞, and δ > 0

|〈f(k, t)2p〉|1/p ≤ e

p

[
C(ktα)2

2(2π)m

(
δ1−ε − 1

ε− 1

)]
→ 0 as p → ∞.(B.8)

Hence, according to the Cauchy criteria, the average of series (A.4), 〈f(k, t)〉 =
〈f(k, t)2p〉, converges absolutely, regardless of the value of the exponent ε. Because of
the exponentially small tail of the Gaussian distribution, this leads to the convergence
of the unaveraged series (A.4).

It should be mentioned that (B.7) strongly overestimates |〈f(k, t)2p〉| at large
values of t because exp

(−a
∑p
i=1(q̃

i)z	is
)

in (B.5) has been set equal to 1, which
corresponds to small-time behavior. Hence, it is not surprising that larger and larger
values of p are needed in order for the right-hand side of (B.7) to decay in the large-
scale, long-time limit for arbitrary values of ε. However, this does not yet mean that
the actual convergence of (A.4) is not as rapid at large time. In fact, one of the
goals of the subsequent renormalization analysis is to reach the uniform convergence
of (A.4) in the above limit. In any case, (B.8) is valid for any finite t < ∞, k < ∞,
and δ > 0, and it is valid to replace the characteristic function with series (A.4).

Appendix C. Effective diffusivity tensor (5.7). It should be emphasized
that establishing that the trajectories are Gaussian distributed tells us only that the
characteristic function can be expressed through the mean-square displacement tensor
alone as it is given by (A.7) (which is the same as (5.4)), but it does not yet provide

the expression for Z̃2
ij . It is evident that (A.7) involves the two-time correlation

〈Ui(s)Uj(s′)〉U , and only relations among the single-time moments 〈∏Nn=1 Uin(t)〉
and 〈∏Nn=1 uin(0, t)〉 have been established by (A.6).

While estimate (B.7) for |〈f(k, t)2p〉| is quite straightforward, it is difficult or

even can be impossible to obtain the exact expression for Z̃2
ij by directly averaging

and summing series (A.4) for f(δK, t). Using the averaged version of (A.4) instead
of (A.6) for any practical purposes also is difficult since (B.7) and (B.8) strongly
overestimate the number of terms that is required for the convergence of the series
(A.4) in the long-time limit. Hence, another approach will be used to obtain the
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evolution equation (5.7) for the effective diffusivity D̃ij(s), which is related to Z̃2
ij by

definition (5.6),

1

2
Z̃2
ij(t,W(t)) =

∫ t
0

D̃ij(s)ds.(C.1)

Note that Z(t) is Gaussian, Z(0) = 0, and 〈Z(t)〉U = 0. Then one can introduce
the appropriate m-dimensional white noise z(t) with the usual autocorrelation prop-
erties, dzn(t)dzk(t) = δnkdt and dzn(t)dzk(s) = 0 for t �= s, such that Z(t) can be
represented by Ito’s stochastic integral

Zi(t) =

∫ t
0

Ui(s
′)ds′ =

∫ t
0

Ain(s,W(s))dzn(s),(C.2)

where the matrix Ain(s,W(s)) does not depend explicitly on z(t). It, however, de-
pends on û. The Gaussian random processes z(t) and W(t), as well as z(t) and∫

. . . û(k, t)dmk, also are dependent in general. For example, the dependence of A
on û is evident from relation (A.6) among the statistical properties of Eulerian and
Lagrangian velocities that suggests A ∼ 〈u(0, 0)u(0, 0)〉1/2. The general dependence,
of course, is not limited by this simple relation.

However, according to the definition of Ito’s stochastic integral, z(s), W(s), and
û(k, s) are statistically independent of dz(t) for t ≥ s (this also is true for dW(t)). It
should be emphasized that only independence on dz(t) is implied, but not on z(t); for
example, 〈ûi(k, s)dzj(t)〉 = 0 for t ≥ s, but 〈ûi(k, s)zj(t)〉 �= 0 in general, regardless of
the relative values of t and s. Physically, this means that all these physical quantities
at time s “do not know what happens in the future,” i.e., how the white noise z will
change at the next instant in time. Hence, from definitions (C.1) and (C.2) and the
above properties of dz, it follows that because

Z̃2
ij(t) = 〈Zi(t)Zj(t)〉û =

〈∫ t
0

Ain(s,W(s))dzn(s)

∫ t
0

Akj(s
′,W(s′))dzk(s′)

〉
û

=

∫ t
0

〈Ain(s,W(s))Anj(s,W(s))〉ûds = 2

∫ t
0

D̃ij(s)ds,

the two-time correlation 〈Zi(t1)Zj(t2)〉û becomes

〈Zi(t1)Zj(t2)〉û =

∫ min{t1,t2}

0

〈Ain(s,W(s))Anj(s,W(s))〉ûds

= 2

∫ min{t1,t2}

0

D̃ij(s)ds = Z̃2
ij(min{t1, t2}).

(C.3)

Another important consequence of (C.2) and these properties of dz is the statistical
independence of both Z(s) and û(q, s) on

	Z(k, t ≥ t′) = km(Zm(t) − Zm(t′)) = km

∫ t
t′

Amn(s
′,W(s′))dzn(s′)

= km

∫ t
t′

Um(s′′)ds′′
(C.4)

for any k, q, and t ≥ t′ ≥ s.
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It also should be noted that the two-point two-time Eulerian velocity correlation
(3.3) (same as (B.4)) yields

〈ûi(k, t)ûj(q, s)〉 = exp(−akz|t− s|)〈ûi(k, s)ûj(q, s)〉
= exp(−akz|t− s|)〈ûi(k, 0)ûj(q, 0)〉(C.5)

such that

〈[ûi(k, t) − exp(−akz(t− s))ûi(k, s)] ûj(q, s)〉 ≡ 0(C.6)

for any pairs of {k,q}, {i, j}, and t ≥ s. For further analysis, it is convenient to
introduce the notation

	ui (k, t ≥ t′) = ûi(k, t) − exp(−akz(t− t′))ûi(k, t′),(C.7)

where, similar to (C.4), t should be ≥ t′. Using (C.5) and definition (C.7), it can be
easily shown that

〈	ui (k, t ≥ t′)ûj(q, s)〉 ≡ 0(C.8)

for any {k,q}, {i, j}, and t ≥ t′ ≥ s.
This means that û(q, s) is statistically independent of 	u(k, t ≥ t′) for t′ ≥ s.

According to (C.2), Z(s) also can be defined through the Lagrangian velocity U(s′)
with s′ ≤ s, which, in turn, depends only on û(ql, sl) at different instants of time
sl ≤ s′ because of the series solution (A.4). Consequently, Z(s) also is statistically
independent of 	u(k, t ≥ t′) for t′ ≥ s. It is hence useful to summarize the established
independence properties:

〈	ui (k, t ≥ t′)ûj(q, s)〉 ≡ 0, 〈	ui (k, t ≥ t′)Zj(s)〉 ≡ 0,(C.9)

〈	Z(k, t ≥ t′)ûj(q, s)〉 ≡ 0, 〈	Z(k, t ≥ t′)Zj(s)〉 ≡ 0(C.10)

for any {k,q} , {i, j} , and t ≥ t′ ≥ s,

where 	Z and 	ui are defined by (C.4) and (C.7), respectively.
Now let us consider the two-time correlation for the Lagrangian velocity compo-

nents

〈Ui(t)Uj(s)〉û = (2π)−m
∫∫

exp
[
ı
√

2D0(kW(t) + qW(s))
]

× 〈ûi(k, t)ûj(q, s) exp [ı(kZ(t) + qZ(s))]〉ûdmkdmq,
(C.11)

where, without loss of generality, one can set t ≥ s. The next step is to find the
proper decomposition for the average in the last line of (C.11) in order to complete
the averaging without obtaining the explicit solution for Z. Using definitions (C.4)
and (C.7) and the independence properties (C.9)–(C.10), one obtains

〈ûi(k, t)ûj(q, s) exp [ı(kZ(t) + qZ(s))]〉
= 〈{	ui (k, t ≥ s) + exp(−akz(t− s))ûi(k, s)} ûj(q, s)

× exp
[
ı
{	Z(k, t ≥ s) + (k+ q)Z(s)

}]〉(C.12)

= 〈	ui (k, t ≥ s) exp
[
ı	Z(k, t ≥ s)

]〉〈ûj(q, s) exp [ı(k+ q)Z(s)]〉
+ 〈exp

[
ı	Z(k, t ≥ s)

]〉 exp(−akz(t− s))〈ûi(k, s)ûj(q, s) exp [ı(k+ q)Z(s)]〉
≡ {1} + {2} .
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The second term {2} in (C.12) can now be averaged explicitly. One can use two-
time correlation (C.3) for Z in the first average, which involves only 	Z(k, t ≥ s) =
k(Z(t)−Z(s)). The second 〈. . . 〉 in {2}, which contains only s-dependent quantities,
is exactly the same as 〈. . . 〉 in the average of (A.2) for the single-time second moment
of Lagrangian velocity 〈Ui(s)Uj(s)〉u. Consequently, (A.6) and the Eulerian velocity
correlation (B.4) allow the completion of this averaging. The result is

{2} = exp

[
−1

2
km

{
Z̃2
mn(t) − Z̃2

mn(s)
}

kn

]
exp(−akz(t− s))〈ûi(k, 0)ûj(q, 0)〉

= δ(k+ q)α2k1−m−ε
(
δij − kikj

k2

)
exp

[
−akz(t− s) − km

∫ t
s

D̃mn(s
′)ds′kn

]
,

k = |k|, δ < k < 1,

(C.13)

where the definition of D̃mn in (C.1) also has been used. Note that (C.13) gives exactly
the same result as that from invoking Corrsin’s independence hypothesis, namely, the
independent averaging of 〈ûû〉 and 〈exp [. . . ]〉 in (C.11). The decomposition (C.12) for
the averaging in (C.11), however, also contains the term {1}, which will be considered
below.

The second average in {1}, which contains all q-dependent factors and quantities,
and depends only on s but not t, is not of great interest. Including exp [ıqW(s)] from
the first line of (C.11) (which remains invariant under the averaging over û) into this
〈. . . 〉 and integrating over q reduce it to 〈Uj(s) exp [ıkZ(s)]〉U , which is some nonzero
function of s and k in general.

Now let us examine the first average in {1}, which depends only on wavevector k
and “differences” 	ui and 	Z , 〈	ui (k, t ≥ s) exp

[
ı	Z(k, t ≥ s)

]〉. Using the definition
of 	Z by (C.4), one can write the stochastic differential equations (with respect to
variable t) for the exponential factor

f
(k, t ≥ s) = exp
[
ı	Z(k, t ≥ s)

]
= exp [ık(Z(t) − Z(s))] = exp

[
ık

∫ t
s

U(s′)ds′
]

(C.14)

both in terms of Lagrangian velocity and the new white noise z(t):

df
(k, t ≥ s) = ıkU(t)f
(k, t ≥ s)dt,(C.15)

df
(k, t ≥ s) = ıkA(t)f
(k, t ≥ s)dz(t) − kD̃(t)kf
(k, t ≥ s)dt.(C.16)

Now, similar to (A.3), let us formally integrate (C.15), multiply it by 	u(k, t ≥ s),
and average the result:

〈	u(k, t ≥ s)f
(k, t ≥ s)〉 = 〈	u(k, t ≥ s)〉

+

〈
	u(k, t ≥ s)

∫ t
s

ıkU(t′)f
(k, t′ ≥ s)dt′
〉

=

〈
	u(k, t ≥ t′)

∫ t
s

ıkU(t′)f
(k, t′ ≥ s)dt′
〉(C.17)

+

〈∫ t
s

exp(−a|k|z(t− t′)	u(k, t′ ≥ s))ıkU(t′)f
(k, t′ ≥ s)dt′
〉

,
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where the useful property of 	u,

	u(k, t ≥ s) = 	u(k, t ≥ t′) + exp(−a|k|z(t− t′))	u(k, t′ ≥ s)

for any t ≥ t′ ≥ s,

which can be easily obtained from its definition (C.7), has been invoked. The first
term in the right-hand side of (C.17) vanishes because, as is evident from (A.3), both
U(t′) and f
(k, t′ ≥ s) contain only û(ql, tl ≤ t′), and because of the independence
properties (C.9). In order to average the second term, one can invoke the equivalent
representation of df
(k, t ≥ s) = ıkU(t)f
(k, t ≥ s)dt by (C.16):

exp(a|k|zt)〈	u(k, t ≥ s)f
(k, t ≥ s)〉

=

〈∫ t
s

exp(a|k|zt′)ıkA(t′)	u(k, t′ ≥ s)f
(k, t′ ≥ s)dz(t′)
〉

(C.18)

−
∫ t
s

kD̃(t′)k〈	u(k, t′ ≥ s)f
(k, t′ ≥ s)〉dt′

= −
∫ t
s

exp(a|k|zt′)kD̃(t′)k〈	u(k, t′ ≥ s)f
(k, t′ ≥ s)〉dt′,

where both sides also have been multiplied by exp(a|k|zt). The first term in (C.18)
again vanishes because it is linear in dz(t′). Consequently, the time-evolution of the
average value 〈	uf
〉 is described by the simple equation

d〈	uf
〉
dt

= −
[
a|k|z + kD̃(t)k

]
〈	uf
〉, 〈	uf
〉(t ≤ s) ≡ 0,(C.19)

which has the only trivial solution 〈	uf
〉 = 〈	u(k, t ≥ s)f
(k, t ≥ s)〉 ≡ 0.
Hence, term {1} in (C.12) vanishes exactly, and term {2} gives the same average

as if the Corrsin’s independence hypothesis had been invoked during the averaging
of (C.11). This is essentially due to Gaussian distribution of the trajectories and
stationarity of both Eulerian and Lagrangian Gaussian velocity fields. All these prop-
erties lead to the statistical independence of “changes” in the Eulerian velocity field,
	u(k, t ≥ s), and in the distribution of “differences in trajectories,” f
(k, t ≥ s),
despite the interdependence of Z and u.

The substitution of expression (C.13) for the “effectively independent” term {2}
into (C.11) hence gives the two-time Lagrangian velocity correlation for t ≥ s:

〈Ui(t)Uj(s)〉û = RLij(t, s)

=
α2

(2π)m

∫
δ<k<1

k1−m−ε exp(−akz(t− s))

(
δij − kikj

k2

)

× exp

[
−km

∫ t
s

D̃mn(s
′)ds′kn

]
× exp

[
ı
√

2D0k(W(t) −W(s))
]
dmk.

(C.20)

The derivation of the evolution equation for the effective diffusivity now becomes
straightforward. According to the definition of effective diffusivity by (C.1),

1

2
dZ̃ij(t) = D̃ij(t)dt =

{∫ t
0

[RLij(t, s) + RLij(s, t)] ds

}
dt,(C.21)
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where (C.20) provides the expressions for RLij(t, s) and RLij(s, t) under the condition

t ≥ s. The resulting expression for D̃ij(t) is

D̃ij(t) =
α2

(2π)m

∫
δ<k<1

k1−m−εF̃ (k, t,W(t))

(
δij − kikj

k2

)
dmk,(C.22a)

F̃ (k, t,W(t)) =

∫ t
0

exp

(
−akz(t− s) − km

∫ t
s

D̃mn(s
′)ds′kn

)
× cos

[√
2D0kl(Wl(t) −Wl(s))

]
ds.(C.22b)

The averaging of all quantities involving D̃ij(t) over W(t) and the analysis of their
time-evolution becomes easier if one can write down the governing differential equation
for the real-valued function F̃ (k, t,W(t)). Invoking Ito’s stochastic differentiation,

df (t,W(t)) =

[
∂f

∂t
+

1

2
∇2
W f

]
dt +

∂f

∂Wi
dWi(t),

one can write the evolution equation for F̃ (k, t,W(t)) defined in (C.22b):

dF̃ =
[
1 −
(
akz + k2D0 + kmD̃mn(t)kn

)
F̃
]
dt− G̃

√
2D0kldWl(t),

dG̃ = − [akz + k2D0 + kmD̃mn(s)kn]G̃dt + F̃
√

2D0kldWl(t),(C.23)

F̃ (k, 0,W(0)) = 0, G̃(k, 0,W(0)) = 0,

where

G̃ = G̃(k, t,W(t)) = − ∂F̃

∂(klWl(t))

=

∫ t
0

exp

(
−akz(t− s) − km

∫ t
s

D̃mn(s
′)ds′kn

)
× sin

[√
2D0kl(Wl(t) −Wl(s))

]
ds.

It is evident that (C.22a) and (C.23) are exactly the same as equations (5.7a)–(5.7d).
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Abstract. We present numerical solutions of a two-dimensional Riemann problem for the un-
steady transonic small disturbance equations that provides an asymptotic description of the Mach
reflection of weak shock waves. We develop a new numerical scheme to solve the equations in self-
similar coordinates and use local grid refinement to resolve the solution in the reflection region.
The solutions contain a remarkably complex structure: there is a sequence of triple points and tiny
supersonic patches immediately behind the leading triple point that is formed by the reflection of
weak shocks and expansion waves between the sonic line and the Mach shock. An expansion fan
originates at each triple point, thus resolving the von Neumann paradox of weak shock reflection.
These numerical solutions raise the question of whether there is an infinite sequence of triple points
in an inviscid weak shock Mach reflection.

Key words. weak shock reflection, self-similar solutions, unsteady transonic small disturbance
equation, two-dimensional Riemann problems, von Neumann paradox

AMS subject classifications. 65M06, 35L65, 76L05
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1. Introduction. Experimental observations of the Mach reflection of weak
shock waves off a wedge show a pattern that closely resembles a single Mach re-
flection, in which the incident, reflected, and Mach shocks meet at a triple point. The
von Neumann theory of shock reflection [10, 16] shows that a standard triple point
configuration, consisting of three shocks and a contact discontinuity, is impossible for
sufficiently weak shocks. This apparent conflict between theory and experiment for
weak shock reflection has been a long-standing puzzle and is often referred to as the
triple point, or von Neumann, “paradox” (see section I.17 of [2], for example).

Guderley [8, 9] proposed that there is a supersonic region behind the triple point in
a steady weak shock Mach reflection, in which case there is an additional expansion
fan at the triple point, resolving the apparent paradox. There was, however, no
evidence of a supersonic region or an expansion fan in experimental observations
[3, 18, 19] or numerical solutions [4, 5, 20] of weak shock reflections off a wedge, until
Hunter and Brio [12] obtained a numerical solution of a shock reflection problem for
the unsteady transonic small disturbance equation that contained a supersonic region
behind the triple point. The region is extremely small, which is why it had not been
detected previously. Subsequently, Zakharian et al. [24] found a supersonic region in
a numerical solution of a shock reflection problem for the full Euler equations, using
local grid refinement near the triple point, for a set of parameter values corresponding
to those in [12].

The solutions in [12, 24] are for a single set of parameter values, and they are not
sufficiently well resolved to show an expansion fan at the triple point directly, or to
show the structure of the flow inside the supersonic region. In this paper, we present
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high-resolution numerical solutions of the shock reflection problem for the unsteady
transonic small disturbance equations for a range of parameter values. There is a
supersonic region behind the triple point in all of the numerical solutions obtained
here. This region consists of a sequence of supersonic patches formed by a sequence
of expansion fans and shock waves that are reflected between the sonic line and the
Mach shock (see Figures 5 and 6, for example). Each of the reflected shocks intersects
the Mach shock, resulting in a sequence of triple points, rather than a single triple
point. The numerical results raise the question of whether there is an infinite sequence
of triple points in an inviscid weak shock Mach reflection.

The total size of the repeating structure of supersonic patches is approximately
the same as that of the supersonic region in the solution obtained in [12], at the
same parameter value, by a different numerical scheme. Other important quantities,
including the strength of the reflected shock and the location of the triple point, agree
closely with this solution, providing an independent check on the self-similar solutions
presented here.

There are, at the moment, no experimental observations of a supersonic region
behind the triple point in a weak shock Mach reflection. As we discuss in section
5, the small size of the region and the effect of viscosity may make it very difficult
to detect experimentally. A structure similar to the one in the solutions presented
here has been observed in shock-boundary layer interactions in transonic flows over
an airfoil [1, 13] (see Figures 245 and 247 in [6]). The shock reflects off a laminar
boundary layer as an expansion wave, leading to a sequence of reflected shock and
expansion waves inside the supersonic bubble on the airfoil.

The numerical solutions of weak shock reflection in [5, 12, 20, 24] were obtained by
solving an initial-value problem for the unsteady equations. The problem of inviscid
shock reflection off a wedge is self-similar, and there are a number of advantages
to solving the problem in self-similar, rather than unsteady, form. In the unsteady
formulation the equations are time-marched, and any waves present move through
the computational domain, complicating algorithms for local grid refinement near the
triple point. By contrast, a solution of the self-similar equations is stationary, making
local grid refinement algorithms much easier to implement. Moreover, a global grid
refinement strategy is possible, in which a partially converged solution on a coarse
grid is interpolated onto a fine grid, and then converged on the fine grid. This process
may be repeated recursively until the desired resolution is obtained.

In this paper, we present numerical solutions of the shock reflection problem for
the unsteady transonic small disturbance equations computed in self-similar coordi-
nates. Samtaney [17] developed a scheme for the solution of the Euler equations in
self-similar coordinates, but his scheme does not apply to the unsteady transonic small
disturbance equations, and a different approach is required. In our approach, we intro-
duce special self-similar variables in which the self-similar transonic small disturbance
equations have the form of the usual transonic small disturbance equations modified
by lower-order terms. What makes the use of the unsteady transonic small distur-
bance equations worthwhile is the fact that, with the same computational resources,
we can obtain a much more finely resolved solution than for the Euler equations.

This paper is organized as follows. In section 2, we describe the shock reflection
problem for the unsteady transonic small disturbance equation, and in section 3 we
give the details of our numerical method. In section 4, we present our numerical
solutions. In section 5, we discuss some of the questions raised by these solutions and
consider the effect of physical viscosity on the inviscid solutions. We summarize our
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conclusions in section 6.

2. The asymptotic shock reflection problem. The asymptotic shock reflec-
tion problem [11, 12, 14, 20] consists of the unsteady transonic small disturbance
equation

ut +

(
1

2
u2

)
x

+ vy = 0,(2.1)

uy − vx = 0

in the half space y > 0 with the initial and boundary conditions

u(x, y, 0) =

{
0 if x > ay,
1 if x < ay,

(2.2)

v(x, y, t) = 0 if x > σ(y, t),(2.3)

v(x, 0, t) = 0.(2.4)

Here, x = σ(y, t) is the location of the incident and Mach shocks. The location of the
incident shock is given by

x = ay +

(
1

2
+ a2

)
t.(2.5)

The incident shock strength, as measured by the jump in u, is normalized to one. This
problem depends on a single parameter a, the inverse slope of the incident shock.

These equations may be derived by a systematic asymptotic expansion of the
shock reflection problem for the full Euler equations for weak shock reflection off
thin wedges [12]. The variables u(x, y, t), v(x, y, t) are proportional to the x, y fluid
velocity components, respectively, and pressure perturbations are proportional to u.
The flow is irrotational and isentropic to leading order in the shock strength.

If the Mach number of the incident shock is M , and the wedge angle in radians
is θw, then (2.1)–(2.4) is obtained in the limit M → 1 and θw → 0, with

a =
θw

2
√
M − 1

(2.6)

fixed. Because of transonic similarity, the asymptotic problem depends on a single
combination of the incident shock strength and the wedge angle. A regularly reflected
solution of (2.1)–(2.4) is impossible when a <

√
2, and triple point solutions of (2.1),

in which three plane shocks separated by constant states meet at a point, do not exist.
The problem (2.1)–(2.4) is self-similar, so the solution depends only on the simi-

larity variables

ξ =
x

t
, η =

y

t
.

Writing (2.1) in terms of ξ, η, and a pseudo-time variable τ = log t, we get

uτ − ξuξ − ηuη +

(
1

2
u2

)
ξ

+ vη = 0,(2.7)

uη − vξ = 0.
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As τ → +∞, solutions of (2.7) converge to a pseudo-steady, self-similar solution that
satisfies

−ξuξ − ηuη +

(
1

2
u2

)
ξ

+ vη = 0,(2.8)

uη − vξ = 0.

Equation (2.8) is hyperbolic when u < ξ + η2/4, corresponding to supersonic flow in
a self-similar coordinate frame, and is elliptic when u > ξ + η2/4, corresponding to
subsonic flow. The equation changes type across the sonic line given by

ξ +
η2

4
= u(ξ, η).(2.9)

3. The numerical method. In order to solve (2.7) numerically, we write it in
terms of parabolic coordinates

r = ξ +
1

4
η2, θ = η,(3.1)

ũ = u−
(
ξ +

1

4
η2

)
, ṽ = v − 1

2
ηu,

which gives

ũτ +

(
1

2
ũ2

)
r

+ ṽθ +
3

2
ũ+

1

2
r = 0,(3.2)

ũθ − ṽr = 0.

With respect to these variables, the self-similar equations have the form of the usual
transonic small disturbance equations modified by lower-order terms, and they can
be solved by a standard numerical scheme. We introduce a potential ϕ(r, θ, τ) such
that

ũ = ϕr, ṽ = ϕθ,(3.3)

and we write (3.2) in the potential form

ϕrτ +

(
1

2
ϕ2
r

)
r

+ ϕθθ +
3

2
ϕr +

1

2
r = 0.(3.4)

We define a nonuniform grid ri in the r direction and θj in the θ direction, where
ri+1 = ri + ∆ri+1/2 and θj+1 = θj + ∆θj+1/2. We also define (ri−1/2, ri+1/2) as

the neighborhood of the point ri, with length ∆ri =
1
2 (∆ri−1/2 + ∆ri+1/2), where

ri+1/2 = 1
2 (ri+1 + ri). Similar definitions apply for the nonuniform grid θj . We

denote an approximate solution of (3.4) by

ϕni,j ≈ ϕ(ri, θj , n∆τ),

where ∆τ is a fixed time step, and we discretize (3.4) in time τ using

ϕn+1
r − ϕnr
∆τ

+ ϕn+1
θθ + f(ϕr)

n
r +

3

2
ϕn+1
r +

1

2
r = 0,(3.5)
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where the flux function f is defined by

f(ũ) =
1

2
ũ2.(3.6)

We solve (3.5) by sweeping from right to left in r, using the spatial discretization

(3.7)

ϕn+1
i,j − ∆ri+1/2∆τ


 ϕi,j+1−ϕi,j

∆θj+1/2
− ϕi,j−ϕi,j−1

∆θj−1/2

∆θj


n+1

+
3

2
∆τϕn+1

i,j

= ϕn+1
i+1,j − ϕni+1,j + ϕni,j +∆τ

(
F (ũi+1/2,j , ũi+3/2,j)

n − F (ũi−1/2,j , ũi+1/2,j)
n
)

+
3

2
∆τϕn+1

i+1,j +
1

2
∆τ∆ri+1/2 r̂i+1/2.

Here, F is a numerical flux function, and

ũi−1/2,j =
ϕi,j − ϕi−1,j

∆ri−1/2
.

The variable r̂i+1/2 is the value of r at which the source term 1
2r is evaluated, and

in most of the calculations we used the definition r̂i+1/2 = ri. We tried a number
of different treatments of the source term and obtained similar results with them all.
See [21] for a detailed discussion.

In most of the computations, we used an Engquist–Osher numerical flux func-
tion. Dropping the θ-subscript j, which is constant in the following definitions, the
Engquist–Osher flux for (3.6) is

FEO(ũi−1/2, ũi+1/2) =
1

2
max(ũi−1/2, 0)

2 +
1

2
min(ũi+1/2, 0)

2.

In our highest resolution computations for a = 0.5, we used a second-order, flux-limiter
scheme [23], with a Lax–Wendroff flux as the higher-order flux, and an Engquist–Osher
flux as the lower-order flux. The numerical flux function for this scheme is given by

F (ũi−1/2, ũi+1/2) = ψ(�)FLW (ũi−1/2, ũi+1/2) + (1− ψ(�))FEO(ũi−1/2, ũi+1/2),

� =




(∣∣∣∣ ũi−3/2+ũi−1/2
2

∣∣∣∣− ∆τ
∆ri

(
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2

)2)
(ũi−1/2−ũi−3/2)(∣∣∣∣ ũi−1/2+ũi+1/2

2

∣∣∣∣− ∆τ
∆ri

(
ũi−1/2+ũi+1/2

2

)2)
(ũi+1/2−ũi−1/2)

,
ũi−1/2+ũi+1/2

2 ≥ 0,

(∣∣∣∣ ũi+1/2+ũi+3/2
2

∣∣∣∣− ∆τ
∆ri

(
ũi+1/2+ũi+3/2

2

)2)
(ũi+3/2−ũi+1/2)(∣∣∣∣ ũi−1/2+ũi+1/2

2

∣∣∣∣− ∆τ
∆ri

(
ũi−1/2+ũi+1/2

2

)2)
(ũi+1/2−ũi−1/2)

,
ũi−1/2+ũi+1/2

2 < 0,

where ψ is a minmod flux-limiter,

ψ(�) =



0, � ≤ 0,

�, 0 < � < 1,

1, � ≥ 1.
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T

Fig. 1. A schematic diagram of the computational domain. EA is the wall and ABDE is
the numerical boundary. The incident shock enters the computational domain through AB. The
incident, reflected, and Mach shocks meet at the triple point T .

The Lax–Wendroff flux for (3.6) is given by

FLW (ũi−1/2, ũi+1/2) =
1

4
(ũ2
i−1/2 + ũ2

i+1/2)

− 1

2

∆τ

∆ri

(
ũi−1/2 + ũi+1/2

2

)2

(ũi+1/2 − ũi−1/2).

We evolve the solution of (3.7) forward in time τ until it converges to a steady
state, using line relaxation. The direction of sweep, from right to left in r, is consistent
with the direction of propagation of the characteristics for (2.8), which is in the −r
direction.

3.1. Boundary conditions. We computed solutions of the half-space problem
(2.1)–(2.4) in the finite computational domain

rL ≤ r ≤ rR, 0 ≤ θ ≤ θT ,

shown schematically in Figure 1. The left and right boundaries of the computational
domain are parabolic because of the use of the coordinates in (3.1). We use a nonuni-
form grid that has a locally refined area of uniform grid very close to the triple point,
and is stretched exponentially away from the triple point toward the outer numerical
boundaries and the wall. In the solutions shown below, the nonuniform grids are
stretched by amounts between 0.5% and 1.5%, and the total number of grid points in
our largest grid is approximately 3× 106.

We impose the physical no-flow condition (2.4), which implies that ϕθ = 0, on
the wall EA. In addition, we require numerical boundary conditions on the outer
computational boundaries.

On the right boundary AB, we impose Dirichlet data corresponding to the in-
cident shock solution in (2.2)–(2.3). Using (3.1) in (2.5), we find that the incident
shock location with respect to the transformed self-similar coordinates is given by

r = aθ +
1

4
θ2 +

1

2
+ a2.

Thus, the incident shock location is a parabola with respect to the transformed coor-
dinates, instead of a straight line. Ahead of the incident shock we have (u, v) = (0, 0),
and behind the incident shock we have (u, v) = (1,−a). Hence, using (3.1), (3.3), and
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the requirement that the potential is continuous across the shock, we find that the
potential for the incident shock solution is given by

ϕ(r, θ) =

{
− 1

2r
2, r > aθ + 1

4θ
2 + 1

2 + a2,

r − aθ − 1
4θ

2 − 1
2r

2 − 1
2 − a2, r < aθ + 1

4θ
2 + 1

2 + a2.
(3.8)

We impose (3.8) as a boundary condition for (3.4) on AB.
The asymptotic behavior of the solution of the shock reflection problem at large

distances from the reflection point is given by the solution of the linearized shock re-
flection problem [12]. We use this result to formulate a numerical boundary condition
on the subsonic boundary CDE. In self-similar variables, the linearized solution for
ϕr behind the reflected wavefront r = 1 is

ϕr = 1− r +
1

π
tan−1

(
2a

√
1− r

1− r + 1
4θ

2 − a2

)
, r < 1.(3.9)

We impose (3.9) as a Neumann condition on the left boundary DE. Writing (3.9) as
ϕr = f(r, θ), we discretize it as

ϕi+1,j − ϕi,j
∆ri+1/2

= f(ri+1/2, θj).

On the top boundary BD, we impose the Dirichlet condition (3.8) when r > 1,
corresponding to the segment BC, and the condition (3.9) when r < 1, corresponding
to the segment CD. The exact location of the reflected shock is slightly different
from the point r = 1, where we switch the numerical boundary conditions, and the
exact solution differs slightly from the linearized solution, but we found that the
disturbance originating from the top boundary was small provided that the boundary
was far enough away from the triple point (see Figure 9). We tried a number of other
numerical boundary conditions, but (3.8)–(3.9) gave the most satisfactory results.

4. Numerical results. We computed numerical solutions of (2.1)–(2.4) for a
equal to 0.3, 0.4, 0.5, 0.6, 0.65, 0.7, 0.75, and 0.8. In the following figures, we present
solutions for the values 0.3, 0.5, 0.6, and 0.8. The solutions for the other values
of a are similar to the ones presented here. Figure 2 shows u-contour plots of the
global solutions as a function of (x/t, y/t). From (2.6), increasing a corresponds to
increasing the wedge angle while fixing the Mach number of the incident shock, or
decreasing the Mach number while fixing the wedge angle. Hence, the sequence of
plots in Figure 2(a)–(d) is a numerical representation of a series of shock reflection
experiments in which the wedge angle is increased, while the Mach number is held
constant at a value near one.

The numerical solutions closely resemble a single Mach reflection. The Mach
shock becomes shorter and stronger as a increases, and the strength of the reflected
shock near the triple point, which is very weak for smaller values of a, also increases
with a (see Table 4.1). For a fixed value of a, the strength of the Mach shock increases
as it moves away from the triple point, reaching a maximum at the wall y = 0. The
strength of the reflected shock increases initially as it moves away from the triple
point, then decreases, approaching zero as y → +∞. The thickening of the incident
shock as it moves away from the triple point in Figure 2(a)–(d) is caused by the use
of a stretched grid.

In Figure 3, we show the u-contours and the numerically computed location of
the sonic line (2.9) near the triple point for the values of a shown in Figure 2. All of
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Fig. 2. Contour plots of u for increasing values of a, showing the full numerical domain. The
u-contour spacing is 0.05.

Table 4.1
Numerically computed values of the size of the supersonic region at the triple point, the triple

point location, and the strength [u]r of the reflected shock at the sonic point. The shock strength is
measured by the jump [u] in u.

a ∆(x/t) ∆(y/t) (x/t)t.p. (y/t)t.p. [u]r

0.3 0.0030 0.023 0.837 0.831 0.01
0.4 0.0023 0.019 0.924 0.665 0.03
0.5 0.0012 0.0096 1.008 0.513 0.07
0.6 0.0006 0.0030 1.098 0.398 0.13
0.65 0.0004 0.0014 1.148 0.349 0.17
0.7 0.00016 0.00074 1.200 0.302 0.22
0.75 0.00008 0.00027 1.255 0.258 0.27
0.8 0.00004 0.00011 1.315 0.220 0.33

the solutions contain a small region of supersonic flow behind the triple point, the size
of which decreases rapidly with increasing a. Table 4.1 gives the size of the supersonic
region in the numerical solution for each value of a. The height ∆(y/t) is a numerical
estimate of the difference between the maximum value of y/t on the sonic line and the
minimum value of y/t at the rear sonic point on the Mach shock. The width ∆(x/t)
is an estimate of the width of the supersonic region at the value of y/t corresponding
to the triple point. In detailed plots of our most refined solution with a = 0.5 (see
Figures 5 and 6, for example), the expansion fan generated by the collision of the
reflected shock with the incident shock at the triple point can be clearly seen. Behind
the leading triple point, there is a sequence of shocks and expansion fans. These
shocks are less apparent in the less resolved solutions, such as Figure 3(c), and in
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Fig. 3. Contour plots of u near the triple point for increasing values of a. The u-contour
spacing is 0.005 in (a), and 0.01 in (b)–(d). The dotted line is the sonic line. The regions shown
contain the refined uniform grids, which have the following numbers of grid points: (a) 620 × 480;
(b) 768 × 608; (c) 346 × 260; (d) 245 × 150.

Figure 3(d) they cannot be seen at all.

The area covered by the most refined uniform grid fits inside the region shown
in Figure 3(a)–(d); the actual refined grid area would appear as a sheared rectangle
because the equations are discretized with respect to the parabolic coordinates in
(3.1). The figure caption gives the number of grid points in the most refined area of
the grid. The small numerical oscillations immediately behind the Mach shock (see
Figure 3(a) and (d), for example) seem to be caused by the lack of alignment of the
shock with the grid.

We found that, for a given value of a, a certain minimum grid resolution was
required to resolve the supersonic region behind the triple point. As we refined the
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Fig. 4. A sequence of contour plots illustrating the effect of increasing grid resolution on the
numerical solution. The solutions plotted here are for a = 0.5. The figures show the u-contours in
the refined grid area near the triple point, with a u-contour spacing of 0.01. Each grid is refined
by a factor of two in both x/t and y/t in relation to the previous grid. The region shown includes
the refined uniform grid area. The dotted line is the sonic line. In (a), the refined uniform grid
contains 64 × 42 grid points. A supersonic region is visible as a bump in the sonic line, but it is
poorly resolved. In (b), the refined uniform grid area contains 128× 84 grid points. The supersonic
region appears to be smooth. In (c), the refined uniform grid area contains 256 × 168 grid points.
There is an indication of a shock wave behind the leading triple point. The refined uniform grid in
(d) contains 512 × 336 grid points. Two shock waves are visible behind the leading triple point.

grid beyond this minimum level, a detailed flowfield structure in the region emerged.
Figure 4 shows the u-contours and the sonic line near the triple point for a sequence
of solutions for a = 0.5 computed on successively refined grids. In this sequence, we
refined each grid by a factor of two in x/t and y/t in relation to the previous grid. The
resolution of the locally refined areas is indicated on the plots. In Figure 4(a)–(b), the
sonic line appears fairly smooth. The supersonic region in Figure 4(b) is similar in
size, shape, and resolution to the one obtained in [12]. At the next level of refinement,
shown in Figure 4(c), there is an indication of the coalescence of u-contours at the
rear of the supersonic region and evidence of a second reflected shock there. Finally,
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in Figure 4(d), the second reflected shock is better defined, with an indication of a
third, weaker shock following it. Further shocks appear in our most refined solution
in Figure 3(b).

Returning to Figure 3, we can explain the qualitative differences between the
solutions for different values of a in terms of their numerical resolution. As shown in
Table 4.1, the size of the supersonic region decreases with increasing a. We therefore
had to use more refined grids for higher values of a. For example, the solution shown
in Figure 3(d) for a = 0.8 was computed using a grid that was a factor of 16 times
more refined in x/t and y/t than the grid used in the solution for a = 0.5 shown in
Figure 3(b). However, the supersonic region in Figure 3(d) is smaller than the one
in Figure 3(b) by a linear factor of about 90, resulting in a lower relative resolution.
Consequently, the detailed flowfield near the triple point is not visible in Figure 3(d),
similar to the under-resolved solutions shown in Figure 4(a)–(b). By contrast, the
solutions for a = 0.3, 0.5, 0.6 in Figure 3(a)–(c) contain a sequence of shocks and
expansions, evident from the pronounced bumps in the sonic line.

There is a small discrepancy between the numerically computed location of the
triple point in these figures and the theoretical location of the incident shock in (2.5).
The reason for this discrepancy is that the numerical boundary conditions did not
give an incident shock that was of exactly constant strength and exactly straight
in (x/t, y/t)-coordinates. The deviation of the numerical solution for the incident
shock from the exact uniform solution was, however, very small. For example, in
our numerical solution for a = 0.5, the nonuniformity in u and v in the state behind
the incident shock is less than 0.4%, and the numerically computed value of the x/t-
coordinate of the triple point differs by 0.15% from the theoretical value obtained from
(2.5) using the numerically computed value of y/t. We tried a number of different
implementations of the numerical scheme and boundary conditions, but none of them
gave an exactly straight incident shock. Nevertheless, we saw a supersonic region
and the same structure of reflected shocks and expansion fans inside it for all of the
implementations.

In Figure 5, we plot closely spaced u-contours, and more widely spaced v-contours,
to give a detailed picture of the sequence of shock and expansion waves for a = 0.5.
Figure 6 is an enlargement of the solution shown in Figure 5 over a very small area
close to the leading triple point, which shows the expansion wave that originates at
the triple point. The expansion wave is in the family opposite to the shock waves,
and it reflects off the sonic line as a compression wave (cf. the discussion in [9]). This
compression wave forms a shock that hits the Mach shock and reflects as the next
expansion wave. The result is a sequence of triple points, rather than a single triple
point. The variables u and v decrease smoothly across the expansion wave at the
front of a patch from sonic to supersonic values, moving from right to left in the
downstream direction; then u and v jump from supersonic to subsonic values across
the shock at the rear of a patch. A very weak wave is visible behind the incident
shock in Figure 5(b). This wave is a numerical artifact that is generated when the
incident shock crosses from the stretched grid into the uniform grid.

Each shock-expansion pair in the sequence is smaller and weaker than the one
preceding it. Four reflected shocks appear to be visible in Figures 5–6. From the
numerical data, their approximate strengths, beginning with the leading reflected
shock, are

[u]1 ≈ 0.08, [u]2 ≈ 0.02, [u]3 ≈ 0.01, [u]4 ≈ 0.003.

Here, the jump [u] in u across a reflected shock is measured at the point where the flow
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Fig. 5. A detailed contour plot of (a) u and (b) v near the triple point for a = 0.5. The u-
contour spacing is 0.0005 and the v-contour spacing is 0.001. The sonic line is plotted in Figure 3(b)
and Figure 6. The figure shows a sequence of shock and expansion waves. Each expansion wave
is centered at a triple shock intersection and reflects off the sonic line into a compression wave.
The compression wave forms a shock wave that intersects the Mach shock, resulting in a sequence
of triple points. Three shock-expansion wave pairs and triple points are visible in the plots, with
indications of a fourth. The region shown contains the refined uniform grid, which has 768 × 608
grid points.

behind the shock is sonic. This point is very close to the corresponding triple point
on the Mach shock, as shown in Figure 6. It is not possible, however, to determine
from the numerical solution whether or not this sonic point coincides exactly with
the triple point, as argued by Guderley [9] in the case of steady weak shock Mach
reflections.

Three shocks and an expansion fan appear to connect four states at the leading
triple point. We label these states 1–4 in Figure 6. Table 4.2 gives values of u and v
for each of the states, computed from the numerical solution. For states 2–4, these
values were computed at the locations indicated in the figure. The values of (u, v)
for state 3 behind the reflected shock were computed close to the point where the
flow behind the shock is sonic. This ensures that states 2 and 3 are connected by the
reflected shock and not by any part of the expansion fan, which connects states 3 and
4. For state 1, the values for (u, v) were computed at a location sufficiently far ahead
of the incident shock so that they were not influenced by the effects of numerical
diffusion near the shock.

The velocity components (ū, v̄) in a reference frame moving with the triple point
are given by [12] as

ū = u−
(
ξ∗ +

1

4
η2
∗

)
, v̄ = v − 1

2
η∗u,(4.1)

where (ξ∗, η∗) are the (ξ, η)-coordinates of the triple point. From the numerical solu-
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Fig. 6. An enlargement of the solution in Figure 5 near the leading triple point, showing (a)
u-contours and (b) v-contours. The u-contour spacing is 0.005, and the v-contour spacing is 0.001.
The dashed line in the plots is the sonic line. Table 4.2 gives the values of u and v from the numerical
solution for the states labeled 1–4 in the plots.

tion shown in Figure 6, we obtain ξ∗ = 1.008, η∗ = 0.5128. We show the corresponding
values of (ū, v̄) in Table 4.2. In Figure 7(a), we plot the shock and rarefaction curves
for the steady transonic small disturbance equation [12] through each of the four states
for (ū, v̄). The plot in Figure 7(b) is an enlarged view of the shock and rarefaction
curves for the states 2, 3, and 4. The curves coincide almost exactly with those of
a triple point with an expansion fan. We show similar curves through the numerical
values of the analogous states at the second triple point in Figure 7(c)–(d). These
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Table 4.2
Numerically computed values for the four states at the leading and second triple points, from

the solution for a = 0.5 (see Figure 6). The state ahead of the incident shock is denoted by 1, the
state behind the incident shock by 2, the state behind the reflected shock by 3, and the state behind
the Mach shock by 4. The states 1′–4′ are the four analogous states at the second triple point. The
variables ū and v̄ are defined in (4.1), with ξ∗ = 1.008, η∗ = 0.5128 for states 1–4, corresponding
to the leading triple point, and ξ∗ = 1.007, η∗ = 0.5108 for states 1′–4′, corresponding to the second
triple point.

State u v ū v̄

1 0 0 -1.074 0
2 0.997 -0.5000 -0.077 -0.756
3 1.073 -0.4963 -0.001 -0.771
4 1.047 -0.5062 -0.027 -0.775
1′ 0 0 -1.072 0
2′ 1.052 -0.5076 -0.020 -0.776
3′ 1.072 -0.5047 0.000 -0.778
4′ 1.060 -0.5088 -0.012 -0.779
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Fig. 7. The plots in (a)–(b) show the theoretical shock and rarefaction curves through each
of the four states for (ū, v̄) at the leading triple point (see Figure 6). Their numerical values are
given in Table 4.2. (The bars have been omitted from the axis labels.) The curves correspond almost
exactly to those of a triple point with an expansion fan. The plots in (c)–(d) show similar shock
and rarefaction curves for the second triple point. The states 2 and 4 lie slightly off the shock curve
of 1; nevertheless, the overall agreement with the curves of a triple point with an expansion fan is
excellent.

plots show that the triple points with expansion fans that we observe numerically are
consistent with theory.

To accelerate the convergence of the solution on a very refined grid, we partially
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Fig. 8. A plot of the maximum norm of the residual, showing partial convergence on a sequence
of grids, followed by convergence on the most refined grid. The sharp local peaks correspond to inter-
polations onto more refined grids. The computation on the most refined grid begins at approximately
n = 30000. The final stage of convergence to a value for the maximum norm of the residual of less
than 10−9 is not shown in the plot.
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Fig. 9. A check of the sensitivity of the solutions to the size of the numerical domain, showing
u-contours for two solutions computed on different sized domains, for a = 0.5. The full numerical
domains are shown, with u-contours for the large domain solution (dashed lines) and the small
domain solution (solid lines) plotted at the same values of u. Contour lines for u and v near the
triple point for both solutions shown here are compared in Figure 10.

converged the solution on a coarse grid, interpolated the solution onto a refined grid,
and repeated this process until the desired resolution was obtained. For example,
Figure 4 shows a sequence of solutions obtained on four consecutive intermediate
grids during the computation for a = 0.5. In Figure 8, we plot the maximum norm
of the residual for a typical computation, in which nine grids were used. The sharp
local peaks correspond to interpolations onto more refined grids. In the computation
shown, the solution on each intermediate grid was converged until the maximum norm
of the residual was less than 10−7. The solution on the final grid in a computation
was converged until no further change was observed in the details of the solution near
the triple point, which typically occurred when the maximum norm of the residual
was less than 10−9.

We performed checks to determine the sensitivity of the solutions to the placement
of the top and left numerical boundaries, which intersect the region where (2.8) is
elliptic. In Figure 9, we plot u-contours for two solutions for a = 0.5 computed on
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Fig. 10. A comparison of u- and v-contours near the triple point for the two solutions shown
in Figure 9. The plots in (a) and (b) show u-contours for the solutions computed on the larger
and smaller domains, respectively, plotted at the same levels of u. The plots in (c) and (d) show
v-contours for the solutions computed on the larger and smaller domains, respectively, plotted at the
same levels of v. The dashed line in (a)–(d) is the sonic line. The u-contour spacing in (a)–(b) is
0.005, and the v-contour spacing in (c)–(d) is 0.001.

different sized domains. In this study, the top and left numerical boundaries of the
smaller domain were extended, as indicated in the figure, to approximately double
the distance from these boundaries to the triple point. The contour lines are plotted
at the same values of u for both solutions, with the dashed lines representing the
u-contours of the solution on the larger domain. The contour lines approach each
other and almost coincide near the triple point.

Figure 10 is an enlargement of the solutions near the triple point, showing u-
contours and v-contours for the solutions on the larger and smaller domains. The
u-contours in Figure 10(a)–(b) and the v-contours in Figure 10(c)–(d) are plotted
at the same values of u and v, respectively, and the sizes of the regions shown in
these plots are the same. The dashed line in Figure 10(a)–(d) is the sonic line. The
structure of reflected shocks and expansion waves, supersonic patches, and repeating
triple points did not change as a result of enlarging the computational domain, and
the size of the supersonic region is nearly identical for the two solutions. The main
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effect of extending the boundaries is a slight shift in the location of the leading triple
point. The shift is approximately 0.05% in x/t and 0.2% in y/t.

5. Discussion. These numerical results raise the question of whether there is an
infinite sequence of triple points in an inviscid weak shock Mach reflection. Gamba,
Rosales, and Tabak [7] prove, under some mild assumptions, that the flow behind a
triple point cannot be strictly subsonic for the unsteady transonic small disturbance
equation. Therefore, if there were a finite sequence of supersonic triple points, there
would presumably have to be a smooth transition from supersonic to subsonic flow at
the rear of the final supersonic patch. Such a smooth transition appears unlikely to
occur, however, because the resulting nonlinear mixed-type boundary value problem
would be overdetermined [9, 15].

The most plausible alternative to a finite sequence of triple points terminated by a
shock-free supersonic patch is an infinite sequence of more closely spaced triple points,
weaker shock-expansion pairs, and smaller supersonic patches that accumulate at the
rear sonic point of the supersonic region on the Mach shock. In this structure, the
shock and expansion waves would reflect back and forth infinitely many times between
the Mach shock and the sonic line, into the rear sonic point. The inviscid equations
do not define a length scale so solutions may, in principle, develop arbitrarily small
structures. We do not know, however, of a way to confirm or deny the existence of
an infinite sequence of patches whose size shrinks to zero.

A remarkable feature of the numerical solutions is the extraordinarily small size
of the supersonic region, especially for larger values of a. For example, when a = 0.8,
the height of the supersonic region is approximately 0.05% of the height of the Mach
shock. Once the inverse shock slope a is fixed, there are no further parameters in
the problem, so the small size of the region cannot be explained by the dependence
of the solution on a small parameter. The shock reflection pattern is produced by
the requirement that the y-velocity component v, which is equal to −a behind the
incident shock, must return to zero at the wall y = 0. Thus, a global scale for vη is

α =
a

(y/t)t.p.
,

where (y/t)t.p. is the (y/t)-location of the triple point. The supersonic region is
produced by the expansion fan that is formed when the leading reflected shock collides
with the incident shock. If ∆v is the change in v across this fan, then a local scale
for vη near the triple point is

β =
∆v

∆(y/t)
,

where ∆(y/t) is the height of the supersonic region. From the numerical data, we find
that α is much less than β for larger values of a, corresponding to a rapid change in
the solution near the triple point and a tiny supersonic region. For example, when
a = 0.5, we find from the numerical data that α/β ≈ 1.0, but when a = 0.8, we find
that α/β ≈ 0.05. Since the largest value of a that we investigated is 0.8, we neither
know if solutions for higher values of a contain a supersonic region with a sequence of
triple points over the entire range 0.8 < a <

√
2, nor know if the transition between

regular and Mach reflection occurs exactly at a =
√
2.

A repeating structure of supersonic patches and triple points with expansion
fans appears to provide a resolution of von Neumann’s triple point paradox within
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the framework of inviscid shock theory, and viscosity is not required to explain the
structure of a weak shock Mach reflection. Nevertheless, in view of the extremely
small size of the supersonic region, it is important to consider the likely effect of
physical viscosity on the inviscid description. Since the triple point lies in the interior
of the fluid, it is reasonable to expect that boundary layer effects do not influence
the local structure of the solution. Thus, the main effect of viscosity is to thicken
the shocks. If the size of the supersonic region is smaller than the viscous thickness
of the reflected shock, then the sonic line is embedded inside the viscous profile of
the reflected shock, and the local structure of the solution near the triple point is
dominated by viscous effects. Since the numerical scheme includes numerical viscosity,
which mimics the effect of physical viscosity, the plots in Figure 4 of the solution with
increasing numerical resolution presumably indicate the effect of decreasing physical
viscosity on the solution. At resolutions lower than the ones shown in Figure 4, the
supersonic region disappears completely, and the sonic line runs down the inside of
the reflected shock, through the triple point, and down the Mach shock.

To compare the width of the supersonic region with the viscous shock thickness,
we suppose that the reflected shock Mach number isMr and the mean free path in the
gas is λ. The thickness δ of the reflected shock is then approximately given by [22]:

δ =
3λ

Mr − 1
.

The incident and Mach shocks are thinner than the reflected shock because they are
stronger. If the width of the supersonic region in x/t in the solution of the unsteady
transonic small disturbance equation is ∆(x/t), then, from [12], the asymptotic width
d of the supersonic region parallel to the wall in physical variables is given by

d = 2(M − 1)∆(x/t)L.

Here, L is the distance traveled by the Mach shock along the wall, from the corner of
the wedge to the reflection point, and M is the Mach number of the incident shock.
Hence

d

δ
= c(M − 1)2

L

λ
,

where the dimensionless constant c is defined by

c =
2

3
∆
(x
t

)
[u]r,(5.1)

and [u]r is the ratio of the reflected and incident shock strengths,

[u]r =
Mr − 1

M − 1
.

The supersonic region is much larger than the reflected shock structure if d 	 δ,
meaning that

L	 λ

c(M − 1)2
.

The value of c in (5.1) may be estimated from the numerical data in Table 4.1. The
supersonic region is easier to observe for larger values of c, and the largest value of
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c for the results obtained here is c ≈ 6 × 10−5 for a = 0.5. For smaller values of
a, the reflected shock becomes very weak and thick, while for larger values of a, the
supersonic region becomes extremely small. The mean free path in argon at standard
conditions is approximately λ = 6 × 10−5 mm. Therefore, for a shock reflection in
argon with a = 0.5, we estimate that the supersonic region separates from the viscous
profile of the reflected shock when L 	 (M − 1)−2 mm. Even for a relatively strong
weak shock withM = 1.1, this estimate gives L	 100mm. Thus, in order to observe
the supersonic region in a shock tube experiment, the test section of the tube would
have to be significantly longer than 100mm.

It is striking that such a complex inviscid structure forms on a length scale that
is comparable with, or less than, the viscous shock thickness in typical experiments.

6. Conclusion. We have presented numerical evidence of a structure of reflected
shocks and expansion waves and a sequence of triple points and supersonic patches in
a tiny region behind the leading triple point of an inviscid weak shock Mach reflection.
The presence of the expansion fans at the triple points resolves the von Neumann para-
dox of weak shock reflection. Qualitative arguments, based on the well-posedness of
mixed-type boundary value problems, suggest that there may be an infinite sequence
of triple points and patches in an inviscid reflection, but a proof or disproof of this
suggestion is lacking. The numerical solutions provide an estimate of the size of the
supersonic region, which may enable its experimental detection.
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Abstract. We study a partial integro-differential equation defined on a spatially extended
domain that arises from the modeling of “working” or short-term memory in a neuronal network. The
equation is capable of supporting spatially localized regions of high activity which can be switched
“on” and “off” by transient external stimuli. We analyze the effects of coupling between units in the
network, showing that if the connection strengths decay monotonically with distance, then no more
than one region of high activity can persist, whereas if they decay in an oscillatory fashion, then
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1. Introduction. Working memory, which involves the holding and processing
of information on the time scale of seconds, is a much studied area of neuroscience
[3, 9, 24, 35, 37]. Experiments in primates [8, 15, 29] have shown that there exist
neurons in the prefrontal cortex that have elevated firing rates during the period
in which an animal is “remembering” the spatial location of an event before acting
on the information being remembered. Realistic models for this type of activity
have involved spatially extended systems of coupled neural elements and the study
of spatially localized areas of high activity in these systems. Previous studies have
involved “rate” models [1, 19, 22, 37] in which a neural element is described by a single
scalar variable, e.g., a firing rate and more complicated “spiking” models [9, 24, 35],
which take into account the intrinsic dynamics of single neurons.

In this paper we extend the 1977 work of Amari [1] who found single spatially
localized regions of high activity (“bumps”) in rate models of the form

∂u(x, t)

∂t
= −u(x, t) +

∫ ∞

−∞
w(x− y)f(u(y, t)) dy + s(x, t) + h.(1.1)

Equation (1.1) models a single layer of neurons. The function u(x, t) denotes the
“synaptic drive” or “synaptic input” to a neural element at position x ∈ (−∞,∞)
and time t ≥ 0. The connection function w(x) determines the coupling between ele-
ments, and the nonnegative function f(u) gives the firing rate, or activity, of a neuron
with input u. Neurons at a point x are said to be active if f(u(x, t)) > 0. The func-
tion s(x, t) represents a variable external stimulus. Finally, the parameter h denotes
a constant external stimulus applied uniformly to the entire neural field. Although
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the model we study has been used to model working memory, similar equations arise
in neural theory as applied to vision and robotic navigation [17], head direction sys-
tems [39], and cognitive development in infants [32]. We also mention recent analyses
of wave propagation when inhomogeneities are present in the underlying neural sub-
strate [4] and also in neural networks with axo-dendritic synaptic interactions [10].

Our goal is to extend Amari’s results in two ways. First, in the next section
we will extend the analysis of the original model in which w(x) is assumed to have
exactly one zero in (0,∞), and f(u) is a step function. We will determine a simple set
of assumptions on w and f for which (1.1) has stationary “single-bump” solutions.
Our assumptions will allow us to obtain a more precise description of the shape of
solutions. We will also investigate the existence of “double-bump” solutions.

In section 3 we relax the restrictions on w and f to include both oscillatory
connection functions which change sign infinitely often and continuous firing rate
functions. Our goal here is to show that “multi-bump” solutions of (1.1) exist over
an appropriate range of parameters. The extension of f(u) to a continuous function
will allow us to derive an ordinary differential equation, specific solutions of which are
steady-states of (1.1). This differential equation, which is derived in section 5, will
be invaluable in proving the existence or otherwise of such “multi-bump” solutions.
Sections 6 and 7 are devoted to studies of its N -bump solutions. In section 8 we
extend the model to two space dimensions and present numerical evidence for multi–
bumps solutions. Sections 9 and 10 contain proofs of two theorems stated in the text,
and a summary of our results is given in section 11.

2. “Mexican hat” coupling. We begin with a description of the assumptions
and conclusions obtained by Amari [1] where the coupling function w(x) satisfies the
following:

(H1) w(x) is symmetric, i.e., w(−x) = w(x) for all x ∈ R;
(H2) w(x) > 0 on an interval (−x̄, x̄), and w(−x̄) = w(x̄) = 0;
(H3) w(x) is decreasing on (0, x̄];
(H4) w < 0 on (−∞,−x̄) ∪ (x̄,∞).

An additional condition which Amari uses but does not explicitly state is
(H5) w is continuous on R, and

∫∞
−∞ w(y) dy is finite.

A coupling satisfying (H2) and (H4) produces “lateral inhibition” [14]. That is, con-
dition (H2) means that nearby neural elements excite one another, but (H4) results in
an “inhibitory effect” if the distance between neural elements is greater than a certain
value, x̄. Conditions (H1), (H3) and (H5) are general requirements which allow for a
tractable mathematical analysis of (1.1). In order to rigorously determine the shape of
steady-state solutions of (1.1), we make one final assumption on the coupling function
w(x):

(H6) w(x) has a unique minimum on R+ at a point x0 > x̄, and w(x) is strictly
increasing on (x0,∞).

A connection function which satisfies conditions (H1)–(H6) is

w(x) = Ke−k|x| −Me−m|x|,(2.1)

where 0 < M < K and 0 < m < k. An example of this “Mexican hat” type function
is given in Figure 1 for K = 3.5, M = 3, k = 1.8, and m = 1.52. For simplicity, Amari
assumes (see Figure 1) that the firing rate f(u) is the Heaviside step function

f(u) =

{
0, u≤0,

1, u > 0.
(2.2)
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Fig. 1. Mexican hat function (2.1) for parameters given in the text, and the Heaviside firing
rate function (2.2).

The effect of (2.2) is that a neuron fires at its maximum rate when the input exceeds
the threshold value u = 0 and does not fire otherwise. Thus, (2.2) can be viewed as
modeling neural elements whose firing rates “saturate” immediately, since increasing
the input further does not cause the firing rate to increase, provided the input is above
the threshold value.

Under assumptions (H1)–(H5), Amari analyzes the existence and stability of equi-
librium solutions of (1.1) under the assumption that there is no “inhomogeneous” ex-
ternal stimulus s(x, t). That is, he sets ∂u(x, t)/∂t = 0 and s(x, t) = 0. This reduces
(1.1) to the time independent equation

u(x) =

∫ ∞

−∞
w(x− y)f(u(y)) dy + h.(2.3)

Solutions of (2.3) are called equilibrium or stationary solutions. An important obser-
vation is that the neural system is still subject to the constant external stimulus h
applied uniformly to the entire neural field. Note that if h ≤ 0, then the constant
function u = h is a solution of (2.3).

Single-bump solutions: For a given distribution u(x), Amari defines its region
of excitation to be the set

R(u) = {x|u(x) > 0}.

He then defines a localized excitation to be a pattern u(x) whose region of excitation is
a finite interval, i.e., R(u) = (a1, a2). If R(u) is connected, we refer to the pattern as a
“single-bump”, or “1-bump” solution. Furthermore, because (2.3) is homogeneous, it
is easily verified that u(x−a) is a solution whenever u(x) is a solution. Thus, without
loss of generality, we assume that the region of excitation for a single-bump solution
has the form

R(u) = (0, a).

Remark. If (2.3) has a solution whose region of excitation consists of N > 1
disjoint, finite connected intervals, the solution is called an N-bump solution. A major
goal of this paper is to show that multi-bump solutions exist for (2.3) when the
restrictions on w(x) and f(u) are relaxed.
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Fig. 2. W (x), (2.4), for parameters given in the text. We have chosen h to be negative, so that
W∞ < 0 < −h < Wm.

In his analysis of single-bump solutions, Amari makes use of the function

W (x) =

∫ x

0

w(y) dy(2.4)

and the related quantities

Wm = max
x>0

W (x) and W∞ = lim
x→∞W (x).(2.5)

Conditions (H1) and (H5) imply that W (x) is odd, and that W∞ is finite, respectively.
Amari observes that if (2.3) has a single-bump solution u(x) whose region of excitation
is given by R(u) = (0, a), then u(x) satisfies

u(x) =

∫ a

0

w(x− y) dy + h = W (x) −W (x− a) + h.(2.6)

At the value x = a, (2.6) reduces to

W (a) = −h(2.7)

since W (x) is odd and u(0) = u(a) = 0. In turn, Amari claims that if a > 0 and h < 0
satisfy (2.7), then

u(x) = W (x) −W (x− a) + h(2.8)

is a single-bump solution of (2.3) for which R(u) = (0, a).
For a given h ≤ 0, (2.7) may have zero, one or two positive solutions. The

exact number is determined by the relative values of W∞, Wm, and h. In Figure 2 we
construct the W (x) corresponding to the Mexican hat function illustrated in Figure 1.
That is, we use the formula for w(x) given in (2.1) for the specific values K = 3.5,
k = 1.8, M = 3, and m = 1.52. In Figure 2 we see that if W∞ < 0 < −h < Wm, then
there are two values, a1 and a2, which satisfy (2.7). Setting a = a1 and a = a2 in (2.8)
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Fig. 3. Stable (left) and unstable (right) single-bump solutions of (2.3) for the functions w and
f shown in Figure 1 and h = −0.7.

gives the corresponding single-bump solutions of (2.3). In Figure 3 we illustrate these
two solutions for the value h = −0.7. Amari gives arguments that indicate that the
large amplitude solution corresponding to a = a2 (i.e., the first solution in Figure 3)
is stable, while the second, smaller amplitude solution in Figure 3 corresponding to
a = a1 is unstable. Furthermore, as Figure 2 indicates, if h = 0, then (2.7) holds only
at the positive value a = a2 = a∗. Setting a = a∗ and h = 0 in (2.8), one can easily
show that the resulting function is still a single-bump solution of (2.3).

We note that if (2.7) has a solution for some a > 0 and h > 0, then (2.8) implies
that u(x) > 0 for all large x, contradicting the supposition that R(u) = (0, a) is finite.
Thus, single-bump solutions do not exist if h > 0.

Finally, we make a few observations concerning the shape of nonconstant single-
bump solutions (see Figure 3). First, we conclude from hypotheses (H1)–(H4) and
(2.8) that u(x) is symmetric with respect to x = a/2 and that u(x) is increasing
on (0, a/2) and decreasing on (a/2, a). When we consider the additional hypotheses
(H5) and (H6), it follows from standard analysis that the solution u(x) has a unique
minimum on (0,∞), and that u(x) → h from below as x → ∞.

Double-bump solutions: We now consider the possible existence of double-
bump solutions. A solution u(x) of (2.3) is called a double-bump, or 2-bump, solution
if there are values 0 < a < b < c such that


u > 0 on (0, a) ∪ (b, c),

u(0) = u(a) = u(b) = u(c) = 0,

u < 0 otherwise.

(2.9)

Thus, a 2-bump solution is one whose region of excitation consists of two disjoint,
connected intervals. The quantity b − a is the distance between bumps. Our goal is
to prove the existence or nonexistence of double-bump solutions of (2.3) which satisfy
property (2.9). In general, a rigorous resolution of this problem is very difficult.
Before stating our first result, we recall that x0 denotes the unique positive value at
which the coupling function w(x) attains its global minimum and that w(x) is strictly
increasing on (x0,∞) (see Figure 1). In the following result we eliminate a class of
2-bump solutions.
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Theorem 2.1. Under hypotheses (H1)–(H6) there is no value h ∈ R for which
the problem (2.2)–(2.3) has a 2-bump solution such that the distance between bumps
satisfies b− a ≥ x0.

Remark. Theorem 2.1 does not completely eliminate the existence of all double-
bump solutions. For example, our proof does not address the existence of general
2-bump solutions such that the distance b − a satisfies b − a < x0. However, it
can be shown that under the assumptions c − b = a, i.e., equal width bumps, and
W∞ < 0, (2.2)–(2.3) can support (possibly unstable) 2-bump solutions [33] (and
see [18]). We also have no results concerning existence or nonexistence of N -bump
solutions where N ≥ 3. The resolution of these problems remains open.

Because the proof of Theorem 2.1 is somewhat technical, we postpone the details
until section 9. We proceed in the next section to describe the main focus of our
investigation.

3. Statement of main results. The main goal of our investigation is to ex-
tend the analysis in section 2 and determine conditions on the connection and firing
functions so that the integral equation (1.1) has stable N-bump solutions. For this
we choose a specific w(x) which changes sign infinitely often, and we let f(u) be a
continuous extension of the Heaviside function. For simplicity it is assumed that both
s(x, t) = 0 and h = 0. Setting h = 0 will be compensated for by including a threshold
in f . Thus, we study the problem

∂u(x, t)

∂t
= −u(x, t) +

∫ ∞

−∞
w(x− y)f(u(y, t)) dy,(3.1)

where

w(x) = e−b|x|(b sin |x| + cosx)(3.2)

and

f(u) = 2e−r/(u−th)
2

H(u− th).(3.3)

Here th > 0, b > 0, and r > 0 are constants. The parameter b controls the rate at
which the oscillations in w decay with distance. As shown in Figure 4, they decay
more rapidly as b is increased. It is hoped that this oscillatory form of coupling better
represents the connectivity known to exist in the prefrontal cortex, where labeling
studies have shown that coupled groups of neurons form spatially approximately pe-
riodic stripes [16, 26, 27]. Interestingly, it has been proposed that disruption of this
“lattice” of connectivity may be responsible for some of the symptoms of schizophre-
nia [27]. Note that we are not addressing the processes involved in the formation of
these stripes, but are interested in the possible patterns of neural activity that can
exist in the system once these patterns are in place. Also, although w(x) does not
have finite support we know that in the brain, connections cannot exist over arbi-
trarily large distances, so this is obviously an approximation to reality. It would be
an interesting problem to analyze (3.1) with a function w(x) that had more than one
zero crossing for x > 0 yet had finite support. Finally, it is interesting to observe
that the coupling given in (3.2) is differentiable at x = 0, and that w′(0) = 0. This is
proved in [23] and easily follows from the formal definition of derivative. In contrast,
the lateral inhibition coupling given in (2.1) is not differentiable at x = 0. However,
we believe that the only significant feature for analysis of the models is continuity of
w at x = 0.
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The parameter th denotes the threshold that is now included in f(u). The coeffi-
cient of 2 in (3.3) was chosen merely for convenience. We note that f(u) = 0 if and
only if u ≤ th. Furthermore, f(u) is a C∞ function when r > 0, and r controls the rate
of increase of f(u) for u just past threshold. The differentiability of f will be useful
when we derive a differential equation, specific solutions of which are equivalent to
steady-state solutions of (3.1). In Figure 5 we set th = 1.5 and graph f(u) for r = 0
(left) and r = 0.1 (right). When r = 0, f(u) is just twice the Heaviside function.
For r > 0, f(u) is a continuous function which rapidly approaches 2 from below as u
increases past th.

The choice of the functions (3.2) and (3.3) had some arbitrariness to it. The
important features of (3.3) are that f(u) = 0 for u ≤ th and that f(u) is sufficiently
differentiable. The choice of (3.2) was made not only because it has the appropriate
shape (decaying oscillations, with approximately the same distance between successive
maxima), but also because the form of its Fourier transform makes the ordinary
differential equation derived in section 5 particularly simple. Our hope is that the
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qualitative details of the following results do not depend on the exact form of (3.2)
and (3.3).

As before, we define a “stationary solution” to be a time independent solution of
(3.1)–(3.3). Thus, a stationary solution satisfies the equation

u(x) =

∫ ∞

−∞
w(x− y)f(u(y))dy.(3.4)

Before proceeding with our study of N -bump stationary solutions, we need to make
precise the definition of the “region of excitation.” For a solution of (3.4), we define
its region of excitation to be the set

R(u) = {x|u(x) > th}.(3.5)

A solution of (3.4) is an N -bump solution if its region of excitation consists of exactly
N disjoint, finite connected intervals.

In the next section we begin our investigation of N -bump stationary solutions
by considering the limiting value r = 0. As r → 0+ we note that the firing function
tends to the discontinuous step function depicted in Figure 5 (left). In sections 5–7 we
extend our studies to the case r > 0, for which the firing function f(u) is continuous.
As mentioned above, when r > 0 we find that there is an equivalent differential
equation, some of whose solutions are solutions of (3.4). In section 5 we derive this
fourth order equation and state our second theorem which determines a range of
parameter values over which N -bump solutions can possibly exist. The differential
equation will be especially useful to us in sections 6 and 7 where we give an extensive
numerical investigation of the global behavior of entire families of N -bump solutions
as parameters vary. Section 6 consists of a study of families of N -bump solutions for
odd values of N , while section 7 covers even values of N.

4. The limiting problem: r = 0. It is natural to begin our investigation by
considering the case r = 0 where f(u) reduces to a multiple of the Heaviside function.
In order to understand this case, we investigate the existence of N -bump solutions
for a specific choice of the parameters b and th. For convenience we set th = 1.5
and b = 0.25 (see Figures 4 and 5 in the previous section). At these values our
computations suggest that the problem (3.1)–(3.3) has at least four stable N -bump
solutions. These are shown on the left in Figures 6–9, where the initial profile u(x, 0)
is represented by the dashed curve, and the solid curve represents u(x, t) at t = 60.
The formula for u(x, 0) is given by

u(x, 0) = cos

(
Lx

12.5π

)
exp

(
−
(

Lx

12.5π

)2
)
, −12.5π < x < 12.5π.(4.1)

The parameter L > 0 allows us to vary the initial profile u(x, 0). Equation (3.1)
was numerically solved by spatially discretizing it on a uniform grid and then moving
forward in time with an Euler step until convergence. The integral was approximated
by a Reimann sum; note that the convolution can be performed more efficiently with
a fast Fourier transform.

In the left panel in Figures 6 and 7 we set L = 6 and L = 2.5, and find that
u(x, t) approaches stable 1-bump and 2-bump solutions, respectively, as t → ∞. Our
computations imply that these also are solutions of

u(x) =

∫ ∞

−∞
w(x− y)f(u(y))dy.(4.2)
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Fig. 6. Stable (left) and unstable (right) 1-bump solutions: r = 0, th = 1.5, b = 0.25.
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Fig. 7. Stable (left) and unstable (right) 2-bump solutions: r = 0, th = 1.5, b = 0.25.

Our computations also indicate that there exist unstable 1-bump and 2-bump station-
ary solutions. These are shown in the right panel in Figures 6 and 7. It is interesting
to compare these unstable solutions with the unstable single-bump solution of the
original Amari model described in section 2 (see Figure 3). Some of the stable solu-
tions in Figures 6–9, Figures 14–17, Figure 19, Figure 23, Figures 25–28, and Figure 30
were found by numerically integrating (3.1) to a steady state, and the continuation
program Auto97 [12, 13] was used to find the unstable solutions and reconfirm some
of the stable solutions already found. We provide more detail in section 6.

Even though the system (3.1)–(3.3) is defined on an infinite domain, when nu-
merically integrating (3.1) it must be finite. We have chosen a domain size of 25π,
centered at x = 0. While it is unlikely that the boundaries have a significant effect
on the spatially localized solutions shown in Figures 6 and 7, they will have a greater
effect on broader solutions such as those in Figures 8 and 9. When comparing homo-
clinic orbits for the differential equation derived in section 5 (which represent solutions
on an infinite domain) with solutions obtained from the numerical integration of (3.1),
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Fig. 8. Stable (left) and unstable (right) 3-bump solutions: r = 0, th = 1.5, b = 0.25.
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Fig. 9. Stable (left) and unstable (right) 4-bump solutions: r = 0, th = 1.5, b = 0.25.

the difference in domains should be kept in mind.
In the left panel of Figures 8 and 9 we let L = 1.6 and L = 1.5, respectively,

and found that u(x, t) tended to stable 3-bump and 4-bump stationary solutions as
t → ∞. Again, our computations indicate that there exist corresponding unstable
3-bump and 4-bump stationary solutions. These are shown in the right panels of
Figures 8 and 9. Although we do not show the results, our computations indicate
that if L = 1, then u(x, t) tends to a stable 5-bump stationary solution as t → ∞.
For the values r = 0, b = 0.25, and th = 1.5, and a sufficiently large domain, we
conjecture that both stable and unstable N -bump stationary solutions exist for each
N ≥ 1. We leave the resolution of this conjecture as an open problem.

We now develop a necessary mathematical criterion for the existence of 1-bump
solutions of (4.2) when r = 0. In this case the firing function f(u) defined in (3.3)
reduces to twice the Heaviside function, as shown in the left panel of Figure 5. The
solutions computed in Figures 6–9 are symmetric with respect to x = 0. Thus, we
first look for single-bump symmetric solutions. We assume that there is a value a > 0
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Fig. 10. W (x), (4.4): th = 1.5, b = 0.25.

such that u(x) > th on (−a, a) and u(x) < th if |x| > a. Under these assumptions,
(4.2) reduces to

u(x) =

∫ a

−a
2w(x− y) dy.(4.3)

In analogy with section 2, we define

W (x) ≡
∫ x

0

2w(y) dy,(4.4)

and note that W (0) = 0. From (4.3) and (4.4) it follows that

u(x) = W (x + a) −W (x− a).(4.5)

Thus, we conclude that the condition u(a) = th can be written as

W (2a) = th.(4.6)

Figure 10 shows that, when b = 0.25 and th = 1.5, there are exactly two positive
values, a1 and a2, for which (4.6) is satisfied. In Figure 11 we keep th = 1.5 and
decrease b from b = 0.25. The left panel shows that there is a critical b ≈ 0.057 at
which a third value a = a3 appears which satisfies W (2a3) = th. For 0 < b < 0.057
there are at least four solutions of (4.6). For example, we set b = 0.03 and illustrate
this property in the right panel of Figure 11. As b decreases further, the number
ν = ν(b) of solutions of (4.6) (i.e., the number of symmetric 1-bump solutions of (4.2))
continues to increase, with ν(b) → +∞ as b → 0+. In Figure 12 we see that the
number ν(b) of solutions of (4.6) also increases if we keep b fixed at b = 0.25 and
then lower the value of th from th = 1.5. Here we find that there is a critical value
th∗ ≡ W (∞) = 4b/(b2 + 1) such that ν(b) → +∞ as th → th∗. We conjecture that
each solution of (4.6) corresponds to a single-bump solution of the integral equation
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(4.2). In order to prove this conjecture, one would need to check that for all values
of a satisfying (4.6), the function defined in (4.5) satisfied

u(x) > th for − a < x < a and u(x) < th for x < −a or a < x,(4.7)

i.e., that the form of u(x) given in (4.5) is actually a 1-bump solution. It would also be
interesting to develop a criterion for the existence of N -bump solutions when N > 1.
We leave these questions as open problems for future research.

5. The continuous case: r > 0. We now turn to the case r > 0, for which
f(u) is a continuous function. Thus, we study the existence of N -bump solutions of
the equation

u(x) =

∫ ∞

−∞
w(x− y)f(u(y)) dy,(5.1)
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where w(x) is given in (3.2) and f(u) is given by (3.3), with r > 0. When r > 0,
both the mathematical and computational analysis of (5.1) become more tractable.
This is due to the fact that N -bump solutions of an associated differential equation
problem also are solutions of (5.1). To derive the differential equation we make use
of the Fourier transform, defined by

F(g) =

∫ ∞

−∞
e−iαηg(η) dη,(5.2)

where g ∈ L1(R) and α ∈ R. Note that F(g) is a function of α.
We assume that u is a solution of (5.1), that u, u′, u′′, u′′′, and u′′′′ are continuous

on R, and that

(u, u′, u′′, u′′′) → (0, 0, 0, 0)(5.3)

exponentially fast as x → ±∞. Under these assumptions, an application of the Fourier
transform to (5.1) is justified and gives

F(u) = F(w)F(f(u)).(5.4)

An evaluation of F(w) converts (5.4) to

F(u) =
4b(b2 + 1)

α4 + 2α2(b2 − 1) + (b2 + 1)2
F(f(u)).(5.5)

Next, multiply both sides of (5.5) by the denominator of F(w) and use the identities

F(u′′′′) = α4F(u) and F(−u′′) = α2F(u)(5.6)

to obtain

F[u′′′′ − 2(b2 − 1)u′′ + (b2 + 1)2u− 4b(b2 + 1)f(u)] = 0.(5.7)

We claim that (5.7) is satisfied if u is a solution of the problem{
u′′′′ − 2(b2 − 1)u′′ + (b2 + 1)2u = 4b(b2 + 1)f(u),

limx→±∞(u, u′, u′′, u′′′) = (0, 0, 0, 0).
(5.8)

Because r > 0, it follows from the definition of f(u) and standard analysis that if u
is a solution of (5.8), then u, u′, u′′, u′′′, and u′′′′ are continuous on R, hence (5.7)
holds. It then follows that properties (5.4)–(5.7) also hold. From this we conclude
that any solution of (5.8) also is a solution of the integral equation (5.1). This reduces
the problem of finding N -bump solutions of (5.1) to the study of N -bump solutions
of (5.8).

The first goal of our investigation of (5.8) is to extend the results of the previous
section where we considered the special case r = 0. Thus, we keep th = 1.5 and choose
an r > 0. Our numerical experiments for the case r = 0 indicate the existence of even
solutions. Thus, when r > 0 we will restrict our attention to even solutions of (5.8).
These satisfy

u′(0) = u′′′(0) = 0.(5.9)
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In the next two sections we use the program AUTO97 [12, 13] to obtain an understand-
ing of the global behavior of families of N -bump solutions of (5.8) as the parameter
b varies.

Our second goal is to give global estimates on the range of r, th, and b for which
N -bump solutions of (5.8) can exist. We have the following result.

Theorem 5.1. Let r > 0 and th > 0. If there is a value b > 0 for which (5.8)
has a nonconstant solution, then

0 < b ≤ 4 +
√|16 − th2|

th
.(5.10)

Remarks. (i) It would be interesting to extend the results of Theorem 5.1 to the
special case r = 0. When r = 0 the function f(u) is discontinuous and the differential
equation in (5.8) no longer has a continuous right-hand side. However, since f(u)
will now be piecewise constant and the left-hand side of the differential equation is
linear, it may be possible to solve (5.8) over restricted domains, piecing together these
solutions into a continuous solution for all x ∈ (−∞,∞). We leave this as an open
problem.

(ii) The proof of Theorem 5.1 will be postponed until section 10.
(iii) As will be seen in section 6, the upper bound for b in Theorem 5.1 is not

particularly tight, but the main purpose of this theorem is to show that there do not
exist nonconstant solutions for all positive b.

The differential equation in (5.8) is fourth order, and for th > 0 it has a fixed
point at the origin. The eigenvalues of the linearization of (5.8) about the origin are
b± i and −b± i. Thus, in (u, u′, u′′, u′′′) phase space, solutions of (5.8) are homoclinic
orbits leading to the bifocus-type fixed point (u, u′, u′′, u′′′) = (0, 0, 0, 0) [25]. We note
that the differential equation is not generic since the sum of the eigenvalues is zero
for all parameter values. This is a simple consequence of the fact that the differential
equation in (5.8) is conservative and, in fact, Hamiltonian. This is easily verified,
since solutions u(x) satisfy the first integral

u′u′′′ − (u′′)2

2
− (b2 − 1)(u′)2 + (b2 + 1)2Q(u) = 0,(5.11)

where Q(u) is defined by

Q(u) ≡
∫ u

0

(
s−

(
8b

b2 + 1

)
e−r/(s−th)

2

H(s− th)

)
ds.(5.12)

We also note that the differential equation is reversible since it contains only even
order derivatives.

In recent years, higher order reversible, Hamiltonian equations have played an
increasingly important role in modeling pattern formation in physical systems. We
mention, for example, the encyclopedic paper by Cross and Hohenberg [11] which
describes a wide array of higher order scalar equations. In two recent survey papers,
Champneys [5, 6] gives a dynamical systems approach to the analysis of multi-bump,
homoclinic orbits in higher order reversible models arising in physics, fluid mechan-
ics, and optics. We also mention the recent book by Peletier and Troy [30] in which
methods of analysis of pattern formation in higher order equations are developed from
the alternative topological shooting point of view. In the models considered in these
works, families of N -bump homoclinic orbits often arise through a Hamiltonian–Hopf
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bifurcation from a constant solution. Furthermore, in many of these models the terms
involving u are polynomials of degree greater than one. Thus, these terms exhibit su-
perlinear growth as |u| → ∞. However, in the model proposed in this paper, the terms
involving u exhibit only linear growth for large |u|. In addition, the rapidly increasing
sigmoidal function f(u) given in (3.3) is poorly approximated by polynomials. Finally,
as we shall see in the next two sections, our numerical investigation of (5.8) indicates
that families of N -bump solutions do not come into existence through a Hamiltonian–
Hopf bifurcation from a constant solution. Because of these fundamental differences
from other higher order equations, a rigorous proof of existence of N -bump solutions
of problem (5.8) should prove to be a challenging problem.

6. Families of N-bump solutions: N odd. In this section we use AUTO97
[12, 13] to determine the global behavior of families of even 1-bump, 3-bump, and
5-bump solutions of the problem{

u′′′′ − 2(b2 − 1)u′′ + (b2 + 1)2u = 4b(b2 + 1)f(u)

limx→±∞(u, u′, u′′, u′′′) = (0, 0, 0, 0),
(6.1)

where

f(u) = 2e−r/(u−th)
2

H(u− th),(6.2)

and th > 0, b > 0, and r > 0 are constants.
In Figure 13 we set th = 1.5 and r = 0.095, and let b vary, and compute the

bifurcation curve for families of even 1-bump and 3-bump solutions of (6.1)–(6.2).
The horizontal axis is b and the vertical axis gives the global maximum of u for the
corresponding solutions. Figures 14–17 show solutions at specific points P0, . . . , P7

on the curve.
Using MATLAB [28], we numerically integrate (3.1)–(3.3) to a steady state, choos-

ing an initial condition which evolves, as t → ∞, into a 1-bump solution at b = 0.25.
This solution, which we conjecture to be stable, is labeled P4 on the bifurcation di-
agram, and is illustrated in the right panel of Figure 16. We then use AUTO97 to
continue this solution as b varies. Figure 13 shows 1-bump solutions along the lower
branch Γ1

− between P1 and P3. We conjecture that these solutions are unstable. So-
lutions at P2 and P3 are shown in Figure 15. As b decreases along Γ1

−, solutions
cease to be 1-bump solutions at P1 (the right panel in Figure 14). As b decreases
towards zero, solutions acquire arbitrarily many bumps. For example, the point P0

corresponds to the 3-bump solution shown in the left panel of Figure 14. Note that
when b = 0, the only bounded even solution of the ordinary differential equation
(ODE) in (6.1) is u(x) = cosx, and it is to this that solutions tend as b → 0.

Remark. The first solution in Figure 15 is computed at b = 0.25. As r → 0+, our
computations indicate that this solution tends to the 1-bump solution shown in the
right panel of Figure 6 in section 4.

Next, we consider the middle branch Γ1
+ in Figure 13. Along Γ1

+ we find a
second family of 1-bump solutions, some of which we conjecture are stable, between
P5 and P3. As b decreases along Γ1

+, solutions cease to be 1-bump solutions at P5 (the
left panel in Figure 16). The solution in the right panel of Figure 16 was computed
at b = 0.25. As r → 0+, our computations indicate that this solution is stable and
tends to the 1-bump solution shown in the left panel of Figure 6 in section 4.

We let Γ3
− denote the upper branch of the diagram in Figure 13. Along this

branch our computations indicate that solutions are unstable 3-bump solutions. Spe-
cific solutions at P6 and P7 are given in Figure 17. The solution at P6 is computed
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Fig. 14. Solutions on Γ1
− at P0 (left) and P1 (right) in Figure 13.

at b = 0.25, and as r → 0+ our computations indicate that it tends to the solution
shown in the right panel of Figure 8.

We have also investigated the existence of 3-bump and 5-bump solutions. Our
computations show that these solutions lie on yet another branch leading to the
original bifurcation curve in Figure 13. This branch of solutions is labeled Γ3

+ and
Γ5

− in Figure 18. In Figure 19 we give specific solutions on Γ3
+ and Γ5

− at b = 0.25.
Our computations indicate that the solution in the left panel of Figure 19 is stable.
Furthermore, as r → 0+ this solution tends to the solution in the left panel of Figure 8.

We can use data from Figures 13 and 18 to compare the largest values of b
for which nonconstant solutions exist with the upper bound given in Theorem 5.1.
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In Figure 20 we show saddle-node bifurcations of 1-, 3-, and 5-bump solutions in
the b, th plane for r = 0.095. The curve γ1 is the continuation of the point P3 in
Figure 13, and the curves γ3 and γ5 are the corresponding continuations for 3- and
5-bump homoclinic orbits, respectively. The dashed line (A) is the function given by
the equality in (5.10), i.e., the value of b above which Theorem 5.1 states that no
nonconstant solutions of (6.1)–(6.2) can exist. We see that the solutions studied in
this section are compatible with Theorem 5.1, but that the bound given there is not
particularly tight.

We have done one further experiment which shows how quickly the global behavior
of solutions can change. In Figures 13 and 18 we set th = 1.5 and r = 0.095 and
found that two “cusps” form on the left side of the bifurcation diagram. In Figure 21
we have increased r from r = 0.095 to r = 0.1 and repeated our computations. In
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Fig. 20. The continuation of the saddle-node bifurcations marking the largest values of b
for which various orbits exist, compared with the upper bound given in Theorem 5.1. γ1 is the
continuation of the point P3 in Figure 13, while γ3 and γ5 are continuations of the corresponding

points for 3- and 5-bump homoclinic orbits. The curve “A” is the function b = (4+
√

|16− th2|)/th,
given in (5.10).

this case we find that the cusps have now joined and the 1-bumps solutions lie on
an isolated closed curve. The lower branch Γ−

1 consists of small amplitude 1-bump
solutions, which are conjectured to be unstable. The upper branch Γ+

1 consists of large
amplitude 1-bump solutions, some of which are conjectured to be stable. In order to
see the separation of curves more clearly, in Figure 22 we have redrawn the bifurcation
diagram of Figure 21 but now we have replaced umax on the vertical axis with the L2

norm of the solution (the default L2 norm of AUTO97 is used). Figure 22 suggests
that a “snaking” phenomenon occurs in the branches of the bifurcation curve and that
solutions acquire more bumps as the L2 norm increases (e.g., see Figure 23). Similar
snaking phenomena occur in other physical systems modeled by higher order scalar
equations [21, 30, 38], as well as in systems where homoclinic orbits are present [20].

7. Families of N-bump solutions: N even. In this section we determine the
global behavior of families of 2-bump, 4-bump, and 6-bump solutions of the problem{

u′′′′ − 2(b2 − 1)u′′ + (b2 + 1)2u = 4b(b2 + 1)f(u),

limx→±∞(u, u′, u′′, u′′′) = (0, 0, 0, 0),
(7.1)

where

f(u) = 2e−r/(u−th)
2

H(u− th).(7.2)

Here H(·) is the Heaviside function, th > 0 is the threshold, and b > 0, r > 0 are
constants.

In Figure 24 we again keep th = 1.5 and r = 0.095, and let b vary, and compute
the bifurcation curve for families of even 2-bump and 4-bump solutions of (7.1)–(7.2).
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Fig. 21. Bifurcation curve for (6.1)–(6.2) showing 1-, 3-, 5-, and 7-bump solutions. Parameters
are th = 1.5 and r = 0.1. Compare this with Figure 18.
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Fig. 22. The same curves as in Figure 21, but the vertical axis is now the L2 norm of the
solutions.

Figures 25–28 show solutions at specific points P0, . . . , P7 on this curve. To compute
the curve in Figure 24 we first set b = 0.25 and integrate (3.1)–(3.3) with an initial
condition chosen so that the solution converges, as t → ∞, to the 2-bump (apparently
stable) solution indicated by point P4, and illustrated in the right panel of Figure 27.
We then use AUTO97 to continue this solution as b varies. In Figure 24 we find
2-bump solutions, which are conjectured to be unstable, along the lower branch Γ2

−
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Fig. 23. Solutions on the curves Γ+5 (left) and Γ+7 (right) in Figure 22. Parameters are
r = 0.1, th = 1.5, and b = 0.25.
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Fig. 24. Bifurcation curve of 2-bump and 4-bump solutions for (7.1)–(7.2). Solutions at the
points P0, . . . , P7 are shown in Figures 25–28. Parameters are r = 0.095, th = 1.5. Compare with
Figure 13.

between P1 (b = 0.045) and P3 (b = 1.23). Solutions at P2 (b = 0.25) and P3 are shown
in Figure 26. As b decreases along Γ2

−, solutions cease to be 2-bump solutions at P1

(right panel in Figure 25). To the left of P1 our computations imply that solutions
acquire arbitrarily many bumps as b → 0+, as was the case for bumps with N odd.
For example, at b = 0.03 the point P0 corresponds to the 4-bump solution in the left
panel of Figure 25.

Remark. The solution in the left panel of Figure 26 is computed at b = 0.25. As
r → 0+, our computations indicate that this solution is unstable and tends to the
2-bump solution shown in the right panel of Figure 7.
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Fig. 25. Solutions on Γ2
− at P0 (left) and P1 (right) in Figure 24.
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Fig. 26. Solutions on Γ2
− at P2 (left) and P3 (right) in Figure 24.
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Fig. 27. Solutions on Γ2
+ at P5 (left) and P4 (right) in Figure 24.
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Fig. 28. Solutions on Γ4
− at P6 (left) and P7 (right) in Figure 24.
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Fig. 29. Bifurcation curve for 2, 4, and 6-bump solutions of (7.1)–(7.2). This figure is an
extension of Figure 24.

Next, along the middle branch Γ2
+ in Figure 24 we find a family of 2-bump

solutions, some of which are conjectured to be stable, between P5 (b = 0.187) and P3

(b = 1.23). As b decreases along Γ2
+, solutions cease to be 2-bump solutions at P5

(shown in the left panel of Figure 27). The solution in the right panel of Figure 27
corresponds to P4 (b = 0.25) in Figure 24. As r → 0+ this solution tends to the
2-bump solution shown in the left panel of Figure 7.

We let Γ4
− denote the upper branch in Figure 24. Along this branch our com-

putations indicate that solutions are unstable 4-bump solutions. The solutions at P6

(b = 0.25) and P7 (b = 0.99) are shown in Figure 28. We have also found another
family of 4-bump solutions, as well as 6-bump solutions. These solutions lie on a
second branch leading to the original curve in Figure 24. The lower and upper curves
on this branch are given by Γ4

+ and Γ6
− in Figure 29. In Figure 30 we give specific

solutions on Γ4
+ and Γ6

− at b = 0.25. Our computations indicate that the solution
in the left panel of Figure 30 is stable and tends to the solution in the left panel of
Figure 9 as r → 0+.
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Fig. 30. Solutions on Γ4
+ (left) and Γ6

− (right) at b = 0.25 in Figure 29.
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Fig. 31. The same curves as in Figure 29, but the vertical axis is now the L2 norm of the
solutions.

As in the previous section, we redraw in Figure 31 the bifurcation curve shown
in Figure 29 but using the L2 norm for the vertical axis. This allows us to see the
separation of branches and, once again, a snaking diagram results.

While we have only looked at multi-bump solutions for which successive maxima
of u monotonically increase and then decrease as a function of x, there may also exist
“(n + m)-bumps” for integer n,m ≥ 1. These would have the approximate form of
an n-bump “glued” to an m-bump, with sufficient low-amplitude oscillations between
them. The linearization of (5.8) about the origin has the form necessary for these
“composite” orbits to exist, and to confirm this conjecture one would need to check
that the N -bump orbits studied above were formed by transverse intersections of the
stable and unstable manifolds of the origin (a generic property). See [7] and references
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Fig. 32. Coupling function w(x, y), (8.2), for b = 0.3, centered at the center of the domain.

therein for more details.

8. Extension to two space dimensions. In this section we extend our model
to include two spatial dimensions. The system we study, an analogy of (3.1)–(3.3), is
the following:

∂u(x, y, t)

∂t
= −u(x, y, t) +

∫∫
Ω

w(x− q, y − s)f(u(q, s, t)) dq ds,(8.1)

where

w(x, y) = e−b
√
x2+y2

(
b sin

(√
x2 + y2

)
+ cos

(√
x2 + y2

))
,(8.2)

and

f(u) = 2e−r/(u−th)
2

H(u− th).(8.3)

The coupling function (8.2) is the same as (3.2), with distance in one dimension now
replaced by distance in two dimensions. An example is shown in Figure 32. The rate
function, (8.3), is identical to (3.3).

A typical stable solution of (8.1)–(8.3) is shown in Figure 33 for the parameters
r = 0.1, th = 1.5, and b = 0.45. The initial condition was u(x, y, 0) = 5 for 16 <
x < 25.6 and 8 < y < 24, and u(x, y, 0) = 0 otherwise. The domain, Ω, is a square of
side-length 40, discretized by a regular 50× 50 grid, with open boundaries; i.e., there
are no constraints on u or any of its derivatives at the boundaries, and the integral
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Fig. 33. A “6-bump” stable solution of (8.1)–(8.3). Parameters are b = 0.45, r = 0.1, th = 1.5.

in (8.1) is taken over only Ω. Note that while the coupling function (8.2) is radially
symmetric, the domain is not, and so we do not expect the resulting solutions to
have radial symmetry. The equation (8.1) was integrated using an Euler step until
the solution converged to a steady state, and at each time step the double integral
was approximated by a Riemann integral using the values of u on the grid mentioned
above. Note that the convolution can be performed more efficiently by using the
two-dimensional fast Fourier transform.

Figure 33 shows the resultant 6-bump solution, and the distance between local
maxima is approximately the same as the distance between successive maxima of the
coupling function (2π). The regularity is a reflection of the initial condition; more
irregular initial conditions lead to an irregular cluster of bumps with similar spacing
between local maxima (not shown). That is, keeping r = 0.1, th = 1.5, and b = 0.45,
it is possible to find other stable clusters with small numbers of bumps, with the exact
number and position being determined by the initial condition. This is analogous with
the one-dimensional model (3.1)–(3.3) where stable multi-bump solutions coexist for
b = 0.25 (see Figure 19 (left), Figure 23, Figure 27 (right), and Figure 30 (left)). In
the two-dimensional model, as b is decreased from b = 0.45 it seems more difficult to
find localized clusters of multi-bump solutions. Instead, for smaller b, either an initial
set of u values will die down to u = 0 if b is too small or else the entire domain will
be filled with bumps. An example with b = 0.3 and the other parameters the same
(i.e., r = 0.1 and th = 1.5) is shown in Figure 34. This “progressive recruitment”
phenomenon is the same as that seen by Gutkin, Ermentrout, and O’Sullivan in a one-
dimensional model [16]. Similar patterns were also found by Usher, Stemmler, and
Olami [34] in a neural model with short-range excitation and long-range inhibition.

For larger b, stable attractors also form, but they do not seem to retain the
structure of a cluster of bumps observed in Figure 33. However, there still appears
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Fig. 34. A stable solution of (8.1)–(8.3). Parameters are b = 0.3, r = 0.1, th = 1.5. The initial
u was spatially localized.

to be a characteristic length similar to the interbump spacing seen for lower b. In
Figure 35, keeping r = 0.1 and th = 1.5, we increase b to b = 0.7 and illustrate an
example of this type of stable attractor. For still larger b values, the whole domain
becomes active and there are no structures with characteristic length 2π. This is
probably due to the lack of a significant inhibitory component to w when b is large—
see Figure 4, right panel, for an illustration of this effect in the one-dimensional setting.

In this section, we have presented only numerical results. We leave the possible
derivation of a differential equation problem whose solutions describe steady states
of (8.1)–(8.3), and any further analysis, as open problems. Although few mathematical
results exist for two-dimensional neural models, some interesting results have been
obtained relating to the study of circular stationary solutions [2, 31, 36].

9. Proof of Theorem 2.1. In this section we prove Theorem 2.1 concerning
the nonexistence of a class of 2-bump solutions of problem (2.2)–(2.3). Recall from
section 2 that u(x) is a 2-bump solution of (2.2)–(2.3) if there are values 0 < a < b < c
such that 


u > 0 on (0, a) ∪ (b, c),

u(0) = u(a) = u(b) = u(c) = 0,

u < 0 otherwise.

(9.1)

We define the “distance between bumps” to be b − a. Also, we recall from section 2
that under hypotheses (H1)–(H6), the function w(x) is symmetric with respect to
x = 0, that w(x) attains a unique local minimum on R+ at a value x0 > 0, and that
w(x) is increasing on (x0,∞) (see Figure 1). We will use these properties in our proof
of the following result (a restatement of Theorem 2.1).
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Fig. 35. A stable solution of (8.1)–(8.3). Parameters are b = 0.7, r = 0.1, th = 1.5. The initial
condition was random but spatially localized.

Theorem 9.1. Under hypotheses (H1)–(H6) there is no value h ∈ R for which
the problem (2.2)–(2.3) has a 2-bump solution satisfying (2.9) such that the distance
between bumps satisfies b− a ≥ x0.

Proof. We assume that there is an h ∈ R for which (2.2)–(2.3) has a solution
satisfying (2.9), with b − a ≥ x0. Using (H1)–(H6), we will obtain a contradiction of
this assumption. From (2.2), (2.3) and (2.9), it follows that u(x) can be written in
the form

u(x) =

∫ a

0

w(x− y) dy +

∫ c

b

w(x− y) dy + h ∀x ∈ R.(9.2)

Next, recall from (2.4) that W (x) is defined by

W (x) =

∫ x

0

w(y) dy ∀x ∈ R.(9.3)

Hypotheses (H1)–(H6) imply that W (x) is odd. That is,

W (x) = −W (−x) ∀x ∈ R.(9.4)

Using (9.3), we write (9.2) as

u(x) = W (x) −W (x− a) + W (x− b) −W (x− c) + h.(9.5)

Because u(b) = u(c) = W (0) = 0, it follows from (9.5) that

u(c) = W (c) −W (c− a) + W (c− b) + h = 0,(9.6)
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and

u(b) = W (b) −W (b− a) −W (b− c) + h = 0.(9.7)

We note that W (c− b) = −W (b− c) since W (x) is odd. Thus, a subtraction of (9.7)
from (9.6) leads to

W (c) −W (b) = W (c− a) −W (b− a).(9.8)

Recalling the definition of W (x) from (9.3), we write (9.8) as∫ c

b

w(y)dy =

∫ c−a

b−a
w(y)dy.(9.9)

Also, our hypothesis that b− a ≥ x0 implies that

x0 ≤ b− a < c− a.(9.10)

We need to consider two cases to complete the proof. The first case is

x0 ≤ b− a < c− a ≤ b < c.(9.11)

From (H6) and (9.10) we conclude that w(x) is increasing on (b− a, c). Thus, w(x) >
w(b) on (b, c), and w(x) < w(c− a) on (b− a, c− a). This implies that∫ c

b

w(y)dy > w(b)(c− b),(9.12)

and ∫ c−a

b−a
w(y)dy < w(c− a)(c− b).(9.13)

Combining (9.9), (9.11), (9.12), and (9.13), we conclude that

w(b) < w(c− a).(9.14)

However, since (H6) implies that w(x) is nondecreasing on [c − a, b], it follows that
w(b) ≥ w(c− a), contradicting (9.14). The second case we need to consider is

x0 ≤ b− a < b < c− a < c.(9.15)

Then (9.9) can be written as∫ c−a

b

w(y)dy +

∫ c

c−a
w(y)dy =

∫ b

b−a
w(y)dy +

∫ c−a

b

w(y)dy.

This reduces to ∫ c

c−a
w(y)dy =

∫ b

b−a
w(y)dy.(9.16)

Again, we use the fact that w(x) is increasing on (x0, c), together with (9.15), and
conclude that ∫ c

c−a
w(y)dy > w(c− a)a(9.17)

and ∫ b

b−a
w(y)dy < w(b)a.(9.18)

From (9.16)–(9.18) it follows that w(b) > w(c − a). However, this is a contradiction
since w(x) increases on (b, c− a). The proof of Theorem 2.1 is now complete.
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10. Proof of Theorem 5.1. In this section we prove Theorem 5.1 and deter-
mine a global parameter regime over which nonconstant solutions of the problem{

u′′′′ − 2(b2 − 1)u′′ + (b2 + 1)2u = 4b(b2 + 1)f(u),

limx→±∞(u, u′, u′′, u′′′) = (0, 0, 0, 0)
(10.1)

might possibly exist. We recall that f(u) is defined by

f(u) = 2e−r/(u−th)
2

H(u− th),(10.2)

where H(u− th) is the Heaviside function (see Figure 5). For convenience we restate
our result (Theorem 5.1) below.

Theorem 10.1. Let r > 0 and th > 0. If there is a value b > 0 for which
(10.1)–(10.2) has a nonconstant solution, then

0 < b ≤ 4 +
√|16 − th2|

th
.

Proof. Suppose that u(x) is a nonconstant solution of (10.1)–(10.2) for some

r > 0, th > 0, and b >
4 +

√|16 − th2|
th

.(10.3)

We will obtain a contradiction of this assumption. First, we observe that

4 +
√|16 − th2|

th
≥ 1 ∀ th > 0.(10.4)

It then follows from (10.3) and (10.4) that b > 1. Next, from (10.1)–(10.2) it is easily
verified that u(x) must satisfy the first integral

u′u′′′ − (u′′)2

2
− (b2 − 1)(u′)2 + (b2 + 1)2Q(u) = 0,(10.5)

where Q(u) is defined by

Q(u) ≡
∫ u

0

(
s−

(
8b

b2 + 1

)
e−r/(s−th)

2

H(s− th)

)
ds.(10.6)

Over the range given in (10.3), we claim that the integrand in (10.6) satisfies

u−
(

8b

b2 + 1

)
e−r/(u−th)

2

H(u− th) > 0 ∀u > 0.(10.7)

First, suppose that 0 < u ≤ th. Then f(u) = 0 by (10.2), and therefore the left side
of (10.7) must be positive. If u > th, then

u−
(

8b

b2 + 1

)
e−r/(u−th)

2

H(u− th) > th− 8b

b2 + 1
> 0,

since we assume that th > 0, r > 0, and b > (4 +
√|16 − th2|)/th. Thus (10.7) is

proved. From (10.6) and (10.7) we conclude that Q(0) = 0,

Q(u) > 0 if |u| > 0, lim
|u|→∞

Q(u) = ∞,(10.8)
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Fig. 36. Q(u), (10.6), for parameter values r = 0.005, th = 1.5, b = 5.2.

and

dQ

du
< 0 ∀u < 0,

dQ

du
> 0 ∀u > 0.(10.9)

For example, the parameters r = 0.005, th = 1.5, and b = 5.2 satisfy (10.3), and in
Figure 36 we graph the corresponding Q(u).

Next, because (10.1)–(10.2) is autonomous, we may assume that the solution u(x)
attains its global maximum at x = 0. We claim that u(0) > th. If, on the contrary,
u(0) ≤ th, then u(x) ≤ th for all x ∈ R, and it follows from (10.2) that f(u) = 0
for all x ∈ R. This reduces the integral equation (5.1) to u(x) = 0, and we arrive at
a contradiction since we assume that u(x) is a nonconstant solution of (10.1)–(10.2),
and solutions of (10.1)–(10.2) also are solutions of (5.1). Thus, at x = 0 it must be
the case that

u(0) > th, u′(0) = 0, and u′′(0) ≤ 0.(10.10)

Substituting (10.10) into (10.5), and using (10.8), we conclude that

u′′(0) = −(b2 + 1)
√

2Q(u(0)) < 0.(10.11)

Without loss of generality we may assume that u′′′(0) ≤ 0. Otherwise, if u′′′(0) > 0,
then it would suffice to consider the function v(x) = u(−x) which also is a solution of
(10.1)–(10.2) and satisfies the initial conditions

v(0) > th, v′(0) = 0, v′′(0) < 0, and v′′′(0) < 0.

Thus, it may be assumed that the solution u(x) satisfies

u(0) > th, u′(0) = 0, u′′(0) < 0, and u′′′(0) ≤ 0.(10.12)

Our goal in the remainder of the proof is to show that there is an x̄ > 0 such
that u(x̄) > u(0). This will contradict the fact that u(x) attains its global maximum
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at x = 0. Thus, we need to follow the solution as x increases from x = 0. Throughout
we will make extensive use of the first integral (10.5) and the associated functional
Q(u(x)). In Figures 37 and 38 we follow u(x) and Q(u(x)), respectively, and keep
track of the points where the solution u(x) attains its maxima and minima.

From (10.1)–(10.4), (10.7), and (10.12) it follows that u′′′′(0) < 0. This and (10.12)
imply that u′′′(x) < 0 on an interval (0, ε). We set

σ = sup{x̂ > 0|u′′′(x) < 0 ∀x ∈ (0, x̂)}.(10.13)

If σ = ∞, then u′′(x) < u′′(0) < 0 for all x > 0, hence u′′(∞) < 0, contradicting
the condition u′′(∞) = 0 given in (10.1). Thus, it must be the case that σ < ∞,
u′′′(σ) = 0, and

u(x) < u(0), u′(x) < 0, and u′′(x) < u′′(0) < 0 ∀x ∈ (0, σ].(10.14)

Next, it follows from (10.8) and (10.9) that there is a unique, negative value u1 < 0
(see Figure 38) such that

Q(u) < Q(u(0)) ∀u ∈ (u1, u(0)), and Q(u1) = Q(u(0)).(10.15)

We need to show that u(σ) < u1. If u(σ) ≥ u1, then from (10.11), (10.14), and (10.15)
it follows that (u′′)2 increases on (0, σ) so that

(u(x)′′)2

2
> (b2 + 1)2Q(u(x)) ∀x ∈ (0, σ].(10.16)

Setting x = σ in (10.5), and using (10.3), (10.4), (10.14), and (10.16), we obtain

−(u′(σ))2(b2 − 1) > 0,

a contradiction since u′(σ) < 0 and b > 1. Therefore it must be the case that u(σ) <
u1. Thus, there is an x1 ∈ (0, σ) such that (see Figure 37)

u′(x) < 0, u′′(x) < 0, u′′′(x) < 0 ∀x ∈ (0, x1], and u(x1) = u1.(10.17)

Since u(∞) = 0, it follows from (10.17) that there is an x2 > x1 such that

u′(x) < 0 ∀x ∈ [x1, x2), and u′(x2) = 0.(10.18)

We conclude from (10.5) and (10.18) that

u(x2) < u1 < 0, u′(x2) = 0, and u′′(x2) = (b2 + 1)
√

2Q(u(x2)) > 0.(10.19)

We need to determine the sign of u′′′(x2). Because u′′(x1) < 0 and u′′(x2) > 0, there
is an x̃ ∈ (x1, x2) where u′′(x̃) = 0 and u′′′(x̃) ≥ 0. This, (10.3), (10.4), and (10.18)
give

u′′′(x̃) − 2(b2 − 1)u′(x̃) > 0.(10.20)

Next, because u(x) < u1 < 0 on [x̃, x2], it follows from (10.1)–(10.2) that

(u′′′ − 2(b2 − 1)u′)′ = −(b2 + 1)2u > 0 ∀x ∈ [x̃, x2].(10.21)

From (10.19), (10.20), and (10.21) we conclude that

u′′′(x2) > 0.(10.22)
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Fig. 37. A sketch of u(x) for (10.1)–(10.2): u(x1) = u1, u(x2) = u2, and u(x3) > ū.
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Fig. 38. Q(u), (10.6): u0 = u(0), u1 = u(x1) = u0, u2 = u(x2), u3 = u(x3).

In Figure 38 we set u1 = u(x1) and u2 = u(x2). As u(x) decreases from u1 to u2,
properties (10.8) and (10.9) imply that Q(u) increases, and therefore

Q(u(x2)) > Q(u1) = Q(u(0)).(10.23)

In the final step of the proof we follow u(x) as x increases from x = x2, and we show
that there is an x3 > x2 such that u(x3) = u3 > u(0) (see Figures 37 and 38). We first
observe from (10.8)–(10.9) that there is a unique ū > 0 such that Q(ū) = Q(u(x2)).
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It follows from (10.23), and the fact that Q(u) is increasing for u > 0, that

ū > u(0).(10.24)

Next, define

x3 = sup{x̂ > x2|u′′′(x) > 0 ∀x ∈ (x2, x̂)}.(10.25)

Because of (10.24), if we show that u(x3) > ū, we will obtain a contradiction of the
fact that u(x) has its global maximum at x = 0. From (10.19), (10.22), and (10.25) it
follows that

u′(x) > 0, u′′(x) > u′′(x2) = (b2 + 1)
√

2Q(u(x2)) > 0 ∀x ∈ (x2, x3].(10.26)

If x3 = ∞, then (10.26) implies that u′′(∞) > 0, contradicting the condition u′′(∞) =
0 given in (10.1). Thus, x3 < ∞ and it follows from (10.25) that

u′′′(x3) = 0.(10.27)

Finally, suppose that

u(x2) < u(x) ≤ ū ∀x ∈ (x2, x3).

Then (10.8) and (10.9) imply that

0 ≤ Q(u(x)) ≤ Q(u(x2)) ∀x ∈ (x2, x3).(10.28)

Combining (10.26), (10.27), and (10.28), and setting x = x3 in (10.5), we obtain

−(b2 − 1)(u′(x3))2 =
(u′′(x3))2

2
− (b2 + 1)2Q(u(x3)) > 0,

a contradiction since u′(x3) > 0 and b > 1. Thus, it must be the case that u(x3) >
ū > u(0) as claimed. However, as described earlier, this contradicts the fact that u(x)
has its global maximum at x = 0. This completes the proof.

11. Summary. In this paper we have studied steady states of a partial integro-
differential equation that has been used to model working memory in a neuronal
network. We have extended previous results for “Mexican hat” coupling to the case
where the connectivity function changes sign infinitely often, in the hope of more
realistically modeling the connectivity known to exist in the prefrontal cortex. Our
main results include (a) a proof of the nonexistence of a type of “multiple bump”
solution when the connectivity is of Mexican hat type, (b) an upper bound on the
decay rate of an oscillatory connectivity function, above which only trivial solutions
exist, and (c) a numerical investigation of the possible solutions and the bifurcations
they undergo for a particular oscillatory connectivity function.

For the one-dimensional model, many of the numerical results were obtained as
a result of noting that stationary solutions of the partial integro-differential equation
(5.1) are equivalent to homoclinic orbits in the related fourth order ordinary differ-
ential equation problem (5.8). This property allowed us to use the software package
AUTO97 [12, 13], with its facilities for continuing homoclinic orbits, to follow both
stable and unstable solutions as parameters were varied. We are presently pursuing a
rigorous proof of existence of the families of N -bump solutions found here. Already,
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it has been proved in [23] that any bounded solution of the ordinary differential equa-
tion in (5.8) also is a solution of the integral equation (5.1). Thus, in addition to
homoclinic orbits, we are also investigating the existence of other families of solu-
tions, including periodic, aperiodic, and chaotic solutions. While many of our results
were derived by exploiting the specific form of an oscillatory connectivity function,
we believe that the qualitative aspects of our results will hold for any qualitatively
similar function.

For the two-dimensional extension of our model we used a MATLAB [28] code
to generate stable multi-bump solutions. For appropriate parameter values we found
that N -bump solutions exist and that they retain many of the characteristic qualities
of solutions of the one-dimensional model. However, we also found stable solutions
which were not predicted by our one-dimensional studies. In future research we will
continue our investigation of the different types of stable patterns of solutions of the
two-dimensional problem.

Acknowledgment. The authors thank Edward Krisner and the referees for mak-
ing several helpful suggestions.
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Abstract. Many practically relevant polymers undergoing desorption change from the rubbery
(saturated) to the glassy (nearly dry) state. The dynamics of such systems cannot be described by
the simple Fickian diffusion equation due to viscoelastic effects. The mathematical model solved
numerically is a set of two coupled PDEs for concentration and stress. Asymptotic solutions are
presented for a moving boundary-value problem for the two states in the short-time limit. The
solutions exhibit desorption overshoot, where the penetrant concentration in the interior is less than
that on the surface. In addition, it is shown that if the underlying time scale of the equations is
ignored when postulating boundary conditions, nonphysical solutions can result.

Key words. asymptotic expansions, desorption, moving boundary-value problems, perturbation
methods, polymer-penetrant systems, finite-element method
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1. Introduction. Over the past few decades, much experimental and theoretical
work has been devoted to the study of polymer-penetrant systems. In particular, the
desorption of penetrants from saturated polymer matrices has been examined due to
its wide industrial applicability. One unusual feature of such systems is the change
in the polymer from a rubbery state when it is nearly saturated to a glassy state
when it is nearly dry. As part of the drying process, a glassy skin often develops at
the exposed surface of a polymer whose properties are significantly different from the
rest of the polymer-penetrant solution [1], [2], [3], [4], [5]. This phenomenon, called
skinning [6], [7], [8], has many industrial applications [8], [9], [10], [11], [12], [13], [14],
[15], [16].

There are many different theories for why the skinning process occurs, including
phase separation [17], crystallization [18], and diffusion-induced convection [19]. Nev-
ertheless, for the systems we wish to study, most scientists agree that one important
factor is a viscoelastic stress in the polymer entanglement network, which can be
as important to the transport process as the well-understood Fickian dynamics [20],
[21], [22]. The size of this stress is related to the relaxation time of the viscoelastic
polymer matrix. In the glassy skin, the relaxation time is finite, so the stress is an
important effect, but in the rubbery region the relaxation time is nearly zero [15], [20],
[23]. Nevertheless, we will show that in order for the mathematical model to yield
physically meaningful results, at some level the short relaxation time in the rubber
must also be taken into account.

Numerical and analytical solutions are derived here for model equations for the
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system described above. Our equations are the same, to leading order, as those for
general polymer-penetrant systems derived in detail by Edwards and Cohen [24], [25],
Edwards [26], Cairncross and Durning [8], Durning [27], and Durning and Tabor
[28]. These models, which are presented in section 2, consist of a set of coupled
PDEs for the concentration and stress. The parameters in the numerical simulation
vary smoothly with concentration, so the glass-rubber interface x = s(t) between the
two states is simply an isocline of concentration. In contrast, the parameters in the
analytical model are assumed to be piecewise constant in the rubber and glass. Thus,
a moving boundary-value problem similar to a Stefan problem results. In each of the
regions a different partial differential operator holds, and continuity conditions at the
glass-rubber interface dictate its motion.

In section 3 we construct a perturbation solution to the equations. The solutions
are expressed as integrals of Green’s functions convolved with fictitious boundary
conditions which provide the new unknowns for which we must solve. In section 4 we
construct short-time asymptotic solutions of the concentration and stress fields. The
form of the short-time solutions necessitates a corner layer, where the full system of
equations holds. The solutions exhibit desorption overshoot, where the minimum in
the concentration occurs in the interior of the domain.

In addition, if we use a standard high-mass-transfer-coefficient approximation
common in diffusion and heat conduction problems, it is possible for the concentration
to become negative. This result is confirmed numerically in section 5. In section 6 it
is explained that the unphysical negative concentration appears because the limit of
high mass transfer coefficient imposes a jump in the exterior concentration faster than
the underlying time scales of the operator. Physically, the polymer is self-regulating
for desorption as well as sorption [24]. A new boundary condition is postulated which
incorporates the time scale in the stress evolution equation, and it is shown that such
a boundary condition does not lead to negative concentrations.

2. Preliminaries.

2.1. Governing equations. We examine the following dimensionless system of
equations for anomalous desorption in a polymer of finite dimensionless length L:

∂C

∂t
=

∂

∂x

(
D(C)

∂C

∂x
+
∂σ

∂x

)
, 0 ≤ x ≤ L,(2.1a)

∂σ

∂t
+
β(C)

βg
σ = γεC +

∂C

∂t
,(2.1b)

where C is the dimensionless concentration of penetrant in the polymer, γ is a dimen-
sionless constant, and L is the length of the slab scaled with the length scale of stress
evolution [29].

The system is described in general in [29] and specialized in [26], but some discus-
sion is required. The flux in (2.1a) can be derived by postulating that the chemical
potential is a function of both C and σ [24], which in one dimension corresponds to
the stress in the polymer network [24], [30], [31], [32]. In (2.1b), the coefficient of
∂σ/∂x has been chosen constant, in contrast to the models of Durning and colleagues
[8], [28], [33].

D(C) is a normalized diffusion coefficient measuring the ratio of the Fickian to
non-Fickian effects in the flux. Also β(C) is the inverse of the relaxation time, which
measures the speed at which changes in one part of the polymer are communicated
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to other parts of the polymer. Both increase dramatically as the polymer goes from
the glassy to rubbery state [15], [20], [23], [34], [35], [36]. In contrast, the differ-
ences in these parameters within states are qualitatively negligible. Therefore, for our
numerical work we assume the following forms for these functions:

D(C) = Dg − Dg −Dr

2
[1 + tanh(α(C − C∗))] ,

α � 1,(2.2)

β(C) = βg − βg − βr

2
[1 + tanh(α(C − C∗))] ,

where C∗ is the value of the concentration at which the glass-rubber transition occurs.
Other physically appropriate forms for β and D are presented in [4], [8], [28], [33],
[34], [35], [36], [37].

We examine a polymer that is initially saturated (and hence rubbery) and un-
stressed, which leads to the initial conditions

Cr(x, 0) = 1, σr(x, 0) = 0.(2.3)

The end x = L is insulated, while at the exposed surface x = 0, the flux is proportional
to the difference between the surface concentration and the environment concentration
Cext: (

D(C)
∂C

∂x
+
∂σ

∂x

)
(L, t) = 0,(2.4a)

(
D(C)

∂C

∂x
+
∂σ

∂x

)
(0, t) = k[C(0, t) − Cext],(2.4b)

where k is a constant measuring the mass transfer coefficient of the exposed interface.

2.2. Two-state formulation. We solve (2.1)–(2.4) numerically in section 5, but
in order to obtain direct dependence of our solution on the physical parameters in the
system, we will solve the problem analytically, which necessitates some simplifications.

As α → ∞, the parameters in (2.2) become piecewise constant:

D(C) =

{
D0ε, 0 ≤ C ≤ C∗,
Dr, C∗ ≤ C ≤ 1,

β(C) =

{
βg, 0 ≤ C ≤ C∗,
βr, C∗ < C ≤ 1.

(2.5)

The rubber is closest to the Fickian regime because the relaxation time is almost
instantaneous; thus βg/βr = ε � 1. It has been shown experimentally [16] that the
diffusion coefficient in the glassy region is quite small, so we let Dg = D0ε, where D0

is an O(1) constant.
With the functional forms in (2.5), it is natural to model the physical system as

a two-state problem with a moving boundary x = s(t) representing the glass-rubber
interface. Thus, making our substitutions into (2.1), we obtain the following in the
glassy region:

∂Cg

∂t
= D0ε

∂2Cg

∂x2
+
∂2σg

∂x2
,(2.6a)

∂σg

∂t
+ σg = γεCg +

∂Cg

∂t
,(2.6b)
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while in the rubbery region we have

∂Cr

∂t
= Dr

∂2Cr

∂x2
+
∂2σr

∂x2
,(2.7a)

∂σr

∂t
+
σr

ε
= γεCr +

∂Cr

∂t
.(2.7b)

With such a formulation, we must have conditions that hold at x = s(t). We impose
continuity of concentration at the glass-rubber transition value C∗:

Cr(s(t), t) = Cg(s(t), t) = C∗.(2.8)

In addition, we require continuity of stress and flux:

σr(s(t), t) = σg(s(t), t),(2.9a) (
Dr

∂Cr

∂x
+
∂σr

∂x

)
(s(t), t) =

(
D0ε

∂Cg

∂x
+
∂σg

∂x

)
(s(t), t).(2.9b)

3. Perturbation solution. We assume perturbation expansions for our depen-
dent variables in ε, the small ratio of the relaxation times:

C ∼ C0 + O(ε), σ ∼ σ0 + O(ε),(3.1)

where the same expansions hold for the rubber and glass.

3.1. The glassy region. Substituting (3.1) into (2.6) yields

∂Cg
0

∂t
=

∂2σg
0

∂x2
,(3.2a)

∂σg
0

∂t
+ σg

0 =
∂Cg

0

∂t
.(3.2b)

It is simpler to solve for the stress in the glassy region first; hence we combine (3.2)
to obtain

∂σg
0

∂t
+ σg

0 =
∂2σg

0

∂x2
, 0 < x < s(t).(3.3)

In many industrial applications, fast drying is desirable in order to reduce pro-
duction time and cost. Thus, we consider the case where k → ∞, which corresponds
to high mass transfer coefficient or large driving force. (In certain scaling limits, this
can also correspond to thick films.) Making this substitution in (2.4b), we obtain

Cg
0 (0, t) = Cext < C∗,(3.4)

which locates the glass-rubber interface at the origin for t = 0. This sort of Dirichlet
condition is routinely used in diffusion or heat conduction problems, instead of the
more physically realistic flux or activity balance conditions. Nevertheless, we shall
see that in this context, imposing such a simple boundary condition can produce
unphysical results.
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Equation (3.4) implies that the concentration jumps discontinuously at the origin
from 1 to Cext, so we have the following:

dC

dt
(0, t) = (Cext − 1)δ(t),(3.5)

and upon substituting this result into (3.2b) evaluated at x = 0, we obtain

σg
0(0, t) = (Cext − 1)e−t.(3.6)

Note the exponential decay of surface stress from its initial value, reflecting the mem-
ory effects in the glassy polymer.

In order to solve the problem, we use an integral method first introduced by Boley
[38] and used extensively in this context by Edwards and Cohen [24] and Edwards
[26], [29], [39], [40]. Essentially, we wish to write the solution of (3.3) and (3.6) as a
Green’s function convolved with a fictitious initial condition σg

0(x, 0) = f i(x). This
condition is fictitious because the polymer is not glassy at t = 0. Thus we extend
our domain beyond the region 0 < x < s(t). By writing our solution in this form, we
reduce the problem from a PDE to an integrodifferential equation.

Since all expressions for x > s(t) are fictitious anyway, we embed the problem in
the semi-infinite domain x > 0. The solution then is found to be

σg
0(x, t) = (Cext − 1)e−t erfc

(
x

2
√
t

)

+
e−t

2
√
πt

∫ ∞

0

f i(z)

{
exp

[
− (x− z)2

4t

]
− exp

[
− (x + z)2

4t

]}
dz.(3.7)

3.2. The rubbery region. In the rubbery region we substitute (3.1) into (2.7b)
to obtain

σr
0(x, t) = 0.(3.8)

Since the γ term does not contribute to the dynamics in either the glassy or the
rubbery regions, our model (2.1) contains exactly those dynamical processes as in the
models of Cairncross and Durning [8], Durning [27], and Durning and Tabor [28].

Substituting (3.1) and (3.8) into (2.7a) yields

∂Cr
0

∂t
= Dr

∂2Cr
0

∂x2
, s(t) < x < L, 0 < t < tL,(3.9a)

where s(tL) = L. To use Boley’s method to rewrite our solution, we note that upon
substituting (3.1) and (3.8) into (2.4a), we obtain

∂Cr
0

∂x
(L, t) = 0,(3.9b)

and hence x = L is a line of symmetry. Thus by the method of images

Cr
0(x, t) = 1 − [T r(x, t) + T r(2L− x, t)](3.10a)

is a solution to (3.9) and (2.3) if T r(x, t) is a solution of the heat equation. Since the
rubber occupies the region s(t) < x < L, the fictitious condition is T r(0, t) = fb(t),
so T r is given by

T r(x, t) =
x

2
√
Drπ

∫ t

0

fb(z)

(t− z)3/2
exp

[
− x2

4Dr(t− z)

]
dz.(3.10b)
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Substituting (3.1) and (3.8) into (2.8) and (2.9), we obtain

Cr
0(s(t), t) = Cg

0 (s(t), t) = C∗,(3.11a)

σg
0(s(t), t) = 0,(3.11b)

Dr
∂Cr

0

∂x
(s(t), t) =

∂σg
0

∂x
(s(t), t).(3.12)

Upon substitution of (3.7) and (3.10) into (3.11) and (3.12), we will obtain three
integrodifferential equations for the unknowns f i, fb, and s.

4. Short-time solutions.

4.1. The outer solution. We examine the small-time asymptotics of our ana-
lytic solution as in Edwards [26] by letting

f i(x) ∼ f i
0, fb(t) ∼ fb

0 , s(t) = 2s0t
n, t → 0, x → 0.(4.1)

We substitute (4.1) into (3.10) and (3.7) to obtain expressions for our unknowns for
L = O(1). Substituting these expressions into (3.11) and (3.12), we obtain

C∗ ∼ 1 − fb
0 erfc

(
s0t

n−1/2

√
Dr

)
,(4.2a)

0 ∼ (Cext − 1) erfc(s0t
n−1/2) + f i

0 erf(s0t
n−1/2),(4.2b)

Drf
b
0√

πDrt
exp

(
− s2

4Drt

)
∼ [f i

0 − (Cext − 1)]
e−t√
πt

exp

(
−s2

4t

)
.(4.3)

Equation (4.2a) can be satisfied if and only if n ≥ 1/2. Equation (4.2b) can be
satisfied if and only if n ≤ 1/2. Therefore n = 1/2 and initially the front moves in
a purely Fickian way because the nonlinear memory effects have not yet had time to
develop. Using this result, we obtain

g1(s0) ≡
√
Dr

1 − C∗
erfc(s0/

√
Dr)

exp

(
− s20
Dr

)
=

1 − Cext

erf s0
exp

(−s20) ≡ g2(s0).(4.4)

Figure 4.1 shows plots of g2 − g1 for various values of C∗. The s0-intercept marks
the value of the front speed. Note that as C∗ increases, the front speed increases since
not as much penetrant has to desorb to move the front along.

Figure 4.2 shows the variance in the front speed as Dr and Cext vary. Note that as
Cext decreases, the front speed increases because of a larger driving force. In addition,
as Dr increases, the front speed decreases because it is easier to diffuse penetrant to
the front.

Using (4.4), we may derive the value of fb
0 and hence obtain

Cr
0(x, t) = 1 − 1 − C∗

erfc(s0/
√
Dr)

[
erfc

(
x

2
√
Drt

)
+ erfc

(
2L− x

2
√
Drt

)]
.(4.5)

As L → ∞, the second term drops out and we are left with exactly the expression in
Edwards [26] for the case of a semi-infinite domain. In addition, as t → 0 the second
term modeling “reflections” from x = L is negligible.
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We may also use (4.4) to derive the value of f i
0 and hence obtain

σg
0(x, t) ∼ (Cext − 1)e−t

[
1 − 1

erf s0
erf

(
x

2
√
t

)]
.(4.6)

Substituting (4.6) into (3.2a) and solving using (3.11a), we have the following:

Cg(x, t) = C∗ +
Cext − 1

2 erf s0

{
e−x

[
erfc

(
−√

t +
x

2
√
t

)
− erfc

(
s0 − x

2s0

)]

+ex
[
erfc

(√
t +

x

2
√
t

)
− erfc

(
s0 +

x

2s0

)]}
,

(4.7)
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where the x/s0 terms come from the asymptotic expansion of s−1(x), the inverse
function for the front position:

s−1(x) ∼
(

x

2s0

)2

, x → 0.(4.8)

Unfortunately, we note that if we substitute x = 0 into (4.7), we obtain

lim
x→0

Cg
0 (x, t) = C∗ + Cext − 1 �= Cext = Cg(0, t).(4.9)

The discontinuity near x = 0 must be resolved by a boundary layer, but even the solu-
tion to the full problem near x = 0 will be less than Cext. We call this excessive drying
near the exposed surface desorption overshoot, as the minimum of the concentration
now occurs inside the film. The terminology is motivated by the related phenomenon
of sorption overshoot, where the concentration rises above its equilibrium value during
a sorption experiment [41].

Moreover, it is certainly possible for C∗ + Cext − 1 < 0, which would yield the
physically unrealistic result of a negative concentration. This unphysical aspect is not
an artifact of the asymptotics; rather it is the direct result of the Dirichlet condition
(3.4), as discussed in section 6.

4.2. The corner layer. The discontinuity about x = 0 is caused by the form
of the operator in (3.2a). As long as the evolution equation for C has only a ∂C/∂t
term in it, then σ and C will differ everywhere only by a function of x. Since both C
and σr

0 are constants along the front, that difference must also be a constant at the
front. This causes a discontinuity because

lim
t→0

C(s(t), t) �= lim
t→0

C(0, t).

σr
0 does not vary along the front due to the ε−1 term in (2.7b). This term can be

counteracted if we introduce a corner layer near the origin via the following substitu-
tions:

Cr(x, t) = C+(ξ, τ), σr(x, t) = σ+(ξ, τ), ξ =
x

ε1/2
, τ =

t

ε
.(4.10)

Substituting (4.10) into (2.7), we obtain

∂C+

∂τ
= Dr

∂2C+

∂ξ2
+
∂2σ+

∂ξ2
,(4.11a)

∂σ+

∂τ
+ σ+ =

∂C+

∂τ
,(4.11b)

which is just the full system (2.7) without the γ term. Hence even in the corner layer,
our model matches that of Cairncross and Durning [8], Durning [27], and Durning
and Tabor [28]. Note that τ is the time scale for relaxation in the rubber.

To solve this system, we must proceed numerically. Nevertheless, we note that
due to the exponential decay inherent in (4.11b), curves of constant C are not curves
of constant σ. This fact will remove the discontinuity, which was caused by the fact
that the front was an isocline for both outer solutions.
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5. Numerical computations. We compare our asymptotic results to those
from a finite-element code previously used to solve a similar model [8]. The code
solves (2.1)–(2.4) using finite elements with quadratic basis functions. In order to
resolve the boundary layer, the domain was discretized into sixty fixed but unequally
spaced elements, with more elements placed near x = 0.

Application of the finite element method to the model results in a system of non-
linear coupled ODEs for the nodal values of concentration and stress. The system of
ODEs was integrated in time using a stiff DAE solver, DASSL [42]. DASSL uses an
Adams–Bashforth–Moulton predictor-corrector algorithm with a variable-order back-
ward differentiation formula. The corrector is implicit and the nonlinear system is
solved by Newton’s method with an analytical Jacobian matrix. The time step is
automatically updated to control the estimated error within a specified tolerance.
The error tolerance and number and distribution of elements were adjusted until the
results were insensitive to the size of these parameters.

5.1. Comparison with asymptotics. The parameters chosen for use in both
the analytical model and the numerical simulations were as follows:

C∗ = 1/2, Dr = 4, Cext = 1/4, L = 3, Dg = 4 × 10−4,(5.1a)

βg = 1, βr = 104, α = 80, k = 1.33 × 104.(5.1b)

These parameters essentially correspond to an ε value of 10−4. Also, with these
parameters, s0 ≈ 0.4550.

Figure 5.1 shows a comparison of the asymptotic and numerical predictions of the
front position for small time. The speed of the front decreases with time as predicted
by both methods. The agreement between the asymptotic and numerical results is
excellent.

In Figure 5.2 we show a graph of the concentration for the parameters in (5.1) and
the times listed. The interval in x is restricted near x = 0; the grid spacing decreases
as we reach that endpoint. There is excellent agreement between the numerical and
outer solutions in the region away from the boundary layer, and the discontinuity in

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0 0.004 0.008 0.012 0.016 0.02

Time

F
ro

n
t 

P
o

si
ti

o
n

Asymptotics

Numerics

Fig. 5.1. Asymptotic and numerical calculations of s(t) for the parameters in (5.1).
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numerical and asymptotic solutions are indistinguishable beyond x = 0.2.

∂C/∂x at the glass-rubber transition is accurately predicted by both techniques. Note
that at t = 0.0103 even the numerical solution goes negative, so we have confirmed
that negative concentration values are not an artifact of the asymptotic solution. We
shall examine the root causes of this phenomenon in the next section.

Figure 5.3 shows a graph of the stress versus x for the times listed. There is
excellent agreement between the asymptotic and numerical solutions for the glassy
stress. In addition, the zero-stress approximation (3.8) and the numerical calculation
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Fig. 5.3. Aymptotic solution σg0(x, t) (lines) and numerical solution (symbols) versus x. The
rubbery stress is zero. The numerical and asymptotic solutions are indistinguishable beyond x = 0.15.
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Fig. 5.4. Comparison of asymptotic (from equation (3.6)) and numerical expressions for surface
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in the rubbery region match for larger times. From the graph at t = 2 × 10−4 we
see that due to the rapid drop in C at the surface, the stress in the rubbery region is
initially O(1), as shown in section 4.2. For longer times, the stress decays exponentially
as predicted by (4.11b), until at t = 2.2× 10−3, the numerical calculation is virtually
indistinguishable from (3.8).

Figure 5.4 shows a graph of the surface stress at x = 0. Though the outer and
numerical solutions decay on the same e−t scale, there is a persistent gap because
the outer solution in (3.6) assumes an instantaneous change in C at t = 0, while
the numerical simulations follow (2.4b). Thus, initially the surface concentration and
surface stress evolve on a time scale roughly proportional to k−1. This time scale will
become important later on when we examine the reason for the negative concentration
values.

5.2. Long-time results. Though the validity of the asymptotics ends for mod-
erate times, we can certainly continue the numerical calculations into that region.
Figure 5.5 shows the computed concentration profiles for various times. Note that
between t = 2 and t = 4, the film becomes entirely glassy. (For more discussion of
the time at which the front reaches the back of the film, see the appendix.) Since the
glass has a longer relaxation time, the change in the concentration between t = 2 and
t = 4 is relatively small.

The unphysical negative concentration is not a brief anomaly; it continues for
moderate time, and the size of the dip actually increases. It should be noted that the
desorption overshoot disappears if k is smaller, which corresponds to a slower change
in the surface concentration. For more discussion of this topic, see section 6.

Figure 5.6 shows the computed stress profiles for the same series of times. The
nearly linear stress in the glassy region implies a constant non-Fickian flux. Thus,
the evolution of the concentration in this region is dominated by the Fickian flux.
Note that the surface stress continues its exponential decay to a final limiting value
of zero.
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6. Explaining negative concentrations. The unphysical negative concentra-
tion is not an artifact of the asymptotics, as the numerical solutions in Figure 5.2
show. To explain the phenomenon, we solve (2.6b) for short times, using (3.6) and
(3.2). After some work, we obtain the following expression:

lim
x→0

Cg
0 (x, t) = lim

t→0
σg(0, t) + C∗.(6.1)

Hence the discontinuity in the outer solution exists for all time unless

lim
t→0

σg(0, t) = Cext − C∗.(6.2)
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Moreover, the concentration will go negative whenever

lim
t→0

σg(0, t) < −C∗.(6.3)

How then to avoid satisfying this condition?
Following common practice for diffusion and heat transfer problems, we took

k → ∞ in (2.4b) to obtain the Dirichlet condition (3.4). The resulting discontinuous
jump at t = 0 forces σ(0, 0+) = Cext − 1, as can be seen from (3.6), and this value
can violate (6.3). Why does the standard Dirichlet trick not work for this model?

In a standard diffusion problem, lines of constant t are characteristics. Thus these
equations transmit disturbances with infinite signal speed to the entire domain. As
can be intuited from the leading-order outer equations (3.3) and (3.9a), the same
is true for this model. This explains why the solution does not break down in any
mathematical sense; it just goes negative, which offends our physical sensibilities.

The key difference rather is the delay term inherent in (2.1b). When a jump
occurs very quickly, the stress cannot relax fast enough (even with an O(ε) relaxation
time in the rubber) to equilibrate it. Once a large stress gradient has been introduced
at the exposed surface, there is no mechanism in (3.2a) to stop the concentration
from going negative. This is related to the observation in [41] that other models for
anomalous diffusion will have negative concentration values if a “retardation time” is
not included.

There are several mechanisms one can introduce to moderate the concentration
dip. For instance, consider the case where the ∂σ/∂x term in (2.1a) is multiplied by
a “stress diffusion coefficient” E(C), where E(0) = 0. This term would remain at
leading order in the equation analogous to (3.2a), causing ∂Cg

0/∂t(C = 0) = 0 and
preventing the concentration from going negative. Moreover, preliminary numerical
calculations indicate that if E(C) � 1 in the glassy region, this change can eliminate
negative concentrations while maintaining desorption overshoot.

Another remedy is to slow the change so that it occurs on the fast relaxation time
scale of the rubbery polymer. Thus we replace (3.4) by

C(0, τ) = Cext + (1 − Cext)e
−λτ , λ �= 1,(6.4)

where τ is the time scale defined in (4.10). The exponential form is chosen to match
the analysis in Edwards [24] and the forms in Hui et al. [34] and Long and Richman
[43]; λ �= 1 is taken for simplicity. As λ increases, the driving force increases and the
transition between rubber and glass steepens.

As given by (6.4), the interface is now rubbery for some interval. We may substi-
tute (6.4) into the leading orders of (2.6b) and (2.7b) and solve to obtain the stress
boundary condition. Since τ is an initial-layer variable, we may take the limit of this
condition as τ → ∞ to find the limiting value of the outer boundary condition. This
is found to be

lim
t→0

σg(0, t) = −C∗ − Cext

1 − λ
+
λ(1 − Cext)

1 − λ

(
C∗ − Cext

1 − Cext

)1/λ

.(6.5)

Thus our matching condition, and hence Cg(x, 0), depends on λ. As λ → ∞,
(6.4) approaches a step function and our result from section 3 holds:

lim
t→0

σg(0, t) = −(1 − Cext), λ → ∞.(6.6a)
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If instead λ → 0, we obtain the following:

lim
t→0

σg(0, t) = −(C∗ − Cext), λ → 0,(6.6b)

which from (6.2) is exactly the condition required to eliminate the boundary layer
at the exposed surface. In this case the exterior concentration varies on a time scale
slower than that of the rubber relaxation time, so the entire polymer can equilibrate
to the exterior.

Last, we note that from (6.3) that in order to maintain a positive concentration,
the expression in (6.5) must be greater than −C∗. Hence the generation of negative
concentrations in our model can be remedied by imposing more physically realistic
boundary conditions. If changes in the exterior happen on a faster time scale than
the rubber relaxation time scale, the surface cannot immediately equilibrate. Thus,
the polymer exhibits a sort of “self-regulation” which puts restrictions on the speed
at which the surface concentration can change. This sort of self-regulation has been
seen in similar models of sorption processes [24].

7. Conclusions. During the desorption of saturated polymers near the glass-
rubber transition temperature, a glassy skin will form near the exposed surface. One
mechanism for the formation of such a skin is viscoelastic relaxation in the polymer
network. The mathematical model presented here has captured this behavior in pre-
vious numerical [5], [8] and analytical [26], [29] studies. However, never before has
the model been studied in both ways simultaneously. This merging of techniques in-
volved restricting the analytical study to a more realistic finite domain and adapting
the numerical parameter scheme to approximate a piecewise-constant approach. By
approaching the solution in two ways, we validated both approaches. In particular,
we established that negative concentrations were the result of neither a computational
bug nor an erroneous asymptotic approximation, but were rather the predictable and
robust result of a mathematically simple, but physically unrealistic, boundary condi-
tion.

In the asymptotic work, the parameters are taken as piecewise constant and the
system is treated in a manner similar to a Stefan problem. Since the system is not
amenable to similarity solutions, an integral method based on the one in Boley [38]
is used. The finite domain is extended to a semi-infinite one in both cases, and the
method of images is used to handle the insulated boundary condition at x = L.

The asymptotic and numerical results match well, showing a quick transition to
the glassy region near the exposed surface. The glass-rubber interface initially moves
like t1/2, reflecting the fact that the viscoelastic memory effects have not yet had
time to develop. The numerical solutions demonstrated desorption overshoot, where
a minimum in the concentration occurs in the interior of the domain. This is mirrored
in the asymptotic outer solution, which is less than the imposed surface concentration
as x → 0.

The overshoot can be traced to our replacement of a flux balance condition with
a Dirichlet condition. Such approximations are routinely used in diffusion and heat
conduction problems instead of the more complicated (but physically realistic) activity
or flux conditions. However, in our case taking the limit of large k leads to negative
concentrations. Essentially, we are attempting to force the surface concentration to
vary faster than the polymer can adapt. The intrinsic time scale in the model then
reduces the set of boundary conditions that can lead to physically meaningful results.

In section 6 we proposed two remedies for negative concentrations. A stress
diffusion coefficient can be introduced which shuts down further penetrant diffusion
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when the polymer is dry. Alternatively, if we vary the surface concentration on the
fast τ time scale, we eliminate the negative concentrations. Essentially, the τ -variance
is the fastest that the actual physical system can accommodate. This type of self-
regulation has been demonstrated in sorption models [24].

Though the numerical and asymptotic profiles match well for small t, the ap-
pendix shows that due to the diffusive nature of the operators considered, the fictitious
boundary conditions must be approximated very closely to guarantee accurate results
for moderate t. Nevertheless, the agreement for small time provides a sturdy back-
ground on which to base further work. Not only do the asymptotic solutions verify
the numerics, but they also demonstrate parameter ranges which produce unphysical
results.

Appendix. Some remarks on the intersection point. We conclude by
examining the solution near the time t = tL where s(tL) = L. Due to the symmetry
about the line x = L, s−1(x) should be even about x = L, so the first terms in our
expansion for s(t) should be

s(t) ∼ L− s1
√
r, r = tL − t > 0, s1 > 0.(A.1)

Using (3.10a) and (A.1) in (3.11), we may construct an expansion in r, eventually
reaching the following terms at O(r):

(s21 − 2Dr)
∂2T r

∂x2
(L, tL) = 0,(A.2a)

(
s21
2

− 1

)
∂2σg

0

∂x
(L, tL) = 0.(A.2b)

It can be shown that if the second derivative of T r vanishes at x = L, all even
derivatives of T r must vanish there. But the numerical solutions shown later in
Figure A.1 do not support this transcendental vanishing. Thus, we set s1 =

√
2Dr.
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(Formally, this must be done in a limiting way by setting the stress in the glass equal
to a small quantity representing σr

1, then taking that term to zero.)
To determine tL, we introduce another degree of freedom into our fictitious con-

dition as follows:

f i(x) ∼ f i
0 + f i

1x.(A.3)

Substituting (A.3) into (3.10a) using (4.8), we may combine the resulting equations
to obtain the following equation involving tL:

erf s0 = erf sL − 2sL√
π
e−s

2
L , sL =

L

2
√
tL
.(A.4)

Note the underlying parabolic nature of the operator, as evidenced by the relationship
between the definition of sL and the diffusion equation similarity variable. It can be
shown that (A.4) has exactly one root sL. In addition, sL > s0, so the front must
speed up as time passes. Figure A.1 shows a graph of the short- and intersection-time
expressions for s(t) as compared with the numerical calculations.

By replacing the one-term expansion for f i(x) with a two-term expression, we
obtain closer agreement near x = L, as desired. In particular, we note that by
combining the asymptotic results, we obtain the change in concavity of the graph and
an acceptable estimate of the inflection time.

Unfortunately, though the two-term expansion provides an improved estimate of
tL, it is still not very accurate. Due to the diffusive nature of the underlying problem,
the estimate of the initial condition must be highly accurate to obtain reasonable
predictions for moderate t. In addition, the constructed solution does not work well
for small times (r = O(1)). Thus, as a next step one should construct a three-term
expansion for f i(x) that satisfies the leading-order conditions at both x = 0 and
x = L. This sort of iterative process, where one continually improves the form of
f i, should converge to the correct solution on finite domains. Infinite domains are
fundamentally different since t → ∞. This case can be treated asymptotically using
appropriately chosen expansion functions [26], [29], [39], [40].

Acknowledgments. We thank the reviewers for many helpful comments that
improved the manuscript.
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Abstract. A new algorithm is suggested for prediction of a Lagrangian particle position in
a stochastic flow, given observations of other particles. The algorithm is based on linearization of
the motion equations and appears to be efficient for an initial tight cluster and small prediction
time. A theoretical error analysis is given for the Brownian flow and a stochastic flow with memory.
The asymptotic formulas are compared with simulation results to establish their applicability limits.
Monte Carlo simulations are carried out to compare the new algorithm with two others: the center-
of-mass prediction and a Kalman filter–type method. The algorithm is also tested on real data in
the tropical Pacific.

Key words. stochastic flow, Lagrangian motion, prediction, stochastic simulations, oceano-
graphic applications
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1. Introduction. The problem discussed is motivated by applications to rescue
and search operations in the sea. An important part of such operations is to properly
narrow the search area based on the best possible prediction of the position of a lost
object, given its approximate initial position (Schneider (1998)). It is hard to make a
reasonable prediction based only on knowledge of the mean current, because of strong
velocity fluctuations drifting the object away from the path indicated by the mean ve-
locity field. One can expect more realistic help from other floating objects in the same
area, like debris or drifters (human-made floats), which can be observed from planes or
satellites. We consider here a simplified model of such a situation, as follows. Several
current following floats are released simultaneously at different known positions in a
stochastic flow. One of the floats, called the predictand, is unobservable, while the
remaining floats, called the predictors, are observed. The problem is to predict the
position of the unobservable float, given the above observations. In addition to prac-
tical needs, this problem is of great importance from a theoretical viewpoint since it
addresses the predictability issue for the Lagrangian motion in turbulent flows. Here,
by turbulent flows, we mean velocity fields with fluctuations described by stochastic
differential equations. Thus, a kinematic approach is employed: given flow statis-
tics one should conclude with the mean square error of a prediction algorithm. The
mathematical framework we set up here is as follows.

Let u(t, r) be a random velocity field varying in time. By the method of ap-
plications we consider only the two-dimensional case: u, r ∈ R2. Consider M > 1
Lagrangian (current following) particles starting at time t = 0 from different positions
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r01, r
0
2, . . . , r

0
M . Their motion is covered by the following system of 2M equations:

drj
dt

= u(t, rj) , rj(0) = r0j ,(1)

j = 1, . . . ,M. Assume that trajectories of the first p = M−1 particles r1(t), r2(t), . . . ,
rp(t) are completely observed during time interval (0, T ), while the trajectory of the
last one, rM (t), is not observed. The problem is to find a reasonable prediction of the
position of the unobserved particle, given the above predictor observations and the
initial predictand position. The optimal prediction in the mean square sense,

E|r̂M (T )− rM (T )|2 → min,

is given by the conditional expectation (e.g., Liptser and Shiryaev (1978))

r̂M (T ) = E (rj(T ) | r1(t), r2(t), . . . , rp(t), 0 ≤ t ≤ T ) ,

based on all the observations. Alas, this general formula gives too little in the consid-
ered situation. Normally, this conditional expectation cannot be explicitly found even
in the simplest case when the velocity fluctuations are delta-correlated in time. How-
ever, it can be approximated (with an uncertain accuracy) for some Markov models of
stochastic flows (Piterbarg (2001b)). This approximation resulted in a Kalman filter–
type prediction algorithm which was tested on synthetic (Özgökmen et al. (2000),
Piterbarg (2001b)) and real (Castellari et al. (2001), Özgökmen et al. (2001)) data.
In general, that algorithm, called henceforth the KF algorithm, performs well, but
its essential drawback is that it requires knowledge of some statistics of the underly-
ing stochastic flow such as the Lagrangian correlation time and the space correlation
radius of the Eulerian velocity field.

The goal of this paper is to introduce and investigate a new model-independent
prediction algorithm. At first glance, the suggested prediction method looks a little
bit naive. Roughly, we linearize (1) in a vicinity of the initial cluster, obtain a linear
regression model where regressors are the initial particle positions, then estimate the
regression coefficients at any given moment based on the observations of the predictor
positions, and, finally, use them for predicting the unknown particle. The idea for the
new algorithm emerged when we found from real data that the position of the cluster
center of mass is a not bad alternative to the KF algorithm. The trouble is that the
center-of-mass algorithm (CM) performs poorly at the initial stage if the predictor is
located far from the cluster center of mass. In fact, the suggested algorithm, called
here the regression algorithm (RA), can be viewed as a CM algorithm adjusted to the
initial position of the predictand. As it will be shown, the RA performs very well at
the initial stage if the cluster diameter is essentially less than the space correlation
radius of the velocity fluctuations and performs as well as the CM algorithm in the
long term. The good predictive skill of RA demonstrated in real data processing
has had an impact on development of theoretical and Monte Carlo error analysis
for RA. Such an analysis is based on investigating the second moment ρ(t, r0) of
the difference between positions of two particles initially separated by r0, called the
separation process. The quantity ρ(t, r0) can be effectively studied for two important
models: the well-known Brownian flow and a stochastic model with memory recently
developed in (Piterbarg (2001a)).

The Brownian stochastic flow arises when the Eulerian velocity field is delta-
correlated in time. In this case a closed partial differential equation for ρ(t, r0) is
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readily written and the asymptotical prediction error is obtained for a tight initial
cluster by expanding the equation solution in r0. It is interesting that the prediction
error is not determined by the second Lyapunov moment, but rather by the fourth
order term in r0. Asymptotical behavior of the error for large t is determined by the
top Lyapunov exponent of the stochastic flow. In the case of a positive Lyapunov
exponent, the behavior of the mean square error is close to that of the dispersion,√
2Dt, where D is an effective diffusivity. In fact, it is even a little bit worse due to

the bias between the predictand initial position and the cluster center of mass. For a
negative Lyapunov exponent the growth order is

√
t/ log t. It is worthwhile to notice

that our algorithm is not designed for long-term prediction.
Being an important mathematical example, the Brownian stochastic flow is not a

realistic model for upper ocean turbulence. We focus instead on the second model in
which a joint vector of the positions and velocities form a Markov process. For this
reason it is called the first-order Markov model to distinguish it from the zero-order
model determined by the Brownian flow. The first-order model implies an additional
important parameter, the Lagrangian correlation time τ , which can be estimated well
from real data (Griffa et al. (1995)). In the framework of the model, the Lagrangian
velocity of a single particle is an Ornstein–Uhlenbeck process with parameter τ . In
this case the variance of the separation process ρ(t, r0,v0) also depends on the differ-
ence of the initial velocities. As a consequence, the prediction error for close initial
positions and velocities is determined by the expansion coefficient of ρ at v2

0. The
equation for ρ in the first-order model is a standard Kolmogorov equation. An expan-
sion of the solution in both r0 and v0 results in an approximate mean square error for
the prediction. The proposed approximation is in good agreement with simulations.
A special focus is on a linear shear mean flow determined by the stretch and rotation
parameters γ and ω, respectively. It is shown that the relative prediction error de-
creases as γ and ω increase. Comparison with the KF algorithm shows that the RA
performs essentially better in the presence of a deterministic linear shear flow, while
for a pure stochastic flow they are equivalent or KF is better.

The main points of this work are (1) formulation of the new prediction algorithm
(section 2); (2) formulas for the prediction error which are in very good agreement
with stochastic simulations (sections 3–5); (3) comparative analysis of RA and KF
performance based on synthetic and real data (sections 6 and 7).

The main investigation tools used are stochastic simulations, together with stan-
dard diffusion process analytic techniques. For the simulations we take real values
of model parameters and show the error in dimension units to give an idea of the
usefulness of the real prediction.

2. Prediction formula. Assume the following classical regression model for
motion of M particles:

ri(t) = A(t)ri(0) + b(t) + yi(t),(2)

where A(t) and b(t) are an unknown, random in general, 2× 2 matrix and 2-vector,
respectively, and yj(t) are stochastic processes with zero mean uncorrelated for any
fixed t. Notice that this model does not follow from the model (1) in the general
case. Moreover, it even contradicts (1) for a nonlinear velocity field. The idea is to
construct a prediction algorithm based on (2) and then forget (2) and investigate the
algorithm performance for some important particular cases of the model (1). The
reason to expect a good performance is that the system (1) can be linearized on short
times, and then the obtained formula would be useful for the short-term prediction.
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Recall that the first p = M − 1 particles (predictors) are supposed to be observed
and the Mth one is to be predicted. To identify six unknown parameters at each
time (four entries of A and two entries of b) one should have p ≥ 3. We accept
this assumption for the rest of the paper. The underdetermined situation p = 2 is
of practical interest as well, but it requires a special consideration which is outside
the scope of this paper. The least square estimators of A(t) and b(t) based on the
observed particles at the moment t are given by

Â(t) = S(t)S(0)−1, b̂(t) = rc(t)− Â(t)rc(0),

where

rc(t) =
1

p

p∑
i=1

ri(t)

is the center of mass of the predictor cluster and

S(t) =

p∑
i=1

(ri(t)− rc(t))(ri(0)− rc(0))
T ,

the superscript T stands for transposition, the vectors mean column-vectors, and it
is assumed that p > 2 to have nondegenerate matrix S(0). The obtained estimators
then are used to predict the unobservable particle

r̂M (t) = rc(t) + S(t)S(0)−1(rM (0)− rc(0)).(3)

This prediction formula is optimal in the framework of the model (2) if A and b
are supposed to be deterministic. Further we reject the regression model and study
its performance for some specific models of the velocity field u(t, r) appearing in (1).

If the velocity field is smooth enough in time, then it is worthwhile to include
the initial velocities as regressors as well. We do not do that in the present paper for
two reasons: first, this does not make any sense when considering the Brownian flow
since it implies infinite velocities, and second, determining initial velocities in practice
is a very hard problem. However, a study of an initial velocity–based formula is of
theoretical interest and will be considered in a further work.

Once again we underscore that the prediction formula (3) does not include any
parameters except the initial particle positions. Of course, it is not always a strength.
Including well-known parameters would probably improve prediction essentially, but
the problem is that statistical estimates of mean currents and turbulence parameters
are often not reliable in oceanic conditions. Therefore, apparently, sometimes it is
better to use a rough prediction algorithm than fine algorithms with misspecified
parameters. Further we try to evaluate limits of this “roughness.”

3. General error analysis. Let

s2(t) = E|r̂M (t)− rM (t)|2(4)

be the mean square error of the prediction (3). Introduce the variance of the separation
process by

ρij(t) = E|ri(t)− rj(t)|2.
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For the sake of brevity we call ρij the separation. Then (see appendix)

(5)

s2(t) =
1

p

p∑
k=1

ρkM (t)− 1

2p2

p∑
k,l=1

ρkl(t)−1

p

p∑
k,l=1

bkρkl(t)+

p∑
k=1

bkρkM (t)−1

2

p∑
k,l=1

bkblρkl(t),

where coefficients

bi = (ri(0)− rc(0))
TS(0)−1(rM (0)− rc(0))(6)

are defined by the initial positions only, while the behavior of ρij(t) also depends on
the flow properties. Notice that the deviation E|rc(t) − rM (t)|2 of the predictand
from the cluster center of mass is determined by the first two terms in (5).

In the next two sections we will consider two different asymptotics of (4): first,
small initial distances between particles and, second, the long time asymptotic. As
one will see, in the first case the problem is reduced to a factorized separation

ρij(t) ∼ ρ0(t)cij ,

where ρ0 is independent on the initial configuration and cij are completely determined
by the initial conditions. In the second case under common conditions, the separation
is independent of the initial conditions:

ρij(t) ∼ ρ(t)(1− δij),

where δij is the Kronecker delta. Hence, in the first case (5) becomes

s2(t) ∼ C0ρ0(t),(7)

where

C0 =
1

p

p∑
k=1

ckM − 1

2p2

p∑
k,l=1

ckl − 1

p

p∑
k,l=1

bkckl +

p∑
k=1

bkckM − 1

2

p∑
k,l=1

bkblckl(8)

is a function of the initial conditions only. A similar formula appears in the second
case:

s2(t) ∼ Cρ(t),(9)

with

C =
1

2
+

1

2p
+

1

2
(rM (0)− rc(0))

TS(0)−1(rM (0− rc(0)).(10)

Notice that this algorithm is not designed for long time prediction and the formula
(9) is of theoretical interest only.

4. Brownian flow. Assume that the velocity field is decomposed into mean
circulation and fluctuation:

u(t, r) = U(t, r) + u′(t, r),(11)



PREDICTION ALGORITHM FOR LAGRANGIAN MOTION 121

where U0(t, r) is a deterministic velocity field and u′(t, r) is a random vector field
with zero mean, Eu′(t, r) = 0. The Brownian flow is determined by the assumption
that the velocity fluctuation u′(t, r) is a Gaussian white noise in t, i.e.,

Eu′(t, r) = 0, Eu′(t1, r1)u′(t2, r2)T = δ(t1 − t2)B(r1, r2) ,(12)

where δ(t) is the Dirac delta-function and B(r1, r2) is the spatial covariance tensor of
the velocity field. Introduce the state, drift, and noise vectors:

z =




r1
r2
. . .
rM


 , A(t, z)=




U(t, r1)
U(t, r2)
. . .
U(t, rM )


 , W(t)=




w1

w2

. . .
wM


 ,

where rj(t) are the positions of M particles at time t starting from different locations
and wj(t) are independent standard Wiener processes. Then a rigorous interpretation
of (11), (12) is as follows. The process z(t) is a 2M -dimensional Markov process
satisfying the stochastic Ito differential equation (Kunita (1990))

dz = A(t, z)dt+D(z)
1/2

dW(t),

where the 2M × 2M diffusion matrix is given by

D(z) = (B(ri, rj)).

Another equivalent formulation of this model is as follows: z(t) is a Markov process
with the generator given by

L = U(t, ri) · ∇ri +
1

2
∇ri ·B(ri, rj)∇rj .

In the homogeneous case characterized by the assumptions that the mean flow is
constant U(t, r) ≡ U and that the covariance is a function of the position difference
B(r1, r2) = B(r1−r2), the separation process r(t) = r1(t) − r2(t) (the difference
between displacements of two different particles) is also a Markov process with the
generator

Ls = ∇r · (B(0)−B(r)))∇r.

Further we assume that the velocity field is isotropic (that is, U ≡ 0) and the entries
bij(r) of B(r) are given by (Monin and Yaglom (1975))

bij(r) = bN (r)δij +
xixj
r2

(bL(r)− bN (r)),

where r = |r|, r = (x1,x2). Assume that the longitudinal and normal covariances are
four times continuously differentiable:

bL(r) = D − 1
2βLr

2 + 1
2γLr

4 +O(r6),

bN (r) = D − 1
2βNr

2 + 1
2γNr

4 +O(r6),
(13)

where D,βL, γL, βN , γN are positive parameters whose physical meaning is explained
below. For the isotropic Brownian flow the squared dispersion is expressed as

d2(t) ≡ E(r(t)− r(0))2 = 2Dt;(14)
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hence, D means a diffusivity. Introduce the space correlation radius of the velocity
field by

R2 = D/βL

and set rij = ri(0)− rj(0), rij = | rij |. First, consider the “tight cluster” asymptotic
characterized by

rij 
 R, i, j = 1,M.

Under this approximation each separation ρij(t) = ρ(t, rij) is expressible in form

ρ(t, r) = ρ1(t)r
2 − ρ0(t)r

4 +O(r6),(15)

where (see appendix)

ρ1(t) = exp(βt), ρ0(t) = K(exp(β0t)− exp(βt)),(16)

where

β0 = 2βN + 6βL, β = βL + βN , K =
γ

5βL + βN
, γ = γL + γN .

After substitution of the expansion (15) into (5) the terms quadratic in rij disappear,
and we get

s2(t) ∼ C0ρ0(t),(17)

where C0 is given by (8) with

ckl = |rk(0)− rl(0)|4

and ρ0(t) is given in (16)
For the incompressible Brownian flow, characterized by bN (r) = (d/dr)(rbL(r)),

with the longitudinal covariance

bL(r) = D exp(−r2/R2),

we have

ρ1(t) = exp(8Dt/R2), ρ0(t) =
3

8R2
(exp(24Dt/R2)− exp(8Dt/R2)).

Assume that initially the predictors are located at the vertices of a right polygon
at a distance R0 from the center and the predictand is at a distance r0 from the
center. We call such an initial configuration perfect. In this case (17) becomes

s2(t) ∼ (3r40 + 2R4
0 − 4r20R

2
0)ρ0(t)(18)

for p > 3 and

s2(t) ∼ (3r40 + 2R4
0 − 3r20R

2
0 − 2R0r

3
0 cos(3α))ρ0(t)

for p = 3, where α is the angle between the directions from the center to the predictand
and from the center to one of the predictors. The approximation (18) was checked via
simulations, and the results are presented in Figure 1(a) and (b). For the simulation
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Dispersion (diamond), regression (o), theory (square), R=250, R0=50, r0=25, D=0.2
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Fig. 1. (a) Dependence of the dispersion, d(t) (diamonds) and prediction error, s(t), ob-
tained from simulations (circles) and from theory ((18), squares) on the observation time for
the Brownian stochastic flow. 100 independent runs are used for d(t) and s(t). The diffusivity
D = 2×103 km2/day, number of predictors p = 6, initial hexagon radius R0 = 50 km, velocity space
correlation radius R = 250 km, distance of the predictand from the hexagon center r0 = 25 km.
(b) Same as in (a) with r0 = 0.
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it was assumed that R = 250 km, R0 = 50 km, and D = 2000 km2/day. In the first
case the predictor is distanced by r0 = 25 km from the center, and in the second case
it is initially located at the center. The dispersion d(t) (diamonds) and experimental
prediction error s(t) (circles) are obtained from the simulations by averaging over 100
independent runs. A modest sample size is used on purpose to illustrate graphically
how large the noise is under a moderate sample volume typical in oceanographic
measurements. The line marked by squares expresses the suggested error formula (18).
This approximation performs pretty well up to T = 5 days. After that the theoretical
curve sharply diverges from the experimental one. The simulated dispersion is in
good agreement with formula (14): it behaves as

√
t and the value d(5) ≈ 139 is

very close to that of given by (14), d(5) = 100
√
2. In the second case (Figure 1(b))

the prediction is slightly worse in full agreement with (18). Notice that the relative
prediction error for small t is approximately constant:

sr(t) ≡ s(t)

d(t)
∼
√
3(3r40 + 2R4

0 − 4r20R
2
0)

2R2
.

As for large t, we have two different situations depending of the sign of the Lya-
punov exponent for the underlying flow. The Lyapunov exponent, λ, characterizes the
exponential divergence (convergence) of initially close particles. It can be expressed
in terms of the flow parameters (Baxendale and Harris (1986)):

λ = (βN − βL)/2.

If λ > 0, then for large t the difference between the positions of two particles goes to
infinity with probability 1, and the mean square distance between them grows as

ρ(t) ∼ 4Dt.

From (9), (10) it follows that the relative error is also approximately constant,

sr(t) ∼
√
1 +

1

p
+ (rM (0)− rc(0))TS(0)−1(rM (0− rc(0)),

and greater than one.
In the opposite case λ < 0, the picture is more sophisticated: the difference goes

to zero with probability 1; however, the mean square distance still grows, but at a
lower rate (see Zirbel and Cinlar (1996)):

ρ(t) ∼ ct

log t

with constant c depending on the initial distance. Thus, the relative error goes to
zero slowly as t goes to infinity:

sr(t) ∼ C

√
1

log t

with constant C depending on the initial cluster configuration.

5. Stochastic flow with memory. As we already noticed, the Brownian flow
is not an appropriate model for the upper ocean turbulence, since it is based on the
white noise assumption for Lagrangian velocity. In fact, numerous observations clearly
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demonstrate that Lagrangian velocity is well approximated by the first-order Markov
process (Thomson (1986), Griffa (1996)). The following model of multiparticle motion
suggested by Piterbarg (2001a), (2001b) generalizes the above experimental fact.

In addition to the decomposition (11) assume that there is a deterministic accel-
eration a(v, r) depending in general on the particle velocity and position such that
the motion equations take the form

dr = (U(t, r) + v)dt,
dv = a(v, r)dt+ dw(t, r),

(19)

where

Ew(t, r) = 0, Ew(t1, r1)w(t2, r2)
T = min(t1, t2)B(r1, r2) .

In other words, now the velocity field is not a white noise itself but rather is driven
by a white noise with a space covariance structure determined by tensor B(r1, r2). A
rigorous formulation of (19) is given in the above-mentioned references. For a cluster
of M particles, introduce a state vector containing the particle velocities as well as
positions and a drift vector:

z =




v1

r1
v2

r2
. . .
vM
rM



, A(t, z) =




a1

U1 + v1

a2

U2 + v2

. . .
aM

UM + vM



,

where Um = U(t, rm), am = a(vm, rm). The model (19) implies that the motion
of any M particles is a Markov process in 4M dimensions described by a stochastic
differential equation. Namely,

dz = A(t, z)dt+D(z)1/2dW,

where W(t) is a standard Wiener process in 4M dimensions and the diffusion matrix
D(z) is given by

D(z) = (Dij(z))

with 4× 4 blocks

Dij =

(
B(ri, rj) 0

0 0

)
.

Recall that now B(r1, r2) is the covariance tensor of the forcing, not the Eulerian
velocity field itself. The equivalent formulation is given by the generator

L = (U(t, ri) + vi) · ∇ri + ai · ∇vi +
1

2
∇vi ·B(ri, rj)∇vj .

For our purposes the following homogeneous case is most important:

a(v, r) = −τ−1v, U(r) = U+Gr, B(r1, r2) = B(r1 − r2),

G =

(
γ ω
−ω −γ

)
,
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where τ is the Lagrangian correlation time and the mean velocity field is a divergence-
free linear shear flow characterized by constant drift U, stretching parameter γ, and
rotation parameter ω. The one-particle motion in this case is described by the well-
known Langevin equation for the Lagrangian velocity and the standard motion equa-
tion for the displacement

dv = −τ−1vdt+ σvτ
−1/2dw(t),

dr = (U+Gr+ v)dt ,
(20)

where w(t) is a two-dimensional Brownian motion and σ2
v = Ev2 is the velocity

variance. To obtain (20) we assumed that B(0) = (σ2
v/2τ)I. In particular, for the

dispersion we get (see appendix)

(21)

d2(t) ≡ E(r(t)− r(0))2 =

d2
0(t) + σ2

v

∫ t

0

∫ t

0

cosh(
√
γ2(2t− s1 − s2)2 − ω2(s1 − s2)2) exp(−|s1 − s2|/τ)ds1ds2,

where d0(t) is determined by the mean flow and initial position r0 only. An explicit
expression is given in the appendix. Further we assume that U = 0 and r0 = 0, which
results in d2

0(t) = 0. Notice two partial cases of (21): if ω = 0, then

d2(t) =
σ2
vτ

1− γ2τ2
(γ−1 sinh(2γt)− τ cosh(2γt)− τ + 2τ cosh(γt) exp(−t/τ));(22)

if γ = 0, then

d2(t) =
σ2
vτ

1 + ω2τ2

(
t− τ(1− ω2τ2)

1 + ω2τ2
(1− exp(−t/τ) cos(ωt))

− 2ωτ2

1 + ω2τ2
exp(−t/τ) sin(ωt)

)
.

Finally, for the zero shear (Zambianchi and Griffa (1994))

d2(t) = σ2
vτ (t− τ (1− exp(−t/τ))) .(23)

The stochastic equations for the separation process,

r = r1−r2, v = v1−v2,

take the form

dv = −τ−1vdt+ (2(B(0)−B(r)))1/2dw(t),

dr = (Gr+ v)dt.

In other words, the generator of the separation process is

Ls = (Gr+ v) · ∇r−τ−1v · ∇v +∇v · (B(0)−B(r)))∇v.(24)

Assume that the forcing is isotropic, i.e.,

bij(r) = bN (r)δij +
xixj
r2

(bL(r)− bN (r)),
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with twice differentiable covariances

bL(r) =
σ2
v

2τ
− 1

2
βLr

2 +O(r4), bN (r) =
σ2
v

2τ
− 1

2
βNr

2 +O(r4).(25)

Let ρ = ρ(t, u, v, x, y) = Er(t)2, where r(0) = (x, y),v(0) = (u, v). For small
x, y, u, v expand

(26)

ρ = a1x
2 + 2a2xy + a3y

2 + a4u
2 + 2a5uv + a6v

2 + a7xu+ a8xv + a9yu+ a10yv

and set a = (a1, a2, . . . , a10). It is shown in the appendix that

da

dt
= Aa, a|t=0 = a0,(27)

where matrix A and vector a0 are given. In particular, for the zero shear

ρ(t) = ρ(t, r,v) = ρ1(t)r
2 + ρ10(t)(r · v) + ρ0(t)v

2,(28)

where

dρ0(t)

dt
= −2τ−1ρ0(t) + ρ10(t),

dρ1(t)

dt
= 2βρ0(t),

dρ10(t)

dt
= −τ−1ρ10(t)+2ρ1(t),

(29)

where β = βL + βN . Assume that the initial velocities are Gaussian random values
with zero mean and independent components with the same variance σ2

0 . Additionally
assume that the velocities are independent for different particles and are independent
of the forcing. Averaging (28) over the ensemble of initial values gives

ρij(t) = ρ(t, rij ,vij) = ρ1(t)r
2
ij + 2ρ0(t)σ

2
0(1− δij).(30)

After substituting (30) into (5), the terms containing the distances disappear, and for
the “tight cluster” asymptotic in the case of the perfect predictor, we get the initial
configuration

s2(t) ∼ 2σ2
0

(
1 +

1

p
+

4r20
pR2

0

)
ρ0(t),(31)

where ρ0(t) is obtained from (29). In the presence of the mean shear flow we get a
similar formula:

s2(t) ∼ σ2
0

(
1 +

1

p
+

4r20
pR2

0

)
(a4(t) + a6(t)),(32)

where a4(t), a6(t) are obtained from (27). The asymptotic (31) is compared with sim-
ulations in Figure 2(a) and (b). For the simulations we used Lagrangian correlation
time τ = 3 days, the velocity variance σ2

v = 0.12 × 104 km2/day2, initial velocity
variance σ2

0 = 0.25 × 102 km2/day2, number of predictors p = 6, initial hexagon ra-
dius R0 = 50 km, velocity space correlation radius R = 250 km. In Figure 2(a) the
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Dispersion (d), simulation (o), theory (s), R=2.5, R0-0.5, r0=0.25, τ=3, v0=0.05, D=0.04
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Fig. 2. (a) Dependence of the dispersion, d(t) (diamonds) and prediction error, s(t), obtained
from simulations (circles) and from theory ((31), squares) on the observation time, for the stochastic
flow with memory. The Lagrangian correlation time τ = 3 days, the velocity variance σ2v = 12 ×
102 km2/day2, initial velocity variance v20 = 0.25 × 102 km2/day2, number of predictors p = 6,
initial hexagon radius R0 = 50 km, velocity space correlation radius R = 250 km, distance of the
predictand from the hexagon center r0 = 25 km. (b) Same as in (a) with r0 = 0.
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Relative error vs r0, 100 runs, 100 experiments, T=15
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Fig. 3. Dependence of the relative error sr on r0 for the observation time T = 15 days. The
remaining parameters are the same as those as in Figure 2(a).

predictand is distanced from the hexagon center by r0 = 25 km, while in Figure 2(b)
it is located exactly at the center. We take σ0 much less than σv because the approxi-
mation (31) requires both small initial distances and small initial velocity differences.
The dispersion d(t) is shown as diamonds; the prediction error, s(t), obtained from
simulations, as circles; and the prediction error asymptotic (31) as squares. First,
notice a good qualitative agreement of the simulated dispersion (100 runs) with the
theoretical formula (23): for small t we have the ballistic regime ( d ∼ t), and for
larger time the diffusion regime (d ∼ √

t). The quantitative agreement is also sat-
isfactory. Then these figures show that the theoretical error formula works well for
the ratio cluster radius/velocity correlation radius of less than 5 and for prediction
periods of fewer than 15 days. The agreement is clearly better in the first case. In
this regard, notice that unlike the Brownian flow case, the suggested approximation
(31) does not give a correct dependence of the prediction error on the initial distance
r0 from the center. Indeed, in accordance with (31) the error in the second case
should be less, but the simulations show the opposite. To get a correct dependence
one should account for terms of higher order in the expansion of ρ. We do not do
that here but instead study the dependence of the relative prediction error sr on r0
by the Monte Carlo method. Figure 3 demonstrates this dependence. The curve was
obtained by averaging over 100 experiments with the same parameters τ = 3 days,
σ2
v = 0.12× 104 km2/day2, σ2

0 = 0.25× 102 km2/day2, p = 6, R0 = 50 km, R = 250
km, while each experiment included 100 runs to obtain sr. This figure supports the
previous observations that the error first decreases as r0 increases, then assumes a
minimum between 0 and R0, and finally increases approaching R0. For r0 > R0 the
prediction worsens drastically. The obtained curve is affected by sampling variability,
and the exact dependence sr on r0 is still to be investigated. It is interesting that the
analytical dependence of sr on the ratio x = r20/R

2
0 obtained for the zero-order model
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(19) describes pretty well the experimental curve for the first-order model. Indeed,
from (19) f(x) ≡ s(x)/s(0) = 1.5x2 − 2x + 1 assumes f(0.5) = 0.375, f(2/3) = 1/3
(minimum point), and f(1) = 0.5. Approximately the same values for that ratio fol-
low from the curve in Figure 3. The reason is that for T � τ the first-order model
approaches the Brownian flow.

Having sufficiently good agreement between (31) and the simulations, at least for
values of r0 close to R0/2, we investigate the dependence of the prediction error on the
model parameters using the analytical formulas (31) and (32). Figure 4(a) illustrates
the dependence of the relative error sr(T ) on τ for R = 200, 250, 300, 350, 400, 450 km
with the zero mean flow and T = 15 days obtained from (21), (29), (31). The curves
line up with R: the larger the R, the better the prediction. As for the Lagrangian
correlation time, the error decreases with τ whenever τ/T > 0.5. The effect of the
error increasing for small value of τ is due to the regime changing in the dispersion
behavior from ballistic to diffusive. As before, R0 = 50 km and p = 6.

Figure 4(b) shows the dependence of sr on γ and ω for fixed τ = 3 days, T = 15
days, and R = 250 km, obtained from (21), (27), (32). The values of other parameters
are indicated in the figure captions. Obviously, sr(γ, ω) as a function of the shear
parameters is even in both of them. The maximum relative error corresponds to
γ = 0 because of a strong growth of the dispersion with γ (21), (22).

In the next series of experiments with zero mean flow we try a different initial
configuration of predictors and a different velocity initialization to determine how the
initialization affects the prediction skill. An eventual goal is to find an initial predictor
configuration ensuring the best prediction. This problem is very complex and is
beyond the scope of this paper. The goal of the present experiments with randomly
distributed predictors is to understand the extent of the prediction error’s dependence
on the initial configuration and velocities. Namely, the alternative configuration we
consider is a random initial configuration of predictors with the uniform distribution
in a square with side of a. Now we compare four cases, the first two of which were
discussed before: (1) perfect configuration (R0 = 50 km) with the predictand r0 = 25
km from the cluster center; (2) perfect configuration with the predictand at the center
(r0 = 0); (3) random configuration with a = 2R0 and predictand r0 = 25 km from the
square center; (4) random configuration with a = 2R0 and predictand at the square
center (r0 = 0). First, we consider the dependence of the error on the number of
predictors for these four cases (Figure 5). As one can see there is not much difference
in the algorithm performance when the number of predictors is 6 or more. It is worth
noting that the random case is slightly worse than the perfect case for low p, but they
quickly converge at p = 6 and do not change much as p increases. The error does not
decrease significantly as p grows for all the initializations. This is in agreement with
the theoretical formula (31).

Next we compare the statistical moments and histograms of the prediction error
for 6 predictors and prediction time of 15 days (Table 1 and Figure 6(a)). The
table gives the statistical moments of the relative deviation ξ = |rM − r̂M |/d, and
the histograms are histograms of ξ. Thus, sr =

√
Eξ2, and it is also given in the

table even though it can be found from the first two columns. First, it can be seen
that for the perfect predictor configuration (series 1a, 2a) the initial location of the
predictand is essential. Approaching the predictand to the predictors (r0 = 25 km,
series 1a) diminishes the mean from 0.275 to 0.249. This is in agreement with the
previous experiments shown in Figures 2, 3, and 5. As for the random distribution of
predictors, the initial position of the predictand almost does not make a difference,
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Relative prediction error vs τ, R=200–450 km
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Fig. 4. (a) Dependence of the relative prediction error sr on the Lagrangian correlation time
τ for different values of the Eulerian velocity correlation radius R obtained from the asymptotic
formula (31) for observation time T = 15 days. Initial hexagon radius R0 = 50 km, distance of
the predictand from the hexagon center r0 = 25 km, R varies from 450 km (lower curve) to 200
km (upper curve) with step 50 km. (b) Dependence of the relative prediction error sr on the shear
parameters γ and ω obtained from the asymptotic formula (32) for observation time T = 15 days.
Lagrangian correlation time τ = 3 days, Eulerian velocity correlation radius R = 250 km, initial
hexagon radius R0 = 50 km, distance of the predictand from the hexagon center r0 = 25 km.
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sr vs p: r0=25, perfect (triangle down), r0=0, perfect (up), r0=25, random (left), r0=0 random (right)
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Fig. 5. Dependence of the relative prediction error on the number of predictors (simulation) for
different initial configurations. (1) Perfect configuration with the biased predictand (triangle down),
(2) perfect configuration with the predictand at the center (triangle up), (3) uniformly distributed
predictors with the biased predictand (triangle left), (4) uniformly distributed predictors with the
predictand at the center (triangle right).

Table 1

Mean STD Median Error
Series 1a 0.249 0.1947 0.203 0.3161
Series 2a 0.2751 0.2032 0.2294 0.342
Series 3a 0.2601 0.2088 0.2117 0.3335
Series 4a 0.2716 0.1981 0.2175 0.3362
Series 1b 0.2443 0.1923 0.198 0.3109
Series 2b 0.2792 0.2008 0.2329 0.3439
Series 3b 0.2525 0.2133 0.1998 0.3305
Series 4b 0.2601 0.202 0.2155 0.3293

as can also be seen from the histogram (series 3 and 4). In contrast, the histograms
in the case of perfect configuration (series 1 and series 2) look quite different. The
mode of the first distribution is essentially higher, and the tail decays much faster.

Now introduce the alternative method of the velocity initialization as follows:

vj(0) = krj(0),(33)

where k is a constant independent of j = 1, 2, . . . ,M .
For the experiments we took k = 0.1 day−1 to have the same order of the initial

velocities as in the case of the random initialization. Table 1 and Figure 6(b) demon-
strate the statistical moments and histograms for the four cases discussed above,
corresponding to the new velocity initialization (33). Regarding the predictand loca-
tion, the conclusion is as before: for the perfect configuration of the predictors it is
better to distance the predictor from the center, and for the random configuration it
does not matter.
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(a)

(b)

Fig. 6. (a) Histograms of the relative prediction error for 500 runs with different initial configu-
rations and random initial velocities: (1) perfect configuration with the biased predictand (series 1),
(2) perfect configuration with the predictand at the center (series 2), (3) uniformly distributed pre-
dictors with the biased predictand (series 3), (4) uniformly distributed predictors with the predictand
at the center (series 4). (b) Same as in (a) with the initial velocities proportional to the positions:
vj(0) = krj(0).
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In general, there is not any visible difference in the prediction skill for the dif-
ferent velocity initializations. However, this conclusion is relevant only to 15 days’
prediction. In practice we are more interested in a 3- to 5-day forecast, and in such
time scales, the difference could be essential.

6. Comparison with KF and CM algorithms (simulations). The goal of
the experiments discussed in this section is to compare the performance of RA and KF
in both cases: the zero mean flow and a linear shear mean flow. The KF algorithm
is based on the system of stochastic differential equations (19) for the M -particle
motion. Since the diffusion matrix depends on the state variable z, the classical
Kalman filter cannot be applied to this system. What was proposed and studied in
Özgökmen et al. (2000), (2001) and Piterbarg (2001b) is as follows. Pretend that the
diffusion matrix is constant and write the KF equations for the optimal prediction
of the unobserved particle velocity and position. Of course, these equations include
the diffusion matrix. Then recall that it depends on the positions of all the particles
and simply plug the observed positions for predictors and predictand forecast at the
previous time step. We call this procedure a Kalman filter–type algorithm or, for
short, the KF algorithm. An exact theoretical error analysis for the KF is very
difficult. A Monte Carlo study showed that it gives a reasonable prediction if the
model parameters are known (Piterbarg (2001b)). We follow the same approach here:
the Lagrangian correlation time τ and the forcing covariance tensor B(r1, r2) are the
same for generating Lagrangian trajectories and prediction formulas. However, the
time steps are different: 1 hour for simulations and 12 hours for prediction. Thus,
the KF has a big advantage over the RA, which does not use any information on the
flow statistics.

In the first series of experiments we considered the zero mean flow and fixed
τ = 3 days, R = 250 km, R0 = 50 km, M = 7. Initially, the predictors are located in
the vortices of the right hexagon, and the velocities are proportional to the position
vectors; that is, the initialization (33) and the perfect configuration were used.

If the predictand is placed some distance from the center (r0 = 25 km), then the
mean square error of the regression algorithm is slightly lower than that of the KF
(Figure 7(a)). Both algorithms are doing quite well compared with the dispersion
(diamonds). This is because the initial cluster radius is 5 times less than the spatial
correlation radius. The center of mass prediction (crosses) gives clearly worse predic-
tion. After 22 days the performance of KF and regression is pretty much the same
(Figure 7(b)).

If the predictand is placed at the center under the same experimental conditions,
then the KF prediction turns out to be better (Figure 8(a)). As we mentioned before
and which follows from the analytical formulas, the regression and center of mass
methods give the same result in this case. For the midterm prediction (up to 30
days), this trend is confirmed (Figure 8(b)). For observation time T = 30 days the
KF error is about 165 km, while the regression error is around 270 km under the
dispersion 450 km. After changing τ to 2.5 days the general picture almost did not
change (Figure 9(a)) and the conclusion is the same: KF performs better. However,
if we introduce a mean flow, not very strong, the picture changes drastically. For a
gyre given by ω = 0.1 and γ = 0 the performance of KF is very poor (Figure 9(b)).
The error reaches 160 km for a 15-day forecast, almost 80% of the dispersion (230
km), while the error of the regression algorithm is acceptable (60 km). Consider a
different shear with no rotation: ω = 0 and γ = 0.05. The conclusion is the same:
the performance of the regression is clearly better (Figure 9(c)). The error of KF is
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Fig. 7. (a) Comparison of the dispersion (diamonds) and prediction error for the RA (circles),
the CM (x), and the KF method for the maximum observation time T = 15 days and zero mean flow.
The number of predictors p = 6. The predictors are located in vertices of a right hexagon. Lagrangian
correlation time τ = 3 days, Eulerian velocity correlation radius R = 250 km, initial hexagon radius
R0 = 50 km, distance of the predictand from the hexagon center r0 = 25 km. (b) Same as in (a)
for the maximum observation time T = 30 days. A different experiment.
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Fig. 8. (a) Same as in Figure 7(a) with the predictor initially located at the center (r0 = 0).
(b) Same as in Figure 8(a) for the maximum observation time T = 30 days. A different experiment.
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Fig. 9. (a) Same as in Figure 8(a) with slightly different Lagrangian correlation time 2.5 days.
(b) Same as in Figure 9(a) for a nonzero shear: γ = 0.05 day−1, ω = 0.
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Dispersion (diamond), regression (o), and KF (*), G=[-0.05 0; 0 0.05]
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Fig. 9. (c) Same as in Figure 9(a) for a nonzero shear: γ = 0, ω = 0.1 day−1. (d) Same as in
Figure 9(a) for a nonzero shear: γ = 0.05, ω = 0.1 day−1.
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about 140 km, while for the regression it is the same: 60 km. Finally, combining both
cases (ω = 0.1 and γ = 0.05) we observe that the KF error is almost twice as much as
the RA error (Figure 9(d)). Thus, with no doubt the regression algorithm performs
better in the presence of a deterministic linear shear flow. This is because it is based
on the assumption of linear dependence of the particle current position on the initial
position. In fact, for purely linear flow the RA gives the exact prediction. Thus, the
presence of the mean flow implies the better performance of the regression algorithm.

7. Comparison with KF and CM algorithms (real data). The final stage
in this study is to apply RA to predict the motion of oceanic drifters released in a
cluster and compare its performance with that of the simulations. It was found in
Özgökmen et al. (2001) that during the period in which drifters remain close to one
another as a tight cluster (quantified by the number of drifters within the velocity
space correlation scale R), the CM method is a simple yet effective means of predicting
the drifter location. However, how the prediction accuracy of RA compares to that
of CM and the far more complicated technique KF for oceanic drifters needs to be
investigated.

The drifter data are obtained from the NOAA Atlantic Oceanographic and Mete-
orological Laboratory, Global Drifter Center, by searching the entire 1988–1996 data
set for a group of 5 or more drifters released within the velocity space correlation scale
R. The drifter data are used as provided by the Global Drifter Center, which lists the
drifter positions in six-hour intervals after standard quality control procedures (e.g.,
Hansen and Poulain (1996)) and no further processing has been applied. A total of
7 clusters, each consisting of 5–10 drifters, has been analyzed. In the following, we
concisely present results from 3 of these clusters, since the main conclusions remain
the same for others. These 3 drifter clusters have been released in the tropical Pacific
Ocean, which is a region characterized by strong currents and shears and lacking the
effect of coastlines or boundaries. The mean currents (Figure 10) are calculated using
the technique described in Bauer et al. (1999) from the entire drifter data set collected
under the World Ocean Circulation Experiment (WOCE) during 1988–1996. This fig-
ure depicts the general circulation pattern in this region, which is governed by the
westward North Equatorial Current north of 10◦N , the eastward North Equatorial

Fig. 10. The climatological mean flow field depicting the major currents in the tropical Pacific
Ocean and the initial release locations of clusters I, II, and III.
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Countercurrent between 4◦N and 9◦N , and the westward South Equatorial Current,
which extends across the equator to 10◦S. Drifters in the first cluster (cluster I) have
been released in the South Equatorial Current, whereas the others in clusters II and
III have been launched just south of the North Equatorial Countercurrent. The mean
currents, however, are not a good indicator of drifter motion (Özgökmen et al. (2000),
(2001)) and are discussed here only to provide the general surface flow characteris-
tics of this oceanic region. It is also important to point out that in order to be able
to deploy these drifters on tight grids, a real-time analysis of a variety of data sets,
including current meter profilers and satellite data images, has been necessary for a
detailed dynamical analysis due to strong currents in this region (e.g., Flament et al.
(1996)). Finally, the space correlation radius of the velocity field in the tropical Pa-
cific Ocean is taken as the Rossby deformation radius R = 250 km (Cushman-Roisin
(1994)), and the Lagrangian correlation time is taken as τ = 3 days, based on the
analysis of drifter motion in the WOCE data set (Bauer et al. (1999)).

Clusters I–III are sorted according to the difficulty of prediction, quantified by
the initial scale of the cluster, the velocity variance and prediction period. Cluster I
consists of 5 drifters launched within a scale (∼ R0) of approximately 10 km from each
other (Figure 11(a)), and the prediction algorithms are applied for 7 days of parti-
cle motion, during which the velocity variance is approximately σ2

v = 430 km2/day2.
During 7 days of motion, these drifters do not spread apart significantly. Given
R0 
 R and the low velocity variance, one can anticipate very good performance by
RA based on the results from theory and stochastic simulations. Dispersion d(t) and
prediction errors s(t) from RA, CM, and KM are calculated by sequentially select-
ing each drifter as predictand and the remaining others in the cluster as predictors,
corresponding to the root mean square of that of all cluster particles. The results
are shown in Figure 11(b) for cluster I for an observation time of 7 days. This figure
shows that prediction errors of both KF and RA are less than that of CM during the
observation period and that RA is as accurate as KF. More quantitatively, dispersion
reaches approximately 51 km at T = 7 days, error from CM is 8 km (sr = 0.16), and
error from KF and RA is about 5 km (sr = 0.1).

Cluster II consists of 7 drifters that are also released with a mean diameter of
approximately 10 km, but disperses much faster than Cluster I due to a higher velocity
variance of σ2

v = 720 km2/day2, and the mean cluster diameter reaches 25 km and 50
km after 7 and 14 days of observation time, respectively (Figure 12(a)). Dispersion
and prediction errors for cluster II over an observation period of 14 days are shown in
Figure 12(b), and the conclusion remains the same as for cluster I; prediction errors of
both KF and RA are less than that of CM during the observation period, and RA is as
accurate as KF. Dispersion reaches approximately 136 km at T = 14 days, error from
CM is 44 km (sr = 0.32), and errors from KF and RA are about 26 km (sr = 0.19).
The sensitivity of the prediction accuracy of RA to the number of predictors p is
investigated by randomly eliminating drifters from cluster II. Figure 12(c) shows the
dispersion curve based on the entire cluster and prediction errors calculated for p = 6
(same as in Figure 12(b)), p = 5, p = 4, and p = 3. When p = 3, a drastic reduction of
prediction accuracy takes place, which is found to be independent of the combination
of chosen predictors in this cluster. Otherwise, the prediction accuracy gradually
decreases as the number of predictors is decreased from 6 to 4, but the accuracy of
the method using 4 to 6 predictors remains essentially constant for T ≤ τ or for T ≤ 3
days.

The motion of cluster III, consisting of 10 drifters, is investigated for 21 days
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(a)

(b)

Fig. 11. (a) Drifters trajectories in cluster I. The circles mark 7-day intervals. (b) Comparison
of the dispersion, d(t), and prediction errors, s(t), of RA, CM, and KM for an observation time of
7 days for cluster I.
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(a)

(b)

Fig. 12. (a) Drifters trajectories in cluster II. The circles mark 7-day intervals. (b) Comparison
of the dispersion, d(t), and prediction errors, s(t), of RA, CM, KM for an observation time of
14 days for cluster II.
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(c)

Fig. 12. (c) Sensitivity of the prediction error of RA to the number of predictors in cluster II.

during which velocity variance is σ2
v = 2240 km2/day2, or the highest of the three

clusters. These drifters were released over an area with an approximate diameter of 30
km, but this scale increases to approximately 100, 180, and 250 km after 7, 14, and 21
days, respectively (Figure 13(a)). Dispersion and prediction errors for cluster III are
shown in Figure 13(b). During the first 10 days, prediction errors of both KF and RA
are approximately the same and less than that of CM, but during the second half of
the observation period, the error of KF increases faster than that of RA. This increase
appears to be related to the inability of the KF algorithm to follow the bifurcation of
some drifters in a larger group as effectively as the RA technique. Dispersion is 426
km (543 km), error from CM is 99 km (235 km) or sr = 0.23 (sr = 0.43), error from
KF is 55 km (176 km) or sr = 0.13 (sr = 0.32), and error from RA is 54 km (80 km)
or sr = 0.13 (sr = 0.15) at T = 7 days (T = 21 days).

All in all, the real data comparison of different prediction algorithms is in good
qualitative agreement with the simulation results. Even the prediction error values
are of the same order, as our simple error theory concludes. Deviations are related to
oversimplifications accepted in the considered stochastic model such as the shear flow
linearity and fluctuations isotropy.

In summary, the algorithm described in this study presents several important sim-
plifications with respect to the KF method developed and investigated by Piterbarg
(2001b) and Özgökmen et al. (2000), (2001): (i) This algorithm does not require any
parameters, such as the Lagrangian parameters describing the characteristics of the
underlying flow, the velocity correlation space scale R, and the Lagrangian correlation
time scale τ . (ii) RA does not utilize the mean flow field, the calculation of which re-
quires large data sets and the associated subgrid scale interpolation introduces further
errors. (iii) RA does not need to be initialized with turbulent velocity fluctuations at
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(a)

(b)

Fig. 13. (a) Drifter trajectorie in cluster III. The circles mark 7-day intervals. (b) Comparison
of the dispersion, d(t), and prediction errors, s(t), of RA, CM, KM for an observation time of
21 days for cluster III.
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the launch location. (iv) RA is not based on the integration of velocity field to esti-
mate the particle position, which necessarily leads to accumulation of velocity errors
as errors of drifter location. (v) Consequently RA is computationally far simpler than
KF. Despite these simplifications, it is found on the basis of several oceanic clusters
that RA outperforms CM and that RA is as accurate as KF. Also, predictions from
RA appear to remain applicable over a time scale of T � τ , or much longer than one
would anticipate. In future studies, it will be investigated theoretically and numeri-
cally how this method performs when R0 ≈ R, which is likely to be the case in mid-
and high-latitude oceans and for bifurcating clusters.

Appendix.

A.1. Prediction error in terms of separation. Using the definition (4) and
expression (6) for bk, obtain

s2 = E|r̂M (t)− rM (t)|2
= E{(rc(t) + S(t)S(0)−1(rM (0)− rc(0))− rM (t))T (rc(t)

+ S(t)S(0)−1(rM (0)− rc(0))− rM (t))}
= E{(rc(t)− rM (t))T (rc(t)− rM (t))}

+ 2E{(rc(t)− rM (t))TS(t)}S(0)−1(rM (0)− rc(0))

+ (rM (0)− rc(0))
TS(0)−1E{S(t)TS(t)}S(0)−1(rM (0)− rc(0))

= E{(rc(t)− rM (t))T (rc(t)− rM (t))}
+ 2

∑p
k=1 bkE{(rc(t)− rM (t))T (rk(t)− rc(t))}

+
∑p
k,l=1 bkblE{(rk(t)− rc(t))

T (rl(t)− rc(t))}.

(A1)

Then, dropping the time argument for brevity,

E{(rk − rc)
T (rl − rc)} = 1

p2

∑p
i,j=1 E{(rk − ri)

T (rl − rj)}
= − 1

2p2

∑p
i,j=1(ρkl + ρij − ρki − ρlj)

= − 1
2ρkl +

1
2p

∑p
i=1(ρki + ρli)− 1

2p2

∑p
i,j=1 ρij .

(A2)

In the latter we used the relation

E{rkT rl} =
1

2
(−ρkl + E{rkT rk}+ E{rlT rl}).

By substituting (A2) into (A1), using the obvious relation

p∑
k=1

bk = 0,

and changing the summation indexes, we obtain (5).

A.2. Separation for Brownian flow (close initial positions). The function

ρ(t, r) = E{(r1(t)− r2(t))
2},

where |r1(0)− r2(0)| = r, satisfies

∂ρ

∂t
= Lsρ , ρ(0, r) = r2,(A3)
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where in the isotropic case the generator for the separation process is

Ls =
b0 − bN (r)

r

∂

∂r
+ (b0 − bL(r))

∂2

∂r2
.

Substitute expansions (13), (15) into (A3). The result is

dρ1

dt
= βρ1, ρ1(0) = 1,

dρ0

dt
= β0ρ0 + γρ1, ρ0(0) = 0,

where

β = βN + βL, β0 = 2βN + 6βL, γ = γN + γL.

Solving the latter equations we obtain (16).

A.3. Dispersion for the flow with memory in presence of linear shear
flow. For simplicity assume U = 0. From (20) it follows that

r(t) = r̄(t) +

∫ t

0

exp(G(t− s))v(s)ds,

where v(t) is a two-dimensional Ornstein–Uhlenbeck process with the covariance
σ2
v exp(−t/τ)I and

r = exp(Gt)r0 + (exp(Gt)− I)GU.

Set

d2
0 = (r− r0)

2;

then

d2 = d2
0 + σ2

v

∫ t

0

∫ t

0

Sp(exp(G(t− s1)) exp(G
T (t− s2))) exp(−|s1 − s2|/τ)ds1ds2,

where Sp(A) means the race of matrix A. Then we use the following relations:

Sp(A) = λ1(A) + λ2(A), λ(exp(A)) = expλ((A)),

where λ(A) is an eigenvalue of A and arrive at (21).

A.4. Separation for the flow with memory (close initial positions and
velocities). In the case considered, the separation satisfies

∂ρ

∂t
= Lsρ, ρ|t=0 = x2 + y2,(A4)

with the generator (24) written in the coordinatewise form

Ls = (γy + ωx+ u)
∂

∂x
− (γy + ωx+ v)

∂

∂y
− 1

τ
u
∂

∂u
− 1

τ
v
∂

∂v

+ (b0 − bN (r)− x2

r2
(bL(r)− bN (r))

∂2

∂u2
+ (b0 − bN (r)− y2

r2
(bL(r)− bN (r))

∂2

∂v2

− 2xy

r2
(bL(r)− bN (r))

∂2

∂u∂v
.
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Substituting expansions (25), (27) into (A4) we obtain (27), where

A =




2γ −2ω 0 2βL 0 2βN 0 0 0 0
ω 0 −ω 0 −2β 0 0 0 0 0
0 2ω −2γ 2βN 0 2βL 0 0 0 0
0 0 0 −2/τ 0 0 1 0 0 0
0 0 0 0 −2/τ 0 0 1/2 0 1/2
0 0 0 0 0 −2/τ 0 0 0 1
2 0 0 0 0 0 γ − 1/τ 0 −ω 0
0 2 0 0 0 0 0 γ − 1/τ 0 −ω
0 2 0 0 0 0 ω 0 −γ − 1/τ 0
0 0 2 0 0 0 0 ω 0 −γ − 1/τ



,

where β = βN − βL,

a0 = (1 0 1 0 0 0 0 0 0 0)T .

For the zero mean flow γ = 0, ω = 0, and (27) reduces to (29) for ρ0 = a4 + a6,
ρ1 = a1 + a3, and ρ01 = a7 + a10.

REFERENCES

S. Bauer, M. S. Swenson, A. Griffa, A. J. Mariano, and K. Owens (1999), Eddy-mean
flow decomposition and eddy-diffusivity estimates in the tropical Pacific Ocean, J. Geophys.
Res., 103, pp. 30855–30871.

P. Baxendale and T. Harris (1986), Isotropic stochastic flows, Ann. Probab., 14, pp. 1155–
1179.
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eds., Birkhäuser, Boston, pp. 113–128.

A. Griffa, K. Owens, L. Piterbarg, and B. Rozovskii (1995), Estimates of turbulence
parameters from Lagrangian data using a stochastic particle model, J. Marine Res., 53,
pp. 371–401.

D. V. Hansen and P.-M. Poulain (1996), Quality control and interpolations of WOCE/TOGA
drifter data, J. Atmos. Ocean Techn., 13, pp. 900–909.

H. Kunita (1990), Stochastic Flows and Stochastic Differential Equations, Cambridge Univer-
sity Press, Cambridge, UK.

R. S. Liptser and A. N. Shiryaev (1978), Statistics of Random Processes, Springer-Verlag,
Berlin.

A. S. Monin and A. M. Yaglom (1975), Statistical Fluid Mechanics: Mechanics of Turbulence,
MIT Press, Cambridge, MA.
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A RIGOROUS TREATMENT OF A FOLLOW-THE-LEADER
TRAFFIC MODEL WITH TRAFFIC LIGHTS PRESENT∗
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Abstract. Traffic flow on a unidirectional roadway in the presence of traffic lights is modeled.
Individual car responses to green, yellow, and red lights are postulated and these result in rules
governing the acceleration and deceleration of individual cars. The essence of the model is that only
specific cars are directly affected by the lights. The other cars behave according to simple follow-
the-leader rules which limit their speed by the spacing between them and the car directly ahead.
The model has a number of desirable properties; namely, cars do not run red lights, cars do not
smash into one another, and cars exhibit no velocity reversals. In a situation with multiple lights
operating in-phase, we get, after an initial start-up period, a constant number of cars through each
light during any green-yellow period. Moreover, this flux is less by one or two cars per period than
the flux obtained in discretized versions of the idealized Lighthill–Whitham–Richards model which
allows for infinite accelerations.

Key words. traffic flow, follow-the-leader, relaxation models, conservation laws
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1. Introduction, model description, and statement of results. In this
note we examine the behavior of traffic on a unidirectional highway when multiple
traffic lights are present. For simplicity we assume the lights operate in-phase.

The model postulates the dynamics of individual cars but may also be thought
of as a coarse discretization of a continuum model introduced recently by Greenberg
[1], Aw and Rascle [2], Aw, Klar, Materne, and Rascle [3], and Zhang [9] (details of
this correspondence may be found in section 4, (4.6)–(4.8)).

We assume we are presented with an empirically determined function s → V(s)
on L ≤ s which satisfies

V(L+) = 0,(1.1)

dV
ds

(s) > 0 and
d2V
ds2

(s) < 0, L ≤ s < ∞,(1.2)

and

lim
s→∞

(
V(s), dV

ds
(s),

d2V
ds2

(s)

)
= (V∞ > 0, 0, 0).(1.3)

The independent variable s is interpreted as the spacing between cars, L is the
minimum car spacing (a lower bound for L is the length of typical car), and V∞ > 0
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is the maximum allowable speed of a car. A typical function, and one we shall use in
simulations, is

V(s) = V∞

(
1− L

s

)
, L ≤ s < ∞.(1.4)

In this classic Lighthill–Whitham–Richards model [4, 5, 6, 7] the function V(·) gives
the velocity of individual cars; in ours it provides an upper bound for the velocity of
an individual car. An extensive discussion of suitable functions V(·) may be found in
[8, Chapter 4] and the references contained therein. Suffice it to say that the functions
V(·) in our model are consistent with those used in practice.

In this model xk(t), 1 ≤ k ≤ N , denotes the position of the kth car at time t, and
0 ≤ uk(t) is the velocity of the kth car. Throughout,

dxk
dt

= uk, 1 ≤ k ≤ N,(1.5)

and the cars are ordered so that (xk+1 − xk)(t) ≥ L, 1 ≤ k ≤ N − 1. During time
intervals where the lights are green we assume that

uk = V((xk+1 − xk)(t)) + αk, 1 ≤ k ≤ N, 1(1.6)

where αk(t) ≤ 0 satisfies

ε
dαk
dt

= −αk, 1 ≤ k ≤ N.(1.7)

The parameter ε > 0 may be thought of as a relaxation time. Equations (1.6) and
(1.7) imply that during the green light periods the velocities, uk, satisfy

(1.7a)
duk
dt

= V ′(xk+1 − xk)(uk+1 − uk) +
(V(xk+1 − xk)− uk)

ε
, 1 ≤ k ≤ N − 1,

and

(1.7b)
duN
dt

=
(V∞ − uN )

ε
.

The interesting feature of our model is how yellow or red lights effect the dynamics
of an individual car. Our traffic lights cycle from green to yellow to red, and the
numbers 0 < TG, 0 < TY , and 0 < TR denote the duration of the green, yellow, and
red lights. At time t = 0 we assume we have a sequence of N cars located at

xk(0) = (k − k0)L1, 1 ≤ k ≤ N,(1.8)

where L1 ≥ L (again L is the minimum allowable auto spacing), and we assume these
cars are all at rest; i.e.,

uk(0) = 0, 1 ≤ k ≤ N.(1.9)

Finally, we assume they are at traffic lights located at x = lI , 1 ≤ I ≤ M , where

(N − k0)L1 < l1 < l2 < · · · < lM .(1.10)

1When k = N , uN = V∞ + αN .
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We further assume that each intersection is of width w > 0 and let

tm = (m− 1)(TG+ TY + TR), m = 1, 2, . . . ,(1.11)

denote the start of the mth light cycle.
During the time interval tm ≤ t ≤ tm + TG all cars satisfy (1.5)–(1.7). At time

ty
def
= tm+TG, the green lights turn yellow, and this will have an effect on the traffic

flow.
We start by describing what happens to the lead car, the one indexed by N , when

it encounters a light at x = l. We assume that

xN (ty) < l.(1.12)

If

xN (ty) + uN (ty)TY ≥ l + w + L,(1.13)

then the lead car will be able to completely clear the intersection if it travels at its
current speed uN (ty). We allow it to clear the intersection by following its standard
dynamics; that is, over the time interval ty ≤ t ≤ tm+1 the Nth car satisfies

dxN
dt

= uN ,(1.14)

where

uN = V∞ + αN(1.15)

and αN ≤ 0 satisfies

ε
dαN
dt

= −αN .(1.16)

Following these dynamics the lead car accelerates through the intersection.
On the other hand, if

xN (ty) + uN (ty)TY < l + w + L,(1.17)

then it will be impossible for the Nth car to clear the intersection during the yellow
phase if it continues to travel at its current speed. If

xN (ty) + uN (ty)(TY + TR) ≤ l,(1.18)

then over the time interval ty ≤ t ≤ tm+1 we require it satisfies the modified dynamics

dxN
dt

= uN and
duN
dt

= 0;(1.19)

i.e., we insist that it travels at its current speed. This strategy avoids the Nth car
accelerating and then possibly having to decelerate as it nears the light.

If (1.17) holds and (1.18) is violated, the lead car will have to slow down and
possibly stop. When it satisfies the additional inequality

xN (ty) + uN (ty)(TY + TR)/2 > l,(1.20)
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the lead car is mandated to satisfy

dxN
dt

= uN and
duN
dt

=




−u2
N (ty)

2(l − xN (ty))
, ty ≤ t ≤ ty +

2(l − xN (ty))

uN (ty)

0, ty +
2(l − xN (ty))

uN (ty)
≤ t ≤ tm+1.

2

(1.21)

This constant deceleration strategy brings the Nth car to rest at x = l at t = ty +
2(l−xN (ty))
uN (ty) ≤ tm+1, and it then sits at the light until t = tm+1.

Finally, when

xN (ty) + uN (ty)(TY + TR) > l and xN (ty) + uN (ty)(TY + TR)/2 ≤ l,(1.22)

the lead car is mandated to satisfy

dxN
dt

= uN (t) and
duN
dt

=
−2(xN (ty) + uN (ty)(TY + TG)− l)

(TY + TG)2

over the whole interval ty ≤ t ≤ tm+1. This strategy brings the car to the light at
x = l at tm+1 with velocity

uN (tm+1) =
2(l − xN (ty))

(TY + TR)
− uN (ty) > 0.(1.23)

We note that if the lead car satisfies (1.17), then the cars with indices k ≤ N − 1
follow their standard dynamics (1.5)–(1.7) over [ty, tm+1] unless they happen to be
influenced by some other light at x = l′ < l.

Having described what happens when the lead car encounters a yellow light at
x = l, we turn our attention to what happens when other cars encounter the same
light. We let kl ≤ N − 1 be the largest integer so that

xkl(ty) < l,(1.24)

and we let pl ≤ kl be the largest integer so that

xpl(ty) + min
pl≤j≤kl

uj(ty)TY < l + w + L.(1.25)

The plth car will be the first one that does not get through the light at x = l.
We first consider the situation when pl < kl. We assume the existence of a number

λ ≥ 1 such that cars travelling with the maximum speed V∞ can safely brake at a

constant deceleration rate a =
−V2
∞

2λL over a road segment of length λL.
We first focus our attention on the situation in which

xpl(ty) < l − λL.(1.26)

2The dynamics described by (1.21) are equivalent to

dxN

dt
=
uN (ty)(l − xN (t))1/2

2(l − xN (ty))1/2
, ty ≤ t ≤ ty +

2(l − xN (ty))

uN (ty)

and

dxN

dt
= 0, ty +

2(l − xN (ty))

uN (ty)
≤ t ≤ tm+1.
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Our basic strategy is to let cars with indices k ≥ pl+1 follow their standard dynamics
(1.5)–(1.7) over ty ≤ t ≤ tm+1. The cars with indices pl + 1 ≤ k ≤ kl will clear

the intersection by tm + TG + TY
def
= tr; i.e., they will satisfy xk(tr) ≥ l + w +

L. This follows from the observation that local spatial minima in the velocity are
nondecreasing in t (for details see (2.79)–(2.81)).

Rules for the plth car. So long as ty ≤ t ≤ tr and xpl(t) < l − λL we let the
plth car follow its standard dynamics (1.5)–(1.7). If there is a first tpl < tr so that
xpl(tpl) = l − λL, then the driver must decide what to do. In the unlikely event that

upl(tpl)(tm+1 − tpl) ≤ λL,(1.27)

then over the interval [tpl , tm+1] the plth car is required to satisfy

dxpl
dt

= min (upl(ty), Upl(t))
def
= upl(t)

and

dUpl
dt

= V ′ (xpl+1 − xpl) (upl+1 − Upl)

+
(V (xpl+1 − xpl)− Upl)

ε

and

Upl(ty) = upl(ty).

(1.28)

On the other hand, if

upl(tpl)(tm+1 − tpl) > λL,(1.29)

then the plth car will have to slow down and possibly stop.
When the plth car satisfies the additional inequality

upl(tpl)(tm+1 − tpl)/2 > λL,(1.30)

the plth car is required to satisfy

dxpl
dt

= min

(
upl(tpl)(l − xpl)

1/2

2(λL)1/2
, Upl

)
def
= upl ,(1.31)

where

dUpl
dt

= V ′(xpl+1 − xpl)(upl+1 − Upl) +
(V(xpl+1 − xpl)− Upl)

ε
(1.32)

and

xpl(tpl) = l − λL and Upl(tpl) = upl(tpl).(1.33)

When (1.31) reduces to

dxpl
dt

=
upl(tpl)(l − xpl)

1/2

2(λL)1/2
def
= vpl ,(1.34)
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we see that

dvpl
dt

= −u2
pl
(tpl)

2λL
≤ − V2

∞
2λL

,(1.35)

and thus we apply this constant braking strategy over tpl ≤ t ≤ tpl +
2λL

upl
(tpl )

and the

strategy xpl(t) = l over tpl +
2λL

upl
(tpl )

≤ t ≤ tm+1.

If instead of (1.30) the plth car satisfies

upl(tpl)(tm+1 − tpl)/2 ≤ λL,(1.36)

the plth car is required to satisfy

dxpl

dt = min
(
upl(tpl) +

2λL−upl
(tpl )(tm+1−tpl )

(tm+1−tpl )2
(t− tpl) , Upl

)
def
= upl , tpl ≤ t ≤ tm+1

(1.37)

and (1.33), and again Upl satisfies (1.32) and (1.33)2.
The dynamics for Upl postulated in (1.28) and (1.32) might seem a bit strange.

What we are insisting is that the plth car must travel no faster than the minimum
of its braking speed and the speed that it would travel at if it disregarded the light
and allowed its velocity to be determined by the car ahead. The latter speed Upl is
computed from the standard dynamics equation (see (1.6), (1.7), (1.7a), and (1.7b)).

If there is no such time tpl < tr so that xpl(tpl) = l − λL, then we know that
xpl(tr) ≤ l− λL. In this situation we replace tpl in (1.27)–(1.37) by tr and the terms
λL in all inequalities and identities by l − xpl(tr).

Finally, if (1.26) does not hold, i.e., if

l − λL ≤ xpl(ty) < l,(1.38)

we set tpl to ty in (1.27)–(1.37) and replace λL in these formulas by l − xpl(ty).
The rules when pl = kl are similarly amended.
The cars with indices pl−1 ≤ k ≤ pl − 1 are required to satisfy their standard

dynamics over [ty, tm+1].
Our first result deals with the model’s consistency; we shall show that for all

t ≥ 0 and all indices, L ≤ (xk+1 − xk)(t) and 0 ≤ uk(t) < V((xk+1 − xk)(t)). We
also have the theorem that no cars run any red lights. With two in-phase lights, the
number of cars through an intersection during the green and yellow phases is, after
a start-up period, a constant. This constant is less than the constant obtained with
models which allow for infinite accelerations, i.e., discrete Lagrangian versions of the
Lighthill–Whitham–Richards model [4, 5, 6, 7].

One surprising observation about the model just described is that the largest
decelerations are not necessarily associated with the cars indexed by pl but rather
cars with indices k ≤ pl − 1 which are forced to slow down because the plth car has
stopped. Equation (1.7a) implies that the latter cars’ decelerations are determined
by the negative velocity gradients uk+1 − uk.

Finally, we note that though we have been quite specific in postulating our stop-
ping rules for the plth car, it would have sufficed to have chosen any rule of the
form

dxpl
dt

= min (vpl , Upl)
def
= upl , tpl ≤ t ≤ tm+1,
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where Upl satisfies

dUpl
dt

= V ′(xpl+1
− xpl)(upl+1

− Upl) + (V(xpl+1
− xpl)− Upl)ε

and Upl(ty) = upl(ty) if pl ≤ N − 1, and

dUN
dt

=
(V∞ − UN )

ε
and UN (ty) = upl(ty)

if pl = N , and where vpl ≥ 0 is chosen so that if

dxpl
dt

= vpl , ty ≤ t ≤ tm+1 and xpl(ty) < l,

then xpl(t) ≤ l, ty ≤ t ≤ tm+1.

2. Model consistency. In this section we turn our attention to the issue of
model consistency. The central issue before us is to show that for 1 ≤ k ≤ N − 1 and
0 ≤ t

L ≤ (xk+1 − xk)(t) and 0 ≤ uk(t) < V((xk+1 − xk)(t))(2.1)

and that for k = N and 0 ≤ t

0 ≤ uN (t) ≤ V∞.(2.2)

We are also interested in knowing that the distinguished cars indexed by pl do

not run the red lights over the intervals tr
def
= (m− 1)(TG+TY +TR)+TG+TY ≤

t ≤ m(TG+ TY + TR)
def
= tm+1 and that the (pl +1)st car clears the intersection by

tr, i.e., satisfies

xpl+1(tr) ≥ l + w + L.(2.3)

Once again x = l is supposed to be the leading edge of the intersection, w the width
of the intersection, and L the length of a car.

There are two natural approaches that one can take to establish the above claims.
The first is to show that the desired conclusions follow directly from the governing
differential equations and initial and constraining conditions while the second is to
show that approximate solutions, generated by numerical discretization, satisfy the
desired consistency results. Noting then that these consistency results are sufficient
to guarantee that the approximate solutions converge (as ∆t → 0) to solutions of
the original model, we are guaranteed that these limiting solutions satisfy the same
consistency results. We adopt the latter procedure here since in the next section we
shall perform computations with the discrete approximating system.

Throughout, ∆t will denote our time step and the quantities (xnk , u
n
k , α

n
k ) will

denote the values of the approximate solutions at tn = n∆t. To keep matters simple
we shall assume that the numbers TG/∆t, TY/∆t, TR/∆t, and ε/∆t are all integers
and we shall assume that ∆t ≤ min (ε, (V ′(L) = maxL≤s V ′(s))−1).

Our first result deals with the traffic flow over the time intervals

tm
def
= (m− 1)(TG+ TY + TR) ≤ tn = n∆t ≤ ty

def
= tm + TG(2.4)
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when all lights are green. Over such intervals we replace (1.5) by

xn+1
k = xnk + unk∆t, 1 ≤ k ≤ N,(2.5)

and this yields

sn+1
k = snk + (unk+1 − unk )∆t, 1 ≤ k ≤ N − 1,(2.6)

where

snk = (xnk+1 − xnk ) and sn+1
k = (xn+1

k+1 − xn+1
k ).(2.7)

The u’s and s’s are related by

unk = V(snk ) + αnk(2.8)

and

un+1
k = V(sn+1

k ) +

(
1− ∆t

ε

)
αnk .(2.9)

These updates hold for indices n satisfying

(m− 1)(TG+ TY + TR)/∆t
def
= nm ≤ n ≤ nm + TG/∆t− 1.(2.10)

Theorem 1. Suppose that

L ≤ snm

k and 0 ≤ unm

k ≤ V(snm

k ), 1 ≤ k ≤ N − 1,(2.11)

and

0 ≤ unm

N ≤ V∞ = lim
s→∞V(s).(2.12)

Then, the same inequalities hold for

nm ≤ n ≤ nm + TG/∆t
def
= ny.(2.13)

Proof. The identity (2.6) implies that if snk ≥ L and unk+1 − unk ≥ 0, then sn+1
k ≥

snk ≥ L. In the situation in which unk+1 − unk < 0, (2.6) implies that

sn+1
k = snk + (unk+1 − αnk − V(snk ))∆t(2.14)

and the natural induction hypotheses αnk ≤ 0, 0 ≤ unk ≤ V(snk ), and snk ≥ L imply
that unk+1−αnk ≥ 0. In the situation in which 0 ≤ unk+1−αnk < V∞ we are guaranteed
a unique s̄nk+1 ∈ [L,∞) satisfying

unk+1 − αnk = V(s̄nk+1),(2.15)

and here (2.14) reduces to

sn+1
k = snk +

(V(s̄nk+1)− V(snk )
)
∆t(2.16)

or

sn+1
k = (1− V ′(s∗)∆t)snk + V ′(s∗)∆ts̄nk(2.17)
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for some s∗ ∈ (min (snk , s̄
n
k+1), max (snk , s̄

n
k+1)). The latter identity, together with

∆tV ′(L) ≤ 1 and min (snk , s̄
n
k+1) ≥ L,(2.18)

yields sn+1
k ≥ L. When unk+1 − unk < 0 and unk+1 − αnk ≥ V∞, the identity (2.14)

implies that

sn+1
k ≥ snk + (V∞ − V(snk ))∆t.(2.19)

The inequality (2.18)1 guarantees that s → s + (V∞ − V(s))∆t is strictly increasing
on [L,∞) and thus (2.19) implies that sn+1

k ≥ L+ V∞∆t ≥ L as desired.
The induction hypothesis αnk ≤ 0 together with ∆t/ε ≤ 1 and (2.9) guarantees

that un+1
k ≤ V(sn+1

k ). What remains to be shown is that un+1
k ≥ 0. To establish this

assertion we combine (2.8) and (2.9) to obtain

un+1
k = V(snk + (unk+1 − unk )∆t) +

(
1− ∆t

ε

)
(unk − V(snk )).

Noting that

V(snk + (unk+1 − unk )∆t) = V(snk ) + V ′(s#)(unk+1 − unk )∆t

for some s# ≥ L, we find that

un+1
k = V ′(s#)∆tunk+1 +

∆t

ε
(V(snk )− unk ) + (1− V ′(s#)∆t)unk .

The last identity, when combined with

∆tV ′(s#) ≤ 1, ∆t/ε ≤ 1, unk ≥ 0, unk+1 ≥ 0, and V(snk )− unk ≥ 0,

yields un+1
k ≥ min (unk , u

n
k+1) ≥ 0 as desired.

We now turn our attention to what happens over the yellow and red phases, i.e.,
when

ty
def
= (m− 1)(TG+ TY + TR) + TG ≤ tn = n∆t < tm+1

def
= m(TG+ TY + TR).

(2.20)

The results of Theorem 1 imply that when n = ny
def
= (m−1)(TG+TY +TR)+TG/∆t

the following inequalities are valid:

L ≤ s
ny

k and 0 < u
ny

k ≤ V(sny

k ), 1 ≤ k ≤ N − 1,(2.21)

and

0 ≤ u
ny

N ≤ V∞ = lim
s→∞V(s).(2.22)

Our next goal is to show that (2.21) and (2.22) hold for indices

ny ≤ n ≤ nm+1
def
= m(TG+ TY + TR).(2.23)

For definiteness we assume the lights are located at l1 < l2 < · · · < lM whereM << N
and that L << lI+1 − lI , 1 ≤ I ≤ M − 1. For 1 ≤ I ≤ M , kI will be the largest
integer less than or equal to N , so that

x
ny

kI
< lI(2.24)
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and pI will be the largest integer less than or equal to kI so that

xny
pI +

(
min

pI≤j≤kI
u
ny

j

)
TY < lI + w + L.(2.25)

It can and does happen that for some I < M

pI = pI+1 = · · · = pM = N.(2.26)

Our first task is to establish the desired inequalities for indices (pI−1 + 1) ≤ k ≤
pI = N for ny ≤ n ≤ nm+1. This is the situation that is obtained when the lead car,
indexed by N , has passed the (I − 1)st light but not the Ith light.

The rules laid out in (1.17)–(1.23) imply that xN (·) satisfies
dxN
dt

= min (vN , UN )
def
= uN , ty ≤ t ≤ tm+1,(2.27)

where UN satisfies

dUN
dt

=
(V∞ − UN )

ε
and UN (ty) = uN (ty),(2.28)

and vN (·) ≥ 0 is chosen so that if xN (·) satisfies
dxN
dt

= vN and xN (ty) < lI ,(2.29)

then xN (tm+1) ≤ lI . We replace this system with its discrete analogue,

xn+1
N = xnN + unN∆t, ny ≤ n ≤ nm+1 − 1,(2.30)

Un+1
N = V∞ +

(
1− ∆t

ε

)
(Un

N − V∞) , ny ≤ n ≤ nm+1 − 1,(2.31)

and these are solved subject to the initial conditions

x
ny

N < lI and 0 ≤ u
ny

N ≤ U
ny

N ≤ V∞.(2.32)

The discrete velocity unN is given by

unN = min (vnN , U
n
N ),(2.33)

and vnN ≥ 0 is a discretization of vN with the property that if

xn+1
N = xnN + vnN∆t and x

ny

N < lI(2.34)

for ny ≤ n ≤ nm+1 − 1, then

x
nm+1

N ≤ lI .(2.35)

The identities (2.31), (2.32)2, and (2.33) guarantee that

0 ≤ unN ≤ V∞, ny ≤ n ≤ nm+1.(2.36)
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If we assume that (pI−1 + 1) ≤ N − 1, then the (N − 1)st car will follow the
standard dynamics (1.5)–(1.7) on ty ≤ t ≤ tm+1, and thus for ny ≤ n ≤ nm+1 − 1 we
have the approximating discrete system:

xn+1
N−1 = xnN−1 + unN−1∆t, unN−1 = V(snN−1) + αnN−1,

and un+1
N−1 = V(sn+1

N−1) +
(
1− ∆t

ε

)
αnN−1,

(2.37)

where

snN−1 = xnN − xnN−1 and sn+1
N−1 = xn+1

N − xn+1
N−1 = snN−1 + (unN − unN−1)∆t.(2.38)

The inequalities (2.21) and (2.22) imply that α
ny

N−1 ≤ 0, α
ny

N ≤ 0, and s
ny

N−1 ≥ L.
The identities (2.37) and (2.38) imply that

sn+1
N−1 = snN−1 +

(
unN −

(
1− ∆t

ε

)n
α
ny

N−1 − V(snN−1)

)
∆t,(2.39)

and (2.37)2 and (2.39), together with

L ≤ s
ny

N−1, α
ny

N−1 ≤ 0, unN ≥ 0, ∆tV ′(L) ≤ 1, and ∆t ≤ ε(2.40)

and the arguments used to establish Theorem 1, imply that

L ≤ snN−1, ny ≤ n ≤ nm+1.(2.41)

The arguments used to establish Theorem 1 along with (2.40) and (2.41) also yield
0 ≤ unN−1 ≤ V(snN−1), ny ≤ n ≤ nm+1. An induction on k for indices (pI−1 + 1) ≤ k
then yields

L ≤ snk = (xnk+1 − xnk ) and 0 ≤ unk ≤ V(snk ), ny ≤ n ≤ nm+1.(2.42)

This situation when pI−1 = N − 1 is handled similarly, provided that one adopts
the proper first order integration scheme for UN−1. The governing equation for UN−1

is

dUN−1

dt
= V ′(xN − xN−1)(uN − UN−1) +

(V(xN − xN−1)− UN−1)

ε
,(2.43)

where

d(xN − xN−1)

dt
= uN − uN−1,(2.44)

and vN−1 ≥ 0 is chosen so that if

dxN
dt

= vN−1 and xN−1(ty) < lI ,(2.45)

then

xN−1(tm+1) ≤ lI .(2.46)

Additionally

uN−1
def
= min (vN−1, UN−1).(2.47)
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The integration scheme we use is

Un+1
N−1 = V(snN−1 + (unN − Un

N−1)∆t) +

(
1− ∆t

ε

)
(Un

N−1 − V(snN−1)),
3(2.48)

where

snN−1 = xnN − xnN−1.(2.49)

To complete the proof one does an induction on the index I, first replacing I by
I−1. One knows that the car with index (pI−1+1) has a velocity un(pI−1+1) satisfying

0 ≤ un(pI−1+1) ≤ V(snpI−1+1), ny ≤ n ≤ nm+1.(2.50)

We first focus on the pI−1st car and note that

dxpI−1

dt
= min (vpI−1

, UpI−1
)
def
= upI−1

,(2.51)

and

dspI−1

dt
= (u(pI−1+1) − upI−1

).(2.52)

The rules laid out in (1.7)–(1.23) imply that

dUpI−1

dt
= V ′(s(pI−1))(u(pI−1+1) − UpI−1

) +
(V(s(pI−1+1))− UpI−1

)

ε
(2.53)

and that the velocity field 0 ≤ vpI−1
is chosen so that if xpI−1

evolves as

dxpI−1

dt
= vpI−1

and xpI−1
(ty) < lI ,(2.54)

then

xpI−1
(tm+1) ≤ lI−1.(2.55)

The discretization we apply to the pI−1st car is

xn+1
pI−1

= xnpI−1
+ unpI−1

∆t and sn+1
pI−1

= snpI−1
+
(
un(pI−1+1) − unpI−1

)
∆t(2.56)

for ny ≤ n ≤ nm+1 − 1. Moreover, for some ny ≤ n0 ≤ ny + TY/∆t− 1

un+1
pI−1

= V(sn+1
pI−1

) +

(
1− ∆t

ε

)
(unpI−1

− V(snpI−1
))(2.57)

and

Un+1
pI−1

= un+1
pI−1

,(2.58)

3This scheme is essentially a first order Euler scheme applied to (2.43). The scheme implies that

Un+1
N−1 = UnN−1 + ∆ tV ′ (snN−1

) (
unN − UnN−1

)
+

∆t

ε

(V (snN−1

)− UnN−1

)
+ 0(∆t)2.
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whereas for n0 ≤ n ≤ nm+1 − 1

unpI−1
= min (vnpI−1

, Un
pI−1

),(2.59)

Un+1
pI−1

= V(snpI−1
+ (un(pI−1+1) − Un

pI−1
)∆t) +

(
1− ∆t

ε

)
(Un

pI−1
− V(snpI−1

)), 4(2.60)

and

Un0
pI−1

= un0
pI−1

and xn0
pI−1

< lI .(2.61)

Finally vnpI−1
is chosen so that if

xn+1
pI−1

= xnpI−1
+ vnpI−1

∆t, n0 ≤ n ≤ nm+1 − 1,(2.62)

then

xnm+1
pI−1

≤ lI .(2.63)

The arguments employed to establish Theorem 1 guarantee that for ny ≤ n ≤ n0

L ≤ snpI−1
and 0 ≤ unpI−1

≤ V(snpI−1
)(2.64)

and that for n = n0

0 ≤ un0
pI−1

≤ Un0
pI−1

≤ V(sn0
pI−1

).(2.65)

Lemma 1. For n0 ≤ n ≤ nm+1

L ≤ snpI−1
and 0 ≤ unpI−1

≤ Un
pI−1

≤ V(snpI−1
).(2.66)

Proof. The identities (2.56) and (2.60) imply that

V(sn+1
pI−1

)− Un+1
pI−1

= V(snpI−1
+ (un(pI−1+1) − unpI−1

)∆t)

−V(snpI−1
+ (un(pI−1+1) − Un

pI−1
)∆t)

+

(
1− ∆t

ε

)
(V(snpI−1

)− Un
pI−1

)

= ∆tV ′(s#)
(
Un
pI−1

− unpI−1

)
+

(
1− ∆t

ε

)
(V(snpI−1

)− Un
pI−1

)

(2.67)

for some s# ≥ min (snpI−1
+ (un(pI−1+1) − unpI−1

)∆t, snpI−1
+ (un(pI−1+1) − Un

pI−1
)∆t). If

we now make the induction hypotheses that

L ≤ snpI−1
and 0 ≤ Un

pI−1
≤ V(snpI−1

),(2.68)

then (2.59) implies that

0 ≤ unpI−1
≤ Un

pI−1
≤ V(snpI−1

)(2.69)

4See Footnote 3.



162 ARGALL, CHELESHKIN, GREENBERG, HINDE, AND LIN

and (2.69) and (2.42) with k = pI−1 + 1 implies that

min (snpI−1
+ (un(pI−1+1) − unpI−1

)∆t, snpI−1
+ (un(pI−1+1) − Un

pI−1
)∆t)

≥ snpI−1
− V(snpI−1

)∆t
def
= F(snpI−1

).
(2.70)

This constraint ∆tV ′(s) ≤ 1, L ≤ s guarantees F(·) in nondecreasing on L ≤ s, and
this fact, together with F(L) = L, guarantees that sn+1

pI−1
and s# are both greater than

or equal to L. Moreover, (2.67) also yields Un+1
pI−1

≤ V(snpI−1
). The defining relation

(2.60) and (2.70) and un(pI−1+1) ≥ 0 also implies that

Un+1
pI−1

= ∆tV ′(s∗)un(pI−1+1) + (1−∆tV ′(s∗))Un
pI−1

+
∆t

ε
(V(snpI−1

)− Un
pI−1

)(2.71)

for some s∗ ≥ L and (2.71) guarantees that Un+1
pI−1

≥ 0. The last inequality and (2.59),
with n+ 1, guarantees that

0 ≤ un+1
pI−1

≤ Un+1
pI−1

≤ V(sn+1
pI−1

),(2.72)

and this completes the proof of Lemma 1.
Once again an induction on k for indices (pI−2 + 1) ≤ k yields

L ≤ snk = (xnk+1 − xnk ) and 0 ≤ unk ≤ V(snk )(2.73)

and additionally yields the following theorem.
Theorem 2. For ny ≤ n ≤ nm+1 = m(TG+ TY + TR)

L ≤ snk and 0 ≤ unk ≤ V(snk ), 1 ≤ k ≤ N − 1,(2.74)

and

0 ≤ unN ≤ V∞ = lim
s→∞V(s).(2.75)

Moreover, for 1 ≤ I ≤ M

xnm+1
pI ≤ lI .(2.76)

Theorems 1 and 2 go a long way towards establishing the consistency of our
model. What remains to be shown is that cars with index pI + 1 clear the light, i.e.,
that they satisfy

x
ny+TY

∆t

(pI+1) ≥ lI + w + L.(2.77)

The reader should recall that the cars with these indices satisfy

x
ny

(pI+1)
< lI and x

ny

(pI+1) +

(
min u

ny

j
(pI+1)≤j≤kI

)
TY ≥ lI + w + L(2.78)

and that cars with indices (pI+1) ≤ k ≤ kI evolve by the standard discrete dynamics
for ny ≤ n ≤ ny + TY/∆t− 1; i.e.,

xn+1
k = xnk + unk∆t and unk = V(snk ) +

(
1− ∆t

ε

)n−ny

(u
ny

k − V(sny )),
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where

0 ≤ u
ny

k ≤ V(sny

k ) and L ≤ snk .

It is a straightforward calculation to show that cars with these indices also satisfy

un+1
k = V(snk + (unk+1 − unk )∆t) +

(
1− ∆t

ε

)
(unk − V(snk ))

= ∆tV ′(s#)unk+1 + (1−∆tV ′(s#))unk +
∆t

ε
(V(snk )− unk )

from some s# ≥ L, and that this identity, along with

∆tV ′(L) ≤ 1, ∆t ≤ ε, and 0 ≤ V(snk )− unk

implies

un+1
k ≥ min (unk , u

n
k+1).(2.79)

We now note that at t = ty (equivalently n = ny) the cars with indices pI ≤ k
typically satisfy

min
pI≤j≤kI

u
ny

j = u
ny

k0
, where (pI + 1) ≤ k0 ≤ kI ,(2.80)

and

u
ny

k+1 − u
ny

k ≥ 0, k0 ≤ k ≤ k#,(2.81)

where k# is greater than kI . Moreover, if the spacing of the lights is sufficiently
large, then the spatial monotonicity of the velocities is preserved for ny ≤ n ≤ ny +
TY/∆t and k0 ≤ k ≤ k#. When this is the case, the inequalities (2.78)–(2.81)
guarantee (2.77).

3. Simulations. In this section we present some simulations of the system out-
lined in section 1. We chose

V∞ = 50f/s, L = 20f, L1 = 25f, λ = 5, ε = 5s and N = 600.

Our maximal velocity was given by

V(s) = V∞

(
1− L

s

)
, L ≤ s.

We restrict our attention to a roadway with two in-phase lights located at

l1 = 1 mile = 5280f and l2 = 2 miles = 10, 560f,

and we assume that the width of each intersection is

w = 20f.

Finally, the durations of the green, yellow, and red lights were chosen to be

TG = 25s, TY = 5s, and TR = 30s.
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Fig. 1.

Our initial data are taken to be

xk(0) = 25(k − 400) and uk(0) = 0, 1 ≤ k ≤ 600.

Snapshots of the solution are shown at times 30, 147, 151, 179, and 191 seconds
in Figures 1–5, respectively, and a film may be seen at http://www.math.cmu.edu/
users/plin/21380/traffic.html.

In the first frame of each snapshot we plot the auto velocity uk (in miles/hour)
versus current auto position xk (in miles), and in the second frame we plot the em-
pirical density ρk = 1

xk+1−xk
(in cars/mile) versus current auto position xk (in miles).

After an initial startup period we are able to get 18 cars through each light during
each green-yellow-red cycle. This number should be contrasted with what one obtains
in the singular limit, where ε = 0+, TY = 0s, TG = 30s, w = 0f , and λ = 5. In this
limit

uk ≡ V∞

(
1− L

xk+1 − xk

)
,

and if, perchance, we have a car satisfying

xk((tm + TG)−) = lI , I = 1 or 2,

and

uk((tm + TG)−) > 0,
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Fig. 2.

Fig. 3.
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Fig. 4.

Fig. 5.
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then for times tm + TG < t ≤ tm + TG+ TR,

xk(t) = l and uk(t) ≡ 0.

For this singular model we declare a car through the light at l if xk(ty) > l. The
singular model has the potential for infinite accelerations. In steady state the singular
model allows us to get 20 cars through an intersection during each green-red cycle.

We note that our choice of which car must stop is made at times ty = tm + TG
(when a green light turns yellow) and is conservative when the car chosen to stop
satisfies xpl(ty) < l−λL. A more aggressive strategy would have been to allow the plth
car to follow its standard dynamics until time tpl < ty +TY , where xpl(tpl) = l−λL,
and then reevaluate whether the plth car can get through the light in the remaining
time ty + TY − tpl , i.e., check whether

xpl(tpl) + min
pl≤k≤kl(tpl )

uk(tpl)(ty + TY − tpl) ≥ l + w + L.

If the latter inequality holds, the aggressive strategy would allow the plth car through
and stop the (pl − 1)st car. We avoided this strategy because it did not seem to be
worth the effort to get one more car through the intersection during the green-yellow-
red cycle.

The attentive reader will by now realize that once we have determined which
car will slow down or stop at a given light the particular braking strategy adopted
is immaterial; all that is required is that the velocity associated with the braking
strategy, vpl , be such that if xpl satisfies

dxpl
dt

= vpl and xpl(ty) < l,

then xpl(tm+1) ≤ l. We adopted constant braking strategies here because they were
simple and realistic.

4. Concluding remarks. There are some obvious connections between the dis-
crete model studied in this paper and the continuum or macroscopic models of Aw,
Klar, Materne, and Rascle [3].

If one assumes that the maximal velocity V(·) introduced in (1.1)–(1.3) is actually
a function of γ = s

L defined on γ = s
L ≥ 1, i.e.,

V(s) = W
( s
L

)
,(4.1)

then (1.1) and (1.7) take the form

dxk
dt

= uk and
duk
dt

= W ′(γk)
(
uk+1 − uk

L

)
+

(W (γk)− uk)

ε
,(4.2)

where again

γk =
(xk+1 − xk)

L
(4.3)

and

dγk
dt

=
uk+1 − uk

L
.(4.4)
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The connection between the follow-the-leader system (4.1)–(4.4) is now clear. One
introduces reference coordinates

Xk = kL,(4.5)

lets

X (Xk, t) = xk(t) and u(Xk, t) = uk(t),(4.6)

and interprets γk and uk+1−uk

L as the downwind finite difference approximations to
∂X
∂X and ∂u

∂X at the reference point Xk; i.e.,

∂X
∂X

(Xk, t) = γk =
xk+1 − xk

L
and

∂U

∂X
(Xk, t) =

uk+1 − uk
L

.(4.7)

With these identifications one obtains, at least formally, the Lagrangian traffic equa-
tions

∂X
∂t

(X, t) = u(X, t) and
∂X
∂X

= γ(X, t),(4.8)

where

∂γ

∂t
=

∂u

∂X
and

∂u

∂t
= W ′(γ)

∂u

∂X
+

(W (γ)− u)

ε
.(4.9)

This correspondence is faithful if one restricts one’s attention to initial value problems
exclusively. We have not seen how to incorporate the traffic light problem into a
continuum format.
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AN ASYMPTOTIC FINITE DEFORMATION ANALYSIS
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Abstract. The nonlinearly elastic Boussinesq problem is to find the deformation produced in
a homogeneous, isotropic, elastic half-space by a point force normal to the undeformed boundary,
using the exact equations of elasticity. For this core problem of elasticity and engineering, the 1885
linear elasticity solution of Boussinesq is still used in a variety of applications. In [SIAM J. Appl.
Math., 62 (2001), pp. 107–128], we addressed the case of a tensile point load under the constraint of
incompressible finite elasticity. Here we consider an analogous asymptotic analysis of this problem
within the context of compressible finite elasticity. Asymptotic tests are developed to determine
whether an isotropic hyperelastic material can support a finite deflection under a tensile point load.
The results are then applied to a variety of particular constitutive models for compressible nonlinearly
elastic materials. It is found that, for many of the well-known strain energy models for compressible
hyperelastic materials proposed in the literature, a tensile point load cannot be supported. For
models which may sustain a tensile point load, we determine the remaining equations and conditions
for the asymptotic solution, and numerically compute this solution for a particular case.

Key words. point load, concentrated load, Boussinesq, asymptotic analysis, compressible hy-
perelasticity, material formulation of equilibrium, conservation laws

AMS subject classifications. 73G05, 73C50, 73V99, 35Q72, 35B40

PII. S0036139901394955

1. Introduction. In this paper, we continue to study the axisymmetric defor-
mation of an isotropic, nonlinearly elastic half-space subjected to a tensile point force
normal to its undeformed boundary. The present authors have considered this problem
in the context of incompressible hyperelasticity [1] and here treat the unconstrained
problem. In 1885, Boussinesq solved the analogous problem within the linear the-
ory of elasticity, determining the following nondimensional solution to the linearized
equations in the case of a unit point load (see, e.g., [2] for a discussion of the linear
Boussinesq problem and solution):

r(R,Z) = R− (1− 2ν)

4πR

[
Z√

R2 + Z2
− 1 +

1

(1− 2ν)

R2Z√
(R2 + Z2)3

]
,(1)

z(R,Z) = Z − 1

4π

[
Z2√

(R2 + Z2)3
+

2(1− ν)√
R2 + Z2

]
.(2)

As discussed in [3], the classical Boussinesq solution is deficient in that it not only
predicts an infinite displacement under the point load, thereby violating the basic
premise of linear elasticity, but also implies, in the case of compressive loads, that
some particles on the line of action of the load pass through one another. To rectify
these fundamental physical defects, Simmonds and Warne [3] treat the concentrated
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tensile load problem posed within the nonlinear theory of elastostatics and also further
study additional interesting aspects of this core problem. In [3], the authors invoke
two hypotheses (H1 and H2), which describe the role played by (1), (2) in the context
of the fully nonlinear, exact formulation and provide for unique asymptotic solutions
near the point load. We shall again adopt these hypotheses as we did in [1], and list
them below:

H1: As the dimensionless distance from the point load grows, the solution(s) of the
nonlinear Boussinesq problem approaches the solution of the linear Boussinesq
problem.

H2: The strain-energy density is bounded everywhere except at the point load;
the displacements are bounded everywhere.

In [3], Simmonds and Warne use the principle of stationary potential energy to
derive the associated Euler equations from a variational formulation, and then employ
known conservation laws of elastostatics [4] and a third hypothesis (H3), successfully
used by Knowles and Sternberg [5, 6] for asymptotic analysis of the finite-deformation
elastostatic field near a crack tip. In [3] it is shown that the special Blatz–Ko material
cannot support a point load and that the generalized neo-Hookean material considered
by Knowles [7] with dimensionless stiffening parameter k can support a finite deflection
under a point load provided that the material is sufficiently stiffer (k > 3

2 ) than the
conventional neo-Hookean material (k = 1).

In [1], we address the nonlinearly elastic Boussinesq problem using a material for-
mulation of the governing equations in terms of nominal stresses. Upon invoking the
hypotheses which proved useful in [3], simple criteria to determine if a hyperelastic
material can support a point load are developed in [1] for incompressible isotropic ma-
terials, and the results are then applied to a variety of models in the literature. There
have been very few works considering the nonlinear Boussinesq problem. The related
problem of a tensile concentrated load acting on a cone composed of a particular com-
pressible hyperelastic material proposed by Gao has been treated asymptotically by
Gao and Liu [8]. In [3], a case-by-case asymptotic analysis of the governing equations
was carried out, and there it was noted that much remains to be done for this problem,
including determination of criteria of the type established in [1]. Thus, in this paper,
we consider the corresponding problem to that considered in [1] for compressible fi-
nite elasticity and establish, in this context, asymptotic tests which allow for a much
simpler way to determine whether a compressible hyperelastic material can support
a finite deflection under a point load. In subsequent work, we shall similarly address
the even more complex problem of an inward (compressive) point load.

In section 2, we briefly review our material formulation of this traction boundary-
value problem (developed in [1]) which, in the authors’ view, sets up this problem in a
rather tractable and explicable form, and then give the governing equations of equilib-
rium in terms of nominal stress components. Section 3 considers hyperelasticity and
restates the basic boundary-value problem for compressible nonlinearly elastic mate-
rials upon using a representation for the strain energy which proves more convenient
than the standard principal isotropic invariant expression. In section 4, we exploit
our material formulation of this problem together with several conservation laws for
nonlinear elastostatics, and upon linearizing and invoking H1 as in [1], implications
of the linear solution (1), (2) for the conservation integrals are obtained. In section 5,
the development and use of simple asymptotic tests for compressible materials is pre-
sented, and many of the strain-energy density functions proposed in the literature for
compressible hyperelastic material models are tested for the ability to support a finite
deflection under tensile point load.
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2. Problem formulation. We consider, from the outset, nondimensionalized
quantities (see, e.g., [3]), where the position vector x in the deformed configuration of
the body has cylindrical polar coordinates (r, θ, z) and the position vector X in the
reference configuration, the half-space defined by Z ≥ 0, can be described in terms
of cylindrical polar coordinates (R,Θ, Z) or spherical polars (ξ,Φ,Θ). Our interest is
thus in axisymmetric deformation fields given by

r = r(R,Z) or r = r(ξ,Φ),(3)

θ = Θ,(4)

z = z(R,Z) or z = z(ξ,Φ),(5)

where the orthonormal bases (ER,EΘ,EZ) or (Eξ, EΦ, EΘ) in the reference configu-
ration are such that

ER = cosΘEX + sinΘEY , EΘ = − sinΘEX + cosΘEY

and

Eξ = sinΦER + cosΦEZ , EΦ = cosΦER − sinΦEZ ,

respectively, and R = ξ sinΦ, Z = ξ cosΦ. In the deformed configuration, we thus
have orthonormal bases (er, eθ, ez) with

er = cos θex + sin θey, eθ = − sin θex + cos θey,

and x = rer + zez. In the above, (EX ,EY ,EZ) and (ex, ey, ez) are orthonormal
Cartesian bases for the reference and deformed configurations, respectively.

The corresponding deformation gradient tensor F referred to the appropriate
right-handed coordinate system is then given by either

F =



r,R 0 r,Z

0
r

R
0

z,R 0 z,Z


 or F =



r,ξ z,ξ 0

0 0
r

ξ sinΦ
1

ξ
r,Φ

1

ξ
z,Φ 0


 ,(6)

where here and elsewhere a comma denotes differentiation.
The point load is applied via a dimensionless tensile concentrated load normal

to the surface Z = 0, and thus the dimensionless applied surface traction vector in a
cylindrical basis is given by

s(R) =
−δ(R)
2πR

ez on Z = 0.(7)

This implies a boundary condition for the nominal stress tensor S (= (detF)F−1T;
see, e.g., Ogden [9]) of the form

s = STN = ST (−EZ)

= −SZrer − SZzez,

as the component forms of S are similar to those of F in that they contain the same
null components. Thus, the boundary conditions at Z = 0 in terms of components of
the nominal stress tensor referred to a cylindrical polar basis are

SZr = 0 and SZz =
δ(R)

2πR
on Z = 0.(8)
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As determined in [1], the equations of equilibrium DivS ≡ ∇ · S = 0 governing
deformation fields of the type (3)2, (4), (5)2, where S, represented in a mixed basis,
takes the form

S = SξrEξ ⊗ er + SξzEξ ⊗ ez + SΦrEΦ ⊗ er + SΦzEΦ ⊗ ez + SΘθEΘ ⊗ eθ

and ∇ is the usual spherical gradient operator, reduce to the two equations

sinΦ(ξ2Sξr),ξ +ξ(sinΦSΦr),Φ −ξSΘθ = 0(9)

and

sinΦ(ξ2Sξz),ξ +ξ(sinΦSΦz),Φ = 0.(10)

Equation (10) can be written in divergence form and implies the existence of a function
v(ξ,Φ) such that

v,Φ = ξ2 sinΦSξz and − v,ξ = ξ sinΦSΦz,(11)

while regularity requirements at the origin ξ = 0 and along the axis of symmetry
Φ = 0 give

v(0+,Φ) = 0 and v(ξ, 0+) = 0.(12)

Also, converting the boundary condition (8)1, we obtain

cosΦSξr − sinΦSΦr = 0 at Φ =
π

2
,(13)

⇒ SΦr = 0 at Φ =
π

2
, ξ > 0.(14)

The implications of the boundary condition (8)2 will be considered in section 4.

3. Hyperelasticity, equilibrium equations, and boundary conditions.
We now consider the implications of hyperelasticity and thus assume the existence of
a (dimensionless) stored-energy density function W (F) such that

S =
∂W

∂F
and Sij =

∂W

∂Fji
.(15)

Then the equilibrium equations (9) and (11) become

sinΦ(ξ2W,(r,ξ) ),ξ +ξ
2(sinΦW,(r,Φ) ),Φ −ξ2 sinΦW,r = 0(16)

and

v,Φ = ξ2 sinΦW,(z,ξ) and − v,ξ = ξ2 sinΦW,(z,Φ) ,(17)

recovering the Euler equations derived in [3] (see [3, (18) and (24)]).
For isotropic hyperelastic materials, the stored-energy function is such that

W = W (I1, I2, I3),

where I1, I2, I3 are the standard principal isotropic invariants of the left and right
Cauchy–Green deformation tensors FFT and FTF, respectively. We note that the
usual normalization conditions,

W (3, 3, 1) = 0 and

(
∂W

∂I1
+

2∂W

∂I2
+
∂W

∂I3

)∣∣∣∣
I1=I2=3,I3=1

= 0,
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require that both the strain energy and the stress, respectively, vanish in the reference
configuration. Upon computing the invariants I1, I2, I3 with F given by (6)2, it is
convenient, as in [1] and [3], to use the representation

I1 = A+ C,(18)

I2 = AC +B2,(19)

I3 = B2C,(20)

where

A = r,2ξ +z,
2
ξ +ξ

−2(r,2Φ +z,2Φ ),(21)

B = ξ−1(r,Φ z,ξ −r,ξ z,Φ ),(22)

C = (ξ sinΦ)−2r2.(23)

We consider a general nondimensionalized representation of the strain-energy den-
sity function for compressible isotropic hyperelastic materials given by

W = W (A,B,C),(24)

where here and elsewhere we shall neglect to introduce a new symbol for W on the
right-hand side for ease of notation. Then the equilibrium equations (16) and (17)
and the boundary condition (14) become

sinΦ(2ξ2r,ξWA − ξz,Φ WB),ξ +[(2r,Φ WA + ξz,ξWB) sinΦ],Φ −2r cscΦWC = 0,(25)

v,Φ = sinΦ(2ξ2z,ξWA + ξr,Φ WB), −v,ξ = sinΦ(2z,Φ WA − ξr,ξWB),(26)

and

2r,Φ WA + ξz,ξWB = 0 at Φ = π
2 , ξ > 0,(27)

respectively, where here and subsequently WA ≡ ∂W
∂A , and similarly for WB , WC .

4. Conservation laws and implications of the linearly elastic Boussinesq
problem. We next consider three integral identities which have proven useful in the
asymptotic analyses carried out in [1] and [3] for this problem. The first, a direct
application of the divergence theorem∫

∂Ω

STN dA =

∫
Ω

DivSdV

and equilibrium (DivS = 0), states that∫
∂Ω

STNdA = 0,(28)

where here and subsequently we take Ω to be the hemisphere of radius ξ = a which
is centered at the source, and thus the unit outward normal to the top surface of
the hemisphere is N = −EZ , while the unit outward normal to the lateral surface is
N = Eξ = sinΦER + cosΦEZ . Thus, as in [1], the above along with (8)2 yields

1 = 2πa2

∫ π
2

0

Sξz sinΦdΦ,(29)



174 DEBRA POLIGNONE WARNE AND PAUL G. WARNE

which expresses, in dimensionless form, overall force equilibrium. As before, (11)1,
(12)2, and (29) further imply that

v
(
ξ,
π

2

)
=

1

2π
at ξ = a.(30)

The second conservation law, related to Eshelby’s energy-momentum tensor, is
derived from an application of the divergence theorem to the tensor W I−SF. As the
divergence of this tensor also vanishes (see Chadwick [4]), we obtain∫

∂Ω

(W I− SF)N dA = 0,(31)

which, as shown in [1], results in∫ a

0

WRdR− 1

2π
z,Z (R = 0, Z = 0)

=

∫ π
2

0

[
cosΦW + Sξr

(
sinΦ

a
r,Φ − cosΦr,ξ

)

+ Sξz

(
sinΦ

a
z,Φ − cosΦz,ξ

)]
a2 sinΦdΦ.

(32)

The third relation we shall use is the integral identity

3

∫
Ω

WdV =

∫
∂Ω

[WX ·N+ (STN) · (x− FX)]dA,(33)

which is contained among conservation laws of elastostatics derived by Chadwick [4]
from the energy-momentum tensor used above. Specializing to the problem under
consideration here, we recall from [1] that this determines the relation

3

∫ a

0

∫ π
2

0

Wξ2 sinΦdξdΦ+
1

2π
z(R = 0, Z = 0)

= a2

∫ π
2

0

[aW + Sξr(r − ar,ξ ) + Sξz(z − az,ξ )] sinΦdΦ.

(34)

To conclude this section, we restate the implications of the linearly elastic Boussi-
nesq problem solution (1), (2) for this problem. The solution (1), (2) can be repre-
sented as

r(ξ,Φ) = ξ sinΦ +
1

4πξ
[(1− 2ν) cscΦ(1− cosΦ)− sinΦ cosΦ],

z(ξ,Φ) = ξ cosΦ +
1

4πξ
[2(ν − 1)− cos2 Φ].

Invoking H1 and letting a −→ ∞, we have the following asymptotic results for
the terms contained in the above conservation laws:

W −→ O(a−4),(35)

S −→ O(a−2),(36)

(r − ξr,ξ )|ξ=a −→ O(a−1),(37)
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(z − ξz,ξ )|ξ=a −→ O(a−1),(38) (
sinΦ

ξ
r,Φ − cosΦr,ξ

)
|ξ=a −→ O(a−2),(39) (

sinΦ

ξ
z,Φ − cosΦz,ξ

)
|ξ=a −→ −1 +O(a−2).(40)

On converting the conservation law results (32) and (34) to spherical representations
in the reference configuration, letting a −→ ∞, and employing the above, we obtain

0 < 2π

∫ ∞

0

W |Φ=π
2
ξdξ + 1 = z,ξ (0

+, 0)(41)

and

6π

∫ ∞

0

∫ π
2

0

Wξ2 sinΦdξdΦ = −z(0+, 0),(42)

respectively. The results (41) and (42), which relate the deflection of the half-space
and its partial derivative at the point of application of the load to the stored-energy
function, will be useful (as in [1, 3]) in the asymptotic analysis to follow.

5. Asymptotics. We now adopt a third hypothesis (H3) successfully used pre-
viously for asymptotic analyses of problems involving singularities in finite elasticity
(see [1, 3, 5, 6]):

H3: The unknowns r, z, and v have the following asymptotic forms as ξ −→ 0:

r(ξ,Φ) = ξαF (Φ) + o(ξα) with F (0) = 0, F (Φ) > 0 for 0 < Φ ≤ π
2 ,(43)

z(ξ,Φ) = z(0+, 0) + ξβG(Φ) + o(ξβ), G(0) 
= 0,(44)

v(ξ,Φ) = ξδI(Φ) + o(ξδ), I(Φ) 
≡ 0.(45)

Partial derivatives also have analogous asymptotic forms.
As discussed in [3], the above restrictions on F ensure that particles on the z-axis

remain there and that particles do not pass through the z-axis, while the restriction
on G(0) follows from (41). Additionally, the exponents in (43)–(45) must be such that

α > 0,(46)

β > 0,(47)

β ≤ 1,(48)

δ = 0.(49)

These restrictions result from requiring no cavity to form beneath the point load, a
finite deflection under the point load, (41), and (30), respectively.

Following the development of [1, 3], we define for brevity

σ(x) =

{
1, x ≥ 0,

0, x < 0,
(50)

ω = min{α, β},(51)

and thus from (21)–(23) and the above, we have that, as ξ −→ 0+,

A −→ ξ2(ω−1)Ā(F, F ′, G,G′),(52)
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B −→ ξα+β−2B̄(F, F ′, G,G′),(53)

C −→ ξ2(α−1)F 2 csc2 Φ,(54)

where Ā and B̄ are defined for convenience as

Ā ≡ σ(β − α)[α2F 2 + F ′2] + σ(α− β)[β2G2 +G′2],(55)

B̄ ≡ βF ′G− αFG′ 
≡ 0(56)

and the final restriction on B̄ is necessary to preclude the unacceptable conclusion that
F ≡ 0. Similarly to [1], we consider the asymptotic forms for the partial derivatives
of a strain energy function W (A,B,C), given generally as

WA −→ ξn(α,β)N(F, F ′, G,G′, sinΦ),(57)

WB −→ ξm(α,β)M(F, F ′, G,G′, sinΦ),(58)

WC −→ ξp(α,β)P (F, F ′, G,G′, sinΦ),(59)

where m, n, and p are functions of α and β and M , N , and P are functions of the
arguments shown.

5.1. Asymptotic tests: Derivation. We consider now general compressible
hyperelastic materials and derive in what follows some simple asymptotic tests on
the form of its stored energy to determine whether such a material can support a
tensile point load. In section 5.2, we apply our tests to a variety of well-known
material models. We remind the reader that the equilibrium equations and boundary
condition for this problem are given by (25)–(27), respectively. We now consider the
asymptotic implications of these equations.

On substituting (43)–(45) and (57)–(59) into (25), differentiating, and collecting
like powers of ξ, we obtain the following asymptotic form of the equilibrium equa-
tion (25):

2ξn+α[α(n+ α+ 1) sinΦFN + (sinΦF ′N)′]− 2ξp+α cscΦFP

+ ξm+β [(β sinΦGM)′ − (m+ β + 1) sinΦG′M ] = 0.
(60)

Next, substituting from (43)–(45), the asymptotic forms of (26) are

I ′ = (2βξn+β+1GN + ξm+α+1F ′M) sinΦ(61)

and

0 = 2ξn+βG′N − αξm+αFM,(62)

respectively. Finally, the boundary condition (27) becomes

2ξn+αF ′N + βξm+βGM = 0 at Φ = π
2 , ξ > 0.(63)

In addition, the Jacobian

J = detF = I
1
2
3

for the deformation of concern here is given by the above, (20), (22), and (23) as

J =
r

ξ2 sinΦ
(r,Φ z,ξ −r,ξ z,Φ ).(64)
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On substituting from (43) and (44), we have that asymptotically

J −→ ξ2α+β−3F (βF ′G− αFG′) cscΦ as ξ −→ 0.(65)

Thus, to maintain the fundamental physical and mathematical restrictions that detF
is positive and bounded, we must have

2α+ β − 3 = 0 ⇒ α =
3− β

2
(66)

and, noting (43)2,3 and (56),

B̄ ≡ βF ′G− αFG′ > 0, F B̄ cscΦ bounded.(67)

Recall from (47), (48) that 0 < β ≤ 1, and thus (66) requires 1 ≤ α < 3
2 , and so β ≤ α

and β = 1 ⇔ α = 1. Thus from (51)–(54), A, B, and C are independent of ξ when
α = β = 1, and hence the invariants (18)–(20) would not depend asymptotically on
ξ, which is clearly unphysical. Thus we restrict attention to values of β such that

0 < β < 1,(68)

which together with (66) gives 1 < α < 3
2 , and so by (51), ω = β. Thus the asymptotic

forms (52)–(54) of A, B, and C reduce to

A −→ ξ2(β−1)Ā(F, F ′, G,G′),(69)

B −→ ξ
β−1

2 B̄(F, F ′, G,G′),(70)

C −→ ξ(1−β)C̄,(71)

where, using ω = β, (50), (55), (56), and (67),

Ā ≡ β2G2 +G′2,(72)

B̄ ≡ βF ′G− αFG′ > 0,(73)

C̄ ≡ F 2 csc2 Φ,(74)

and α is given in terms of β by (66). The asymptotic forms for the partial derivatives
of a strain energy function W (A,B,C) can then be given generally as

WA −→ ξn(β)N(F, F ′, G,G′, sinΦ),(75)

WB −→ ξm(β)M(F, F ′, G,G′, sinΦ),(76)

WC −→ ξp(β)P (F, F ′, G,G′, sinΦ).(77)

Consider (62) first. As ξ −→ 0+, if m+ α < n+ β, then the coefficient of ξm+α

dominates, implying

0 = F (Φ)M.

However, recalling (43)3 and (75), F (Φ) is not identically zero, nor should WB be
identically zero for a reasonable strain energy. Thus

m+ α ≥ n+ β.(78)
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In view of (78) then, the ξn+β+1 term(s) dominate the right-hand side of (61). Thus
we must determine now whether the exponent n + β + 1 can be > 0, < 0, or = 0.
If n + β + 1 > 0, then the term on the left in (61) dominates as ξ −→ 0+, resulting
asymptotically in I ′ = 0 so that

I = I0,(79)

where I0 is an unknown constant. However, (12)2 and (30) asymptotically imply via
(45) and (49) that

I(0+) = 0 and I
(π
2

)
=

1

2π
,(80)

and thus (79) is not possible. If n + β + 1 < 0, then terms on the right of (61)
dominate as ξ −→ 0+, and hence I has no influence asymptotically on the solution
of the problem since (61) is the only governing equation containing I. However, by
(8)2, the point load is applied through SZz, and

SZz = cosΦSξz − sinΦSΦz = ξ−2 cotΦv,Φ +ξ−1v,ξ(81)

upon using (11). Therefore, by (45) and (49), the point load manifests itself through
I, making the above alternative for the case n+ β + 1 < 0 unacceptable. Thus, in a
manner analogous to [1], we arrive at the important result that

n+ β + 1 = 0.(82)

Recalling that n = n(β) was introduced in (74), the function n(β) is known for a given
strain energy function W , and thus (82) is an equation to determine β. This brings us
to our first result, which is analogous to the situation for incompressible hyperelastic
solids treated in [1]: For a given strain energy function W , if β calculated through
(82) (where n is determined from (74)) does not fall in the range 0 < β < 1 given by
(68), then the material modeled by W cannot sustain a point load .

We now continue our analysis under the assumption that β satisfying (82) is
consistent with (68); i.e., n(β) + β + 1 = 0 and 0 < β < 1. Recall that by (78)
determined above, m+ α ≥ n+ β. We consider first the possibility that

m+ α = n+ β(83)

so that the two terms on the right-hand sides of (61) and (62) balance. We will show
below that (83) can occur only for special material models. The final case of when
strict inequality holds in (78) will be treated last in the section.

We proceed under the requirement of (82) and suppose that (83) holds as well.
Then (61) and (62) reduce asymptotically to

I ′ = (2βGN + F ′M) sinΦ(84)

and

0 = 2G′N − αFM,(85)

respectively, where by (66), α = 3−β
2 . Similarly, the powers of ξ appearing in (60) are

given by

n+ α =
1

2
− 3

2
β, m+ β =

3

2
β − 5

2
, and p+ α = p+

3

2
− 1

2
β,(86)
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and so (60) takes the form

2ξ
1
2− 3

2β

[
3

4
(3− β)(1− β) sinΦFN + (sinΦF ′N)′

]
− 2ξp+

3
2− 1

2β cscΦFP

+ ξ
3
2β− 5

2

[
(β sinΦGM)′ − 3

2
(β − 1) sinΦG′M

]
= 0.

(87)

In view of (68), the ξ
3
2β− 5

2 term dominates the ξ
1
2− 3

2β term in (87). Now if the

ξp+
3
2− 1

2β term dominates the ξ
3
2β− 5

2 term, then

cscΦFP = 0.(88)

However, as before, F (Φ) is not identically zero, nor should WC be identically zero

for a reasonable strain energy. On the other hand, if the ξ
3
2β− 5

2 term dominates the
ξp+

3
2− 1

2β term in (87), the final term in brackets must be zero, which results in the
equation

α(sinΦM)G′ + βG(sinΦM)′ = 0.(89)

Solving (89) yields

G = κ(sinΦM)−
β
α = κ(sinΦM)−

2β
3−β ,(90)

where κ is a constant of integration. However, the boundary condition (63) will
contradict this possibility. Using (68) and (86)1,2, we have m+ β < n+ α, and thus
the second term on the left in (63) dominates, implying that either

G
(π
2

)
= 0 or M |Φ=π

2
= 0.(91)

The latter of (91) would imply from (90) that G(π2 ) → ±∞, which violates our second
hypothesis H2 and thus is unacceptable. The former of (91) is equally unrealistic, as
this would imply from (44) that z(ξ, π2 ) = z(0+, 0), and thus in some neighborhood
of the origin, the deflection of the top surface of the half-space would be exactly the
same as the deflection at the point of application of the point load. Thus, for (83) to

hold, the ξp+
3
2− 1

2β and ξ
3
2β− 5

2 terms in (87) must balance, requiring

p = 2β − 4.(92)

In this case, (87) becomes

−2 cscΦFP + α(sinΦM)G′ + βG(sinΦM)′ = 0.(93)

In view of (92), however, p(β), introduced in (76), is a specific function of β for a
given strain energy, and (82), which determines β, has already been derived. Thus
if p does not satisfy (92), then (83) is not possible. From (92) and (82), (83) is thus
possible only in the special case where p and n are related by

p = −2(n+ 3).(94)

Thus, in the special case of the material model where (94) occurs and thus p does sat-
isfy (92), the above asymptotic analysis gives a system of coupled first-order ordinary
differential equations for F , G, and I introduced in (43)–(45) with hypothesis H3.
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This system consists of (93), (84), and (85), which followed from asymptotic anal-
ysis of the governing equations (25) and (26), where (66)–(68), (82), and (83) also
hold. This system is subject to the boundary conditions in (43), (44), (80), and (91)2.
Accordingly, here and subsequently, we have that near the point load, the deformed
radius r(ξ,Φ), deflection z(ξ,Φ), and v(ξ,Φ) are such that

r −→ O(ξ
3
2− 1

2β), z −→ z(0+, 0) +O(ξβ), v −→ O(ξ0) as ξ −→ 0+.(95)

This concludes our study of the case (83) since if (92) does not hold, then this,
together with our previous analysis, precludes the possibility of (83). Thus it remains
to consider the case of (78) when strict inequality holds, assuming that (92) is violated.

Given the above discussion, we now assume (92) does not hold, and hence, neither
does (83). Thus, from (78),

m+ α > n+ β.(96)

Before proceeding, we remind the reader that the exact governing equations (25) and
(26) and boundary condition (27) have resulted in (60)–(63). Consider first (62),
for which the inequality (96) implies that the first term on the right dominates,
resulting in

2G′N = 0.(97)

We note that N 
≡ 0, as this would imply from (61) (see (99) below) that I is constant,
which violates (80). Thus (97) results in

G(Φ) = G0 
= 0,(98)

where G0 is an unknown constant with the latter restriction following from (44).
We next consider (61). The inequality (96) further indicates that the first term on

the right in (61) also dominates. Since β must be chosen so that (82) holds, (61) gives

I ′ = 2βGN sinΦ,(99)

which along with (98) implies that

I = 2βG0

∫
N̄ sinΦdΦ+ I0,(100)

where I0 is an unknown constant and the expression N̄ indicates that the arguments
of N are to be evaluated at G, given by (98), and F , which is yet to be determined.
Assuming that the integrand in (100) can be integrated, we express I in the form

I = 2βG0Ψ(Φ) + I0.(101)

Imposing the boundary condition (80)1, we have

I0 = −2βG0Ψ(0+),(102)

while (80)2 determines

G0 =
1

4πβ
(
Ψ

(
π
2

)−Ψ(0+)
) .(103)
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We remark that by virtue of (44), G0 > 0. Thus I is given in terms of Ψ(Φ) =∫
N̄(Φ) sinΦdΦ as

I =
(Ψ(Φ)−Ψ(0+))

2π
(
Ψ

(
π
2

)−Ψ(0+)
) .(104)

Thus G and I of hypothesis H3 are completely determined in terms of Ψ.
What now remains is to determine F (Φ) and to consider (60) and the boundary

condition (63). We first note that the second term of (60) cannot dominate the other
two, as this would imply that P = 0 and thus W would not depend on C, which is
unacceptable. Similarly, the third term of (60) cannot dominate the other two, as
this would imply that M = K

sin Φ , K 
= 0 constant, while (63) would in turn require
M |Φ=π

2
= 0, which is contradictory. Thus five remaining possibilities exist for (60),

corresponding to all three terms balancing, pairs of terms balancing, and the first
term dominating. However, our representation of the strain-energy density function
in terms of A, B, C or I1, I2, I3 is also advantageous to rule out two of these five
possibilities. In view of (18)–(20), we have

WA = W1 + CW2,

WB = 2B(W2 + CW3),

WC = W1 +AW2 +B2W3,

where the usual notation Wi = ∂W
∂Ii

is employed. Since W1 −→ ξγ , W2 −→ ξη,

W3 −→ ξδ for some γ, η, δ, the above along with (66), (68), (69)–(71), and (75)–(77)
can be used to determine that the ξn+α term in (60) cannot dominate alone, nor can
the ξn+α and ξm+β terms balance and dominate the remaining term.1 Thus the only
remaining cases are the following: the ξn+α and ξp+α terms balance and dominate
the remaining term (case I), all three terms of (60) balance (case II), and the ξp+α

and ξm+β terms balance and dominate the remaining term (case III).
Consider first case I. Then the asymptotic form of (60) yields the following ordi-

nary differential equation for F :

3

4
(1− β)(3− β) sinΦFN̄ + (sinΦF ′N̄)′ − cscΦFP̄ = 0.(105)

In addition, the boundary condition (63) for this case becomes

N̄ |Φ=π
2
= 0.(106)

Thus, for a given material model, (105) and (106) provide a first-order ordinary dif-
ferential equation and boundary condition to determine the final unknown F in the
asymptotic solution of this problem. In case II, the asymptotic form of (60) im-
plies that

3

2
(1− β)(3− β) sinΦFN̄ + 2(sinΦF ′N̄)′ − 2 cscΦFP̄ + βG0(sinΦM̄)′ = 0(107)

1We note that if W = W (I3) only, then WA ≡ 0. Reanalysis of (26)1 immediately results in
I(Φ) = constant, which violates (80), and thus compressible materials of this form cannot support
a tensile point load. As a related matter, this paper will not consider special compressible materials
of the form W =W (I1) only.



182 DEBRA POLIGNONE WARNE AND PAUL G. WARNE

while the boundary condition (63) gives

2F ′
(π
2

)
N̄ |Φ=π

2
+ βG0M̄ |Φ=π

2
= 0.(108)

Finally, case III gives

−2 cscΦFP̄ + βG0(sinΦM̄)′ = 0(109)

along with the boundary condition

M̄ |Φ=π
2
= 0.(110)

We remark that the superposed bars onM , N , P denote that these are to be evaluated
at G given by (103). Note that M̄ , N̄ , P̄ also depend on the unknown F (Φ) and its
derivative. In addition, in each of the above three cases, F must satisfy (43)2,3 and
(67), and thus we collect below the additional conditions, which require

F (0) = 0, F (Φ) > 0, and F ′(Φ) > 0 for 0 < Φ ≤ π
2 , FF ′ cscΦ bounded.(111)

On using (66), (82), and (96), we note that

m+ α > n+ β ⇔ m >
1

2
β − 5

2
⇔ m > −1

2
n− 3,(112)

and thus the three cases above correspond to


I: m >
1

2
− 5

2
β and p = −β − 1,

II: m =
1

2
− 5

2
β and p = −β − 1,

III: m ∈
(
1

2
β − 5

2
,
1

2
− 5

2
β

)
and p = m+

3

2
(β − 1).

(113)

Alternatively, in view of (82), we may write the above equivalently as


I: m >
5

2
n+ 3 and p = n,

II: m =
5

2
n+ 3 and p = n,

III: m ∈
(
−1

2
n− 3,

5

2
n+ 3

)
and p = m− 3

2
n− 3.

(114)

We recall that it was shown earlier (see the discussion and analysis containing
(83)–(94)) that a material for which m < 1

2β − 5
2 or, equivalently, m < − 1

2n − 3
cannot support a tensile point load. When m = 1

2β − 5
2 = − 1

2n − 3, the material
must be such that p = 2β − 4 = −2(n + 3) to sustain the point load. We present
below tables summarizing the main tests to determine whether a material can sustain
a tensile point load (Table 1) and the remaining differential equation(s) and boundary
condition(s) to solve for the complete asymptotic solution when the point load can be
supported (Tables 2 and 3). We remind the reader that n, m, and p are determined
from a given material model W via (74)–(76), respectively, and that β is determined
from (82), i.e., n+ β + 1 = 0, which always applies.
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Table 1
Asymptotic tests for the ability of a compressible material to support a tensile point load.

n(β) + β + 1 = 0 Material may
sustain a point load

Material cannot
sustain a point load

β ∈ (0, 1) /∈ (0, 1)
m ≥ 1

2
β − 5

2
= − 1

2
n− 3 < 1

2
β − 5

2
= − 1

2
n− 3

m = 1
2
β − 5

2
= − 1

2
n− 3 p = 2β − 4

= −2(n+ 3) (Case IV)
p �= 2β − 4
= −2(n+ 3)

m ∈ ( 1
2
β − 5

2
, 1
2
− 5

2
β)

= (− 1
2
n− 3, 5

2
n+ 3)

p = m+ 3
2
(β − 1)

= m− 3
2
n− 3 (Case III)

p �= m+ 3
2
(β − 1)

= m− 3
2
n− 3

m = 1
2
− 5

2
β = 5

2
n+ 3 p = −β − 1 = n (Case II) p �= −β − 1 = n

m > 1
2
− 5

2
β = 5

2
n+ 3 p = −β − 1 = n (Case I) p �= −β − 1 = n

Table 2
Asymptotic equations when a material may support a point load.

Case m p Unknown(s) ODE(s) BC(s)

I > 1
2
− 5

2
β = −β − 1 F (Φ) (105) (106)

II = 1
2
− 5

2
β = −β − 1 F (Φ) (107) (108)

III ∈ ( 1
2
β − 5

2
, 1
2
− 5

2
β) = m+ 3

2
(β − 1) F (Φ) (109) (110)

IV = 1
2
β − 5

2
= 2β − 4 F (Φ), G(Φ),

I(Φ)

(93), (85),
(84)

(43)2, (44)2,
(80), (91)2

Table 3
Asymptotic equations when a material may support a point load.

Case m p Unknown(s) ODE(s) BC(s)

I > 5
2
n+ 3 = n F (Φ) (105) (106)

II = 5
2
n+ 3 = n F (Φ) (107) (108)

III ∈ (− 1
2
n− 3, 5

2
n+ 3) = m− 3

2
n− 3 F (Φ) (109) (110)

IV = − 1
2
n− 3 = −2(n+ 3) F (Φ), G(Φ),

I(Φ)
(93), (85),
(84)

(43)2, (44)2,
(80), (91)2

Table 1 should be interpreted as presenting sequential tests on the material to
determine whether it may sustain a tensile point load. Thus, in testing a particular
material, one must first ensure that β ∈ (0, 1), then determine if m ≥ 1

2β− 5
2 = − 1

2n−
3, and based on this result, continue with the appropriate test(s) for cases I–IV. If a
material is not excluded somewhere along this process, then the material can support
the point load provided that the remaining ordinary differential equation(s), boundary
condition(s), and restrictions following Tables 2 and 3 can be satisfied. Tables 2 and 3
summarize the remaining differential equation(s) and boundary condition(s) when
the material modeled by W may sustain a point load. Categories in Table 2 present
the results when comparing m, p with β, while Table 3 presents the results when
comparing m, p, and n.

For cases I–III, G and I are given by (103)–(104). In addition, we have the addi-
tional conditions in (111) for cases I–III, while for case IV, (43)3 and (67) must hold.
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5.2. Asymptotic tests: Applications. The asymptotic tests derived above
can easily be applied to particular constitutive models in order to test a material’s
ability to support a finite deflection under a tensile point load. Below we present
the results obtained from invoking our tests. The remainder of this subsection is
divided into two sections according to hyperelastic materials that (i) cannot sustain
the point load and (ii) may sustain the point load. The materials tested encompass
many well-known compressible material models proposed in the literature.

5.2.1. Materials that cannot support a tensile point load: Examples.
(a) Special Hadamard materials of the form

W = c1(I1 − 3) +H(I3), c1 > 0 constant,(115)

with H(1) = 0 and c1+H ′(1) = 0 for vanishing stored-energy and stress, respectively,
in the undeformed state: On substituting from (18) and (20) we can see directly
that WA = c1, and thus by (75), n = 0 for materials of the form (115). However,
from Table 1, (82) (n + β + 1 = 0) implies that β = −1 /∈ (0, 1), and thus we can
immediately conclude that compressible materials of the form (115) cannot support
a finite deflection under a tensile point load. A variety of strain-energy functions
proposed in the literature, including models of Blatz, Ogden, and Christensen (see
[10] and references cited therein), have the form (115).

(b) The generalized Blatz–Ko material [11]:

W =
µ

2
f

(
I1 − 1− 1

ν
+

1− 2ν

ν
I
−ν

1−2ν

3

)

+
µ

2
(1− f)

(
I2
I3

− 1− 1

ν
+

1− 2ν

ν
I

ν
1−2ν

3

)
with µ > 0, 0 < ν <

1

2
, 0 ≤ f ≤ 1.

(116)

On substituting from (18)–(20), differentiating, and employing (70), we have

WA =
µ

2
[f + (1− f)B−2] −→ µ

2
[f + (1− f)ξ(1−β)B̄−2].(117)

Considering (75), f = 1 implies n = 0, which was ruled out in (a) above, while f = 0
implies that n = 1 − β, which clearly violates (82). Finally, since by (68) we have
0 < β < 1, the remaining case 0 < f < 1 implies again that n = 0. Thus the
generalized Blatz–Ko material cannot support a finite deflection under a tensile point
load for any range of its parameters. We note that for the special Blatz–Ko material
(f = 0, ν = 1

4 ) given by

W =
µ

2

(
I2
I3

+ 2I
1
2
3 − 5

)
, µ > 0,(118)

this result was obtained by a different argument in [3]. Here it follows immediately
as a consequence of the above asymptotic tests. As another example, we note that
the polynomial material proposed by Levinson and Burgess (see [10, reference [24]])
also contains parameters µ, ν, f and has WA given exactly as in (117). Thus for
the polynomial material, we obtain the same conclusion as that for the generalized
Blatz–Ko material, regardless of the choice of material parameters.

(c) Generalized Hadamard materials:

W = H1(I3)(I1 − 3) +H2(I3)(I2 − 3) +H3(I3),(119)
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with H3(1) = 0, H1(1)+2H2(1)+H ′
3(1) = 0, and H1(1)+H2(1) > 0. Using (18)–(20)

and (69)–(71), it follows that

WA = H1(B
2C) +H2(B

2C)C −→ H1(B̄
2C̄) +H2(B̄

2C̄)ξ(1−β)C̄.(120)

From (68) and (75) it is follows immediately that n = 0 if H1(I3) 
≡ 0, while n = 1−β
if H1(I3) ≡ 0, H2(I3) 
≡ 0, and thus as before, we see that generalized Hadamard
materials cannot support a tensile point load.

(d) A model proposed by Gao (see [8]):2

W = a


(

I1

I
1
3
3

)k

− 3k


+ b(I3 − 1)jI−q

3 , a, k > 0, b, j, q ≥ 0.(121)

The material (121) is used by Gao and Liu [8] in an asymptotic analysis of a rubber
cone under a concentrated tensile force. On substituting from (18) and (20) into (121)
and differentiating, we obtain

WA =
ak

(B2C)
1
3

[
A

(B2C)
1
3

+

(
C

B

) 2
3

]k−1

,(122)

while employing (69)–(71) and factoring results in

WA −→ ξ2(β−1)(k−1) ak

(B̄2C̄)
1
3

[
Ā

(B̄2C̄)
1
3

]k−1

[1 + η]k−1,(123)

where

η = ξ3(1−β)

(
C̄

B̄

) 2
3 (B̄2C̄)

1
3

Ā
.(124)

Thus, in view of (68) and expanding (123) in powers of η, we obtain that, as ξ −→ 0+,
the asymptotic form (75) for WA yields

n = 2(β − 1)(k − 1), N =
akĀk−1

(B̄2C̄)
k
3

,(125)

where Ā, B̄, C̄ are given by (72)–(74), respectively. Solving (82) determines

β =
2k − 3

2k − 1
, and so 0 < β < 1 ⇔ k >

3

2
.(126)

Thus proceeding with Table 1, we must now determine m (see (76)) and test for
m ≥ 1

2β − 5
2 or, equivalently, m ≥ − 1

2n − 3. Calculating WB , factoring, expanding,
and taking the dominant term imply that for the material (121) we have (76) with

m =
(β − 1)(4k − 1)

2
, M = −2ĀN

3B̄
,(127)

2We note that the variable K is used in place of I3 for the material model in [8]; however, K is
readily seen to be equivalent to the I3 in this paper by application of the Cayley–Hamilton theorem.
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where β, k, N are as above. It is simple to check that m = 1−4k
2k−1 = −n

2 − 3, which
then determines that the remaining conditions are those of case IV. Thus we must
next determine p (see (77)) and test for p = 2β − 4 or, equivalently, p = −2(n + 3).
In a similar manner, we consider WC and determine that the material (121) implies
that (77) is such that

p = (β − 1)(2k + 1), P = − ĀN

3C̄
,(128)

from which it then follows that p = −2 (2k+1)
2k−1 = −2(n+3), and so case IV is satisfied.

Thus, turning to Tables 2 and 3, we must be able to satisfy the system of ordinary
differential equations and boundary conditions imposed for this material, as well as
the additional conditions (43)3 and (67). However, one can deduce that this is not
possible by examining the boundary condition (91)2 (traction-free condition on the
surface of the half-space), which from (125)2 and (127)2 becomes

M |Φ=π
2
=

−2akĀk

3B̄(B̄2C̄)
k
3

∣∣∣∣∣
Φ=π

2

= 0.(129)

In view of (43)3, (44)2, (67), (72)–(74), and (121)2, the traction-free boundary condi-
tion (129) is satisfied only if B̄ −→ ±∞ as Φ −→ π

2 ; however, (67) and continuity of
F would then imply that F (π2 ) = 0, which violates (43)3. Thus, under the hypotheses
of this paper, a half-space consisting of the material (121) cannot support a finite
deflection under a tensile point load and maintain a traction-free boundary.

(e) A model for biological tissue (see [10, 16] and references cited therein):

W =
γ

2
[f(I3)e

k(I1−I2)(I1 − 3) + g(I3)e
−k(I1−I2)(I2 − 3) + h(I3)],

where γ > 0, k 
= 0 are constants, h(1) = 0, f(1)+2g(1)+h′(1) = 0, and f(1)+g(1) >
0. As was the case in [1] for the incompressible biological material model of Fung, W
and its partial derivatives go to infinity faster than ξ raised to any power, and thus W
is not integrable, which from (42) violates our second hypothesis H2 (displacements
must be bounded everywhere). Thus the biological tissue model given above cannot
support a tensile point load.

We remark that, as we shall continue to see in the remainder of this subsection,
a great utility of the present treatment is the ability to test large classes of materials
and quite simply determine whether they may be capable of sustaining the point load.
As demonstrated above, many of the well-known models for compressible hyperelastic
materials are not able to support a finite deflection under a tensile point load. This
seems to be consistent with the results of [1] in the sense that, in [1], it was noted
that incompressible hyperelastic materials were able to sustain the point load only
when they were sufficiently stiff, and thus it is not surprising that many compressible
materials fail to do so. To consider the variety of materials treated in this paper (or,
similarly, in [1]) within the contexts of the analyses of [3] or [8] would require com-
plete rederivations of the asymptotic forms of the governing equations and subsequent
reanalysis for each material model.

5.2.2. Materials that may support a tensile point load: Examples.
(a) An Antman [12] material:

W = k1

(
I2
I3

)µ1

+ k2

(
I1
I3

)µ2

+ k3I
−µ3

3 + k4I
ν
2
1 + k5(I

2
1 − 2I2) + k6I2 + k7I3,

(130)
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where the ki, µj , and ν are all constants satisfying the usual conditions for normal-
ization and physically reasonable response (which we omit for our purposes here).
The material (130) is used in [12] to study a class of boundary-value problems for
nonlinearly elastic deformations, and it is also attractive for the problem considered
in this paper. At this time, we shall not make an exhaustive study of the material
(130) for our tensile point load problem, as the potential cases are too numerous for
our purposes here, and instead determine the varied possibilities for the exponents n,
m, p of (75)–(77). On substituting from (18)–(20), we represent (130) in the form

W = k1

(
A

B2
+

1

C

)µ1

+ k2

(
A

B2C
+

1

B2

)µ2

+ k3(B
2C)−µ3 + k4(A+ C)

ν
2

+ k5(A
2 −B2 + C2) + k6(AC +B2) + k7B

2C.

(131)

On computing WA, substituting from (69)–(71), factoring, and expanding, we
obtain the asymptotic form

WA −→ k1µ1

B̄2

(
Ā

B̄2
+

1

C̄

)µ1−1

ξ(β−1)(µ1−2) +
k2µ2

B̄2C̄

(
Ā

B̄2C̄

)µ2−1

ξ2(β−1)(µ2−1)

+
1

2
k4νĀ

ν−2
2 ξ(β−1)(ν−2) + 2k5Āξ

2(β−1) + k6C̄ξ
1−β .

(132)

In view of (68), the final term in (132) can never be dominant and so the asymptotic
form of (132) depends on which of the four remaining terms balance and/or dominate
the others. There are 15 such possibilities, corresponding to the various cases within
each of the four categories below:




(n1): n = 2(β − 1) ⇒ β =
1

3
, ν ≤ 4, µ1 ≤ 4, and µ2 ≤ 2,

(n2): n = (β − 1)(ν − 2) ⇒ β =
ν − 3

ν − 1
, ν > 4, µ1 ≤ ν, and µ2 ≤ ν

2
,

(n3): n = 2(β − 1)(µ2 − 1) ⇒ β =
2µ2 − 3

2µ2 − 1
, ν < 2µ2, µ1 ≤ 2µ2, and µ2 > 2,

(n4): n = (β − 1)(µ1 − 2) ⇒ β =
µ1 − 3

µ1 − 1
, ν < µ1, µ1 > 4, and µ2 <

µ1

2
.

(133)

In each equation of (133), we have β ∈ (0, 1), while N will vary depending on the
case (n1)–(n4) and the particular combinations of restrictions placed on ν, µ1, and
µ2. Next, to determine m, we calculate the asymptotic form of WB , which yields

WB −→ −2k1µ1Ā

B̄3

(
Ā

B̄2
+

1

C̄

)µ1−1

ξ
1
2 (β−1)(2µ1−1)

− 2k2µ2

B̄2µ2+1

(
Ā

C̄

)µ2

ξ
1
2 (β−1)(4µ2−1)

+ 2(k6 − 2k5)B̄ξ
1
2 (β−1).

(134)

The asymptotic form of (134) depends on which of its three terms balance and/or
dominate the others, creating seven such possibilities corresponding to the follow-
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ing cases: 


(m1): m =
1

2
(β − 1), µ1 ≤ 1, and µ2 ≤ 1

2
,

(m2): m =
1

2
(β − 1)(4µ2 − 1), µ1 ≤ 2µ2, and µ2 >

1

2
,

(m3): m =
1

2
(β − 1)(2µ1 − 1), µ1 > 1, and µ2 <

µ1

2
.

(135)

Again, M will vary with each of the cases (m1)–(m3) and the particular combinations
of restrictions placed on µ1 and µ2. Finally, to determine p, the asymptotic form of
WC results in

WC −→ −k1µ1

C̄2

(
Ā

B̄2
+

1

C̄

)µ1−1

ξ(β−1)(µ1+1) − k2µ2

C̄

(
Ā

B̄2C̄

)µ2

ξ(β−1)(2µ2+1)

+
1

2
k4νĀ

ν−2
2 ξ(β−1)(ν−2) + k6Āξ

2(β−1),

(136)

and thus we have four possibilities for p corresponding to the 15 combinations of the
parameters ν, µ1, and µ2 (and thus P ) given below:




(p1): p = 2(β − 1), ν ≤ 4, µ1 ≤ 1, and µ2 ≤ 1

2
,

(p2): p = (β − 1)(ν − 2), ν > 4, µ1 ≤ ν − 3, and µ2 ≤ ν − 3

2
,

(p3): p = (β − 1)(2µ2 + 1), ν < 2µ2 + 3, µ1 ≤ 2µ2, and µ2 >
1

2
,

(p4): p = (β − 1)(µ1 + 1), ν < µ1 + 3, µ1 > 1, and µ2 <
µ1

2
.

(137)

Thus the material (130) offers an array of possibilities for study of the asymptotic
equations associated with this problem, which, as mentioned above, we shall explore
elsewhere.

(b) A recent model due to Gao [13]:3

W = a

(
Ik1 +

(
I2
I3

)k
)
, a, k > 0 constants.(138)

Gao [13] studies the asymptotic large deformation elastostatic field near a crack tip
for a compressible hyperelastic material described by (138). For the material (138),
the asymptotic form (75) for WA is such that

n = 2(β − 1)(k − 1), N = akĀk−1,(139)

where Ā is given by (72). Solving (82) determines

β =
2k − 3

2k − 1
, and so 0 < β < 1 ⇔ k >

3

2
.(140)

3We remark that this material does not satisfy the usual normalization condition of zero strain-
energy in the undeformed state (W (3, 3, 1) = 0). A simple remedy would be, e.g., to include a term
of the form −2a3k in (138) or replace I1, I2 with I1 − 3, I2 − 3, respectively.
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Thus, for the point load to be supported, we must have k > 3
2 in (138). In continuing

with the asymptotic tests, one finds that when 3
2 < k < 3, the corresponding m and p

satisfy case III; when k = 3, m and p satisfy case II; and when k > 3, m and p satisfy
case I. However, upon further examination, one finds that the boundary conditions
(106) and (110) consistent with cases I and III, respectively, cannot be satisfied for
the associated N̄ and M̄ in these cases. Thus, under the hypotheses of this paper, a
half-space consisting of the material (138) with 3

2 < k < 3 or k > 3 cannot support
a finite deflection under a tensile point load and maintain a traction-free boundary.
The boundary condition (108) for the case k = 3, however, is not incompatible with
the associated N̄ and M̄ . In this case, it can be seen that

k = 3 ⇒ β =
3

5
, m = −1, n = p = −8

5
, α =

6

5
(141)

and that

N̄ = 3aĀ2, M̄ = −6a
Ā

B̄3

(
Ā

B̄2
+

1

C̄

)2

, P̄ = 3a

[
Ā2 − 1

C̄2

(
Ā

B̄2
+

1

C̄

)2
]
,(142)

where

Ā = (βG0)
2 = (12πa)−

2
5 ,(143)

B̄ = βG0F
′(Φ) = (12πa)−

1
5F ′(Φ),(144)

C̄ =
F 2(Φ)

sin2 Φ
(145)

and

G(Φ) ≡ G0 =
5

3
(12πa)−

1
5 ,(146)

I(Φ) =
1

2π
(1− cosΦ).(147)

The remaining equations and conditions that must be satisfied are the ordinary dif-
ferential equation (107), which in this case results in the nonlinear second-order dif-
ferential equation for F (Φ) given by

(12πa)−
4
5

[
2(sinΦF ′)′ +

36

25
sinΦF − 2F

sinΦ

]

+ 2

{(
sinΦ

F

)3 [
1

(F ′)2
+

sin2 Φ

F 2

]2

−
(
sinΦ

(F ′)3

[
1

(F ′)2
+

sin2 Φ

F 2

]2
)′}

= 0;

(148)

the traction-free boundary condition (108), which implies that

(12πa)−
2
5

[
F ′

(π
2

)]2

=
1[

F ′ (π
2

)]2 +
1[

F
(
π
2

)]2 ;(149)

and the conditions contained in (111), namely,

F (0) = 0, F (Φ) > 0, and F ′(Φ) > 0 for 0 < Φ ≤ π
2 , FF ′ cscΦ bounded.

(150)



190 DEBRA POLIGNONE WARNE AND PAUL G. WARNE

(c) A Jiang–Ogden [14] material:

W = f(I1)h1(I3) + h2(I3),(151)

where f(3)h1(1)+ h2(1) = 0, f ′(3)h1(1)+ f(3)h′1(1)+ h′2(1) = 0, and f ′(3)h1(1) > 0.
Jiang and Ogden [14] consider materials of the form (151) in their study of azimuthal
shear of circular cylindrical tubes, where the function f(I1) has the form f(I1) =
c1(I1 − 1)j with j ≥ 1

2 . Here we shall similarly treat materials of the form (151) with
f(I1) = c1(I1 − 1)k, k > 0 constant. Thus we consider

W = c1(I1 − 1)kh1(I3) + h2(I3), k > 0,(152)

for which the asymptotic tests developed earlier determine the following:

n = 2(β − 1)(k − 1), N = c1kĀ
k−1h1(B̄

2C̄),(153)

where Ā, B̄, C̄ are given by (72)–(74), respectively. Solving (82) determines

β =
2k − 3

2k − 1
, and so 0 < β < 1 ⇔ k >

3

2
,(154)

and via (66), α = 3−β
2 . We note that [14] treats four special cases of (152) with k = 1

2 ,
1, 3

2 ,
3
4 , and thus by (154)2, none of these special cases can support a tensile point

load. Continuing with k > 3
2 , it can be seen that

m =
(β − 1)(4k − 1)

2
=

1

2
β − 5

2
, M = 2c1Ā

kB̄C̄h′1(B̄
2C̄)(155)

and

p = (β − 1)(2k + 1) = 2β − 4, P = c1Ā
kB̄2h′1(B̄

2C̄),(156)

and thus case IV is satisfied. By Tables 2 and 3, we must then satisfy the system
of ordinary differential equations and boundary conditions imposed for this material,
as well as the additional conditions (43)3 and (67). We note here that the material
(121) is a special case of (151), and we recall from section 5.2.1(d) that the traction-
free boundary condition (91)2 (M |Φ=π

2
= 0) could not be satisfied for (121). Noting

(155)2 and the fact that Ā, B̄, and C̄ are all strictly positive at Φ = π
2 , (91)2 can then

be seen as a condition on the form of the function h1(I3) such that a traction-free
boundary is possible. As an example, note that I3 = B2C = B̄2C̄ and that

I3|Φ=π
2
= c(157)

for some c > 0 constant. Suppose now that

h1(I3) =
1

c
I3

[
ln

(
I3
c

)
− 1

]
,(158)

and so

h′1(I3) =
1

c
ln

(
I3
c

)
,(159)

which, in turn, implies via (157) that

h′1(B̄
2C̄)|Φ=π

2
= 0,(160)
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and thus the traction-free boundary condition (91)2 is identically satisfied for the
material (152) with h1(I3) given by (158), where c is as in (157). With this choice for
h1(I3) and N , M , P , β, and α given above, the remaining equations to be satisfied
are (93), (85), and (84), along with boundary conditions (43)2, (44)2, and (80), with
the additional conditions (43)3 and (67).

(d) A Beatty–Jiang-type material [15]:

(161)

W = H1(I3)(I1 − 3) +H2(I3)(I2 − 3) +H(I3)

+ c3(I1 − 3)2 + c4(I2 − 3)2 + c5(I1 − 3)(I2 − 3) + c6(I1 − 3)3

+ c7(I2 − 3)3 + c8(I1 − 3)(I2 − 3)2 + c9(I1 − 3)2(I2 − 3) + c10(I1 − 3)(I2 − 3)3,

where the ci are all constants. Beatty and Jiang [15] consider the material (161) with
c10 = 0 in their study of azimuthal shear of nonlinearly elastic compressible solids.
When c10 = 0, the material (161) satisfies the conditions on n, β, m, and p for case III;
however, again we find that the associated traction-free boundary condition (110)
cannot be satisfied. Thus we augment the material considered in [15] by including
the c10 term so that (110) might be satisfied. Following the considerations of [15], we
require H3(1) = 0, H1(1) + 2H2(1) +H ′

3(1) = 0, H1(1) +H2(1) > 0, c3 + c4 + c5 ≥ 0,
and c6+c7+c8+c9+c10 ≥ 0 for physically reasonable material response. Proceeding
with our analysis, we find that

n = 4(β − 1), N = 3c6Ā
2,(162)

while solving (82) determines

β =
3

5
⇒ n = −8

5
and α =

6

5
.(163)

In addition, one can determine that

m =
9

2
(β − 1) = −9

5
, M = 2ĀB̄[c9Ā+ 3c10(ĀC̄ + B̄2)2],(164)

where we recall that Ā, B̄, C̄ are given by (72)–(74), respectively, and

p = 6(β − 1) = −12

5
= m+

3

2
(β − 1),

P = Ā2[c9Ā+ 3c10(ĀC̄ + B̄2)2] =
Ā

2B̄
M.

(165)

Thus case III is satisfied, and it then follows that

G(Φ) ≡ G0 =
5

3
(12πc6)

− 1
3 ,(166)

I(Φ) =
1

2π
(1− cosΦ).(167)

Further, from Tables 2 and 3, F (Φ) must then satisfy the conditions in (111) as well
as the ordinary differential equation (109) and traction-free boundary condition (110),
which for the material (161) become

− F

sinΦ

[
c9 + 3c10β

2G2
0

(
F 2

sin2 Φ
+ F ′2

)2
]

+

{
sinΦF ′

[
c9 + 3c10β

2G2
0

(
F 2

sin2 Φ
+ F ′2

)2
]}′

= 0

(168)



192 DEBRA POLIGNONE WARNE AND PAUL G. WARNE

and [
F 2

(π
2

)
+ F ′2

(π
2

)]2

= − c9
3c10β2G2

0

,(169)

respectively, where by (163)1 and (166), β2G2
0 = (12πc6)

− 2
3 . To conclude this paper,

we consider the special case of (168), (169) when

F 2

sin2 Φ
+ F ′2 = c2, c 
= 0 constant,(170)

and

c9 = −3c10β
2G2

0c
4.(171)

Since (168), (169) follow automatically if (170), (171) hold, we will take c9 in (161) to
be given by (171) and consider the first-order nonlinear ordinary differential equation
(170) subject to the conditions in (111), which we repeat here as

F (0) = 0, F (Φ) > 0, and F ′(Φ) > 0 for 0 < Φ ≤ π
2 , FF ′ cscΦ bounded.

(172)

While (170) is a significant simplification over (168) and appears deceptively simple,
we have not found (170) to be amenable to analysis for determining a closed-form
solution. Instead, we present in Figures 1 and 2 plots of the direction fields along
with the solutions of (170) satisfying (172)1, as well as the remaining conditions in
(172), for representative values of the constant c > 1. We remark that Figures 1 and 2
were generated for simplicity using Maple. The solutions plotted for various c agree
with data obtained from computing a numerical solution implementing a fourth-order
Runge–Kutta backwards shooting method.

Thus with our numerical solution for F (Φ), the unknown functions and param-
eters from (43)–(45) are determined according to (163) for α and β and (166) and
(167) for G and I, respectively, where we recall δ = 0 from (49). In addition, with
(170), (171), we have M̄ = P̄ = 0, and thus the asymptotic forms of the nonzero
stress components are as follows (where we note that SΦz = 0, SΘθ = 0):

Sξr −→ ξ−
7
5
12

5
N̄F (Φ),(173)

Sξz −→ ξ−2 6

5
N̄G0,(174)

SΦr −→ ξ
1
5 2N̄F ′(Φ),(175)

where by (162), (73), and (166), N̄ = 3c6Ā
2 = 3c6(βG0)

4 is constant. The asymptotic
forms of the nonzero stress components, on using the more traditional cylindrical polar
coordinates and bases for both the undeformed and deformed configurations, are then
computed for this problem as

SRr −→ sinΦSξr,(176)

SRz −→ sinΦSξz,(177)

SZr −→ cosΦSξr,(178)

SZz −→ cosΦSξz,(179)

where Sξr, Sξz are given in (173)–(174) and ξ sinΦ = R, ξ cosΦ = Z, ξ2 = R2 + Z2.
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Fig. 1. Plot of the direction field and solution of (170) when c2 = 3.
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Fig. 2. Plot of the direction field and solution of (170) when c2 = 10.
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HYDRODYNAMIC CLEANSING OF PULMONARY ALVEOLI∗
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Abstract. The inside wall of the pulmonary alveolus is lined with a thin viscous fluid layer
and a monolayer of surfactants. Inhaled foreign particles that reach the lung alveoli are normally
neutralized by macrophages and remain inside the lung. Nevertheless, Podgorski and Gradon [Ann.
Occup. Hyg., 37 (1993), pp. 347–365] suggested that a hydrodynamic cleansing mechanism may exist
in which particles are swept out by the net fluid flow from the alveolar viscous layer to the adjacent
airways. Hawgood [The Lung: Scientific Foundations, 2nd ed., R. G. Crystal and J. B. West,
eds., Lippincott-Raven, Philadelphia, 1997, pp. 557–571] has also reported that surfactants exit the
alveoli during every breathing period. Based upon the foregoing observations, we examine a possible
mechanism of hydrodynamic cleansing and predict its effectiveness. Our central assumption is that
the amount of surfactant remains periodic during breathing and that a certain regulatory mechanism
exists that causes excess surfactant (reported by Hawgood) to leave the alveoli. Owing to the latter,
surfactant concentration gradients are induced inside the alveoli, which in turn generate fluid motion
(a Marangoni effect) and concomitant fluid discharge. Our analysis predicts that a typical value of
the outflow velocity is 10−9[m/sec]; i.e., it takes a fluid particle almost two days to travel a distance
equal to an alveolar radius. It is also shown that the outflow velocity depends almost linearly on
the discharge rate of the surfactants. Hence, a small artificial addition of surfactants into the lung
may enhance alveolar cleansing, provided that a biological mechanism exists that maintains normal
surfactant concentration over the lining fluid layer.

Key words. lung alveoli, hydrodynamic cleansing, surfactants

AMS subject classifications. 76Z05, 92C35

PII. S0036139901386090

1. Introduction. Zeltner et al. [29] observed that a nonuniform pattern of par-
ticle deposition exists within the rodent lung. Specifically, the density of particles
deposited on the alveolar entrance rim is five times higher than that on septal alveolar
surfaces. Are hydrodynamic forces driving the particles from their initial deposition
locations toward the entrance rim? The fluid dynamical problem addressed in this
paper is motivated by the search for such a possible cleansing mechanism inside the
lung alveoli.

Environmental and occupational hazards resulting from aerosol inhalation have
been the subject of intensive research (see Harvey and Crystal [14]). An understanding
of aerosol kinetics may also prove to be a meaningful step towards improving diagnos-
tic and therapeutic methods [1], [5]. In humans, the respiratory airway system consists
of the nasal cavity, the throat, the voice box, the trachea, the two primary bronchi
that bifurcate from the trachea, the bronchi, and bronchiole that divide and subdivide,
becoming steadily smaller until there are about 20–23 generations of branching. From
the sixteenth generation, the airways become increasingly alveolated. The bronchi-
oles terminate with berry-shaped group of sacs and acinar ducts (the acinus). During
breathing, the alveoli and the alveolar ducts expand and contract in a way roughly
consistent with geometric similarity. Thus, all dimensions scale approximately as the
1/3 power of the lung volume (Gil and Weibel [8], Gil et al. [7]; Weibel [27]; Ardila,

∗Received by the editors March 7, 2001; accepted for publication (in revised form) April 2, 2002;
published electronically August 28, 2002.

http://www.siam.org/journals/siap/63-1/38609.html
†Department of Mathematics, Technion, Israel Institute of Technology, Haifa 32000, Israel

(motiz@012.net.il).
‡Department of Mechanical Engineering, Technion, Israel Institute of Technology, Haifa 32000,

Israel (mersh01@tx.technion.ac.).

195



196 DAPHNE ZELIG AND SHIMON HABER

Horie, and Hildebrandt [2]). Tsuda, Henry, and Butler [25], Tsuda, Otani, and Butler
[26], and recently Haber et al. [12] considered the effect of alveolar expansion and
contraction on the fluid flow inside the alveoli. In [25] and [26], the authors assumed
that the pulmonary acinus could be viewed as a self-similar expanding axisymmetric
thoroughfare surrounded by a toroidal sac, a configuration that simplified the numeri-
cal calculations. In [12], the alveolus was geometrically approximated by a self-similar
expanding spherical cap attached at its rim to the alveolar duct (see also Gil et al.
[7]), a geometry that is likely to represent a more faithful portrayal of the acinus.

Little attention has been paid in the past to the effect of alveolar expansion
and contraction, since in the case of gas exchange the Peclet number controlling the
transport of the gas molecules is much smaller than unity. Thus, convection due to the
acinar flow is negligibly small when compared with the diffusive transport. (It takes
only a few milliseconds for a gas molecule to reach the alveolar wall from its entrance
ring.) However, in the case of aerosol transport, the Peclet number is much larger,
and particle convection and diffusion may play a comparable role. Under normal
conditions, particles 0.5 to 4 µm in diameter may often reach the acinus and pose the
greatest hazard to human health (see, e.g., Dockery et al. [6]).

Particles that enter the respiratory system and are deposited over the airway walls
are mechanically removed by the rhythmical motion of cilia (Sleigh, Blake, and Liron
[20]). Particles are forced upwards along the bronchiolar tree and are finally removed
from the respiratory system by forced convection of air (coughing). Nonetheless, a
similar cleansing mechanism does not exist within the acinus. Generally, particles that
reach the alveoli are neutralized by macrophages [4] and remain deposited inside the
acinus. Indeed, several experimental studies (e.g., Zeltner et al. [29], Heyder et al. [16],
Schultz et al. [24]) have investigated such aerosol mixing and deposition. However,
Gradon and Podgorski [11] proposed that a purely hydrodynamic effect may assist
in cleansing the alveoli. They suggested that gradients in surfactant concentrations
induce the thin fluid lining that covers the inner alveolar wall to flow slowly outside
the alveolus rim. Thus, particles deposited on the alveolar wall are carried with the
fluid toward the entrance rim. They predicted a characteristic clearance time of about
one hour.

Scarpelli [23] described the main stages of the surfactant’s transition between
the air-fluid interface and the fluid body as follows: During expiration, the alveolus
contracts and the distance between the surfactant molecules decreases; in other words,
their concentration increases and consequently the surface tension diminishes. When
the alveolar radius reaches a threshold value, some of the molecules of the surfactant
leave the interface and penetrate the fluid. During inspiration, the alveolus expands,
the concentration of the surfactant decreases, and concomitantly, the surface tension
increases. In addition, surfactants return to the interface from the bulk of the fluid
by diffusion. More detailed models for surfactant transition can be found in [9], [10].

In [15], the metabolism of surfactants is explained, and the secretion rate is evalu-
ated. There is clear evidence for the existence of a regulatory mechanism for surfactant
production and clearance rates that keeps it from excessive accumulation or dilution
[15]. Surfactants are created in Type II cells, which form part of the alveolus wall.
After diffusing to the interface, most of them (about 80%) return to these cells and
are then recycled for additional use. About 10–20% are consumed by macrophages,
which lie at the alveolar wall, and the remaining few percent exit the alveolus.

In this article the alveolar hydrodynamic clearance mechanism is analyzed. We
adopt the spherical model that has been extensively used in the past (e.g., Podgorski
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and Gradon [22] and Haber et al. [12]) to describe the alveolus configuration. We
also use measured experimental data for alveoli expansion/contraction rates and the
known measured correlation between surfactant concentration and surface tension.
We focus on the dynamical behavior of the surfactants, the main mechanism that
controls the lining fluid flow, and assume that no surfactants are accumulated or
depleted inside the alveolus during a breathing cycle. The boundary condition at
the alveolar rim is based upon the known experimental value of the small amount
of surfactant exiting the alveolus per breathing cycle. An open and valid question
is what the specific mechanism that causes surfactant to exit the alveolus might be.
One might assume, for instance, that airflow in the adjacent airway contributes to
the sweeping effect, and reformulate the boundary conditions accordingly. Another
possibility is that there is a biological mechanism that discharges excess surfactant
from inside the alveolus. We try to avoid such ad hoc assumptions and focus on
a cleansing mechanism that is based upon known and validated experimental data.
The solution methodology is based on the assumption that, had no fluid been driven
through the alveolus opening, surfactant concentration would have been uniform and
the lining fluid would have expanded and contracted in a radially symmetric manner
to conserve fluid mass. Thus, scaling of the cleansing mechanism is based upon the
amount of surfactant leaving the alveolus, a markedly different approach from that
used by Podgorski and Gradon [22], who relate the continuity of the fluid and the
surfactant layers at the alveolar rim. A source term is also added to the surfactant
mass conservation equation to account for surfactants entering or leaving the interface
from the bulk fluid, and this facilitates the condition that no mass accumulation or
depletion of surfactants per cycle occurs. As a result, the whole set of equations and
the solution differ markedly from that obtained by Podgorski and Gradon [22].

In section 2, we define the geometrical, kinematical, and physiological parameters
that scale the variables of the problem. In section 3, we obtain the resulting gov-
erning equations, boundary conditions, and parameters that control the problem. In
section 4, we present the asymptotic expansion of the flow variables in terms of two
smallness parameters and obtain the equations and boundary conditions that govern
the zero and first order approximations. In section 5.1, we present the analytic solu-
tion of the zero order approximation, and in section 5.2, a finite element analysis is
utilized to obtain a solution for the first order approximation. In section 6, we discuss
our results, and we present our concluding remarks in section 7.

2. The alveolus model: Configuration and typical parameters. Assume
that the alveolus can be approximated by a hollow spherical cap of radius R(t) at-
tached at its rim to the alveolar duct (see Figure 1). Typical alveolar mean radius
ranges between 40 and 200µm. The alveolus is rhythmically expanding and contract-
ing with a breathing rate of 12–14 breaths per minute for adults and about 33 breaths
per minute for infants. The expansion amplitude is about 0.1 alveolar radius. The
dependence of R on time is based on experimental data described in Podgorski and
Gradon [22] and approximated here by a natural cubic spline interpolation to achieve
continuity of its time derivatives (see Figure 2(a)).

A spherical coordinate system (r, θ, φ) is located at the center of the spherical
cap, where r stands for the radial coordinate and θ and φ denote the latitude and
azimuthal angles, respectively.

The alveolus rim location is defined by the half-cone angle θb. (Henceforth, we
assume that θb = 600 and that the subscript “b” denotes evaluation at the rim.) The
inside wall of the alveolus is lined with a thin fluid layer of thickness h(θ, φ, t). The
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Fig. 1. A schematic description of the alveolus.

fluid layer is lined with a single layer of surfactant that lies at the fluid-air interface.
During expansion, additional surfactants are produced at the alveolus wall and

diffuse through the fluid bulk into the fluid-air interface. Most of these retract to the
fluid layer when the alveolus contracts. A residual part is cleared through the alveolar
rim at θ = θb. Thus, a useful partition of the total rate of surfactant production F (t)
is

F (t) =
m(λbFb(t) + λecFec(t))

T
,

where T stands for the breathing period and m is the time-averaged amount of sur-
factants found in the alveolus. (Henceforth, the overhead-bar sign denotes either an
average or a typical value.) The first term mλbFb(t)/T is the rate of production of
surfactants that are cleared from the alveolus rim at θ = θb. The prefactor mλb/T
is used to scale the production rate so that the time dependent function Fb(t) is of
order unity.

The second term λecmFec(t)/T is a periodic function with zero mean that stands
for the rate of transit of surfactant between the fluid bulk and the air-fluid inter-
face during the expansion and contraction process. The prefactor λecm/T scales its
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Fig. 2. (a) Alveolar radius dependency upon time during breathing as suggested in [22]. The
breathing cycle is 4 sec. (b) Surface tension dependency upon concentration of the DPPC surfactant.
Illustrated are the Podgorski and Gradon [22] correlation and the cubic spline interpolation we used
in our analysis. Notice that the latter possesses a continuous derivative also at point A.
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amplitude.
Hawgood [15] provided experimental data pertaining to the total amount of sur-

factant cleared from the rim during a breathing cycle. However, there is practically
no data on how the production rate F (t) varies with time and location. With no such
prior knowledge, we believe that a leading order approximation can be obtained if we
assume that F (t) is expanded in a time Fourier series with period T and consider only
the first two leading terms with Fb(t) ≡ 1 and Fec(t) = sin(2πt

T ). This is equivalent to
assuming that surfactants are uniformly produced at the alveolus wall and that the
rate of excess surfactants leaving the rim is fixed and scales with g = mλb/T .

According to [15], the amount of surfactant secretion per hour is about 10–40%
of the total amount of the surfactant present at the alveolus. If we pick T = 4 sec, the
amount of surfactant produced per breathing cycle is about 1.1· 10−4m to 4.4 · 10−4m.
Hawgood [15] also reported that 1–10% of the secreted amount is cleared from the
alveolus. Thus, the range of λb is 1 ·10−6–4 ·10−5, and that of λec is 9 ·10−5–3.9 ·10−4.
Henceforth, we set λb = 1 · 10−5 and λec = 1.9 · 10−4 as appropriate scaling values.

The surfactant surface concentration γ scales with γ = m/2π(R − h)2d, where

d = 1 + cos(θb) and thus g = 2πR
2
dλbγ/T . The velocity of the lining fluid and the

diffusion at the interface layer govern the surfactant flux through the rim. Thus, the
amount of surfactant leaving the alveolus per unit time is g = 2π(R−h) sin(θb)(γuθ−
D ∂
∂θγ)r=R−h,θ=θb , where D = 10−10m2/sec is the surfactant surface diffusion coeffi-

cient (provided in [22]) and uθ is the tangential surface velocity. Hence, the surface

velocity scales with uθ = λb
R
T ≈ 10−9 m/sec since the flux due to diffusion is of a

lesser effect.
Table 1 furnishes a summary of all the additional physical parameters that are

employed in the analysis with mean numerical values taken from [10], [15], and [22].

3. Flow equations, boundary conditions, dimensionless parameters and
controlling variables. The differential equations that govern the flow of the lining
fluid layer are the following:

(a) The continuity equation for an incompressible fluid,

∇ · u = 0.(1)

(b) The quasi-steady linear momentum equation (neglecting body forces and the
disjoint pressure),

µ∇2u = ∇p.(2)

Here, the local acceleration and convection terms have been neglected since

the Reynolds numbers, ReT = h
2
/Tv = 5× 10−10, Reθ = uθh/v = 4× 10−11,

and Rer = |(ur − Ṙ)h/v| = 10−6, are much smaller than unity. The disjoint
pressure effect may be neglected since the time scale of an instability (Oron,
Davis, and Bankoff [18]) that may cause rupture of the thin lining layer is of

the order 96π3h
5
ρvσ/A2 = 100 sec (for a Hamaker constant A of the order of

10−20 J and surface tension as low as σ = 1 dyne/cm), a much slower process
than the breathing cycle of 4 seconds. In addition, Wit, Gallez, and Christov
[28] concluded that the cutoff wave number is independent of the Marangoni
effect.

(c) The mass conservation equation for the surfactant layer is (see Aris [3, p. 86]
for the Reynolds transport theorem in a two-dimensional curved space)
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Table 1
Geometrical and phenomenological properties.

Description Typical Value [units]

Lining fluid thickness h = 5 · 10−8 [m]

Alveolar radius R = 1.6 · 10−4 [m]

Breathing period t̄ = 4 [sec]

Lining fluid outflow velocity uθ =
λbR

t̄
≈ 10−9 [m/sec]

Surface tension σ = 2.5 · 10−2 [N/m]

Surfactant concentration at the fluid-air-interface γ = 3.3 · 10−6 [mol/m2]

Capillary pressure P =
σ

R
≈ 156 [N/m2]

Amount of surfactants in the lining fluid interface m = 2πR
2
dγ ≈ 5 · 10−13d [mol]

Ratio of lining fluid thickness to alveolar radius ε =
h

R
≈ 3 · 10−4

Ratio of amount of surfactant leaving the
λb = 10−5

alveolus during a breathing period to m

Ratio of amount of surfactant staying in the
λec = 1.9 · 10−4

lining fluid to m

Diffusion coefficient of the surfactants at the
D = 10−10 [m2/sec]

fluid interface

Modified capillary number Ca =
µR

2

hσT
= 0.0614

Alveolus fluid viscosity µ = 12 · 10−3 [Pa · sec]

n · ∂(γn)

∂t
+ us · ∇s(γn) · n− γn · (∇u) · n = D∇2

sγ +
F (t)

2π(R− h)2d
,(3)

where n is a unit vector perpendicular to the interface, ∇s = (I− nn) · ∇ is
the surface gradient, us = (I − nn) · u is the surface velocity, and I is the
idem dyadic. The second term on the right-hand side of (3) is a source term
that accounts for the amount of surfactant entering the interface from the
fluid bulk.

(d) The equation that governs the fluid layer interface location h(θ, t) is

∂E

∂t
+ u · ∇E = 0,(4)

where E = r − R(t) + h(θ, t) = 0, n = ∇E/|∇E|, and the time derivative is
taken for r and θ held fixed.

Assuming that the problem is axisymmetric, (1)–(4) constitute an appropriate
set of equations for the five unknown fields p, γ and h, ur, and uθ. The latter fields
are subject to the following boundary conditions:

(5a,b) ur = Ṙ− λbRÛ(t)

T
, uθ = 0, r = R(t),



202 DAPHNE ZELIG AND SHIMON HABER

(6a,b)
∂ur
∂θ

= 0, uθ = 0, θ = π,

n · τ · t = t · ∇σ, r = R− h,(7)

p− pa − n · τ · n− σ∇ · n = 0, r = R− h,(8)

∂γ

∂θ
= 0, θ = π, r = R− h,(9)

2πr sin(θb)

[
γuθ −

(
D

r

)
∂γ

∂θ

]
= −mλb

T
, θ = θb, r = R− h,(10)

where σ stands for the surface tension at the surfactant layer, τ = µ[∇u + (∇u)T ] is
the viscous part of the stress tensor, and t stands for a unit vector tangential to the
interface.

Equation (5a) accounts for the unknown velocity of lining fluid U = λbRÛ(t)/T
that is generated at the alveolus boundary and compensates for fluid leaving the
alveolus every period. We made here the reasonable assumptions that the production
rate scales with the amount of surfactants leaving the alveolus and that the fluid is
generated uniformly at the alveolus wall. Equation (5b) is a manifestation of the
no-slip condition imposed on the flow, (6a,b) and (9) result from the geometrical
symmetry of the alveolus, and (7) represents the jump condition in the tangential
component of the stress tensor due to surface tension gradients. Equation (8) considers
the jump condition in the normal component of the stress tensor stemming from
interface curvature, and (10) demonstrates that a given amount of surfactant leaves
the alveolus during every breathing period. (That excess amount is produced at the
alveolus wall and diffuses through the lining fluid toward the interface.)

To achieve closure of the problem, it seems that we need an additional boundary
condition at θ = θb. However, for very thin fluid layers, lubrication theory applies,
and such a condition is redundant. The initial conditions are

h = h, γ = γ,(11)

where h and γ are constants and stand for the respective fluid layer thickness and
surfactant concentration evaluated at time t = t at which the alveolar radius R
assumes the value R.

It shall be demonstrated that a periodic solution is readily obtained for any phys-
ical values of h and γ. A specific set of initial conditions is required to initiate the
numerical scheme but is of no consequence in the final periodic solution. For the sake
of convenience, we shall assume that t = 0.

Based upon experimental observations (Philips and Chapman [21]), a constitu-
tive equation σ = σ(γ) was suggested by Gradon and Podgorski [11], which correlates
surface tension to the concentration of DPPC (diacylphosphatidylcholine). The cor-
relation function (Figure 2(b)) includes two smooth regions and a dividing point (A)
at which the function is not differentiable. The latter fact results in an aphysical,
discontinuous velocity solution near the dividing point. To circumvent this difficulty,
we employ a smooth, natural, cubic spline interpolation function that matches well
with the Podgorski and Gradon [22] data outside A, predicts a slightly higher value
near A, and is differentiable everywhere (see Figure 2(b)).
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To render the differential equations and boundary conditions dimensionless, we
define the following dimensionless variables (denoted henceforth with a caret symbol):

ŷ =
(R− r)

h
, t̂ =

t

T
, ∇̂s = R∇s, R̂ =

R(t̂)

R
,

ûy =
(Ṙ− ur)T

h
, σ̂ =

σ

σ
, ûθ =

uθT

R
,

p̂ =
(pa − p)R

σ
, γ̂ =

γ

γ
, ĥ =

h

h
.

(12)

Substituting (12) into (1)–(11) yields an equivalent set of dimensionless equations
and boundary conditions, where the dimensionless unknowns depend on the indepen-
dent variables ŷ, θ, t̂ and parameters λb, λec, ε, Pe, Ca, θb. Here ε = h/R = 3× 10−4

is the lining fluid depth ratio, Pe = R
2
/DT = 64 stands for the Peclet number, and

Ca = µuθ/σ = 4.8 × 10−11 is the capillary number. Equations (1)–(4) are highly
nonlinear and couple the velocity field with surfactant concentration and the loca-
tion of the interface. In the next chapter, we employ an asymptotic expansion in
the two smallness parameters λb, ε, which makes it possible to solve the problem
semianalytically.

4. The asymptotic formulation. A possible clue for a coherent asymptotic
representation of the unknown functions is that the cleansing mechanism results from
the generation of an excess amount of surfactant determined by λb, a parameter that
plays a paramount role in the solution. The value of λb is of the order of 10−5;
thus gradients in surface tension driving the flow are expected to be very small,
albeit not zero, resulting in a nonzero small tangential velocity. Had λb vanished, the
lining fluid would have remained inside the alveolus at all times, covered the alveolus
wall uniformly, and grown thicker during exhalation and thinner during inhalation
to conserve mass. In this case, the unknown functions h, γ, σ, p, and u would have
been radially symmetric, i.e., depended upon t but not upon θ. Consequently, the
following regular asymptotic expansions in λb and ε are suggested:

ûy =
0
uy (ŷ, t̂; ε) + λb[Ûy(ŷ, θ, t̂) + εÛ (1)

y (ŷ, θ, t̂) + · · · ] +O(λ2
b),(13a)

ûθ = λb[Ûθ(ŷ, θ, t̂) + εÛ
(1)
θ (ŷ, θ, t̂) + · · · ] +O(λ2

b),(13b)

ĥ =
0

h (t̂; ε) + λb[Ĥ(θ, t̂) + εĤ(1)(θ, t̂) + · · · ] +O(λ2
b),(13c)

γ̂ =
0
γ (t̂; ε) + λb[Γ̂(θ, t̂) + εΓ̂(1)(θ, t̂) + · · · ] +O(λ2

b),(13d)

σ̂ =
0
σ (t̂; ε) + λb[Σ̂(θ, t̂) + εΣ̂(1)(θ, t̂) + · · · ] +O(λ2

b),(13e)

p̂ =
0
p (t̂; ε) + λb[P̂ (θ, t̂) + εP̂ (1)(θ, t̂) + · · · ] +O(λ2

b).(13f)

Here, the naught symbol denotes the radially symmetric solution, and uppercase
symbols are used to denote asymptotic, first order fields in λb. Notice that the leading

term
0
uθ vanishes identically in expansion (13b); i.e., a tangential velocity component

stems solely from excess production of surfactant (see also section 3).
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Henceforth, we shall focus our attention on the first two terms in the foregoing
expansions and neglect the contribution of the third, order O(λbε), much smaller
term. Substituting (13) into the dimensionless form of (1)–(11) and collecting the zero
and first order terms in λb results in two respective sets of dimensionless differential
equations and boundary conditions.

4.1. The zero order approximation. For the zero order, radially symmetric
fields, the equations are as follows:
the continuity equation,

∂

∂ŷ

[
(R̂− εŷ)2

(
dR̂

dt̂
− ε

0
uy

)]
= 0,(14a)

the radial momentum equation,

1

(R̂− εŷ)2

{
∂

∂ŷ

[
(R̂− εŷ)2

∂
0
uy
∂ŷ

]
+ 2ε

(
dR̂

dt̂
− ε

0
uy

)}
= −

(
Tσ

µR

)
∂

0
p

∂ŷ
,(14b)

the mass conservation equation of surfactants,

∂
0
γ

∂t̂
− 0
γ
∂

0
uy
∂ŷ

∣∣∣∣∣∣
ŷ=

0

h

=
1

(R̂− ε
0

h)2
λec sin(2πt̂),(14c)

and the kinematic condition for interface location,

∂
0

h

∂t̂
=

0
uy

∣∣∣∣∣∣
ŷ=

0

h

.(14d)

The appropriate boundary conditions are

0
uy= 0, ŷ = 0,(15a)

0
p=

2
0
σ

(R̂− ε
0

h)
, ŷ =

0

h .(15b)

The initial conditions are replaced by the requirement that the solution be periodic.
Notice that the foregoing equations are not expanded with respect to ε, since, as

shall be demonstrated in the next section, an exact solution of (14) is feasible for any
value of ε.

4.2. The first order approximation. Substituting (13) into (1)–(10) and col-
lecting first order terms in λb yields the following set of equations and boundary
conditions:
the continuity equation,

R̂
∂

∂ŷ
Ûy +

∂

∂θ
Ûθ + cot(θ)Ûθ = 0,(16a)
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the momentum equation in the radial direction,

∂P̂

∂ŷ
= 0,(16b)

the momentum equation in the tangential direction,

∂2Ûθ
∂ŷ2

= 0,(16c)

the mass conservation equation of surfactants,

R̂2 ∂Γ̂

∂t̂
+ 2R̂Γ̂

dR̂

dt̂
− ∂Ûy

∂ŷ
− 1

Pe

[
∂2Γ̂

∂θ2
+ cot(θ)

∂Γ̂

∂θ

]
= 1,(16d)

and the kinematic condition for interface location,

∂Ĥ

∂t̂
= [Ûy]

ŷ=
0

h
.(16e)

Notice that time derivatives in (16d,e) are carried out for y and θ held fixed. The
appropriate boundary conditions are

Ûy = Û , ŷ = 0,(17a)

Ûθ = 0, ŷ = 0,(17b)

∂Γ̂

∂θ
= 0, θ = π,(17c)

∂Ûy
∂θ

= 0, θ = π,(17d)

Ûθ = 0, θ = π,(17e)

C
−1

a

∂Σ̂

∂θ
− R̂

∂Ûθ
∂ŷ

= 0, ŷ =
1

R̂2
,(17f)

P̂ = 0, ŷ =
1

R̂2
,(17g)

R̂

[
0
γ Ûθ − 1

PeR̂

∂Γ̂

∂θ

]
= − cot

(
θb
2

)
, θ = θb, r = R− h,(17h)

where Ca = µR/T
σ

R

h
= 0.0614 is the modified capillary number whose inverse scales

the Marangoni effect. Notice that Ca is the governing capillary number that results
from the balance between the shear forces and the surface tension gradients at the
interface (17f). A velocity scale defined by R/T would be improper since it governs
the zero order radially symmetric fields.

In the next section, solutions for the zero and first order approximation fields are
addressed.



206 DAPHNE ZELIG AND SHIMON HABER

5. The solution of the zero and first order perturbations.

5.1. The zero order, radially symmetric solution. The exact solutions for
the radially symmetric fields (14a–d) are1

0
uy =

1

ε

dR̂

dt̂

(
1 − R̂2

(R̂− εŷ)2

)
= −2

ŷ

R̂

dR̂

dt̂
+O(ε),(18a)

0
p =

2σ̂(
0
γ)

(R̂− ε
0

h)
,(18b)

0

h =
1

ε
[R̂− (R̂3 − 1 + (1 − ε)3)1/3] =

1

R̂2
+O(ε),(18c)

0
γ =

(1 − ε)2

(R̂− ε
0

h)2

(
1 − λec

2π
cos

[
2π

(
t̂− t̄

T

)])
=

1

R̂2
+O(λec) +O(ε).(18d)

Notice that the radially symmetric pressure is uniform across the lining layer and that
for small values of ε the leading terms of the radially symmetric solutions are of order
unity.

5.2. The first order perturbation in λb. The solution of (16a–e)–(17a–h) is
divided into two consecutive steps. First, an analytic expression is obtained for the
velocity Ûθ, which is substituted into (16d). A numerical scheme is then employed,
in which a finite-element method is utilized along θ and a finite difference predictor-
corrector method is employed along t to solve the transformed equation (16d).

Integrating (17f) and (16c) and employing boundary condition (17b) yields

Ûθ = Ŵ (θ, t̂)ŷ.(19a)

From (16d), the unknown function Ŵ (θ, t̂) can easily be determined in terms of Σ̂
or Γ̂:

Ŵ (θ, t) =
C

−1

a

R̂

∂Σ̂

∂θ
=

C
−1

a

R̂

∂σ̂

∂γ̂

∣∣∣∣∣
γ̂=1/R̂2

∂Γ̂

∂θ
.(19b)

The latter equality stems from the known constitutive relation between surface tension
and surfactant concentration.

Introducing (16a) into (16d) and employing (19a) and (19b) yields the second
order partial differential equation in Γ̂,

∂(R̂2Γ̂)

∂t̂
+

[
C

−1

a

R̂4

∂σ̂

∂γ̂

∣∣∣∣∣
γ̂=1/R̂2

− 1

Pe


[∂2Γ̂

∂θ2
+ cot(θ)

∂Γ̂

∂θ

]
= 1,(20a)

subject to the boundary conditions

∂Γ̂

∂θ
= 0, θ = π,(20b)

1An easy route to obtaining the exact solutions is to consider the problem from a global point
of view in which the total fluid and surfactant mass during breathing is conserved.
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(
C

−1

a

R̂4

∂σ̂

∂γ̂

∣∣∣∣∣
γ̂=1/R̂2

− 1

Pe


 ∂Γ̂

∂θ
= − cot

(
θb
2

)
, θ = θb,(20c)

and the initial condition

Γ̂ = 0.(20d)

Notice that since ∂σ̂/∂γ̂ is invariably negative, (20a) possesses the form of a
diffusion equation with an effective time dependent diffusion coefficient that is always
positive.

To simplify the finite-element formulation of the problem, we rewrite (20a) and
(20c):

A(t̂)
∂Γ̂

∂t̂
+B(t̂)Γ̂ + C(t̂)

(
∂2

∂θ2
Γ̂ + cot(θ)

∂Γ̂

∂θ

)
= 1, π < θ < θb,(21a)

∂Γ̂

∂θ
= G(t̂), θ = θb,(21b)

where

A(t̂) = R̂2,

B(t̂) = 2R̂
dR̂

dt̂
,

C(t̂) =
C

−1

a

R̂4

∂σ̂

∂γ̂

∣∣∣∣
γ̂=1/R̂2

− 1

Pe
,(21c)

G(t̂) = −
(
C

−1

a

R̂4

∂σ̂

∂γ̂

∣∣∣∣∣
γ̂=1/R̂2

− 1

Pe


−1

cot

(
θb
2

)
.

The equation governing the deviation of the interface from its spherical shape Ĥ is
obtained from (16a,e) and (19a,b),

∂Ĥ

∂t̂
=

Û

R̂
− C

−1

a

2R̂6

∂σ̂

∂γ̂

∣∣∣∣∣
γ̂=1/R̂2

(
∂2Γ̂

∂θ2
+ cot(θ)

∂Γ̂

∂θ

)
.(22)

Little is known about the spatial distribution and the time evolution of Û . A global
mass-conservation requires that the amount of fluid generated at the alveolus wall
equal the amount exiting the alveolus during a single breathing period. Consequently,∫ T

0

(
2πR sin(θb)

∫ h

0

uθdy

)
dt = λb

R

T

∫
2πR2[1 + cos(θb)]Ûdt.(23)

Substituting (19a,b) into (23) yields∫ 1

0

R̂2Ûdt̂ =
1

2
εC

−1

a tan

(
θb
2

)∫ 1

0

1

R̂4

∂σ̂

∂γ̂

∣∣∣∣
γ̂=1/R̂2

[
∂Γ̂

∂θ

]
θ=θb

dt.(24)
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Hence Û is of order ε, and the second term in (22) determines the time evolution and
spatial distribution of Ĥ. Fortunately, the equations for Γ̂ and Ĥ are decoupled, and
we focus on solving Γ̂, which makes it possible to predict the tangential velocity.

A weak form of the equation for Γ̂ is obtained by integrating (21a) over the
solution domain

∫ π

θ=θb

w

[
A(t̂)

∂Γ̂

∂t̂
+B(t̂)Γ̂ + C(t̂)

(
∂2Γ̂

∂θ2
+ cot(θ)

∂Γ̂

∂θ

)
− 1

]
dθ = 0,(25)

where w is any differentiable weighting function. Integrating (25) by parts and utiliz-
ing boundary conditions (20b) and (21b) yields

∫ π

θ=θb

{
w

[
A(t̂)

∂Γ̂

∂t̂
+B(t̂)Γ̂ + C(t̂) cot(θ)

∂Γ̂

∂θ

]
− C(t)

∂w

∂θ

∂Γ̂

∂θ

}
dθ

(26)

=

∫ π

θ=θb

wdθ + w(θb)C(t̂)G(t̂).

An element mesh is formed over the solution domain, and w and Γ̂ are expanded in
the following Galerkin sums (see, for example, [17]) for arbitrary cA’s:

w =
∑
A∈Ω

cANA(θ),

(27)

Γ̂ =
∑
B∈Ω

dB(t̂)NB(θ),

where Ω denotes the nodes index group and NA and NB are the shape functions, N1(θ)
being the shape function of an element located at the alveolus opening. The unknown
time dependent functions dB(t̂) are to be determined as follows. Substituting (27)
into (26) yields

∑
B∈Ω

d

dt̂
dB

∫ π

θ=θb

NAA(t̂)NBdθ

+
∑
B∈Ω

dB

∫ π

θ=θb




NAB(t̂)NB +NAC(t̂) cot(θ)
dNB
dθ

−C(t̂)
dNA
dθ

dNB
dθ


 dθ(28)

=

∫ π

θ=θb

NAdθ +N1(θb)C(t̂)G(t̂).

Thus (28) possesses the form

M
d

dt̂
d(t̂) +Kd(t̂) = V,(29)

where d is a vector consisting of the unknown functions dA(A ∈ Ω), M and K are
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Fig. 3. Error evaluation for various (a) mesh-sizes, (b) time-steps. The error is defined by the
equation LΓcalculated = error, where L is the differential operator defined in (21a).

coefficient matrices, and V is a vector defined as follows:

MAB =

∫ π

θ=θb

NAA(t̂)NBdθ,

KAB =

∫ π

θ=θb

{
NAB(t̂)NB +NAC(t̂) cot(θ)

dNB
dθ

− C(t)
dNA
dθ

dNB
dθ

}
dθ,(30)

VA =

∫ π

θ=θb

NAdθ +N1(θb)C(t̂)G(t̂).

Choosing linear shape functions NA, the matrices M = [MAB ], K = [KAB ] and the
vector V = [VA] can be numerically calculated.

The time evolution equation (29) is numerically solved by a predictor-corrector
code. Convergence and error properties of the numerical scheme, the time evolution
of the surfactant distribution, the tangential velocities, and the effect of varying the
phenomenological parameters are all addressed in the next section.

6. Results. We examined the convergence and accuracy of the numerical scheme;
the results are illustrated in Figures 3–5. An L2 norm was utilized to evaluate errors
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Fig. 4. The relative error between the calculated derivative ∂Γ/∂θ at θb and its known exact
value from boundary conditions (21b,c).

Fig. 5. Solution convergence for various (a) mesh sizes, (b) time-steps. Here Γ(n) is an L2
norm of Γ in the solution domain, and n defines refinement order.
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Fig. 6. Surfactant concentration Γ as a function of position and time during five breathing
periods.

in the solution for Γ̂. To that end, we used the parameter values defined in Table 1;
the solution domain was defined by π/3 ≤ θ ≤ π; and comparisons were made for the
time interval 16 ≤ t ≤ 20 sec. The chosen time span, the fifth breathing cycle, was
picked to avoid transient effects that may exist at earlier times and are affected by
the particular choice of initial conditions. The calculations were repeated for refined
time-steps and elements in the θ-direction. We tested grids having 10 to 160 elements
in the θ-direction, and time-step sizes ranging between 0.5 sec and 1.95 · 10−3 sec.
The results are summarized in Figure 3, which demonstrates that the estimated error
decreases for both time and grid refinements. The best error estimate can be achieved
at the boundaries, where a comparison can easily be made between known exact val-
ues of the derivatives of Γ̂ and the respective numerical predictions (see Figure 4).
The figure makes clear that the error decreases monotonically with reduced values of
time-steps and increased number of elements.

To evaluate the convergence rate of the solution, an L2 norm was also calculated
for the difference between consecutive refined solutions (see Figure 5(a,b)). The figures
illustrate vividly that convergence is achieved even for high values of time-steps (of
order 0.1) and a small number of elements (of order 20).

Since the solution is approximated up to order ε, no greater precision than 10−4

is required. Consequently, from Figures 3–5, a time-step size of 0.015 sec was se-
lected, and the θ-domain was divided into 100 elements, a parameter set that yields
a converging solution with an estimated absolute error of order ε or less.

The time evolution of the surfactants and velocity fields is illustrated in Figures 6–
10. Since R(t) is a periodic function and, consequently, the time dependent coefficients
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Fig. 7. Surfactant concentration Γ as a function of position and time during the fifth breathing
period.

Fig. 8. The evolution of surfactant concentration Γ at θb during five breathing periods. Notice
the two-peak pattern occurring within every breathing period.
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Fig. 9. The temporal evolution of the radial surfactant concentration
0
γ and Γ. Notice that Γ

reaches a maximum value when γ = γA.

Fig. 10. The temporal evolution of the tangential velocity Uθ at θb = π/3.



214 DAPHNE ZELIG AND SHIMON HABER

Fig. 11. The spatial distribution of surfactant concentration Γ for various values of θb.

of (20a–d) are periodic, we expect a periodic steady-state solution to the problem.
Indeed, Figure 6 demonstrates that Γ̂ reaches a steady state after a short transient
period of less than a single breathing cycle.

During every breathing period, Γ̂ (at θb) possesses a two-peak pattern (see Fig-
ures 7 and 8). We use, henceforth, the dimensional form of Γ̂, namely, Γ = λbγΓ̂,
to describe the small perturbation in surfactant concentration. The peaks occur dur-
ing inhalation and exhalation when the derivative of the surface tension with respect
to surfactant concentration varies abruptly as γ crosses point A in Figure 2(b) (see
Figure 9). The value of Γ remains negative throughout the breathing process. Thus,

the total surfactant concentration γ = γ
0
γ + Γ is lower than its radially symmet-

ric concentration γ
0
γ. This is reflected in a higher than average surface tension at

θb and a net fluid motion toward the alveolar edge. The latter conclusion is also
illustrated in Figure 10, in which the time dependence of the tangential velocity at
the interface is depicted. Notice that a negative value for uθ means a flow direction
toward the alveolar edge (Figure 1). It demonstrates that the velocity is a time-
periodic function that possesses a negative mean; namely, there is a net flow exiting
the alveolus.

Figures 11 and 12 illustrate a smooth spatial distribution of Γ and uθ for various
values of θb. Figure 11 validates the former conclusion that surfactant concentration
is lowest (surface tension is highest) at θb, namely, fluid is drawn toward the alveolar
edge. Figure 12 illustrates that the tangential velocity increases (in absolute value) as
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Fig. 12. (a) The spatial distribution of the tangential velocity for various values of θb. (b) A
blowup of the dotted small rectangle shown in (a) that manifests the small contribution of the angle
θb.
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Fig. 13. The temporal evolution of surfactant concentration Γ at θb for various values of the
diffusion coefficient D.

θ gets closer to θb. This result is consistent with the assumption that the fluid excess
is generated uniformly at the alveolar surface.

The surfactant concentration and the tangential velocity dependence upon θ and
θb are also illustrated in Figures 11 and 12, respectively. Figure 11 illustrates that

γ = γ
0
γ +Γ decreases and the surfactant concentration gradient increases as θb

decreases. Hence, smaller values of θb yield a nonlinear increase in the magnitude of
uθ at the alveolar rim. This result is not surprising since, from (17h), if the Peclet
number is large, uθ varies like cot(θb/2). Figure 12 illustrates how uθ increases (in
absolute value) as we approach the alveolar rim. It also illustrates that different values
of θb result in almost identical values of uθ, namely, all lines seem to collapse into a
single graph within their mutual domain. However, a blowout of a small domain
(shown by a small rectangle in the upper right corner of Figure 12) indicates that
small deviations do exist between different values of θb (Figure 12(a)), with slightly
smaller values of uθ for smaller θb’s.

The effect of the Peclet number upon surfactant distribution and the tangential
velocity field is summarized in Figures 13–14. Figure 13 illustrates a double peaked
pattern that results from the abrupt change in surface tension gradients at point A
of Figure 2(b). Figure 14 illustrates dependence of uθ upon time, with the highest
(absolute) value occurring at the end of inhalation and the beginning of exhalation.
Varying the diffusion coefficient has a minor effect on the results. This is not surprising
since the Peclet number is quite high (Pe = 64) and the inverse of the capillary
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Fig. 14. The temporal evolution of the tangential velocity Uθ at θb for various values of the
diffusion coefficient D.

number is about 16. A more significant effect would occur were D of the order of
D = 5 × 10−8 m2/sec, a much greater value than the estimated physical value of
D = 10−10 m2/sec.

Finally, the surfactant production rate, λb, has a most significant effect on the
tangential velocity. An increase in the production rate causes a concomitant increase
in the tangential velocity.

7. Discussion and conclusions. The results in section 6 demonstrate that gra-
dients in surfactant concentration at the lining layer interface induce tangential flow
toward the alveolar edge (the Marangoni effect). Based upon experimental observa-
tions, we assumed that during every breathing cycle an excess amount of surfactant
was secreted at the alveolus wall and removed to the adjacent airway. This excess
amount is a given percentage of the existing average amount of surfactant that is
embedded inside the lining layer. The removal of surfactants and the concomitant
concentration gradients induce tangential flow inside the lining layer so that a small
amount of the lining fluid exits the alveolus with a typical low rate on the order of
10−9 m/sec. The flow rate varies periodically with time and depends strongly upon
how widely open the alveoli are. Pathologically wide cone angles θb result in a strong
reduction in Ûθ and vice versa. However, since uθ ∼ λbÛθ, the actual tangential
velocity may either increase or decrease with θb. To make a rigorous conclusion, ad-
ditional experimental evidence is required to correlate the flux of surfactant exiting
the alveolus (proportional to λb) with the cone angle θb.
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Fig. 15. Surface tension dependency upon concentration of surfactant TA from Otis et al. [19].

Particles that are deposited over the alveolus wall are subject to hydrodynamic
drag and may be swept out of the alveolus due to the induced tangential velocity. The
hydrodynamic cleansing rate is determined by particle velocity that, generally, need
not be equal to the fluid velocity. However, the predicted fluid tangential velocity
at the alveolar rim may provide a reasonable measure of the rate of hydrodynamic
cleansing. With an average sweeping rate, it will take a particle about two days to
move a distance equal to one alveolar radius, a very small rate indeed.

The effect of particle diffusion may add to the cleansing rate. However, this effect
may be quite small. The diffusion coefficient of a particle 1µm in diameter in an
unbounded lining flow field is Dp = 3.8∗10−14 m2/sec, based on the Stokes–Einstein
equation. Thus, it seems that the time it takes a particle to travel a distance equal to
one alveolar radius R = 10−4m is of the order of R2/4Dp ∼ 105s, a value similar to
the convection time. Notwithstanding this idea, Happel and Brenner [13] show that,
due to the close proximity of the particle to the alveolar walls, the hydrodynamic
drag coefficient can be several order of magnitudes higher than 6πµrp (here rp is the
particle radius). Consequently, the value for the diffusion coefficient would be smaller
and the resulting diffusion time longer.

We also tried to compare DPPC with an artificial surfactant TA (also known as
Survanta; Ross Laboratories, Columbus, OH), widely used clinically to treat respira-
tory distress syndrome. From Otis et al. [19], a surfactant TA isotherm, relating the
surface tension to surface concentration, is obtained (Figure 15) and approximated by
two straight lines. Figures 16 and 17 illustrate the behavior of surfactant TA vis-à-vis
DPPC, provided that their Peclet number is of similar order.2 The time evolution of Γ
differs markedly from that of DPPC; however, the calculated uθ at θb is very similar.

2Note that synthetic surfactants do not undergo cellular secretion and adsorption. Thus, the
results may depend on the time protocol by which TA is provided, but this is left for future work.
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Fig. 16. The temporal evolution of surfactant concentration Γ for DPPC and surfactant TA at
θb = π/3.

Fig. 17. The temporal evolution of the tangential velocity for DPPC and surfactant TA at
θb = π/3.
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The small deviations stem from the discontinuity in ∂σ̂/∂γ̂ assumed for surfactant
TA. In fact, Uθ at θb should depend approximately linearly upon R̂. Since, from (19a)
and (19b), at ŷ = 1/R̂2 we obtain that

Ûθ =
Ŵ

R̂2
=
C

−1

a

R̂3

∂σ̂

∂γ̂

∣∣∣∣∣
γ̂=1/R̂2

∂Γ̂

∂θ
,

consequently, at the alveolus edge θ = θb, for large Peclet numbers, boundary con-
dition (21c) results in Ûθ|θ=θb ∼ −R̂ cot(θb/2). Thus, the major difference in the

tangential velocity uθ ∼ λbÛθ between DPPC and surfactant TA stems from λb,
provided that they possess similar diffusion coefficients.

In summary, a significant enhanced hydrodynamic cleansing can occur if the mech-
anism that keeps the surfactants from excessive accumulation or dilution functions
over a wide range of surfactant concentrations. Notice that a very small deviation
in surfactant concentration from the radially symmetric distribution is sufficient to
induce flow in the lining layer. Thus, artificial stimulation of surfactant production at
the alveolar wall tissue, or artificially administering a small excess amount of surfac-
tant by inhalation, may result in an increased flow of surfactants exiting the alveoli
and a concomitant sweeping flow of the lining layer. More research is required to in-
vestigate what the physiological mechanisms might be that cause surfactants to exit
the alveolus and thereby determine/control the important parameter λb for various
values of alveolus cone angle θb and surfactant composition. We hope that an arti-
ficial process can be devised and experimentally tested so that people exposed to a
severe polluted environment could utilize the mechanism of enhanced hydrodynamic
cleansing to reduce particle deposition of hazardous materials inside the lung alveoli.
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Abstract. We consider an unbuffered resource having capacity C, which is shared by several
different services. Calls of each service arrive in a Poisson stream and request a fixed, integral amount
of capacity, which depends on the service. An arriving call is blocked and lost if there is not enough
free capacity. Otherwise, the capacity of the call is held for the duration of the call, and the holding
period is generally distributed. The inverse problem of determining the traffic intensities in terms of
the measured values of the carried loads for each service is investigated. It is assumed that C and
the traffic intensities are commensurately large. The inverse problem is solved asymptotically in the
critically loaded regime, and it involves the unique real solution of a nonlinear equation. An iterative
solution of this equation is shown to lead to a contraction mapping and to monotonic and geometric
convergence. A separate analysis is given for the overloaded regime, and it is shown that the result
matches asymptotically with that for the critically loaded regime. Numerical results are presented
for two examples.
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buffered resources
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1. Introduction. We consider an unbuffered resource having capacity C, which
is shared by S different services. Calls of service s (s = 1, 2, . . . , S) arrive in a Poisson
stream with mean rate λs and request capacity ds. An arriving call is blocked and
lost if there is less than ds free capacity. Otherwise, the call capacity ds is held for the
duration of the call, and the holding period is generally distributed with mean 1/µs
and independent of earlier arrival and holding times. The traffic intensity of calls of
service s is νs = λs/µs, and the product form and the insensitivity property hold (see
[4], [5], [7]); i.e., the joint stationary distribution of the number of active calls of each
service depends on the distributions only through νs.

Let Ls(d,ν, C) denote the loss probability for each service s, where
d = (d1, d2, . . . , dS) and ν = (ν1, ν2, . . . , νS). Then the carried loads are Ys =
νs[1 − Ls(d,ν, C)], s = 1, 2, . . . , S. Of practical importance is the inverse problem
of determining the traffic intensities ν from the measured values of the carried loads
Ys (s = 1, 2, . . . , S). Once the traffic intensities are known, the loss probabilities are
readily determined.

A particular application of such resource sharing is in telecommunication net-
works, where the provider wants to ensure that service level agreements with cus-
tomers are met [1], [2]. Specifically, the loss probabilities should not exceed prescribed
values. At the same time, the provider wants to verify that customers do not exceed
agreed-upon peak traffic intensities.
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The model considered above applies to each link of the network. The results
for links influence the design of the network and the routing of traffic through the
network, so as to optimize revenue while meeting the service level agreements with
customers [11], [12], [13]. The model also applies in policing, shaping, access, and call
admission control of customer traffic at the edge of the network [17].

In this paper we assume that the capacity C and the traffic intensities ν are com-
mensurately large and that C is an integer. We also assume that ds (s = 1, 2, . . . , S)
are positive integers, not large relative to C, and, without loss of generality, that
the greatest common divisor of d1, . . . , dS is 1. There are three regimes in which the
behavior of the loss probabilities differs. The resource is overloaded, critically loaded,
or underloaded depending on whether the total traffic intensity

∑S
s=1 dsνs exceeds, is

close to, or is less than its capacity C, respectively.

In section 2 we consider the critically loaded regime in which C − ∑S
s=1 dsνs =

δ
√
C, where δ = O(1) may have either sign. The lowest order asymptotic ap-

proximation (see [3], [10], [16]) to Ls(d,ν, C) implies that νs ∼ Ys(1 + dsβ/
√
C),

s = 1, 2, . . . , S, where β is independent of s. Both δ and β are determined asymp-
totically in terms of Yr (r = 1, 2, . . . , S), where 0 < C − ∑S

r=1 drYr = O(
√
C),

from the unique real solution of a nonlinear equation. This leads to a critically loaded
asymptotic approximation (CLAA) to the traffic intensities. We then use a refined ap-
proximation to Ls(d,ν, C), which is obtained by specializing the uniform asymptotic
approximation [10] to the critically loaded regime. This leads to a refined critically
loaded asymptotic approximation (RCLAA) to the traffic intensities.

In section 3 we present an iterative refinement procedure for solving the nonlinear
equation and show that it leads to a contraction mapping and to monotonic and geo-
metric convergence. We also establish the connection between our iterative refinement
procedure and the one proposed by Mitra [9] for the case of general loading.

In section 4 we consider the overloaded regime in which 0 > C − ∑S
s=1 dsνs =

O(C). It is shown that asymptotically νs ∼ Ys[(1 + γ)/γ]ds , where 0 < γ = C −∑S
r=1 drYr = O(1). It is also shown that this result matches asymptotically with

those for the critically loaded regime for γ � 1 and 0 < γ/
√
C � 1.

In section 5 we present numerical results for the two examples considered in
[14]. We first compare the CLAA and the RCLAA to the traffic intensities with
the exact results. We emphasize that both the CLAA and RCLAA are valid only
in the critically loaded regime, and that the former uses O(1) and O(1/

√
C) terms,

while the latter also includes the O(1/C) term in the expansion. The CLAA gives
moderately accurate values in the critically loaded regime, but less so in the overloaded
regime. On the other hand, the RCLAA gives quite accurate values in the critically
loaded regime, and moderately accurate results in the overloaded regime. Overall,
the RCLAA provides a significant improvement of the CLAA, with only minimal
additional numerical computations. Both results do become quite accurate in the
underloaded regime, since the loss probabilities, although not well approximated there
by the CLAA or RCLAA, are exponentially small. We also present the results of
some numerical experiments using the iterative procedure proposed by Mitra [9]. The
number of iterations required to obtain the required accuracy increases significantly
with the load.

The above asymptotic approximations may be applied to each link of a multirate
loss network [11] to determine the reduced load offered to the link.
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2. Critically loaded regime. In the critically loaded regime,

C −
S∑
s=1

dsνs = δ
√
C,(2.1)

where C � 1, νs = O(C), s = 1, 2, . . . , S, and δ = O(1) may have either sign. In
Appendix A we derive a refined asymptotic approximation to the loss probability
Ls(d,ν, C) for service s. The approximation is obtained by specializing the uniform
asymptotic approximation [10] to the critically loaded regime.

Let

σ2C = 2

S∑
s=1

d2
sνs, σ > 0, ηC =

S∑
s=1

d3
sνs,(2.2)

so that σ = O(1) and η = O(1), since νs = O(C), s = 1, 2, . . . , S, and

β =
2e−(δ/σ)2

σ
√
πErfc (−δ/σ)

,(2.3)

where the complementary error function is given by

Erfc (x) =
2√
π

∫ ∞

x

e−u
2

du .(2.4)

Then, asymptotically,

Ls(d,ν, C) ∼ dsβ√
C

{
1 +

δ

σ2
√
C

[
2η

σ2

(
2δ2

3σ2
− 1

)
+ ds − 1

]
(2.5)

− β

2
√
C

[
1 +

2η

3σ2

(
1− 2δ

2

σ2

)]
+ · · ·

}
.

Hence, asymptotically,

νs =
Ys

[1− Ls(d,ν, C)]
(2.6)

∼ Ys

{
1 +

dsβ√
C
+

dsβδ

σ2C

[
2η

σ2

(
2δ2

3σ2
− 1

)
+ ds − 1

]

−dsβ
2

2C

[
1 +

2η

3σ2

(
1− 2δ

2

σ2

)]
+

d2
sβ

2

C
+ · · ·

}
.

We expand in powers of 1/
√
C and let

δ ∼ δ0 +
δ1√
C
+ · · · , σ ∼ σ0 +

σ1√
C
+ · · ·(2.7)

and

β ∼ β0 +
β1√
C
+ · · · , η ∼ η0 + · · · .(2.8)
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Then, from (2.1)–(2.3) and (2.6), to lowest order,

δ0
√
C = C −

S∑
s=1

dsYs − β0√
C

S∑
s=1

d2
sYs,(2.9)

σ2
0C = 2

S∑
s=1

d2
sYs, σ0 > 0, η0C =

S∑
s=1

d3
sYs,(2.10)

and

β0 =
2e−(δ0/σ0)

2

σ0
√
πErfc (−δ0/σ0)

.(2.11)

If we divide (2.9) by σ0

√
C and use (2.10) and (2.11), we obtain

δ0
σ0
+

e−(δ0/σ0)
2

√
πErfc (−δ0/σ0)

=

(
C −∑S

s=1 dsYs

)
√
2
∑S
s=1 d

2
sYs

.(2.12)

Intuitively,
∑S
s=1 dsYs < C, i.e., the total carried capacity is less than that of the

resource. We let

a
�
=
(C −∑S

s=1 dsYs)√
2
∑S
s=1 d

2
sYs

> 0(2.13)

and

g(x) =
e−x

2

√
πErfc (x)

− x.(2.14)

To lowest order, the inverse problem is asymptotically equivalent to solving the equa-
tion g(ξ) = a for ξ = −δ0/σ0. Then, from (2.11)–(2.13),

β0σ0 = 2(ξ + a),(2.15)

and, from (2.6) and (2.10), we obtain the first order asymptotic approximation to the
traffic intensities νs in terms of the carried loads Ys,

νs ∼ Ys

(
1 +

dsβ0√
C

)
= Ys


1 + 2ds(ξ + a)√

2
∑S
r=1 d

2
rYr


 .(2.16)

We note, from (2.14), that g(0) = 1/
√
π. We show in Appendix B that g(−∞) =

∞, g(∞) = 0, and g′(x) < 0 for x < ∞. Hence, there is a unique real solution
to g(ξ) = a > 0. Since g(−a) > a, it follows that ξ > −a. In Figure 2.1, ξ +
a is depicted as a function of a. Because of the monotonicity, the equation for ξ
may be solved numerically by any simple procedure, such as bisection or iterative
refinement. In the next section we present an iterative refinement procedure for
solving the equation, which leads to a contraction mapping and to monotonic and
geometric convergence. This is important, since Mitra [9] has conjectured that his
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Fig. 2.1. Plot of ξ + a as a function of a, where g(ξ) = a.

proposed iterative procedure, for the case of general loading, leads to a contraction
mapping.

To the next order, from (2.6)–(2.8), we have

νs ∼ Ys

{
1 + ds

(
β0√
C
+

β1

C

)
+

dsβ0δ0
σ2

0C

[
2η0

σ2
0

(
2δ2

0

3σ2
0

− 1
)
+ ds − 1

]
(2.17)

− dsβ
2
0

2C

[
1 +

2η0

3σ2
0

(
1− 2δ

2
0

σ2
0

)]
+

d2
sβ

2
0

C
+ · · ·

}
.

Hence, from (2.1), (2.9), and (2.10), we obtain

δ1 = −1
2
σ2

0β1 +
1

2
β0δ0 +

1

4
β2

0σ
2
0 − 1

3
β0η0

(
5

2
β0 +

β0δ
2
0

σ2
0

+
2δ3

0

σ4
0

)
.(2.18)

It follows that

νs ∼ Ys

[
1 +

dsβ0√
C

− 2δ1ds
σ2

0C
+

β0

C

(
β0 +

δ0
σ2

0

)
ds

(
ds − 2η0

σ2
0

)
+ · · ·

]
.(2.19)

Also, from (2.2), we obtain

σ0σ1 = β0η0.(2.20)

Next,

δ

σ
∼ 1

σ0

[
δ0 +

1√
C

(
δ1 − δ0σ1

σ0

)
+ · · ·

]
(2.21)

and

βσ ∼ β0σ0 +
1√
C
(σ0β1 + β0σ1) + · · · .(2.22)
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Hence, from (2.3), (2.4), and (2.11), after a straightforward calculation, it is found
that

σ0β1 + β0σ1 = −β0

(
δ1 − δ0σ1

σ0

)(
2
δ0
σ0
+ β0σ0

)
.(2.23)

If we use (2.18) and (2.20) to eliminate β1 and σ1 from (2.23), we obtain

δ1

[
1− 1

2
β0σ0

(
2
δ0
σ0
+ β0σ0

)]
(2.24)

=
1

2
β0δ0 +

1

4
β2

0σ
2
0 − 1

2
β3

0δ0η0 − β0η0

3σ2
0

(
β0σ

2
0 + 4β0δ

2
0 + 2

δ3
0

σ2
0

)
.

Since δ0/σ0 = −ξ, it follows from (2.15) that

(1− 2a2 − 2aξ)δ1 = (ξ + a)

[
a+

4η0

3σ2
0

(2aξ2 + 3a2ξ − ξ − a)

]
,(2.25)

and from (2.19) that

νs ∼ Ys

{
1 +

2ds(ξ + a)

σ0

√
C

− 2ds
σ2

0C

[
δ1 + (ξ + a)(ξ + 2a)

(
2η0

σ2
0

− ds

)]}
.(2.26)

Hence, from (2.10), we obtain the refined asymptotic approximation

νs ∼ Ys


1 + 2ds(ξ + a)√

2
∑S
r=1 d

2
rYr

+
ds(ξ + a)∑S
r=1 d

2
rYr

[
ds(ξ + 2a)− a

(1− 2a2 − 2aξ)
]

+
ds(ξ + a)

(∑S
r=1 d

3
rYr

)
3
(∑S

r=1 d
2
rYr

)2

[
a(1 + 2a2)

(1− 2a2 − 2aξ) − (ξ + 5a)
]
 .(2.27)

We note, from (2.4) and (2.14), that

g′(ξ) = 2g(ξ)[g(ξ) + ξ]− 1.(2.28)

Since g(ξ) = a, it follows that

1− 2a2 − 2aξ = −g′(ξ) > 0.(2.29)

Once ξ has been computed, the numerical calculation of the refined approximation
(2.27) is straightforward.

3. Iterative refinement procedure. Let f(x) = g(x) + x, where g(x) is given
by (2.14). Then, the inverse problem is asymptotically equivalent to solving the
equation

f(ξ)− ξ = a.(3.1)

We consider the algorithm

ξ(m+ 1) = f(ξ(m))− a, m = 0, 1, . . . , ξ(0) < ∞.(3.2)
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In order to establish that this is a contraction mapping, we make use of the following,
which is proved in Appendix C.

Lemma 3.1. Let

f(x) =
e−x

2

√
πErfc (x)

=
e−x

2

2
∫∞
x

e−u2du
.(3.3)

Then f ′(x) > 0 and f ′′(x) > 0 for −∞ < x < ∞.
We remark that this lemma is of importance in another problem. Reiman [15]

observed that h(x) =
√
2 f(x/

√
2) is the hazard rate of a standard (mean 0, variance

1) normal random variable. He made use of his assertion that h is strictly increasing
and strictly convex, but provided no proof of the latter.

From (3.1) and (3.2), we have

ξ(m+ 1)− ξ = f(ξ(m))− f(ξ).(3.4)

Since f ′(x) > 0, ξ(m) ≥ ξ ⇒ ξ(m + 1) ≥ ξ and ξ(m) ≤ ξ ⇒ ξ(m + 1) ≤ ξ. By
induction,

ξ(0) ≥ ξ ⇒ ξ(m) ≥ ξ, m = 0, 1, . . . ,(3.5)

and

ξ(0) ≤ ξ ⇒ ξ(m) ≤ ξ, m = 0, 1, . . . .(3.6)

Now f ′(x) = g′(x)+1 < 1, since g′(x) < 0 for x < ∞. We suppose first that ξ(0) ≥ ξ.
Then,

0 ≤ ξ(m+ 1)− ξ =

∫ ξ(m)

ξ

f ′(x)dx ≤ ξ(m)− ξ,(3.7)

so that ξ(m) is a monotonically nonincreasing function of m, and ξ(m) ≤ ξ(0), m =
0, 1, . . . . Hence, since f ′′(x) > 0, we have

ξ(0) ≥ ξ ⇒ |ξ(m+ 1)− ξ| ≤ f ′[ξ(0)] |ξ(m)− ξ|, m = 0, 1, . . . .(3.8)

On the other hand, if ξ(0) ≤ ξ, then

0 ≤ ξ − ξ(m+ 1) =

∫ ξ

ξ(m)

f ′(x)dx ≤ ξ − ξ(m),(3.9)

so that ξ(m) is a monotonically nondecreasing function of m. Hence, from (3.6), since
f ′′(x) > 0, we have

ξ(0) ≤ ξ ⇒ |ξ(m+ 1)− ξ| ≤ f ′(ξ) |ξ(m)− ξ|, m = 0, 1, . . . .(3.10)

We let

α = max {f ′(ξ), f ′ [ξ(0)]} = f ′ {max [ξ, ξ(0)]} < 1.(3.11)

Then, from (3.8) and (3.10), we obtain

|ξ(m+ 1)− ξ| ≤ α|ξ(m)− ξ|, m = 0, 1, . . . .(3.12)
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Fig. 3.1. Plot of the convergence factor f ′(ξ) as a function of a.

Hence ξ(m) converges geometrically and monotonically to ξ. We note, in particular,
that if ξ(0) = −a, then ξ > ξ(0) and α = f ′(ξ). In Figure 3.1, f ′(ξ) is depicted as
a function of a. Since f ′(ξ) → 1 as a → 0, ξ(m) converges slowly for small values
of a. Note, from (2.13), that as a → 0 the total carried capacity approaches the
capacity of the resource, and we are exiting the critically loaded regime and entering
the overloaded one. Consequently, in the next section we analyze the overloaded
regime, in which 0 < C −∑S

s=1 dsYs = O(1).
We conclude this section by establishing the connection between the algorithm

(3.2) and the iterative procedure proposed by Mitra [9] for the case of general loading.
The general algorithm is

νs(m+ 1) = Ys + νs(m)Ls(d,ν(m), C), m = 0, 1, . . . .(3.13)

Mitra conjectured that (3.13) leads to a contraction mapping, but its convergence for
any initial guess is an open question. If we multiply this equation by ds and sum on
s, we obtain, from (2.1),

δ(m+ 1)
√
C = C −

S∑
s=1

dsνs(m+ 1)(3.14)

= C −
S∑
s=1

dsYs −
S∑
s=1

dsνs(m)Ls(d,ν(m), C).

But, from (2.5) and (2.6), to lowest order,

Ls(d,ν(m), C) ∼ dsβ(m)√
C

, νs(m) ∼ Ys,(3.15)

and, from (2.2),

σ(m) ∼
√√√√ 2

C

S∑
s=1

d2
sYs ∼ σ(m+ 1).(3.16)
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Hence, asymptotically, from (3.14)–(3.16), we obtain

δ(m+ 1)

σ(m+ 1)
+
1

2
σ(m)β(m) ∼

(
C −∑S

s=1 dsYs

)
√
2
∑S
s=1 d

2
sYs

.(3.17)

From (2.3) and (2.13), we have

δ(m+ 1)

σ(m+ 1)
+

e−[δ(m)/σ(m)]2

√
πErfc [−δ(m)/σ(m)]

∼ a.(3.18)

Since ξ(m) ∼ −δ(m)/σ(m), this corresponds asymptotically to (3.2), in view of (3.3).

4. Overloaded regime. In the overloaded regime, 0 > C−∑S
s=1 dsνs = O(C),

and the loss probability Ls(d,ν, C) for service s is asymptotically given by (see [6],
[10])

Ls(d,ν, C) = 1− (z∗)ds +O

(
1

C

)
,(4.1)

where z∗ is the unique positive solution of

S∑
s=1

dsνs(z
∗)ds = C, 0 < z∗ < 1.(4.2)

Hence,

Ys = νs[1− Ls(d,ν, C)] = νs(z
∗)ds +O(1)(4.3)

and

0 < γ � C −
S∑
s=1

dsYs = O(1).(4.4)

To determine z∗ in terms of Ys (s = 1, 2, . . . , S), we derive an asymptotic approx-
imation to the correction term in (4.4). In Appendix D we establish that

γ = C −
S∑
s=1

dsYs ∼ z∗

(1− z∗)
.(4.5)

Hence,

z∗ ∼ γ

(1 + γ)
,(4.6)

and, from (4.3), it follows that

νs ∼ Ys

(
1 + γ

γ

)ds
.(4.7)

We will show that this result matches asymptotically with those for the critically
loaded regime for γ � 1 and 0 < γ/

√
C � 1. But γ = aσ0

√
C, from (2.10), (2.13),
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and (4.4), so this corresponds to 0 < a � 1. Since g(ξ) = a, it follows from (2.14)
and (B.1) that

ξ =
1

2a
[1− 4a2 +O(a4)] ,(4.8)

so that

1− 2a2 − 2aξ = 2a2 +O(a4).(4.9)

Hence, from (2.10) and (2.27), we obtain for small a

νs ∼ Ys

{
1 +

ds

aσ0

√
C
[1 +O(a2)] +

ds
2a2σ2

0C
[ds − 1 +O(a2)]

}
.(4.10)

This matches with (4.7) for γ = aσ0

√
C � 1.

5. Numerical results. The CLAA to the traffic intensities νs, in terms of the
carried loads Yr (r = 1, . . . , S), is given by (2.16), where ξ > −a satisfies f(ξ)−ξ = a,
and a and f(x) are given by (2.13) and (3.3). Numerical values of ξ were obtained
by the iterative refinement procedure (3.2), with ξ(0) = −a. The stopping criterion
|[ξ(m+ 1)− ξ(m)]/[ξ(m+ 1) + a]| ≤ 10−4 was used. The RCLAA is given by (2.27).

We present numerical results for the two examples considered in [14]. The first
example has capacity C = 96 and two services with call capacities d1 = 1 and d2 = 6.
In Table 1, the CLAA and RCLAA to the traffic intensities ν1 and ν2 are compared
with the values from which the carried loads Y1 and Y2 were calculated, using the exact
values of the loss probabilities tabulated in [14]. These values are ν1 = 0.86ν/1.7 and
ν2 = 0.14ν/1.7, where the total traffic intensity ν = ν1 + 6ν2 = 96 + β

√
96, and

β = −6(1)3, ranging from an underloaded resource to an overloaded one. The CLAA
gives moderately accurate values in the critically loaded regime, but less so in the
overloaded regime. The RCLAA, however, gives significantly better results in these
regimes. Errors of more than 1% are indicated in parentheses in Table 1. The results
become quite accurate in the underloaded regime, since the loss probabilities, although
not well approximated by CLAA or RCLAA there, are exponentially small. Also listed
in Table 1 is the number of iterations required to obtain ξ+a to the desired accuracy,
which increases significantly with the load.

Similar comparisons are made in Table 2 for the second example, which has
capacity C = 130, and three services with call capacities d1 = 1, d2 = 3, and d3 = 10.
The traffic intensities from which the carried loads Y1, Y2, and Y3 were calculated
exactly are ν1 = 2ν/13 = ν2 and ν3 = ν/26, where the total traffic intensity is
ν = ν1 + 3ν2 + 10ν3, and ν = 46.8(20.8)171.6, again ranging from an underloaded
resource to an overloaded one. (For ν = 67.6, the exact value of L3 in [14] should be
4.9623 × 10−3.) Similar comments apply to the CLAA and RCLAA here as for the
first example. Errors of more than 1% are indicated in parentheses in Table 2. Also
listed in Table 2 is the number of iterations required to obtain ξ + a to the desired
accuracy. All computations were performed with double precision.

The overloaded asymptotic approximation (4.7) gives less accurate results than
the RCLAA, even for the heaviest loads considered for the two examples. Thus, for
ν = 125.4 in Table 1, (4.7) gives the approximations 64.9 and 11.3 for ν1 and ν2,
respectively. For ν = 171.6 in Table 2, (4.7) gives the approximations 26.8, 27.6, and
7.23 for ν1, ν2, and ν3, respectively.



232 JOHN A. MORRISON AND K. G. RAMAKRISHNAN

Table 1
Comparisons of the CLAA and RCLAA to the traffic intensities ν1 and ν2 with the exact results

for two services with C = 96, d1 = 1 and d2 = 6, and total traffic intensity ν = ν1 + 6ν2.

Carried
loads CLAA (% err.) RCLAA (% err.) Exact ν # of iter.

18.8249 18.8249 18.8249 18.8250 37.2 2
3.06434 3.0643 3.0644 3.0645

23.779 23.779 23.781 23.782 47.0 3
3.8668 3.867 3.869 3.871

28.709 28.72 28.74 28.74 56.8 4
4.6372 4.65 4.67 4.68

33.546 33.67 33.70 33.69 66.6 6
5.2964 5.42 (1.3) 5.48 5.49

38.180 38.64 38.65 38.65 76.4 8
5.7476 6.16 (2.1) 6.28 6.29

42.529 43.63 43.60 43.61 86.2 12
5.9537 6.88 (3.1) 7.07 7.10

46.574 48.63 48.55 48.56 96.0 17
5.9496 7.52 (4.9) 7.84 7.91

50.337 53.62 53.50 53.52 105.8 24
5.7967 8.07 (7.3) 8.59 (1.4) 8.71

53.848 58.61 58.45 58.48 115.6 31
5.5503 8.50 (10.7) 9.30 (2.3) 9.52

57.137 63.60 63.40 63.43 125.4 39
5.2494 8.81 (14.7) 9.98 (3.4) 10.33

We also performed some numerical experiments using the algorithm (3.13) pro-
posed by Mitra [9]. The loss probabilities Ls were evaluated by means of the refined
uniform asymptotic approximation (RUAA) derived in [14], which was shown to be
very accurate for the two examples considered. The initial values νs(0), s = 1, 2, . . . , S,
were chosen either as Ys (calculated exactly) or as Zs = Ys[(1 + γ)/γ]ds , where γ is
given by (4.4), corresponding to the approximation (4.7) for the overloaded regime.

In Table 3 we compare the results of the iterative procedure with the (more
precisely listed) exact values of the traffic intensities ν1 and ν2 for the first example.
The corresponding carried loads are given in Table 1. Also listed is the number
of iterations required to obtain the desired accuracy. As indicated by our critically
loaded asymptotic analysis, the number of iterations increases significantly with the
load. For the most heavily loaded case considered, 8 fewer iterations were required
when νs(0) = Zs than when νs(0) = Ys, s = 1, 2.

In Table 4 we compare the results of the iterative procedure with the exact values
of the traffic intensities ν1, ν2, and ν3 for the second example. The corresponding
carried loads are given in Table 2. Similar comments apply to the number of iterations
required.

Appendix A. We derive here the refined asymptotic approximation (2.5) to
the loss probability Ls(d,ν, C) for service s, by specializing the uniform asymptotic
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Table 2
Comparisons of the CLAA and RCLAA to the traffic intensities ν1, ν2, and ν3 with the exact

results for three services with C = 130, d1 = 1, d2 = 3, and d3 = 10, and total traffic intensity
ν = ν1 + 3ν2 + 10ν3.

Carried
loads CLAA (% err.) RCLAA (% err.) Exact ν # of iter.

7.19997 7.19997 7.19997 7.2 46.8 2
7.19989 7.19989 7.19990 7.2
1.79983 1.79983 1.79984 1.8

10.3970 10.3980 10.3998 10.4 67.6 3
10.3898 10.3928 10.3986 10.4
2.58710 2.5896 2.5959 2.6

13.5563 13.59 13.601 13.6 88.4 6
13.5491 13.57 13.603 13.6
3.24937 3.34 (1.8) 3.396 3.4

16.5875 16.80 16.798 16.8 109.2 10
16.1393 16.76 16.797 16.8
3.58302 4.04 (3.8) 4.180 4.2

19.4315 20.01 19.994 20.0 130 17
18.2869 19.93 19.986 20.0
3.57130 4.64 (7.2) 4.929 (1.4) 5.0

22.0957 23.23 23.192 23.2 150.8 26
19.9652 23.03 23.177 23.2
3.35269 5.07 (12.6) 5.620 (3.1) 5.8

24.6070 26.44 26.391 26.4 171.6 37
21.2824 26.03 (1.4) 26.364 26.4
3.04643 5.31 (19.5) 6.229 (5.6) 6.6

approximation [10] to the critically loaded regime. Let

νs = αsC, s = 1, 2, . . . , S,(A.1)

where C � 1 and αs > 0 is O(1) and bounded away from zero. Also, let

f(z) =

S∑
s=1

αs(z
ds − 1)− log z.(A.2)

There is a unique positive solution z∗ of f ′(z) = 0 so that

S∑
s=1

αsds(z
∗)ds = 1, z∗ > 0.(A.3)

It follows from (A.2) and (A.3) that

v
�
= (z∗)2f ′′(z∗) =

S∑
s=1

αsd
2
s(z

∗)ds .(A.4)

We define

K =
1

(1− z∗)
−

√
v sgn (1− z∗)√−2f(z∗) , z∗ �= 1,(A.5)
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Table 3
Comparison of the final iterated values of the traffic intensities ν1 and ν2 with the exact results

for two services with C = 96, d1 = 1 and d2 = 6, and total traffic intensity ν = ν1 + 6ν2.

ν Exact νs(0) = Ys # of iter. νs(0) = Zs # of iter.

37.2 18.8250 18.8250 3 18.8250 4
3.06454 3.06454 3.06454

47.0 23.7816 23.7819 3 23.7819 5
3.87143 3.87141 3.87141

56.8 28.7383 28.7381 5 28.7381 6
4.67832 4.67828 4.67829

66.6 33.6949 33.6947 7 33.6947 8
5.48521 5.48515 5.48515

76.4 38.6515 38.6515 10 38.6515 11
6.29210 6.29210 6.29215

86.2 43.6081 43.6081 15 43.6083 16
7.0990 7.0988 7.0991

96.0 48.5647 48.5645 22 48.5653 22
7.9059 7.9055 7.9065

105.8 53.5213 53.5208 31 53.5233 30
8.7128 8.7112 8.7141

115.6 58.478 58.475 43 58.481 39
9.520 9.517 9.523

125.4 63.435 63.429 57 63.442 49
10.327 10.320 10.333

K =
1

2
+
1

6v

S∑
s=1

αsd
3
s, z∗ = 1,(A.6)

and

M =
1

2
Erfc

[
sgn (1− z∗)

√
−Cf(z∗)

]
+

KeCf(z
∗)

√
2πCv

.(A.7)

Then (see [10]),

Ls(d,ν, C) =
eCf(z

∗)[(z∗)ds − 1]√
2πCv(z∗ − 1)M

[
1 +O

(
1

C

)]
.(A.8)

Since f(1) = 0 and f ′(z∗) = 0, it follows from (A.4) that the expression for K in
(A.5) remains finite as z∗ → 1, and its limiting value is given by (A.6).

In the critically loaded regime corresponding to (2.1), z∗ is close to 1 and we
expand in powers of 1/

√
C and let

z∗ ∼ 1 + c1√
C
+

c2
C
+ · · · .(A.9)
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Table 4
Comparison of the final iterated values of the traffic intensities ν1, ν2, and ν3 with the exact

results for three services with C = 130, d1 = 1, d2 = 3, and d3 = 10, and total traffic intensity
ν = ν1 + 3ν2 + 10ν3.

ν Exact νs(0) = Ys # of iter. νs(0) = Zs # of iter.

46.8 7.2 7.20000 3 7.20000 4
7.2 7.20000 7.20000
1.8 1.80000 1.80000

67.6 10.4 10.40003 4 10.40003 5
10.4 10.40000 10.40000
2.6 2.60000 2.60000

88.4 13.6 13.60003 7 13.60003 8
13.6 13.60005 13.60005
3.4 3.40000 3.40000

109.2 16.8 16.79996 13 16.79998 14
16.8 16.79998 16.80006
4.2 4.19991 4.19999

130 20.0 19.9998 22 20.0001 23
20.0 19.9996 20.0003
5.0 4.9994 5.0002

150.8 23.2 23.1995 37 23.2005 35
23.2 23.1987 23.2019
5.8 5.7982 5.8013

171.6 26.4 26.3985 57 26.4017 49
26.4 26.395 26.405
6.6 6.595 6.604

Then, from (2.1), (A.1), and (A.3), we obtain

δ√
C

∼ c1√
C

S∑
s=1

αsd
2
s +

1

C

S∑
s=1

αsd
2
s

[
c2 +

1

2
c21(ds − 1)

]
+ · · · .(A.10)

Hence, from (2.2), we find that

c1 =
2δ

σ2
, c2 = −4δ

2

σ6

(
η − 1

2
σ2

)
.(A.11)

Also, from (A.4) and (A.6),

v ∼ 1

2
σ2 +

2δη

σ2
√
C
+ · · · , K ∼ 1

2
+

η

3σ2
+ · · · .(A.12)

Since f ′(z∗) = 0,

0 = f(1) = f(z∗) +
1

2
(1− z∗)2f ′′(z∗) +

1

6
(1− z∗)3f ′′′(z∗) + · · · .(A.13)

However, from (A.2), we obtain

zf ′′(z) + f ′(z) =
S∑
s=1

αsd
2
sz
ds−1(A.14)
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and

zf ′′′(z) + 2f ′′(z) =
S∑
s=1

αsd
2
s(ds − 1)zds−2 .(A.15)

From (2.2), (A.4), (A.9), (A.11), and (A.15), after some algebra, it is found that

f ′′(z∗) ∼ 1

2
σ2 +

2δ

σ2
√
C
(η − σ2) + · · ·(A.16)

and

f ′′′(z∗) ∼ η − 3
2
σ2 + · · · .(A.17)

It then follows from (A.13) that

−Cf(z∗) ∼ δ2

σ2
− 4δ3η

3σ6
√
C
+ · · · .(A.18)

Hence, since z∗ < 1 if δ < 0,

sgn (1− z∗)
√
−Cf(z∗) ∼ − δ

σ

(
1− 2δη

3σ4
√
C
+ · · ·

)
.(A.19)

It follows from (A.18) that

eCf(z
∗) ∼ e−(δ/σ)2

(
1 +

4δ3η

3σ6
√
C
+ · · ·

)
.(A.20)

Also, from (2.4) and (A.19), we obtain

Erfc
[
sgn (1− z∗)

√
−Cf(z∗)

]
∼ Erfc

(
− δ

σ

)
− 4δ2η

3σ5
√
πC

e−(δ/σ)2 + · · · ,(A.21)

and hence, from (A.7) and (A.12),

M ∼ 1

2
Erfc

(
− δ

σ

)
+

e−(δ/σ)2

σ
√
πC

[
1

2
+

η

3σ2

(
1− 2δ

2

σ2

)]
+ · · · .(A.22)

Consequently, with β given by (2.3),

e−(δ/σ)2

Mσ
√
π

∼ β

{
1− β

2
√
C

[
1 +

2η

3σ2

(
1− 2δ

2

σ2

)]
+ · · ·

}
.(A.23)

Next, from (A.12),

1√
2v

∼ 1

σ

(
1− 2δη

σ4
√
C
+ · · ·

)
.(A.24)

Finally, from (A.9) and (A.11),[
(z∗)ds − 1]
(z∗ − 1) =

ds−1∑
n=0

(z∗)n(A.25)

∼
ds−1∑
n=0

(
1 +

2nδ

σ2
√
C
+ · · ·

)

∼ ds +
δ

σ2
√
C
ds(ds − 1) + · · · .
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From (A.8), (A.20), and (A.23)–(A.25), we obtain the approximation (2.5).

Appendix B. We here establish that g(−∞) = ∞, g(∞) = 0, and g′(x) < 0
for x < ∞, where g(x) is given by (2.14), and Erfc (x) by (2.4). First (see [8]),
Erfc (−∞) = 2, so that g(−∞) =∞, and

Erfc (x) ∼ e−x
2

√
πx

[
1− 1

2x2
+
3

4x4
+O

(
1

x6

)]
, x � 1.(B.1)

Hence g(∞) = 0. Next, we define

ω(x) =

√
π

2
ex

2

Erfc (x) = ex
2

∫ ∞

x

e−u
2

du =

∫ ∞

0

e−v
2

e−2xvdv.(B.2)

Then, ω(x) > 0 for x < ∞, and

g(x) =
1

2ω(x)
− x, g′(x) = − ω′(x)

2[ω(x)]2
− 1.(B.3)

From (B.2) we obtain

[ω(x)]2 =

∫ ∞

0

∫ ∞

0

e−(v2+w2) e−2x(v+w) dv dw.(B.4)

If we make the transformation of variables

v =
1√
2
(η − ζ), w =

1√
2
(η + ζ),(B.5)

then

[ω(x)]2 =

∫ ∞

0

∫ η

−η
e−(η2+ζ2) e−2

√
2 xη dζ dη.(B.6)

Also, from (B.2),

1

2
ω′(x) = −

∫ ∞

0

ve−v
2

e−2xvdv = −2
∫ ∞

0

ηe−2η2

e−2
√

2 xη dη.(B.7)

Hence,

1

2
ω′(x) + [ω(x)]2 =

∫ ∞

0

e−η
2

e−2
√

2 xη ψ(η)dη,(B.8)

where

ψ(η) =

∫ η

−η
e−ζ

2

dζ − 2η e−η
2

> 0, η > 0 .(B.9)

It follows, from (B.3), (B.8), and (B.9), that g′(x) < 0 for x < ∞.
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Appendix C. Here we prove Lemma 3.1. We consider −∞ < x < ∞. Then,
from (3.3) and (B.2),

f(x) =
1

2ω(x)
, f ′(x) = − ω′(x)

2[ω(x)]2
> 0.(C.1)

Next,

f ′′(x) =
[ω′(x)]2

[ω(x)]3
− ω′′(x)
2[ω(x)]2

.(C.2)

But, from (B.7),

1

2
ω′′(x) = 2

∫ ∞

0

v2 e−v
2

e−2xv dv.(C.3)

Hence, from (B.2) and (B.7),

[ω′(x)]2 − 1
2
ω(x)ω′′(x)(C.4)

=

∫ ∞

0

∫ ∞

0

(4vw − v2 − w2)e−(v2+w2) e−2x(v+w) dv dw,

where we have expressed ω(x)ω′′(x) in a symmetric form.
If we make the transformation of variables (B.5), then

[ω′(x)]2 − 1
2
ω(x)ω′′(x) =

∫ ∞

0

e−η
2

e−2
√

2 xη χ(η) dη,(C.5)

where

χ(η) =

∫ η

−η
(η2 − 3ζ2) e−ζ

2

dζ.(C.6)

Hence, from (B.9),

χ′(η) = 2η ψ(η) > 0, η > 0.(C.7)

Since χ(0) = 0, it follows that χ(η) > 0 for η > 0. Hence, from (C.2) and (C.5), since
ω(x) > 0, we have established that f ′′(x) > 0 for −∞ < x < ∞, and the proof of the
lemma is complete.

Appendix D. We here establish the asymptotic approximation in (4.5). Let

G(d,ν, C − n) =
1

2πi

∫
|z|<1

zn−1eCf(z)

(1− z)
dz(D.1)

for integer values of n, where the integral is taken in a counterclockwise direction
around a circle of radius less than 1, and, from (A.1) and (A.2),

Cf(z) =

S∑
s=1

νs(z
ds − 1)− C log z.(D.2)
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Then (see [14]),

1− Ls(d,ν, C) =
1

2πiG(d,ν, C)

∫
|z|<1

zds−1eCf(z)

(1− z)
dz.(D.3)

From (D.2) it follows that

S∑
s=1

dsνsz
ds = C[zf ′(z) + 1].(D.4)

Hence, since Ys = νs[1− Ls(d,ν, C)],

C −
S∑
s=1

dsYs = − C

2πiG(d,ν, C)

∫
|z|<1

f ′(z)
(1− z)

eCf(z)dz.(D.5)

However,

d

dz

[
eCf(z)

(1− z)

]
=

[
Cf ′(z)
(1− z)

+
1

(1− z)2

]
eCf(z).(D.6)

It follows that

C −
S∑
s=1

dsYs =
1

2πiG(d,ν, C)

∫
|z|<1

eCf(z)

(1− z)2
dz.(D.7)

From (4.2) and (D.4), f ′(z∗) = 0. Moreover (see [10]), |z| = z∗ is a saddle-point
contour, and if h(z) is analytic in a domain containing |z| = z∗, then

1

2πi

∫
|z|=z∗

h(z)eCf(z)dz =
eCf(z

∗)√
2πCf ′′(z∗)

[
h(z∗) +O

(
1

C

)]
.(D.8)

If we deform the contour of integration to |z| = z∗ and set n = 0 in (D.1), we obtain
the asymptotic approximations

G(d,ν, C) ∼ eCf(z
∗)√

2πCf ′′(z∗) z∗(1− z∗)
(D.9)

and

1

2πi

∫
|z|<1

eCf(z)

(1− z)2
dz ∼ eCf(z

∗)√
2πCf ′′(z∗) (1− z∗)2

.(D.10)

The result in (4.5) follows from (D.7), (D.9), and (D.10).
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DERIVATION OF A CONTINUUM MODEL FOR EPITAXIAL
GROWTH WITH ELASTICITY ON VICINAL SURFACE∗
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Abstract. In heteroepitaxial growth, the mismatch between the lattice constants in the film and
the substrate causes misfit strain in the film, making a flat surface unstable to small perturbations.
This morphological instability is called Asaro–Tiller–Grinfeld (ATG) instability, which can drive the
film to self-organize into nanostructures such as quantum wires or quantum dots. In practice, most
devices are fabricated on vicinal surfaces which consist of steps and terraces. In this case, the misfit
strain causes step bunching, and traditional continuum models for the ATG instability do not apply
directly. In this paper, we derive a continuum model for step bunching by taking the continuum limit
of the discrete models proposed by Duport, Politi, andVillain [J. Phys. I, 5 (1995), pp. 1317–1350]
and Tersoff et al. [Phys. Rev. Lett., 75 (1995), pp. 2730–2733].

Key words. epitaxial growth, step bunching, continuum model, elasticity
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1. Introduction. Nanostructures such as quantum wires and quantum dots ex-
hibit novel electronic and optical properties and have important potential applications
in semiconductor technology. How to fabricate them efficiently has raised intense in-
terest recently. One promising way is to employ the self-organization process during
heteroepitaxial growth of thin films where they are under stress. The mismatch
between the lattice constants in the film and in the substrate causes misfit strain
and stress in the film, driving the self-organization of surface morphology (see, e.g.,
[44, 46]). Therefore understanding the mechanism of misfit related self-organization
is an important step to make this technology a reality.

The stress-driven morphological instability was first studied by Asaro and Tiller
[1] and later independently by Grinfeld [17, 18] and Srolovitz [43]. It is called Asaro–
Tiller–Grinfeld (ATG) instability or Grinfeld instability. These authors studied the
linear instability of a planar surface of a stressed solid to small perturbations and
found that the planar surface is unstable for wavenumbers less than a critical value.
This instability is manifested by a mass transport via surface diffusion. The stress in
the solid is a destabilizing factor while the surface energy is a stabilizing one. This
linear instability was also studied by Gao [15], Spencer, Voorhees, and Davis [42],
Freund and Jonsdottir [14], Grilhe [16], and others.

The nonlinear evolution of the stress-driven instability for thick films will result
in the formation of cusps. It was studied by Yang and Srolovitz [54], Chiu and Gao
[5], Spencer and Meiron [40], and Kassner and Misbah [20]. If the films are thin and
wet the substrates, Stranski–Krastanow wetting islands will form. The steady states
of island shapes were studied by Spencer and Tersoff [41], Kukta and Freund [23],
Spencer [39], Rudin and Spencer [33], and Shanahan and Spencer [36], and others.
The nonlinear evolution of the surfaces of thin films and the formation of islands were
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studied by Chiu and Gao [6], Zhang and Bower [55].
These authors treated the surface as a continuum, neglecting the presence of steps.

This can be true only at relatively high temperature above the roughening transition,
when the surface can change continuously. The normal temperature for epitaxial
growth is below the roughening transition, when the surface will consist of steps and
terraces (see, e.g., [30]). In this case, the surface cannot continuously change, and it
has been shown that there is an activation barrier for the nucleation of steps [48, 53].
Therefore the continuum theories mentioned above do not apply directly. In practice,
most semiconductor devices are fabricated on vicinal surfaces. Such surfaces are cut
at a small angle to the atomic planes, creating a succession of terraces separated by
atomic-height steps. The self-organization driven by misfit elasticity is achieved by
step bunching [26, 28]. These bunches have uniform size and spacing, and they are
much straighter than single steps, which tend to meander (Bales–Zangwill instability
[3]) due to the Schwoebel barrier [35]. Therefore they can serve as superior templates
for growth of quantum wires and nucleation of clusters [32, 45].

The understanding of step bunching induced by misfit strain is not as complete
as that of the traditional ATG instability for a continuous surface. One important
model was proposed by Tersoff et al. [49] and Liu, Tersoff, and Lagally [24] describing
the dynamics of each step based on Burton, Cabrera, and Frank (BCF) theory [4].
In their model, the elastic effect of a step on a thick film is modeled by a force
monopole caused by misfit stress in the bulk and a force dipole caused by the step
[47]. The force monopole causes attractive interaction between successive steps, which
destabilizes a uniform step train. The force dipole causes repulsive interaction between
successive steps, which stabilizes a uniform step train. They analyzed the linear
instability toward step bunching from a uniform step train with small perturbations
and showed that it evolves by progressive coalescence of step bunches [49]. They also
studied the kinetic debunching effect and demonstrated numerically how to control the
size of bunches [24]. Another important model was proposed by Duport, Nozieres,
and Villain [8], Duport, Politi, and Villain [9], and Duport [7]. Besides the two
elastic effects between the steps considered by Tersoff et al., they also considered the
elastic interaction between adatoms and steps and the Schwoebel barrier. The elastic
interaction between adatoms and steps is stabilizing or destabilizing depending on the
sign of the misfit. The Schwoebel barrier is always stabilizing. Additional work was
done on the shapes of the islands which consist of steps. Duport, Priester, and Villain
[10] computed the equilibrium shapes of pyramid-like islands. Kaganer and Ploog
[19] studied the two-dimensional island shapes and growth kinetics of step bunches
by modifying Tersoff et al.’s model. All these models are two-dimensional based on
the observation that the steps are very straight in bunches. Kukta and Bhattacharya
[22] proposed a three-dimensional model for step-flow-mediated crystal growth under
stress. As far as we know, there is no continuum model for step bunching induced by
misfit strain.

There are three different levels of models for epitaxial growth: kinetic Monte
Carlo (e.g., [38]), BCF theory [4], and continuum theories, with length scales ranging
from atomic size, to terrace width, to mound size ([13], see also [11]). In most cases,
a continuum model is desired when we are interested only in the shapes of step
bunches or islands. The existing continuum models for the traditional ATG instability
follow Mullins’ chemical potential argument [27]. They do not incorporate the atomic
structure of the underlying crystal which plays an important role in epitaxial growth.

In this paper, we derive a continuum model for the elastically driving step bunch-
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ing by taking the continuum limit from the discrete models of Duport, Politi, and
Villian [9] and Tersoff et al. [49]. The underlying atomic features of epitaxial growth
reflected in the discrete models are kept in our model. This method of deriving
continuum models from small scale models has been used in the literature to obtain
continuum models for epitaxial growth without elasticity [50, 2, 31, 21, 29] (from BCF
models), [34, 12, 25] (from BCF models coupled with adatom density) and [51] (from
kinetic Monte Carlo models).

The rest of the paper is organized as follows. In section 2, we review the concept of
epitaxial growth on vicinal surfaces and the BCF model, and we present the discrete
models of Duport, Politi, and Villian [9] and Tersoff et al. [49]. In section 3, we
derive our continuum model from these discrete models. In section 4, we summarize
our results.

2. Epitaxial growth on vicinal surface and BCF-like models. In this
section, we review the concept of epitaxial growth on vicinal surfaces and BCF theory,
and we present the discrete models for elastically driving step bunching.

Epitaxial growth is the growth of crystalline film on a crystalline substrate fol-
lowing the same structure as the substrate. A vicinal surface consists of a succession
of terraces separated by atomic-height steps, and the angle between the surface and
the crystallographic plane is small. According to the BCF theory [4], the adatoms
diffuse on the terraces until they meet the steps and get incorporated into the steps.
The surface then grows (see Figure 2.1). The best way to grow a good crystal is to
grow it on an infinite vicinal surface with parallel, equidistant steps (uniform step
train) [30].

Steps and adatoms can interact elastically. The elastic interaction may be due to
different kinds of mechanisms. One mechanism is the broken bond mechanism, which
originates from the force dipole exerted by adatoms or steps due to the broken bonds
of the adatoms or along the steps. The other mechanism is the misfit mechanism,
which originates from the misfit between the lattice constants of the film and the
substrate. The misfit strain and stress exist in the bulk of the film. If the modulation
of the surface is small, the effect of this mechanism is equivalent to a surface stress

deposition 

diffusion attachment/detachment 

terrace 
step 

Fig. 2.1. Schematic picture for the BCF theory.
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acting on a flat surface proportional to the modulation of the surface and the misfit.
In the case of isotropic misfit and Hooke’s law, the surface stress due to the misfit is
given by

ηxx = ηyy =
δa

a

E

1− ν δh,(2.1)

where a is the lattice constant in the substrate, a + δa is the lattice constant in the
film, E is the Young modulus, ν is the Poisson ratio, and δh is the modulation of the
surface.

The elastic interactions between adatoms and steps affect the diffusion of the
adatoms on terraces. The elastic interactions between steps modify the equilibrium
adatom density on steps and therefore modify the incorporating process of adatoms
into the steps if we assume the adatoms incorporated into the steps can detach from
them.

As far as diffusion alone is concerned, the adatoms prefer to go to the upper step
rather than to the lower step, since an energy barrier exists near the lower step; this
is called the Schwoebel barrier [35].

Now we present the model given by Duport, Politi, and Villain in [9] for a 1+1-
dimensional vicinal surface based on the BCF theory. The 1+1-dimensional model
assumes that the steps are straight and parallel, and the diffusion on the terrace is
uniform in the direction parallel to the steps. The vicinal surface is assumed to be
infinite and monotonic in the direction perpendicular to the steps. Without loss of
generality, it is assumed that the terrace on the left of a step is higher than the terrace
on the right. Letting {xn} with · · · < xn−1 < xn < xn+1 < · · · be the step train, the
equations describing the adatom diffusion and step motion can be written as



∂ρn
∂t

= D ∂
∂x

(
∂ρn
∂x

+
ρn
kBT

∂U
∂x

)
+ F, xn < x < xn+1,

D
(
∂ρn
∂x

+
ρn
kBT

∂U
∂x

)
= k+(ρn − ρ0

n), x = xn,

D
(
∂ρn
∂x

+
ρn
kBT

∂U
∂x

)
= −k−(ρn − ρ0

n+1), x = xn+1,

dxn(t)
dt

= a2[k+(ρn|x=x+
n
− ρ0

n) + k
−(ρn−1|x=x−n − ρ0

n)],

(2.2)

where ρn is the adatom density on the terrace between the nth step and the (n +
1)st step, F is the deposition flux, D is the diffusion constant on terrace, kB is the
Boltzmann constant, T is the temperature, and k+ and k− are the hopping rates of
an adatom to the upward step and downward step, respectively; the Schwoebel effect
stipulates

k+ ≥ k−.(2.3)

ρ0
n is the equilibrium adatom density on the nth step; it is equal to the equilibrium
adatom density on a step in the absence of elastic interactions ρ0 with a local correction
due to elasticity

ρ0
n = ρ0e

− 1
kBT (U(xn)−fn)

.(2.4)

The function U(x) is the elastic energy due to the interaction between an adatom and
the steps

U(x) = −
+∞∑

m=−∞

α0

xm − x(2.5)
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and fn describes the elastic interaction between the nth step and all other steps

fn = −
∑
m�=n

(
α1

xm − xn − α2

(xm − xn)3
)
.(2.6)

The constants α1, α2 > 0, α0 may be either positive or negative, and

α0 =
2

π
(1 + ν)

δa

a
µaa

3,(2.7)

α1 =
2E

π

1 + ν

1− ν
(
δa

a

)2

a4,(2.8)

α2 =
4

πE
(1− ν2)µ2

sa
4,(2.9)

where a2µa is the force dipole moment due to the broken bond mechanism for an
adatom, aµs is the force dipole moment due to the broken bond mechanism along a
step.

The first equation in the system (2.2) describes the deposition and diffusion pro-
cesses of adatoms on a terrace. The second and third equations describe the incorpo-
rating process of adatoms into the steps, which serve as the boundary conditions of
the diffusion problem. The fourth equation gives the velocity of the steps.

The function U(x) describes the elastic interaction between one adatom and the
steps. In this expression, the adatom has the broken bond effect and the steps have
the misfit effect, which is dominant among all possible combinations. The sign of
α0 can be either positive or negative depending on the sign of µaδa. The case of
µaδa > 0 means that the elastic interaction between an adatom with the broken bond
effect and a step with the misfit effect is repulsive for upper steps and is attractive for
lower steps. Thus the adatoms on a terrace prefer to go to the lower step than to the
upper step. On the other hand, µaδa < 0 means that the elastic interaction between
an adatom with the broken bond effect and a step with the misfit effect is attractive
for upper steps and is repulsive for lower steps. Thus the adatoms on a terrace prefer
to go to the upper step than to the lower step.

The function fn describes the elastic interaction between steps. The first term in
it comes from the elastic interaction between steps in the step train due to the misfit
mechanism. It is an attractive interaction. The second term comes from the elastic
interaction between steps in the step train due to the broken bond mechanism. It is
a repulsive interaction. Here we do not consider the interactions between a step with
the broken bond effect and another step with the misfit effect, since they cancel. In
fact, consider two successive steps, one is higher than the other. Due to the misfit
mechanism (2.1), the higher step generates a surface stress with a sign the same as δa
and the lower step generates a surface stress with a sign the same as −δa. However,
due to the broken bond mechanism, the two steps generate force dipole moments with
the same sign. Therefore the elastic interactions between one step with the broken
bond mechanism and another step with the misfit mechanism cancel and we do not
need to take them into consideration. In Duport, Politi, and Villain’s paper [9], they
did not notice this and they omitted these interactions by assuming either the broken
bond mechanism or the misfit mechanism is dominant.
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Now we solve the system (2.2). Usually in epitaxial growth, the deposition process
is much slower than the diffusion process, which means that the step velocity is
very small compared with the adatom hopping velocity. Therefore the quasi-static
approximation can be made:

∂ρn
∂t

≈ 0.(2.10)

Under this assumption, we can get an explicit solution for the step velocity:

1
a2
dxn(t)
dt

= F
ln + ln−1

2

+
ρ−n e

U(xn+1)

kBT − ρ+
n e

U(xn)
kBT

e
U(xn)
kBT

k+ +
e

U(xn+1)

kBT

k−
+
1

D

∫ xn+1

xn

e
U(y)
kBT dy

− ρ−n−1e
U(xn)
kBT − ρ+

n−1e
U(xn−1)

kBT

e
U(xn−1)

kBT

k+ +
e

U(xn)
kBT

k−
+
1

D

∫ xn

xn−1

e
U(y)
kBT dy

+

Fln
2


eU(xn+1)

kBT

k−
− e

U(xn)
kBT

k+




e
U(xn)
kBT

k+ +
e

U(xn+1)

kBT

k−
+
1

D
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xn

e
U(y)
kBT dy

−

Fln−1

2


eU(xn)

kBT

k−
− e

U(xn−1)

kBT

k+




e
U(xn−1)

kBT

k+ +
e

U(xn)
kBT

k−
+
1

D

∫ xn

xn−1

e
U(y)
kBT dy

+

F

D

∫ xn+1

xn

(
y − xn+1 + xn

2

)
e

U(y)
kBT dy

e
U(xn)
kBT

k+ +
e

U(xn+1)

kBT

k−
+
1

D

∫ xn+1

xn

e
U(y)
kBT dy

−
F

D

∫ xn

xn−1

(
y − xn + xn−1

2

)
e

U(y)
kBT dy

e
U(xn−1)

kBT

k+ +
e

U(xn)
kBT

k−
+
1

D

∫ xn

xn−1

e
U(y)
kBT dy

,

(2.11)

where

ln ≡ xn+1 − xn(2.12)

is the width of the terrace between the nth step and the (n+ 1)st step.
If it is further assumed that the elastic energies are very small compared to the

thermal energy

fn, U(x) << kBT,(2.13)
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keeping the leading order terms of 1/kBT for each effect, respectively, we can write
the step velocity as

1
a2
dxn(t)
dt

= F
ln + ln−1

2 +
ρ0
kBT

· ln
1

k+ +
1

k−
+
ln
D

· fn+1 − fn
ln

− ρ0
kBT

· ln−1

1

k+ +
1

k−
+
ln−1

D

· fn − fn−1

ln−1

+

Fln
2

(
1

k−
− 1

k+

)
1

k+ +
1

k−
+
ln
D

−
Fln−1

2

(
1

k−
− 1

k+

)
1

k+ +
1

k−
+
ln−1

D

+

F

D

∫ xn+1

xn

(
y − xn+1 + xn

2

)
U(y)

kBT
dy

1

k+ +
1

k−
+
ln
D

−
F

D

∫ xn

xn−1

(
y − xn + xn−1

2

)
U(y)

kBT
dy

1

k+ +
1

k−
+
ln−1

D

.

(2.14)

This step motion equation is simpler than that derived in Duport, Politi, and
Villain [9]. We keep only the leading order terms of 1/kBT for each effect, respectively.
(We neglect the O(1/kBT ) corrections to the hopping rates k

±, while they kept all
O(1/kBT ) terms.)

If we consider only the attractive and repulsive elastic interactions between steps
and neglect the elastic interaction between adatoms and steps, as well as the Schwoebel
barrier, as was done in Tersoff et al. [49] and Liu, Tersoff, and Lagally [24], then we
have

1

a2

dxn
dt

= F
ln + ln+1

2
+
ρ0D

kBT

(
fn+1 − fn

ln
− fn − fn−1

ln−1

)
.(2.15)

This corresponds to the case U(y) ≡ 0 and k+ = k− = +∞ in (2.14).

3. Continuum equation. In this section, we derive our continuum model gov-
erning the elastically driving step bunching by taking the continuum limit from the
modified Duport et al.’s discrete model (2.14), of which Tersoff et al.’s discrete model
(2.15) is a special case.

Assume the lattice constant a is very small compared with the length scale in
which we are interested; then the surface can be considered as a continuous function
h(x). As in the discrete models, we assume that the overall slope of the surface
is negative. We also assume that the surface has only a bounded deviation from a
flat surface representing a uniform step train, so that those summations of the 1/r
elastic interactions in (2.5) and (2.6) are defined in the sense of principal value. More
precisely, we assume that h(x) ∈ C4(R) satisfies the following:


hx, hxx, hxxx, and hxxxx are bounded,
hx < 0,
h(x) = −Ax+ a bounded smooth function,

(3.1)



248 YANG XIANG

where A > 0 is a constant.
Due to the monotonicity, we can also consider x as a function of h. Due to the

asymptotic property of h(x), we know that x(h) is defined for all h and therefore has
a similar asymptotic property. More precisely, x(h) satisfies the following:


x(h) has up to fourth order bounded derivatives,
xh < 0,

x(h) = − hA + a bounded smooth function.
(3.2)

The step motion equation (2.14) can be considered as a numerical scheme for
a differential equation of x(h, t) with the grid constant a. We have the following
relations:

xn = x(hn, t)(3.3)

hn+1 − hn = −a,(3.4)

where xn is the position of the nth step, hn is the height of the terrace between the
(n− 1)st step and the nth step. See Figure 3.1.

We obtain our continuum equation by letting a→ 0 in the step motion equation
(2.14). We will first compute the continuum limit of each summation representing
each elastic effect and then derive the continuum equation.

3.1. Continuum limit of the 1/r3 interaction between steps. In this sub-

section, we compute the continuum limit of
∑
m�=n

a2

(xm−xn)3 as a→ 0.

First, we have∑
m�=n

a2

(xm − xn)3

=

+∞∑
m=1

(
a2

(xn+m − xn)3 − a2

(xn − xn−m)3
)

=

+∞∑
m=1

2xn − xn+m − xn−m
a2(

xn+m − xn
a

)3(
xn − xn−m

a

)3

·
((

xn − xn−m
a

)2

+
xn − xn−m

a
xn+m − xn

a +
(
xn+m − xn

a

)2
)

≡
+∞∑
m=1

am.

(3.5)

For each am, we can compute its limit

lim
a→0

am = − 3

m2

xhh

x4
h

=
3

m2hxhxx.(3.6)

By the assumption of x(h) (3.2)

am = O

(
1

m2

)
.(3.7)
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Fig. 3.1. Continuous surface profile h(x) and positions of steps.

Therefore the summation converges absolutely, and we can change the order of
the summation and the limit to get

lim
a→0

∑
m�=n

a2

(xm − xn)3
=

+∞∑
m=1

hxhxx
3

m2 =
π2

2
hxhxx.(3.8)

3.2. Continuum limit of the 1/r interaction between steps. In this sub-
section, we compute the continuum limit of

∑
m�=n

a
xm−xn

as a→ 0.
We use the following theorem obtained by Sidi and Israeli in [37]. They derived

it to estimate the error of computing a Cauchy principal value integral using the
trapezoidal rule.

Theorem [37]. Let g(x) be 2N times differentiable on [a, b]. The interval [a, b]
is divided into n small intervals with ∆x = (b − a)/n, xj = a + (j − 1) ∗ ∆x, j =
0, 1, . . . , n+ 1. Let G(x) = g(x)/(x− t), where t = xj0 for some j0 
= 0, n+ 1. Then
as ∆x→ 0,

∫ b

a

G(x)dx = ∆x


1
2G(a) +

∑
xj �=t,1≤j≤n

G(xj) +
1
2G(b)


+∆xg′(t)

+

N−1∑
µ=1

B2µ

(2µ)!
(G(2µ−1)(a)−G(2µ−1)(b))∆x2µ +R2N [G; (a, b)],

(3.9)

where the Bµ’s are the Bernoulli numbers and

|R2N [G; (a, b)]| ≤M2N∆x
2N

∫ b

a

∣∣∣∣ d2N

dx2N

(
g(x)− g(t)
x− t

)∣∣∣∣ dx(3.10)

for a constant M2N not depending on G(x) and [a, b].
Now without loss of generality, assume x(0) = xn and consider the function

G(h) = 1/(x(h)− x(0)). Choosing the grid constant to be our lattice constant a and
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N = 1, using the theorem in (−∞,+∞), we have∫ +∞

−∞

dh

x(h)− x(0) =
∑
m�=n

a

xm − xn − a

2

xhh
x2
h

+O(a2),(3.11)

where the integral on the left is in the sense of the Cauchy principal value at 0 and
∞. It is defined by∫ +∞

−∞

dh

x(h)− x(0) ≡ lim
H→+∞, ε→0

(∫ −ε

−H

dh

x(h)− x(0) +
∫ H

ε

dh

x(h)− x(0)

)
.(3.12)

Here we have used the assumption of x(h) (3.2) to guarantee the existence of the
Cauchy principal values at 0 and ∞ and the convergence of the integral in the error
term (3.10).

Therefore we have∑
m�=n

a

xm − xn =
∫ +∞

−∞

dh

x(h)− x(0) +
a

2

xhh
x2
h

+O(a2).(3.13)

Now we show that change of variable from h to x does not affect the Cauchy
principal value integral. In fact,∫ H

ε

dh
x(h)− x(0) =

∫ x(H)

x(ε)

hx
x− xn dx

= −
(∫ xn−H

A

x(H)

+

∫ xn+xh(0)ε

xn−H
A

+

∫ x(ε)

xn+xh(0)ε

)
hx

x− xn dx.
(3.14)

Since ∫ x(ε)

xn+xh(0)ε

hx
x− xn dx =

∫ xn+xh(0)ε+O(ε2)

xn+xh(0)ε

hx
x− xn dx = O(ε),(3.15) ∫ xn−H

A

x(H)

hx
x− xn dx =

∣∣∣∣xn − x(H)− H

A

∣∣∣∣ ·O
(
1

H

)
= O

(
1

H

)
,(3.16)

we have ∫ H

ε

dh

x(h)− x(0) = −
∫ xn+xh(0)ε

xn−H
A

hx
x− xn dx+O(ε) +O

(
1

H

)
.(3.17)

Similarly, we have∫ −ε

−H

dh

x(h)− x(0) = −
∫ xn+H

A

xn−xh(0)ε

hx
x− xn dx+O(ε) +O

(
1

H

)
.(3.18)

Therefore a change of variable from h to x does not affect the Cauchy principal
value integral. From (3.13) we have as a→ 0,∑

m�=n

a

xm − xn = −
∫ +∞

−∞

hx
x− xn dx−

a

2

hxx
hx

+O(a2).(3.19)

The integral is in the sense of the Cauchy principal value at 0 and ∞.
We keep the O(a) term here because it has the same order as the 1/r3 interaction.
Summarizing the results, we have shown that as a→ 0,

a2fn ≈ aα1

∫ +∞

−∞

hx
x− xn dx+

1

2
a2α1

hxx
hx

+
π2

2
α2hxhxx.(3.20)
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3.3. Continuum limit of the interaction between adatoms and steps. In
this subsection, we compute the continuum limit of the interaction between the steps
and the adatoms on the terrace between steps xn and xn+1:

lim
a→0

1

a

∫ xn+1

xn

(
y − xn + xn+1

2

)∑
m

1

xm − y dy.(3.21)

This integral has singularities at the endpoints xn and xn+1. Duport, Nozieres, and
Villain [8], Duport, Politi, and Villain [9], and Duport [7] overcame this difficulty
by computing the integral on the interval [xn + a, xn+1 − a]. One reason for this
truncation of the integration interval is that the nearest lattice site to the step is one
lattice constant away from the step. Here we also use this approximation.

First, we compute ∫ xn+1

xn

(
y − xn + xn+1

2

)
1

xm − y dy.(3.22)

For m 
= n, n+ 1∫ xn+1

xn

(
y − xn + xn+1

2

)
1

xm − y dy = −ln+
(
xm − xn + xn+1

2

)
log

xm − xn
xm − xn+1

.

(3.23)
For m = n ∫ xn+1

xn+a

(
y − xn + xn+1

2

)
1

xn − y dy = −ln + ln
2
log

ln
a
.(3.24)

For m = n+ 1∫ xn+1−a

xn

(
y − xn + xn+1

2

)
1

xn+1 − y dy = −ln + ln
2
log

ln
a
.(3.25)

Therefore we have

1
a

∫ xn+1

xn

(
y − xn + xn+1

2

)∑
m

1
xm − y dy

=

+∞∑
m=1


− lna +

(
m∑
k=1

ln+k
a + ln

2a

)
log

m∑
k=1

ln+k

a
+
ln
a

m∑
k=1

ln+k

a




+
+∞∑
m=1


− lna +

(
m∑
k=1

ln−k
a + ln

2a

)
log

m∑
k=1

ln−k
a

+
ln
a

m∑
k=1

ln−k
a




− 2 lna +
ln
a log

ln
a

≡
+∞∑
m=1

am +

+∞∑
m=1

bm − 2 lna + ln
a log

ln
a .

(3.26)
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Rewrite am as

am = − ln
a
+
ln
2a

· 1
θm

log
1 + θm
1− θm ,(3.27)

where

θm ≡
ln
2a

m∑
k=1

ln+k

a
+
ln
2a

.(3.28)

Using the assumption of x(h) (3.2), we can prove that

θm = O

(
1

m

)
(3.29)

and

am = O

(
1

m2

)
.(3.30)

That means that
∑+∞
m=1am is uniformly convergent with respect to a. Therefore

lim
a→0

+∞∑
m=1

am =

+∞∑
m=1

lim
a→0

am =

+∞∑
m=1

(
1−

(
m+

1

2

)
log

m+ 1

m

)
1

hx(xn)
.(3.31)

Similarly, we can prove that

lim
a→0

+∞∑
m=1

bm =

+∞∑
m=1

lim
a→0

bm =

+∞∑
m=1

(
1−

(
m+

1

2

)
log

m+ 1

m

)
1

hx(xn)
.(3.32)

It is easy to compute the continuum limit of the other terms in (3.26):

lim
a→0

(
−2 ln

a
+
ln
a
log

ln
a

)
=
2 + log |hx(xn)|

hx(xn)
.(3.33)

Using the relation

1 +
+∞∑
m=1

(
1−

(
m+

1

2

)
log

m+ 1

m

)
=
1

2
log 2π,(3.34)

which can be found in Duport, Politi, and Villain’s paper [9], we have

lim
a→0

1

a

∫ xn+1

xn

(
y − xn + xn+1

2

)∑
m

1

xm − y dy =
1

hx(xn)
log(2π|hx(xn)|).(3.35)

Therefore as a→ 0, we have

1

a

∫ xn+1

xn

(
y − xn + xn+1

2

)
U(y)dy ≈ −aα0

1

hx(xn)
log(2π|hx(xn)|).(3.36)
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3.4. Derivation of continuum equation. Now we have the continuum limit
of fn (3.20) and the continuum limit of the integral containing U(x) (3.36) as a→ 0.
To get our continuum limit equation, we approximate the finite differences in the
discrete model (2.14) by derivatives:

ln = xn+1 − xn = −xha+O(a2) = − a

hx
+O(a2),(3.37)

ln + ln−1

= xn+1 − xn−1

= −2xha− 1
3xhhha

3 +O(a5)

= − 2
hx
a− 1

6
∂2

∂x2

(
1
h2
x

)
a3 +O(a5),

(3.38)

Gn+1 −Gn
ln

=
G(xn + ln)−G(xn)

ln
= Gx +O(ln) = Gx +O(a),(3.39)

and therefore

Gn+1 −Gn = −aGx
hx

+O(a2),(3.40)

where G is any smooth function of x and Gn = G(xn).
We keep only the leading order terms of a in each finite difference, respectively, to

keep the main contribution from each effect, except for the term F (ln + ln−1)/2. Its
leading order term of a is the average growth rate of the surface due to the deposition
flux, and we keep a higher order term which has the same order as the term of elastic
interactions between steps.

We also use the relation

Dh

Dt
=
∂h

∂t
+
∂h

∂x

dx

dt
= 0,(3.41)

where Dh/Dt is the material derivative. It means that adatoms can move only in the
horizontal direction.

Now letting a→ 0, we get the continuum equation

ht = a3F

(
1 + a2

12
∂2

∂x2

(
1
h2
x

))
+
a2πα1ρ0D
kBT

∂
∂x

(
1

1− (L/a)hx
∂f
∂x

)
+ 1
2a

3F (l− − l+) ∂
∂x

(
1

1− (L/a)hx
)

+ a3Fα0
kBT

∂
∂x

(
log(2π|hx|)
1− (L/a)hx

)
,

(3.42)

where

f(x) = − 1
π

∫ +∞

−∞

hx(y)

x− y dy +
a

2π

hxx
hx

+
πl2e
2a
hxhxx(3.43)

and parameters

le =

√
α2

α1
,(3.44)
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l± =
D

k±
,(3.45)

L = l+ + l−.(3.46)

The parameter le represents the equilibrium distance between two successive steps
under the attractive misfit interaction and the repulsive broken bond interaction,
l+ and l− represent the strength of the upward and downward step edge barriers,
respectively, and

l− ≥ l+(3.47)

due to the Schwoebel effect.
The first term in f(x) is the Hilbert transform of hx with a negative sign. The

Hilbert transform of a function u(x) is defined by

H(u) =
1

π

∫ +∞

−∞

u(y)

x− y dy.(3.48)

We can write our continuum equation in a more convenient form:

ht = F̄ + α
∂2

∂x2

(
1

h2
x

)
+
∂

∂x

[
1

1− L̄hx

(
β
∂f

∂x
+ λ+ σ log(2π|hx|)

)]
,(3.49)

f = −H(hx) + η
(
1

hx
+ γhx

)
hxx,(3.50)

where H(hx) is the Hilbert transform of hx and

F̄ = a3F,(3.51)

α =
a5F

12
,(3.52)

L̄ =
L

a
,(3.53)

β =
a2πα1ρ0D

kBT
,(3.54)

λ =
1

2
a3F (l− − l+),(3.55)

σ =
a3Fα0

kBT
,(3.56)

η =
a

2π
,(3.57)

γ =
π2l2e
a2

,(3.58)

where all the constants are positive except σ, which may be either positive or negative.
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The constant F̄ and the ∂2

∂x2 (
1
h2
x
) term are due to the deposition flux, where F̄

is the average growth rate of the surface and the ∂2

∂x2 (
1
h2
x
) term is the correction

due to the local surface profile. The function f represents the elastic interactions
between steps. The Hilbert transform term and the hxx/hx term come from the 1/r
misfit elastic interaction. The hxhxx term comes from the 1/r3 broken bond elastic
interaction. The constant λ and the factor 1/(1 − L̄hx) come from the step edge
barriers; λ is positive due to the Schwoebel effect. The constant λ also depends on
the deposition flux. The log(2π|hx|) term is due to the elastic interaction between
adatoms and steps. Its coefficient σ also depends on the deposition flux. Its sign can
be positive or negative depending on the sign of α0. Recall that α0 > 0 means the
elastic interaction between an adatom and a step is repulsive for upper steps and is
attractive for lower steps. Thus the adatoms on a terrace prefer to go to the lower
step than to the upper step. On the other hand, α0 < 0 means the elastic interaction
between an adatom and a step is attractive for upper steps and is repulsive for lower
steps. Thus the adatoms on a terrace prefer to go to the upper step rather than to
the lower step.

We can also write the continuum equation as

ht = a
3F − ∂

∂x
J(x, t),(3.59)

where the surface flux J(x, t) is

J(x, t) = −α ∂
∂x

(
1

h2
x

)
+

1

1− L̄hx

(
β
∂f

∂x
+ λ+ σ log(2π|hx|)

)
.(3.60)

If we neglect the Schwoebel barrier and the elastic interaction between adatoms
and steps, the continuum equation becomes

ht = F̄ + α
∂2

∂x2

(
1

h2
x

)
+ β

∂2

∂x2

[
−H(hx) + η

(
1

hx
+ γhx

)
hxx

]
.(3.61)

It is the continuum limit of Tersoff et al.’s model (2.15).
If we do not take into consideration the deposition flux, in other words, we consider

only the elastic interaction between steps, the continuum equation becomes

ht =
∂2

∂x2

[
−H(hx) + η

(
1

hx
+ γhx

)
hxx

]
.(3.62)

Here we have rescaled the time by β.
Equation (3.62) has a variational form. It can be written as

ht = µxx,(3.63)

where the chemical potential µ is the variation of the total elastic energy

E =
∫ (

−1
2
h̃H(hx) + η|hx| log |hx|+ ηγ

6
|hx|3

)
dx.(3.64)

Here h̃ = h−(−Ax) is the deviation from the reference planar surface (see assumption
(3.1)).

Results on the linear instability, nonlinear evolution, and steady states using our
continuum equation are presented in [52].
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4. Summary. We have derived a continuum model governing the epitaxial
growth with elasticity on a 1 + 1-dimensional vicinal surface where the surface pro-
file is monotonic. We obtained our model by taking the continuum limit from the
discrete models of Duport, Politi, and Villain [9] and Tersoff et al. [49]. Compared
with the existing continuum models for epitaxial growth on a vicinal surface, our
model includes the effect of elasticity. Compared with the existing continuum models
for surface morphology instability induced by elasticity, our model incorporates the
atomic features of the stepped surface.
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Abstract. In this paper we establish a connection between a microscopic follow-the-leader
model based on ordinary differential equations and a semidiscretization of a macroscopic continuum
model based on a conservation law. Naturally, it also turns out that the natural discretization of
the conservation law in Lagrangian coordinates is equivalent to a straightforward time discretization
of the microscopic model. We also show rigorously that, at least in the homogeneous case, the
macroscopic model can be viewed as the limit of the time discretization of the microscopic model as
the number of vehicles increases, with a scaling in space and time (a zoom) for which the density
and the velocity remain fixed. Moreover, a numerical investigation and comparison is presented for
the different models.

Key words. microscopic and macroscopic traffic models, Godunov scheme, hydrodynamic limit
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1. Introduction. Microscopic modeling of vehicular traffic is usually based on
so-called follow-the-leader models; see [16], [6]. A system of ordinary differential
equations is used to model the response of vehicles to their leading vehicle. These
models usually consist of a system of second order ordinary differential equations. For
instance (a more general nonlinearity could be considered as well), we consider

ẋi = vi,(1.1)

v̇i = C
vi+1 − vi

(xi+1 − xi)γ+1
+A

1

Tr

[
V

(
∆X

xi+1 − xi

)
− vi

]
,

where xi(t), vi(t), i = 1, . . ., are location and speed of the vehicles at time t ∈ R
+, and

∆X is the length of a car. The basic idea is that the acceleration at time t depends
on the relative speeds of the vehicle and its leading vehicle at time t and the distance
between the vehicles. The constants C > 0, A > 0, γ ≥ 0 and the relaxation time Tr
are given parameters. In the homogeneous case A = 0 we recover the usual form of
microscopic follow-the-leader models. For A > 0 a relaxation term is added, driving
the velocity of the car to an equilibrium velocity V , which depends on macroscopic
properties of the flow ahead of the driver. Tr is the corresponding relaxation time,
different from (and typically much larger than) the reaction time of individual drivers.
The constants C, γ are fitted to special situations (see [6]). A common choice is, for
example, γ = 0. This case has to be treated separately from γ > 0; see below. Initial
values xi(0) = x0

i , vi(0) = v0
i have to be described with v0

i ≥ 0 and x0
i+1 > x0

i .
Sometimes, a time lag is included in the equations to account for the reaction times
of the drivers.
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Macroscopic modeling of vehicular traffic started with the work of Whitham [21].
He considered the continuity equation for the density ρ, closing the equation by an
equilibrium assumption on the mean velocity v. The equation is

∂tρ+ ∂x(ρV (ρ)) = 0,

where V = V (ρ) describes the dependence of the velocity with respect to the density
for an equilibrium situation. An additional velocity equation has been introduced by
Payne [15] and Whitham [21] as an analogy to fluid dynamics. Recently Daganzo
[5] has pointed out some severe drawbacks of the Payne/Whitham-type models in
certain situations. In [2] Aw and Rascle did develop a new heuristic continuum model
avoiding these inconsistencies:

∂tρ+ ∂x(ρv) = 0,

∂t(ρv) + ∂x(ρv
2)− ρ2P ′(ρ)∂xv = A

ρ

Tr
[V (ρ)− v] ,

where P (ρ) is a given function describing the anticipation of road conditions in front
of the drivers, and P ′ denotes its derivative with respect to ρ. In [2], the authors
considered the case of the homogeneous system A = 0, but one can also consider in
particular the case A > 0; see [17] and also [8]. Using the new variable

w = v + P (ρ)

the model can be written in conservative form as follows:

∂tρ+ ∂x(ρv) = 0,

∂t(ρw) + ∂x(vρw) = A
ρ

Tr
[V (ρ)− v] .

Initial conditions have to be prescribed: ρ(x, 0) = ρ0(x) ≥ 0 and v(x, 0) = v0(x) ≥ 0.
We note that the coefficients in the above models can be prescribed in an a priori
way or derived from microscopic considerations. See, e.g., [11] for a derivation from
a kinetic traffic flow equation.

In the present paper we show how the Aw–Rascle model can be viewed as the
limit of a time discretization of a microscopic follow-the-leader model. In particular,
the macroscopic coefficient P = P (ρ) is determined from the microscopic model.
The paper is arranged in the following way: in section 2 microscopic follow-the-leader
models and the Aw–Rascle continuum model are considered in more details. In section
3 scaling limits of the microscopic equation are considered and the formal connection
between microscopic and macroscopic model is established. Section 4 contains the full
space-time discretization of both models and rigorous relations between the models.
Section 5 considers numerically the convergence of the discretized system towards the
conservation law in the limit of small time steps and large number of vehicles. We refer
to [17] for a related discussion. Finally, when finishing this paper, we received from J.
Greenberg—whom we thank—a very recent preprint [8], based on quite similar ideas;
see section 4.1 for some comments and a comparison of the results. We have also
learned about closely related ideas in [22]. Clearly, these kind of ideas are on the rise.

2. The models. In this section we discuss the microscopic and macroscopic
models in more detail.
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2.1. The microscopic model. We reconsider the microscopic equations (1.1)
with constant C = Cγ . We introduce a new variable, the distance between, say, the
tails of two vehicles following each other:

li = xi+1 − xi.

One obtains the system

ẋi = vi,

v̇i = Cγ
(vi+1 − vi)

lγ+1
i

+A
1

Tr
(V (ρi)− vi),

where the local “density around vehicle i” and its inverse (the local (normalized)
“specific volume”) are, respectively, defined by

ρi =
∆X

li
and τi =

1

ρi
=

li
∆X

.

Remark 1. The density is often defined as the number of cars per unit length;
here ν := 1/li, and therefore has the dimension of the inverse of a length. With
our definition, the density is already normalized, ρ = ν.∆X := ν/νm, and is there-
fore dimensionless, so that the maximal density is ρm = 1/τm = 1, when cars are
“nose to tail.” We will often write expressions like ρ/ρm or τ/τm to emphasize this
normalization.

Now define the constant Cγ by

Cγ = vref (∆X/ ρm)
γ = vref (∆X τm)

γ = vref∆X
γ ,

where vref > 0 is a reference velocity, and the coefficient (∆X τm)
γ allows us to

recognize in (1.1) the derivative of function P̃ (τ) defined below in (2.2). One obtains
the microscopic model

ẋi = vi,(2.1)

v̇i =
1

∆X
(vi+1 − vi)

vrefτ
γ
m

τγ+1
i

+A
1

Tr
(V (ρi)− vi) ,

where again τm = 1 with our definition. We have

l̇i = vi+1 − vi or τ̇i =
1

∆X
(vi+1 − vi).

Using the new variable

wi := vi + P̃ (τi) with P̃ (τi) :=

{
vref
γ ( τmτi )

γ , γ > 0,

−vref ln( τiτm ), γ = 0,
(2.2)

we get

ẇi = A
1

Tr
(V (ρi)− vi) .

Altogether, one notices that (2.1) can be rewritten in the form

τ̇i =
1

∆X
(vi+1 − vi),(2.3)

ẇi = A
1

Tr
(V (ρi)− vi) .

The initial conditions are τi(0) = τ0
i > 0, vi(0) = v0

i ≥ 0.
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2.2. The macroscopic model. In conservative form, the macroscopic system
under consideration is given by the following equations:

∂tρ+ ∂xρv = 0,(2.4)

∂tρw + ∂xvρw = A
ρ

Tr
[V (ρ)− v] ,

where ρ is again defined as the (normalized) density, i.e., the (local) dimensionless
fraction of space occupied by the cars, and v denotes the macroscopic velocity of the
cars. Moreover, A = 0 in the case of the homogeneous model and A is a positive
constant, say A = 1, for the relaxed model, and

w = v + P (ρ).(2.5)

The hyperbolic part of the above system is written as

∂tρ+ ∂x(ρv) = 0,(2.6)

∂t(ρw) + ∂x(vρw) = 0.

In the following, we consider a special class of functions P (ρ) := P̃ (1/ρ), where P̃ is
defined in (2.2). In other words, for ρ > 0,

P (ρ) =



vref
γ

(
ρ
ρm

)γ
, γ > 0,

vref ln
(
ρ
ρm

)
, γ = 0,

(2.7)

where, as in the previous subsection, ρm = 1 and vref is a given reference velocity. The
function P is not a pressure. In fact, it is homogeneous to a velocity [11], [17]. In the
context of gas dynamics—completely irrelevant here; see [5], [2]—this pseudopressure
P would be homogeneous to the enthalpy, so that the exponent γ here plays the role
of the usual (γ − 1). In particular, the case γ = 0 here would correspond to the
isothermal case, with the same mathematical advantages and difficulties; e.g., one of
the Riemann invariants is unbounded near regions of local vacuum; see section 4.1.
To obtain a well-defined problem for the case with relaxation—A > 0—we choose
the function V = V (ρ), ρ > 0, such that

−P ′(ρ) ≤ V ′(ρ) ≤ 0(2.8)

is fulfilled for all ρ > 0. This is the so-called subcharacteristic condition; see, e.g., [21],
[3], [7]. A typical choice would be V (ρ) = −c (P (ρ) − P (ρm)), 0 ≤ c ≤ 1, and a
description of the equilibrium curve v = V (ρ) in the (w, v) plane is shown in Figure
2.1 (left) for the case γ > 0 and in Figure 2.2 (left) for γ = 0. Of particular interest
is the characteristic case, where the equality holds in one of the above inequalities.
More precisely, if γ > 0, we assume that

V ′(ρ) = −P ′(ρ) (resp., 0) for ρ ≤ ρ∗ (resp., ρ∗ ≤ ρ ≤ ρm),(2.9)

where ρ∗ is some positive intermediate value between ρ = 0 and the maximal value
ρm of ρ. The equilibrium curve is shown in Figure 2.1 (right); see [17].

In contrast, if γ = 0, then in the characteristic case we will assume that

V (ρ) = vm (resp., − P (ρ)) (resp., 0)(2.10)

for 0 ≤ ρ ≤ ρ∗ (resp., ρ∗ ≤ ρ ≤ ρ∗∗) (resp., ρ∗∗ ≤ ρ ≤ ρm),
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Fig. 2.1. Invariant region R and equilibrium curve v = V (ρ) for γ > 0, in the (w, z) = (w, v)
plane, in the subcharacteristic case (left) and in the characteristic case (right). In the first case, the
convexity of the equilibrium curve could be arbitrary.
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Fig. 2.2. Invariant region R and equilibrium curve v = V (ρ) for γ = 0, in the (w, v) plane, in
the subcharacteristic case (left) and in the characteristic case (right).

where ρ∗ and ρ∗∗ are two positive intermediate densities; see Figure 2.2 (right). In this
case γ = 0, Figure 2.3 shows examples of the same equilibrium curve and associated
bounded region (in the (ρ, ρ v) plane), which are invariant for the full system (2.4)
in the subcharacteristic case Figure 2.3 (left) and in the characteristic case Figure 2.3
(right).

Moreover, let τ := ρ−1 be the specific volume, and define the associated functions

P̃ (τ) = P

(
1

τ

)
, Ṽ (τ) = V

(
1

τ

)
, w = v + P̃ (τ).(2.11)

We note that

P̃ ′(τ) = −vrefτ
γ
m

τγ+1
, γ ≥ 0,

where P̃ ′ denotes the derivative of P̃ with respect to τ and, as in Remark 1, τm :=
ρ−1
m = 1. For ρ > 0 we have P̃ ′ < 0 and P̃ ′′ > 0. For ρ > 0, using the specific volume
τ , we now transform (2.4): we change the Eulerian coordinates (x, t) into Lagrangian
“mass” coordinates (X,T ) (see [4]) with

∂xX = ρ, ∂tX = −ρv, T = t

or

∂Xx = ρ−1 = τ, ∂Xt = 0, ∂Tx = v, ∂T t = 1.
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ρv

O ρw=0w=wmin

v=vmax
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D
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Fig. 2.3. Invariant region R and equilibrium curve v = V (ρ) for γ = 0, in the (ρ, ρ v) plane,
in the subcharacteristic case (left) and in the characteristic case (right).

Thus, X =
∫ x

ρ(y, t)dy is not a mass. In fact, it describes the total space occupied
by cars up to point x. We obtain

∂T τ − ∂Xv = 0,(2.12)

∂Tw = A
1

Tr
[V (ρ)− v] .

Since w = v + P̃ (τ), this is a hyperbolic system to the unknown functions w and τ ,
with relaxation term if A > 0. We add initial conditions τ0(x) > 0 and v0(x) ≥ 0.

We note that, as in the case of gas dynamics [20], even for weak (L∞) solutions,
this new system is equivalent to (2.4). This equivalence holds even in the vacuum case,
where the map x → X is not invertible, so that ∂Xx = τ contains a delta-function.
However, in this case one must admit for (2.12) a larger class of test-functions, which
is an additional difficulty. In the numerical schemes described below, each cell moves
between two trajectories, so that the total mass inside this cell remains constant.
Therefore in each nonvoid cell, the (usual) weak solutions to (2.4) and (2.12) are the
same.

3. Scaling and formal macroscopic limit of the microscopic equations.
According to (2.3) the microscopic system can be written as

τ̇i =
1

∆X
(vi+1 − vi),

ẇi = A
1

Tr
(V (ρi)− vi) ,

where wi = vi + P̃ (τi) is defined in (2.2). On the other hand, denoting time by t as
in Eulerian coordinates, the Lagrangian macroscopic system (2.12) is rewritten as

∂tτ = ∂Xv,

∂tw = A
1

Tr
[V (ρ)− v] ,

with again w = v+P̃ (τ). Clearly, (2.3) is at least a rough semidiscretization of (2.12).
Now let us introduce the scaling. Obviously a macroscopic description for traffic

flow is only valid if we consider a large number of vehicles on a long stretch of the
highway. Therefore we introduce a scaling such that the size of the domain under
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consideration goes to infinity, as well as the number of vehicles, whereas the length of
cars shrinks to 0.

In other words, we “make a zoom,” i.e., we introduce a small parameter ε, and we
multiply the space and time units by 1/ε; i.e., we shrink space and time coordinates
x and t to

x′ := ε x and t′ := ε t.

In particular, the length of a car is now ∆X ′ := ε.∆X.
Practically, the parameter ε is proportional to the inverse of the maximal possible

number of cars per (new) unit length. The space and time derivatives are multiplied
by ε. Similarly, since X is the primitive of ρ in x, it is replaced by X ′ := ε X,
and therefore the derivatives in X are also multiplied by ε. On the other hand, the
normalized density and specific volume are unchanged, as well as the velocity and the
other Riemann invariant w = v + P̃ (τ):

ρ′ = ρ , τ ′ = τ , v′ = v , w′ = w.

Dropping the primed notation for these unchanged dependent variables, system (2.12)
becomes

∂τ

∂t′
=

∂v

∂X ′ ,(3.1)

∂w

∂t′
= A

1

ε Tr
[V (ρ)− v] .

Now let us look at the microscopic system, with the same scaling. The only additional
modification is l′i = ε li, and the relation τi = li/∆X is preserved with the primed
variables. Again dropping the primes for the unchanged dependent variables, system
(2.3) becomes

dτi
dt′

=
1

∆X ′ (vi+1 − vi)(3.2)

dwi
dt′

=
A

ε Tr
(V (ρi)− vi) .

Now let us discuss the consequences of the above scaling on the equations. There are
two cases.

The homogeneous case A = 0. In this case, not surprisingly, the hyperbolic
system and the microscopic system remain unchanged with this self-similar scaling.
The only (important) difference is that in the new coordinates, the mesh size (see the
next section) ∆X ′ = ε∆X tends to 0 when the zoom parameter ε tends to 0.

Therefore, at least formally, the microscopic system “converges” to the macro-
scopic one when ε tends to 0. More precisely, in this homogeneous case A = 0, (3.2)
can be viewed as the natural semidiscretization of (3.1); see section 4—finer and finer
when ε tends to 0. Obviously, the scaling changes the initial data, see Remark 3
below.

The relaxed case A > 0. Then there are two possibilities. First, assume
that the positive constant A in front of the relaxation time depends nicely on some
macroscopic scale and is, in fact, proportional to ε. In other words, let us assume
that the relaxation time is comparable in size to the number of cars per (rescaled)
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unit length. We note that for numerical purposes, we do not really need to let ε
tend to 0, but we need only to consider a “small” ε, so that the semidiscretization
(3.2) is “fine enough”; see Remark 2 below. In this case, the conclusion is the same
as in the homogeneous case: the macroscopic system is at least the formal limit
of the microscopic one. Second, on the contrary, assume that this constant A is
unchanged in the scaling; then we formally end up with a scalar Lighthill–Whitham–
Richards-type equation, but then the limit we are considering is the limit (∆X ′,∆t′) =
(∆X,∆t) ε → (0, 0), with ∆X and ∆t constant.

Remark 2. The size of the physical quantities allows for various possibilities to
scale nicely the equations, with relatively small (but finite) values of ε, possibly with
different scaling constants in x and t. For instance, assume that the “old” units are
meter and second. Then, choose as “new” units (or reference length and time) 1500
m (or a mile) and 1 minute, with ∆X = 5 m. Then we rescale as follows:

x′ =
x

1500
, t′ =

t

60
.

On the other hand, a typical velocity is 90 km/h, i.e., 25 m/s, or 1500 m per mn, i.e.,
1 in the new units, which is perfect. Moreover, in these new units, the length of a car
is ∆X ′ = 5/1500 = 1/300, whereas a good time step in the time discretization, of the
same order as the reaction time of the drivers, would be ∆t = 1/5 second = 1/300
of the new time unit. Thus, in such a system of units, a typical (maximal?) velocity
is of order 1, as well as the maximal (normalized) density, whereas typical space and
time steps are of the order of 1/300 of the corresponding unit, subject of course to
the CFL condition; see the next section. On the other hand, the relaxation time is
typically found to be around 30 seconds, i.e., 0.5 in the new units; see, for example,
[12]. In such a scaling, the rescaled relaxation time, i.e., A

ε T , would still remain finite,
and therefore we would still be far away from the zero-relaxation limit, i.e., from the
Lighthill–Whitham–Richards model.

Remark 3. So far, we have not discussed the problem of the initial data. Let
us restrict ourselves to the homogeneous case A = 0, say, in Lagrangian coordinates.
(The discussion would be the same in Eulerian coordinates.) In this case, as we said,
the scaling preserves the system (2.12) (with A = 0), which we rewrite in the general
form

∂U

∂t′
+
∂F (U)

∂X ′ = 0,(3.3)

with U := Uε := (τε, wε). However, this scaling modifies the initial data, where there
are obviously (at least) two scales: the microscopic one, i.e., the length of a car (a
few meters), and the macroscopic one (say, one kilometer). Therefore, it is natural to
extend the microscopic initial data defined in section 2.1 and to assume, for instance,
that in rescaled Lagrangian coordinates the initial data are written as

Uε0 (X
′) =

∑
j

U0
j χj(X

′),(3.4)

where the characteristic function χj satisfies χj(X
′) = 1 if and only if X ′ ∈ Ij :=

(X ′
j−1/2, X

′
j+1/2), with X ′

l := l∆X ′, and U0
j is the average value of a “macroscopic”

function U0 over the same interval.
When ε → 0, the initial data (3.4) provide initial numerical data to approximate

the solution of the initial value problem (3.3), (3.5), with

U(X ′, 0) = U0(X
′).(3.5)
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4. Rigorous relations between the microscopic and macroscopic equa-
tions. In this section microscopic and macroscopic discretizations are discussed as
well as different convergence results.

4.1. The discretized models. In this section we will show that a standard
explicit Euler discretization of the microscopic model is equivalent to the classical
Godunov scheme applied to the macroscopic model. Moreover, this discretization is
investigated in more detail.

The discretized microscopic model. We first introduce an explicit Euler time
discretization of the new microscopic model, (3.2), using the rescaled time step ∆t′.
With the above scaling we note that the new ∆t and ∆X tend to zero when ε tends
to 0, with a fixed ratio λ := ∆t/∆X. Neglecting the primed notation, i.e., writing ∆t
and ∆X instead of ∆t′ and ∆X ′, we obtain

τn+1
i = τni +

∆t

∆X
(vni+1 − vni ),(4.1)

with

vn+1
i = wn+1

i − P̃ (τn+1
i ),

and if A > 0, the relaxation is approximated by

wn+1
i = wni e

−A ∆t
εTr + (Ṽ (τn+1

i ) + P̃ (τn+1
i ))(1− e

−A ∆t
εT ),(4.2)

with ρni = 1/τ
n
i . Of course, (4.2) contains the homogeneous case—if A = 0, then

wn+1
i = wni .(4.3)

On the other hand, if A > 0, the relaxation term is correctly treated for ε small,
i.e., for small relaxation times, where the equations are becoming stiff. Now let us
discretize the macroscopic model.

The discretized macroscopic model. As above, we consider the macroscopic
model (3.1) in rescaled variables x′, t′, with corresponding steps ∆t′, ∆X ′, and we
again drop the primed notations. Then (3.1) is discretized using a splitting scheme
which treats separately the convection and the relaxation terms. Consider

∂tτ − ∂Xv = 0,(4.4)

∂tw = 0 if A = 0,

and

∂tw =
A

εT
[V (ρ)− v] if A �= 0.(4.5)

The most natural discretization to treat the convection part is the Godunov scheme.
The relaxation part is treated by the same time discretization as for the microscopic
model. Before writing Godunov’s method for the hyperbolic equation, we need a brief
description of the solution to the Riemann problem.

We consider the system (4.4), or the equivalent system (2.6) in Eulerian coordi-
nates. We recall that w = v + P̃ (τ). First, the eigenvalues of the system (4.4) are
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λ1 = P̃ ′(τ) < 0 and λ2 = 0. The Riemann invariants are w and z := v. They satisfy,
for smooth solutions,

∂tv + λ1∂xv = 0, ∂tw + λ2∂xw = 0.

Now, since P̃ ′′(τ) > 0, it turns out that the first eigenvalue λ1 is genuinely nonlinear
(GNL), i.e., for all (w, v), ∂λ1/∂v �= 0. On the contrary, ∂λ2/∂w ≡ 0; i.e., λ2 = 0 is
linearly degenerate (LD), as for the original system (2.6) in Eulerian coordinates.

Now let us denote the left and right Riemann data by (wL, vL) and (wR, vR),
respectively. Since the first characteristic speed is genuinely nonlinear, a state (w, v)
can be connected on its left (in the (X,T ) plane) to (wL, vL), either by a backward
1-shock if v < vL, which corresponds to braking, or by a backward 1-rarefaction
(acceleration) wave if v > vL.

Moreover, see [2], these equivalent systems (2.6) and (4.4) are sometimes called
Temple systems [19]; see also [10]. Their shock curves and rarefaction curves coincide.
Therefore, even in the case of a shock, we have w = wL.

On the other hand, (w, v) can be connected on its right to (wR, vR) by a sta-
tionary 2-contact discontinuity v = vL. Hence, two states (wL, vL) and (wR, vR) can
be connected through a constant intermediate state (w0, v0), which is connected to
(wL, vL) by a 1-shock (braking) if vR < vL, or by a (continuous) 1-rarefaction wave
(acceleration) if vR > vL and to (wR, vR) by a 2-contact discontinuity. Moreover,
w, v are monotone functions of X/t for all values of this variable, whereas τ is only
monotone inside each elementary wave. In general, (w0, v0) := (wL, vR), so that we
can easily solve graphically the Riemann problem in the coordinates of Figure 2.1 or
2.2.

Proposition 1. We consider here the system (4.4), or the equivalent system
(2.6) in Eulerian coordinates, with the above data (wL, vL) and (wR, vR). Then we
have the following:

1. No local extremum of w or v is created for t > 0. Therefore, the total variation
in space of each Riemann invariant is nonincreasing in time. More precisely,

|f+ − f0|+ |f0 − f−| = |f+ − f−|, f := w or v.

2. In the case γ > 0, the density is nonnegative if and only if w−v = P (ρ) ≥ 0.
Consequently, the intermediate state is at vacuum if the cars in front are “too
fast” with respect to the following cars, namely, if

vR > wL = vL + P̃ (τL).

In this case, ρ = 1/τ = 0, v and w are not physically defined, but if we insist
and mathematically define, for instance, v0 = w0 = wL, then statement 1
remains true.

3. In the same case γ > 0, any region defined by the Riemann invariants

T := {0 ≤ v ≤ w ≤ wm = P (ρm)}
is bounded and invariant for the Riemann problem and corresponds to
bounded nonnegative densities and velocities. An example of such a region
is the triangle represented in Figure 2.1. Moreover, any rectangle

R := {(w, v); 0 ≤ wmin ≤ w ≤ wm = P (ρm) , 0 ≤ vmin ≤ v ≤ vmax}(4.6)

inside T also is invariant for the Riemann problem, away from vacuum if
wmin − vmax > 0.
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4. In the case γ = 0, vacuum corresponds to w = −∞. Therefore, any rectangle

R := {−∞ < wm ≤ w ≤ 0 ≤ v ≤ vm}(4.7)

is invariant for the Riemann problem and corresponds to bounded nonnegative
velocities and densities bounded from below by positive quantities.

Proof. Statements 2 and 3 are related to the case γ > 0, which has been studied
in detail in [2]. Statement 1 is then obvious, including if vacuum appears. Now, let
us consider the case γ = 0, which is often considered in the literature on microscopic
models; see, e.g., [16], [6]. In this case, it also is easy to check statement 4 again using
the relations w0 = w−, v0 = v+. So the proof is complete.

Remark 4. In the case γ = 0, when solving the Riemann problem, it is easy
to check that the maximal possible speed that cars can reach in an acceleration wave
emanating from (wL, vL) is infinite. Therefore, the cars behind can always catch up
with the cars in front of them, without having to reach the vacuum; compare the
numerical results in Figures 5.2 and 5.3 in section 5 below.

Now (4.4) is discretized using the Godunov method for the hyperbolic problem:
We introduce grids in time and mass coordinates with (rescaled) stepsize ∆t and ∆X
and grid points tn and Xi+1/2. Let f

n
i denote the approximation of the function

f(t,X) for X ∈ [Xi−1/2, Xi+1/2), t ∈ [tn, tn+1). Let λ =
∆t
∆X be the grid ratio.

In view of the above discussion, the Godunov method for system (4.4) is given by

wn+1
i = wni ,(4.8)

τn+1
i = τni + λ(vni+1/2 − vni−1/2)

= τni + λ(vni+1 − vni ).

And if A �= 0, the full discretization is then

τn+1
i = τni + λ(vni+1 − vni ),(4.9)

wn+1
i = wni e

−A ∆t
εTr + (V (ρn+1

i ) + P (ρn+1
i ))(1− e

−A ∆t
εTr ),

so that we recover exactly the above system (4.2) (or (4.1) when A = 0). We have
therefore shown the equivalence between the discretizations of the microscopic and
the macroscopic system.

By the way, in the macroscopic view of this scheme it will be clear in Theorem
4.1 below that the (sub)characteristic condition is necessary for the stability. This is
far from obvious in the microscopic interpretation.

Classically, the above numerical scheme consists of three successive steps, de-
scribed here in Lagrangian coordinates for nonvoid cells:

1. Starting from piecewise-constant data Uni := (τ
n
i , w

n
i ) in each cell, solve the

Riemann problem for tn < t < tn+1 assuming that the CFL condition is
satisfied. Let Uh(X, t) := (τh, wh)(X, t) denote the corresponding solution.
In fact, the index h stands for the couple (∆X,∆t), and plays the role of the
scaling parameter ε in section 3. We note that the intermediate state Uni+1/2

in the Riemann problem satisfies

wni+1/2 = wni+1/2, vni+1/2 = vni+1.(4.10)

2. At time tn+1, average this solution on each cell, i.e., solve (4.1). If A �= 0, let
us denote the average values of conservative variables by (τ

n+1/2
i , w

n+1/2
i ).
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3. If A �= 0, approximate the ordinary differential equation as above to obtain
(τn+1
i , wn+1

i ) from (4.9).
Again, the formulas would be the same in Eulerian coordinates, except that now the
cells xi−1/2, xi+1/2 would be moving with time. Since v

n
i+1/2 = vni+1, we refresh the

position by

xn+1
i+1/2 = xni+1/2 +∆tv

n
i+1.

Now let I(a, b) := [min(a, b),max(a, b)). Using Proposition 1 and standard ideas, we
obtain the first important result.

Theorem 4.1. We consider the above algorithm, under the CFL condition, as-
suming that if A �= 0, the (sub)characteristic condition is satisfied and that the initial
data lie in an invariant rectangle R, away from vacuum. Then we have the following.

1. We first assume that A = 0. Then, as in Proposition 1, in each Riemann
problem the total variation of wh is nonincreasing in time. Moreover, in
each cell wh remains constant: wh(x, t) ≡ wni . Consequently, vh and also
τh are monotone in each cell. Moreover, (wh(X, t), vh(X, t)) remains in the
invariant region R for tn ≤ t ≤ tn+1.

2. In step 2, w
n+1/2
i = wni . On the other hand, since in each cell wh is constant

and τh monotone, the average τ
n+1/2
i is in I(τni , τ

n
i+1/2). By monotonicity

the same result is true for the velocity. In fact,

v
n+1/2
i ∈ I(vni , v

n
i+1/2) = I(vni , v

n
i+1).

3. Finally, the invariant rectangle R also is invariant for the Godunov scheme.
Moreover the total variation of the Riemann invariants,

∑
j |fni+1 − fni |, f =

w or v, in space is still decreasing with respect to n. Since wh is constant
and vh monotone in each cell, the total variation in time of wh and of ṽh :
(x, t)→ vni +∆t(v

n+1
i − vni ) also is controlled from above.

4. On any time interval (tn, tn+1) the solution Uh satisfies the (discrete) en-
tropy inequality in the sense of Lax: for any convex entropy η(U) = η(τ, w)
associated with the entropy flux q(U), and for any n and j,

η(Un+1
j ) ≤ η(Unj )− (∆t/∆X)(q(Unj+1/2)− q(Unj−1/2)).(4.11)

5. Now we consider the full problem, and we assume that the invariant rectangle
R is constructed as in Figure 2.1 or 2.2, e.g., in the subcharacteristic case its
upper left and lower right corner are at equilibrium. Then the region R also
is invariant by (2.12, 2) and by step 3, i.e., by (4.2). Moreover, under the
(sub)characteristic assumption, the sum of the total variations in space of the
Riemann invariants,

∑
j( |wnj+1 − wnj |+ |vnj+1 − vnj | ), is still nonincreasing

in time, and the other conclusions of (3) remain valid for (4.2). Consequently,
since the inverse function P̃−1 is Lipschitz (away from vacuum), the total
variation of τh also remains uniformly bounded in time.

Proof. Statements (1) to (3) exploit, in particular, the monotonicity of v between
vnj and v

n
j+1, which is obvious since wh is constant in each cell, so that there is only

one simple wave per cell. Note that v is not a conserved variable, so that an Eulerian
classical Godunov scheme the averaging step would not preserve the total variation
and the invariant regions.

Statement (4) is classical: on any time interval (tn, tn+1) the solution Uh is con-
structed by the Riemann problem and thus satisfies the entropy inequality in the sense
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of Lax [13]. Therefore, by the Jensen inequality, the new average values Un+1
j satisfy

(4.11).

Finally, besides the above-mentioned references, it is an exercise to show (5).
Indeed, in (4.9), compute the differences (wn+1

i+1 − wn+1
i ) and (vn+1

i+1 − vn+1
i ) in terms

of the previous values f
n+1/2
j , f = w or v, multiply each difference by its sign and

add them. Then use the (sub)characteristic assumption to show the result. In the
characteristic case (see [8]) we note that the evolution of w in each cell does not
depend on the other cells, so that the total variation of each Riemann invariant w
and v is nonincreasing in time, whereas in the subcharacteristic case (see [1], [14]) we
can only control the sum of these total variations.

4.2. Convergence results and hydrodynamic limit. There are three levels
of description: the fully discrete system (4.9), or (4.1), (4.3), the follow-the-leader
model (1.1), and the continuous system (4.4). In this section we discuss first the limit
from the fully discrete level (4.8) to the continuous macroscopic model. Moreover,
passing from the fully discrete level (4.8) to the semidiscrete one (1.1) and passing
from the latter to the continuous level (4.4) are considered.

With the above scaling, we state a first rigorous result of convergence of the
Godunov scheme when ε → 0; i.e., we state a result dealing with the limit of (4.8) to
(4.4) when the rescaled ∆t and ∆X tend to 0 with a fixed ratio λ, fulfilling the CFL
condition.

For simplicity, we consider the homogeneous case A = 0, away from vacuum, and
we state the result in rescaled Lagrangian coordinates, again dropping the primed
notations. However, our result also is valid for system (3.1), in rescaled variables, in
the (less realistic) case where A is proportional to ε, i.e., A0 ε instead of A. Similarly,
the result also is the same for the two corresponding systems in Eulerian coordinates.
Using the above and standard compactness results, as well as standard results to
control the error in the projection steps, we obtain the following theorem.

Theorem 4.2. Let us consider the rescaled initial data (3.5), and assume that the
associated Riemann invariants w0 and v0 are bounded, have a bounded total variation,
and lie in an invariant rectangle R, away from vacuum.

Then, using the piecewise-constant initial data (3.4) as initial data for this scheme,
at least a subsequence Uh := (wh, τh) produced by the numerical scheme (4.1) converges
to a weak entropy solution to the initial value problem (3.3), (3.5) as the rescaled ∆t
and ∆X tend to 0 with a fixed ratio λ, fulfilling the CFL condition, as the zoom
parameter ε → 0.

The above result deals with passing directly from (4.8) to (4.4). It strongly
suggests studying the two other natural limits: passing from the fully discrete level
(4.8) to the semidiscrete one (1.1), and passing from the latter to the continuous level
(4.4). Again we restrict ourselves to the case A = 0, away from vacuum.

Theorem 4.3. Under the above assumptions, i.e., A = 0, and the initial data
lie in an invariant rectangle R, away from vacuum, we consider in Lagrangian co-
ordinates the values Uni := (τni , w

n
i ) constructed by (4.8) or (4.1), (4.3), but now we

rescale only the time step. Therefore the rescaled time step ∆t vanishes, with a fixed
space mesh size ∆X.

Moreover, we assume that the initial data are constant for X large enough, so
that there is a “first” car. Then we have the following:

1. The IVP for the (infinite) follow-the-leader system (1.1) (with A = 0) has a
unique solution U(t) defined at least locally in time. Its natural first order
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approximation (4.1), (4.3) is stable and consistent, and therefore the whole
sequence is convergent for any fixed ∆X.

2. The values Uni stay in the invariant bounded region R and satisfy the uniform
BV-estimates as in Theorem 4.1. Consequently, the solution U of (1.1) is
globally defined and satisfies the same uniform estimates.

3. Moreover, set Ui := (τi, wi) and let Fi+1/2 := G(Ui, Ui+1) := F (Ui+1/2) =

F (Ui+1) := (vi+1(t), 0) = (wi+1 − P̃ (τi+1), 0) denote the (well-defined)
Godunov flux at the interface X = Xi+1/2. This nonlinear relation is pre-
served in the limit ∆t → 0: for all t ≥ 0, Fi+1/2(t) := G(Ui(t), Ui+1(t)) =
(vi+1, 0) = F (Ui+1(t)). Finally (1.1) is the semidiscretization of (4.4): for
any t ≥ 0,

dUi
dt
(t) = −(∆X)−1 (Fi+1/2(t)− Fi−1/2(t)).(4.12)

Proof. The first part of this result can be adapted from standard textbooks (see,
e.g., [18]) to the case of infinite-dimensional systems of ordinary differential equations,
here with the l∞ norm. The other results use the discrete BV estimates (in space
and in time) inherited from the Godunov scheme.

Now, define Uh(X, t) :=
∑
j (τi(t), wi(t)) χi(X), where χ is defined as in (3.4).

We have the following theorem.
Theorem 4.4. Under the same assumptions as in Theorem 4.3, consider the

IVP for the follow-the-leader system (1.1) (with A = 0), and let ∆X tend to 0. Then
at least a subsequence of the sequence Uh converges boundedly almost everywhere to
an entropy weak solution U := (τ, w) to the macroscopic system, (4.4) for any smooth
φ(X, t) with compact support,∫ +∞

0

∑
i

∫
Ii

[ U(X, t) ∂tφ(X, t) + F (U(X, t)) ∂Xφ(X, t)] dX dt

+
∑
i

∫
Ii

U0(X) φ(X, 0)dX := A+B +D = 0,(4.13)

and similarly the entropy inequality in the sense of Lax holds for any convex entropy.
Proof. Multiply (4.12) by an arbitrary test-function φ(X, t), make a (discrete)

integration by parts in X and t, and let ∆X tend to 0. We obtain, for any smooth
function φ(X, t) with compact support contained in [−L,L]x[0, T ],∫ +∞

0

∑
i

∫
Ii

[ Ui(t)∂tφ(X, t) + (∆X
−1)Fi+1/2(t)(φ(X +∆X, t)− φ(X, t))]dXdt

+
∑
i

∫
Ij

Ui(0)φ(X, 0)dX := Ah +Bh +Dh = 0.

(4.14)

By compactness, Ah andDh, respectively, tend toA andD when h → 0. As toBh,
with an obvious first order Taylor expansion, we see that for any φ, |Bh−Eh| ≤ C ∆X,
where

Eh :=

∫ +∞

0

∑
i

∫
Ii

Fi+1/2(t)∂Xφ(X, t)dXdt,
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and C depends on the L∞ norm of F (U) and on L T ||∂2
Xφ||∞.

Now (see Theorem 4.3), Fi+1/2(t) = F (Ui+1(t)), and F is Lipschitz continuous.
Therefore, adding and subtracting F (Ui(t)), we obtain |Eh −Gh| ≤ C ′ ∆X, where

Gh :=

∫ +∞

0

∑
i

∫
Ii

F (Ui(t))∂Xφ(X, t)dXdt =

∫ +∞

0

∫
�

F (Uh)(X, t)∂Xφ(X, t)dXdt

and |C ′| ≤ T ||∂Xφ||∞. ||F ′||∞. supt{
∑
i |Ui+1(t)− Ui(t)|}.

Finally, by compactness, Gh tends to B when ∆X → 0, which shows that U
is a weak solution of (4.4). We would establish the entropy inequality in a similar
way. First, when ∆t → 0 as in Theorem 4.3, the fully discrete entropy inequality
(4.11) is preserved at the limit and provides the semidiscrete entropy inequality, i.e.,
a relation similar to (4.14), with U , F (U), and the equality sign, respectively, replaced
by η(U), q(U), and the same inequality sign as in (4.11), which implies the Lax entropy
inequality by compactness as ∆X → 0.

Remark 5. In other words, at least in the homogeneous case A = 0, and away
from vacuum, we have shown that the macroscopic system is the limit of a large
number of vehicles on a long stretch of a highway and a large time scale of the same
order. For a study of more general cases, we refer to [1]. We note, by the way, that
in this limit situation the time lag mentioned in the introduction vanishes.

In contrast, in the relaxed case A > 0, with a fixed constant A, we have to study
the limit of (4.1) and (4.2) when the three parameters ∆t, ∆X, and ε tend to 0
together, with fixed ratios, and, of course, satisfy the CFL condition. So far, we have
not studied this limit.

Remark 6. In terms of modeling, here we explicitly relate the semidiscretization
of the macroscopic system to the microscopic system (1.1) directly, i.e., without any
intermediate kinetic description. Although we already mentioned the derivation of
(2.4) from kinetic models [11], our direct derivation is conceptually important: just
imagine a similar result in gas dynamics! For the relation between weak solutions in
Eulerian and Lagrangian mass coordinates, we again refer to [20]. Finally, we have
also learned very recently of a preprint [22] with exactly the same formal derivation
of the same model.

5. Numerical methods and examples. For numerical investigations we con-
sider the equations in Eulerian and Lagrangian form. The time discretized microscopic
equations (4.1), (4.2) or, equivalently, the Godunov method in Lagrangian coordinates
(4.9) can be viewed as a particle method for the conservation law. Computing

τn+1
i = τni + λ(vni+1 − vni ),(5.1)

wn+1
i = wni e

−∆t

T (ρ
n+1
i

) + (V (ρn+1
i ) + P (ρn+1

i ))(1− e
−∆t

T (ρ
n+1
i

) ),

one obtains the location of the vehicles as follows:

xn+1
i = xni +∆tv

n
i .(5.2)

The density in Eulerian coordinates at the point xi is then given by the interpolation
ρi =

∆x
xi+1−xi

. For discretization steps ∆t and ∆X tending to 0, one obtains an

approximation of the conservation law (2.4) in Eulerian coordinates. From the particle
point of view this means that we have to increase the number of vehicles to obtain the
desired approximation of the conservation law. However, one could as well use any
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other methods to resolve the limiting conservation law in Eulerian coordinates. For
example, any second order shock capturing scheme could be used for the macroscopic
equations (2.4). Using such a scheme will lead to the same results as the solution of
the above discrete equations with a large number of vehicles. We use a relaxation
method as developed in [9]. The method is adapted to include the relaxation term on
the right-hand side of (2.4). This can be done in a straightforward way that preserves
the second order approximation.

In the following we will compare the microscopic particle approach and the above
second order scheme using two test problems.

In all cases the equilibrium velocity V = V (ρ) is chosen as a function fitting to
experimental data:

V (ρ) = U

(
ρ

ρm

)
with

U(ρ) = vm

π
2 + arctan(11

ρ−0.22
ρ−1 )

π
2 + arctan(11 · 0.22)

,

where ρm is the maximal density and vm is the maximal velocity. The function
P (ρ) is chosen by setting γ = 0 and γ = 1, i.e., m2 = 1 and m2 = 2, respectively.
In order to fulfill the subcharacteristic condition (2.8), we choose the function P
as P (ρ) = 2ln(ρ/ρm) and P (ρ) = 6ρ/ρm. The first test problem is the following:
We consider normalized quantities with maximal speed vm equal to 1 and maximal
density ρm equal to 1. From the macroscopic point of view we consider a Riemann
problem with left and right states given by ρL = 0.05, ρLvL = 0.0025, vL = 0.05, and
ρR = 0.05, ρRvR = 0.025, vR = 0.5. The discontinuity is located at x = 0. Note that
vR > wL = vL + P (ρL). Thus, vacuum states appear during the evolution for the
continuous conservation law for γ = 1; see [2].

The discretization size is chosen as ∆x = ∆X = 1
40 . This leads to an initial

number of cars equal to 800. They are initially distributed equally, spaced with the
velocities 0.05 or 0.5, respectively. The time step is chosen according to the CFL
condition.

Figure 5.1 shows density ρ and flux q = ρu at a fixed time for the particle and
second order methods for γ = 1 without the relaxation term. Figure 5.2 shows the
same for γ = 0. Figure 5.3 shows the evolution for γ = 1 with the relaxation term,
where V and T are given by V (ρ) = U(ρ) and T (ρ) = constant = 20. Figure 5.4
shows the same for γ = 0.

Finally, Figure 5.5 shows the results of our second test case, which is a more
complicated situation: The evolution at a bottleneck at x = 0 is simulated. The
number of lanes is reduced from three to two. This is achieved by setting the maximal
density equal to the number of lanes. This means that the fundamental diagram is
given by V (ρ) = U( ρρm ), where inside the bottleneck the maximal density ρm is
reduced from 3 to 2. The boundary data on the left-hand side are chosen such that
the flux in the three-lane region is slightly above the maximal possible flux in the two-
lane region which creates the traffic jam. ∆X and ∆x are chosen as 1

4 , which yields
a number of cars around 5000 during the evolution. Figure 5.5 shows the evolution
for the microscopic particle method at different times. In particular, the development
of a traffic jam is observed in the figure. Identical results are obtained if the second
order method for the Eulerian equations is used.
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Fig. 5.1. Time development of density and flux computed by the particle method and the second
order method for γ = 1 without the relaxation term.
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Fig. 5.2. Time development of density and flux computed by the particle method and the second
order method for γ = 0 without the relaxation term.
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Fig. 5.3. Time development of density and flux computed by the particle method and the second
order method for γ = 1 with the relaxation term.
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Fig. 5.4. Time development of density and flux computed by the particle method and the second
order method for γ = 0 with the relaxation term.
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Fig. 5.5. Time development of density, velocity, and flux. Lane drop from 3 to 2 lanes at x = 0
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Abstract. In this paper we derive a diffusion equation for electron transport in a superlattice.
The starting model is a quantum scattering matrix model which relates the phase space density of
each superlattice cell to that of the neighboring cells. Then, in the limit of a large number of cells,
a diffusion equation for the particle number density in the position-energy space is obtained, which
is of the “SHE” (spherical harmonics expansion) type. The diffusion constant retains the memory
of the quantum scattering characteristics of the superlattice elementary cell (like, e.g., transmission
resonances). An example is treated, for which the diffusion constants are analytically computed.
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1. Introduction. Semiconductor superlattices are processed by growing peri-
odic layers of two different semiconductor materials like GaAs and GaAlAs [25], [37].
The electronic properties of the two materials result in the establishment of a periodic
electrostatic potential in the direction of the growth axis, which is discontinuous at
each of the interfaces between the two materials. Superlattices possess a number of
interesting physical properties, especially with respect to optoelectronics applications
[25], [37]. An application to infrared radiation detection is described in [35].

The electronic properties of solids are characterized by the existence of energy
bands [1]: the electron kinetic energy cannot take any arbitrary positive value, like
in a vacuum, but may only belong to certain intervals, called energy bands. The
bands are separated by forbidden energy gaps. Bloch’s theory of bands provides the
theoretical framework for this observation: it is a purely quantum mechanical effect
originating from the periodic potential created by the regular arrangement of atoms in
the crystal. In a superlattice, the periodic alternation of the two materials artificially
creates a similar periodicity (although on a larger scale). Therefore, it is natural to
expect that electron transport along the periodicity direction will exhibit the same
kind of “band splitting.” In this case, the bands are called “superlattice minibands,”
because the width of the energy bands is inversely proportional to the lattice period
(see [25], [37]). For a recent account of the mathematical theory of bands, see [27].

Being a quantum mechanical phenomenon, the existence of energy bands is tightly
connected with the notion of phase coherence: energy bands (or gaps) result from
the constructive (or destructive) interference patterns of the electron wave-functions
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between neighboring potential periods. A direct observation of the existence of energy
minibands in a superlattice can be made through the measurement of Bloch oscilla-
tions [25]: electrons subject to a constant electric field undergo a periodic motion in
space with zero mean. This is because each time the electron reaches the boundary of
the energy band through the action of the field, it reverses direction in position space
and goes backwards. Therefore, in theory, no transport in the direction of the field is
allowed in a superlattice.

In practice, the situation is not so ideal due to collisions (or scattering). Dur-
ing their motion, electrons can collide against ionized impurities, phonons, etc. [32].
Another source of scattering, which is negligible in bulk semiconductors but which
becomes extremely important in superlattices, is scattering by interface roughness
[25], [15]. Indeed, at each material interface (and there are at least two of them per
superlattice cell), the perfectly periodic arrangement of atoms is broken: the two ma-
terials very seldom have the same crystal constants, and this results in crystal defects
at the interface. Even if the lattice mismatch (difference of the crystal constants of
the two materials) is negligible, the growth process depends highly on the processing
conditions and may not produce perfectly clean interfaces. This is particularly true
for industrial processes, where cost constraints may contribute to poorer processing
conditions.

A first consequence of collisions is that they allow some transport in the field di-
rection, as they allow electrons to jump from one Bloch periodic trajectory to another
one. To account for this effect, the reference model for superlattices, developed by
Esaki and Tsu [21], is based on the hypothesis that quantum miniband theory applies
to electron trajectories between collisions.

However, a second consequence of such collisions, which is not fully accounted for
in the Esaki and Tsu model, is the breakdown of the phase coherence of the electron
wave-functions. After a few collisions, constructive or destructive interference patterns
can no longer be produced because wave-functions between neighboring cells have
random phases with respect to each other. Therefore, transport loses its quantum
mechanical nature over scales larger than a few mean free paths (the typical distance
a particle travels between two collisions) and becomes purely classical; the quantum
mechanical miniband theory still remains valid over shorter distances. The larger
distance over which quantum mechanical interferences can occur is called the phase-
coherence length. If the coherence length is of the order of the superlattice period, or
a few superlattice periods, Bloch’s theory can no longer be applied straightforwardly.
In this case, Esaki and Tsu’s model must be corrected to account for the fact that,
even between two collisions, electron transport is not purely quantum and does not
follow the miniband theory exactly. Instead, transport becomes classical on scales
larger than the phase coherence length. The aim of the present paper is to derive a
suitable transport model for such a situation.

2. General outline of the present work. Let � denote the superlattice period.
For simplicity, we first assume that the phase coherence length is equal to �. We start
with a microscopic model that is quantum mechanical over distances less than � and
classical over larger distances. For that purpose, we define the electron distribution
function fn+ 1

2
(k, t) on a periodic array of points xn+ 1

2
separated by the period �.

fn+ 1
2
(k, t) is a purely classical concept and denotes the density of particles at point

xn+ 1
2
having wave-vector k at time t. We recall that, in the semiclassical picture of

electron kinetics, wave-vectors k and momenta p are related by p = �k, where � is
the reduced Planck constant.
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Between the points xn+ 1
2
, the dynamics is quantum mechanical and must be de-

scribed by means of quantum wave-functions, solutions of the stationary Schrödinger
equation in the elementary cell. (We shall comment on this stationarity hypothesis
later on.) Among the possible solutions, we focus on the scattering states, which are
the quantum mechanical equivalent of the free moving particles. Knowledge of the
scattering states gives us access to two important sets of data: the scattering prob-
abilities, i.e., the probabilities with which particles coming into the elementary cell
are either reflected or transmitted, and the quantum time delays, i.e., the duration of
the reflection or transmission processes. The scattering probabilities reflect the fact
that quantum tunneling through the potential structure is enhanced for some specific
values of the wave-vector k called transmission resonances. Indeed, for these values
of k, the transmission probability becomes close to unity.

The microscopic model consists of relating fn+ 1
2
(k, t) to its neighboring values

at previous times fn+ 1
2±1(k, t − τ) through the scattering coefficients. The resulting

model is referred to in the literature as a “scattering matrix model” [34]. It retains the
quantum nature of transport over distances less than or equal to the phase coherence
length (i.e., one or a few superlattice periods) through the use of the scattering data,
but reduces to a classical model over larger distances through the use of the classical
distribution functions.

If the superlattice period � is strictly less than the coherence length, we suppose
that the latter is an integer multiple N� of the former, and we consider N� as the base
period rather than �. Therefore, the Schrödinger equation is solved for a potential
structure that consists of an array of N elementary superlattice cells. As N increases,
the solution comes closer and closer to that of the fully periodic problem. As soon
as N passes above unity, the oscillations of the scattering data increase: transmission
peaks (i.e., values of k such that the transmission probability is close to unity) due to
resonant tunneling grow more numerous. Therefore, even at moderate values of N ,
the model can capture the highly oscillatory nature of superlattices that is observed
in experimental measurements.

From the knowledge of fn+ 1
2
, we have access to the electron concentration, to

the charge concentration (provided that the positive ion concentration is known), and
therefore, to the self-consistent electric potential through the resolution of Poisson’s
equations. The self-consistent potential, in turn, is involved in the Schrödinger equa-
tion which determines the scattering data. In this way, the problem is fully coupled.

It is useful to note that the scattering matrix model is a kind of space and time
discrete version of the Boltzmann equation [28]. In the same way that the continuous
Boltzmann equation can be viewed as the Liouville equation of a stochastic particle
system, the present model can also be viewed as a deterministic version of a random
walk process. We shall come back to this point later.

The goal of this paper is to investigate the limit of the scattering matrix model
when the total number of cells in the superlattice structure becomes large. Indeed, in
practice, superlattices possess a large (but probably not very large) number of cells
(on the order of 20), and it can be useful, at least for fast computations, to solve the
model obtained by taking the limit of a large number of cells. After space and time
rescaling, the scattering matrix problem appears as a perturbation problem which
bears strong similarities with diffusion approximation problems in kinetic theory or
with diffusion approximations of random walk processes.

We shall show that the limiting equation is a diffusion equation for the electron
number density in the position-energy space (or energy distribution function). This
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equation belongs to the class of spherical harmonics expansion (SHE) models, which
have proved extremely useful in the context of standard semiconductor modeling.
The present paper is the first (to our knowledge) to establish the SHE model in the
framework of superlattices. Our derivation furnishes a direct connection between the
quantum transport characteristics of the superlattice structure and the coefficients of
the SHE model. This model provides means to achieve fast simulations of electron
transport in superlattices. A related approach based on a continuous (rather than
discrete) model can be found in [8].

Alternate macroscopic models for superlattices have also been proposed [25], [12].
They are based on a space-discrete version of pure drift-diffusion in position space only,
while the present model deals with diffusion in a combined position-energy space.
Our model therefore describes the physics at a more microscopic level and is thus
expected to capture the highly oscillating nature of superlattices more accurately.
Furthermore, the diffusion constants involved in [12] are phenomenological, while we
shall provide an explicit methodology to derive these diffusion constants from the
microscopic data (scattering probabilities and time delays). For instance, in [12], the
reflection probabilities are ignored; on the other hand, a displacement current term is
included in the current equation there. According to the numerical values, it seems
that this term is small, and thus it will be neglected in our model. Globally, the
present model seems to give access to a finer description of the physics, but it is also
more complex in that it involves an additional variable (the particle energy).

We conclude this section with a few bibliographical comments. The diffusion
approximation is a theoretical tool which links the evolution of macroscopic quantities
like number or energy densities to the microscopic particle dynamics described by a
kinetic equation. The diffusion approximation methodology goes back to the work
of Hilbert, Chapman, and Enskog (see, e.g., [14] for an introduction to the subject).
Its application to bulk semiconductors is reviewed from a physics view point in [32],
[16]. The modern mathematical view of the theory was set up in [10] and [2] in the
context of neutron transport (the former using a stochastic description of transport,
the latter using purely deterministic models), and its application to semiconductors
was developed in [30], [24]. In these works, the resulting macroscopic model is the
drift-diffusion model, which is the basic tool in semiconductor modeling [28], [33] and
which deals with the electron number density in position space.

By analyzing the various collision scales, it has recently been possible to derive
a diffusion model for the particle number density in the position-energy space [20],
[4], [17]. This model is often referred to in the literature as the SHE model (the term
spherical harmonics expansion arises from its early derivation by physicists [36]). It
has proved very efficient in semiconductor device modeling [22], [23] and is also used
in plasma physics and gas discharge physics (e.g., [18]). An alternate derivation from
a stochastic description of individual particle transport is proposed in [13].

The outline of the paper is as follows: the scattering matrix model is proposed
in section 3 and appropriately scaled in section 4. Then, the formal diffusion limit is
stated in section 5. Comments on the diffusion model and examples are developed in
sections 6 and 7. Finally, the derivation of the diffusion model is (formally) proved in
the appendix.

3. A scattering-matrix model for superlattices. We now summarize the
previous discussion and set up the starting microscopic model. We consider a semi-
conductor superlattice consisting of layers of several materials periodically arranged
in the direction x and generating a permanent periodic potential of period � in this
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direction. Since the superlattice period is usually very small (10 to 100 nm), electron
motion through such a structure must be described quantum mechanically. However,
we assume that various sources of scattering (e.g., interface roughness scattering due
to some crystalline disorder at the various interfaces [25], [15]) produce a phase deco-
herence of the electron wave-functions over distances comparable with the superlattice
period. In this context, quantum effects are limited within one superlattice period.

Let us denote the interval occupied by the nth superlattice pattern by Cn =
[(n − 1

2 )�, (n + 1
2 )�]. Our assumption is that the state of the electron gas at each

pattern boundary xn+ 1
2
= (n+ 1

2 )� can be described by a classical distribution func-

tion fn+ 1
2
(k, t), which represents the number of electrons at time t with wave-vector

k ∈ R at this point. Then, finding the motion of an electron through the elementary
superlattice pattern Cn reduces to a standard quantum mechanical scattering prob-
lem. Such a problem is characterized by reflection-transmission coefficients and time
delays [29].

To be more specific, we first need to introduce some additional definitions [1]. For
simplicity, we restrict our analysis to a one-dimensional geometry and assume that
the energy-versus-wave-vector relationship in each material is parabolic, i.e., is of the
form

ε(k) =
�

2k2

2m
,

where ε is the kinetic energy of an electron moving in the crystal with wave-vector
k ∈ R, � is the reduced Planck constant, andm is the electron effective mass. We shall
place the points xn+ 1

2
in the middle of the largest layer and denote the corresponding

material by A. Unless otherwise specified, m will refer to the electron effective mass
in this material, while m∗(x) will refer to the position-dependent effective mass at
any point x of the superlattice. (Of course, m∗(x) = m in material A.) The electron
velocity v(k) is related to the wave-vector by

v(k) =
1

�

dε

dk
=

�k

m
.

We assume that the electric potential φ is the sum of two contributions φ =
φSL + φSC . The contribution φSL is specific to superlattice structures and derives
from the presence of material discontinuities. It is piecewise constant with jump
discontinuities at the material interfaces and, of course, has the periodicity of the
superlattice structure. To fix it uniquely, we shall assume that it vanishes at the
points xn+ 1

2
.

The contribution φSC is the self-consistent potential generated by the charges
and by the applied bias. φSC is a solution of the Poisson equation

− d

dx

(
ε
dφSC
dx

)
= ρ(x, t),(3.1)

where ρ(x, t) is the charge concentration, given in terms of the positive ion concen-
tration ρ+(x) (supposed known and given) and of the electron concentration ρ−(x, t)
(the expression of which will be given below) by

ρ(x, t) = e(ρ+(x)− ρ−(x, t)),

where e is the elementary (positive) charge. The Poisson equation (3.1) is supple-
mented by boundary conditions

φSC(a, t) = 0, φSC(b, t) = φbias,(3.2)
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where a and b are the left and right boundaries of the superlattice and φbias is the
applied bias. The dielectric constant ε is an �-periodic function of x, which may also
have jump discontinuities at the material interfaces. φSC is not periodic in general
and is time-dependent, as ρ generally is.

Now, we turn to the solution of the Schrödinger equation associated with the nth
pattern Cn. Because of our assumption that the correlation length is of the order of
�, the wave-functions of electrons belonging to the nth pattern Cn cannot interact
with the potential beyond the boundaries of Cn. To take this fact into account, we
modify the potential experienced by the electrons in Cn into a constant potential
φ̄n(x) outside Cn:

φ̄n(x) =




φ(x, t) ∀x ∈ [xn− 1
2
, xn+ 1

2
],

φ(xn− 1
2
) ∀x ≤ xn− 1

2
,

φ(xn+ 1
2
) ∀x ≥ xn+ 1

2
.

(3.3)

Now we consider t as a frozen time variable, and for k ∈ R given we solve the
Schrödinger equation on R for the wave-function ψk(x):

−�
2

2

d

dx

(
1

m∗(x)
dψk
dx

)
− eφ̄nψk =

(
�

2k2

2m
− eΦnk

)
ψk,(3.4)

where

Φnk =

{
φ(xn− 1

2
) if k ≥ 0,

φ(xn+ 1
2
) if k ≤ 0.

All the present discussion is classical and can be found, for instance, in [29]. We
summarize it below for the reader’s convenience. To uniquely specify the solution of
(3.4), we impose the following additional conditions: for k > 0,

ψk =

{
eik(x−xn−1/2) +A(k)e−ik(x−xn−1/2), x < xn− 1

2
,

B(k)eik+(x−xn+1/2), x > xn+ 1
2
,

and similarly, for k < 0,

ψk =

{
e−ik(x−xn+1/2) +A(k)eik(x−xn+1/2), x > xn+ 1

2
,

B(k)e−ik−(x−xn−1/2), x < xn− 1
2
.

We have let

k± =

√
k2 ± 2me

�2
δφn(t), δφn(t) = φ(xn+ 1

2
, t)− φ(xn− 1

2
, t).(3.5)

If the quantity inside the square root is negative, the choice of the pure imaginary
root is indifferent and leads to the same solution.

These solutions are called the scattering states and describe free moving particles
coming from infinity and entering the nth superlattice pattern Cn. The complex num-
bers A and B are the scattering amplitudes, from which one computes the reflection
and transmission probabilities R(k) and T (k) according to

R(k) = |A(k)|2, T (k) =




k+
k |B(k)|2, k > 0, k+ ∈ R,
k−
|k| |B(k)|2, k < 0, k− ∈ R,

0, otherwise.
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The scattering probabilities satisfy the following relations:

R+ T = 1,

{
R, T (k) = R, T (−k+), k > 0, k+ ∈ R,
R, T (k) = R, T (k−), k < 0, k− ∈ R.

(3.6)

Introducing the phases of the complex numbers A and B,

A(k) = |A(k)|eiSR(k), B(k) = |B(k)|eiST (k),

we define the semiclassical reflection and transmission time delays τR(k) and τT (k)
according to the following:

τR(k) =
1

v(k)

dSR
dk

, τT (k) =
1

v(k)

dST
dk

.

We also have (see [29]){
τR, τT (k) = τR, τT (−k+), k > 0, k+ ∈ R,
τR, τT (k) = τR, τT (k−), k < 0, k− ∈ R.

(3.7)

Of course, all the scattering data depend on the index n, which has been omitted
in the previous discussion.

We now establish the dynamics obeyed by the discrete distribution function
fn+ 1

2
(k, t). First, consider fn+ 1

2
(k, t) for k > 0, which corresponds to particles at point

xn+ 1
2
moving to the right; let us trace these particles back to previous times. Some of

them have been transmitted through the nth pattern and come from point xn− 1
2
with

a momentum kn− > 0 corresponding to the energy shift −eδφn. The crossing time of
the nth pattern being τnT (k

n
−), the number of these is Tn(kn−)fn− 1

2
(kn−, t − τnT (k

n
−)).

The other contribution to fn+ 1
2
(k, t) is made of particles reflected by the nth pat-

tern and coming from point xn+ 1
2
with a momentum −k. The number of these is

Rn(−k)fn+ 1
2
(−k, t − τnR(−k)). Therefore, we obtain the total number fn+ 1

2
(k, t) by

summing up these two contributions. For k > 0, this leads to

fn+ 1
2
(k, t) = Tn(kn−)fn− 1

2
(kn−, t− τnT (k

n
−))(3.8)

+ Rn(−k)fn+ 1
2
(−k, t− τnR(−k)),

and for k < 0, to

fn− 1
2
(k, t) = Tn(−kn+)fn+ 1

2
(−kn+, t− τnT (−kn+))(3.9)

+ Rn(−k)fn− 1
2
(−k, t− τnR(−k)).

System (3.8)–(3.9) belongs to the class of scattering matrix models which are some-
times used in the literature [34]. These conditions were first proposed by Ben Abdallah
[3] as coupling conditions for classical and quantum models (see also [7]).

To preserve causality, we require system (3.8)–(3.9) to be a backwards difference
system in time, and consequently we assume that the time delays are positive. We
consider that (3.8)–(3.9) describes the evolution of the system for t > 0, starting from
known states for all t ≤ 0, and prescribe the distribution functions for negative times:

fn− 1
2
(k, t) = (fI)n− 1

2
(k, t) ∀t ≤ 0, ∀n ∈ Z, ∀k ∈ R,(3.10)

where (fI)n− 1
2
is given.
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For a bounded structure, the incoming distribution function must be prescribed
at the boundary. Let us denote by a = xna− 1

2
and b = xnb+

1
2
the left and right

boundaries of the structure. Then, we prescribe

fna− 1
2
(k, t) = fa(k, t), fnb+

1
2
(−k, t) = fb(−k, t) ∀t, ∀k > 0,

where fa(k, t) and fb(−k, t) are given functions of k > 0. Usually, fa,b are chosen to
be equal to thermodynamical equilibrium distribution functions (see the expression
in section 6).

In order to complete the model, we must say how the electron concentration is
computed. Following [3], we assume that the electron concentration in the nth pattern
is the sum of the concentration of the right-going scattering states (for k > 0) weighted
by the distribution function at the “left entrance” of the cell Cn, i.e., fn− 1

2
(k), and

that of the left-going states (for k < 0) weighted by fn+ 1
2
(k). In other words, for

x ∈ [xn− 1
2
, xn+ 1

2
),

ρ−(x, t) =
∫
k>0

fn− 1
2
(k, t)|ψnk (x, t)|2

dk

π
+

∫
k<0

fn+ 1
2
(k, t)|ψnk (x, t)|2

dk

π
.(3.11)

The factor π−1 stands for the one-dimensional momentum density of states (see [1]).
Let us now comment on the hypothesis of frozen time in the solution of the

quantum problem. This hypothesis is valid only if the time variation of the potential
is slow compared with the transit times of the particles through the pattern Cn. If
this is not the case, the potential varies significantly while the particle is crossing
the pattern, and the resolution of a time-dependent Schrödinger equation becomes
necessary. In such a case, not only would the computational cost increase, but the
coupling to the semiclassical distribution function would be much more complicated
(see, e.g., [5]). However, the frozen time assumption is acceptable in practice since
the self-consistent electric field is a highly averaged, and therefore slowly evolving,
quantity. In the present paper, we shall focus on this case. Therefore, all the scattering
data in formulas (3.8)–(3.9) must be understood as corresponding to time t.

We note that formula (3.11) also relies on the frozen time assumption: the distri-
bution function evolves on a slower time scale than the time delays, and therefore the
statistics of particles in the entire pattern Cn can be approximated by the distribution
function at its boundaries at the same time. This approximation is consistent with
that made in the resolution of the quantum problem and is not in contradiction with
(3.8)–(3.9), where the time delays appear. Indeed, that the time delays are small
does not prevent the distribution function from evolving on larger time scales, as we
will see in the derivation of the macroscopic model (section 5). Also, removing this
assumption is possible, as in [5], but requires a much more complex model, which is
beyond our scope here.

Obviously, a stochastic interpretation of the dynamical system (3.8)–(3.9) can
be given. At a given time t, a particle sitting at point xn− 1

2
with momentum k >

0 (to fix the ideas) can jump to point xn+ 1
2
with a probability Tn or can reverse

momentum with probability Rn. The particle can perform its next jump after a
certain time delay τR,T . Therefore, this model is a dynamical system version of
a kind of random walk. The connection between stochastic particle processes and
kinetic equations is a very active field, and it is not our aim to elaborate on this
relation here. Let us simply mention that, conversely, stochastic particle processes
lead to efficient numerical algorithms to solve kinetic equations (referred to as Monte
Carlo methods). An introductory monograph for this topic is [26].
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In view of this stochastic interpretation, we discuss why the time delays are
assigned deterministic values instead of random ones. Semiclassical scattering theory,
which is based on a high frequency limit [29], gives very few means for exploring the
possible random character of the time delays. Random time delays are likely to appear
if the high frequency assumption is removed. However, there exists very little physical
information on the probabilistic distribution of time delays in this case. In the absence
of such information, the simplest choice seems to be the deterministic semiclassical
value. Considering random time delays, however, would not lead to major changes
to the present work. An integral over the distribution of time delays would appear
in (3.8)–(3.9) and in the expression (5.4) of the density-of-states M of the diffusion
model (see section 5).

Finally, let us note that we exclude bound states, which could contribute to
trapping particles inside a given superlattice cell. If bound states were considered,
additional terms involving the populations of these states would have to appear in
(3.11). This would require a model of inelastic collisions, since only such collisions
can fill these states. Such collisions are discarded in the present work, as are bound
states.

4. Scaling. It is convenient to interpolate the discrete quantities into piecewise
continuous functions of the position variable x. We define

f(x, k, t) = fn+ 1
2
(k, t), fI(x, k, t) = (fI)n+ 1

2
(k, t), x ∈ [n�, (n+ 1)�),(4.1)

and

(R, T, τR, τT )(x, k) = (Rn, Tn, τnR, τ
n
T )(k), x ∈ [xn− 1

2
, xn+ 1

2
).(4.2)

Similarly,

δφ(x) = δφn, k±(x, k) = kn±(k), x ∈ [xn− 1
2
, xn+ 1

2
).(4.3)

With these definitions, system (3.8)–(3.10) is equivalent to the following system:
for k > 0,

f

(
x+

�

2
, k, t

)
= T (x, k−(x, k))f

(
x− �

2
, k−(x, k), t− τT (x, k−(x, k))

)
(4.4)

+ R(x,−k)f
(
x+

�

2
,−k, t− τR(x,−k)

)
,

and for k < 0,

f

(
x− �

2
, k, t

)
= T (x,−k+(x, k))f

(
x+

�

2
,−k+(x, k), t− τT (x,−k+(x, k))

)
(4.5)

+ R(x,−k)f
(
x− �

2
,−k, t− τR(x,−k)

)
,

with the initial condition

f(x, k, t) = fI(x, k, t) ∀t ≤ 0, ∀(x, k) ∈ R
2.(4.6)
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The electron concentration takes the form

ρ−(x, t) =
∫
k>0

f(x, k, t)|ψnk (x, t)|2
dk

π
+

∫
k<0

f(x+ �, k, t)|ψnk (x, t)|2
dk

π
(4.7)

∀x ∈ [xn− 1
2
, xn),

ρ−(x, t) =
∫
k>0

f(x− �, k, t)|ψnk (x, t)|2
dk

π
+

∫
k<0

f(x, k, t)|ψnk (x, t)|2
dk

π
(4.8)

∀x ∈ [xn, xn+ 1
2
).

We now introduce macroscopic position and time coordinates according to

x̃ = αx, t̃ = α2t,(4.9)

where α � 1 is a small parameter describing the ratio between the superlattice cell
and the typical size of the device. The time scaling characterizes diffusion phenomena.

Now we make the following assumption, which is classical in the homogenization
literature [9]. We suppose that the self-consistent potential can be written as a func-
tion of the macroscopic variables (x̃, t̃) and of the microscopic variable x, and that it
is periodic with respect to the latter:

φSC(x, t) = φ̃SC(x̃, x, t̃),(4.10)

where φ̃SC is periodic with respect to its second argument. Indeed, the self-consistent
potential may have large scale variations (which extend over the entire structure
width, like, e.g., the external potential) as well as subcell variations (related, e.g., to
the variations of the electron and ion concentrations or to the dielectric constants).
By supposing that the small scale variations are periodic, we assume that a departure
from periodicity can occur only on large scales or, equivalently, with small gradients
relative to the period. This is the key hypothesis that allows the derivation of a
macroscopic regime.

The dielectric constant ε as well as the superlattice potential φSL are purely
periodic functions and therefore depend only on the periodic variable x: ε(x), φSL(x).
We could consider large scale variations of these quantities as well, but we discard
them here for the sake of clarity.

We now investigate how this assumption translates onto the Schrödinger scat-
tering problem. Using that φSL is periodic and vanishes at the boundary of the
elementary cell, and that φSC is periodic with respect to its second argument, the
potential (3.3) involved in the Schrödinger equation (3.4) now reads

φ̄n(x) =




φSL(x) + φ̃SC(αx, x, α
2t) ∀x ∈ [xn− 1

2
, xn+ 1

2
],

φ̃SC(αxn− 1
2
, x− 1

2
, α2t) ∀x ≤ xn− 1

2
,

φ̃SC(αxn+ 1
2
, x− 1

2
, α2t) ∀x ≥ xn+ 1

2
.

(4.11)

We consider this potential the following way: for a given value x̃, we look for the cell
Cn such that αx̃ ∈ Cn, i.e., n(x̃) = [(x̃/α�) + 1/2], where [·] denotes the integer part.
Then, we solve the Schrödinger equation (3.4) on R with the potential (4.11), where
x is now a variable independent from x̃, the latter appearing only in n(x̃). Therefore,
x̃ and t̃ are frozen variables in the Schrödinger problem.

Therefore, the wave-functions are such that ψk = ψk(x̃, x, t̃) (but ψk is not peri-
odic with respect to x), and the scattering data satisfy

(R, T ) = (R̃, T̃ )(x̃, k), (τR, τT ) = α2(τ̃R, τ̃T )(x̃, k),

δφ = δ̃φ(x̃, t̃) , k± = k̃±(x̃, k, t̃).
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The factor α2 in front of the time delays follows from the scaling of time (see the last
remark of section 3).

By (4.1), the distribution functions are constant over the period width and there-
fore do not depend on the fast variable x. However, the electron concentration,
because it depends on the wave-functions according to (3.11), may depend on x. Sim-
ilarly, the ion concentration may have variations within a period, and it also depends
on x. Both the distribution function and the concentrations are assumed to be small,
of order α2. This hypothesis is required for consistency with (4.10): if the charge
concentration is not small, strong potential gradients can occur on small scales, which
we want to avoid. Therefore, we assume the following:

f(x, k, t) = α2f̃α(x̃, k, t̃),

(ρ−, ρ+, ρ)(x, t) = α2(ρ̃−α, ρ̃+α, ρ̃α)(x̃, x, t̃).

We shall now rename the variables to deal with nicer notations: the periodic
variable x will be denoted by y, while the rescaled position and time variables x̃ and
t̃ will simply be denoted by x and t. The tildes will be dropped, and the dependence
on the scaling parameter α will be recalled only when necessary. With this scaling,
the problem (4.4), (4.5), (3.1), (3.11) becomes: for k > 0,

f

(
x+ α

�

2
, k, t

)
= R(x,−k)f

(
x+ α

�

2
,−k, t− α2τR(x,−k)

)
(4.12)

+ T (x, k−(x, k))f
(
x− α

�

2
, k−(x, k), t− α2τT (x, k−(x, k))

)
,

and for k < 0,

f

(
x− α

�

2
, k, t

)
= R(x,−k)f

(
x− α

�

2
,−k, t− ατR(x,−k)

)

+ T (x,−k+(x, k))f

(
x+ α

�

2
,−k+(x, k), t− α2τT (x,−k+(x, k))

)
,(4.13)

with the initial condition

f(x, k, t) = fI(x, k, t) ∀t ≤ 0, ∀(x, k) ∈ R
2.(4.14)

The Poisson equation reads(
α
∂

∂x
+

∂

∂y

)(
ε(y)

(
α
∂

∂x
+

∂

∂y

)
φSC

)
= α2ρ(x, y, t),(4.15)

ρ(x, y, t) = e(ρ+(x, y)− ρ−(x, y, t)).(4.16)

The electron concentration is given by

∀y ∈ [x− 1
2
, 0),(4.17)

ρ−(x, y, t) =
∫
k>0

f(x, k, t)|ψk(x, y, t)|2 dk
π

+

∫
k<0

f(x+ α�, k, t)|ψk(x, y, t)|2 dk
π
,

∀y ∈ [0, x 1
2
),(4.18)

ρ−(x, y, t) =
∫
k>0

f(x− α�, k, t)|ψk(x, y, t)|2 dk
π

+

∫
k<0

f(x, k, t)|ψk(x, y, t)|2 dk
π
.
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The goal of the present paper is to find the formal limit of model (4.12)–(4.18)
when α tends to zero. We note that, in this problem, all quantities depend on α. We
shall use a superscript α when we want to emphasize this dependence. We state the
main theorem in the next section.

5. The diffusion limit. The aim of this paper is to prove the following theorem.
Theorem 5.1 (formal). Assume that R, the reflection coefficient associated with

potential φSL, is nonzero almost everywhere. Then, in the limit α → 0, the solution
fα, φαSC , ρ

−,α converges, at least formally, to f , φSC , ρ
− such that

(i) There exists a function F (x, ε(k), t), which depends only on k through the
energy ε(k), such that f(x, k, t) = F (x, ε(k), t). Furthermore, F satisfies the
following diffusion equation (SHE model):

M(ε)
∂F

∂t
+

(
∂

∂x
− eE

∂

∂ε

)
J = 0,(5.1)

J(x, ε, t) = −D(ε)

(
∂

∂x
− eE

∂

∂ε

)
F,(5.2)

F (x, ε, t = 0) = FI(x, ε, 0),(5.3)

where E = −∂φSC/∂x is the self-consistent electric field. M(ε) and D(ε) are
defined by

M(ε) =
1

�
[T (k)τT (k) +R(k)τR(k)],(5.4)

D(ε) =
�

2

T (k)

R(k)
,(5.5)

where k =
√
2mε/� and T , R, τT , τR refer to the scattering data of the

Schrödinger problem with potential φ = φSL on the cell C0 only.
(ii) φSC = φSC(x, t) does not depend on the fast variable y and is a solution of

the Poisson equation

− d

dx

(
ε̄
dφSC
dx

)
= ρ(x, t),(5.6)

where the charge concentration ρ(x, t) is given by

ρ(x, t) = e(ρ+(x)− ρ−(x, t)),

ρ+(x) =

∫ �/2

−�/2
ρ+(x, y)

dy

�
, ρ−(x, t) =

∫ �/2

−�/2
ρ−(x, y, t)

dy

�
,

and the average dielectric constant ε̄ by

ε̄−1 =

∫ �/2

−�/2

1

ε(y)

dy

�
.

(iii) The positive ion concentration ρ+(x, y) is a datum; the electron concentration
is given by

ρ−(x, y, t) =
∫
k∈R

F (x, ε(k), t)|ψk(x, y, t)|2 dk
π
.(5.7)
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The coefficients M and D are, respectively, referred to as the “density-of-states”
and the “diffusivity.”

Let us comment on boundary conditions. The boundary conditions (3.2) may
also be used in conjunction with the Poisson equation (5.6). However, in order to
account for boundary layers in the homogenization process, more accurate boundary
conditions can be imposed, of Robin (or Fourier) type, namely,

(φSC − αλaφ
′
SC)(a, t) = 0, (φSC + αλbφ

′
SC)(b, t) = φbias,(5.8)

where λa, λb are positive extrapolation lengths (for expressions of λa and λb, see, e.g.,
[9]) and α is the scaling parameter (4.9). Similarly, considerations of kinetic layers
lead to the following boundary conditions for F :

(F + αΛaJ)(a, ε, t) = Fa(ε, t), (F − αΛbJ)(b, ε, t) = Fb(ε, t),(5.9)

where Fa(ε, t) = fa(k, t), Fb(ε, t) = fb(−k, t), and Λa,b > 0. We refer to [19] for the
theory of boundary layers in the framework of the SHE model and for the computation
of Λa,b. We shall not dwell on this point here.

The proof of Theorem 5.1 proceeds in three steps. The first consists of showing
that fα formally converges to a function of (x, ε(k), t) only. The second and third
steps correspond to the derivations of the continuity and current equations (5.1),
(5.2). To achieve these goals, two methods can be utilized: the Hilbert expansion
method [2], [17] and the moment method [24]. We shall choose the latter because it
involves more straightforward computations. We shall defer the details of the proof to
the appendix. We shall take the existence of solutions for the original discrete model
(4.12)–(4.18) as well as the convergence of fα, φαSC , ρ

−,α for granted, and we shall
focus solely on the establishment of the limit model. In fact, proving convergence is a
very challenging mathematical problem which is far beyond the scope of the present
paper. In the next sections, we comment further on the model obtained and deal with
some practical examples.

6. Comments on the diffusion model (5.1)–(5.2). We refer to the intro-
duction for references on the SHE model (5.1)–(5.2). This model is of great practical
interest for semiconductor device simulations because it provides information about
the electron energy distribution function at a much lower cost than a Monte Carlo
simulation of the Boltzmann equation [22], [23]. To our knowledge, the present paper
provides the first derivation of this model in the framework of superlattices, when the
diffusion is induced by the scattering properties of the quantum potential structure
itself.

Another interesting property of this model is that it gives rise to a hierarchy of
moment models [4], [17], including the usual drift-diffusion model [28], [33] and the so-
called energy-transport model, which is an extension of the drift-diffusion model with
an additional energy balance equation (see [6] and references therein). We refer to
[4], [17] for the derivation of these models. Here, we first want to discuss the relation
between the number and energy densities n(x, t) and E(x, t) in position space, which
are obviously important macroscopic quantities, and the energy distribution F . This
relation takes the form(

n
E
)

=

∫
R
F (x, ε, t)

(
1
ε

)
M(x, ε)dε,(6.1)
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where, in drift-diffusion or energy-transport models, F is approximated by a Fermi–
Dirac distribution (i.e., the quantum thermodynamical equilibrium distribution func-
tion of electrons; see [11]) Fµ,T (ε) = (exp((ε− µ)/kBT ) + 1)−1. The thermodynamic
parameters µ = µ(x, t) and kBT = kBT (x, t) are the chemical potential and ther-
mal energy and characterize the state of the electron gas. (6.1) furnishes a local
relationship between the pairs (n, E) and (µ, T ).

Here, the particular form of the density-of-states M makes this relationship fairly
different than in bulk semiconductor materials. M can be viewed as an “averaged
density-of-states” over the superlattice elementary period. It reduces to the usual one-
dimensional density-of-states (up to a constant factor) M = v(k)−1 if the potential
φSL is constant in the elementary cell (since in this case T = 1, R = 0, and τT is
equal to the classical transit time �/v(k)). But M may significantly differ from this
value if φSL is not constant (see section 7).

Because of this particular form of M , the relationship between (n, E) and (µ, T )
in the superlattice can significantly depart from that of bulk materials. In particular,
at resonant energies (see the example of square potentials below) the time delays are
significantly longer than the classical time delays. Symmetrically, at energies away
from resonances, they can be shorter. Therefore, in (6.1), M weights the resonant
energies more strongly and the nonresonant ones less strongly. The relation (µ, T ) →
(n, E) reflects these effects.

Next we discuss the value of the electron mobility in the superlattice, given by
[4], [17]:

µSL =
e

nkBT

∫
R
D(x, ε)Fµ,T (1− Fµ,T )dε.(6.2)

We recall that the mobility is the coefficient of Ohm’s law jn = µSLnE, which is the
expression of the drift-diffusion law when the chemical potential µ and the temper-
ature T are constant in space. The mobility is one of the most important transport
parameters in semiconductors as it is easily accessible to measurements and charac-
terizes the ability of electrons to react to an external electric field. In the present case,
the mobility of the electrons is induced solely by their scattering by the superlattice
potential pattern. A realistic expression of the mobility must also include the influ-
ence of “bulk interactions” like phonon or impurity interactions. As already pointed
out, this is not yet done in full rigor in the present work, but a rough estimate of the
total mobility µtot can be obtained from

1

µtot
=

1

µbulk
+

1

µSL
,(6.3)

where µbulk is the mobility under the influence of bulk collisions alone (see [32],
[16]). Formula (6.3) can be understood by a circuit analogy, in which the resistances
(proportional to the reciprocal of the mobility) of the bulk and of the superlattice
add up in series. It provides a first answer to the problem of determining the electron
mobility in the superlattice. This question was left open, for instance, in [35], where
by default, the superlattice mobility was assumed to be equal to that of the bulk.

As a conclusion, the diffusion model (5.1)–(5.2) can be used in two ways: either
for direct simulations or as a way to access analytical values for the parameters of
macroscopic (drift-diffusion or energy-transport) models. In the latter case, the ana-
lytical values of M and D give rise to easily computable values of the drift-diffusion
mobilities or density versus chemical potential relationships. (See the example in the
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next section.) Through the specific values (5.4), (5.5), the obtained parameters of the
drift-diffusion model retain information about the quantum nature of transport in the
superlattice base cell in a rigorous way.

7. Example: Square wells or barriers. In this section, we analyze the simple
case in which φSL is equal to a simple square well or barrier. More precisely, we
suppose that the presence of a second material (called B) results in potential and
effective mass jumps at the A−B interfaces. We denote by mA and mB the effective
masses in materials A and B. We denote by V the potential φSL in material B, with
V > 0 if B produces an (energy) potential well, and V < 0 if it produces a potential
barrier. We assume that the B layer has width a. Therefore,

φSL(x) =

{
V, x ∈ (−a

2 ,
a
2

)
,

0, x 
∈ (−a
2 ,

a
2

)
,

m(x) =

{
mB , x ∈ (−a

2 ,
a
2

)
,

mA, x 
∈ (−a
2 ,

a
2

)
.

(7.1)

We note that

ε(k) =
�

2k2

2mA
, κ =

(
mB

mA
(k2 + k2

V )

)1/2

, k2
V =

2emA

�2
V.(7.2)

Note that k2
V > 0 and κ2 > k2 in the case of a well, and k2

V < 0, κ2 < k2 in the
case of a barrier. In the barrier case, κ2 can be negative, in which case κ is a pure
imaginary number κ = iκ̃.

The resolution of (3.4) for the scattering states in this case is an elementary
quantum mechanics problem, the solution of which can be found in any textbook
(see [29], for instance). Here we just note that, to account for the effective mass
discontinuity, the continuity of ψ and m−1ψ′ must be enforced at the interfaces x =
±a/2.

With (7.1), we find for a well (k2
V > 0) and any value of k > 0, or for a barrier

(k2
V < 0) and incident energies above the barrier energy k2 + k2

V > 0, that

T =
1

1 + χ0 sin
2(κa)

, χ0 =

(
(mB −mA)k

2 −mAk
2
V

)2
4mAmBk2(k2 + k2

V )
(7.3)

and

τT = τR := τsq =
1

v(k)
(�− a+ dsq),(7.4)

with

dsq =
aχ1(1 + cot2(κa))− κ−1χ2 cot(κa)

χ3 + cot2(κa)
, χ1 =

(mA +mB)k
2 +mAk

2
V

2mA(k2 + k2
V )

,

χ2 =

(
(mA −mB)k

2 +mAk
2
V

)
k2
V

2mA(k2 + k2
V )k

2
, χ3 =

(
(mA +mB)k

2 +mAk
2
V

)2
4mAmBk2(k2 + k2

V )
.

The value of dsq has to be compared to the corresponding value dcl for classical motion:

dcl =
k

mA

mB

(k2 + k2
V )

1/2
a.

At resonant energies (i.e., when sin(κa) = 0), τsq > τcl, while the reverse inequality
holds at nonresonant energies (i.e., when cos(κa) = 0); see [29].
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In the case of a barrier (k2
V < 0) and incident energies below the barrier energy

k2 + k2
V < 0, we find

T =
1

1 + χ0 sinh
2(κ̃a)

, dsq =
aχ1(coth

2(κ̃a)− 1) + κ̃−1χ2 coth(κ̃a)

χ3 + coth2(κ̃a)
,

with χ0, χ1, and χ3 obtained by changing k2 + k2
V into |k2 + k2

V | in the denominators
of the formulas above and with χ2 unchanged.

With (7.3) and (7.4), equations (5.4), (5.5) give the expression of the density-of
state and diffusivity in the case of square wells or barriers:

D =
�

�π

1

χ0 sin
2(κa)

for κ2 > 0,(7.5)

D =
�

�π

1

χ0 sinh
2(κ̃a)

for κ2 = −κ̃2 < 0,(7.6)

M =
2τsq
�π�

.(7.7)

As already pointed out, the diffusivity has infinite peaks at resonant energies (sin(κa)
= 0). These peaks are due to resonant tunneling and are reminiscent of the conduction
minibands in an infinite superlattice.

If more than one well or one barrier is present within a period (i.e., when the
coherence length is larger than the period), the scattering data become increasingly
complicated (but still can be computed numerically) and resemble even more closely
the energy band structure of the infinite superlattice.

This example shows that the coefficients M and D of the diffusion model can
be computed easily from the resolution of the Schrödinger equation in a single cell.
The most important characteristics of quantum transport (like the existence of trans-
mission resonances) translate into specific behaviors (like singularities at resonance
energy) of these constants.

8. Conclusion. In this paper, we have presented a scattering matrix model
describing electron transport in semiconductor superlattices when the electron phase
coherence length is of the order of the superlattice period. Then, we have investigated
the limit of a large number of superlattice cells. We have shown that, at the diffusion
time scale, the scattering matrix model formally converges to a diffusion model in
the position-energy space, the so-called SHE model, and have explained how it can
be used to model electron transport in superlattices. In particular, the model takes
into account the electric potential self-consistency through a quantum model of the
charge concentration. An analytical example shows how the diffusion constants can
be explicitly computed from the scattering data of the base cell.

The scientific merit of this model can only be assessed in light of numerical simu-
lations and comparisons with other experiments or numerical models. In the present
paper, we have focused on the derivation of the diffusion model and will defer its
numerical validation to future work. However, we feel that the present model has
promising capabilities. It will be easy to solve numerically, while giving access to
finer physical details than conventional drift-diffusion models. In particular, we have
shown how the diffusion constants retain some of the essential features of quantum
transport in the superlattice base cell. Beyond their use in the SHE model, these dif-
fusion constants can be used in turn to improve our knowledge of diffusion constants
of conventional models of the drift-diffusion type when applied to superlattices.
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Appendix. Proof of Theorem 5.1. We shall give only the formal calculations
below, supposing that all unknowns have a limit in a convenient function space. The
proof of this point is a very difficult one (given the nonlinearity of the problem and
its highly oscillating character) and will not be tackled here.

A.1. The potential and the Schrödinger equation. It is a classical matter
in homogenization theory [9] that

φαSC(x, y, t) = φSC(x, t) +O(α) as α → 0,

where φSC(x, t) does not depend on y and satisfies the homogenized Poisson equation
(5.6).

Then, standard perturbation theory for the Schrödinger equation applies (see
[31]), and we get, at least formally,

ψαk (x, y, t) → ψk(x, y, t), Rα, Tα, ταR, τ
α
T → R, T, τR, τT , . . . ,

where ψk, R, T , τR, τT are the wave-function and scattering data associated with
the potential φ = φSC(x, t) + φSL(y). However, since φSC does not depend on y, the
wave-function is deduced from the solution of the Schrödinger equation with potential
φSL(y) by multiplication by a constant (in y) phase factor (Gauge transformation),
and the scattering data are unchanged. Furthermore, a simple coordinate translation
allows us to consider the problem in the elementary cell C0 again without changing
the scattering data. Therefore, R, T , τR, τT do not depend on x. From now on, ψk
will denote the wave-function associated with the cell C0, which also does not depend
on x.

Now we estimate the potential shift δφα across a cell. Following section 4, we
consider a point x and let n = nα(x) = [(x/α�) + 1/2], where [·] is the integer part.
According to (4.11), across the cell Cnα(x) associated with x, δφα is equal to

δφα = φαSC(αxn+ 1
2
, x− 1

2
, t)− φαSC(αxn− 1

2
, x− 1

2
, t).

We can define δ− and δ+ such that

αxn− 1
2
= α

(
n− 1

2

)
� = x+ αδ−, αxn+ 1

2
= α

(
n+

1

2

)
� = x+ αδ+.

We obviously have −� ≤ δ− ≤ 0, 0 ≤ δ+ ≤ �, δ+ − δ− = �. Therefore,

δφα = φαSC(x+ αδ+, x− 1
2
, t)− φαSC(x+ αδ−, x− 1

2
, t) = α�

∂φαSC
∂x

+O(α2).(A.1)

In particular, δφα → δφ = 0. From this, we note that

kα±(x, k) = |k| ± α
em�

�2

1

|k|
∂φαSC
∂x

+O(α2).(A.2)

Finally, taking the limit α → 0 in (4.17) and (4.18) leads to (5.7), provided that
f is a function of ε(k) only. This point is proved in the next section.

A.2. f depends only on the energy. We consider problem (4.12), (4.13) and
formally let α → 0. We have, using (A.2),

f(x, k, t) = R(−k)f(x,−k, t) + T (k)f(x, k, t), k > 0.(A.3)
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Now, considering that R and T are the scattering data associated with the limit
potential, which has no potential shift (δφ = 0), formulas (3.6) lead to

R+ T = 1, R, T (k) = R, T (−k), τR, τT (k) = τR, τT (−k) ∀k ∈ R.(A.4)

Using these relations, (A.3) leads to

R(k)(f(x, k, t)− f(x,−k, t)) = 0, k > 0.(A.5)

With the assumption that R > 0 almost everywhere, we deduce that f is even
with respect to k or, equivalently, that it is a function of ε(k). Therefore, we have
f(x, k, t) = F (x, ε(k), t).

A.3. Current equation (5.2). We introduce the current

Jα(x, ε, t) =
1

2α
(fα(x, k, t)− fα(x,−k, t)) , k =

√
2εm

�
.(A.6)

We show that Jα → J , where J is given by (5.2).
For k > 0, we rewrite (4.12) by shifting the position variable by a half-period:

fα(x, k, t) = Rα
(
x− α

�

2
,−k

)
fα(x,−k, t− α2ταR)(A.7)

+ Tα
(
x− α

�

2
, kα−

)
fα(x− α�, kα−, t− α2ταT ),

where we have not repeated the arguments of kα− and ταR,T . We rewrite (A.7) according
to

fα(x, k, t) = Rα
(
x− α

�

2
,−k

)
fα(x,−k, t) + Tα

(
x− α

�

2
, kα−

)
fα(x, kα−, t)

+ Tα
(
x− α

�

2
, kα−

)(
−α�∂f

α

∂x
(x, k, t) + (kα− − k)

∂fα

∂k
(x, k, t)

)
+O(α2).(A.8)

We note that, by (3.6), Tα(x − α �2 , k
α
−) = Tα(x − α �2 ,−k). Now, using (A.2), we

deduce from (A.8) that

Rα
(
x− α

�

2
,−k

)
(fα(x, k, t)− fα(x,−k, t))

= −α�Tα
(
x− α

�

2
, kα−

)(
∂fα

∂x
(x, k, t) +

em

�2

1

k

∂φαSC
∂x

∂fα

∂k
(x, k, t)

)
+O(α2),

or, dividing by Rα,

Jα(x, ε(k), t) = − �

2

Tα(x− α �2 , k
α
−)

Rα(x− α �2 , k
α−)

(
∂fα

∂x
(x, k, t) +

em

�2

1

k

∂φαSC
∂x

∂fα

∂k
(x, k, t)

)
+O(α).

Now, taking the limit α → 0 and noting that

∂f

∂k
=

∂F

∂ε

�
2k

m
, k > 0,

we easily obtain (5.2).
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A.4. Continuity equation (5.1). To prove the continuity equation (5.1), we
evaluate

Iα =
1

α�

(
Jα
(
x+ α

�

2
, ε, t

)
− Jα

(
x− α

�

2
, ε− eδφα, t

))
.

First, using (A.1) together with a Taylor expansion, we readily see that

Iα =

(
∂Jα

∂x
+ e

∂φαSC
∂x

∂Jα

∂ε

)
(x, ε, t) +O(α).

Now, using (4.12), (4.13), we compute

2α2�Iα = T (x, kα−)f
(
x− α

�

2
, kα−, t− α2ταT (x, k

α
−)
)

+ R(x,−k)f
(
x+ α

�

2
,−k, t− α2ταR(x,−k)

)
− f

(
x+ α

�

2
,−k, t

)

+ T (x,−k)f
(
x+ α

�

2
,−k, t− α2ταT (x,−k)

)

+ R(x, kα−)f
(
x− α

�

2
, kα−, t− α2ταR(x, k

α
−)
)
− f

(
x− α

�

2
, kα−, t

)
.

By Taylor expanding with respect to t and using (3.6), we finally get

2α2�Iα = −α2
(
T (x, kα−)τ

α
T (x, k

α
−) +R(x,−k)ταR(x,−k)

+ T (x,−k)ταT (x,−k) +R(x, kα−)τ
α
R(x, k

α
−)
) ∂fα

∂t
(x, k, t) +O(α3).

Taking the limit α → 0 and using (A.4) then easily leads to (5.1).
This conclude the proof of Theorem 5.1.
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Abstract. We study a class of delay differential equations which have been used to model
hematological stem cell regulation and dynamics. Under certain circumstances the model exhibits
self-sustained oscillations, with periods which can be significantly longer than the basic cell cycle
time. We show that the long periods in the oscillations occur when the cell generation rate is
small, and we provide an asymptotic analysis of the model in this case. This analysis bears a close
resemblance to the analysis of relaxation oscillators (such as the Van der Pol oscillator), except that
in our case the slow manifold is infinite dimensional. Despite this, a fairly complete analysis of the
problem is possible.

Key words. relaxation oscillations, delay differential equations, hematopoiesis, stem cells,
chronic myelogenous leukaemia
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1. Introduction. The understanding of periodic behavior in nonlinear ordinary
differential equations is reasonably complete. Near Hopf bifurcation, periodic solu-
tions are generically of small amplitude and can be analyzed using the methods of
multiple scales. At more extreme parameter values, oscillations are often strongly non-
linear, and it is frequently the case that the dynamics are relaxational, in which case
they can be understood through the existence of slow manifolds in phase space and
the associated asymptotic analysis of the resulting relaxation oscillators. The classic
example is the relaxation oscillation of the Van der Pol oscillator, whose analysis is
ably expounded by Kevorkian and Cole (1981).

The situation is much less satisfactory for delay differential equations, which are
frequently used to model populations, for example, in ecology (Gurney, Blythe, and
Nisbet (1980)) or physiology (Mackey (1997)). One example is the delay recruitment
equation

εẋ = −x+ f(x1),(1.1)

where x1 = x(t − 1). For unimodal f (i.e., f(0) = 0, (x − x∗)f ′(x) < 0 for some
x∗ > 0), periodic oscillations can occur for sufficiently small ε. In some circumstances,
a singular perturbation analysis of periodic solutions when ε � 1 is possible (Chow
and Mallet-Paret (1982); Chow, Lin, and Mallet-Paret (1989)), but the results have
been limited in scope.

Although linear and weakly nonlinear stability methods are straightforward for
delay differential equations, singular perturbation methods appear difficult to imple-
ment in general. Much of the work that has been done, such as Chow and Mallet-
Paret’s work cited above, is concerned with systems with large delay (thus (1.1) or
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its generalizations (Chow and Huang (1994); Hale and Huang (1996))). Artstein and
Slemrod (2001) place their discussion of relaxation oscillations in the context of slow
and fast manifolds familiar from ordinary differential equations and draw a distinction
between systems where the delay is “fast” or “slow.” (In this context we will find
that the delay in our system is fast.)

Actual constructive asymptotic methods are less common. Fowler (1982) ana-
lyzed the delayed logistic equation εẋ = x(1 − x1), and Bonilla and Liñan (1984)
analyzed a more general system having distributed delay and with diffusion. In a
sequence of papers, Lange and Miura (e.g., 1982, 1984) provided asymptotic analyses
of models with delays and exhibited boundary layer behavior, although they were
exclusively concerned with boundary value problems, and their systems were linear.
More recently, Pieroux et al. (2000) analyzed a laser system when the delay was large
but dependence on the delayed variable was weak, using multiple scale techniques.
In this paper, we show how a constructive relaxational perturbation analysis can be
carried out for a particular class of delay differential equations describing stem cell
dynamics, when the net proliferation rate is small.

2. A mathematical model of stem cell dynamics. Hematological diseases
are interesting and have attracted a significant amount of modeling attention be-
cause a number of them are periodic in nature (Haurie, Dale, and Mackey (1998)).
Some of these diseases involve only one blood cell type and are due to the destabi-
lization of peripheral control mechanisms, e.g., periodic auto-immune hemolytic ane-
mia (Bélair, Mackey, and Mahaffy (1995); Mahaffy, Bélair, and Mackey (1998)) and
cyclical thrombocytopenia (Swinburne and Mackey (2000); Santillan et al. (2000)).
Typically, periodic hematological diseases of this type involve periodicities between
two and four times the bone marrow production/maturation delay (which is different
from the delay considered in this paper).

Other periodic hematological diseases involve oscillations in all of the blood cells
(white cells, red blood cells, and platelets). Examples include cyclical neutropenia
(Haurie, Dale, and Mackey (1999); Haurie et al. (1999); Haurie et al. (2000)) and
periodic chronic myelogenous leukemia (Fortin and Mackey (1999)). These diseases
involve very long period dynamics (on the order of weeks to months) and are thought
to be due to a destabilization of the pluripotential stem cell (PPSC) compartment
from which all of these mature blood cell types are derived.

In Figure 2.1 we have given a pictorial representation of the PPSC compartment
and defined the important variables. The dynamics of this PPSC population are
governed (Mackey (1978), (1997), (2001)) by the pair of coupled differential delay
equations

dP

dt̂
= −γP + β(N)N − e−γτβ(Nτ )Nτ(2.1)

for the dynamics of the proliferating phase cells and

dN

dt̂
= −[β(N) + δ]N + 2e−γτβ(Nτ )Nτ(2.2)

for the nonproliferating (G0) phase cells. In these equations, t̂ is time, τ is the time
required for a cell to traverse the proliferative phase, Nτ = N(t̂− τ), and the resting
to proliferative phase feedback rate β is taken to be a Hill function of the form

β(N) =
β0θ

n

θn +Nn
.(2.3)
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Cells
Resting Phase

δ N

Cellular Death (Apoptosis) Cellular Differentiation

Pγ

Proliferating Phase Cells

            Cell reentry into proliferation  =  N

S

β    

Fig. 2.1. A schematic representation of the G0 stem cell model. Proliferating phase cells (P )
include those cells in S (DNA synthesis), G2, and M (mitosis) while the resting phase (N) cells
are in the G0 phase. δ is the rate of differentiation into all of the committed stem cell populations,
while γ represents a loss of proliferating phase cells due to apoptosis. β is the rate of cell reentry
from G0 into the proliferative phase, and τ is the duration of the proliferative phase. See Mackey
(1978), (1979), (1997) for further details.

The origin of the terms in these equations is fairly obvious. For example, the first
term of (2.2) represents the loss of proliferating cells to cell division (β(N)N) and
to differentiation (δN). The second term represents the production of proliferating
stem cells, with the factor 2 accounting for the amplifying effect of cell division while
e−γτ accounts for the attenuation due to apoptosis (programmed cell death) at rate γ.
It is clear that in investigating the dynamics of the PPSC we need only understand
the dynamics of the G0 phase resting cell population since the proliferating phase
dynamics are driven by the dynamics of N .

Typical values of the parameters for humans are given by Mackey (1978), (1997)
as

δ = 0.05 d−1, β0 = 1.77 d
−1, τ = 2.2 d, n = 3.(2.4)

(The value of θ is 1.62× 108 cells kg−1, but this is immaterial for dynamic consider-
ations.) For values of γ in the range 0.2 d−1, the consequent steady state is unstable
and there is a periodic solution whose period P at the bifurcation ranges from 20–
40 days. It is the observation that P � τ , which arouses our curiosity, and which
we wish to explain. (In differential delay equations, periodic oscillations have periods
bounded below by 2τ and under certain circumstances the period may be in the range
2τ to 4τ .)

We rewrite (2.2) in a standard form as follows. First scale the nonproliferating
phase cell numbers by θ and the time by τ so that

N → θN, t̂ = τt∗,(2.5)
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Fig. 2.2. Solution of (2.6) with ε = 0.11, b = 3.9, and µ = 1.2.

and (2.2) becomes

Ṅ = g(N1)− g(N) + ε[µg(N1)−N ],(2.6)

where Ṅ = dN/dt∗, N1 = N(t∗ − 1),

g(N) =
bN

1 +Nn
,(2.7)

and the parameters are defined by

b = β0τ, ε = δτ, µ =
2e−γτ − 1

δτ
.(2.8)

The biological interpretation of these is as follows: b represents the rate at which cells
migrate round the loop in Figure 2.1, ε represents the rate of loss through differenti-
ation, and µ represents the net proliferation rate round the loop. The dimensionless
time t∗ is measured in units of the proliferative time spent in the loop. If we take
γ ∼ 0.2 d−1, then typical values of the parameters are

b ∼ 3.9, µ ∼ 2.6, ε ∼ 0.11.(2.9)

On this basis, we suppose b, µ = O(1). The long periods are associated with the
relatively small value of ε, and so the aim of our analysis is to solve (2.6) when ε � 1.
Figure 2.2 shows the periodic behavior when ε = 0.11, b = 3.9, and µ = 1.2 (the
steady state is stable when µ = 2.6).

3. Singular perturbation analysis. The first order delay differential equation
(2.6) is an infinite dimensional system. For example, defining the function

ut∗(s) = N(t∗ + s), s ∈ [−1, 0],(3.1)
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we can consider (2.6) as a sequence of ordinary differential equations on the Banach
space C[−1, 0] of continuous functions on [−1, 0]. Singular perturbation analysis is
therefore not necessarily straightforward, but we shall see that a formal procedure is
indeed possible.

The key observation for our investigation is that a solution of (2.6) can be slowly
varying, on a slow time scale

t = εt∗,(3.2)

or on a rather loosely defined “slow manifold” on which N ≈ N1. In terms of t, which
represents time measured in units of the slower differentiation time scale, we have
N(t∗ − 1) = N(t− ε); thus (2.6) is (N ′ = dN/dt)

N ′ =
g(Nε)− g(N)

ε
+ µg(Nε)−N.(3.3)

Also, by expanding Nε for small ε, we have

Nε = N − εN ′ + 1
2ε

2N ′′ . . . ,
g(Nε) = g(N)− [εN ′ − 1

2ε
2N ′′ + 1

6ε
3N ′′′ . . . ]g′(N) + [ 12ε

2N ′2 . . . ]g′′(N) + · · · ;
(3.4)

note that N ′ = dN/dt, while g′(N) = dg/dN . We thus have

[1 + g′(N)]N ′ = µg(N)−N + ε[−µg′N ′ + 1
2N

′′g′ + 1
2N

′2g′′] + · · · ,(3.5)

and successive terms in the expansion

N ∼ N0 + εN1 + · · ·(3.6)

satisfy the equations

N ′
0 =

µg(N0)−N0

1 + g′(N0)
,(3.7)

[1 + g′(N0)]N
′
1 + g′′(N0)N

′
0N1

= µg′(N0)N1 −N1 + [−µg′(N0)N
′
0 +

1
2N

′′
0 g

′(N0) +
1
2N

′2
0 g′′(N0)],(3.8)

and so on. Note particularly that in this slow region N1 denotes the second term in
the expansion for N and does not represent N(t∗ − 1); it will revert to the former
meaning when we consider the dynamics in the fast “shock” layer (when the expansion
will use u and v as first and second order terms). Equation (3.7) states that the rate
of change of the resting stem cell population is due to net proliferation (the first term
in the numerator) and loss by differentiation (the second). The effect of the delay in
the proliferative cycle is to mediate the rate by the denominator. In our procedure we
now begin to follow Kevorkian and Cole’s (1981) exposition (pp. 67 and the following
ones) quite closely.

The function g = bN/(1 +Nn) is unimodal. If g′ > −1 everywhere, then N will
evolve on the slow time scale to a steady state. Suppose now that

b > bc =
4n

(n− 1)2 ,(3.9)
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Fig. 3.1. Graphs of g(N) and N/µ for b = 3.9, n = 3, and µ = 1.2 in the range (µ−, µ+) =
(0.52, 1.48). Also shown are graphs of N/µ− and N/µ+.

which is the criterion for g′ to reach −1. Then there are two values N− < N+ at
which g′ = −1; for (2.7), we have, explicitly,

Nn
± =

1
2 (n− 1)[b± (b2 − bcb)

1/2]− 1.(3.10)

If µb < 1, N = 0 is stable, by consideration of (3.7). If µb > 1, then there is a
positive steady state N∗ in which N∗ = µg(N∗). We define the two values of µ where
N∗ = N± as µ±; thus,

µ± =
N±

g(N±)
, µ− < µ+.(3.11)

Using (3.10), we have, explicitly,

µ± = 1
2 (n− 1)

[
1±

(
1− bc

b

)1/2
]
.(3.12)

The situation which is of interest is when µ− < µ < µ+, and this is depicted in Figure
3.1. In this situation, the graph of N ′

0 versus N0 is as shown in Figure 3.2, and it is
apparent that the fixed point in (N−, N+) is unstable, because the slope of the graph
at the fixed point (where N ′ = 0) is positive. (Conversely, there is a stable fixed point
when µ is outside this range.)

Suppose that N > N+ initially. Then N0 decreases and reaches N+ at finite time.
Define this time to be when t = 0; then∫ N0

N+

{
1 + g′(N)
N − µg(N)

}
dN = −t.(3.13)
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Fig. 3.2. Graph of N ′
0(N0) given by (3.7) when n = 3, b = 3.9, and µ = 1.2.

Since 1+g′(N+) = 0, the first term in the expansion of the integral in (3.13) for small
N0 −N+ is quadratic, and from this we find, as −t → 0+,

N0 ∼ N+ + q1(−t)1/2 + q2(−t) +O[(−t)3/2].(3.14)

Detailed expressions for the coefficients are given in the appendix.
Rearrangement of (3.8) using (3.7) allows N1 to be obtained in the form

N1 =

(
N0 − µg(N0)

1 + g′(N0)

)[
A1 − g′(N0)

2{1 + g′(N0)} +
∫ N0

N+

k(N) dN + h+ ln(N0 −N+)

]
,

(3.15)
where h+ = h(N+),

h(N) = −g′(N){1− µg′(N)}(N −N+)

2{N − µg(N)}{1 + g′(N)}(3.16)

(with the singularity at N+ removed), and

k(N) =
h(N)− h(N+)

N −N+
− µg′(N)

N − µg(N)
.(3.17)

In particular,

h+ =
1 + µ

2g′′+(N+ − µg+)
,(3.18)

where g+ = g(N+), etc. Higher order terms can be obtained in a similar way. Note
that, sinceN0−N+ ∼ (−t)1/2 as−t → 0, and g′(N+) = −1, it follows that 1+g′(N0) ∼
(−t)1/2 as −t → 0, and therefore (3.15) implies that N1 = O(1/(−t)) as −t → 0+,
and the validity of the expansion breaks down when (−t)1/2 ∼ ε/(−t), i.e., when
−t ∼ ε2/3.
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3.1. Transition layer. The solution becomes disordered as −t → 0, and specif-
ically when −t ∼ ε2/3. In this section we analyze this “transition” layer. In addition,
we might anticipate the existence of a region in which N changes on the fast (delay)
time scale t∗, and this will indeed turn out to be the case. However, it transpires that
such a fast region cannot be matched directly to the slow outer region, and, just as for
the Van der Pol oscillator, the inability to match slow and fast regions also suggests
that there is a transition region which joins the two. In terms of the outer time scale
t, we shall find that the slow solution is valid for −t ∼ O(1), the transition region
for −t ∼ O(ε2/3), and the fast “shock” layer for −t ∼ O(ε). Indeed, the dynamics of
these three regions are essentially the same as those of the corresponding regions in the
analysis of the Van der Pol equations, and we follow the exposition in Kevorkian and
Cole (1981) closely. In particular, consultation of this book is strongly recommended
for those less familiar with the basic procedure of matched asymptotic expansions.
(Note that there are some algebraic errors in Kevorkian and Cole’s exposition.)

A distinguished limit exists in which we put

t = ρ(ε) +

(
ε2/3

Ω

)
t̃,(3.19)

where we assume t̃ is O(1). The definition of Ω is

Ω = (g′′+q1)
2/3,(3.20)

and ρ(ε) is a (small) origin shift which is introduced to allow matching to be carried
out. Since N − N+ ∼ (−t)1/2 as −t → 0+, this requires N − N+ ∼ ε1/3, and we
define f via

N = N+ +

(
ε1/3Ω

g′′+

)
f.(3.21)

It is still appropriate to expand the delay term, and we find, from (3.3), that f(t̃)
satisfies

f ′′ + 2ff ′ + 1 = ε1/3[−κf + 1
3Ωf

′′′ +Ω(f ′2 + ff ′′)− λf2f ′] +O(ε2/3),(3.22)

where

λ =
Ωg′′′+

g′′2+

, κ =
2

Ω2
(1 + µ).(3.23)

We expand f in powers of ε1/3, thus

f ∼ f1 + ε1/3f2 + · · · ;(3.24)

then from (3.22) we find that

f ′′
1 + 2f1f

′
1 + 1 = 0,

f ′′
2 + 2(f1f2)

′ = −κf1 +
1
3Ωf

′′′
1 +Ω(f1f

′
1)

′ − λf2
1 f

′
1,(3.25)

and so on. The first of these may be integrated to yield

f ′
1 + f2

1 + t̃ = 0,(3.26)
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where the constant of integration is absorbed into the time shift ρ(ε) in (3.19). The
solution of the Riccati equation (3.26) is

f1 =
V ′(t̃)
V (t̃)

,(3.27)

where V satisfies the modified Airy equation

V ′′ + t̃V = 0.(3.28)

The solutions of (3.28) are Ai (−t̃) and Bi (−t̃), whose leading order behaviors as
t̃ → −∞ are V ∼ exp

[± 2
3 (−t̃)3/2

]
(minus for Ai). Thus if V contains any Bi, it will

dominate as t̃ → −∞, and hence f1 = V ′(t̃)/V (t̃) ∼ −(−t̃)1/2 in this limit. Therefore,
in order to obtain f1 ∼ (−t̃)1/2 as t̃ → −∞, which is required for matching purposes,
we must suppress the Bi component and choose

V (t̃) = 2
√
πAi (−t̃),(3.29)

where the premultiplicative constant is chosen for later algebraic convenience (it does
not affect the definition of f1). Since f1 ∼ (−t̃)1/2 as t̃ → −∞, f1 is monotonically
decreasing for large −t̃, and hence from (3.26) f1 > (−t̃)1/2. If f ′

1 first reaches zero for
some value of t̃ = t̃c < 0, then at that point (3.26) implies that f1 = (−t̃)1/2 and also
that (since f ′

1 is continuous and f1 > (−t̃)1/2 for t̃ < t̃c) f
′
1 < 0, which contradicts the

assertion. Thus f ′
1 < 0 for all t̃ < 0, and (3.26) implies this directly for t̃ > 0. Thus

we find f1 is monotonically decreasing while it is finite, which is in the region t̃ < t̃0,
where t̃0 ≈ 2.338 is the first zero of Ai (−t̃). The solution will break down as t̃ → t̃0,
where it will match to an inner region, or shock layer, in which t∗ = O(1) (with a
suitably chosen origin for t∗).

The first integral of (3.25)2 is (using f1 = V ′/V )

f ′
2 + 2f1f2 = −κ lnV + 1

3Ωf
′′
1 +Ωf1f

′
1 − 1

3λf
3
1 + C2,(3.30)

where C2 is constant. By differentiation of (3.26) we find that −C2f
′
1 is a particular

solution for (3.30) when only the C2 term is present on the right-hand side. Using
f1 = V ′/V , we have

(V 2f2)
′ = C2V

2 − κV 2 lnV + 1
3ΩV

2f ′′
1 +ΩV

2f1f
′
1 − 1

3λV
2f3

1 .(3.31)

Next we make use of the following identities, which can be obtained by integrating
by parts and using (3.27) and (3.28):∫

V 2f1f
′
1 =

1
2V

2f2
1 −

∫
V 2f3

1 ,∫
V 2f ′′

1 = V 2f ′
1 − V 2f2

1 + 2

∫
V 2f3

1 ,∫
V 2f3

1 = V ′2 lnV + (V 2 lnV − 1
2V

2)t̃−
∫
(V 2 lnV − 1

2V
2).(3.32)

The comment after (3.30) implies that

1

V 2

∫ t̃

−∞
V 2dt̃ = −f ′

1,(3.33)
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and use of (3.26) and integration by parts in (3.32) implies that

1

V 2

∫
V 2f3

1 = −f ′
1 lnV − 1

V 2

∫
V 2 lnV + 1

2f
2
1 .(3.34)

Hence we obtain the solution

f2 = f ′
1[−C2 +

1
3Ω+

1
3 (Ω + λ) lnV ]− 1

6λf
2
1

+ [ 13 (Ω + λ)− κ]
1

V 2

∫ t̃

−∞
V 2 lnV dt̃,(3.35)

where we have set the integration constant D2 (in a term D2/V
2) to zero to prevent

exponential growth as t̃ → −∞.
3.2. Matching. In order to match the outer solution to the transition solution,

we expand the latter for large −t̃ and the former for small −t. Equation (3.14) gives
the behavior of N0 for small (−t), while if we expand (3.15) for N0 near N+, and use
(3.14), we find

N1 ∼ r1
(−t)

+
r21(A1) + r22 ln(−t)

(−t)1/2
+O(1),(3.36)

where the constants r1, r21, r22 are given in the appendix; r1 and r22 are known, while
r21 involves the unknown constant A1 in (3.15).

Next we need the behavior of f1 and f2 as t̃ → −∞. The function V = 2
√
πAi (−t̃)

has the following asymptotic behavior as t̃ → −∞:

V ∼ (−t̃)−1/4 exp
[− 2

3 (−t̃)3/2
] [
1− 5

48(−t̃)3/2
+ · · ·

]
.(3.37)

Since f1 = V ′/V , we have

f1 ∼ (−t̃)1/2 +
1

4(−t̃)
+O[(−t̃)−5/2],(3.38)

and thence we find from (3.35) that

f2 ∼ s1(−t̃) +
s21(C2) + s22 ln(−t̃)

(−t̃)1/2
+O

[
ln(−t̃)

(−t̃)2

]
,(3.39)

and the coefficients s1, s22, and s21 are given in the appendix. Again, s1 and s22 are
known, and s21 involves the unknown constant C2 in (3.35).

We match in an intermediate region where

t = ηtη + ρ(ε), t̃ =

(
Ω

ε2/3

)
ηtη,(3.40)

and we take ε2/3 � η � 1 and also presume that η � ρ. Writing both expansions
(3.6) and (3.24) in terms of tη, the outer expansion is given by

N ∼ N+ + q1(−ηtη)
1/2 − ρq1

2(−ηtη)1/2
· · ·+ q2(−ηtη) + · · ·

+
εr1

(−ηtη)
· · ·+ ε[r21 + r22 ln(−ηtη) . . . ]

(−ηtη)1/2
. . . ,(3.41)
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while the transition expansion is

N ∼ N+ + q1(−ηtη)
1/2 +

ε

4g′′+(−ηtη)
. . .

+
s1Ω

2

g′′+
(−ηtη) +

εΩ1/2

g′′+

[s21 + s22{ln(Ω/ε2/3) + ln(−ηtη)}]
(−ηtη)1/2

. . . ,(3.42)

and matching requires

r1 =
1

4g′′+
, q2 =

s1Ω
2

g′′+
, r22 =

Ω1/2

g′′+
s22,

r21 =
Ω1/2

g′′+
[s21 + s22 lnΩ],

ρ =
4Ω1/2s22

3g′′+q1
ε ln ε.(3.43)

The first three of these are satisfied identically (see the appendix), while the fourth
and fifth determine s21 and ρ, given r21 in the outer solution.

3.3. Matching to the shock layer. The transition solution governed by (3.22)
breaks down as t̃ → t̃0. Near t̃0, we have that

V ≈ −K(t̃− t̃0) +
1
6Kt̃0(t̃− t̃0)

3 +O[(t̃− t̃0)
4],(3.44)

where K = 2
√
πAi ′(−t̃0) ≈ 2.486, and thus

f1 ∼ − 1

(t̃0 − t̃)
+ 1

3 t̃0(t̃0 − t̃) . . . .(3.45)

N −N+ becomes of O(1) when t̃0 − t̃ ∼ ε1/3 (this follows from (3.45) together with
(3.21)), and this suggests that we put

t̃ = t̃0 +Ω{ε1/3t∗ + σ(ε)},(3.46)

and we anticipate that σ � 1. In terms of t,

t = ρ(ε) +

(
ε2/3

Ω

)
t̃0 + ε2/3σ(ε) + εt∗,(3.47)

so that in the transition layer N(t∗) satisfies (2.6), i.e.,

dN

dt∗
= g(N1)− g(N) + ε[µg(N1)−N ],(3.48)

and N1 reverts here to its original meaning as N(t
∗−1). The behavior of f2 as t̃ → t̃0

follows from (3.35), which implies

f2 ∼ − 1
3 (Ω + λ)

ln(t̃0 − t̃)

(t̃0 − t̃)2
+

C3

(t̃0 − t̃)2
,(3.49)

where

C3 = C2 − 1
3Ω− 1

3 (Ω + λ) lnK − 1
6λ+ [

1
3 (Ω + λ)− κ]

I0
K2

,(3.50)

I0 =

∫ t̃0

−∞
V 2 lnV dV.(3.51)
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If we expand N in a transition region where ε1/3t∗ = ηtη � 1, and we suppose σ � η,
then from (3.45) and (3.49) we find that

N ∼ N+ +
ε1/3

g′′+

[
1

ηtη

{
1− σ

ηtη

}
− 1

3Ω
2t̃0(ηtη + σ) . . .

]

+
ε2/3

Ωg′′+

1

(ηtη)2
[{C3 − 1

3 (Ω + λ) lnΩ} − 1
3 (Ω + λ) ln(−ηtη)

]
. . . .(3.52)

The presence of the term in ε2/3 formally requires that we expand (3.48) as

N ∼ u+ ε2/3v +O(ε)(3.53)

and that u, v satisfy

u′ = g(u1)− g(u),

v′ = g′(u1)v1 − g′(u)v,(3.54)

where the suffix 1 indicates a delayed argument.
Evidently, u → N+ as t∗ → −∞, and its asymptotic behavior can be determined

by writing

u = N+ + φ(3.55)

and expanding for small φ, together with a Taylor expansion for φ1 ≡ φ(t∗ − 1) as
φ− φ′ + · · ·. This leads (with the ansatz φ � φ′ � φ′′ . . .) to

0 = [− 1
2φ

′′ − g′′+φφ
′] + [16φ

′′′ + 1
2g

′′
+(φ

′2 + φφ′′)− 1
2g

′′′
+φ2φ′] + · · · ,(3.56)

where the brackets enclose terms of similar order. Two terms of the solution of this
as t∗ → −∞ yield

φ ∼ 1

g′′+t∗
+
[E1 − E2 ln(−t∗)]

t∗2
+ · · · ,(3.57)

where E1 is an arbitrary constant, and E2 is defined in the appendix. The equation
for φ is autonomous, and an arbitrary constant can be added to t∗. It is clear that
this is equivalent to changing the value of E1; therefore the value of E1 fixes the phase
of φ.

The asymptotic behavior of v can then be found in a similar way, and we find that

0 = [− 1
2v

′′ − g′′+(φv)
′] + [16v

′′′ + 1
2g

′′
+(vφ)

′′ − 1
2g

′′′
+ (φ

2v)′] + · · · ,(3.58)

whence

v ∼ −E3[t
∗ + g′′+E2 ln(−t∗)− E4 + · · ·],(3.59)

where E3 is arbitrary and E4 is given in the appendix. As in the Van der Pol analysis, v
has a “homogeneous” solution v = g′(u)u′, which is O(1/t∗2) as t∗ → −∞, and (3.59)
comes from the “particular” solution of (3.54)2, which does not tend to zero at −∞.

The behavior of N as t∗ → −∞ is thus

N ∼ N+ +
1

g′′+t∗
+
[E1 − E2 ln(−t∗)]

t∗2
+ · · ·

− ε2/3E3[t
∗ + g′′+E2 ln(−t∗)− E4],(3.60)
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and putting ε1/3t∗ = ηtη in the matching region gives

N ∼ N+ +
ε1/3

g′′+ηtη
+

ε2/3[E1 + E2 ln ε
1/3 − E2 ln(−ηtη)]

(ηtη)2
. . .

− ε1/3E3(ηtη)− ε2/3E3[g
′′
+E2 ln(−ηtη)− g′′+E2 ln ε

1/3 − E4] . . . .(3.61)

Terms in (3.52) can be matched to the corresponding terms in (3.61) if

σ = −ε1/3
{

1
3g

′′
+E2 ln ε− E4

}
,

E1 =
C3 − 1

3 (Ω + λ) lnΩ

Ωg′′+
− E4

g′′+
,

E3 =
Ω2t̃0
3g′′+

,

E2 =
Ω+ λ

3Ωg′′+
;(3.62)

these determine E1, E3, and σ, while the equation for E2 is satisfied automatically.

3.4. Shock layer. To compute N for t∗ = O(1), we must solve for N = u+ε2/3v
the equations

u′ = g(u1)− g(u),

u ∼ N+ +
1

g′′+t∗
+
[E1 − E2 ln(−t∗)]

t∗2
+ · · · as t∗ → −∞,

v′ = g′(u1)v1 − g′(u)v,
v ∼ −E3[t

∗ + g′′+E2 ln(−t∗)− E4] as t∗ → −∞.(3.63)

The solutions of these must be obtained numerically. Note that the value of E1

determines the origin of t∗, i.e., varying E1 in (3.63)2 simply phase shifts the solution.
It is at this point that the solution method deviates significantly from the Van

der Pol procedure. The Van der Pol shock layer equation admits a first integral, and
the solution can be written as a quadrature. The important point, however, is the
existence of this first integral. Remarkably, an analogous procedure can be followed
for the delay equations (3.63).

First, numerical integration of (3.63) indicates that u tends to a constant as
t∗ → ∞. This is shown in Figure 3.3. The phase of the solution depends on the
location of the initial interval, as shown in Figure 3.4. For the purposes of our analysis,
we need to know this constant, and it can be found as follows. A trivial integration
of (3.63)1 shows that

u(t∗) +
∫ t∗

t∗−1

g[u(s)]ds = N+ + g+(3.64)

is constant, where the right-hand side is evaluated from the asymptotic expression
for u as t∗ → −∞. This immediately implies u is bounded (by N+ + g+ ±max g) as
t → ∞, and if we suppose that u tends to a constant NL (as in Figure 3.3), then the
value of the constant is easily found from (3.64) to satisfy

NL + gL = N+ + g+,(3.65)



312 A. C. FOWLER AND MICHAEL C. MACKEY

0

0.5

1

1.5

2

-20 -15 -10 -5 0 5 10

t*

u

Fig. 3.3. The solution u∆(t
∗) of (3.63)1 for u with the initial data taken from (3.63)2 on the

interval [−∆ − 1,−∆). The solution u20(t∗) shown is obtained using E1 = 0 and ∆ = 20. The
choice of ∆ affects the phase of the solution, as indicated in Figure 3.4. This phase shift does not
affect the analysis since the solution tends to a constant exponentially, so that only exponentially
small terms in the slow recovery phase are affected.
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Fig. 3.4. The variation of the computed value δ where u = 1 (i.e., a measure of the phase of
the solution of (3.63)1) as a function of the location ∆ of the initial interval [−∆− 1,−∆).
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where gL = g(NL).
Next, we study the behavior of u near NL by writing

u = NL + U,(3.66)

so that

U ′ ≈ g′L(U1 − U),(3.67)

where g′L = g′(NL), and solutions are e−λt
∗
for a denumerable set λ1, λ2, . . . of ex-

ponents. It is straightforward to show that, if these are assigned in order of in-
creasing real part, then Reλ1 > 0, and Imλk ∈ ((2k − 1)π, 2kπ) if g′L > 0, Imλk ∈
(2(k − 1)π, (2k − 1)π) if−1 < g′L < 0 (we can assume g′L > −1) except that Imλ1 = 0.
In any event u = NL is stable, and

u = NL +O(e−λ1t
∗
) as t∗ → ∞.(3.68)

Integration of (3.63)3 with the matching condition (3.63)4 now shows that

N(t) +

∫ t

t−1

g′[u(s)]v(s)ds = −E3

[
3
2 + g′′+E2

]
,(3.69)

and therefore

v = −vL +O(e−λ1t
∗
) as t∗ → ∞,(3.70)

where

vL =
E3[

3
2 + g′′+E2]

1 + g′L
.(3.71)

Thus as t∗ → ∞,

N ∼ NL − ε2/3vL +O(ε,TST),(3.72)

where TST denotes the transcendentally small exponential terms.

3.5. Recovery phase. The second part of the oscillation resembles the first.
There follows a slow recovery phase, terminating with transition and shock regions,
and then the first slow phase is repeated. As Kevorkian and Cole (1981) point out,
it is not worth the effort to compute the O(ε ln ε) terms without also computing the
O(ε) terms, which requires solving for further terms in the expansions. Having shown
that the matching procedure does indeed work, we now abandon the O(ε ln ε) terms,
and thus we do not require all the detail presented previously. Since the details of the
recovery phase are similar to those of the preceding (initiation) phase, we summarize
the relevant results much more briefly.

In the recovery phase, we revert to the slow time defined by (3.47):

t = α+ εt∗,(3.73)

where

α =
ε2/3t̃0
Ω

+O(ε ln ε),(3.74)
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bearing in mind the definitions of ρ and σ. As before, N satisfies (3.5), although
the O(ε2/3) term in the shock layer requires a corresponding term in the expansion.
However, it is convenient (since there is no forcing term at O(ε2/3)) to lump this
correction into the O(1) term, accommodating the O(ε2/3) correction by a further
phase shift in the time origin. Specifically,

N ∼ N0 + εN1 + · · · ,(3.75)

and the solution for N0 can be written as∫ N−

N0

{
1 + g′

µg −N

}
dN = t− − t.(3.76)

Note that N0 → NL as t → α, and (cf. Figure 3.2) NL < N−; thus in the recovery
phase 1 + g′ > 0 and µg > N . In (3.70), t− is the time when the second transition
region occurs.

We match (3.76) to the preceding shock layer by writing N ∼ N0 ∼ NL− ε2/3vL,
t = α+ εt∗ in (3.76), and we find that matching requires that

t− =
∫ N−

NL

{
1 + g′(N)
µg(N)−N

}
dN + ε2/3

[
t̃0
Ω
+ vL

{
1 + g′L

µgL −NL

}]
+O(ε ln ε).(3.77)

As t → t−, (3.76) gives, analogously to (3.14),

N0 ∼ N− −Q1(t− − t)1/2 +Q2(t− − t) + · · · ,(3.78)

and in the transition region at t = t−, we get

N = N− +
ε1/3ω

g′′−
f,

t = t− + r(ε) +
ε2/3

ω
t̃,(3.79)

where

ω = [−g′′−Q1]
2/3(3.80)

(note g′′− < 0 and Q1 > 0).
This leads directly to (3.22), but with k, l, ω replacing κ, λ,Ω; k and l are defined

in the appendix as κ and λ, but with ω, g′′−, g
′′′
− replacing Ω, g′′+, g

′′′
+ . Hence

f ∼ −Ai′(−t̃)

Ai(−t̃)
+O(ε1/3),(3.81)

and matching occurs automatically at leading order (and r = O(ε ln ε)).
The transition layer leads to a shock layer where we write, by analogy to (3.47),

t = t− +
ε2/3t̃0
ω

+ [r(ε) + ε2/3s(ε)] + εt∗,(3.82)

and r + ε2/3s = O(ε ln ε). Now, notice that to obtain the O(ε2/3) shift in (3.77), we
need to know vL, and thus E2 and E3 in (3.71). Similarly, we find that, putting

N ∼ u+ ε2/3v +O(ε)(3.83)
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in the recovery shock, then

u ∼ N− +
1

g′′−t∗
+

e1 − e2ln(−t∗)
t∗2

+ · · · ,

v ∼ −e3[t
∗ + e2g

′′
−ln(−t∗)− e4 . . . ](3.84)

as t∗ → −∞, and we will need e2 and e3. Since the equation for f in the recovery
transition region is of the same form as in the first transition region, e2 and e3 are
found in the same way, and thus

e2 =
ω + l

3ωg′′−
, e3 =

ω2t̃0
3g′′−

.(3.85)

Finally, as t∗ → ∞ in the recovery shock,

N ∼ NU − ε2/3vU +O(ε,TST),(3.86)

where

NU + gU = N− + g−,

vU =
e3[

3
2 + g′′−e2]
1 + g′U

.(3.87)

At this point, we reenter the first slow phase, and if the motion is periodic, with
period P (ε), then we should regain the slow phase solution (3.13) with t replaced by
t+, where

t+ = t− P (ε);(3.88)

thus ∫ N

N+

{
1 + g′

N − µg

}
dN ∼ −t+ = P (ε)− t,(3.89)

and we match this directly to the recovery shock as t+ → 0. We haveN ∼ NU−ε2/3vU ,
t = t−+ε2/3t̃0/ω+εt∗+O(ε ln ε), and matching of the two expressions requires, using
(3.77), that

P (ε) =

∫ NU

N+

(
1 + g′

N − µg

)
dN +

∫ N−

NL

(
1 + g′

µg −N

)
dN

+ ε2/3

[
t̃0

(
1

ω
+
1

Ω

)
+ vL

(
1 + g′L

µgL −NL

)
− vU

(
1 + g′U

NU − µgU

)]
+O(ε ln ε),(3.90)

and this completes our analysis of the periodic solutions.

4. Discussion. The model we have sought to understand is (2.6):

Ṅ = g(N1)− g(N) + ε[µg(N1)−N ].(4.1)

If written in terms of the slow time t = εt∗, this is

εN ′ = g(Nε)− g(N) + ε[µg(Nε)−N ].(4.2)
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Fig. 4.1. Numerical solution for N(t∗) when b = 3.9, µ = 1.2, n = 3, and ε = 0.0001. For a
choice of origin for t at the minimum, the subsequent value t− at the next transition is shown, and
also shown is the phase resetting origin for t+ = t+ P .

The analysis applies generally for unimodal functions satisfying g′(N±) = −1, and
oscillations occur for µ ∈ (µ−, µ+), where

µ± =
N±

g(N±)
.(4.3)

As ε → 0, we predict periodic solutions having periods (in t∗) of P (ε)/ε, where P is
given by (3.90). The maximum and minimum values are approximately

Nmax = NU − ε2/3vU(4.4)

and

Nmin = NL − ε2/3vL,(4.5)

respectively. Figure 4.1 shows an example of the solution at very low ε, while Table 4.1
and Figures 4.2–4.5 show how these predictions compare with numerical solutions, for
the particular choice of g = bN/(1+Nn). It can be seen that the agreement improves,
as expected, as ε becomes small.

In terms of the original dimensional quantities of the model, we see that the
maximum and minimum values of N depend asymptotically entirely on the form of
the function g(N). The dimensional period is given to leading order by P0τ/ε, where

P0 =

∫ NU

N+

(
1 + g′

N − µg

)
dN +

∫ N−

NL

(
1 + g′

µg −N

)
dN.(4.6)
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Table 4.1
Numerical and predicted values of Nmax, Nmin, and period P given by (4.4), (4.5), and (3.90).

Upper figures in each row are the values from numerical solutions; lower figures are analytical results.
Parameter values used are n = 3, b = 3.9, and µ = 1.2. A fourth order Runge–Kutta method is used
to solve the equation, and results vary somewhat with step size, as can be seen in Figures 4.4 and
4.5. All these results are using a step size of 0.01.

ε Max Min P/ε P
0.11 2.401 0.753 9.8 1.078

0.1 2.393 0.760 10.31 1.031
3.546 0.578 16.14 1.614

0.05 2.342 0.778 15.03 0.7515
3.060 0.645 21.91 1.095

0.02 2.300 0.776 26.17 0.5234
2.681 0.698 34.58 0.692

0.005 2.260 0.765 69.11 0.34555
2.410 0.736 80.47 0.402

0.001 2.237 0.762 260.14 0.26014
2.293 0.753 277.12 0.277

0.0001 2.223 0.763 2220.9 0.2221
2.245 0.759 2260.6 0.226

0.00002 2.220 0.763 10738.0 0.21476
2.236 0.760 10841.6 0.217

1
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1000

10000

100000

1e-05 0.0001 0.001 0.01 0.1

P/

ε

ε

Fig. 4.2. Variation of the actual period (in t∗) of the numerical solution (crosses) as a function
of ε, together with the theoretical prediction (solid curve) from (3.90), for b = 3.9, µ = 1.2, n = 3.

P0 essentially depends only on the shape of g(N), and thus the period is

Pdim =
P0

δ
,(4.7)

that is, it is controlled by the rate of differentiation. However, oscillations do not
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Fig. 4.3. As for Figure 4.2, but plotting the period in t, P , versus ε.
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Fig. 4.4. Numerical values of Nmax (crosses) and predicted values (solid curve) from (4.4) as a

function of ε for b = 3.9, µ = 1.2, n = 3. When more than one cross is plotted, as at ε = 0.001, the
different values come from the use of different step sizes in the integrator. Specifically, at ε = 0.001,
decreasing step sizes 0.01, 0.005, 0.001 gave increasing values of Nmax.
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Fig. 4.5. Computed and predicted values for Nmin, similar to Figure 4.4. Here decreasing step

size at ε = 0.001 leads to decreasing Nmin.

occur at all unless µ is a finite range of O(1), and this requires that γτ is increased
over normal values, which can be due either to an increased proliferation delay τ or
to an increased apoptotic rate γ.

It is difficult to give a useful characterization of the dimensional maximum and
minimum values of N . These are simply Nmax

dim ≈ θNU and Nmin
dim ≈ θNL. The easiest

interpretation of NU and NL is that shown graphically in Figure 4.6. We can get a
crude idea of the magnitude of the maximum and minimum values, however, if we
consider the specific proliferation rate β(N) to be adequately represented by the two
quantities β0, which is the maximum specific proliferation rate, and θ, which gives an
estimate of the value of N where the proliferation rate “turns off.” Our crude estimate
idealizes β as being piecewise constant, with a switch off occurring at N = θ, and will
generally be reasonably accurate if the switch at N ≈ θ is sharp. Then we have the
estimates

Nmin
dim ≈ θ

1 + β0τ
,

Nmax
dim ≈ (1 + β0τ)θ,(4.8)

and these could in principle be used to constrain the appropriate form of β in the
model. The amplitude of the oscillation is, very roughly, 2β0τθ.

From a mathematical perspective, the most interesting feature of the analysis
is that it is completely analogous to that of a second order relaxational differential
equation. In fact, Figure 4.6 indicates the similarity which can be drawn between the
present model and that of the simple system

εN ′ = v − g(N),

N ′ + v′ = µg(N)−N − εµv′.(4.9)
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Fig. 4.6. Phase diagram of the relaxation oscillations of both (4.9) and (4.13). g(N) is plotted
for b = 5, n = 3.

In (4.9), the slow manifold is v = g(N), and on this

N ′ ≈ µg −N

1 + g′
(4.10)

just as for (4.2). For (4.9), there is a fast phase as N → N+ or N → N−, and in the
fast phases, N + v is approximately constant; since v → g(N) at either end we have
the same results

N+ + g(N+) = NL + g(NL),

N− + g(N−) = NU + g(NU ),(4.11)

as for (4.2).
The analogy can be slightly tightened by defining the functions

v = g(Nε) + ε[µg(Nε)−N ],

v̂ =
g(N)− g(Nε)

ε
.(4.12)

Evidently v̂ is functionally dependent on v, and for slowly varying N , we have v ≈
g(N), v̂ ≈ [g(N)]′, i.e., v̂ ≈ v′; clearly this is inappropriate when N is rapidly varying.
The definitions (4.12) allow us to write (4.2) in the suggestive form

εN ′ = v − g(N),

N ′ + v̂ = µg(N)−N − εµv̂,(4.13)

and we see that the functional equation reduces precisely to the second order system
(4.9) under the identification v̂ = v′. What appears to be extraordinary is that the
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infinite dimensional breakdown of this approximation in the fast shock layers does
not affect the analytical description in any significant way.

Apart from the mathematical novelty of solving a delay differential equation,
there are some physiological ramifications of our analysis. The model for stem cell
proliferation in (2.2) is a reasonable synopsis of the process, but the rate function of
progress through the cycle, β(N), is not well constrained. Nor is it possible to access
this function directly, since the stem cell population itself is hidden, and oscillations
are manifested in the differentiated products, which are themselves dynamically con-
trolled by peripheral controlling mechanisms. Therefore it is useful to be able to
characterize the oscillations of the resting stem cell population for a variety of differ-
ent progression functions β(N), and our analysis allows us to do this. It will also allow
us in future work to analyze how oscillations in the stem cell population propagate
through the maturing cell types, so that in principle we can use resulting observed
cell cycles as a constraint on the stem cell dynamics.

Appendix. In (3.14), we find q1 and q2:

q1 =

[
2(N+ − µg+)

g′′+

]1/2
,(A.1)

q2 =
1
3q

2
1

[(
1 + µ

N+ − µg+

)
− g′′′+

2g′′+

]
;(A.2)

h+ is defined in (3.18):

h+ =
1 + µ

2g′′+(N+ − µg+)
;(A.3)

Ω is defined in (3.20):

Ω = q
2/3
1 g

′′2/3
+ ;(A.4)

κ and λ are defined in (3.23):

κ =
2

Ω2
(1 + µ),(A.5)

λ =
Ωg′′′+

g′′2+

;(A.6)

r1, r21, and r22 are defined in (3.41):

r1 =
1

4g′′+
,(A.7)

r21 =
q1
2

[
A1 +

q2
2g′′+q2

1

− 1
2 − g′′′+

4g′′2+

+ h+ ln q1

]
,(A.8)

r22 =
1
4q1h+;(A.9)

s1, s21, and s22 are defined in (3.42):

s1 =
1
3κ− 1

6λ,(A.10)

s21 =
1
2C2 − 1

4Ω− 1
6λ+

1
12κ,(A.11)

s22 =
1
8κ.(A.12)
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E2 and E4 appear in (3.57) and (3.59):

E2 =
1

3g′′+

(
1 +

g′′′+

g′′2+

)
,(A.13)

E4 =
1
2g

′′
+E2 +

g′′′+

g′′2+

+ g′′+E1.(A.14)

In (3.78) we find Q1 and Q2:

Q1 =

[
2(N− − µg−)

g′′−

]1/2
,(A.15)

Q2 =
1
3Q

2
1

[(
1 + µ

N− − µg−

)
− g′′′−
2g′′−

]
,(A.16)

and then ω, k, and l are introduced in (3.80) and are restated below:

ω = (−Q1g
′′
−)

2/3,(A.17)

k =
2

ω2
(1 + µ),(A.18)

l =
ωg′′′−
g′′2−

.(A.19)
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Abstract. An efficient finite element method is developed to model the spreading of excitation
in ventricular myocardium by treating the thin region of rapidly depolarizing tissue as a propagating
wavefront. The model is used to investigate excitation propagation in the full canine ventricular
myocardium. An eikonal-curvature equation and an eikonal-diffusion equation for excitation time
are compared. A Petrov–Galerkin finite element method with cubic Hermite elements is developed
to solve the eikonal-diffusion equation on a reasonably coarse mesh. The oscillatory errors seen
when using the Galerkin weighted residual method with high mesh Péclet numbers are avoided
by supplementing the Galerkin weights with C0 functions based on derivatives of the interpolation
functions. The ratio of the Galerkin and supplementary weights is a function of the Péclet number
such that, for one-dimensional propagation, the error in the solution is within a small constant factor
of the optimal error achievable in the trial space. An additional no-inflow boundary term is developed
to prevent spurious excitation from initiating on the boundary. The need for discretization in time is
avoided by using a continuation method to gradually introduce the nonlinear term of the governing
equation. A simulation is performed in an anisotropic model of the complete canine ventricular
myocardium, with 2355 degrees of freedom for the dependent variable.

Key words. eikonal equation, myocardial excitation, wavefront propagation, Petrov–Galerkin
method, Hermite interpolation, numerical continuation
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1. Introduction. In developing a computational model of the electrical behavior
of the ventricular myocardium, it would be unreasonable to expect to be able to model
every microscopic biological process that occurs within and between each and every
cell. Such detail in the model is also unnecessary: the ventricular function and the
electrical fields induced in the torso are not so much affected by the activity of one
ion or one ion channel or even one cell as by the collective activity of many cells.
Instead of resolving the small spatial detail of the microscopic processes, the collective
macroscopic effect of these processes can be modelled.

The most intense electrical activity is the depolarization of cells, which leads to
the activation of the mechanisms that cause the myocardium to contract and the heart
to pump. Depolarization occurs quickly and in only a narrow region of cells at a time,
so this narrow region can be considered as a propagating excitation wavefront. An
eikonal model may be used to approximate the propagation process, describing the
motion of the wavefront by the time at which it excites every point in the myocardium.

A finite element method with cubic Hermite elements is developed to determine
excitation times on a fairly coarse mesh for large scale simulations. Petrov–Galerkin
weighted residual equations, developed in section 2, are supplemented with a no-
inflow term, developed in section 3, to prevent spurious excitation on boundaries, and
are solved by a continuation method with Newton’s method (section 4). Section 5
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employs the computational method to simulate excitation in the complete ventricular
myocardium.

1.1. The bidomain model. As a means for collecting together the microscopic
functional elements of the myocardium to model their macroscopic effects, Schmitt
[21] suggested the concept of two interpenetrating domains. One domain was to
represent the volume-averaged properties of the intracellular contents and their inter-
connections, and the other domain was to represent the volume-averaged properties
of the surrounding extracellular tissue and fluid. These domains were to coexist spa-
tially, and the behavior of current flow between them was to be based on the volume-
averaged properties of the cell membrane. This approach is now generally referred to
as the bidomain model [12]. The two domains are referred to as the intracellular and
extracellular domains. Each is treated as a continuum.

A reaction-diffusion system of equations for the potential φe in the extracellular
domain and the difference in potential Vm across the membrane between the domains
can be derived from conservation of current under the assumptions that capacitive,
inductive, and electromagnetic propagative effects within the domains are negligible
and that the current in each domain obeys Ohm’s law:

∇ · (Gi∇Vm

)
= −∇ · ((Gi +Ge)∇φe

)
,

iion + cm
∂Vm

∂t
= −∇ · (Ge∇φe).(1.1)

The intracellular potential φi is the sum of the extracellular potential φe and the
transmembrane potential Vm. G

i and Ge are intra- and extracellular effective con-
ductivity tensors. The fibrous and laminar structure of the myocardium is modelled
under the assumptions that the conductivities are orthotropic and that they share the
same principal axes, al, at, and an, where al is parallel to the fibers (longitudinal),
at is transverse to the fibers but in the plane of the sheets, and an is normal to the
sheets. iion represents the sum of the (outward) membrane ionic currents per unit
tissue volume, and cm is the membrane capacitance per unit volume.

It is assumed that the extracellular space is in direct contact with the outside
volume. Continuity of the extracellular potential φe with the potential φo in the
outside volume and conservation of current between the volumes leads to the boundary
conditions

φe = φo,(1.2)

n ·Gi∇(φe + Vm) = 0,

n ·Ge∇φe = n · jo on ∂Ω,(1.3)

where n is the unit normal to the boundary and jo is the current density in the
outside volume [15].

If the intra- and extracellular conductivity tensors were related by a constant
scalar factor (equal anisotropy), then system (1.1) could be reduced to a simple mono-
domain reaction-diffusion equation in one variable:

iion + cm
∂Vm

∂t
= ∇ · (Gm∇Vm).(1.4)

Gm has the same principal axes as Gi and Ge, and the reciprocals of its eigenvalues
equal the sums of the reciprocals of the intra- and extracellular principal conductivi-
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ties. The boundary condition on Vm would be

n ·Ge∇Vm = −n ·Go∇φo on ∂Ω.(1.5)

If the anisotropic ratios are not equal, the monodomain equation (1.4) may still be
used as an approximation of the bidomain system (1.1). For plane wave propagation in
any of the three principal directions, both (1.1) and (1.4) predict the same propagation
speeds, but the predicted speeds may differ for intermediate directions.

It is convenient to scale (1.4) so that the parameters give indications of the im-
portant spatial and temporal scales. This can be done by dividing the equation by
a characteristic conductance per unit volume. During the depolarization phase of
the action potential, consideration of the large difference between the activation and
inactivation time constants of the dominating fast sodium current leads to the approx-
imation of iion as a time-independent function of the transmembrane voltage [5]. That
is, iion = iion(Vm). If the transmembrane potential Vm is near its resting potential Vr,
the behavior of the ionic membrane currents can be approximated by assuming the
membrane has a passive conductance per unit volume defined by

1

rm
:=
diion
dVm

(Vr).(1.6)

(The symbol “:=” denotes definition.) Multiplying the terms in (1.4) by an average
(space-independent) value r̄m of rm gives

r̄miion + τm
∂Vm

∂t
= ∇ · (M∇Vm),(1.7)

where

M := r̄mG
m and τm := r̄mcm(1.8)

are the coupling tensor, which has dimensions of space squared, and the membrane
time constant, which has dimension of time. The eigenvalues of M are squares of
the space constants λl, λt, and λn in each of the principal directions. They may be
expressed in terms of conductivities using

1

λ2
l

=
1

r̄m

(
1

gil
+
1

gel

)
, etc.(1.9)

These space and time constants are appropriate when the behavior of the tissue
is largely passive such as in the early stages of the action potential. The behavior
in these stages is important for propagation as it initiates the change in transmem-
brane potential that leads to activation of the active currents. The time and space
constants relevant in the fastest stage of depolarization, however, may be different.
The magnitude of the maximum slope of iion(Vm) is much larger than the slope at
Vm = Vr used to define rm in (1.6). The appropriate multiplier for scaling the system
of equations is then smaller than r̄m, and so the appropriate space and time constants
are also smaller. The space constants λl, λt, and λn probably provide an indication
of the region of influence that the excitation wavefront has, and, together with τm,
they provide an upper bound on the relevant spatial and temporal scales.

Solution of the reaction-diffusion equation (1.7) is very computationally demand-
ing due to the important spatial scales being much smaller than the dimensions of
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the ventricles. As discussed in [23], the space constants for the passive behavior of
canine myocardium are probably λl ≈ 0.8mm and λn < λt ≈ 0.5mm. Reasonable
approximation of the potential would probably require at least 5 degrees of free-
dom to represent changes over the distance of a space constant. This implies that
at least 53 degrees of freedom would be required to represent a volume of about
0.8× 0.5× 0.5 = 0.2 mm3. For the full canine ventricular myocardium with a volume
of about 0.2× 106 mm3, at least 108 degrees of freedom would be needed.

1.2. An eikonal approach. Given the difficulty in the numerical solution of
a reaction-diffusion equation for transmembrane potential, a governing equation is
sought for the motion of the excitation wavefront. It is expected that the speed
of propagation can be assumed to vary more slowly and over much larger spatial
scales than the transmembrane potential. This assumption is probably reasonable
most of the time, but there are abrupt spatial changes in propagation speed where
a wavefront collides with the boundary or another wavefront. The fine details of the
wavefront shape in these small collision regions are not, however, expected to have
much influence on the overall ventricular function.

The wavefront motion can be described by the excitation time u(x), defined as
the time at which the wavefront passes through the point x (or, more specifically, the
time at which the transmembrane potential at that point crosses the value midway
between its resting and plateau potentials). The position of the wavefront at any time
t is then given by the surface along which u(x) = t, and the excitation time can be
described numerically on a stationary mesh. A governing equation for u is referred to
as an eikonal equation.

Many myocardial excitation models have been based on Huygens’ principle (re-
viewed in [19]) and are effectively approximating an eikonal equation. In such models,
the heart is represented by a matrix of cells or grid points. At fixed time intervals
after any cell is excited, its quiescent neighboring cells are excited. The time interval
before excitation of each neighboring cell depends on the distance to the cell and the
propagation speed for that direction. This method requires little computational effort
but has the disadvantage that the numerical treatment of the eikonal equation is very
low order and propagation can occur in only a finite number of directions. The result
is that the wavefronts generated are polyhedral instead of ellipsoidal.

More accurate numerical solutions for excitation wavefront propagation have been
obtained using wavefront propagation equations derived from the reaction-diffusion
equation (1.7) under the assumption that the profile of the depolarization upstroke
varies slowly in space.

An alternative approach for describing wavefront propagation is to use a function
ϕ(x, t), defined so that, at any time t, the level set of points x such that ϕ(x, t) = 0
gives the position of the wavefront at that time (see [22]). Keener [13] derived an
equation for ϕ from (1.7) by selecting a moving coordinate system such that Vm is
a function of only a spatial variable normal to the wavefront and then requiring the
current conservation equation to be satisfied at the wavefront. The resulting equation,

[
c0 +∇ ·

(
M∇u√∇u ·M∇u

)]√
∇ϕ ·M∇ϕ = τm ∂ϕ

∂t
,(1.10)

is parabolic and time-dependent. ϕ has a physical interpretation only at its zero
contour, so the selection of initial conditions is unclear. If, however, ϕ(x, t) is chosen
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to be t−u(x), then (1.10) reduces to a parabolic eikonal equation for excitation time:

c0
√
∇u ·M∇u−

√
∇u ·M∇u ∇ ·

(
M∇u√∇u ·M∇u

)
= τm.(1.11)

The numerical solution to (1.10) was found using finite difference discretizations
in space and time. Second-order central differences were initially used for the spatial
discretization [13], but [14] later replaced these with first-order upwind differences to
stabilize the numerical solution.

An elliptic eikonal equation was derived by Colli Franzone, Guerri, and Rovida [8]
and Colli Franzone, Guerri, and Tentoni [9] using singular perturbation techniques.
The equivalent eikonal equation for reaction-diffusion equation (1.7) is

c0
√
∇u ·M∇u−∇ · (M∇u) = τm.(1.12)

As the equation is elliptic, a boundary condition is required around the entire bound-
ary. Without a model of the surrounding tissue, it is not possible to predict the
current flux from the outside domain, and thus the boundary condition (1.5) for the
reaction-diffusion system is not helpful. However, experimental evidence suggests that
epicardial isochrones are unaffected by surrounding conducting volumes [11]. Without
a surrounding volume, boundary condition (1.5) leads to the simple no-flux boundary
condition

n ·M∇u = 0,(1.13)

where n is the unit normal to the boundary.
In their numerical solution of the eikonal equation, Colli Franzone and Guerri [6]

added a time derivative term to give a related parabolic equation in space and time.
The time-dependent equation for (1.12) is

∂ǔ

∂t
+ c0

√
∇ǔ ·M∇ǔ−∇ · (M∇ǔ) = τm.(1.14)

The steady-state solution for ǔ(x, t) is the excitation time u(x). To find this solution,
spatial discretization was performed using finite element–like integrals of quantities
calculated by finite differences, and a finite difference scheme was used to step through
time until ǔ approached its limiting value. The spatial discretization was later mod-
ified [7] so that traditional finite element integrals were used for most terms, but
a first-order upwind finite difference was used for the first-order spatial derivatives.
A purely explicit finite difference scheme in time gave a method that was similar
to Jacobi successive overrelaxation. In order to avoid instability, the time step (or
relaxation parameter) had to be small, and thus convergence was very slow.

When compared to the reaction-diffusion equation (1.7), the eikonal equations
(1.11) and (1.12) have the advantages that the domain is reduced by one dimension
(because the dependent variable is no longer a function of time) and that the important
spatial scales are much larger. In order to make use of these advantages, a numerical
method needs to be found that requires only a spatial discretization and will work
effectively when this discretization is reasonably coarse.

Both the level set and relaxation methods discussed above fail to take advantage
of the fact that excitation time depends only on spatial position. The use of either
of the time-dependent equations (1.10) or (1.14) increases the size of the domain
by one dimension. For this reason, the method investigated here uses numerical
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continuation, with Newton’s method applied directly to a spatial discretization of
an eikonal equation, to converge from an initial guess to the solution. Each Newton
iteration requires not much more work than that required in an iteration of an implicit
time stepping scheme for either (1.10) or (1.14), yet makes a considerably better
attempt to go directly to the required solution.

1.3. Interpretation and comparison of eikonal equations. Interpretations
of the two suggested eikonal equations (1.11) and (1.12) for wavefront propagation
can be made from each of the terms involved.

The contours of u give the positions of the wavefront at time t = u. The gradient
of u at any point along one of these contours is therefore normal to that wavefront
surface and has magnitude equal to the reciprocal of the speed of that point on the
wavefront. That is,

∇u = 1

θ
p,(1.15)

where θ is the local wavefront speed and p is the unit normal to the wavefront pointing
away from depolarized tissue. A space constant ρ in the direction of propagation p
may be calculated from the square root of the component of the coupling tensor in
that direction:

ρ :=
√
p ·Mp.(1.16)

The first term in both governing equations (1.11) and (1.12) is a nonlinear advec-
tion term, which may be written as

c0
√
∇u ·M∇u = c0 ρ

θ
.(1.17)

This term is an anisotropic generalization of the left-hand side of the standard eikonal
equation |∇u| = 1 and is a function of the local speed of the wavefront surface.

The second term in the parabolic equation (1.11) may be written as

√
∇u ·M∇u ∇ ·

(
M∇u√∇u ·M∇u

)
=
ρ

θ
∇ ·
(
1

ρ
Mp

)
=
ρ

θ
κ,(1.18)

where κ is an anisotropic generalization of the mean curvature. It is positive when the
wavefront is convex if viewed from ahead of the wavefront. The parabolic equation is
therefore called an eikonal-curvature equation.

Using expressions (1.17) and (1.18) in the eikonal-curvature equation (1.11) gives

τm
ρ
θ = c0 − κ.(1.19)

For a given propagation direction, this equation states that the speed of the wavefront
is a linear function of its anisotropic mean curvature. Propagation is faster when the
wavefront is concave, and slower when it is convex. This reflects the dependency of
tissue depolarization on the diffusion of charge from already depolarized tissue. If
there is more depolarized tissue in close proximity to a region of quiescent tissue,
then that region will be depolarized faster.

If there is no curvature, the speed of propagation is c0 space constants per time
constant. The constant c0 is therefore the dimensionless propagation speed for a
planar wavefront in homogeneous tissue.
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The second term in the eikonal-curvature equation may also be expressed as

√
∇u ·M∇u ∇ ·

(
M∇u√∇u ·M∇u

)
= ∇ · (M∇u)−∇

√
∇u ·M∇u · M∇u√∇u ·M∇u,

(1.20)

where the right-hand side is an anisotropic generalization of the Laplacian of u minus
the component of this term in the direction of propagation. The eikonal-curvature
equation is parabolic, as it lacks this second derivative in the direction of propagation.
Propagation is effectively determined only by information at the wavefront. It is
unaffected by boundaries or approaching wavefronts until a collision occurs.

The eikonal equation (1.12) is elliptic, as it contains the full generalized Laplacian.
Although it is difficult to comprehend diffusion of excitation time, it is not too sur-
prising that there is a Laplacian in the governing equation, as the propagation process
depends heavily on the diffusion of charge. The elliptic eikonal equation is therefore
called an eikonal-diffusion equation. Under this equation, propagation speed depends
not only on information at the wavefront but also on the activity of the surrounding
tissue. The constant c0 is still the dimensionless speed of steady planar wavefront
propagation in infinite homogeneous tissue.

It is interesting to investigate three-dimensional analytic solutions to these two
governing equations for a wavefront spreading out from the origin in an infinite ho-
mogeneous domain. There exist solutions that may be written as functions of only
the dimensionless distance from the origin,

r :=
√
x ·M−1x.(1.21)

The solutions describe ellipsoidal wavefronts having the same principal axes as the
coupling tensor. Both eikonal equations predict that an initial wavefront of this shape
will retain the same shape as it propagates. Under the eikonal-curvature equation,
the propagation speed θ = ρ/du

dr satisfies

τm
ρ
θ = c0

r − 2
c0

r
,(1.22)

and under the eikonal-diffusion equation,

τm
ρ
θ = c0

r2

r2 + 2
c0
r + 2

c02

.(1.23)

For very large r, both equations predict that the ellipsoid grows at the same constant
speed, but for small r the equations differ in the way they predict propagation under
large curvature. The eikonal-curvature equation has a change in propagation direction
at r = 2

c0
, suggesting that the initially depolarized region must have a radius of at

least 2
c0
space constants in order for the region to be able to supply enough current

to surrounding tissue for propagation to proceed. If the initially depolarized region
is smaller than this threshold size, then the equation predicts that the wavefront
will retreat and the region will repolarize. The eikonal-diffusion equation, on the
other hand, predicts a zero propagation speed only at the origin, suggesting that if
enough current has been injected into the tissue to depolarize a region of tissue, then
propagation will proceed however small this region may be.

As a wavefront approaches a no-flux boundary or another approaching wavefront,
there is less quiescent tissue to drain current from the depolarizing tissue, and thus
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the reaction-diffusion model predicts an increase in propagation speed. The eikonal-
curvature equation, however, does not include any effects of the boundary or collision
on wavefront propagation. Solutions to the eikonal-diffusion equation, on the other
hand, much more closely approximate the variations in propagation speed due to
another approaching wavefront [8]. The eikonal-diffusion equation is selected as the
governing eikonal equation for the work presented here and shall be referred to simply
as the eikonal equation.

1.4. Solution spaces and interpolation. In the finite element method the
numerical solution U(x) is represented by a linear combination of known interpolation
functions ψi(x):

U(x) := Ui ψi(x).(1.24)

The finite element method selects the unknown parameters Ui in an attempt to ap-
proximate the exact solution u(x). The domain is divided into a number of elements
so that, within each element, U depends on only a subset of the parameters. For each
element, a local coordinate system ξ is defined, and thus, within that element,

U(x(ξ)) := Uν(e,j)Ψj(ξ),(1.25)

where Ψj(ξ) are the element’s local basis functions, and ν(e, j) is a known function
mapping the local parameter j in element e to its corresponding global parameter. The
interpolation functions ψi(x(ξ)) are therefore equal to corresponding basis functions
Ψj(ξ) in elements influenced by Ui and zero elsewhere.

Cubic Hermite elements are used here for discretization of the geometry and de-
pendent variables. One-dimensional basis functions are cubic polynomials that inter-
polate the value and first derivative of U at the two adjacent nodes. Multidimensional
basis functions are obtained from tensor products of the one-dimensional functions.
Hermite elements have the advantage over cubic Lagrange elements that all nodes lie
on element vertices, and thus parameters can be shared by surrounding elements, and
a high-order interpolation is achieved with fewer parameters. This also provides first
derivative continuity (C1) in U .

Because the exact solution u satisfies an elliptic differential equation with predom-
inantly smooth space-dependent coefficients and boundary conditions, it is expected
to be sufficiently smooth for the first derivative continuity of the interpolation. Across
any surface where the coefficients of the equation are not sufficiently smooth, similar
interpolation can be used but with the elements on opposing sides of the surface using
separate derivative parameters.

The time and location of excitation wavefront initiation is specified by Dirichlet
boundary conditions for excitation time u on ΓD, where ΓD denotes the portion of
the boundary in which u is known from the initiation process. These boundary con-
ditions are enforced by specifying the values of the parameters Uj that describe U on
ΓD. The set D is defined as the list of indices j for these parameters Uj and their
corresponding interpolation functions ψj . The set N is defined as the list of indices
j for the remaining parameters, which do not influence the value of U on ΓD and are
free to be determined by the finite element method.

The trial space ShD is defined as the space of possible numerical solutions U sat-
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isfying the Dirichlet boundary conditions,

ShD :=


V : ∃ vj ∈ R for j ∈ N such that (s.t.) V =

∑
j∈D

Ujψj +
∑
j∈N

vjψj


 ,

(1.26a)

and the space Sh0 is defined as the space of possible variations in the approximation,

Sh0 :=


V : ∃ vj ∈ R for j ∈ N s.t. V =

∑
j∈N

vjψj


 .(1.26b)

The exact solution u is expected to lie in the Sobolev space H1(Ω). The spaces
H1

D and H
1
D0
are defined for the exact solution in a manner similar to that for ShD and

Sh0 for the approximate solution:

H1
D :=

{
v ∈ H1(Ω): v = u on ΓD

}
,(1.27a)

H1
D0
:=
{
v ∈ H1(Ω): v = 0 on ΓD

}
.(1.27b)

Note that for either Lagrange or Hermite interpolation Sh0 ⊂ H1
D0
, and, assuming∑

j∈D Ujψj = u on ΓD, S
h
D ⊂ H1

D. Under these conditions we also have u−U ∈ H1
D0
.

2. A Petrov–Galerkin finite element method. The space constants in the
coupling tensor M for myocardium are several times smaller than the dimensions of
the tissue, and thus the advection term in the eikonal equation tends to dominate
the diffusion term. Care must be taken in selecting a spatial discretization to prevent
oscillatory errors such as those that can occur in numerical solution of the steady-
state linear advection-diffusion equation (e.g., [24]). A Petrov–Galerkin finite element
method that avoids this problem is developed here for eikonal equation (1.12).

The general Petrov–Galerkin finite element method for determining an approxi-
mation U for u may be formulated as finding U ∈ ShD such that

B(U,W ) = 〈τm,W 〉 ∀W ∈ Th,(2.1)

where Th is the test space,

B(v, w) := 〈c0
√
∇v ·M∇v, w〉+ 〈M∇v,∇w〉,(2.2)

and 〈·, ·〉 denotes the inner product over the domain Ω.
In this section, a means for estimating the quality of a test space Th is described,

and a set of weighting functions, which form a basis for Th, is selected on the grounds
of keeping the expected error in the solution to a minimum and facilitating numerical
solution of the resulting weighted residual equations.

2.1. Approximate symmetrization. The performance of the Galerkin finite
element method is poor when diffusion is small due to the asymmetric nature of B(·, ·).
The object of selecting a Petrov–Galerkin scheme is to choose a mapping from Sh0 to
Th so that it compensates for this asymmetry. Barrett and Morton [2] showed how
an error bound can be derived for a test space Th if B(·, ·) is bilinear. This form is
bilinear for the eikonal equation if and only if propagation is in only one direction,
but analysis of this simple case leads to one-dimensional weighting functions that can
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be extended to higher dimensions. A summary of the key points in the error bound
derivation follows.

If Th ⊂ H1
D0
, then the exact solution u satisfies the same weighted residual

equations (2.1) as the numerical solution U . Therefore, if B(·, ·) is bilinear, the error
u− U satisfies the orthogonality property

B(u− U,W ) = 0 ∀W ∈ Th.(2.3)

The convergence properties implied by this orthogonality property depend on Th.
If BS(·, ·) is any symmetric continuous coercive bilinear form on H1

D0
×H1

D0
, then,

from the Riesz representation theorem, there exists a representer RS : H
1
D0

→ H1
D0

such that

B(v, w) = BS(v,RSw) ∀v, w ∈ H1
D0
.(2.4)

Assuming u − U ∈ H1
D0
, this means that the orthogonality property (2.3) may be

written as

BS(u− U,RSW ) = 0 ∀W ∈ Th.(2.5)

The performance of the method depends on how closely Sh0 can be approximated
by RST

h. Define the norm ‖·‖BS
such that

‖v‖2
BS
:= BS(v, v).(2.6)

If Th ⊂ H1
D0
and there exists a constant ∆S ∈ [0, 1) such that

inf
W∈Th

‖V −RSW‖BS
� ∆S ‖V ‖BS

∀V ∈ Sh0 ,(2.7)

then it is possible to determine a bound for the error in terms of the optimal error
and the constant ∆S:

‖u− U‖BS
� 1√

1−∆2
S

inf
Z∈Sh

D

‖u− Z‖BS
.(2.8)

The ratio of this bound on the error to the optimal solution error is therefore described
by the error factor (1−∆2

S)
− 1

2 . This factor is 1 if the test space Th is chosen to be
equal to Th∗ ⊂ H1

D0
defined such that

RST
h∗ = Sh0 .(2.9)

If the representer RS is known, then the constant ∆S may be calculated for given
Sh0 and T

h. In the Petrov–Galerkin finite element method, Sh0 and T
h are both of

dimension N. Define the N×N matrices A, B, and C with entries
Aij := BS(RSwi, RSwj),

Bij := BS(RSwi, ψj) = B(ψj , wi),

and Cij := BS(ψi, ψj),(2.10)

where the weighting functions wi (usually based on ψi) form a basis for T
h. The error

factor (1−∆2
S)

− 1
2 is the reciprocal of the square root of the smallest eigenvalue λ of

the generalized eigenvalue problem

BTA−1BV = λCV .(2.11)
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2.2. One-dimensional optimal weighting functions. Consider a one-
dimensional problem on a domain of length L with a Dirichlet boundary condition at
x = 0 and a Neumann boundary condition at x = L so that wavefront propagation is
only in the direction of increasing x. The excitation time u(x) is required to satisfy

c0
√
Mu′ −Mu′′ = τm on (0,L),(2.12a)

u(0) = 0, and Mu′(L) = 0,(2.12b)

where c0 and M are positive constants and ·′ denotes the derivative with respect to
x.

With propagation in only one direction, the form B(·, ·) is bilinear. For constant
c0 and M, it simplifies to

B(v, w) := c0
√
M〈v′, w〉+M〈v′, w′〉.(2.13)

The second inner product is symmetric and can be used for BS(·, ·):
BS(v, w) := M〈v′, w′〉.(2.14)

For this problem the Riesz representer RS may be easily found. From its defining
relation (2.4) and definitions of B(·, ·) (2.13) and BS(·, ·) (2.14),

c0
√
M〈v′, w〉+M〈v′, w′〉 = M〈v′, (RSw)

′〉

=⇒
〈
Mv′

c0√
M
w + w′ − (RSw)

′
〉
= 0 ∀v, w ∈ H1

D0
.

With the Neumann boundary condition at x = L, v is only confined to be zero at
x = 0, and thus

(RSw)
′ = γw + w′ ∀w ∈ H1

D0
,(2.15)

where γ = c0√
M
. This and the boundary condition (RSw)(0) = 0 due to RSw ∈ H1

D0

uniquely determine RSw for any given w.
If each of the weighting functions w∗

i were chosen such that RSw
∗
i = ψi, they

would form a basis for the optimal test space Th∗.

2.3. One-dimensional approximate symmetrization. The expressions for
optimal one-dimensional weighting functions w∗

i become rather complicated, particu-
larly for irregular meshes or variable coefficients. Extension to more than one dimen-
sion and to the nonlinear eikonal equation does not seem feasible. Instead, therefore,
the weighting functions are chosen to be simple combinations of the optimal functions
when γ approaches 0 and ∞. For the one-dimensional problem (2.12), the weighting
functions are

wi := A0w
0
i +A∞w∞

i ,(2.16)

where

w0
i := ψi and w∞

i := γ−1ψi
′,(2.17)

and A0 and A∞ are functions of the mesh Péclet number,

Pe :=
c0√
M

dx

dξ
.(2.18)

These weighting functions are local and easily evaluated. With the C1 continuity
of cubic Hermite interpolation, they all lie in H1

D0
except the function corresponding

to the derivative at x = 0. This will be discussed and corrected below.
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2.3.1. Selection of coefficients. The proportionality coefficients A0 and A∞
are chosen with the intention of making the factor in the error bound (2.8) as small
as possible. This contrasts with the work of Christie et al. [4], in which weighting
functions were assembled to cancel truncation errors in difference equations for one-
dimensional equal-length elements. The error factor depends on the closeness with
which RST

h approximates Sh0 as measured by the constant ∆S in bound (2.7). (RSW )
′

is given by expression (2.15), and thus bound (2.7) is equivalent to

inf
W∈Th

‖V ′ − γW −W ′‖L2
� ∆S ‖V ′‖L2

∀V ∈ Sh0 .(2.19)

Bounds for error factors in terms of Pe have been obtained for meshes of equal-
length one-dimensional linear elements using eigenvalue problem (2.11) (see [17]), but
extension to cubic Hermite elements is difficult. Analysis is therefore simplified by
considering only the function in Sh0 that is expected to be most poorly approximated
by functions in RST

h.
With cubic Hermite interpolation, each V ′ for V ∈ Sh0 is piecewise quadratic

with C0 continuity. V ′ may have discontinuities in derivatives at element boundaries.
If advection dominates (γ is large), each V ′ must be approximated by a W ∈ Th.
With Galerkin weights ψi, each W is piecewise cubic with C1 continuity and cannot
approximate discontinuities in first derivatives. If elements are equally spaced, the
function V ∈ Sh0 with the largest discontinuities in first derivatives of V ′ relative to
‖V ‖L2

is

V̂ :=
∑
j∈N1

ψj ,(2.20)

where N1 indexes the interpolation functions corresponding to first derivatives. V̂ ′ is
orthogonal to every ψi except those corresponding to derivatives at the boundaries.
This explains the poor performance of the Galerkin method in advection-dominated
problems. Of course, on the other hand, the space spanned by derivative weights
ψi

′ allows any V ′ for V ∈ Sh0 to be represented exactly. If diffusion dominates (γ
is small), each V ′ must be approximated by a W ′ such that W ∈ Th. Galerkin
weights achieve this exactly because Th = Sh0 . With derivative weights, however, each
W ′ is piecewise linear. These W ′ are therefore orthogonal to the highest frequency
(piecewise-quadratic) function V ′ such that V ∈ Sh0 . The function that cannot be
approximated is again V̂ ′.

Here A0 and A∞ are selected so that V̂ ′ is approximated as closely as possible
by γŴ + Ŵ ′, where Ŵ is a simple combination of the W ’s that provide an exact
representation when Pe approaches 0 and ∞:

Ŵ := A0V̂ +A∞γ−1V̂ ′.(2.21)

The smallest eigenvalue in eigenvalue problem (2.11) is estimated by considering only
V̂ and Ŵ . This leads to an estimate of the error factor in bound (2.8),

1√
1−∆2

S

≈ ‖V̂ ‖BS
‖RSŴ‖BS

B(V̂ , Ŵ )
=

‖V̂ ′‖L2
‖(RSŴ )

′‖L2

〈V̂ ′, (RSŴ )
′〉

,

where, from (2.15) and (2.21),

(RSŴ )
′ = γA0V̂ + (A0 +A∞)V̂ ′ + γ−1A∞V̂ ′′.
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If elements are of equal length h and boundary effects are ignored, the integrals may
be evaluated to give

1√
1−∆2

S

≈
√(P 2

e

42 + 1
)
A2

0 +
(
1 + 60

P 2
e

)
A2∞

A0 +A∞
.(2.22)

This estimate is minimized when

A∞
A0

=
P 2

e + 42

42(P 2
e + 60)

P 2
e .(2.23)

With coefficients in this optimum ratio,

1√
1−∆2

S

≈
√
P 4

e + 102P
2
e + 2520

P 4
e + 84P

2
e + 2520

.(2.24)

As expected, the estimate of the error factor approaches 1 as Pe approaches ∞ or 0.

Its maximum value is
√

2
√

70+17
2
√

70+14
≈ 1.05, which is predicted at Pe =

√
6
√
70 ≈ 7.1.

2.3.2. Dirichlet boundaries. The weighting function corresponding to the
derivative at x = 0, where the Dirichlet boundary condition is applied, is nonzero
on that boundary. This means that the weighted residual equations (2.1) are not
satisfied if the exact solution u is substituted for U , and so the error orthogonality
property (2.3) does not hold. This is corrected by changing the definition of the
derivative term w∞

i to include a multiplier ζ ∈ H1
D0
so that all weighting functions lie

in H1
D0
:

w∞
i := ζγ−1ψi

′.(2.25)

The multiplier is chosen to be an exponential ramp,

ζ :=
1− e−γx
1− e−γh ,(2.26)

in the element adjacent to x = 0, and one elsewhere, so that for large γ the behavior of
w∞
i near x = 0 is similar to that of the optimal weighting functions w∗

i in section 2.2.
These weighting functions still become optimal when γ → ∞.

2.3.3. Verification of error estimates. The estimates of the optimal ratio
of A∞ to A0 (2.23) and of the error factor (2.24) rely on the assumption that V̂
is the function in Sh0 that is most poorly approximated by functions in RST

h. To
investigate the validity of this assumption, error factors were calculated from the
smallest eigenvalues of problem (2.11) with the full trial and test spaces for various
Pe and numbers of elements. The weighting functions wi in (2.16) were defined using
(2.25) for w∞

i and (2.17) for w0
i .

A∞
A0

was given by (2.23). The resulting error factors
are compared with estimates from (2.24) in Figure 2.1.

In all cases investigated, the calculated error factors approached the estimate
(2.24) as the number of elements became large. The eigenvector of (2.11) corre-
sponding to the smallest eigenvalue was, in each case, dominated by components
corresponding to wj for j ∈ N1, which were almost constant in the middle of the do-
main but smaller nearer the boundaries. This affirms that, without boundary effects,
V̂ is indeed the most poorly approximated function in Sh0 . Near boundaries, V̂ can
be approximated better, but the estimate (2.24) based on V̂ and ignoring boundary
effects appears to provide a good upper bound on the error factor.
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Fig. 2.1. Comparison of calculated and estimated one-dimensional error factors. The data
points are calculated values, and the lines are the estimates from (2.24).

2.3.4. Variable lengths and coefficients. The terms in the approximately
optimal weighting function (2.16) are optimal weights when Pe approaches 0 and
∞, even with unequally spaced elements and variable equation coefficients, but the
ratio A∞

A0
given in (2.23) is based on constant element lengths and coefficients. With

variable lengths or coefficients, the best choices of A0 and A∞ are no longer constant.
It is assumed that weighting functions (2.16) are still close to optimal if the ratio
(2.23) is used, but the variation over x in the total magnitude of A0 and A∞ is yet
to be determined. Note that with weighting functions (2.16) and propagation only in
the direction of increasing x, if boundary effects are ignored, the error orthogonality
property (2.3) may be written as

〈u′ − U ′, A0γMV 〉+ 〈u′ − U ′, (A0 +A∞)MV ′〉+ 〈u′ − U ′, A∞γ−1MV ′′〉 = 0
∀V ∈ Sh0 .

If we aim for a small error in the sense of the ‖·‖BS
norm, then the left-hand side

should resemble BS(u− U, V ). The second term is therefore the desirable term, and
its dominance is achieved by appropriate selection of A∞A0

in (2.23). The second term
is equivalent to BS(u− U, V ) if

A0 +A∞ := 1.(2.27)

2.4. Extension to three dimensions. For modelling the excitation of the
heart, the definitions of the terms in the weighting functions need to be extended
to the three-dimensional case with wavefronts travelling in any direction. Weighting
functions are still based on the simple combination (2.16) of terms selected for their
performance when Pe approaches 0 and ∞, but the Riesz representer theory of sec-
tion 2.1 can no longer be applied because the form B(·, ·) defined in (2.2) is no longer
bilinear.

2.4.1. Selection of weight terms. When Pe → 0, B(·, ·) becomes bilinear,
and thus w0

i are defined as the optimal weights in the sense of ‖·‖BS
, which are still

ψi. When the advection term is present, its nonlinearity means that the techniques
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used in section 2.2 can no longer be used to find a weight that guarantees minimum
error in the sense of the ‖·‖BS

norm. However, when Pe → ∞, making the residual
c0
√∇u ·M∇u− τm orthogonal to the least squares weight ∇U ·M∇ψi

c0
√∇U ·M∇U minimizes∥∥∥∥√∇U ·M∇U − τm

c0

∥∥∥∥
L2

=
∥∥∥√∇U ·M∇U −

√
∇u ·M∇u

∥∥∥
L2

.

These weighting functions compare with the derivative weighting functions of Brooks
and Hughes [3] in their solution of the multidimensional steady-state linear advection-
diffusion equation with linear elements.

As in the one-dimensional case, a multiplier ζ ∈ H1
D0
is included with the least

squares weight to ensure that the weighting functions are zero on Dirichlet portions
of the boundary. ζ is based on the one-dimensional expression (2.26) and is defined
by

ζ :=
1− exp

(
−Pepζ

kζ

)
1− exp

(
−Pe

kζ

) ,(2.28)

where kζ is a constant and pζ is a simple nonnegative function in H
1
D0
. In elements

adjacent to Dirichlet boundaries, pζ is a polynomial function of ξ; in other elements,
pζ = 1. This means that ζ is equal to one over most of the domain, and thus most
weights are unaffected by the multiplier. Near Dirichlet boundaries, the weights have
similar behavior to one-dimensional optimal weighting functions for large Pe if pζ
increases from zero at the boundary with slope |∇ξpζ | = kζ . A cubic interpolation is
used for pζ , and kζ is set to 3. Away from Dirichlet boundaries, nodal values of pζ
are set to 1, and derivatives to 0. On Dirichlet boundaries, nodal values are 1, and
derivatives are set so that the slope of pζ at the boundary is as close to 3 as possible.

The least squares term is discontinuous at wavefront collisions, which makes it
difficult to design an integration scheme such that the residuals in the resulting discrete
system of nonlinear equations are continuous with respect to the nodal parameters
Uj . In order to keep the integration scheme simple, the smooth term,

w∞
i := ζ

∇U ·M∇ψi√
(1− α∞)c02∇U ·M∇U + α∞τm2

,(2.29)

is used instead with the constant α∞ ∈ (0, 1). This term is close to the least squares
term when advection dominates and U is close to u. At a collision, however, the
denominator remains greater than zero, and so the term vanishes. The best value for
α∞ has not been thoroughly investigated, but α∞ = 1

4 seems to work well.

2.4.2. Mesh Péclet number. The one-dimensional expression for Pe in (2.18)
included the equation space constant

√
M and an element spatial scale dx

dξ . In more
than one dimension, these quantities are not scalar, and thus the intention is to base
Pe on suitable space constants in the direction of propagation.

It is convenient to define at each point in space a dimensionless natural coordinate
system υ in which the coupling tensor M transforms to the identity matrix and the
advection term becomes isotropic:

c0
√
∇U ·M∇U ≡ c0 |∇υU | ,
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where ∇υ denotes the gradient operator with respect to υ coordinates. The one-
dimensional scalar ratio of

√
M to dx

dξ corresponds to a multidimensional tensor ∇υξ.
A scalar quantity is selected from this using the rate of change of ξ arc length with
respect to υ arc length in the direction of propagation:∣∣∣∣

( ∇υU

|∇υU | · ∇υ

)
ξ

∣∣∣∣ .(2.30)

A smooth Pe is defined by

Pe :=
c0

√
(1− α∞)c02 |∇υU |2 + α∞τm2√

(1− α∞)c02 |(∇υU · ∇υ) ξ|2 + α∞τm2µ̄ξ

,(2.31)

where

µ̄ξ :=
1

3

∂ξm
∂υp

∂ξm
∂υp

(2.32)

(which is an average of the diagonal elements of the coupling tensor in the ξ coordinate
system).

2.4.3. Discontinuous derivatives of U . Expressions (2.23) and (2.27) for the
coefficients A0 and A∞ are only useful if U is C1 continuous. There are, however,
places in the ventricular myocardium where u is not expected to be C1 continuous [23].
The coefficients in (2.23) and (2.27) and w∞

i in (2.29) depend on first derivatives of U ,
so, with only C0 continuity in U , the weighting functions (2.16) may be discontinuous.
To retain continuity in the weights, A0 is made constant and pζ is set to zero on
interelement boundaries where C1 continuity in U is not expected. The nodal values
of pζ on interelement boundaries without C

1 continuity are set in the same manner as
if they were on Dirichlet boundaries. In this way, A0w

0
i retains the C

0 continuity of
the interpolation functions, and A∞w∞

i approaches zero at interelement boundaries
where derivatives of U are not expected to be continuous.

With constant A0, keeping the ratio of A∞ to A0 similar to the one-dimensional
optimal ratio (2.23) would mean that for large Pe the weights would be heavily de-
pendent on the direction of propagation, making the weighted residual equations very
nonlinear. Instead, A0 and A∞ are defined by

A0 := 1 and A∞ :=
P 2

e

klimPe + 50
,(2.33)

where the constant klim determines the maximum magnitude of the derivative term.
It is chosen to be 2 (discussed below). The weighting functions are therefore given by
the sum of Galerkin and supplementary weighting functions,

wi = ψi + ŵi,(2.34)

where the supplementary weighting functions are defined by

ŵi := ζ
Pe

2Pe + 50

c0∇υU · ∇υψi√
(1− α∞)c02 |(∇υU · ∇υ) ξ|2 + α∞τm2µ̄ξ

.(2.35)
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Fig. 2.2. Comparison of one-dimensional error factor estimates from (2.22) with A∞
A0

deter-

mined by the derivative-limited expressions (2.33) (solid line) and the optimal expression (2.23)
(dashed line).

For large Pe, the magnitude of the supplementary weighting functions, which are
dependent on U , is similar to that of the Galerkin weighting functions, which are
independent of U . This reduces the effects of nonlinearity in the weighted residual
equations, facilitating their solution.

To estimate the error introduced by not using the optimal ratio of A∞ to A0

(2.23), one-dimensional error factor estimates for ratios from (2.33) and (2.23) are
compared in Figure 2.2. These error factors are calculated from expression (2.22),
which is based on constant equation coefficients and assumes a large number of equal-
length one-dimensional elements. The maximum predicted error factor with (2.33) is
less than two percent greater than the maximum with the optimal ratio (2.23). The
constant klim in (2.33) was set to 2 to keep the nonlinear term in the weight as small
as possible while not significantly increasing the expected error factor.

3. No-inflow boundary condition. For large Péclet numbers, the no-flux
boundary condition derived from the diffusion of charge is not necessarily enough
to sufficiently constrain the solution.

3.1. Inflow boundaries. The lack of stability under large Péclet numbers of
the Petrov–Galerkin method developed in the previous section is demonstrated in the
situation shown in Figure 3.1. The tissue is stimulated in such a way that the wave-
front is initially concave (when viewed from inactive tissue). Note that for Pe = 10 the
curvature of the wavefront reduces as it propagates across the tissue, but for Pe = 100
the curvature increases.

The nature of the solution for Pe = 100 is in some ways quite reasonable. The
residual in the eikonal equation (1.12) is very small. An inwardly propagating circular
wavefront becomes a smaller circle, so an initially concave wavefront becomes more
concave. The problem with the solution is that the no-flux boundary condition (1.13)
is not satisfied.

The no-flux boundary condition is not very well satisfied on the boundary at
the right-hand end of the tissue in the solution for Pe = 10 either. Such boundaries
where the wavefront extinguishes shall be referred to as outflow boundaries. The
boundary condition at these boundaries only affects a small boundary layer of tissue,
so failure to satisfy the boundary condition does not introduce much error into the
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(a) Pe = 10 (b) Pe = 100

Fig. 3.1. Excitation contours calculated by the Petrov–Galerkin method for a slice of tissue
stimulated unevenly at the left-hand edge. Stimulus times are specified by a quadratic function so
that the corners are stimulated first and the center of the edge last. The tissue is represented by two
unit square cubic Hermite elements. Equation parameters are selected for unit plane wave speed in
any direction. Contours are at intervals of 0.2.

solution. The boundaries where the wavefronts enter the domain shall be called inflow
boundaries. The boundary at the left-hand end of the tissue is an inflow boundary
because tissue is stimulated on this boundary. In the Pe = 10 solution, the no-flux
boundary condition on the other boundaries is satisfied very well.

In the Pe = 100 solution, the no-flux boundary condition on the boundaries at
the top and bottom of the domain is not satisfied. The boundary condition (1.13) is
derived from prevention of diffusion of charge across the boundary. For large Péclet
numbers, diffusion effects are small, and so the emphasis on satisfying the boundary
condition is small. Because the discretization does not allow U to exactly represent
u, the numerical method selects a solution that closely satisfies the eikonal equation
but almost ignores the boundary condition. As the effects of diffusion are small, the
propagation speed should be almost unaffected by curvature and should be almost
equal to the unit plane wave speed. This is reflected in the solution through the
magnitude of the gradient of activation time which is close to one over the entire do-
main. Note, however, that the average propagation speed along the top and bottom
edges of the domain is about 1.1. This is due to the fact that the method does not
recognize that tissue needs to be excited by other excited tissue. It is assumed that
the propagation direction is normal to the wavefront, but, because the boundary con-
dition is not strongly enforced, the wavefront normal is not parallel to the boundary.
The wavefront is propagating from outside the boundary into the domain, and the
boundary is an inflow boundary. Tissue is being excited by nonexistent tissue outside
the boundary.

Without a mechanism to prevent wavefronts from entering the domain through
unwanted inflow boundaries, excitation can initiate at arbitrary points on the bound-
ary and totally corrupt the numerical solution. This problem occurs when the diffusion
term becomes insignificant, and thus the nature of propagation without diffusion is
now investigated to determine a prevention mechanism.

3.2. Propagation without diffusion. For large Péclet numbers the numerical
scheme behaves as if it is solving the eikonal equation without a diffusion term and
without the associated no-flux boundary condition. Without these, the solution to the
eikonal equation (1.12) is not unique. To reflect the fact that tissue must be excited
by neighboring tissue, the governing equation should instead be

sup
a∈A(x)

{
lim
α↘0

u(x)− u(x− αa)
α

}
= τm(x) ∀x ∈ Ω− ΓD,(3.1)
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where, for m dimensions,

A(x) :=
{
a ∈ R

m : a ·M−1a = c0
2; ∃α ∈ R s.t. α > 0, x− αa ∈ Ω}.(3.2)

Restricting the vectors a to the set A(x) determines the directions in which propaga-
tion can occur at the point x and the propagation speeds for these directions.

In regions where the solution is smooth enough, this governing equation is equiv-
alent to

sup
a∈A

{a · ∇u} = τm.(3.3)

(If A is replaced with AΩ0 defined below, this equation is a special case of that used
by Falcone, Giorgi, and Loreti [10] in their analysis of front propagation problems.)
For a point not on the boundary, the definition of A simplifies to

AΩ0 :=
{
a ∈ R

m : a ·M−1a = c0
2
}
,(3.4)

and the supremum in (3.3) occurs when

a = c0
M∇u√∇u ·M∇u.

Away from the boundaries, therefore, (3.3) is equivalent to the eikonal equation (1.12)
without a diffusion term.

Without diffusion, there is no Neumann boundary condition, but the notation ΓN

will be used for ∂Ω−ΓD, the portion of the boundary in which no Dirichlet boundary
condition is applied. For a point on this portion of the boundary, A is equivalent to

A∂Ω :=
{
a ∈ R

m : a ·M−1a = c0
2, n · a � 0

}
,(3.5)

where n is the unit outward-pointing normal to the boundary.
In order to investigate the nature of the solution to (3.3) near boundaries, consider

two points, x∂Ω ∈ ΓN and xΩ0 ∈ Ω − ∂Ω, such that xΩ0 is an infinitesimal distance
from x∂Ω. As discussed above, the solution at xΩ0 satisfies

c0
M∇u√∇u ·M∇u · ∇u = τm.

If the solution is smooth enough in the vicinity of the points, one would expect that
∇u(x∂Ω) is equal to ∇u(xΩ0) and should satisfy the same equation. This is only
consistent with (3.3) if

c0
M∇u√∇u ·M∇u ∈ A∂Ω,

and thus the direction of propagation on ΓN is restricted by

n ·M∇u � 0.(3.6)

If some diffusion is included, it can be assumed that u is smooth enough that the
governing equation becomes

sup
a∈A

{a · ∇u} − ∇ · (M∇u) = τm.(3.7)
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The limit of the solution to this equation as the diffusion term vanishes satisfies (3.1).

The no-flux boundary condition on ΓN ensures that M∇u is either parallel to the
boundary or zero. The supremum in (3.7) therefore occurs when a = c0

M∇u√∇u·M∇u
and (3.7) is equivalent to the eikonal equation (1.12). The limit of the solution to
the eikonal equation (1.12) and its no-flux boundary condition (1.13) as the diffusion
term vanishes satisfies the diffusionless governing equation (3.1).

3.3. A no-inflow boundary term. Although the exact solution of the eikonal
equation (1.12) approaches the solution of the diffusionless propagation equation (3.1),
the same is not necessarily true for the numerical solution. Unfortunately, with the
Petrov–Galerkin method, when diffusion effects become small, they are swamped by
discretization errors. The method behaves as if it were solving an eikonal equation
without a diffusion term and without the no-flux boundary condition. Without these,
the solution is not unique, and so the scheme becomes unstable. To prevent this,
the numerical treatment of the advection term needs to more closely represent the
corresponding term in (3.1).

With a finite difference method this is easily done by using an upwind difference
scheme [18]. Such schemes can select the grid points used in the difference expressions
for the advection term so that the excitation time of each grid point is calculated as
the expected time for a wavefront to arrive from neighboring grid points with lower
excitation times. As there are only grid points in the domain, the wavefront can only
arrive from points in the domain, and there are no unwanted inflow boundaries. None
of the so-called upwind finite element methods for steady-state problems provide the
same restrictions on the solution. Finite element methods only evaluate the advection
term at sample points in the domain, and thus the boundaries have no influence on
propagation.

The approach used here to stabilize the Petrov–Galerkin solution of the eikonal
equation is to add to the weighted residual equations a boundary integral term that
encourages the solution to satisfy the boundary inequality (3.6). If this is satisfied,
the supremum in (3.3) occurs when a = c0

M∇u√∇u·M∇u , and thus the residual in the
eikonal equation (1.12) is equivalent to the residual in (3.3).

The satisfaction of boundary inequality (3.6) is encouraged by including a penalty
term when it is not satisfied. This penalty term is constructed from minimization of
an integral over ΓN of the square of a residual,∫

ΓN

Ab r
2
b dΓ,(3.8)

where rb is a residual that is zero if and only if (3.6) is satisfied, and Ab is a coefficient
independent of U . The minimum occurs when the derivatives with respect to each
parameter Ui, ∫

ΓN

Ab rb
∂rb
∂Ui

dΓ,(3.9)

are zero. These integrals are added to the left-hand side of the Petrov–Galerkin
discrete equations (2.1) to encourage the numerical solution U to satisfy the boundary
inequality (3.6).
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The natural coordinate system υ of section 2.4.2 may be used to express inequality
(3.6) as

nυ · ∇υu � 0,(3.10)

where nυ is the unit outward-pointing normal to the boundary in this coordinate
system. When rb was defined as the direct residual in this inequality, the penalty term
was found to place too much emphasis on satisfying this inequality at the expense
of satisfying the eikonal equation. The expression for rb was therefore selected to be
more closely associated with the advection term. Consider the residual

rb := |∇υU | −
√
|∇υU |2 −min(nυ · ∇υU, 0)

2
.(3.11)

If (3.10) is satisfied, this expression is zero. If (3.10) is not satisfied, the expression is
essentially the difference between the advection term and what it would be if it were
calculated from only the components of ∇υU in the surface of the boundary. With
this residual, the expression rb

∂rb
∂Ui

has a discontinuity when |∇υU | = nυ ·∇υU , which
corresponds to propagation into the domain normal to the boundary. It is not likely
that this will occur, but, to ensure that the discrete equations are smooth enough for
solution by Newton’s method, the modified residual

rb :=
√

|∇υU |2 + αb
τm

2

c02 −
√
|∇υU |2 −min(nυ · ∇υU, 0)

2
+ αb

τm
2

c02(3.12)

is used. As with α∞ in section 2.4, a value of 1
4 is used for αb.

The boundary integrands are of similar magnitude to the products of the advec-
tion term and the weights in (2.34) and (2.35) if they are multiplied by

P b
e

(
1 +

P b
e

2P b
e + 50

)
.

To retain the symmetric and positive semidefinite nature of the boundary terms (3.9),
an expression that is independent of U is used for the Péclet number:

P b
e := c0

∣∣∣∣nυ · ∂υ
∂ξn

∣∣∣∣ ,(3.13)

where ξn is the local element coordinate that does not vary over the boundary. The
expression is based on the spatial properties in the direction normal to the boundary
instead of in the direction of propagation used in (2.31).

Even with the integrands dimensionally consistent, there is still a difference be-
tween the dimensions of the boundary and domain integrals in the order of one spatial
dimension. An appropriate multiplier needs to be found for the boundary term to
balance the emphasis on satisfaction of the eikonal equation and of the boundary
inequality. This should reflect the depth of the region of influence that the boundary
terms should have. The parameters Uj that are included in the boundary terms have
a significant direct influence on the solution over about half an element. If the bound-
ary terms are given a multiplier that resembles half the width of the element, then
the equations involving these parameters should put even emphasis on satisfaction of
the domain equation and the boundary inequality. The multiplier is chosen to be

1

2

∣∣∣∣n · ∂x
∂ξn

∣∣∣∣ ,
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Pe = 10 Pe = 100

Fig. 3.2. Excitation contours calculated by the Petrov–Galerkin method with the additional
boundary term (3.9). The slice of tissue is described in Figure 3.1.

so that the width of the element is estimated from information at the boundary. The
coefficient Ab in the boundary terms (3.9) is therefore

Ab :=
P b

e

2

(
1 +

P b
e

2P b
e + 50

) ∣∣∣∣n · ∂x
∂ξn

∣∣∣∣ .(3.14)

The numerical solutions obtained by this modified scheme in solving the test
problem of section 3.1 are shown in Figure 3.2. For Pe = 10, the solution is very
similar to the solution in Figure 3.1(a) obtained without the additional boundary
term. For Pe = 100, the solution satisfies both the eikonal equation (1.12) and
boundary condition (3.6) reasonably well, given the coarse discretization. Although
the wavefront is not perpendicular to the top and bottom boundaries, the propagation
speeds along these boundaries are sensible, and the satisfaction of (3.6) improves with
distance from the initiation point.

4. Summary of the method. The numerical method developed for the simu-
lation of excitation propagation in ventricular myocardium uses Newton’s method to
solve a system of weighted residual equations that are sums of the Petrov–Galerkin
weighted residuals of section 2.4 and the no-inflow weighted residual of section 3.3.
Newton’s method requires a sufficiently good initial guess on which it can iteratively
improve. If the diffusion term dominates, the equation is close to linear, and thus
almost any initial guess leads to rapid convergence. An initial guess of Uj = 0 ∀j ∈ N
is sufficient. If the advection term dominates, however, the significant nonlinearities
may prevent the method from converging if the initial guess is not good enough. Ap-
proximate solutions to equations with more significant diffusion are used as initial
guesses for equations with more advection in a numerical continuation method [1] on
the continuum of equations,

αcc0
√
∇u ·M∇u−∇ · (M∇u) = αcτm.(4.1)

Here αc is the continuation variable, which is increased from 0 to 1 to transform a
diffusion equation into the desired eikonal equation.

From Petrov–Galerkin weighted residual equations (2.1), no-inflow weighted resid-
ual equations (3.9), and governing equation continuum (4.1), the weighted residual
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equations are

(4.2)

∫
Ω

(
αc(c0

√
∇U ·M∇U − τm)(ψi + ŵi) +∇U ·M∇ψi −∇ · (M∇U) ŵi

)
dΩ

+

∫
ΓN

(
n ·M∇Uŵi +Ab rb

∂rb
∂Ui

)
dΓ = 0 ∀i ∈ N.

The boundary inequality residual definition (3.12) is used for rb.
When the value of the continuation variable is less than one, the influence of the

diffusion term is increased, and thus the supplementary weights ŵi and the boundary
integral coefficient Ab are calculated using the apparent Péclet number. The supple-
mentary weighting functions ŵi are defined by (2.35), with the Péclet number defined
by (cf. (2.31))

Pe :=
αcc0

√
(1− α∞)c02∇ξU ·Mξ∇ξU + α∞τm2√

(1− α∞)c02∇ξU ·MξMξ∇ξU + α∞τm2µ̄ξ
.(4.3)

The boundary integral coefficient Ab is defined by (3.14) with the Péclet number
defined by (cf. (3.13))

P b
e := αcc0

∣∣∣∣nυ · ∂υ
∂ξn

∣∣∣∣ .(4.4)

The integrals in (4.2) are evaluated using Gauss–Legendre quadrature schemes.
A grid of quadrature points with four points in each direction is used within each
element. The system of linear equations for each Newton iteration is solved using the
generalized minimum residual (GMRES) iterative solver [20] with a simple diagonal
preconditioner and no restarts.

5. Simulation. Numerical simulation of excitation propagation through the full
canine ventricular myocardium was performed using the method developed here to
solve eikonal equation (1.12). The model of the canine ventricular geometry and
the selection of material parameters for the governing equation (1.12) are discussed in
[23]. Parameters used were λl = 0.8mm, λt = λn = 0.5mm, τm = 3ms, and c0 = 2.5.
There were 2355 degrees of freedom for the dependent variable. The method was pro-
grammed primarily in extended FORTRAN 77 as part of the CMISS (an acronym
for Continuum Mechanics, Image analysis, Signal processing and System identifica-
tion) software package. It was executed on one 195MHz MIPS R10000 processor of
a Silicon Graphics Octane.

A point stimulus site was chosen to match the pacing site used for epicardial-
sock activation time recordings by Le Grice [16], so that results could be compared
with experimental measurements. This site is on the epicardial surface of the anterior
aspect of the left ventricular free wall and located at a distance from the apex about
one third of that from apex to base.

Snapshots of wavefront locations from the simulation are presented in Figure 5.1.
Epicardial isochrones are similar to those from the experimental recordings for times
from about 20ms to 60ms after stimulation but start to differ considerably outside
this interval. Near the stimulus site, experimental recordings showed much slower
propagation in the direction transverse to the fibers. The difference in simulation
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(a) 20ms (b) 40ms (c) 60ms (d) 80ms

(e) 100ms (f) 120ms (g) 140ms (h) 160ms

Fig. 5.1. Wavefront locations at 20ms time intervals in a simulation of propagation from an
epicardial point stimulus at time 0. For each sample time, two opposing views are shown.

results is probably due both to the coarse discretization and to the inability of the
eikonal model to reproduce the transient effects near a stimulus. The distance over
which slow initial transverse propagation was observed experimentally is less than
one quarter of the element length in this direction. For times greater than 65ms
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after stimulation, experimental recordings showed much earlier epicardial excitation,
particularly in the more basal and posterior areas on the left ventricular free wall. The
region of latest recorded excitation was at the pulmonary conus, which was excited
about 125ms after stimulation. In simulations, the latest excitation occurred about
180ms after stimulation in the basal posterior region of the right ventricular free wall.
The discrepancy is most likely due to the lack of Purkinje fibre representation in the
computational model. If the effects of this fast conduction network are not included
in the model, results cannot be expected to be realistic. More realistic simulations
are presented in [23].

The solution to the discrete system of equations (4.2) was obtained after seventeen
Newton iterations and required just less than four minutes of CPU time. One Newton
iteration was performed for each increment of the continuation variable αc until it
reached one, then four Newton iterations were required before the relative change in
the solution reduced to less than 10−5. The time required for each iteration ranged
from 10.7 s to 16.9 s. Of this, the time for calculation of the Jacobian was consistently
7.2 s, but the time for solution of the linear system of equations ranged from 3.0 s when
diffusion was significant, to 5.3 s when αc reached one, to 9.2 s in the final iteration.
Most of the remaining 0.5 s in each iteration was spent evaluating the residual in the
nonlinear equations.

In the solution of the linear system of equations for each Newton iteration,
GMRES iterations were performed until the residual in the linear system was re-
duced by a factor of 10−3. There was an increasing trend in the number of GMRES
iterations required to achieve this, from 111 iterations when diffusion was significant,
to 170 when αc reached one, to 251 in the final Newton iteration. This suggests that
the condition number of the Jacobian may increase as the effect of diffusion decreases.

Although convergence in the solution to the nonlinear system was achieved reason-
ably easily in this simulation with these material parameters, when αc was increased
to represent a reduction in the effects of diffusion, convergence could be achieved for
αc = 1.06 but not for αc = 1.07. This means that, if the material parameters were
changed so that the relative magnitude of the diffusion term was reduced by more
than six percent, artificial diffusion would be required to obtain convergence.

Part of the reason for the inability to achieve convergence when the diffusion
term is small may be related to the lack of C1 continuity in U at certain places in the
mesh. A close inspection of the wavefront near the apex in Figure 5.1(c) reveals that
the front is starting to form a point as it approaches the apex. This feature of the
wavefront vanishes when more diffusion is introduced into the equation.

As discussed in section 3.3, when the diffusion effects become very small, the
numerical method behaves as if it were solving an eikonal equation without a dif-
fusion term. The appropriate equation to solve in this situation is the diffusionless
propagation equation (3.1). Although the discrepancy between this and the eikonal
equation was dealt with on boundaries in section 3.3, it was assumed that inside the
domain the residuals in the two equations were equivalent. The residuals are only
equivalent, however, if first derivatives are continuous. The C1 constraint vanishes
at the apex because the element widths vanish. Without C1 continuity, the eikonal
equation admits solutions where tissue is not necessarily excited by neighboring tissue.
Wavefronts can initiate and spread out from any point in space where C1 continuity
is not enforced. This lack of uniqueness in the solution makes the Jacobian for New-
ton’s method singular and therefore convergence unlikely. If simulations are to be
performed with less diffusion, the numerical treatment of the advection term needs to
more closely represent its form in (3.1).
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If diffusion needs to be added to the equation in order to obtain a stable solution,
high-order convergence rates can no longer be expected, and thus one might ask the
question of what the advantage of high-order elements might be. To address this
question, the cubic Hermite Petrov–Galerkin finite element scheme is compared with
a simple finite difference scheme using first-order upwind differences for the advection
term. A simple Taylor series analysis of first-order upwind differences shows that the
coefficient of numerical diffusion is half the coefficient of the advection term multiplied
by the grid point spacing, which resembles 1

2c0λh. When doubling the physiological
diffusion to stabilize the cubic Hermite scheme, the coefficient of additional diffusion
resembles λ2. In order to make the additional diffusion in the first-order scheme of
similar magnitude, the grid point spacing must be given by h = 2λ

c0
, or equivalently,

the grid Péclet number Pe must be equal to 2. In the cubic model, the volume average
of the geometric mean of the mesh Péclet numbers for each direction is 22, and the
maximum Péclet number in any direction at any point is 116. An optimally designed
first-order grid would have grid spacings of 0.64mm in the fibre direction and 0.4mm
in the other directions. The 0.2 × 106 mm3 myocardial volume would need to be
represented by about 2 × 106 grid points. This is a factor of about 103 greater than
the 2355 degrees of freedom in the cubic Hermite mesh.

6. Conclusions. An efficient computational model has been developed for the
excitation process in ventricular myocardium. The need to represent the small-scale
ionic activity is eliminated by modelling the excitation process as a propagating wave-
front of depolarizing tissue.

A Petrov–Galerkin method using cubic Hermite elements has been developed to
enable numerical solution of an eikonal equation for excitation time on a reasonably
coarse mesh. The method is a weighted residual method with weights that are linear
combinations of Galerkin weights and C0 continuous supplementary weights based
on the derivatives of the interpolation functions in the direction of propagation. For
one-directional propagation, the error in the solution is within a small constant factor
of the optimal error achievable in the trial space. To estimate the constant factor
in the error bound, it was only necessary to consider the function in the trial space
with highest frequency first derivative and its corresponding weighting function. A
function of the mesh Péclet number was selected for the ratio of the Galerkin and
supplementary weights so that this error factor is small for all values of the Péclet
number.

For high Péclet numbers, the numerical solution of the eikonal-diffusion equation
behaves as if there is no diffusion term. An eikonal equation determines the speed
of propagation at each point in space but provides no constraint on the direction of
propagation. Without the diffusion term, there is no longer any no-flux boundary
condition, and spurious excitation can initiate at any point on the boundary. A
no-inflow boundary term has been designed to provide a penalty on such spurious
excitation.

Using a continuation method to gradually introduce the nonlinear term of the
governing equation, seventeen Newton iterations were required to obtain the solution
for a simulation in the full ventricular myocardium. The method showed instabilities
when the effect of diffusion was very small, but the level of diffusion required for
stability was much less than the level of numerical diffusion that would be introduced
in a first-order upwind finite difference scheme with the same number of degrees of
freedom.
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Abstract. In this paper we investigate, numerically as well as analytically, the influence of
natural convection on thermal explosion in a two-dimensional square vessel, filled with a reactant
mixture, whose vertical walls are adiabatic and horizontal walls are infinitely conducting, preset
at an equal temperature T0. Natural convection enhances the heat losses at the boundaries while
large temperatures tend to promote natural convection, thus yielding two competitive phenomena.
The governing equations are taken to be the Navier–Stokes equations in the Oberbeck–Boussinesq
approximation of low density variations coupled to the heat equation with an exponential chemical
source term. This is valid because we consider a 1-step reaction with high heat release, we use the
Frank-Kamenetskii transformation under high activation energy asymptotics, and we do not take
into account thermo-diffusion as well as the different molar masses of the species. We solve the
vorticity-stream function-temperature formulation with an alternating direction numerical method
on finite difference approximations. The numerical results show the coexistence of 1-vortex and
2-vortex regimes, from which thermal explosion can occur. New regimes of thermal explosion are
found when the Frank-Kamenetskii and Rayleigh parameters are close to the critical conditions for
explosion and convection. Periodic-in-time solutions can exist from which thermal explosion can
also occur. Linear stability analysis allows us to predict the onset of convection not too close to the
explosion limit. Finally, we propose a model problem through a system of two ordinary differential
equations which is able to reproduce the bifurcation behavior of the global system close to critical
conditions for both explosion and convection.

Key words. thermal explosion, natural convection, stability and bifurcation analysis
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1. Introduction. The theory of thermal explosion has been investigated in nu-
merous works (see [7], [15], [17], [21], [22], [24]). Thermal explosion denotes the rapid
buildup of energy in systems subject to exothermic reactions, the rate of which rises
with temperature. It is of practical importance in problems of fire and explosion
safety.

The theory of thermal explosion begins with the works by van ’t Hoff who formu-
lated the basic principles of chemical reactions in the end of the 19th century. The
first part of the development of this theory was terminated by 1930 due to the work by
Semenov with collaborators (see [21], [22], [24]). They explained the physical mecha-
nism of thermal and chain explosion and offered a simple mathematical model in order
to get the critical conditions of explosion with a space-independent temperature.

The next step in the development of the theory begins with the works by Frank-
Kamenetskii [7], [8] who proposed to consider a space-dependent temperature dis-
tribution with Dirichlet boundary conditions in a motionless fluid. He considered a
1-step reaction in the framework of large activation energy asymptotics under the
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large heat release assumption, so that the reactant depletion can be neglected. Ther-
mal explosion is viewed as the nonexistence imposibility of a stationary solution. The
study of this highly unstationary problem is then reduced to the study of the existence
of stationary solutions. This approach was developed in a large number of physical
and mathematical works (see [2], [17], [24], and the references therein).

Many other models have been developed further to take into account heteroge-
neous media [1] or coupling with hydrodynamics [15], [18]. This paper is a contri-
bution to the latter. The influence of free convection on thermal explosion has not
received much attention yet. In [15], Kagan et al. considered a forced convection in
a two-dimensional (2D) vessel with a large aspect ratio and weakly conducting walls.
Surprisingly enough, it is shown that convection can promote explosion. Merzhanov
and Shtessel in [18] have investigated the influence of natural convection on thermal
explosion in a 2D square vessel with infinitely conducting horizontal walls and adia-
batic vertical walls. If the fluid is motionless, the maximal temperature is then at the
center of the vessel, and if it is large enough, free convection appears. Free convection
can inhibit explosion by enhancing the heat losses at the walls. Critical conditions
for both explosion and convection have been investigated numerically as well as ana-
lytically with simple models using a single variable: the averaged temperature [18].

In this paper, we study the influence of natural convection on critical conditions
for thermal explosion and extend the work by Merzhanov and Shtessel [18]. First,
from the modeling point of view, we discuss the assumptions underlying the use of
the Navier–Stokes equations for a frozen mixture composition under the Oberbeck–
Boussinesq approximation with an exponential source term in the temperature equa-
tion. Second, for the considered configuration, with an aspect ratio of one, we show
the coexistence of 1-vortex and 2-vortex modes and analyze the corresponding bifur-
cation diagrams; explosion can occur from both of these regimes. Third, the behavior
of the system in a neighborhood of the point where the critical conditions of explosion
and convection coincide is studied through comprehensive numerical simulation which
was impossible 30 years ago. New regimes of thermal explosion are found when the
Frank-Kamenestskii parameter is close to the critical one. Periodic-in-time solutions
can exist so that thermal explosion can occur either from these oscillating solutions
or from a stationary solution where natural convection is present. Numerical simula-
tions in this neighborhood face several difficulties: high parameter sensitivity, possible
oscillations, very slow convergence to stationary or periodic solutions, and possible
explosion. Fourth, we perform a linear stability analysis on a simplified model which
allows us to obtain a good description of the onset of natural convection far from the
critical conditions for thermal explosion. We thus validate the code and gain physical
insight into the main difference between the present situation, where the chemistry is
coupled to the hydrodynamics and the classical Rayleigh–Bénard problem. Fifth, we
propose a simplified model in order to describe the complex bifurcation behavior of
the system: a system of two ordinary differential equations for the mean temperature
and the maximal stream function. In the spirit of Semenov’s theory, this simplified
system contains a phenomenological heat losses coefficient. We show how the model
problem is able to describe the appearance of stable limit cycles and explain the
possible explosion either from oscillating or stationary solutions.

The paper is organized as follows: the modeling assumptions are detailed in
section 2. Numerical method and simulations obtained with the comprehensive model
are presented in section 3. We then propose simplified models in order to describe the
observed phenomena. In section 4 we propose a linear stability analysis of a simplified
model in order to find the onset of convection away from the critical conditions of
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thermal explosion. Finally, section 5 is devoted to the bifurcation analysis of a model
problem close to the critical conditions for both explosion and convection, and section
6 provides a discussion which makes the link between sections 3, 4, and 5, thus
completely describing the qualitative behavior of the global system by the model
problem.

2. General modeling of the problem.

2.1. Configuration. The configuration studied here is a 2D square vessel whose
vertical walls are adiabatic and horizontal walls are infinitely conducting, filled with
a reactant mixture. An equal constant temperature T0 is preset at the horizontal
walls. This configuration is similar to the one considered by Merzhanov and Shtessel
in [18]. At the starting moment the fluid is at rest at temperature T0. Either the
fluid can encounter thermal explosion (a rapid buildup of temperature modeled in the
Frank-Kamenetskii theory by a temperature blow-up) or, after a characteristic time,
there exists a slowly varying solution (modeled in the Frank-Kamenetskii theory by
a stationary solution at frozen composition) where chemical heat release is balanced
by the heat losses through the walls. When no gravity is present, the stationary one-
dimensional (1D) concave temperature profile possesses an analytical expression, the
characteristics of which are given in subsection 2.2.

In the presence of gravity, the upper half-part of the domain is heated from below
by the reacting mixture and beyond a certain stability limit, like in the Rayleigh–
Bénard problem [6], [11], convection appears and enhances the heat losses.

The purpose of the present study is to couple the heat equation which governs the
classical explosion limits to the hydrodynamics through natural convection. Before
dealing with the modeling of the coupled problem, let us come back to the classical
results.

2.2. Frank-Kamenetskii theory of thermal explosion. In the Frank-
Kamenetskii theory, the explosion limit is determined by studying the existence of
stationary solutions to the nondimensional heat equation:

∂τθ = ∂zzθ + FK exp


 θ

1 +
RT0

E
θ


 , z ∈ [0, 2], θ(0) = θ(2) = 0,(2.1)

where T is the temperature and θ = (T − T0)/RT 2
0 /E is the temperature scaled by

the Frank-Kamenetskii temperature RT 2
0 /E; t

∗ is the time variable and τ = t∗/τκ
the nondimensional time associated with the diffusion time τκ = L2/κ

0
; z = z∗/L,

2L is the size of the domain and z∗ the dimensional space variable; FK is the Frank-
Kamenetskii parameter defined as the ratio of the diffusion time τκ and of a chemical
ignition time τch:

FK =
τκ
τch
, τch =

RT 2
0

E (Tb − T0)

1

B
exp

(
E

RT0

)
,(2.2)

where κ
0
is the thermal diffusivity at T = T0, Tb−T0 = Q/ρ0cp0 is the adiabatic tem-

perature of reaction, Q is the heat of reaction, ρ0 is the density of the mixture, cp0 is
the heat capacity at constant pressure, and at T = T0, E is the activation energy, R
the universal gas constant, and B the frequency factor of the Arrhenius-type reaction
rate. Reactant depletion has already been neglected due to the fact that the charac-
teristic time of reactant depletion is much longer than the characteristic time of tem-
perature buildup under the assumption of large heat release, (Tb−T0)/T0 >> RT0/E.
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The explosion limit will be described by the only Frank-Kamenetskii parameter. Un-
der the assumptions of large activation energy E/RT0 >> 1, we can perform the
Frank-Kamenetskii transform so that the nonlinear reaction rate in (2.1) is taken to
be FK exp(θ) [8], [24].

Thermal explosion is defined as the nonexistence of a stationary solution of equa-
tion (2.1) [7], [8], [24]. It can be shown that there exists a critical value FKc such that
a stationary temperature profile exists if and only if the Frank-Kamenetskii parameter
is below the critical value FK ≤ FKc. In this case an analytical expression of the sta-
tionary temperature profile as well as an exact formula for the maximal temperature
as a function of FK are available. The value of FKc is approximately 0.88. Beyond
this value no stationary solution exists and the system is said to encounter thermal
explosion. It is worth noting that the maximal temperature increase at the center
of the vessel when a stationary solution exists is of the order of magnitude of the
Frank-Kamenetskii temperature, which means that it is small compared to T0 under
the large activation energy assumption.

When gravity is present, fluid motion should be taken into account. For large
Rayleigh numbers, free convection will possibly increase heat losses through the walls,
thus yielding two competitive phenomena. In order to proceed with the study of
such situations, we have to first provide a model for both hydrodynamics, dissipative
phenomena, and chemical reactions. This is the purpose of the next section.

2.3. Governing equations. The most general set of equations governing multi-
component reactive fluid mixtures is a system of mixed hyperbolic-parabolic equations
describing hydrodynamics, complex dissipation phenomena such as viscous dissipa-
tion, multicomponent mass, and heat diffusion, as well as chemistry [5], [12], [13].

The model chosen for the chemistry is a 1-step exothermic reaction in the con-
text of negligible composition effects as in the original Frank-Kamenetskii theory.
Consequently, out of the various coupled complex phenomena described by the com-
prehensive equations, we want only to retain hydrodynamics, viscous dissipation, heat
conduction, the effect of gravity, and the heat release of the single chemical reaction as
a heat source term. Composition effects due to complex chemistry, multicomponent
diffusion, thermal diffusion, as well as stratification of the fluid due to the effect of
gravity on species of different molecular weights, are out of the scope of this study.
We further assume, for the sake of simplicity, that the heat capacities at constant
pressure and at constant volume of the various components of the mixture are con-
stant. The thermal conduction coefficient is assumed constant, λ = λ0, as well as the
thermal diffusivity, κ = κ

0
= λ0

ρ0cp0
, the shear viscosity, µ = µ0, and the kinematic

viscosity, ν = ν
0
= µ0

ρ0cp0
. We neglect the bulk viscosity. The resulting set of equation

is the usual compressible Navier–Stokes equations for a single fluid coupled to the
heat equation with a chemical source term.

This system of equations is then considered in the limit of small density variations,
also called the Oberbeck-Boussinesq approximation:

∂τθ + u ∂xθ + v ∂zθ = ∂xxθ + ∂zzθ + FK exp(θ),(2.3)

∂τu+ u ∂xu+ v ∂zu = −∂xP + Pr
0
(∂xxu+ ∂zzu) ,(2.4)

∂τv + u ∂xv + v ∂zv = −∂zP + Pr
0
(∂xxv + ∂zzv) + Pr

0
Ra

0
θ,(2.5)

∂xu+ ∂zv = 0.(2.6)
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The nondimensional quantities involved in the problem are

τ =
t∗ w

0

L
, U = (u, v)t =

U∗

w
0

, P =
P∗

p0
, θ =

T − T0

RT 2
0 /E

,(2.7)

w
0
=
κ

0

L
, p0 = ρ0

R
m̄
T0, Pr

0
=
ν
0

κ
0

,(2.8)

where t∗, U∗ = (u∗, v∗)t, and P∗ are the dimensional quantities, respectively, time,
velocity vector, and perturbation of the pressure, and where m̄ is the molar mass
of the mixture. Also, Pr

0
is the Prandtl number, x and z are the horizontal and

the vertical coordinates, u and v are the horizontal and the vertical components of
the scaled velocity, and Ra

0
is the Rayleigh number. Denoting by g the gravity

acceleration and recalling that the thermal expansion coefficient α of a perfect gas is
the inverse of the temperature and that the typical temperature increase is of the order
of the Frank-Kamenetskii temperature RT 2

0 /E, the Rayleigh number then reads as

Ra
0
= gL3RT0/E

κ
0
ν
0

. Problem (2.3)–(2.6) is considered in the square domain 0 ≤ x ≤ 2,

0 ≤ z ≤ 2 with the boundary conditions

x = 0, 2 : ∂xθ = 0, u = 0, ∂xv = 0; z = 0, 2 : θ = 0, ∂zu = 0, v = 0.(2.9)

The justification of the Oberbeck–Boussineq approximation of small density vari-
ations has been investigated in many works, under different assumptions on the state
law of the fluid and on the geometry of the vessel [14], [19], [20], [23]. In a recent work
by two of the authors [9], it is investigated for a general divariant state law, and a
unified approach is presented for both liquids and gases. We restate the fundamental
assumptions in the framework of thermal explosion in the following proposition.

Proposition 1. Let us consider a fluid layer of thickness 2L under gravity con-
ditions, the vertical temperature field of which TS(z) is given by a stationary solution
of equation (2.1) under the assumption FK ≤ FKc. Let χ0 = γgL/c20 and assume that

χ0 � RT0/E � 1,(2.10)

where c0 is the velocity of sound in the mixture and γ is the ratio of the heat capacity at
constant pressure over the heat capacity at constant volume. Then there exists a static
solution (i.e., a solution without convection) of the compressible Navier–Stokes equa-
tions (ρS , pS , TS , US = 0) with ∂zpS = −ρSg, z ∈ [0, 2L], pS(2L) = p0, pS = ρSRTS/m̄,
which satisfies (ρS − ρ0)/ρ0 � 1. Further assume that

w
0
/
√
gLRT0/E = O(1), Pr

0
= O(1), χ0 = O(εj+1), j ≥ 1,(2.11)

where ε = RT0

E . Then the solution of the nondimensional compressible Navier–Stokes
equations can be formally represented in the form

ū = u+O(ε), v̄ = v +O(ε), θ̄ = θ +O(ε),(2.12)

p̄ = 1 + pj+1ε
j+1 + pj+2ε

j+2 +O(εj+3), ρ̄ = 1− θε+O(ε2),(2.13)

where ∂(x,z)pj+1 = −χ0ε
−(j+1) ez, ez being the vertical unit vector directed upwards,

and where the variables θ, u, v and P =
pj+2ε

j+2c20
γw2

0

satisfy the system (2.3)–(2.6). The

nondimensional pressure 1 + pj+1ε
j+1 and density 1 in equations (2.13) correspond

to the static solutions pS and ρS.
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3. Numerical simulations. For the model introduced in the previous section,
we first present the numerical method and devote the next subsection to the results.

3.1. Numerical method. We consider a ω − ψ formulation of the equations;
the problem (2.3)–(2.6) with (2.9) becomes

∂τθ + u∂xθ + v∂zθ = ∂xxθ + ∂zzθ + FK exp(θ),(3.1)

∂τω + u∂xω + v∂zω = Pr
0
(∂xxω + ∂zzω) + Pr

0
Ra

0
∂xθ,(3.2)

∂xxψ + ∂zzψ = −ω,(3.3)

where ψ is the stream function, ω the vorticity,

u = ∂zψ, v = −∂xψ.
The free surface boundary conditions become

x = 0, 2 : ∂xθ = 0, ψ = 0, ω = 0; z = 0, 2 : θ = 0, ψ = 0, ω = 0.(3.4)

Problem (3.1)–(3.4) is discretized using finite differences with an alternating directions
method. For (3.1), this yields

θ
n+1/2
ij − θnij
τ/2

+ unij
θ
n+1/2
i+1,j − θn+1/2

i−1,j

2h
+ vnij

θni,j+1 − θni,j−1

2h

=
θ
n+1/2
i+1,j − 2θ

n+1/2
i,j + θ

n+1/2
i−1,j

h2 +
θni,j+1 − 2θni,j + θ

n
i,j−1

h2 + FK exp(θni,j)

and

θn+1
ij − θn+1/2

ij

τ/2
+ unij

θ
n+1/2
i+1,j − θn+1/2

i−1,j

2h
+ vnij

θn+1
i,j+1 − θn+1

i,j−1

2h

=
θ
n+1/2
i+1,j − 2θ

n+1/2
i,j + θ

n+1/2
i−1,j

h2 +
θn+1
i,j+1 − 2θn+1

i,j + θn+1
i,j−1

h2 + FK exp(θni,j),

where τ is the time step and h the space step. Other equations are discretized similarly.
A continuation method is used to study existence and stability of stable stationary

and periodic-in-time solutions. Among the three parameters of the problem Pr
0
, Ra

0
,

and FK, the last two are more essential. So far, for a fixed value of the Prandtl number
(Pr

0
= 1) we vary Ra

0
and FK.

3.2. Numerical results. This subsection can be considered at the heart of our
work: it introduces all the new physical behaviors of the considered configuration.
We first present the state of the art by recalling the results of Merzhanov and Shtessel
[18]. This allows us to roughly identify zones in the Ra

0
−FK parameter plane where

explosion is to be found. Convection appears as a supercritical bifurcation from a
static solution when FK < FKc; we present the first results validating our code and
emphasize that 1-vortex and 2-vortex convection regimes can coexist for a given value
of the Frank-Kamenetskii number. We then focus on the behavior of the system
around the bifurcation point of codimension 2 at FKc and Rac(FKc), and identify new
oscillating regimes, which can be periodic or lead to explosion. We finally present
some results on the unstationary behavior of the system in the last subsection.
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3.2.1. The diagram of Merzhanov and Shtessel. Let us first come back to
the work by Merzhanov and Shtessel and summarize their results. They have shown
by direct numerical simulation the existence of four regions in the Rayleigh/Frank-
Kamenetskii parameter plane. In region I, there exists a stationary solution in a static
fluid while in region II, a stationary solution exists in a moving fluid. In region III,
thermal explosion arises from a moving fluid, whereas in region IV thermal explosion
arises from a static one. The boundary between regions I and IV is predicted by the
Frank-Kamenetskii theory and given by FKc ≈ 0.88. The interesting scenario takes
place in region II for the Frank-Kamenetskii parameter bigger than the critical value.
Convection enhances the heat losses at the boundaries, thus inhibiting explosion. The
limit between III and IV is difficult to locate since convection is always enhanced by
the blow-up of the temperature so that it is difficult to decide if convection started
just before or during thermal explosion. These regions were characterized in [18] and
several simple models were provided in order to describe the behavior of the solutions
in the various regions. However, the only convection regime considered in this paper is
a 2-vortex regime. Besides, because of computation limitations, the detailed behavior
at the point where the four regions merge is not studied. We first show, in the
next subsection, that there exists also a 1-vortex solution. Moreover, 1- and 2-vortex
regimes can coexist; explosion can occur from both of these regimes.

3.2.2. Two regimes: One or two vortices. Consider first the case where
FK < FKc. There exists a static solution. For Ra

0
sufficiently large, it loses stability

and a convective regime appears. The bifurcation diagram is usual for convection
problems. The maximum of the stream function ψmax is roughly proportional to√
Ra

0
θ̄ − Rac as represented on Figure 1 and as will be shown in subsection 5.5, where

Rac is the critical value of the Rayleigh number and θ̄ is the averaged temperature in
the vessel. The supercritical bifurcation can also be observed on a (ψmax,Ra0

)-plane.
At the same time the mean temperature decreases when Ra

0
increases. As can be

expected, an increase of FK results in an increase of the mean temperature and of
the maximum of the stream function. It decreases the critical Rayleigh number (see
Figure 1).

In the present configuration (2D square domain), only 1-vortex and 2-vortex so-
lutions are observed. The solution bifurcating from the static solution has only one
vortex which fills practically the whole domain being slightly moved to its upper part.
For Ra

0
larger than a critical value Ra1,2, a transition from a 1-vortex solution to

a 2-vortex solution is observed. Decreasing Ra
0
and using the 2-vortex regime as

an initial condition, we observe a reverse transition to a 1-vortex solution but for
Ra2,1 < Ra1,2. Note that the number and position of the vortices depend on the ge-
ometry of the vessel and that, in the present situation, there exists a parameter range
Ra

0
∈ [Ra2,1,Ra1,2], where the two regimes 1-vortex and 2-vortex coexist.

Now consider the case FK > FKc, which means that no static solution is to be
found. For Ra

0
large enough, a 2-vortex solution exists (see Figure 2; FK = 0.9 and

FK = 1.0). For FK = 0.9, decreasing Ra
0
leads to a transition to a 1-vortex regime

and finally leads to explosion. However, for FK = 1.0, decreasing Ra
0
directly leads

to an explosion from this 2-vortex regime. It can be shown by a proper choice of the
initial condition that a 1-vortex solution can still be reached; if we increase Ra

0
from

this 1-vortex solution, we jump onto the 2-vortex solution; a decrease of Ra
0
leads to

an explosion from this 1-vortex regime. Again, one can observe the existence of a Ra
0

range for which the 1-vortex regime and the 2-vortex regimes coexist. It has to be
noticed that the symbols used in Figure 2 for a 1-vortex or a 2-vortex regime do not
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Fig. 1. Convective regime bifurcating from the static solution for five values of the FK pa-
rameter below the critical conditions: maximum of the stream function versus effective Rayleigh
number Ra

0
θ̄.

reproduce any real temperature or stream function field.

For Frank-Kamanetskii numbers slightly above the critical value for the existence
of a stationary solution, a general scenario can be proposed. Decreasing Ra

0
leads to

a decrease of the maximum of the stream function (and to an increase of the mean
temperature) until a minimum is reached (see Figure 2). A further decrease of Ra

0

yields a great increase of the mean temperature and of the maximal stream function
until explosion is obtained and the stationary solution disappears (see Figure 2).

3.2.3. Oscillating thermal explosion around critical conditions. From
the previous subsections, one could think that all scenarios have been covered. How-
ever, a closer look at the neighborhood of the point (FKc,Rac(FKc)) reveals a rich
nonlinear behavior.

We consider three values of FK, two above FKc, 0.8775 and 0.88, and one be-
low, 0.875. Starting from values of Ra

0
for which a convective stationary solution is

observed numerically, we continue this solution using Ra
0
as a bifurcation parameter.

For FK = 0.88, decreasing Ra
0
successively yields a decrease and then an increase

of θmax, appearance of a periodic-in-time mode, an increase and then a decrease of
the oscillations amplitude, reappearance of a stationary solution, and explosion. For
the periodic solution, the maximal temperature also oscillates and can reach the value
θmax 	 2.0, which is much larger than the critical value 1.2 of the Frank-Kamenetskii
theory (see Figure 3).

For FK = 0.8775, one again observes the appearance of a periodic solution with an
increase of the oscillations, but then there is an explosion from the oscillating solution
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Fig. 2. Explosion from 1-vortex or 2-vortex regimes for FK = 0.9, 1.0; on the left the maximal
stream function is represented; on the right, the maximal temperature is represented; explosion is
indicated by a vertical arrow.

(see Figure 3). Using proper initial conditions permits us to follow the end of this
branch: oscillations decrease, stationary solution appears again, and then explosion
occurs from the stationary solution (see Figure 3). Let us mention that for this value
of FK, the period of oscillations is very large as will be seen in the next subsection.

For FK = 0.875, the branch on the right reaches the nonconvective stationary
solution at Ra

0
= 163. Further decreasing the value of the Rayleigh number results in

a straight line on Figure 3, since no convection is present and we plot only the max-
imal value of the temperature profile without convection for various values of Ra

0
.

We could think that for the parameter range Ra
0
∈ [110, 163], the previous branch

is the only branch. However, two striking scenarios also appear for FK = 0.875 for
some Rayleigh numbers smaller than Rac. Besides the stable static solution for this
value of FK below the critical value, other stable solutions exist, both stationary or
with periodic oscillations, and can be reached by using proper initial conditions (see
Figure 3). One observes thermal explosion either from a periodic oscillating solution
(increasing Ra

0
) or from a stationary convective solution (decreasing Ra

0
). This is

all the more surprising since intuition predicts that convection should inhibit explo-
sion by enhancing the heat losses through the boundaries. In this case, convection
promotes explosion. An explanation for the presence of this branch of solutions can
be suggested. In the situation without convection, for FK < FKc, there exists two
branches of solutions, one stable and one unstable with higher temperature; these
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Fig. 3. Stationary solutions, periodic-in-time solutions, and oscillating explosion. For station-
ary solutions, only one point is plotted associated with the maximal temperature versus Ra

0
; for

periodic solutions, we have plotted the maximum and the minimum of the maximal temperature in
the vessel versus Ra0 (the branches of stationary unstable solutions corresponding to these periodic
solutions are not represented).

two branches join at the bifurcation point FK = FKc. The piece of the stable branch
observed for small Rayleigh numbers at FK = 0.875 could be the stabilization by
convection of this unstable nonconvective branch for FK close to FKc.

3.2.4. Unstationary behavior. The purpose of this subsection is to describe
the unstationary behavior of the oscillating solutions previously identified. We focus
on value FK = 0.8775, the richest scenario.

We first present the growth of the oscillations when we start from a stationary
convective solution at Ra

0
= 147 and set at t = 0, Ra

0
= 145. Figure 4 describes

the path to the periodic oscillating solution. The very slow growth is related to the
closeness to the Hopf bifurcation. More interesting is the analysis of the periodic
solution; almost all the time (about 90%) the solution is close to a static one and
periodically, with a very long period compared to the nondimensional time, it almost
explodes, and ψmax and θ̄ reach their maximal value.

The second point is related to the thermal explosion from a periodic oscillating
solution on the other side of the branch at Ra

0
= 117.5. In Figure 5(a) we have rep-

resented the mean temperature, the maximal temperature, and the maximal stream
function, first for the periodic oscillating solution at Ra

0
= 117.5. We then set, at

t = 0, Ra
0
= 118, and represent on the second figure Figure 5(b) the evolution of

the previous three quantities. The system goes on its periodic trajectory for another
period and then it explodes. The explosion behavior is very different from the one on
the other side of the branch.
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In conclusion, we point out that taking into account fluid motion when study-
ing explosion reveals new phenomena—periodic-in-time solutions and explosion ei-
ther from these solutions or from stationary solutions. These features happen for
FK and Ra

0
close to their critical value. A simplified system is proposed in section 5

in order to investigate, analyze, and reproduce these phenomena.

4. Linear stability analysis for a simplified model for FK < FKc. The
purpose of this section is to perform a linear stability analysis on a simplified model,
which allows us to obtain a good estimate of Rac (the critical value of Ra

0
for fixed

FK < FKc) for the onset of natural convection. It is another validation of the code, but
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more specifically it allows us to gain physical insight on the main difference between
the present situation, where the chemistry is coupled to the hydrodynamics, and the
classical Rayleigh–Bénard problem.

The linear stability analysis of system (3.1)–(3.4) around the nonconvective solu-
tion is well known for a nonreactive fluid in the Rayleigh–Bénard configuration (see,
e.g., [3], [4], [6], [10], [11]).

We start in the same manner; problem (2.3)–(2.6), (2.9) is linearized about a
static solution θS(z), u = v = 0, which depends only on the vertical coordinate. Using
simple algebra, pressure can be eliminated; it yields

∂τθ = ∆θ + F ′(θS) θ − θ
′
Sv,(4.1)

∂τ∆v = Pr
0
∆∆v + Pr

0
Ra

0
∂xxθ,(4.2)

where F (θS) denotes the reaction rate. In the present section, it is assumed to be
affine with respect to θS ,

F (θS) 	 FK (1 + θS),(4.3)

which is valid for small θS and leads to simple computations. The boundary conditions
are the same as in the classical analysis [6], [11].

We look for the solution of (4.1)–(4.3) of the form θ(x, z, t) = θ̃(z)e−λτ cos(kx),
v(x, z, t) = ṽ(z)e−λτ cos(kx), where k = πm/2, m = 1, 2, . . . , which yields the eigen-
value problem

− λθ̃ = θ̃′′ − k2θ̃ + FK θ̃ − θ′S ṽ,(4.4)

− λ(ṽ′′ − k2ṽ) = Pr
0
(ṽ
′′′′ − 2k2ṽ

′′
+ k4ṽ)− Pr

0
Ra

0
k2θ̃,(4.5)

with the boundary conditions

z = 0, 2 : θ̃ = 0, ṽ = ṽ
′′
= 0.(4.6)

The convective instability boundary can be found from the condition that the
eigenvalue λ with the minimal real part is zero. In the present study, these eigenvalues
are not computed exactly but are approximated.

With the approximation (4.3) the static solution θS(z) can be found explicitly.
However, even in this case, problem (4.4)–(4.6) does not give a simple expression
for λ. Hence θS(z) is approximated by the first term of its Fourier series (it can be
verified that the second term is already essentially less than the first one): θS(z) 	
2
πσ sin(

πz
2 ) so that θ

′
S(z) 	 σ cos(πz2 ) with σ = 8FK

π2 − 4FK
. Note that σ is well defined

if FK < π
2/4, which is satisfied for FK < FKc.

We look for the solution θ̃ and ṽ of (4.4)–(4.6) in the form of Fourier series

θ̃ =

+∞∑
n=1

bn sin
(πnz

2

)
, ṽ =

+∞∑
n=1

cn sin
(πnz

2

)
and assume λ = 0. It leads to the infinite system for the coefficients cn:

c2 = −γ1c1,

cn−1 + cn+1 = −γncn, n = 2, 3, . . . .
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Table 1
Values of Rac given by (4.7) and by the numerical simulations.

FK 0.4 0.5 0.6 0.7 0.8

numerical Rac 1025 740 547 408 280
analytical Rac 922 735 558 446 340
658/θmax 2680 1999 1532 1178 879

Here

γn =
Ran

Pr
0
Ra

0

, Ran =
2Pr

0

σk2

((πn
2

)2

+ k2

)2((πn
2

)2

+ k2 − FK

)
.

The critical Rayleigh number Rac is given by the condition that the determinant of
this infinite system of equations equals zero. To find Rac explicitly we have to truncate
the system. Taking only two equations (c3 = 0) leads to

Ra2
c = Ra1Ra2,(4.7)

while for three equations (c4 = 0),

Ra2
c =

Ra1Ra2Ra3

Ra1 +Ra3

,

which is close to Ra1Ra2 if Ra3 >> Ra1.
It can be easily verified that if Ran+1 
 Ran, n = 2, 4, . . . , then each successive

approximation will be close to the previous one. In the case k = π/2 (m = 1), these
conditions are satisfied and one can use the approximation (4.7).

In Table 1, the values of Rac given by (4.7) are compared with the numerical
results for various values of FK. It is interesting to note that the agreement is pretty
good far from the critical conditions for explosion; it gets worse when we get really
close to FKc even if the estimate for FK = 0.8 is still correct up to 20%.

Note that these values of Rac are much smaller than 658/θmax as stated in Mer-
zhanov and Shtessel [18] and given in the third row. (658 is the critical Rayleigh
number for the Rayleigh–Bénard problem in an infinite layer with free surface bound-
ary conditions.) Actually, 658/θmax would be a good approximation of Rac if the
temperature profile were linear in the upper part of the domain, as it is in the original
Rayleigh–Bénard problem. The present study shows that the nonlinear temperature
profile yields quite different values of Rac.

5. Model problem, bifurcation analysis. In the previous section, we have
considered the behavior of the system away from the explosion limit. We investigate,
in the present section, a model problem to describe the observed oscillatory instability,
the Hopf bifurcations, and the oscillating explosion close to the critical conditions for
both convection and explosion (see subsection 3.2.3).

A similar attempt was performed in [18]; however, they wanted only to describe
the nonlinear variations of the heat losses at the boundaries due to natural convection.
Consequently, the authors used one differential equation on a variable representing
the mean temperature, and the heat losses coefficient α was a nonlinear function of
this characteristic temperature taking into account the effect of natural convection.

Here we want to describe a complex bifurcation behavior, and a single equation
is not able to reproduce, for example, the observed limit cycles. We thus consider the
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following model problem of two ordinary differential equations:

dtθ̄ = F (θ̄)− α
(|ψmax|

)
θ̄,(5.1)

dtψmax = −aψmax(ψ
2
max + δ2(θc − θ̄)),(5.2)

where θ̄ and ψmax correspond to the mean value of the temperature and the maximum
value of the stream function, and a, δ, and θc are positive constants. It has to be
noticed that α, a, δ, and θc also depend on the parameter Ra

0
.

Equation (5.1) describes the heat balance between heat production due to the
reaction and heat loss through the boundaries. It is almost the same as in Semenov’s
theory of thermal explosion with the difference that the coefficient α is not constant;
α(|ψmax|) is now a function of the maximal stream function and depends on the
Rayleigh number as a parameter.

Equation (5.2) describes a supercritical bifurcation of convective solutions. If
θ̄ < θc(Ra0

), then there is only one solution ψmax = 0. If θ̄ > θc, then there are also

two other solutions ψmax = ±δ
√
θ̄ − θc.

In the Rayleigh–Bénard problem, the Rayleigh number reads Ra =
gL3α0∆T
κ

0
ν
0

,

where the static temperature profile is a linear function of z leading to a temper-
ature difference of ∆T , where α0 is the thermal expansion coefficient (1/T0 in the
present case of a perfect gas). In the present study, the static temperature pro-
file is highly nonlinear as already observed in the analytical study of the critical
Rayleigh number (section 4). We then consider an effective Rayleigh number based

on the averaged temperature Ra =
gL3θ̄RT0/E

κ
0
ν
0

= Ra
0
θ̄, where Ra

0
=
gL3RT0/E

κ
0
ν
0

;

besides, from subsection 3.2, we know that for a stationary convective solution,

ψmax = b
√
Ra− Rac = b

√
Ra

0

√
θ̄ − θ̄c, with θ̄c = Rac/Ra0

, so that δ = b
√

Ra
0
.

We then consider ψ̃ = ψmax/δ with ã = aδ2. In what follows we omit the tildes for
the equation on ψ̃ and the bars for the equation on θ̄ for the sake of simplicity and
the system reads as follows:

dtθ = F (θ)− α
(|ψ|)θ,(5.3)

dtψ = −aψ(ψ2 + θc − θ).(5.4)

5.1. Various modeling of the heat losses α. In this paper, we consider two
models for the description of the heat losses coefficient α. The first one is a very
simplified model:

α(|ψ|) = α0(1 + µ|ψ|2),(5.5)

where µ is the sensitivity of the heat losses coefficient α on convection; it can depend
on the parameter Ra

0
. For this model, it is possible to define analytically the critical

conditions in terms of µ, θc, and α0 (see subsection 5.3). However, even if this model
reproduces the existence of stable limit cycles and Hopf bifurcations, it occurs in
such a narrow parameter range that it makes the comparison with the original partial
differential equation model difficult. This is the reason why we introduce a second
model; it is based on the study [18] where a formula is provided in order to approximate
the heat losses coefficient in the configuration of high Rayleigh numbers Ra and for a
nonreactive problem:

α = α0

(
1 +

µRan

Ra + γ

)
.(5.6)
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In the present situation, when Ra
0
is reaching Rac, where the supercritical bifurcation

is taking place, the modification of α0 should approach zero so that Ra, in (5.6), has to
be replaced by Ra

0
θ−Rac, which can be rewritten for stationary convective solutions:

Ra
0
(θ − θc) = Ra

0
ψ2. Finally we consider the model:

α(|ψ|) = α0

(
1 +

µRan−1
0

|ψ|2n
|ψ|2 + γ/Ra

0

)
;(5.7)

we will consider essentially n = 1 and assume that the sensitivity of the heat losses
coefficient to the convection µ depends on the parameter Ra

0
.

For this second model, we will show that the parameter range for the existence
of a stable limit cycle starting at the Hopf bifurcation is larger; besides, this model is
able to reproduce the existence of a stable limit cycle between two Hopf bifurcations,
the oscillations amplitude of which are first increasing and then decreasing without
leading to explosion (sections 5.4 and 6).

5.2. Conditions for Hopf bifurcation. Let us now study the stability of a
stationary solution (θS , ψS). We will show that the presence of oscillations (as ob-
served in section 4) can be described by the model problem (5.3)–(5.4) under some
assumptions. Consider the linearized system

dtθ = F
′(θS)θ − α(|ψS |)θ − α′(|ψS |)θSψ,(5.8)

dtψ = aψSθ − 2aψ2
Sψ.(5.9)

It has purely imaginary eigenvalues ±iφ if

F ′(θS)− α(|ψS |)− 2aψ2
S = 0,(5.10)

− 2aψ2
S (F

′(θS)− α(|ψS |)) + aψSα′(|ψS |)θS = φ2.(5.11)

Consider first equation (5.10). It cannot have solutions if θS < θ∗, where θ∗ is the
critical temperature for the Semenov’s theory of thermal explosion given by the equal-
ities

F (θ∗) = α∗θ∗, F ′(θ∗) = α∗.

Indeed, in this case

F ′(θS)− α(|ψS |) < F ′(θS)− α∗ < 0.

If θS > θ
∗, then F ′(θS) > α

∗ and (5.10) may be satisfied. We have

F ′(θS)−
F (θS)

θS
− 2a(θS − θc) = 0,(5.12)

− 4a2ψ4
S + aψSα

′(|ψS |)θS = φ2.(5.13)

Equation (5.12) and the inequality

θS >
4aψ3

S

α′(|ψS |)
obtained from (5.13) determine conditions when the system (5.8), (5.9) has purely
imaginary eigenvalues. These conditions can be satisfied on decreasing branches of
the maximal value of the stationary stream function ψ(Ra

0
) due to the fact that θc is

inversely proportional to Ra
0
.
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5.3. Analysis of the first model. Let us first define the critical conditions
as well as the conditions for Hopf bifurcation in the case of α(|ψ|) = α0(1 + µ|ψ|2).
Concerning the critical conditions, θLP (LP for “limit point” or critical point) satisfies

(θLP − θc)2 + (θLP − θc)(β + σ) + βσ − 1 = 0, β = θc − 1, σ = 1/µ− 1,(5.14)

which always has real solutions with only one above θc,

θLP − θc = −β + σ

2
+

√
1 +

(
β − σ
2

)2

.(5.15)

Conditions for Hopf bifurcation then read as

exp(θH)

θH
= α0(1 + µ(θH − θc)) = 2a

θHθc
θH − 1

,(5.16)

− 4a2ψ4
H + 2aψ2

Hα0µθH = φ2, θH >
2aψ2

H

α0µ
,(5.17)

where the H subscript corresponds to the point of Hopf bifurcation. The last inequal-
ity reduces to θH <

2aθc
2a−α0µ

if 2a−α0µ > 0; it is always true if 2a−α0µ ≤ 0. For the
Hopf bifurcation to take place, it is then necessary that(

− 2a

α0µ
+ β +

1

µ

)2

≥ 4β

µ
.(5.18)

The analysis of the trajectories of system (5.3), (5.4) using CONTENT [16] shows
that there exist three qualitatively different situations depending on the choice of pa-
rameters: decaying oscillations where a trajectory converges to a stable focus (Case A
of Figure 6), oscillations with increasing amplitude from an unstable stationary point
and an oscillating explosion (Case C of Figure 6), and, in between these two, slowly
decreasing oscillations from an unstable limit cycle decaying to a stable focus or slowly
increasing oscillations from this unstable limit cycle yielding to explosion (Case B of
Figure 6).

Decaying and growing oscillations were also observed for the complete problem
(section 3). Stable periodic oscillations apparently observed for it are not found
directly for the model problem by simply changing the parameters and following the
trajectories. This is due to the fact that the parameter range corresponding to the
existence of a stable limit cycle is extremely small even if we know from the Hopf
theorem that it is not reduced to an interval of zero length.

We then conducted a more detailed analysis using limit cycle continuation in order
to detect the point where an unstable limit cycle is merging with a stable one. The
complete bifurcation diagram is given on Figure 6, where the corresponding phase
portraits are provided at the bottom.

The main problem with this model is the very narrow parameter range where
a stable limit cycle is to be found. It is all the more difficult when α0 is becoming
smaller. The idea was then to switch to another model where the parameter sensitivity
is a little lower due to saturation phenomena: model 2.

5.4. Analysis of the second model. The second model is introduced because
it brings three new features. The parameter range where stable limit cycles exist
is larger. It is also due to the fact that the stable limit cycle reaches the loop of
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Fig. 6. Bifurcation diagram for the first model with θc as the bifurcation parameter with the
various phase portraits (C for converging trajectories and D for diverging trajectories).
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Fig. 7. (a) Continuation of the limit cycle with θc as the continuation parameter in the phase
plane (θ, ψ) from the Hopf bifurcation point to the loop of separatrice. (b) Bifurcation diagram for
the second model with θc as the bifurcation parameter. (c) Bifurcation diagram for the second model
with µ as the bifurcation parameter.

separatrice associated with the other (saddle) equilibrium instead of meeting with an
unstable limit cycle as in the first model (Figure 6). Finally, two Hopf bifurcations
are found in the neighborhood of the initial point for both bifurcation parameters θc
and α0. The initial point α0 = 2.7, θc = 1.0 is the point we start the continuation of
equilibrium from.

We find the two critical points where the equilibria disappear at α0 = 2.7, θc =
1.06 (denoted by “limit point” in Figure 7(b)) and α0 = 2.688, θc = 1.0 (denoted
by “limit point” in Figure 7(c)). Besides, two Hopf bifurcations are identified at
α0 = 2.695, θc = 1 and at α0 = 2.7, θc = 1.019; at the initial point, the equilibrium is
stable and is destabilized through the Hopf bifurcations.

On Figure 7(a), we have used CONTENT [16] in order to represent the contin-
uation of the stable limit cycle with θc as the bifurcation parameter. The various
lines starting from the Hopf bifurcation point and reaching the loop of separatrice
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represent the continuation of one point of the limit cycle. The bifurcation diagram is
presented on Figure 7(b), and we see that the stable limit cycle is present from the
value θc = 1.01893, where the Hopf bifurcation is taking place until θc = 1.02578,
where the stable limit cycle is merging with the loop of separatrice. Another possible
bifurcation parameter which brings a reparametrization of ψ̇ = 0 is µ, the sensitivity
of the heat losses coefficient on convection, instead of α0. The corresponding bifurca-
tion diagram is presented on Figure 7(c), knowing that the initial point corresponds
to µ = 0.7.

5.5. Comparison with direct numerical simulations. The purpose of the
present section is to make the link between the direct numerical simulations of sec-
tion 3, on the one side, and the results on the model problem presented in the first
part of this section, on the other side. The fundamental point is to be able to use
physical values of the parameters in the model problem. The first step is then to come
back to the relationship between the Semenov and Frank-Kamenetskii theories and
extend the relationship to the other parameters when convection is present.

The link between the Frank-Kamenetskii and the Semenov theories has already
been considered in [24], thus showing that around the critical conditions for explosion,
if θ̄ is the averaged temperature in the layer, exp(θ) ≈ exp(θ̄). Thus, integrating (2.1)
in z̄ over [0, 2] and changing the temperature scaling from the diffusion time L2/κ

0
to

the chemical time τch introduced in subsection 2.2 yields

dτ̄ θ̄ = −Φ+ exp(θ̄), τ̄ = t/τch = FK.τ,(5.19)

where Φ is the total heat flux through the boundaries, modeled by Φ = α0θ̄. However,
the critical value of the mean temperature given by the Frank-Kamenetskii theory and
denoted θ̄∗0 is .86, whereas critical conditions for (5.19) yield α∗

0 = e, θ̄∗1 = 1. Thus,
even if exp(θ̄) is a good approximation of the value in the mean of the chemical source
term, it does not provide a good approximation of its derivative as a function of the
mean temperature. Consequently, we consider η = θ̄/θ̄∗0 and approximate exp(θ̄)
by θ̄∗0 exp(θ̄/θ̄

∗
0), so that η satisfies

dτ̄η = −α0η + exp(η),(5.20)

the critical conditions of which are defined by η∗ = 1, α∗
0 = e, or θ̄ = θ̄∗0 = 0.86.

The change of variable then allows us, by changing the derivative of the chemical
source term at critical conditions, to recover critical conditions compatible with the
Frank-Kamenetskii theory.

We then have to check that the value of the heat flux at the boundaries is cor-
rectly predicted by our numerical model. We have computed the values of the heat
flux for various values of the Frank-Kamenetskii number below the critical value, for
two spatial discretizations 21 and 51 points, as well as the values predicted by the the-
ory. Numerical results and theory match very well and the error remains below 4%.
One can check from these numerical simulations of (2.1) that α0 = ∂z̄ θ̄|z̄=0 ∗ θ̄∗0/θ̄
approaches the value e in the neighborhood of the critical conditions.

It was proposed in subsection 3.2 that the convective instability is appearing as a
supercritical bifurcation and that the maximum of the stream function is proportional
to

√
Ra− Rac =

√
Ra

0

√
θ − θc, a property used in the model problem. On Figure 8(a),

we check this relationship for FK = 0.6, FK = 0.875, and FK = 0.9; it thus makes the
link between the stream function observed with either model and the stream function
given by the direct numerical simulations.
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Fig. 8. Comparison of model and simulations: (a) ψmax at FK = 0.6, 0.875, 0.9; (b) heat losses
coefficient at FK = 0.6, 0.9.

In order to justify the choice of the various models considered for the heat losses
coefficients, we have plotted α versus Ra

0
θ on Figure 8(b), comparing on the one side

the ratios of the heat flux over the mean temperature from the simulation and on the
other side the values given by the second model.

We have done that for various values of FK; we isolate two cases on Figure 8(b) for
FK = 0.6, below the critical value, and FK = 0.9, above the critical value. For the first
one, starting from the constant analytical value α0 which corresponds to the static
solution, we can fit very precisely, using the second model, the values coming from
the direct numerical simulations and then prove that the choice of a constant value
of µ and γ is possible. For the second one, there exists a region of the parameter Ra

0

where the maximum of the stream function has a square root-like behavior; in this
region, we can still fit α very precisely as shown on Figure 8(b). However, in the
region where the maximum of the stream function separates from the square root-like
behavior, the fit for α is not valid anymore and the parameters µ and γ cannot remain
fixed.

6. Discussion. In the present section, we discuss three key points: the definition
of thermal explosion, the influence of convection on heat losses at the boundaries,
and finally the ability of the model problem described in the previous section to
reproduce the complete bifurcation diagram of the full partial differential equation
system with Ra

0
as the bifurcation parameter at fixed FK.

Classically, thermal explosion is defined as the nonexistence of a stationary solu-
tion for (2.1). When gravity is present and convection interferes with heat production,
our study makes it clear that this definition of thermal explosion is not complete. Ac-
tually, there is a parameter range where there exists an unstable stationary solution
and where thermal explosion can still occur whatever the initial data (FK = 0.8775,
which is below the critical value, and for the Rayleigh range between the two Hopf
bifurcations yielding oscillatory solutions; see Figure 3), whereas for some parameter
range, even if the stationary solution exists and is not stable, there exists periodic
oscillations and no thermal explosion is found in the attraction basin of the stable
limit cycle; however, the possible domain of initial conditions in order to converge to
these stable oscillations is limited. Due to the presence of this oscillatory instability,
we have to give a more complete definition: thermal explosion is the blow-up of the
temperature; it corresponds to three scenarios: there exists no stationary solution
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and no periodic solution; there exists a stable stationary solution or a stable periodic
solution with its attraction set of initial data (which can be bounded or not) and the
initial solution does not belong to this set; or, finally, there exists unstable stationary
solutions and the temperature blows up whatever the initial data.

The second point we want to come back to is the influence of convection on
heat losses. The convective instability due to the nonlinear profile of temperature is
difficult to relate to the linear one in the Rayleigh–Bénard configuration as shown in
section 4, where the critical Rayleigh numbers cannot be correlated. The modeling of
the heat losses in the context of thermal explosion coupled to convection was still an
open problem. It then becomes clear that using the direct numerical simulations and
linear stability analysis, we were able, first, to characterize the critical conditions for
the convective instability to appear, and, second, to model the heat losses through an
interpolation formula that was to be really precise (using µ and γ) on the square root-
like branches (either for FK below the critical value or for large Rayleigh numbers).
There are two points still to be discussed here: first, what is the influence of the
transition from one vortex to two vortices on the heat losses? and, more generally,
depending on the aspect ratio, what would be the behavior of heat losses depending on
the modes?; second, what is the behavior of the heat losses in the regions of parameters
when we are close to thermal explosion and the stationary branch for ψ goes away from
a square root-like profile? The latter point will be discussed in the next paragraph:
the model problem is able to reproduce the bifurcation behavior of the full system.
Finally, we would like to emphasize that we have chosen Dirichlet boundary conditions
on part of the boundary, thus influencing the heat losses. It would be necessary to
reproduce the same kind of study in the case of Robin boundary conditions.

The last point we want to discuss is the ability of the model problem to describe
surprisingly well the bifurcation diagram of the full system of partial differential equa-
tions. We have already seen that the heat losses coefficient is well described by the
second model proposed in comparison with the direct numerical simulations; the cor-
respondence between the two systems, when the Rayleigh number is small enough,
already has been shown by making the link between Semenov and Frank-Kamenetskii
theories. However, the bifurcation parameters used in the direct numerical simulation
were the Rayleigh number Ra

0
and the Frank-Kamenetskii parameter FK. The second

model system, when FK is given, thus setting α0, Rac, and γ, still has two parameters
depending on Ra

0
: θc and µ. We have seen that there can be two causes of Hopf

bifurcation: either when θc is increasing on a decreasing branch of ψ or when µ is
decreasing. It has been shown that µ remains constant on a square root-like branch of
the stream function; however, we did not inquire as to what is the behavior of µ when
the stream function leaves this square root-like behavior. It can be shown for various
values of FK > FKc that in the region where the stationary value of ψ as a function
of Ra

0
changes its convexity, there is a strong variation of α as a function of ψ. Let

us consider, for example, the case when FK = 0.9, where no oscillations are found. It
is shown that for the same value of ψ, the value of α decreases for a smaller Ra

0
. We

can model this phenomenon by choosing a fixed γ and considering the evolution of
µ versus Ra

0
. The evolution of the heat losses coefficient sensitivity µ as a function

of Ra
0
presents a strong decrease of µ in the considered region. A similar result holds

for oscillating solutions.
The very striking fact is that this analysis provides a way of understanding why

oscillations can start growing and then decrease onto a stable stationary solution
before exploding, as is the case when FK = 0.88. Let us refer to the bifurcation
diagram, Figure 7. It shows that an increase of θc (which can be associated with a
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decrease of Ra
0
) at given µ can initiate the oscillations through a Hopf bifurcation. If,

in between the bifurcation point and the loop of separatrice, one encounters a strong
decrease of µ, then the amplitude of the limit cycle can decrease until it goes through
another Hopf bifurcation so that the stationary solution is stable again. Decreasing
µ further leads to an explosion from the stable stationary solution, which is exactly
the behavior of the full system for FK = 0.88. It is interesting to note finally that the
model system is able to reproduce all the bifurcation diagram identified using direct
numerical simulations.

7. Conclusion. In this paper we have presented a comprehensive simulation,
bifurcation analysis, and modeling of the nonlinear interaction of thermal explosion
and natural convection in a 2D square configuration. New stable periodic-in-time
solutions and oscillating thermal explosion have been identified in the neighborhood of
the critical conditions for both explosion and convection. The stable periodic solutions
can be modeled by a simple system of two ordinary differential equations. We have
justified the modeling of the heat losses depending on the regimes of convection and
especially in the neighborhood of the oscillating solutions, where the sensitivity of heat
losses to convection encounters a strong decrease. Finally, all the identified regimes
and bifurcations can be qualitatively described by the proposed model problem.

REFERENCES

[1] C. Barillon, G. Makhviladze, and V. Volpert, Heat explosion in a two-phase medium,
Proceedings of the International Conference on Multiphase Flows, Lyon, France, 1998,
CD-ROM, paper 691, pp. 1–8.

[2] J. Bebernes and D. Eberly, Mathematical Problems from Combustion Theory, Appl. Math.
Sci. 83, Springer-Verlag, New York, 1989.

[3] S. Chandrasekhar, Hydrodynamic and Hydromagnetic Stability, Clarendon Press, Oxford,
1961.

[4] P.G. Drazin and W.H. Reid, Hydrodynamic Stability, Cambridge University Press, Cam-
bridge, UK, 1981.

[5] A. Ern and V. Giovangigli, Multicomponent Transport Algorithms, Lecture Notes in Phys.
New Series m: Monographs 24, Springer-Verlag, Berlin, 1994.

[6] S. Fauve, Pattern forming instabilities, in Hydrodynamics and Nonlinear Instabilities, C.
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Abstract. This paper considers the asymptotic integration of a special class of initial value
problems involving a nonlinear regular perturbation scaled by a small parameter ε > 0. For t =
O(1/ε), these problems were classically solved using either the method of averaging or of multiple
scales to remove secular terms that arise in the natural power series procedure. Our new ansatz is
straightforward and effective. Moreover, it indicates when problems might occur in providing the
asymptotic solution on very long time intervals. Other closely related problems are also attacked
using renormalization.

Key words. oscillations, asymptotics, renormalization

AMS subject classifications. 34C15, 34E10

PII. S0036139901394311

Background: The rise of secular terms. We shall seek the asymptotic so-
lution xε(t) of the initial value problem for the weakly nonlinear nearly autonomous
vector system

ẋ = Mx + εN(x, t, ε)(1)

on the semi-infinite time interval t ≥ 0 as the small positive parameter ε tends to
zero. Such problems and their generalizations describe numerous electrical, mechan-
ical, and biological oscillations. Indeed, the asymptotic solution of related boundary
value problems for partial differential equations remains of substantial interest and
importance. Without further hypotheses, however, one can’t predict the time interval
on which the solution remains bounded. We shall assume that the matrix M has
only imaginary eigenvalues, that the fundamental matrix eMt for the unperturbed
problem has a period p > 0, and that the vector N is smooth in its three arguments
and p-periodic in t. We could even assume that M is a diagonal matrix having a
spectral decomposition M = iV ΛV −1 with a real diagonal matrix Λ and introduce
the transformation x̃ = V x.

By variation of parameters,

zε(t) = e−Mtxε(t)(2)

will satisfy the transformed system

ż = εf(z, t, ε),(3)

analogous to (1) with M = 0, for the p-periodic forcing

f(z, t, ε) ≡ e−MtN(eMtz, t, ε).(4)
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Indeed, we will say the system (3) is in standard form. Moreover, anticipating that
(3) will have a nearly constant solution for bounded times, setting

xε(t) = eMt(x(0) + εu(t, x(0), ε)) or zε(t) = x(0) + εu(t, x(0), ε)(5)

shows that the scaled correction vector u will satisfy the nearly linear initial value
problem

u̇ = f(x(0) + εu, t, ε)(6)

on some interval t ≥ 0 with u(0, x(0), ε) = 0.
The natural starting point for obtaining an asymptotic solution xε(t) of (1) or

zε(t) to (3) is to introduce the regular power series expansion

u(t, x(0), ε) = u0(t, x(0)) + εu1(t, x(0)) + ε2u2(t, x(0)) + · · ·(7)

for u, determining its terms uj uniquely and successively by equating coefficients of
like powers of ε in the differential equation (6) and the initial condition. Thus, the
uj ’s must satisfy the resulting sequence of linear initial value problems



u̇0 = f(x(0), t, 0), u0(0) = 0,

u̇1 = fx(x(0), t, 0)u0 + fε(x(0), t, 0), u1(0) = 0,

u̇2 = fx(x(0), t, 0)u1 + 1
2 [fxx(x(0), t, 0)u0 + 2fxε(x(0), t, 0)]u0

+ 1
2fεε(x(0), t, 0), u2(0) = 0,

etc.,

(8)

and thus integrating successively immediately provides the coefficients

u0(t, x(0)) =

∫ t

0

f(x(0), s, 0)ds,(9)

u1(t, x(0)) =

∫ t

0

[fx(x(0), s, 0)u0(s, x(0)) + fε(x(0), s, 0)]ds,(10)

etc., in (7). Using standard Gronwall inequality arguments (cf. Smith (1985) or Mur-
dock (1991)), it becomes clear that the regular power series (7) provides the asymp-
totic solution xε(t) as ε → 0 on bounded t intervals.

Recall, however, that Lagrange, Laplace, Poincaré, and other developers of celes-
tial mechanics knew that ordinary resonance implies that these uj ’s generally contain
secular terms that grow as polynomials in t of degree j + 1. This implies that the
expansion (7) then loses its asymptotic validity on long time intervals since the terms
εj+1uj(t) of εu all attain the same asymptotic order when t = O(1/ε). For this rea-
son, the power series (7) was called naive by Chen, Goldenfeld, and Oono (1996).
Many asymptotic methods have been developed to deal with this dilemma. The
most important classical techniques are the Krylov–Bogoliubov averaging method,
largely developed in Kiev in the 1930s (cf. Bogoliubov and Mitropolsky (1961)), and
two-timing or the method of multiple scales, developed at Caltech in the 1960s (cf.
Kevorkian and Cole (1996), but note independent early contributions of Kuzmak
(1959), Cochran (1962), and Mahony (1962)). Our work relates closely to the renor-
malization group method of Chen, Goldenfeld, and Oono (1996) and the invariance
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condition method of Woodruff (1993, 1995), though averaging and multiple scale con-
cepts remain essential to its development. Readers should note that Oono (2000) and
Nozaki and Oono (2001) simplify the earlier renormalization group method and that
Jarrad (2001) includes a promising variational perturbation theory. Chen, Goldenfeld,
and Oono (1996) began their paper by suggesting that “the practice of asymptotic
analysis is something of an art.” Like them, we seek to show that “the renormaliza-
tion group approach sometimes seems to be more efficient and accurate than standard
methods in extracting global information from the perturbation expansion.”

Simple resonance considerations show that u0 will grow like a multiple of t as
t → ∞ if and only if its known forcing f(x(0), t, 0) has a nonzero average

〈f(x(0), t, 0)〉 ≡ 1

p

∫ p

0

f(x(0), s, 0)ds,(11)

which conveniently coincides with the leading term in its Fourier series expansion
on 0 ≤ t ≤ p. Indeed, if we split f(x(0), t, 0) into its average and supplementary
fluctuating zero-average part

{f(x(0), t, 0)} = f(x(0), t, 0)− 〈f(x(0), t, 0)〉,(12)

the response u0 analogously splits into the sum

u0(t, x(0)) = ta0(x(0)) + U0(x(0), t)(13)

of its corresponding secular part a0t, with the average

a0(x(0)) ≡ 〈f(x(0), t, 0)〉(14)

as a coefficient and with the bounded secular-free part

U0(x(0), t) ≡
∫ t

0

{f(x(0), s, 0)}ds.(15)

Substituting (13) into (10), integrating by parts, and splitting fx into its average and
fluctuating parts, we next get

u1(t, x(0)) =

(∫ t

0

sfx(x(0), s, 0)ds

)
a0(x(0))

+

∫ t

0

[fx(x(0), s, 0)U0(x(0), s) + fε(x(0), s, 0)]ds

=

(
1

2
t2〈fx(x(0), t, 0)〉+ t

∂U0

∂x
(x(0), t)

)
a0(x(0))

+

∫ t

0

[
fx(x(0), s, 0)U0(x(0), s) + fε(x(0), s, 0)

− ∂U0

∂x
(x(0), s)a0(x(0))

]
ds.

Thus, u1 has the predicted polynomial form

u1(t, x(0)) =
1

2
t2〈fx(x(0), t, 0)〉a0(x(0))(16)

+ t

[
a1(x(0)) +

∂U0

∂x
(x(0), t)a0(x(0))

]
+ U1(x(0), t),
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where the coefficients involve the average

a1(x(0)) ≡
〈
fx(x(0), t, 0)U0(x(0), t) + fε(x(0), t, 0)− ∂U0

∂x
(x(0), t)a0(x(0))

〉
and the supplementary term

U1(x(0), t) ≡
∫ t

0

{
fx(x(0), s, 0)U0(x(0), s) + fε(x(0), s, 0)(17)

− ∂U0

∂x
(x(0), s)a0(x(0))

}
ds

that remains bounded for all t ≥ 0. (Corresponding higher-order first and final
coefficients aj and Uj won’t be so directly linked as when j = 0 and 1.)

Continuing in this manner, however, we ultimately learn that a bounded asymp-
totic solution zε(t) results on a longer time interval from using only the bounded
secular-free (or so-called bare) part

x(0) + εU0(x(0), t) + ε2U1(x(0), t) + ε3(· · · )
of the regular power series for zε. Further, we must generally replace the initial vector
x(0) by a time-varying amplitude Aε(τ) depending on the slow-time

τ = εt(18)

and found by integrating the initial value problem

dAε

dτ
= a0(Aε) + εa1(Aε) +O(ε2), Aε(0) = x(0),

on (possibly unbounded) τ intervals where its solution remains bounded. (Observe
that one might interpret the replacement of x(0) by the slowly varying Aε(τ) as finding
an envelope of solutions (cf. Ei, Fujii, and Kunihiro (2000)). Likewise, one could be
motivated by Whitham’s success in using slowly varying functions to asymptotically
solve nonlinear partial differential equations (cf. Whitham (1974) and Debnath (1997))
or by the use of related amplitude equations in stability theory (cf. Coullet and Spiegel
(1983), Eckhaus (1992), and Promislow (2001)). The basic ploy is to eliminate the
secular terms from the naive expansion (7). Moreover, observe that replacing x(0) by
Aε(τ) also makes our leading-order approximation eMtAε(τ) to xε(t) richer, although
such an improvement will not be asymptotically noticeable when t is only finite.
We admit that this simple renormalization result still remains largely unmotivated,
but we shall now obtain it by using an effective ansatz that could be applied more
generally (e.g., in asymptotically stable contexts where M is a stable matrix and
1
p

∫ p
0
f(x(0), s, 0)ds converges as p → ∞, allowing us to take an infinite p to again

define the averaged equation satisfied by the limiting A0(τ). When M = (−Q
0

0
iR )

for an exponentially decaying matrix e−Qt and a periodic eiRt, we would use such a
long-time average to approximate the first components of x).

The basic ansatz. We shall begin anew to solve (1) by directly introducing the
multiple-scale ansatz


xε(t) = eMtzε(t) ≡ eMt[Aε(τ) + εU(Aε(τ), t, ε)]
or
zε(t) = Aε(τ) + εU(Aε(τ), t, ε)

(19)
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corresponding to the bare expansion of Chen, Goldenfeld, and Oono (1996). It can be
motivated for problem (1), at least for τ finite, by substituting (19) into the differential
equation (3). Using the chain rule, we get

1

ε

dzε
dt

=

(
I + ε

∂U

∂Aε

)
dAε

dτ
+

∂U

∂t
= f.(20)

We now split ∂U
∂Aε

and f into sums of their average and mean-free fluctuating parts,
respectively, using the leading term and the supplementary sum of their Fourier ex-
pansions on 0 ≤ t ≤ p, and asking that Aε account for the nonzero average terms(

I + ε

〈
∂U

∂Aε

〉)
dAε

dτ
= 〈f〉

in (20), while the correction εU to Aε in (19) handles its remaining terms

ε

{
∂U

∂Aε

}
dAε

dτ
+

∂U

∂t
= {f}

with zero averages. (Readers might indeed recall that an analogous decomposition
occurs in the early comparison by Morrison (1966) of averaging and two-timing.)
Thus, Aε should satisfy the autonomous system

dAε

dτ
=

(
I + ε

〈
∂U

∂Aε
(Aε(τ), t, ε)

〉)−1

〈f(Aε + εU(Aε, t, ε), t, ε)〉

≡ a (Aε, ε)

= 〈f(Aε, t, 0)〉

+ ε

[
〈fx(Aε, t, 0)U0(Aε, t) + fε(Aε, t, 0)〉

−
〈

∂U0

∂Aε
(Aε, t)

〉
〈f(Aε, t, 0)〉

]
+ ε2(· · · )

(21)

and the initial condition Aε(0) = x(0), while U must satisfy

∂U

∂t
={f} − ε

{
∂U

∂Aε

}
a(Aε, ε)

and the trivial initial condition U(Aε(τ), 0, ε) = 0. We shall call the differential equa-
tion (21) the amplitude or first level RG (renormalization group) equation, noting
that an analogous evolution equation results when one uses the higher-order method
of averaging. The asymptotic integration of (21) on τ ≥ 0 is the appropriate candi-
date problem to replace the integration of (1) after t becomes unbounded. In these
differential equations for Aε and U , the times t and τ are taken to be independent
variables, as is typical in two-timing. Integrating the latter equation with respect to
t shows that U must satisfy the integral equation

U(Aε(τ), t, ε) =

∫ t

0

{f(Aε(τ) + εU(Aε(τ), s, ε), s, ε)}ds

− ε

∫ t

0

{
∂U

∂Aε
(Aε(τ), s, ε)

}
ds a(Aε(τ), ε).

(22)
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That we have obtained the compact formulae (21) and (22) to all orders in ε is quite
helpful, though we naturally next employ power series methods to get more explicit
asymptotic results for bounded τ values. Note, in particular, that ∂U

∂t has a zero
average, so its integral U in (22) will be bounded whenever the amplitude Aε(τ) is.
The resulting power series expansion

U(Aε(τ), t, ε) = U0(Aε(τ), t) + εU1(Aε(τ), t) + ε2(· · · )(23)

has coefficients successively and unambiguously given by

U0(Aε(τ), t) =

∫ t

0

{f(Aε(τ), s, 0)}ds,

U1(Aε(τ), t) =

∫ t

0

{fx(Aε(τ), s, 0)U0(Aε(τ), s) + fε(Aε(τ), s, 0)}ds

−
∫ t

0

{
∂U0

∂Aε
(Aε(τ), s)

}
ds a0(Aε(τ)),

etc., corresponding to the functions previously obtained in (15) and (17) for the non-
secular parts of the naive expansion (7). Note that U is p-periodic in t.

The remaining, and still formidable, task is to obtain the asymptotic solution of
the initial value problem (21) for the slowly varying amplitude Aε on time intervals
where it will determine a bounded solution xε or zε via (19) and (22). We naturally
first seek Aε(τ) as a power series

Aε(τ) = A0(τ) + εA1(τ) + ε2A2(τ) + · · · ,(24)

where (21) implies that its limit A0 must satisfy the limiting nonlinear problem

dA0

dτ
= a0(A0) ≡ 1

p

∫ p

0

f(A0, s, 0)ds, A0(0) = x(0),(25)

exactly as in classical averaging, while the next term A1, for example, must satisfy a
linearized problem

dA1

dτ
=

da0(A0)

dA0
A1 + a1(A0), A1(0) = 0.

The uniqueness of A0 implies the invertibility of the Jacobian matrix ∂A0

∂x(0) , which

satisfies the homogeneous linear matrix system as long as A0 remains defined. If
A0 ever blows up, we must naturally limit our interval of approximation. Using a
variation of parameters, then,

A1(τ) =
∂A0(τ)

∂x(0)

∫ τ

0

(
∂A0(s)

∂x(0)

)−1

a1(A0(s))ds(26)

and later terms Aj also follow successively without complication. Using the regular
perturbation expansions for Aε(τ) and for U(Aε(τ), t, ε) in the ansatz (19) results
in an approximation for xε that agrees asymptotically with the naive expansion on
intervals where t is finite, and that extends that approximation to longer intervals, at
least as long as τ remains finite and A0(τ) is defined. One possible further difficulty
is instability of A0(τ) as τ → ∞ (if x(0) isn’t restricted to the appropriate stable
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manifold). Another is encountering τ -secular terms in the power series generated for
Aε(τ). Note, indeed, that A1 will be τ -secular if the forcing term a1(A0) contains

a nontrivial projection in the range of the fundamental matrix ∂A0(τ)
∂x(0) . A bounded

τ , indeed, provides the usual time limit for obtaining asymptotic solutions by the
classical averaging and two-timing methods, which are quite intimately related (cf.
Morrison (1966)). Instability as τ → ∞ cannot be overcome. If, however, A0(τ) exists
for all τ ≥ 0 and if it decays exponentially to an asymptotically stable rest point or
sink, the resulting expansion (24) for Aε(τ) and the resulting expansion (19) for xε(t)
are uniformly valid for all t ≥ 0. Recall that Greenlee and Snow (1975) provided
an early discussion of such problems, while Murdock and Wang (1996) called this
the Sanchez–Palencia condition, in reference to related results for averaging. Indeed,
when a0(A0) ≡ 0, we can immediately seek the asymptotic solution xε(t) on O(1/ε2)
time intervals, as Sanders and Verhulst (1985) and Murdock and Wang (1996) show
for averaging and multiple scales, respectively, by replacing the slow-time τ in (21)
by the even slower-time

κ = ετ = ε2t.(27)

Readers should realize that the successful ansatz (19) can be interpreted as a
near-identity transformation for zε. Such transformations, which generalize a classical
asymptotic procedure of von Ziepel, were introduced by Neu (1980). They are useful in
a variety of contexts, including many where our periodicity assumption doesn’t hold.
In this sense, the basic method of matched asymptotic expansions (cf. Il’in (1992))
and the boundary function method of Vasil’eva, Butuzov, and Kalachev (1995) can
both be considered to be extensions of our renormalization technique, as will be
demonstrated below. Note further that the basic ansatz (19) is considerably more
direct than traditional two-timing, since the solution is not sought as an arbitrary
function of the slow-time τ , but rather as a function of t and the amplitude Aε, which
is obtained asymptotically as a function of τ by solving the renormalized equation
(21). At any stage, we have available a finite truncation

Un(Aε(τ), t, ε) ≡
n∑

j=0

εjUj(Aε(τ), t)

for the correction U to Aε satisfying U(Aε(τ), t, ε) = Un(Aε(τ), t, ε) +O(εn+1). Like-
wise, we have the truncation

An
ε (τ) =

n∑
j=0

εjAj(τ)

such that Aε(τ) = An
ε (τ) +O(εn+1). Substituting into the integral (22), this implies

that

U(Aε(τ), t, ε) = Un(Am
ε (τ), t, ε) +O(εn+1) +O(εm+2t)(28)

for any positive integers m and n, at least for appropriate bounded values of τ .
Our success in using the ansatz (19) for large times suggests that we might often be

able to asymptotically solve the amplitude equation (21) on long time intervals, even
when τ -secular terms in the series (24) for the amplitude Aε need to be eliminated,
by using a secondary ansatz

x(0) = Bε(κ) + εW (Bε(κ), τ, ε),(29)
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analogous to (19), in (19). We can asymptotically solve the resulting second level RG
equation for the amplitude Bε(κ) to get the resulting multiscale composite expansion

xε(t) = eMt[A(τ,Bε(κ) + εW (Bε(κ), τ, ε), ε)

+ εU(A(τ,Bε(κ) + εW (Bε(κ), τ, ε), ε), t, ε)],

where we have set

Aε(τ) = A(τ, x(0), ε)

to emphasize its dependence on the initial vector x(0). This expansion can be expected
to be valid at least for bounded κ intervals. Moreover, we can consider the preceding
expansion (19) to be an intermediate asymptotic expansion in the sense of Barenblatt
(1996).

The critical idea behind the traditional (first level) renormalization group method
of Chen, Goldenfeld, and Oono (1996) is to replace the initial value x(0) in the naive
expansion (7) by a slowly-varying function Aε(τ) through a near-identity transforma-
tion

x(0) = Aε(τ) + εZ(Aε(τ), t, ε)(30)

to eliminate secular (or divergent) terms in the naive expansion (7) by appropriate
selection of the correction terms Zj and to thereby obtain the secular-free expansion
(19), where Aε remains to be determined. To lowest orders, we would, for example,
obtain the necessary cancellation by taking

Z0(Aε, t) = −a0(Aε)t

and

Z1(Aε, t) =
1

2
t2〈fx(Aε, t, 0)〉a0(Aε)

− t

[
〈fx(Aε, t, 0)U0(Aε, t, 0) + fε(Aε, t, 0)〉 − a0(Aε)

〈
∂U0

∂x
(Aε, t)

〉]
.

Upon differentiating (30) with respect to t, the invariance condition dx(0)
dt = 0 and

the chain rule immediately imply that Aε(τ) will satisfy

dAε

dτ
= a(Aε, ε) ≡ −

(
I + ε

∂Z

∂Aε

)−1
∂Z

∂t
.(31)

We did not take this approach above because it is more direct to immediately find
Aε by asymptotically integrating (21), which turns out to ultimately be independent
of the secular correction Z introduced in (30). We nonetheless note how instructive
it is to see how the terms of the t-secular function Z can be selected to eliminate
successive secular terms in (7) and to learn how the function a(Aε, ε), generated by
using the intermediate Z, coincides with that already defined in (21). In some sense,
renormalization corresponds to a summing of secular terms. We note that Nozaki and
Oono (2001) get the RG equation from an intermediate proto-RG equation and that
they make a distinction between resonant and nonresonant secular terms. Indeed,
when no secular terms occur in (7), Aε will remain the constant x(0). Next, τ -secular
terms in the resulting series (24) could analogously also be eliminated, if necessary, by
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replacing the initial vector x(0) by a slowly varying function Bε(κ) of the slow time
κ = ε2t through use of another near-identity transformation (29), where Bε(κ) must
satisfy a second level RG equation

dBε

dκ
= b(Bε, ε) ≡ −

(
I + ε

∂W

∂Bε

)−1
∂W

∂τ
(32)

and Bε(0) = x(0) (cf. Mudavanhu and O’Malley (2001)). Assuming existence and
appropriate stability of B0(κ), this will allow the asymptotic solution for xε to be
defined beyond bounded values of κ. One may again be stopped by either blowup
at finite κ, instability as κ → ∞, or by κ-secular terms. The latter would require a
higher level renormalization, and that could determine the asymptotic solution on a
still longer time interval. We thus proceed in a leapfrog fashion. (Related applied
work is contained in Moise and Ziane (2001) and Wirosoetisno, Shepherd, and Temam
(2002).)

Two simple scalar examples. (a) Consider the simple example

ẋ = ix + εx(α + x)(33)

for some bounded complex constant α. Direct integration of this Riccati equation
provides the exact solution

xε(t) = e(i+εα)t

[
1− εx(0)

i + εα
(e(i+εα)t − 1)

]−1

x(0)(34)

with a least period 2π
1−iεα when Reα = 0. When α �= 0, secular terms become apparent

when eεαt is expanded in its Maclaurin series about ε = 0. When Reα < 0, such
a naive expansion in powers of ε is very misleading, since the actual solution decays
exponentially to zero as τ = εt → ∞, while the Taylor-expanded series has unbounded
secular terms. When Reα > 0, however, the solution blows up algebraically like − i

ε
as τ → ∞. Thus, we can’t expect an asymptotic approximation to the solution to be
defined on time intervals on which τ becomes unbounded.

If we directly seek a solution to (33) of the form

xε(t) = eit(x(0) + εu(t, x(0), ε)),(35)

the scaled correction u must satisfy the nonlinear equation

u̇ = f(x(0) + εu, t, 0)

≡ (α + x(0)eit)x(0) + ε(α + 2x(0)eit)u + ε2eitu2
(36)

and u(0, x(0), ε) = 0. The resulting regular perturbation series is determined termwise
through the successive linear initial value problems

u̇0 = (α + x(0)eit)x(0), u0(0) = 0,

u̇1 = (α + 2x(0)eit)u0, u1(0) = 0,

u̇2 = (α + 2x(0)eit)u1 + eitu2
0, u2(0) = 0,



382 B. MUDAVANHU AND R. E. O’MALLEY, JR.

etc. Integrating termwise, we obtain the naive expansion

xε(t) = eit
[
x(0) + ε(αt + ix(0)(1− eit))x(0)

+ ε2x(0)

[
1

2
α2t2 + iαx(0)t(1− 2eit)

− x(0)(1− eit)(α + x(0)(1− eit))

]
+O(ε3)

]
,

(37)

valid asymptotically for bounded t values. The anticipated secular terms occur, how-
ever, for α �= 0, indicating the breakdown of the approximation (37) when τ = εt → ∞.

If we instead seek an asymptotic solution xε(t) of (33), using our ansatz

xε(t) = eit(Aε(τ) + εU(Aε(τ), t, ε)),(38)

the amplitude Aε and the correction U will have to satisfy (21) and (22), respectively.
Since f(Aε(τ), t, 0) = (α + Aε(τ)e

it)Aε(τ), the average

〈f(Aε(τ), t, 0)〉 = αAε(τ)

is the leading term of its Fourier series, and it is supplemented by

{f(Aε(τ), t, 0)} = A2
ε(τ)e

it.

This implies that both

dAε

dτ
= αAε +O(ε)

and

U0(Aε(τ), t) = iA2
ε(τ)(1− eit),

and thus

Aε(τ) = eατx(0) +O(ε)

is defined on all τ ≥ 0, provided Reα ≤ 0. Otherwise, the solution xε(t) will be
bounded only for finite τ .

The next-order corrections to dA0

dτ and U0 involve the expression

fx(Aε, t, 0)U0(Aε, t)− ∂U0

∂Aε
(Aε, t)〈f(Aε, t, 0)〉

= (−iαA2
ε + 2iA3

εe
it)(1− eit).

Since its average part is −iαA2
ε , the O(ε) improved approximations satisfy the ampli-

tude equation

dAε

dτ
= αAε − εiαA2

ε +O(ε2),(39)

and the corresponding secular-free correction to Aε is given by

U(Aε(τ), t, ε) = iA2
ε(1− eit)− εiA2

ε(1− eit)(α + Aε(1− eit)) +O(ε2).(40)
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As expected, the latter coincides with the secular-free terms of the appropriately
truncated naive expansion, with the slowly varying amplitude Aε replacing the initial
value x(0).

For Reα < 0, A0(τ) will decay exponentially to zero, and this allows us to obtain
the asymptotic solution (38) for all τ ≥ 0. The most interesting case occurs when
Reα = 0. Then, the two-term truncation of the amplitude equation (39) is essentially
the same as the original Riccati equation (33). To find the solution for κ = ε2t =
O(1) generally requires another renormalization, so we will then obtain an asymptotic
representation of the solution in terms of the three scales, t, τ , and an amplitude Bε

that is a function of κ.
A numerical verification of any presumed approximation X can be carried out by

employing the technique of Bosley (1996). We define the absolute error

E(t, ε) = |xexact −X|,

although we often employ a carefully computed numerical solution in place of the
unknown exact solution. If E = O(εn+1) for a fixed time, the value of log(E) as a
function of log ε should be linear with slope n + 1 in the limit ε → 0. The slope is
readily determined by using a linear least squares fit. For the example, interesting
results are obtained by considering the three separate cases: α = 1, α = −1, and
α = i. (Comparable conclusions on longer time intervals naturally follow for the
example

ẋ = iεx + ε2x(α + x),

which we treat by immediately introducing τ = εt as a replacement for the given time
t.)

Figures 1–3 below are comparisons of the exact solutions in these three cases
with, respectively, regular perturbation and RG asymptotic approximations for (33),
together with their numerical verifications of asymptotic validity using Bosley’s tech-
nique for t = 10.

(b) We next consider the nonautonomous equation

ẋ = εN(x, t) ≡ ε(−x3 − x2 cos t + sin t),(41)

introduced by Murdock and Wang (1996), together with a positive initial value x(0).
Since xẋ < 0 for |x| sufficiently large, the solution xε(t) remains bounded for all times.
Setting

xε(t) = x(0) + εu(t, x(0), ε),

it follows that u must satisfy the initial value problem

u̇ = (−x3(0) + x2(0) cos t + sin t) + ε(−3x2(0) + 2x(0) cos t)u

+ ε2(−3x(0) + cos t)u2, u(0) = 0,

for which a naive expansion could be readily generated. Alternatively, the ansatz (or
near-identity transformation)

xε(t) = Aε(τ) + εU(Aε(τ), t, ε)(42)
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involves, to leading order, the amplitude equation

dAε

dτ
= 〈N(Aε, t)〉+O(ε) = −A3

ε +O(ε),

predicted by averaging, and the secular-free correction term

U0(Aε, t) =

∫ t

0

{N(Aε, s)}ds = A2
ε(τ) sin t + 1− cos t.

Since the resulting limiting amplitude

A0(τ) =
x(0)√

2τx2(0) + 1
(43)
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decays only algebraically as τ → ∞, we naturally seek its O(ε) correction determined
by using the average part of the expression

Nx(A0, t)U0(A0, t)− 〈N(A0, t)〉U0x(A0, t)

= −(3A2
0 + A0)−A4

0 sin t + (3A2
0 + 2A0) cos t + A3

0 sin 2t−A0 cos 2t.

Since this implies the more accurate amplitude equation

dAε

dτ
= −A3

ε − ε(3A2
ε + Aε) +O(ε2),(44)

the regular perturbation series

Aε(τ) = A0(τ) + εA1(τ) +O(ε2)(45)
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will require that the first correction term A1 satisfy the linear initial value problem

dA1

dτ
= −3A2

0A1 − (3A2
0 + A0), A1(0) = 0.

We write its exact solution as

A1(τ) = −
√

2τx2(0) + 1

4x(0)
− 1 +

(
1

4x(0)
+ 1

)
1

(
√

2τx2(0) + 1)3
.(46)

Since |A1| blows up like τ1/2 as τ → ∞, we shall attempt to eliminate its secular term
and later ones in (45) by using a traditional renormalization. Setting

x(0) = Bε(κ) + εW (Bε(κ), τ, ε)(47)
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in (45) and using a power series for W , we get the power series expansion

Aε(τ) =
Bε + εW√

2τ(Bε + εW )2 + 1
− ε

[√
2τ(Bε + εW )2 + 1

4(Bε + εW )
− 1 + · · ·

]
+ · · ·

=
Bε√

2τB2
ε + 1

+ ε

[
W0√

2τB2
ε + 1

− 2τB2
εW0

(
√

2τB2
ε + 1)3

−
√

2τB2
ε + 1

4Bε
+ · · ·

]
+ · · · .

Thus, we can cancel the troublesome τ -secular term at O(ε) by picking

W0(Bε, τ) =
(2τB2

ε + 1)2

4Bε
.

The resulting second level RG equation (32) is

dBε

dκ
= −∂W0

∂κ
+O(ε) = −2

ε
κB2

ε −Bε +O(ε).

Solving the two-term approximate Riccati equation with the initial value Bε(0) = x(0)
determines the exponentially decaying

B0(κ) =
e−κx(0)√

x2(0)
ε (1− e−2κ − 2κe−2κ) + 1

(48)

(with admitted abuse of notation) and the corresponding leading-order approximation

xε(t) =
B0(κ)√

2κ
ε B2

0(κ) + 1
+O(ε)(49)

to the decaying solution, which is asymptotically valid for all t ≥ 0. We note that the
regular perturbation expansion is asymptotically correct for t finite, that the series
(42) and (45) with τ -secular terms is likewise correct for τ finite, but that the twice-
renormalized expansion corresponding to (49) is needed on longer time intervals. The
algebraic decay of the limiting solution with

√
κ/ε =

√
εt is unexpected, but it follows

from renormalization, as does the ultimate exponential decay as κ → ∞. Analogous
behavior was obtained in Mudavanhu and O’Malley (2001) in solving the second-order
equation

ÿ + y + εẏ3 + 3ε2ẏ = 0,

introduced in Morrison (1966).
Figure 4 is a comparison of the numerical solution and the first and second level

RG asymptotic approximations for the solution of (41). The second level approxima-
tion is obtained by renormalizing the second-order amplitude equation as indicated.
Figure 5 shows the numerical verifications of the RG approximations using Bosley’s
technique for t = 10.

Second-order scalar equations. Mudavanhu and O’Malley (2001) considered
scalar equations of the form

ÿ + y + εg(y, ẏ, ε) = 0(50)
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on t ≥ 0, with y(0) and ẏ(0) prescribed. Such problems take the form (1) when one
introduces

x =

(
y
ẏ

)
, M =

(
0 1
−1 0

)
, and N(x, ε) =

(
0

−g(y, ẏ, ε)

)
,(51)

and thus their asymptotic solution on appropriate time intervals is determined by the
preceding.
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It is more traditional, however, to use the Prüfer transformation

y = ρε(t) cos(t + ψε(t)), ẏ = −ρε(t) sin(t + ψε(t))(52)

to obtain a system of differential equations for the nonnegative amplitude ρε and the
phase ψε. As in variation of parameters,

ẏ =
dρε
dt

cos(t + ψε)− ρε sin(t + ψε)

(
1 +

dψε

dt

)
and

ÿ = −dρε
dt

sin(t + ψε)− ρε cos(t + ψε)

(
1 +

dψε

dt

)

imply a linear algebraic system for dρε
dt and dψε

dt that yields


dρε
dt

= ε sin(t + ψε)g(ρε cos(t + ψε),−ρε sin(t + ψε)),

dψε

dt
=

ε

ρε
cos(t + ψε)g(ρε cos(t + ψε),−ρε sin(t + ψε)).

(53)

The needed initial values ρε(0) and ψε(0) for (53) are likewise uniquely specified since

y(0) = ρε(0) cosψε(0) and ẏ(0) = −ρε(0) sinψε(0).(54)

Since ψε occurs in the combination z ≡ t + ψε(t), we can rewrite (53) as a 2π-
periodic function of z:



dρε
dz

=
ερε sin z g(ρε cos z,−ρε sin z)

ρε + ε cos z g(ρε cos z,−ρε sin z)
,

dψε

dz
=

ε cos z g(ρε cos z,−ρε sin z)

ρε + ε cos z g(ρε cos z,−ρε sin z)
.

(55)

Our ansatz (19) suggests seeking an asymptotic solution for (55) in the form


ρε(t) = Rε(τ) + εU(Rε(τ),Ψε(τ), t, ε),

ψε(t) = Ψε(τ) + εV (Rε(τ),Ψε(τ), t, ε).

(56)

The advantage obtained is that the first-order renormalized system is triangular, i.e.,


dRε

dτ
= α(Rε, ε) =

1

2π

∫ 2π

0

sin z g(Rε cos z,−Rε sin z)dz +O(ε),

dΨε

dτ
= β(Rε, ε) =

1

2πRε

∫ 2π

0

cos z g(Rε cos z,−Rε sin z)dz +O(ε).

(57)

Note that α(Rε, 0) and β(Rε, 0) are half of the corresponding first harmonic coefficients
in the Fourier series for g(Rε cos z,−Rε sin z) on 0 ≤ z ≤ 2π. It’s an easy system to
solve implicitly as

τ =

∫ Rε

Rε(0)

du

α(u, ε)
and Ψε(τ) = ψε(0) +

∫ τ

0

β(Rε(p), ε)dp,(58)
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although specifying where Rε(τ) is well defined involves all the anticipated complica-
tions. By the chain rule, it also follows that




U0(Rε(τ),Ψε(τ), t) =

∫ t

0

[sin(s + Ψε(τ))g(Rε(τ) cos(s + Ψε(τ))

−Rε(τ) sin(s + Ψε(τ)))− α(Rε(τ), 0)]ds
and

V0(Rε(τ),Ψε(τ), t) =
1

Rε(τ)

∫ t

0

[cos(s + Ψε(τ))g(Rε(τ) cos(s + Ψε(τ))

−Rε(τ) sin(s + Ψε(τ)))− β(Rε(τ), 0)]ds.

(59)

Moreover, using the ansatz (56), we get the secular-free approximations




y = ρ cos(t + ψ) = Rε cos(t + Ψε) + ε(U0 cos(t + Ψε)−RεV0 sin(t + Ψε)) +O(ε2)

and

ẏ = −ρ sin(t + ψ) = −Rε sin(t + Ψε)− ε(U0 sin(t + Ψε) + RεV0 cos(t + Ψε)) +O(ε2).

(60)

Higher-order approximations follow without difficulty, even for many problems where
classical methods break down.

(a) As a first concrete example, consider the Duffing–van der Pol equation

ÿ + y + εy3 + ε2(y2 − 1)ẏ = 0,(61)

introduced by Benney and Newell (1967). Seeking a solution as

y = ρε cos(t + ψε) and ẏ = −ρε sin(t + ψε)

provides the periodic forcing g = y3 + ε(y2 − 1)ẏ as

g(y, ẏ, ε) =
1

4
ρ3
ε [3 cos(t + ψε) + cos 3(t + ψε)]

+ ε

[
− ρ3

ε

4
(sin(t + ψε) + sin 3(t + ψε))

+ ρ2
ε sin 2(t + ψε)− ρε sin(t + ψε)

]
.

Since its leading term has a trivial sin z coefficient in its Fourier series and 3
4ρ

3
ε as the

cos z coefficient, we will have the amplitude and phase equations

dρε
dτ

= O(ε) and
dψε

dτ
=

3

8
ρ2
ε +O(ε).

(Note that Cox and Roberts (1995) and Roberts (1997) attain such reductions ef-
ficiently by normal form transformations implemented using REDUCE. Mudavanhu
(2000) obtains the same results and corresponding higher-order terms via a renor-
malization method automated using MAPLE.) Indeed, our results suggest the more
efficient introduction of the slower-time κ = ε2t. Incorporating κ and using the next
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terms in (57), we obtain


dRε

dκ
=

1

2
Rε

(
1− 1

4
R2
ε

)
+O(ε)

and

dΨε

dτ
=

3

8
R2
ε −

15ε

256
R4
ε +O(ε2).

(62)

Solving the limiting Bernoulli equation determines an expansion for

Rε(κ) = R0(κ) + εR1(κ) + ε2(· · · )(63)

as an exponentially decaying amplitude for all κ ≥ 0, with leading term

R0(κ) =
2√

1− (1− 4/ρ2
ε(0))e

−κ
.

The resulting limit cycle behavior follows with the phase

Ψε(t) = ψε(0) +
3

8

∫ t

0

R2
ε (ε

2s)

(
1− 5ε

32
R2
ε (ε

2s)

)
ds +O(ε2t).(64)

In the integrand, it is clearly preferable to represent Rε(κ) as the sum of its steady-
state limit plus an exponentially decaying transient. Higher-order approximations to
the solution follow as in (60).

Alternatively, we can use the transformation (51) and the spectral decomposition
M = iV ΛV −1 for a nonsingular modal matrix V = ( 1

i
1
−i ) and Λ = (−1

0
0
1 ). Directly

applying our basic ansatz,

xε(t) = V eiΛtV −1(Aε + εU(Aε(τ), ε)),(65)

where Aε = (aε

āε
), for complex conjugates aε and āε, involves, to leading order, the

amplitude equation

dAε

dτ
= 〈e−iΛtV −1N(V eiΛtx, 0)〉+O(ε) =

3

2
i|aε|2

(
aε
−āε

)
+O(ε)

and the secular-free correction term

U0(Aε, t) =

∫ t

0

{e−iΛsV −1N(V eiΛsx, 0)}ds

=
1

4

(
a3
εe

−2it − 3āε|aε|2e2it + 1
2 ā

3
εe

4it

ā3
εe

2it − 3aε|aε|2e−2it + 1
2a

3
εe

−4it

)
.

Letting aε = Rε

2 e−iΨε provides the amplitude and phase equations dRε

dτ = O(ε), dΨε

dτ =
3
8R

2
ε +O(ε) as before and the corresponding asymptotic approximation

y = Rε cos(t + Ψε) + ε
Rε

16

[
3 cos(t + Ψε) +

1

2
cos 3(t + Ψε)

]
+ ε2(· · · ).(66)

Higher-order approximations follow in a straightforward fashion.
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(b) We finally seek the RG equations resulting from two weakly coupled van der
Pol oscillators

ÿ + Ωy + ε(I − C2)ẏ = εB(αy + βẏ),(67)

where

y =

(
y1

y2

)
, Ω =

(
1 0
0 1 + ∆

)
, C =

(
y1 0
0 y2

)
, B =

(−1 1
1 −1

)
(68)

and I is an identity matrix (cf. Reinhall and Storti (2000) and Low (2002)). Here α
and β are coupling constants, and ∆ is a detuning parameter related to the difference
in the natural frequencies of the two oscillators. We now seek asymptotic solutions of
the form 


y1(t, ε) = R1(τ, ε) cos(t + Ψ1(τ, ε)) + ε(· · · ),

y1(t, ε) = R2(τ, ε) cos(t + Ψ2(τ, ε)) + ε(· · · )
(69)

for the slow time τ = εt, where Rj and Ψj , for j = 1 and 2, represent the amplitude and
phase modulations. The functions yj are said to be phase locked when the difference

φε = Ψ2ε −Ψ1ε(70)

is a constant. When the oscillators are running at unequal frequencies (i.e., ∆ �= 0),
φε will grow unbounded, defining a condition known as a phase drift. An intermediate
situation exists when φε varies periodically, a condition known as phase entrainment.

Applying our basic ansatz, by first transforming to a four-dimensional system of
the form (1), we systematically obtain the RG equations

2
dA1ε

dτ
= A1ε(1− |A1ε|2)− β(A1ε −A2ε) + iα(A1ε −A2ε) + ε(· · · ),

2
dA2ε

dt
= A2ε(1− |A2ε|2)− β(A2ε −A1ε) + iα(A2ε −A1ε) + i

∆

2
A1ε + ε(· · · ).

Letting Ajε = Rjεe
−iΨjε for j = 1 and 2, we get the system of three slowly varying

RG equations


2
dR1ε

dτ
= (1−R2

1ε)R1ε − β(R1ε −R2ε cosφε) + αR2ε sinφε + ε(· · · ),

2
dR2ε

dτ
= (1−R2

2ε)R2ε − β(R2ε −R1ε cosφε) − αR1ε sinφε + ε(· · · ),

2
dφε
dτ

= ∆− β

(
R2ε

R1ε
− R1ε

R2ε

)
sinφε − α

(
R2ε

R1ε
+

R1ε

R2ε

)
cosφε + ε(· · · ).

(71)

Stability analyses of (67) can be carried out based on these and higher-order amplitude
equations (cf. Chakraborty and Rand (1988)).

Relation to two-timing and other classical techniques. The asymptotic
solution of the initial value problem (3)

ż = εf(z, t, ε)
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(in standard form) could be obtained using the two-time ansatz

z = z(t, τ, ε)

for the bounded slow-time τ = εt. The chain rule implies that

ż =
∂z

∂t
+ ε

∂z

∂τ
,

and thus substituting a power series expansion

z(t, τ, ε) = z0(t, τ) + εz1(t, τ) + · · ·(72)

into (3) requires that

∂z0

∂t
= 0(73)

and

∂zj
∂t

= gj−1(t, z0, z1, . . . , zj−1)− ∂zj−1

∂τ
(74)

for each j ≥ 1. Here

f(z(t, τ, ε), t, ε) ∼
∞∑
j=0

εjgj(t, z0, . . . , zj−1, zj),

where

gj(t, z0, . . . , zj−1, zj)− fz(z0(t, τ), t, 0)zj

is a known function of the earlier coefficients z0, z1, . . . , zj−1 and t.
We first obtain the representation

z0(t, τ) = A0(τ)(75)

from integrating (73), for some unspecified A0(τ). Taking j = 1, we then find that

∂z1

∂t
= f0(A0(τ), t)− dA0

dτ
.(76)

Recall that f0 is a periodic function of t. To get the boundedness of z1 as t → ∞
requires the right-hand side to have zero average, i.e., A0 must be the unique solution
of the initial value problem for

dA0

dτ
= 〈f0(A0(τ), t)〉.(25)

This leaves ∂z1
∂t = {f0(A0(τ), t)}, and so

z1(t, τ) = A1(τ) + U0(A0(τ), t)(77)

for an unknown A1 and the bounded function U0 =
∫ t
0
{f0(A0(τ), s)}ds, already en-

countered. If we next consider (74) for j = 2, the boundedness of z2 will require the
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average of the right-hand side to be zero. This, however, shows that A1 must satisfy
an initial value problem of the form

dA1

dτ
=

〈
∂f0

∂z
(A0(τ), t)

〉
A1 + ã1(A0(τ)),

with a known inhomogeneity ã1 and the trivial initial value. The unique solution
follows as in (26). Continuing, in this manner, to use the Fredholm alternative to get
a bounded solution at every stage, we obtain our two-time expansion to any order.

Murdock and Wang (1996) prove that this result is asymptotically valid, to all
orders, for finite τ . An attempt to comprehend renormalization has thus provided
an opportunity to rethink two-timing. We point out, however, that a less restrictive
method of slowly varying amplitudes is often used in applications (cf., e.g., the final
chapter of Haberman (1998), in addition to the literature already cited). It compares
to our ansatz (19),

zε(t) = Aε(τ) + εU(Aε(τ), t, ε),

rather than the more general two-timing expansion (72). The idea is to seek an
amplitude Aε(τ), varying with the slow time τ and ε, so that secular terms in the
resulting expansion are removed by appropriately selecting successive terms in the
power series expansion of the amplitude (or envelope or RG) equation

dAε

dτ
= a(Aε, ε).

The relationship between asymptotic matching or boundary layer theory (cf., e.g.,
Il’in (1992) or O’Malley (1991)) and renormalization can be illustrated by considering
the singularly perturbed initial value problem{

ẋ = xy + εax3,
εẏ = −y + εbx2(78)

(introduced in Kuwamura (2001)) on t ≥ 0 when the constants a and b satisfy a+b < 0.
The special case b = 0 is of special interest because it is exactly solvable. Because

yε(t) = e−t/εy(0),

x must be the unique solution

xε(t) =
eεy(0)e

−t/ε

x(0)√
1− 2aεx2(0)

∫ t
0
eεy(0)e−r/εdr

of the resulting Bernoulli equation. Note that the solution decays algebraically to
zero when a < 0. It is nearly constant for a = 0, and it blows up when

ε

∫ t

0

e2εy(0)e−r/ε

dr =
1

2ax2(0)

if a > 0.
If we introduce the fast time

λ =
t

ε



A NEW RENORMALIZATION METHOD 395

into the corresponding inner problem


dx

dλ
= εxy + ε2ax3,

dy

dλ
= −y + εbx2,

we naturally seek the inner expansion{
u(λ, ε) = u0(λ) + εu1(λ) + ε2u2(λ) + · · · ,
v(λ, ε) = v0(λ) + εv1(λ) + ε2v2(λ) + · · · .

Proceeding termwise, in the naive manner, we get

u0(λ) = x(0), v0(λ) = e−λy(0),

u1(λ) = −(1− e−λ)x2(0), v1(λ) = b(1− e−λ)x2(0),

and then, from

du2

dλ
= u0v1 + u1v0 + au3

0

and

dv2

dλ
= −v2 + 2bu0u1,

we get

u2(λ) = (a + b)x3(0)λ + bx3(0)(e−λ − 1) +
1

2
(e−λ − 1)2x(0)y2(0)

and

v2(λ) = 2bx2(0)y(0)
[
1− e−λ − λe−λ

]
.

The Tikhonov–Levinson theory applies for t finite and guarantees that the inner
expansion can be written as the asymptotic sum

u(λ, ε) = X(t, ε) + εξ(λ, ε),

v(λ, ε) = εY (t, ε) + η(λ, ε),

where ( X
εY ) is the outer expansion and ( εξη ) is the inner layer correction that decays to

zero exponentially as λ → ∞. Replacing λ by t/ε defines the surviving outer expansion

X(t, ε) = x(0) + ε(x(0)y(0) + (a + b)x3(0)t) + ε2(· · · ),
εY (t, ε) = εbx2(0) + ε2(· · · ).

Note the secular behavior visible as τ = εt → ∞. It is not fixable using Hoppensteadt
(1966), because there is no asymptotic stability in t. We can eliminate the secular
term, however, by renormalizing. Setting

x(0) = Aε(τ) + εP (Aε(τ), t, ε) and y(0) = Bε(τ) + εQ(Aε(τ), t, ε)
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and by picking

P0(A0, t) = −(a + b)A3
0t and Q0(A0, t) = 0,

we get a secular-free approximation. Constancy of x(0) and y(0), however, forces A0

and B0 to satisfy the limiting amplitude equations

dA0

dτ
= (a + b)A3

0 and
dB0

dτ
= 0.

This has the algebraically decaying solution

A0(τ) =
x(0)√

1− 2(a + b)x2(0)τ

when a+ b < 0, already observed in the special case b = 0. Higher-order terms follow,
without difficulty. One could, analogously, also directly seek the asymptotic solution
as a function of the three times λ, t, and τ .
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A DYNAMIC PRIORITY QUEUE MODEL FOR SIMULTANEOUS
SERVICE OF TWO TRAFFIC TYPES∗
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Abstract. We consider a priority queue with a dynamic, queue-length-threshold scheduling
policy. Customers are classed into two types (type-1 and type-2), and the service order of the two
classes depends on the queue length of the type-1 queue. The high priority (type-2) class (e.g., voice)
is served until the low priority (e.g., data) queue exceeds the threshold L, at which time service is
given to the low priority class until its queue length decreases to L. The arrivals of the two classes
follow independent Poisson processes, and the service time of each customer has an exponential
distribution with parameter µ. We derive the balance equations in the steady state, and explicitly
obtain the joint probability generating function for the queue lengths of the two customer classes.
This gives the joint queue length distribution as an integral. We then obtain detailed asymptotic
results for the joint distribution. In particular, we study the tail behavior. We also discuss heavy
traffic diffusion approximations for this model.

Key words. dynamic priority queue, integral representation, asymptotic approximation

AMS subject classifications. 60K25, 34E05, 34E20

PII. S0036139901390842

1. Introduction.

1.1. Background. Due to recent applications in ATM (asynchronous transfer
mode) networks, there has been renewed interest in priority queues. Here we consider
the following model for providing simultaneous service to two classes of customers with
different service requirements. There are two classes of customers (called type-1 and
type-2 customers) and a single server. The arrivals of type-1 and type-2 customers
follow independent Poisson processes with rates λ1 and λ2, respectively. The two
streams of customers are accommodated into two queues with infinite capacities.
Customers in each class are served on a first-come first-served basis. The service
order of the two classes is determined by the queue-length-threshold (QLT) scheduling
policy. First, we place a threshold L on the queue for type-1 customers. If the number
of type-1 customers in the queue is less than or equal to the threshold L, the type-2
customers are served. Otherwise, the type-1 customers are served. If one of the queues
is empty, the customers in other queue are served. The service time of a customer of
either type has an exponential distribution with parameter µ. This queueing system
is called a dynamic (or hybrid) priority queue with QLT scheduling policy (Figure
1.1).

In many modern applications, some classes of customers may have different service
requirements than others. A method for supporting the different classes is the use of
priority queues. There are static and dynamic priority queues. Examples of static
priority queues, including nonpreemptive and preemptive queues, are given in [1],
[2], [3], [4]. In such systems, the high priority class (e.g., voice) has much more
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λ1

λ2

L

Fig. 1.1. Model of a dynamic priority queue.

stringent delay requirements than the low priority class (e.g., data). Therefore, the
high priority class may have better performance than its delay requirements, but the
low priority class may suffer from unacceptably long delays. In order to overcome this
shortcoming, dynamic priority queues have been proposed and studied in [6], [7], [8].
Such models make it possible to improve the performance of the low priority class,
while still meeting the service requirement (delay) of the high priority class.

This paper gives exact and asymptotic analyses of a dynamic priority queue with
QLT scheduling. The results can be applied to traffic control, and in particular to
satisfying the quality of service (QoS) requirements of real-time and nonreal-time
traffic in ATM networks [9]. For example, in ATM networks, data is loss-sensitive
but delay-insensitive, while voice is delay-sensitive but loss-insensitive. Thus, the
high priority class (type-2 customers) may be considered as real-time traffic such as
voice and the low priority class (type-1 customers) may be considered as nonreal-time
traffic such as data. The value of L is chosen to insure that the type-2 traffic is within
its delay requirements, i.e., the more stringent the delay requirement, the larger the
value of L. The QLT scheduling policy was shown in [5] to be able to provide higher
utilization and more flexible performance, with the proper adjustment of L, than
several other scheduling schemes. Also, when L = ∞ in our model (or L = 0 in
reversed priority), this is the well-known nonpreemptive static priority queue.

There has been much previous work on dynamic and static priority queues.
Queueing systems with static priority are discussed in [1], [2], [3], [4]. Fratini [6]
analyzed a dynamic single server priority queue, with the same scheduling policy as
ours. He assumed that the queue for type-1 customers had infinite capacity and that
the queue for type-2 customers had a finite capacity (K). The two classes had differ-
ent general service time distributions. Using a discrete-time Markov chain embedded
at service completion epochs, he identified the state transition probability matrix P
and numerically analyzed the stationary probability vector x defined by

xP = x, xe = 1.

As an application for real-time and nonreal-time traffic in ATM networks, Lee
and Sengupta [7] considered a dynamic priority queue. Their model is different from
ours in that if the queue length in the buffer of real-time traffic is greater than a
threshold, the next packet to be served is from the buffer of real-time traffic. Oth-
erwise, the server checks the type of the packet that it has just served, and serves a
packet of the other type. The real-time and nonreal-time traffic follow independent
Poisson processes, and the queues have infinite capacities. By using the embedded
Markov chain method at the service completion epochs, they obtained the joint prob-
ability generating function for queue lengths at these epochs. Then, they derived the
marginal probability generating function for each queue length at an arbitrary time
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using the obtained generating function and the PASTA (Poisson arrivals see time
averages) property.

Recently, Choi and Choi [8] considered theMMPP,M/G/1 finite capacity queue
with the same scheduling policy as ours. In this paper, the arrivals of type-1 cus-
tomers follow a Poisson process, and the arrivals of type-2 customers follow a Markov-
modulated Poisson process (MMPP) [10]. They applied this model to traffic control
for real-time and nonreal-time traffic in ATM networks and assumed that the arrival
of type-2 customers (real-time traffic) is MMPP, thus modeling the burstiness of real-
time traffic. By using the embedded Markov chain method, they numerically obtained
the marginal probability distribution for each queue.

Our model is in some respects simpler than those in [6], [7], [8]. However, we are
able to provide more explicit analytic expressions. We also give detailed asymptotic
results for the tail behavior of the joint queue length distribution. We first derive
the balance equations for our queueing system. In section 2, we consider a simplified
model in which the server leaves the type-2 queue only when the type-1 queue exceeds
L. We consider the full model in section 3. For both models, we explicitly obtain
the joint probability generating function for the queue lengths. By inverting the
generating function, we obtain the joint queue length distribution as an integral.
From this integral we compute asymptotic approximations for the tail behavior of
the joint distribution. This leads to simple formulas that reveal the basic qualitative
properties of the distribution. We also discuss heavy traffic diffusion approximations
for the models. The main exact results are summarized in Theorems 2.1 and 3.1, the
tail probabilities are given in Theorems 2.2–2.4, and the heavy traffic diffusion results
are summarized in Theorems 2.5, 2.6, 3.2, and 3.3. The numerical accuracy of our
asymptotic results is demonstrated in section 4.

1.2. Formulation of our queueing system. Let N1(t) and N2(t) be the queue
length of the type-1 and type-2 customers, respectively, at time t. We also let λ1 and
λ2 be the arrival rates of the type-1 and type-2 customers, and µ is the service rate
of both classes. The process (N1(t), N2(t)) is Markov. We focus on analyzing the
stationary probability distribution for the joint queue length, defined by

p(m,n) = lim
t→∞Pr[N1(t) = m,N2(t) = n], m, n ≥ 0.

We then obtain the following balance equations for the queueing system,

m ≥ L+ 1, n ≥ 1 :(1.1)

(µ+ λ1 + λ2)p(m,n) = λ1p(m− 1, n) + λ2p(m,n− 1) + µp(m+ 1, n),

m = L, n ≥ 1 :(1.2)

(µ+ λ1 + λ2)p(L, n) = λ1p(L− 1, n) + λ2p(L, n− 1) + µp(L+ 1, n) + µp(L, n+ 1),

1 ≤ m ≤ L− 1, n ≥ 1 :(1.3)

(µ+ λ1 + λ2)p(m,n) = λ1p(m− 1, n) + λ2p(m,n− 1) + µp(m,n+ 1),

m ≥ L+ 1, n = 0 :(1.4)

(µ+ λ1 + λ2)p(m, 0) = λ1p(m− 1, 0) + µp(m+ 1, 0),
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m = L, n = 0 :(1.5)

(µ+ λ1 + λ2)p(L, 0) = λ1p(L− 1, 0) + µp(L+ 1, 0) + µp(L, 1),

1 ≤ m ≤ L− 1, n = 0 :(1.6)

(µ+ λ1 + λ2)p(m, 0) = λ1p(m− 1, 0) + µp(m+ 1, 0) + µp(m, 1),

m = 0, n ≥ 1 :(1.7)

(µ+ λ1 + λ2)p(0, n) = λ2p(0, n− 1) + µp(0, n+ 1),

m = 0, n = 0 :(1.8)

(λ1 + λ2)p(0, 0) = µp(0, 1) + µp(1, 0),

and the normalization

∞∑
m,n=0

p(m,n) = 1.(1.9)

We assume that the following stability condition holds:

ρ1 + ρ2 < 1,(1.10)

where ρi = λi/µ, i = 1, 2.

2. A simplified model. We start by analyzing a simplified version of our queue-
ing system. We assume that if N1(t) ≤ L and N2(t) = 0, then the server becomes
idle. Thus the server remains at the high priority (type-2) queue and leaves only
when N1(t) > L. This model is reasonable if there is a large overhead associated
with switching between the two queues. We shall show that the solution to this sim-
plified model may be used as a “building block” to analyze the more complicated
system (1.1)–(1.9). In particular, the results in Theorems 3.1–3.3 in section 3 use the
corresponding results in this section.

2.1. Exact solution. For the simplified model, once N1(t) ≥ L for some time t,
we have N1(t) ≥ L for all future times. Then, p(m,n) is nonzero only for m ≥ L, n ≥
0, and we may set p(L− 1, n) = 0. The boundary condition (1.5) is changed to

(λ1 + λ2)p(L, 0) = µp(L+ 1, 0) + µp(L, 1),(2.1)

and we need consider only (1.1), (1.2), (1.4), and (2.1).

To obtain the joint queue length distribution, we introduce the following gener-
ating functions:

G(z, w) =

∞∑
n=0

∞∑
m=L

p(m,n)zm−Lwn,

H(w) =

∞∑
n=0

p(L, n)wn.
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From (1.1), (1.2), (1.4), and (2.1), we obtain the equation[
λ1z + λ2w − (µ+ λ1 + λ2) +

µ

z

]
G(z, w)

= µ

(
1

w
− 1

)
p(L, 0) + µ

(
1

z
− 1

w

)
H(w).(2.2)

The left-hand side may be rewritten as

λ1

z
(z − z∗(w))(z − z̃(w))G(z, w),

where

z∗(w) =
1

2λ1

[
µ+ λ1 + λ2 − λ2w −

√
(µ+ λ1 + λ2 − λ2w)2 − 4λ1µ

]
,

z̃(w) =
1

2λ1

[
µ+ λ1 + λ2 − λ2w +

√
(µ+ λ1 + λ2 − λ2w)2 − 4λ1µ

]
.

Noting that |z∗(w)| < 1 and requiring analyticity of G(z, w) in the complex domain
{|z| < 1, |w| < 1}, we set z = z∗(w) and obtain H(w) as

H(w) =
z∗(w)(w − 1)

w − z∗(w) p(L, 0).(2.3)

Substituting (2.3) into (2.2), we obtain

G(z, w) =
p(L, 0)

ρ1

(
1− w

w − z∗(w)
)

1

z − z̃(w) .(2.4)

Using the normalization condition G(1, 1) = 1, p(L, 0) is given by

p(L, 0) = 1− ρ1 − ρ2.
By inverting the generating function G(z, w), we obtain an integral representation for
the joint probabilities p(m,n), as given below.

Theorem 2.1. The joint queue length distribution for type-1 and type-2 cus-
tomers for the simplified model is given by

p(L+m,n) =
p(L, 0)

2πi

∫
C

1− w
1− ρ1wz̃(w)

1

[z̃(w)]m
1

wn+1
dw,(2.5)

m,n ≥ 0,

where z̃(w) is given below (2.2), and

p(L, 0) = 1− ρ1 − ρ2.(2.6)

The contour C is a small loop about w = 0.
Next we investigate the marginal probabilities defined by

p(m) =

∞∑
n=0

p(L+m,n),

p(n) =

∞∑
m=0

p(L+m,n).
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To obtain p(m), we shift the contour C in (2.5) to C ′ : |w| = 1 + ε, ε > 0. We choose
ε sufficiently small so that the only pole inside C ′ is at w = 1. Then we may sum
(2.5) over n, yielding

p(m) =
(1− ρ1 − ρ2)

2πi

∫
C′

1

ρ1wz̃(w)− 1
(z̃(w))−mdw

= (1− ρ1 − ρ2) 1

ρ1z̃(1) + ρ1z̃′(1)
(z̃(1))−m.

Recalling that z̃(1) = 1
ρ1

and z̃′(1) = −ρ2

ρ1(1−ρ1)
, we obtain

p(m) = (1− ρ1)ρm1 .(2.7)

Noting that z̃(w) > 1 for w small, we obtain the other marginal as

p(n) =
(1− ρ1 − ρ2)

2πi

∫
C

1− w
1− ρ1wz̃(w)

(
z̃(w)

z̃(w)− 1

)
1

wn+1
dw.(2.8)

2.2. Tail behavior. We compute the probabilities of having large queue lengths
by evaluating p(L+m,n) asymptotically, form and/or n large. For a fixed ρ1+ρ2 < 1
and m or n large, we shall show that the joint probability is exponentially small.
However, having accurate estimates of the tail of the distribution may be important
to analyzing system performance, as tail behavior may be used to estimate loss rates,
overflow probabilities, etc. In addition, the asymptotic formulas we obtain are much
simpler than the exact result (2.5) and thus yield qualitative insights into the structure
of the joint distribution.

We estimate (2.5) by using the saddle point and related methods for the asymp-
totic evaluation of integrals [11]. By writing z̃−mw−n = exp[−m log z̃ − n logw],
the integral in (2.5) has the form

∫
C
G(w)emF (w;α)dw, where α = n/m and F =

− log z̃(w)−α logw. This is the standard form for applying the saddle point method,
which yields the asymptotic behavior of the integral as m → ∞, with α fixed. How-
ever, we will show that different results are obtained for different ranges of α = n/m
and also for different ranges of the parameters ρ1 and ρ2.

The saddle point equation is

d

dw

[
− log z̃(w)− n

m
logw

]
= 0

or

n

m
= − z̃

′(w)w
z̃(w)

.(2.9)

We recall that λ1z̃ + µ/z̃ + λ2w = µ+ λ1 + λ2, with which (2.9) simplifies to√
(µ+ λ1 + λ2 − λ2w)2 − 4λ1µ =

m

n
wλ2,

whose solution is

w = w0

(m
n

)
≡ 1

λ2

(µ+ λ1 + λ2)
2 − 4λ1µ√

(µ+ λ1 + λ2)2
m2

n2
− 4λ1µ

(
m2

n2
− 1

)
+ µ+ λ1 + λ2

.
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We then define

z0

(m
n

)
= z̃(w0) =

1

2λ1

[(m
n

− 1
)
λ2w0 + µ+ λ1 + λ2

]
.

At the saddle point, we have

m
d2

dw2

[
− log z̃(w)− n

m
logw

]
|w=w0

=
n

w2
0

+m

(
z̃′(w0)

z̃(w0)

)2

−mz̃
′′(w0)

z̃(w0)

= w−2
0 n

[
1 +

n

m
+

2µ

λ2

n2

m2

1

z0w0

]
≡ w−2

0 D.

Here we have used the quadratic equation satisfied by z̃(w), and its derivatives. Since
D > 0, the steepest decent directions at the saddle are arg(w − w0) = ±π/2, which
correspond to a steepest descent contour that is locally parallel to the imaginary axis
in the complex w-plane.

In addition to the saddle point, the asymptotic expansion of (2.5) may depend
on the singularities of the integrand. Setting

G(w) =
1− ρ1 − ρ2

2πi

(
1− w

1− ρ1wz̃(w)
)

1

w
,

we see that G(w) has branch points at

w =W± =
1

λ2

[
µ+ λ1 + λ2 ± 2

√
λ1µ

]
= 1 +

(
√
µ±√

λ1)
2

λ2
.(2.10)

Furthermore, the equation 1 = ρ1wz̃(w) has the solution

w = w∗ ≡ µ

λ1 + λ2
=

1

ρ1 + ρ2

if µλ1 < (λ1+λ2)
2, and thus our integrand has a pole at w∗ for this parameter range.

In Figure 2.1 we sketch the parameter range in the (ρ1, ρ2) plane where the queue is
stable, which is the triangle T = {(ρ1, ρ2) : ρ1 ≥ 0, ρ2 ≥ 0, ρ1 + ρ2 < 1}. We divide
this into two subregions, according to whether the pole at w∗ is present or absent.
Hence, we set

RA = {(ρ1, ρ2) : 0 ≤ ρ1 < 1, 0 ≤ ρ2 < √
ρ1(1−√

ρ1)},
RB = {(ρ1, ρ2) : 0 ≤ ρ1 < 1,

√
ρ1(1−√

ρ1) < ρ2 < 1}
and note that the curve separating RA from RB is precisely µλ1 = (λ1 + λ2)

2 or
ρ1 = (ρ1 + ρ2)

2 (see Figure 2.1).
We first consider region RA. For m → ∞ and the ratio m/n fixed, we shift the

contour into another circle about the origin, which passes through w = w0. Since
w0 < W− and there is no pole at w∗, such a contour deformation is permissible. Fur-
thermore, the new contour traverses the saddle point in the steepest descent direction,
and then the standard estimate (see [11]) yields∫

C

G(w)emF (w;α)dw ∼ G(w0)i

√
2π

mF ′′(w0;α)
emF (w0;α)

=
(1− ρ1 − ρ2)(1− w0)

1− ρ1w0z0

w−n
0 z

−m
0√

2πD .
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RA

RB

ρ1+ρ2=1

ρ1

ρ2

(ρ1+ρ2)2= ρ1

1

11/4

Fig. 2.1. A sketch of the domains RA and RB in the (ρ1, ρ2) parameter space.

This approximation is no longer valid as m/n → 0, for then the saddle point w0

approaches the branch point at W−. It also becomes invalid as m/n → ∞, as then
w0 → 0, which is also a singularity of the integrand.

To construct expansions appropriate for m/n large or small, we first consider the
limit m = O(1) as n → ∞. Now the expansion of the integral in (2.5) is determined
by the singularity that is closest to the origin in the w-plane, and this is the branch
point at w =W− (cf. (2.10)). We approximate the integrand near W− using

z̃(w) =
1

2λ1

[
2
√
µλ1 + λ2

√
W+ −W−

√
W− − w +O(W− − w)

]
,

[z̃(w)]−m = ρ
m/2
1

[
1−

√
ρ2
ρ1
ρ
1/4
1

√
W− − w m+O(W− − w)

]
,

1− w
1− ρ1wz̃(w) =

1−W−
1−√

ρ1W−

[
1 +

√
ρ2ρ

1/4
1 W−

1−√
ρ1W−

√
W− − w +O(W− − w)

]
.

Here we have used W+ −W− = 4
√
λ1µ/λ2. Using the above, we obtain the leading

order term in the expansion of (2.5) as

1−W−
1−√

ρ1W−
(1− ρ1 − ρ2)ρm/2

1

[√
ρ2ρ

1/4
1 W−

1−√
ρ1W−

−m
√
ρ2
ρ1
ρ
1/4
1

]
I,(2.11)

where

I =
1

2πi

∫
Γ

w−n−1
√
W− − wdw

and the contour Γ is sketched in Figure 2.2. Setting w = W−(1 + ζ/n) and parame-
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Γ
W_

w-plane

Re(w)

Im(w)

branch cut

Fig. 2.2. A sketch of the contour Γ in the complex w-plane.

terizing Γ as a real integral, we are led to

I ∼ − 1

π

√
W−
n3/2

W−n
−

∫ ∞

0

e−ζ
√
ζdζ.

The last integral is equal to
√
π/2, and hence (2.11) gives the leading term for n→ ∞

with m fixed.
Now consider the limit m→ ∞ with n fixed. The major contribution comes from

small values of w. We scale w = u/m and use

[z̃(w)]−m = [z̃(0) + z̃′(0)w + · · · ]−m ∼ [z̃(0)]−m exp

[
− z̃

′(0)
z̃(0)

mw

]
.

The integral (2.5) thus becomes (apart from the factor [z̃(0)]−m)

1− ρ1 − ρ2
2πi

∫
C

mn exp

[
− z̃

′(0)
z̃(0)

u

]
u−n−1du =

1− ρ1 − ρ2
n!

mn

(−z̃′(0)
z̃(0)

)n

,

where

−z̃′(0)
z̃(0)

=
λ2√

(µ+ λ1 + λ2)2 − 4λ1µ
> 0.

We summarize our main results below.
Theorem 2.2. For (ρ1, ρ2) ∈ RA, the steady state probabilities in (2.5) have the

asymptotic expansions
(a) m, n→ ∞ with 0 < m/n <∞:

p(L+m,n) ∼ 1− ρ1 − ρ2
1− ρ1w0z0

(
1− w0√
2πD

)
w−n

0 z
−m
0 ,

w0 = w0

(m
n

)
=

1

λ2

(µ+ λ1 + λ2)
2 − 4λ1µ√

(µ+ λ1 + λ2)2
m2

n2
− 4λ1µ

(
m2

n2
− 1

)
+ µ+ λ1 + λ2

,
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z0 = z0

(m
n

)
=

1

2λ1

[(m
n

− 1
)
λ2w0 + µ+ λ1 + λ2

]
,

D = n

[
1 +

n

m
+

2µ

λ2

n2

m2

1

z0w0

]
;

(b) n→ ∞ with m = O(1):

p(L+m,n) ∼ 1− ρ1 − ρ2
2
√
π

(
W− − 1√
ρ1W− − 1

) √
ρ2

ρ
1/4
1

[
m+

√
ρ1W−√
ρ1W− − 1

]
ρ

m/2
1

n3/2

√
W−W−n

− ,

W− =
1

λ2

[
µ+ λ1 + λ2 − 2

√
λ1µ

]
;

(c) m→ ∞ with n = O(1):

p(L+m,n) ∼ (1− ρ1 − ρ2)m
n

n!
[z̃(0)]−m

(
λ2√
S

)n

,

z̃(0) =
µ+ λ1 + λ2 +

√
S

2λ1
, S = (µ+ λ1 + λ2)

2 − 4λ1µ.

We note that (a) gives the probability of having simultaneously large queue
lengths for both customer classes. Part (b) gives the probability of having many type-
2 (e.g., voice) customers, while part (c) gives the probability of having many type-1
(e.g., data) customers above the threshold L. We can easily show that

√
ρ1W− > 1

precisely for (ρ1, ρ2) ∈ RA, so that the formula in (b) is positive for all m ≥ 0, as it
must be.

We next consider the region RB . Now the integrand has a pole at w∗ in addition
to the saddle at w0, whose location changes with m/n. As m/n increases from zero
to infinity, the saddle moves from W− to 0 and coalesces with the pole when

m

n
= β ≡ (λ1 + λ2)

2 − µλ1

µλ2
=

(ρ1 + ρ2)
2 − ρ1

ρ2
.

Note that β > 0 precisely when (ρ1, ρ2) ∈ RB . For m/n < β, we have w∗ < w0, while
if m/n > β, we have w∗ > w0. For m→ ∞ and n = O(1), we again obtain the result
in part (c) of Theorem 2.2. For m,n → ∞ with m/n ∈ (β,∞), we shift the contour
C into the steepest descent contour and obtain the same result as in Theorem 2.2(a).
If m,n→ ∞ and m/n ∈ (0, β), we must take into account the contribution from the
pole at w∗ in deforming the contour. The residue at this pole is equal to

(1− ρ1 − ρ2) (1− w∗)
−ρ1(wz̃)′(w∗)

[z̃(w∗)]−m(ρ1 + ρ2)
n+1.(2.12)

From the definition of z̃ we easily obtain

z̃(w∗) = 1 +
λ2

λ1
, z̃′(w∗) =

λ2(1 + λ2/λ1)
2

µ− λ1(1 + λ2/λ1)2
.

By comparing (2.12) to the saddle point contribution, we can show that the contri-
bution from the pole is larger. Thus, for m/n ∈ (0, β) and m → ∞, p(L +m,n) is
asymptotically given by the negative of (2.12). The negative sign arises due to the



408 CHARLES KNESSL, DOO IL CHOI, AND CHARLES TIER

fact that the saddle point contour (|w| = w0) has a radius larger than the original
contour C.

Finally, we consider the limit m,n → ∞ with m/n ≈ β. Note that the saddle
point approximation, as given by Theorem 2.2(a) for m/n > β, becomes singular as
m/n ↓ β, and 1− ρ1w0z0 vanishes in this limit. The case of a saddle coalescing with
a pole is a standard problem in the asymptotic evaluation of integrals (see [11]). The
appropriate expansion for m/n ≈ β may be obtained by expanding the integrand near
w = w∗. In this limit we have

G(w) ∼ 1− ρ1 − ρ2
2πi

(
1− w∗

−ρ1(wz̃)′(w∗)

)
1

w − w∗
,

n logw + m log[z̃(w)] = n logw∗ +m log[z̃(w∗)] +
(
n

w∗
+m

z̃′(w∗)
z̃(w∗)

)
(w − w∗)

+
1

2

[
−n
w2∗

+m
z̃′′(w∗)
z̃(w∗)

−m
(
z̃′(w∗)
z̃(w∗)

)2
]
(w − w∗)2 +O((w − w∗)3)

= −n log(ρ1 + ρ2) +m log

(
1 +
ρ2
ρ1

)
+ (ρ1 + ρ2)

(
n− m

β

)
(w − w∗)

− 1

2
(ρ1 + ρ2)

2

[
n+

2mρ1
ρ2β3

+
m

β2

]
(w − w∗)2 +O((w − w∗)3).

We set w − w∗ = (ρ1 + ρ2)
−1[n+m/β2 + 2mρ1/(ρ2β

3)]−1/2η and obtain∫
C

G(w)emF (w;α)dw ∼ (1− ρ1 − ρ2) −µλ2β

(λ1 + λ2)2
(ρ1 + ρ2)

n

(
ρ1

ρ1 + ρ2

)m

J,

where J is the integral

J =
1

2πi

∫
C′
e∆0ηeη

2/2 dη

η
, ∆0 =

m/β − n√
n+m/β2 + 2mρ1/(ρ2β3)

,

and we assume that m/β − n = O(
√
m) so that ∆0 = O(1). Here C ′ is a vertical

contour in the η-plane such that �(η) < 0. The last integral is easily evaluated as

J = −(2π)−1/2
∫∞
∆0
e−u2/2du, and we thus have the desired expression for p(L+m,n)

that is valid for m,n→ ∞ with m/n ≈ β. Below we summarize the results.
Theorem 2.3. For (ρ1, ρ2) ∈ RB, the steady state probabilities in (2.5) have the

asymptotic expansions
(a) n→ ∞ with 0 ≤ m/n < β, β = [(ρ1 + ρ2)

2 − ρ1]/ρ2:

p(L+m,n) ∼ (1− ρ1 − ρ2) (λ1 + λ2)
2 − µλ1

(λ1 + λ2)2

(
λ1

λ1 + λ2

)m

(ρ1 + ρ2)
n;

(b) m,n→ ∞ with m/n = β +O(m−1/2):

p(L+m,n)

∼ (1− ρ1 − ρ2) (λ1 + λ2)
2 − µλ1

(λ1 + λ2)2

(
λ1

λ1 + λ2

)m

(ρ1 + ρ2)
n 1√

2π

∫ ∞

∆

e−u2/2du,

∆ =

(
m− nβ√
n

)
1√

β2 + β + 2ρ1/ρ2
;



A DYNAMIC PRIORITY QUEUE MODEL 409

(c) m,n→ ∞ with β < m/n <∞: the result is the same as Theorem 2.2(a); for
m→ ∞ with n = O(1), Theorem 2.2(c) applies.

The expression in (a) shows that the solution is asymptotically of “product form”
for this range of m,n. We have thus identified two regions in the parameter (ρ1, ρ2)
space where the structure of the joint distribution is different. Theorems 2.2 and 2.3
furthermore show that the expansion of p(L + m,n) depends on the ratio m/n for
both of the regions in Figure 2.1.

We next consider the asymptotic behavior of the marginal distributions p(m) and
p(n). The former has a simple geometric form, but the latter is complicated, and
thus we evaluate it asymptotically for n → ∞. We also note that for either region
RA or RB , the saddle point approximation (i.e., the formula in Theorem 2.2(a)) can
be simplified for m/n ≈ (1 − ρ1)/ρ2. To do so, we first compute the point at which
p(L+m,n) is maximal as a function of n, for a fixed large m. We write

w−n
0 z

−m
0 = exp

(
−m log[z0(x)]− m

x
log[w0(x)]

)
, x =

m

n
.

At the maximum we must have

z′0(x)
z0(x)

+
1

x

w′
0(x)

w0(x)
− 1

x2
log[w0(x)] = 0,

and we can easily show that this is satisfied if

x = β∗ ≡ 1− ρ1
ρ2

.

We then have w0(β∗) = 1 and z0(β∗) = 1/ρ1. After a lengthy calculation, we find
that

d2

dx2

[
log[z0(x)] +

1

x
log[w0(x)]

] ∣∣∣
x=β∗

=
ρ32

1− ρ1
1

(1− ρ1)2 + ρ2(1 + ρ1)
and

1− ρ1 − ρ2
1− ρ1w0(x)z0(x)

1− w0(x)√
2πD

∣∣∣
x=β∗

=
1− ρ1√
2πm

(1− ρ1)3/2

√
ρ2
√
(1− ρ1)2 + ρ2(1 + ρ1)

.

Using these expressions in Theorem 2.2(a), we obtain a simple form for p(L+m,n) for
m,n→ ∞ with m/n ≈ β∗, which we summarize below. We also give the expansions
for the marginal p(n) as n→ ∞. These are easily obtained from (2.8) by identifying
the singularity of the integrand closest to the origin, and this is w =W− for RA and
w = w∗ for RB .

Theorem 2.4. Further asymptotic properties of the distribution are as follows:
(a) m,n→ ∞ with m/n = β∗ +O(m−1/2), β∗ = (1− ρ1)/ρ2:

p(L+m,n) ∼ (1− ρ1)ρm1
1√
2πm

(1− ρ1)3/2

√
ρ2
√
(1− ρ1)2 + ρ2(1 + ρ1)

× exp

[
− 1

2m

(1− ρ1)3
ρ2[(1− ρ1)2 + ρ2(1 + ρ1)]

(
n− ρ2m

1− ρ1

)2
]
;

(b) n→ ∞ with (ρ1, ρ2) ∈ RA:

p(n) ∼ (1−W−)2

(1−√
ρ1W−)2

(1− ρ1 − ρ2)
√
W−

(1−√
ρ1)2

√
ρ2ρ

1/4
1

2
√
π

W−n
−
n3/2

;
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(c) n→ ∞ with (ρ1, ρ2) ∈ RB:

p(n) ∼ 1− ρ1 − ρ2
ρ2(ρ1 + ρ2)

[(ρ1 + ρ2)
2 − ρ1](ρ1 + ρ2)n.

We note that β∗ > β for all ρ1 + ρ2 < 1. Thus when m/n ≈ β∗, we are always
in the case where the leading term in the expansion of p(L +m,n) comes from the
saddle point. Part (a) shows that if the number of type-1 customers above L is large
and = m, then the number of type-2 customers is also likely to be large and close to
ρ2m/(1− ρ1). Furthermore, there is a Gaussian spread about this mean value. From
part (a) we also conclude that, for m → ∞,

∑∞
n=0 p(L +m,n) ∼ (1 − ρ1)ρm1 . This

result is of course not just asymptotic, but exact for all m ≥ 0. This completes our
analysis of the tail behavior of the joint distribution and its marginals.

2.3. Heavy traffic diffusion approximation. We study the system when it
becomes close to unstable, i.e., as ρ1 + ρ2 ↑ 1. If ρ1 + ρ2 ↑ 1 for a fixed ρ2 ∈ (0, 1), the
probability mass becomes concentrated in the range where n is large but m = O(1).
More precisely, we define ε = 1 − ρ1 − ρ2 → 0+ and obtain the limiting distribution
from (2.5) as

p(L+m,n) ∼ ε(1− ρ1)ρm1 e−Y , Y = εn.

Thus, in this limit there tend to be only a few type-1 customers above the threshold L,
while the number of type-2 customers tends to be large, of the order O(ε−1). Since the
latter customers may represent voice messages, this situation is clearly not desirable.
We next obtain another heavy traffic limit, whose behavior is much less trivial than
that above.

We again define the small positive parameter ε by 1 = ρ1 + ρ2 + ε, but we now
assume that

ρ2 = εb = O(ε), 1− ρ1 = ε(b+ 1) = O(ε),

where b > 0. This assumption means that the traffic intensity of type-2 customers is
relatively small, while the type-1 customer queue is close to instability. Even though
ρ2 is small, with this scaling both of the queue lengths will tend to be large, so that
it seems appropriate to still classify this limit as one of “heavy traffic.” Even though
the load of type-2 customers is small, large queue lengths tend to develop since the
server is devoting a lot of time trying to service the large backlog of type-1 customers.
We thus scale m and n to be large, with

m =
X

ε
, n =

Y

ε
.

In (2.5) we scale w = 1− εs, and for ε→ 0+ we have

z̃(w)− 1 ∼ ε
2

[
b+ 1 +

√
(b+ 1)2 + 4bs

]
,

w−n−1 ∼ esY ,
[z̃(w)]

−m ∼ exp

{
−X

2

[
b+ 1 +

√
(b+ 1)2 + 4bs

]}
,

with p(L, 0) = ε. We can also approximate the contour C by a vertical Bromwich
contour Br in the complex s-plane. We thus obtain the limiting density in the form

p(L+m,n) = p

(
L+

X

ε
,
Y

ε

)
∼ ε2P (X,Y ),(2.13)
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where

P (X,Y ) =
1

2πi

∫
Br

2sesY exp
{
−X

2

[
b+ 1 +

√
(b+ 1)2 + 4bs

]}
b+ 1 + 2s−√(b+ 1)2 + 4bs

ds(2.14)

and, on Br, �(s) > 0. We refer to P as the heavy traffic diffusion approximation.

An alternate approach to obtaining P is to introduce the heavy traffic scaling into
the difference equations. From these we find that P in (2.13) satisfies the parabolic
partial differential equation (PDE)

PXX + (b+ 1)PX − bPY = 0, X, Y > 0,

with boundary conditions (BC)

PX(0, Y ) + PY (0, Y ) + (b+ 1)P (0, Y ) = 0, Y > 0,

P (X, 0) = 0, X > 0.

Solving this problem using, e.g., Laplace transforms, we regain the expression in
(2.14). The approximation (2.13) may be refined to the series p(L+m,n) = ε2[P (X,Y )
+ εP (1)(X,Y ) + ε2P (2)(X,Y ) + · · · ], but the calculation of the higher order terms
P (j) is tedious. Below we summarize the final results for the diffusion model and its
marginals and also give several alternate representations for P .

Theorem 2.5. In the heavy traffic limit where ρ1 + ρ2 = 1 − ε and ρ2 = εb,
b > 0, we have for ε→ 0+, p(L+m,n) ∼ ε2P (X,Y ), where

P (X,Y ) =
1

2πi

∫
Br

2sesY exp
{
−X

2

[
b+ 1 +

√
(b+ 1)2 + 4bs

]}
b+ 1 + 2s−√(b+ 1)2 + 4bs

ds

= (b− 1)e−bXe−Y I{b > 1}+ e−(b+1)X/2 (b+ 1)3

4π
i

×
∫ ∞

−∞

sinh η

4b− (b+ 1)2 cosh η

[
1− b+ 1

2b
cosh η + i

√
2 sinh

(η
2

)]

× exp

[
− (b+ 1)2

4b
Y cosh η − X√

2
(b+ 1)i sinh

(η
2

)]
dη

= (b− 1)e−bXe−Y I{b > 1}

+
e−(b+1)X/2e−Y

2
√
πb

∫ ∞

Y

A(X,u)√
u

exp

[
−bX

2

4u
− (b− 1)2

4b
u

]
du,

A(X,u) =
b

u

(
3X

2u
+ 1

)
−
(
b2 − 1

4

X

u
+
b2X2

2u2
+
b2X3

4u3

)
.

If b = 1, the above simplifies to

P (X,Y ) =
1√
πY

(
1 +

X

2Y

)
e−Xe−Y exp

(
−X

2

4Y

)
, b = 1.
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The marginals are given by

P (X) =

∫ ∞

0

P (X,Y )dY = (b+ 1)e−(b+1)X ,

P (Y ) =

∫ ∞

0

P (X,Y )dX

=

[
b− 1

b
I{b > 1}+ 1

2
√
πb

∫ ∞

Y

u−3/2 exp

[
− (b− 1)2

4b
u

]
du

]
e−Y ,

where I{·} is the indicator function. When b = 1, the Y -marginal is P (Y ) =
e−Y /

√
πY .

From the result for P , we see that for anyX > 0 the conditional density P (Y |X) =
P (X,Y )/P (X) is continuous. However, when X = 0, the conditional density carries
mass at the origin, and we have

P (Y |0) = 1

b+ 1
δ(Y )

+
b

b+ 1
e−Y

[
b− 1

b
I{b > 1}+ 1

2
√
πb

∫ ∞

Y

u−3/2 exp

(
− (b− 1)2

4b
u

)
du

]
.

Thus the mass at Y = 0 is 1/(b + 1), and the mass for Y > 0 is b/(b + 1). We can
also study the tail behavior of the diffusion approximation as X and/or Y → ∞. The
qualitative structure of P (X,Y ) in this limit is similar to that in Theorems 2.2–2.4.
Below we summarize the results, omitting the derivations.

Theorem 2.6. Asymptotic expansions of P (X,Y ) and P (Y ) in Theorem 2.5 are
as follows:

(a) Y → ∞:

b > 1 : P (Y ) ∼ b− 1

b
e−Y ,

b = 1 : P (Y ) ∼ e−Y

√
πY
,

b > 1 : P (Y ) ∼ 2
√
b√

π(b− 1)2
Y −3/2 exp

[
− (b+ 1)2

4b
Y

]
;

(b) X,Y → ∞ with Y − bX/(b+ 1) =
√
XU = O(

√
X):

P

(
bX

b+ 1
+
√
XU |X

)
∼ (b+ 1)3/2

2
√
πXb

exp

[
− (b+ 1)3

4b2
U2

]
;

(c) Y → ∞, X = O(1), b < 1:

P (X,Y ) ∼
√
b

2
√
π

(
b+ 1

1− b
)
Y −3/2

[
X +

4b

1− b2
]
exp

[
−X

2
(b+ 1)− Y

4b
(b+ 1)2

]
;

(d) X,Y → ∞ with 0 < Y/X <∞, b < 1:

P (X,Y ) ∼ K(X,Y )e−φ(X,Y ),

φ(X,Y ) =
X

2
(b+ 1) +

Y

4b
(b+ 1)2 +

bX2

4Y
,

K(X,Y ) =

√
bX

2
√
πY 3/2

(
bX + (b+ 1)Y

bX − (b− 1)Y

)
;
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(e) X,Y → ∞ with 0 < Y/X <∞, b > 1:

Y/X >
b

(b− 1)
: P (X,Y ) ∼ (b− 1)e−bXe−Y ,

Y/X <
b

(b− 1)
: P (X,Y ) ∼ K(X,Y )e−φ(X,Y ),

Y/X ≈ b

(b− 1)
: P (X,Y ) ∼ (b− 1)e−bXe−Y 1√

2π

∫ Λ

−∞
e−u2/2du,

Λ =
(b− 1)3/2

b
√
2X

(
Y − bX

b− 1

)
= O(1).

Note that these results are closely analogous to the asymptotic results for the
discrete probabilities p(L+m,n). Theorems 2.5 and 2.6 show that the structure of the
problem is nontrivial in the heavy traffic limit where ρ1+ρ2 ↑ 1 and ρ2 → 0+. We also
note that this limit corresponds to the vicinity of the “corner” point (ρ1, ρ2) = (1, 0)
in the parameter space in Figure 2.1. The curve that separates RA from RB passes
through this point. The equation (ρ1+ρ2)

2 = ρ1 is the same as (1−ε)2 = 1−ε(b+1),
which as ε → 0+ becomes b = 1 + O(ε). This further explains the dichotomous
behavior of P , according to whether b > 1 or b < 1.

3. M1,M2/M/1 priority queue with a dynamic scheduling policy. We
now consider the full problem (1.1)–(1.9) in which the server serves type-1 customers
when N2(t) = 0. We are able to use the results in section 2 as part of our analysis
here. For example, the solution in Theorem 3.1 uses the results in Theorem 2.5, and
the asymptotic results in Theorems 3.2(a) and 3.3(a) rely on the asymptotic results
in Theorem 2.5 in section 2.

3.1. Exact solution. In this subsection, we derive the joint queue length dis-
tribution. We use the same notation as in the previous section and introduce the
following probability generating functions:

G(z, w) =

∞∑
n=0

∞∑
m=L

p(m,n)zm−Lwn,

Hj(w) =

∞∑
n=0

p(j, n)wn, 0 ≤ j ≤ L.

From (1.1), (1.2), (1.4), and (1.5), we obtain[
λ1z + λ2w − (µ+ λ1 + λ2) +

µ

z

]
G(z, w)

= −λ1HL−1(w) + µ

(
1

z
− 1

w

)
HL(w) +

µ

w
p(L, 0).(3.1)

In order to determine G(z, w) in (3.1), we must know HL−1(w), HL(w), and p(L, 0).
We first computeHL−1(w) and p(L, 0), and then deriveHL(w) by using the analyticity
of G(z, w).

From (1.3) and (1.6), we obtain the following equation, which relates Hm−1(w)
and Hm(w): [

λ2w − (µ+ λ1 + λ2) +
µ

w

]
Hm(w) + λ1Hm−1(w)

= −µp(m+ 1, 0) +
µ

w
p(m, 0), 1 ≤ m ≤ L− 1.(3.2)
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From (1.7) and (1.8), we obtain an equation for H0(w),[
λ2w − (µ+ λ1 + λ2) +

µ

w

]
H0(w) = −µp(1, 0) + µ

(
1

w
− 1

)
p(0, 0),(3.3)

which can also be written as

λ2

w
(w − w−)(w − w+)H0(w) = −µp(1, 0) + µ

(
1

w
− 1

)
p(0, 0),(3.4)

where w− and w+ are zeros of L(w) ≡ w2 − µ+λ1+λ2

λ2
w + µ

λ2
= 0 and |w−| < 1; i.e.,

w− =
(µ+ λ1 + λ2)−

√
(µ+ λ1 + λ2)2 − 4µλ2

2λ2
,

w+ =
(µ+ λ1 + λ2) +

√
(µ+ λ1 + λ2)2 − 4µλ2

2λ2
.

Letting w = w− in (3.4), we obtain

p(1, 0) =

(
1

w−
− 1

)
p(0, 0),(3.5)

and then (3.4) yields

H0(w) =
1

(1− w/w+)
p(0, 0).(3.6)

Next we will calculate Hj(w) for 1 ≤ j ≤ L − 1. We first take L = ∞ and show
how to use this solution to solve the problem for finite L. If L = ∞, we introduce the
generating functions

H(z, w) =
∞∑

m=0

Hm(w)zm,

F (z) =

∞∑
m=0

p(m, 0)zm.

Then, using (3.2) and (3.3) with L = ∞, we obtain[
λ2w − (µ+ λ1 + λ2) + λ1z +

µ

w

]
H(z, w)

= µ
( 1
w

− 1

z

)
F (z) + µ

(1
z
− 1
)
p(0, 0).

Upon dividing by w/µ, the above may be rewritten as

ρ2(w − w−(z))(w − w+(z))H(z, w)

=
(
1− w

z

)
F (z) + w

(1
z
− 1
)
p(0, 0),(3.7)

where w−(z) and w+(z) are zeros of the equation w
2 − µ+λ1+λ2−λ1z

λ2
w + µ

λ2
= 0 and

|w−(z)| < 1; hence

w−(z) =
(µ+ λ1 + λ2 − λ1z)−

√
(µ+ λ1 + λ2 − λ1z)2 − 4µλ2

2λ2
,

w+(z) =
(µ+ λ1 + λ2 − λ1z) +

√
(µ+ λ1 + λ2 − λ1z)2 − 4µλ2

2λ2
.
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Setting w = w−(z) in (3.7), we obtain F (z) as

F (z) =
w−(z)(1− 1/z)

1− w−(z)/z
p(0, 0).(3.8)

Substituting (3.8) into (3.7), we obtain

H(z, w) = p(0, 0)
1

ρ2

(
z − 1

z − w−(z)

)
1

w+(z)

(
1

1− w/w+(z)

)
.(3.9)

Finally, by comparing the coefficients of (3.9) to those of the probability generating
function, we obtain p(m,n) as

p(m,n) =
p(0, 0)

2πi

∫
C

(
1− z

1− ρ2zw+(z)

)
1

[w+(z)]n
1

zm+1
dz (L = ∞).

Note that the above integral is the same as (2.5) with m and n (and also λ1 and λ2)
interchanged.

The above expression for p(m,n) satisfies (1.1)–(1.8) for all m,n with 0 ≤ m ≤
L− 1. Hence for L <∞ and 0 ≤ m ≤ L− 1 we obtain

p(m,n) =
p(0, 0)

2πi

∫
C

(
1− z

1− ρ2zw+(z)

)
1

[w+(z)]n
1

zm+1
dz(3.10)

and

Hm(w) =
p(0, 0)

2πi

∫
C

1− z
1− ρ2zw+(z)

(
w+(z)

w+(z)− w
)

1

zm+1
dz.(3.11)

Using (3.10) and (3.11), we can easily show that (3.2)–(3.6) are satisfied. In (3.2) and
(3.3) we let w = 1, and we sum from m = 0 to L− 1 to find that p(L, 0) is given by

p(L, 0) = ρ1HL−1(1)

= ρ1
p(0, 0)

2πi

∫
C

1− z
1− ρ2zw+(z)

(
w+(z)

w+(z)− 1

)
1

zL
dz.(3.12)

We next derive the probability generating function G(z, w). Equation (3.1) can
be rewritten as

ρ1(z − z∗(w))(z − z̃(w))G(z, w)
= −ρ1zHL−1(w) + z

(
1

z
− 1

w

)
HL(w) +

z

w
p(L, 0),(3.13)

where HL−1(w) and p(L, 0) are now known in terms of p(0, 0), and z∗(w) and z̃(w)
are the same as in section 2. In (3.13), we set z = z∗(w) and thus obtain HL(w).
Then, after some calculation, we obtain the joint probability generating function as

G(z, w) =
p(L, 0)− ρ1wHL−1(w)

ρ1(w − z∗(w))
(

1

z − z̃(w)
)
,(3.14)

where p(L, 0) and HL−1(w) are given by (3.12) and (3.11), respectively. Finally, we
obtain the joint queue length probabilities p(m,n) by inverting G(z, w):

p(m,n) =
p(0, 0)

(2πi)2
ρ1

∫
C

∫
C

(
1− z

1− ρ2zw+(z)

)
[w+(z)]

2

(w+(z)− 1)

(1− w)
(w+(z)− w)

1

zL

× 1

(1− ρ1wz̃(w))
1

[z̃(w)]m−L

1

wn+1
dzdw, m ≥ L, n ≥ 0.(3.15)
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The unknown constant p(0, 0) can be obtained by the normalization condition

G(1, 1) +

L−1∑
m=0

Hm(1) = 1.

A routine calculation yields

p(0, 0) = 1− ρ1 − ρ2.(3.16)

We have thus obtained the following result.
Theorem 3.1. The joint probabilities p(m,n) for the queue lengths are given by
(a) for 0 ≤ m ≤ L− 1, n ≥ 0,

p(m,n) =
p(0, 0)

2πi

∫
C

(
1− z

1− ρ2zw+(z)

)
1

[w+(z)]n
1

zm+1
dz,

(b) for m ≥ L, n ≥ 0,

p(m,n) =
p(0, 0)

(2πi)2
ρ1

∫
C

∫
C

(
1− z

1− ρ2zw+(z)

)
[w+(z)]

2

(w+(z)− 1)

(1− w)
(w+(z)− w)

1

zL

× 1

(1− ρ1wz̃(w))
1

[z̃(w)]m−L

1

wn+1
dzdw,

where

p(0, 0) = 1− ρ1 − ρ2,
and w+(z) and z̃(w) are given below (3.7) and below (2.2), respectively.

To study the tail probabilities, it is reasonable to assume that L → ∞ and then
to scale m and n using L. The expansions for Theorem 3.1(a) as m and/or n → ∞
follow immediately from the results of section 2.2, simply by interchanging m ↔ n
and λ1 ↔ λ2 (or ρ1 ↔ ρ2). The expansion of the double integral in part (b) is more
complicated, and we have thus far not been able to enumerate all the different cases.
However, we were able to obtain detailed results in the heavy traffic case; these we
discuss next.

3.2. Heavy traffic behavior. We study p(m,n) in the heavy traffic case, where
N1(t) and N2(t) are likely to be large. There are now two distinct nontrivial heavy
traffic limits. We call these HTL 1 and HTL 2, and the precise scalings are

HTL 1. ρ1 + ρ2 = 1− ε, ρ1 = εa = O(ε), L = A/ε = O(ε−1),
HTL 2. ρ1 + ρ2 = 1− ε, ρ2 = εb = O(ε), L = A/ε = O(ε−1).

Note thatHTL 2 has the same scaling of ρ1 and ρ2 as we used for the simplified model
in section 2. In both these limits we obtain a nontrivial, two-dimensional structure
to p(m,n). To achieve this it is also necessary to scale the threshold L to be large.

Below we give only the final results. The calculations are very similar to those
presented in section 2.

Theorem 3.2. In the heavy traffic limit HTL 2, we have as ε→ 0+

(a) m− L = (X −A)/ε, n = Y/ε:
p(m,n) ∼ ε2e−AP (X −A, Y ; b),

where P is the density in Theorem 2.5;
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(b) m ≤ L− 1, n = O(1), m = X/ε, X > 0:

p(m,n) ∼ ε(εb)ne−X ;

(c) m,n = O(1):

p(m,n) ∼ εn+1bnF (m,n), F (m,n) =
1

2πi

∫
C

1

(1− z)(2− z)nzm+1
dz;

(d) m− L = ζ/
√
ε = O(ε−1/2), m ≥ L, n = O(1):

p(m,n) ∼ εe−A 1

2πi

∫
C

u−n−1e−
√

b
√

1−uζdu.

Here the contours C are small loops about the origin.
We see from Theorem 3.2 that in the limit HTL 2 the limiting distribution

becomes a two-dimensional diffusion in the region {X > A, Y > 0} coupled to a one-
dimensional diffusion along {0 < X < A, n = 0}. The total masses in the respective
regions are easily obtained from (a) and (b):

∞∑
n=0

∞∑
m=L

p(m,n) ∼ e−A

∫ ∞

0

∫ ∞

A

P (X −A, Y ; b)dXdY = e−A,

∞∑
n=0

L−1∑
m=0

p(m,n) ∼
L−1∑
m=0

p(m, 0) ∼
∫ A

0

e−XdX = 1− e−A.

The masses in regions (c) and (d) are asymptotically o(1) as ε→ 0+. Theorem 3.2 is
easily established from the exact representations in Theorem 3.1.

An alternate approach to the heavy traffic limit would be to analyze the difference
equations directly, with the HTL 2 scaling. Using this approach, it is easy to show
that if p(m,n) ∼ ε2Q(X,Y ), then Q satisfies the PDE and BC:

QXX + (b+ 1)QX − bQY = 0, X > A, Y > 0,

QX(A, Y ) +QY (A, Y ) + (b+ 1)Q(A, Y ) = 0, Y > 0,

Q(X, 0) = 0, X > A.

Furthermore, by assuming a priori that p(m,n) ∼ εn+1Rn(X), we find that R0(X)
satisfies

R′′
0 (X) +R′

0(X) = 0, 0 < X < A.

Then by considering separately the scale m,n = O(1), we derive the BC: R′
0(0) +

R0(0) = 0. It follows that R0(X) = Ke−X and that Q(X,Y ) = K∗P (X − A, Y ).
However, we have the two constants K and K∗, and normalization of p(m,n) will
give only one relation between them. Hence a second relation must be obtained;
i.e., the two-dimensional diffusion must somehow be coupled to the one-dimensional
one. By considering the scale m − L = O(ε−1/2) and n = O(1), we obtain another
expansion that asymptotically matches to R0(X) and to Q(X,Y ) in the appropriate
limits. This yields the additional relation K∗ = R0(A) = e−AR0(0) = Ke−A, and
then normalization shows that K = 1. The merit of the direct approach sketched
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here is that it should be possible to generalize to more complicated models, e.g., ones
with general service time distributions.

Next we give the HTL 1 results.
Theorem 3.3. In the heavy traffic limit HTL 1, we have as ε→ 0+

(a) m = X/ε < L, n = Y/ε:

p(m,n) ∼ ε2P (Y,X; a)

=
ε2

2πi

∫
Br

2θeθX exp[−Y
2 (a+ 1 +

√
(a+ 1)2 + 4aθ)]

a+ 1 + 2θ −√(a+ 1)2 + 4aθ
dθ;

(b) m ≥ L, m− L = O(1), n = Y/ε:

p(m,n) ∼ (εa)m+1−L 1

2πi

∫
Br

8θeθA

a+ 1 + 2θ −√(a+ 1)2 + 4aθ

× e−Y − e−Y (a+1+
√

(a+1)2+4aθ)/2

[a+ 1 +
√
(a+ 1)2 + 4aθ][a− 1 +

√
(a+ 1)2 + 4aθ]

dθ;

(c) m ≥ L, m− L = O(1), n = O(1):

p(m,n) ∼ ε(εa)m+1−L 1

2πi

∫
C

1

(1− w)2(2− w)m−Lwn+1
dw

× 1

2πi

∫
Br

4θeθA

[a+ 1 + 2θ −√(a+ 1)2 + 4aθ][a+ 1 +
√
(a+ 1)2 + 4aθ]

dθ.

Thus, now the limiting distribution behaves as a two-dimensional diffusion in the
range {0 < X < A, Y > 0}, coupled to a one-dimensional diffusion along {m = L, Y >
0}. The mass in the first region is

M−(A) =
∞∑

n=0

L−1∑
m=0

p(m,n)

∼ 4

2πi

∫
Br

eθA − 1

[a+ 1 + 2θ −√(a+ 1)2 + 4aθ][a+ 1 +
√
(a+ 1)2 + 4aθ]

dθ,

where we have used part(a) of Theorem 3.3. The remaining mass is, using part (b)
with m = L,

M+(A) =

∞∑
n=0

∞∑
m=L

p(m,n) ∼
∞∑

n=0

p(L, n)

∼ a

2πi

∫
Br

8θeθA

[a+ 1 + 2θ −√(a+ 1)2 + 4aθ][a+ 1 +
√
(a+ 1)2 + 4aθ]2

dθ.

Using contour integration, it is possible to show that these two expressions indeed
sum to one.

Finally, we discuss the direct approach to the diffusion model. In the limit HTL
1 we find that for x < A (m < L) we have p(m,n) ∼ ε2Q̄(X,Y ), where

Q̄Y Y + (a+ 1)Q̄Y − aQ̄X = 0, 0 < X < A, Y > 0,

Q̄X(X, 0) + Q̄Y (X, 0) + (a+ 1)Q̄(X, 0) = 0, 0 < X < A,

Q̄(0, Y ) = 0,
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and thus Q̄(X,Y ) = K1P (Y,X; a), where P is as in Theorem 2.5. For Y = εn > 0
and m = L,L + 1, . . . we use p(m,n) ∼ εl+1Ql(Y ), where l = m − L. Then we find
that Q0(Y ) satisfies the forced one-dimensional diffusion equation

Q′′
0(Y ) +Q

′
0(Y ) = −aQ̄(A, Y ), Y > 0.

From a careful consideration of the scale m−L = O(1), m ≥ L, n = O(1), we obtain
the boundary condition Q0(0) = 0. Then we can easily solve for Q0(Y ) in terms of
the previously obtained Q̄(A, Y ). Now both diffusions are known up to a common
multiplicative constant, which follows from normalization.

4. Discussion and numerical results. We demonstrate the usefulness of both
our exact and asymptotic results. The exact results for the two models are given in
Theorems 2.1 and 3.1. In both cases, the exact formulas for the stationary probabili-
ties are given in terms of complex contour integrals. These integrals can be evaluated
by computing the residue at zero. However, for m and/or n large, the residue calcu-
lation is not feasible. The asymptotic results for the tail probabilities (cf. Theorems
2.2–2.4) and the heavy traffic diffusion results (cf. Theorems 2.5, 2.6, 3.2, 3.3) provide
good approximations precisely when the computation of the exact solution is difficult.

We consider several examples of the simplified model in section 2. The marginal
probability p(n) for the number in the high priority queue is given by the exact formula
(2.8), while its asymptotic approximation is given in Theorem 2.4 (b) and (c). For
each of the tables, we evaluate the integral in (2.8) by computing the residue at w = 0
using the symbolic computation program Maple.

In Table 4.1, we consider a system with λ1 = 1/4, λ2 = 1/2, and µ = 1. Thus,
ρ1 = 1/4 and ρ2 = 1/2 so that (ρ1, ρ2) ∈ RB (cf. Figure 2.1). As we see from Table
4.1, the asymptotic expansion is quite accurate for n > 5, where the relative error is
less than 5%. In Table 4.2, we consider the same queue as in Table 4.1 except that
λ2 = 2/3. Again the asymptotic results are extremely accurate.

In Table 4.3, we consider a system with λ1 = 3/4, λ2 = 1/150, and µ = 1. Thus,
ρ1 = 3/4 and ρ2 = 1/150 so that (ρ1, ρ2) ∈ RA. For this case the results are not
as accurate as for those in Tables 4.1 and 4.2. As n increases, the accuracy of the
asymptotic expansion increases. For n > 30 the calculation of the exact formula is
difficult, and so we no longer have a basis of comparison. If we choose (ρ1, ρ2) closer
to the curve separating regions RA and RB in Figure 2.1, then the error is larger
for each n. However, for sufficiently large n, we expect the asymptotic result to be
very accurate. The difference in the size of the errors in these examples is due to the
fact that in region RA the error (in Theorem 2.4(b)) is O(1/n), while in region RB

the error is exponentially small. In fact, it can be shown that the error term for RB

is the same as the leading term for the region RA. Neither expansion is valid at or
near the transition curve that separates RA and RB . There a new expansion must be
constructed. This new expansion involves hypergeometric functions, and we do not
consider it here.

As a last example, we compare the heavy traffic diffusion approximation for the
marginal probability p(n), as given in Theorem 2.5, to the exact expression (2.8).
In Figure 4.1, we present graphs of both (2.8) and the heavy traffic approximation
in Theorem 2.5 when ρ1 = 4/5 and ρ2 = 1/10, so that ε = 1/10 and b = 1. For
these parameters, the heavy traffic approximation is εP (Y ) = εe−Y /

√
πY . As we see

qualitatively, the heavy traffic result provides an accurate approximation if n > 4. In
fact, the error is less than 3% for all n > 4.
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Table 4.1

ρ1 = 1/4, ρ2 = 1/2—Region RB

n Exact Asympt. Rel. err.
0 0.296535 0.208333 0.297441
1 0.195083 0.15625 0.199061
2 0.135762 0.117188 0.136819
3 0.097346 0.087891 0.097131
4 0.070956 0.065918 0.070998
5 0.052214 0.049438 0.053155
6 0.038647 0.037079 0.040569
7 0.028712 0.027809 0.031446
8 0.021385 0.020857 0.024685
9 0.015955 0.015643 0.019580
10 0.011919 0.011732 0.015669
11 0.008912 0.008799 0.012633
12 0.006668 0.006599 0.010251
13 0.004991 0.004949 0.008366
14 0.003738 0.003712 0.006861
15 0.0028 0.002784 0.005652
16 0.002098 0.002088 0.004674
17 0.001572 0.001566 0.003879
18 0.001178 0.001175 0.003229
19 0.000883 0.000881 0.002697
20 0.000662 0.000661 0.002258
21 0.000496 0.000496 0.001895
22 0.000372 0.000372 0.001594
23 0.000279 0.000279 0.001343
24 0.000209 0.000209 0.001135

Table 4.2

ρ1 = 1/4, ρ2 = 2/3—Region RB

n Exact Asympt. Rel. err.
0 0.096987 0.080492 0.170066
1 0.08173 0.073785 0.097212
2 0.071742 0.067636 0.057233
3 0.064245 0.062 0.034951
4 0.058116 0.056833 0.022081
5 0.052856 0.052097 0.014355
6 0.048216 0.047756 0.009552
7 0.044061 0.043776 0.006477
8 0.040308 0.040128 0.004460
9 0.036899 0.036784 0.003110
10 0.033793 0.033719 0.002192
11 0.030957 0.030909 0.001559
12 0.028365 0.028333 0.001118
13 0.025993 0.025972 0.000807
14 0.023822 0.023808 0.000586
15 0.021833 0.021824 0.000427
16 0.020011 0.020005 0.000313
17 0.018342 0.018338 0.000230
18 0.016813 0.01681 0.000170
19 0.015411 0.015409 0.000126
20 0.014126 0.014125 0.000094
21 0.012949 0.012948 0.000070
22 0.011869 0.011869 0.000052
23 0.01088 0.01088 0.000039
24 0.009973 0.009973 0.000029
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Table 4.3

ρ1 = 3/4, ρ2 = 1/150—Region RA

n Exact Asympt. Rel. err.
1 0.078876 0.226964 1.877476
2 0.011338 0.021732 0.916778
3 0.001986 0.003204 0.612972
4 0.000385 0.000564 0.462403
5 7.96015e-05 0.000109 0.372002
6 1.71561e-05 2.25008e-05 0.311530
7 3.81328e-06 4.83583e-06 0.268156
8 8.67638e-07 1.07195e-06 0.235488
9 2.01078e-07 2.433e-07 0.209978
10 4.72974e-08 5.626e-08 0.189494
11 1.12622e-08 1.3207e-08 0.172677
12 2.70941e-09 3.13917e-09 0.158619
13 6.57536e-10 7.53991e-10 0.146690
14 1.60781e-10 1.82718e-10 0.136439
15 3.95733e-11 4.46202e-11 0.127533
16 9.79651e-12 1.09693e-11 0.119723
17 2.43757e-12 2.71258e-12 0.112818
18 6.09288e-13 6.74281e-13 0.106669
19 1.52919e-13 1.68388e-13 0.101158
20 3.85217e-14 4.22272e-14 0.096190
21 9.7365e-15 1.06292e-14 0.091689
22 2.46845e-15 2.68467e-15 0.087591
23 6.27566e-16 6.80184e-16 0.083845
24 1.59958e-16 1.7282e-16 0.080407
25 4.0868e-17 4.40246e-17 0.077240
26 1.04642e-17 1.12419e-17 0.074313
27 2.68481e-18 2.87705e-18 0.071601
28 6.90144e-19 7.37819e-19 0.069080
29 1.77717e-19 1.89576e-19 0.066731

20151050
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Fig. 4.1. Graphs of the exact formula (−) for the marginal probability p(n) given by (2.8) and
the heavy traffic result (· · · ) from Theorem 2.5 when ρ1 = 4/5 and ρ2 = 1/10.
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Abstract. Consider the dynamics of turbulent flow in rivers, estuaries, and floods. Based on
the widely used k-ε model for turbulence, we use the techniques of center manifold theory to derive
dynamical models for the evolution of the water depth and of vertically averaged flow velocity and
turbulent parameters. This new model for the shallow water dynamics of turbulent flow resolves the
vertical structure of the flow and the turbulence, includes interaction between turbulence and long
waves, and gives a rational alternative to classical models for turbulent environmental flows.
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1. Introduction. Consider the dynamics of a turbulent flow over ground, as
occurs in rivers, channels, or floods. In such flows it is the large-scale horizontal
variations which are important; the vertical structure of velocity and turbulence may
be expected to be determined by the local conditions of the horizontal flow. In
this situation we may seek a model of the flow which involves only “coarse” depth-
averaged quantities. Such models have been constructed before; for example, Fredsoe
and Deigaard [15, pp. 37–39] depth-average the k-equation model of turbulent flow
to model the dynamics of breakers on a beach, whereas depth-averaged k-ε equations
have been used by Rastogi and Rodi [37] to model heat and mass transfer in open
channels and by Keller and Rodi [24] to investigate flood plain flows. The need for
such sophisticated models was also indicated by Peregrine [35, p. 97], commenting that
an empirical friction law derived from channel flow underestimates the turbulence in
breakers and surf, and Mei [29, p. 485], observing that eddy viscosities need to be
different in and outside of the surf zone.

However, the recent development of center manifold theory and related techniques
presages a much deeper understanding of the process of modelling nonlinear dynamics
and foresees the systematic reduction of many nonlinear problems to an underlying
low-dimensional system. For example, the process of depth-averaging has been shown
to be deficient as a modelling paradigm [44]. In the context of turbulent flow, we show
in section 3 how the mean motions may be determined by a few critical modes which
have a nontrivial structure in the vertical; e.g., as a first approximation the horizontal
velocity u and turbulent energy density k are taken to have a cube-root dependence.
Moreover, the amplitude of these modes and their evolution may be expressed in
terms of depth-averaged quantities. We derive the following coupled nonlinear set of
equations to model the turbulent, large-scale flow of water over ground (see (28)):

∂η

∂t
∼ −∂(ηū)

∂x
,(1a)
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∂ū

∂t
∼ −1.030

ν̃ū

η2
+ (0.0504− 0.243 λ̃)

ν̃ū3

η2k̄

+ 0.961 g

(
θ − ∂η

∂x

)
− 1.105, ū

∂ū

∂x
+ 1.44

∂

∂x

(
ν̃
∂ū

∂x

)
,(1b)

∂k̄

∂t
∼ −0.993 ε̄− 0.0927

k̄3

η2ε̄
+ (0.589 + 0.516 λ̃)

ν̃ū2

η2
− 1.106 ū

∂k̄

∂x

+ 1.31
∂

∂x

(
ν̃
∂k̄

∂x

)
,(1c)

∂ε̄

∂t
∼ −2.101

ε̄2

k̄
+ (1.552− 3.215 λ̃)

ν̃ε̄ū2

k̄η2

− 0.173 λ̃ε̄
∂ū

∂x
+ 0.533 λ̃

ε̄ū

k̄

∂k̄

∂x
− (1 + 0.735 λ̃)ū

∂ε̄

∂x

+ 0.81
∂

∂x

(
ν̃
∂ε̄

∂x

)
.(1d)

Here η is the water depth and ū, k̄, and ε̄ are depth-averaged flow velocity, turbu-
lent energy, and turbulent dissipation, respectively. The other variables appearing
are ν̃ = Cµk̄

2/ε̄, measuring the local eddy diffusivity (see (24)), and λ̃ = η2ε̄2/k̄3,
being proportional to the ratio of the vertical mixing time to the turbulent eddy time
(see (25)). For example, in section 5.3 this model is used to predict the flow after a
dam breaks. See in Figure 6 the formation of a turbulent bore rushing downstream
from the dam. The turbulence in the bore is generally highest near the front and
decays away behind as seen in Figure 7. This gives one example of the variations in
spatial structure of the turbulence that underlies shallow water flows.

Modelling turbulent flow is one of the major challenges in fluid dynamics. While
large eddies, which can be as large as the flow domain, extract energy from the mean
flow and feed it into turbulent motion, the eddies also act as a vortex stretching mech-
anism and transfer the energy to the smallest scales where viscous dissipation takes
place. It is the scale at which the dissipation occurs that determines the rate of energy
dissipation. However, the inflow of energy into turbulent motion is a characteristic
of only the large-scale motion. In other words, the turbulent but small-scale motion
is often dominated and determined by the large-scale motion and can be treated as
a perturbation of the mean flow. The coupling of energy transportation and energy
dissipation with the mean flow is adequately described by widely used second-order
closure models. In particular, the most popular choice is the two equation k-ε model;
see, for example, Launder, Reece, and Rodi [26], Hanjalić and Launder [19], Rodi [50],
and Speziale [52] for reviews.

We base our analysis upon the k-ε model (section 2) for the turbulence underlying
the free surface of a fluid in a channel or river or over a flood plain. The resultant
model (1) is basically a model for the evolution of vertically averaged quantities; the
model resolves large-scale, compared to the depth, dynamical structures in the hor-
izontal. It is important to distinguish between models obtained by depth-averaged
equations (which are known to be incorrect [44] for other similar long-wave dynamics)
and our model, which is, for convenience, written in terms of depth-averaged quanti-
ties.

In section 4 we derive the “coarse” low-dimensional model (1) from the “fine”
k-ε equations. Despite the well-recognized limitations of the k-ε equations as a model
of turbulence, we anticipate that the information retained in our coarse model is
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reasonably insensitive to deficiencies in the k-ε dynamics. Further modelling may
be done via more sophisticated Reynolds stress models for channel flow, such as that
described by Gibson and Rodi [17]. One aspect to note is that the model we derive has
no adjustable parameters—all constants are determined from values established for
the k-ε turbulence model and its boundary conditions. Thus the model predictions are
definitive. We describe some example solutions in section 5 to illustrate the dynamical
predictions of the model.

Penultimately, in Appendix A we comment on the status of the theory of center
manifolds in this development of a low-dimensional model of turbulent flow using
center manifold techniques. Finally, in Appendix B we list the computer algebra
program used to perform the intricate algebra in constructing the model.

2. The k-ε model of turbulent flow. Consider the two-dimensional inviscid
k-ε model of turbulent flow over rough ground. Distance parallel to the ground’s
slope is measured by x, while we measure distance normal to the slope by y. Molec-
ular dissipation is neglected because we anticipate little direct effect for it in flood
waves of a depth O(metre) over ground with roughness which may be many times the
length-scale of viscous dissipation. Turbulent eddies are proposed to be the dominant
mechanism for dispersion and dissipation. We denote the ensemble mean velocity com-
ponents and pressure by u, v, and p, respectively; that is, for simplicity, we omit any
distinguishing overbars (instead overbars will later be used to denote depth-averaged
quantities). Then the incompressible k-ε model (with ensemble means) is[

0
∂u
∂t

]
=

[
∂u
∂x + ∂v

∂y

F (p,u)

]
,(2a)

where the vector u = (u, v, η, k, ε)1 is formed from the velocities u and v in the lateral
and normal directions, respectively, the height of the free surface y = η(x, t), the
turbulent energy density k, and its dissipation rate ε. The nonlinear model governing
the evolution of the unknowns u and p is

F (p,u) =(2b) 


−u∂u∂x − v ∂u∂y − ∂p
∂x + g sin θ − 2

3
∂k
∂x + 2 ∂∂x

(
ν ∂u∂x

)
+ ∂

∂y

{
ν
(
∂u
∂y + ∂v

∂x

)}
−u ∂v∂x − v ∂v∂y − ∂p

∂y − g cos θ − 2
3
∂k
∂y + 2 ∂∂y

(
ν ∂v∂y

)
+ ∂

∂x

{
ν
(
∂u
∂y + ∂v

∂x

)}
−u(x, η, t)∂η∂x + v(x, η, t)

−u∂k∂x − v ∂k∂y +
{
∂
∂x

(
ν
σk

∂k
∂x

)
+ ∂

∂y

(
ν
σk

∂k
∂y

)}
+ Ph − ε

−u ∂ε∂x − v ∂ε∂y +
{
∂
∂x

(
ν
σε

∂ε
∂x

)
+ ∂

∂y

(
ν
σε

∂ε
∂y

)}
+ Cε1

T Ph − Cε2
ε2

k



.

Here the eddy viscosity

ν = Cµ
k2

ε
(3)

is a result of the turbulent mixing and varies in space and time. Later we use the
approximate values of the constants

Cµ = 0.09 , σk = 1 , σε = 1.3 , Cε1 = 1.44 , Cε2 = 1.92 ,(4)

1We adopt the notation that a vector in parentheses, such as (u, v, η, k, ε), is a shorthand for the
corresponding column vector.
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in order to form definite models. Also

Ph = ν

[
2

(
∂u

∂x

)2

+ 2

(
∂v

∂y

)2

+

(
∂u

∂y
+

∂v

∂x

)2
]

describes the generation of turbulence through instabilities associated with mean-
velocity gradients. T is the time-scale of the turbulent eddies and is frequently defined
as

T = max
{
k/ε, CT

√
νm/ε

}
;

the cutoff at viscous time-scales
√

νm/ε is to avoid a singularity in turbulent produc-
tion at a wall; see [14, p. 470], for example. However, here we eschew the incorporation
of direct viscous effects and so avoid this singularity by using T = k̄/ε̄ as the typical
turbulent time-scale, where the overbars denote depth averages. The downward slope
of the bed, θ, is assumed to be small and to have negligible variation.

The boundary conditions on the bottom and the free surface are important in the
details of the construction of the low-dimensional model. The following arguments
lead to the given boundary conditions:

• The standard condition is that, in view of the extremely low density of air,
the pressure of the air on the fluid surface is effectively constant, which we
take to be zero without loss of generality. Thus the normal stress of the fluid
across the free surface should vanish:

p+
2

3
k − 2ν

1 + η2
x

[
∂v

∂y
+

∂u

∂x
− ηx

(
∂v

∂x
+

∂u

∂y

)]
= 0 on y = η .(5)

This is only approximately true—corrections should exist of the order of p′η′
in terms of fluctuations about the ensemble means and similarly for other
equations involving the free surface. However, the time-scale of gravity waves,√

�/(2πg), associated with the turbulent length-scale, � ∝ k3/2/ε, should be

typically much shorter than the turbulent eddy turn-over time, �/
√
k (true for

the scaling introduced in section 3.2), and, as in [22, section 2.3], we expect
there to be little interaction between the turbulent fluctuations and the free
surface dynamics.

• In this work we assume that the horizontal extent of the flood waves is small
enough so that wind stress is negligible. This is in contrast to large-scale
geophysical simulations, such as that by Arnold and Noye [2], where the wind
stress is very important. Thus the fluid surface is free of tangential stress:

(
1− η2

x

)(∂u

∂y
+

∂v

∂x

)
+ 2ηx

(
∂v

∂y
− ∂u

∂x

)
= 0 on y = η .(6)

A wind stress could be incorporated into the model by appropriately replacing
the zero right-hand side.

• Symmetry conditions for turbulent variables k and ε on the free surface (see
Arnold and Noye [3] or Fredsoe and Deigaard [15, p. 117] for examples) lead
to

∂k

∂n
= 0 on y = η ,(7)

and
∂ε

∂n
= 0 on y = η .(8)
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These assert that the energy in turbulent eddies cannot be lost or gained by
transport through the free surface, and similarly for the turbulent dissipa-
tion. More sophisticated models of the free surface effect upon turbulence by
Gibson and Rodi [17, p. 238] use these zero net flux boundary conditions.
Spilling breakers on the water surface could perhaps be modelled by a turbu-
lent production term on the right-hand side of these boundary conditions.

• At the ground, y = 0, there must be no flow across the flat bottom:

v(x, 0, t) = 0 .(9)

• Other boundary conditions on the ground are more arguable (compare our
treatment with that of Arnold and Noye [3, 4]). We are interested only
in the flow outside of any molecular boundary layer that may exist on the
stream bed—we imagine that the structure of any ordered viscous layer will
be broken up by the roughness. This is supported by recent experiments by
Krogstad and Antonia [25] who show that roughness of a wall, even on a
scale 1/100th the thickness of a turbulent boundary layer, tends to reduce
the overall anisotropy of the turbulence. A major limitation of the k-ε model
is the high level of anisotropy near a wall, so such a reduction in anisotropy
due to roughness will favor the k-ε model. Note that we treat the ground as
y = 0 in the mathematical model even though we imagine it to be rough. In
effect, ensemble means are also done over all realizations of a “rough” bed
with mean slope θ and hence mean position y = 0.
We suppose that the bottom inhibits the turbulence in its immediate neigh-
borhood so that the turbulent energy falls to zero:

k = 0 on y = 0 .(10)

In using the k-ε model for near-wall turbulence, Durbin [12, 13] asserts that
∂k/∂y = 0 on the wall as well. However, Figure 1 by Durbin [12] shows this
latter condition is significant only for the viscous boundary layer—a layer we
ignore due to the roughness of the ground. Instead of this requirement, we
place the fairly weak constraint on the turbulent dissipation:

ν
∂ε

∂y
→ 0 as y → 0 .(11)

This is weak because ν ∝ k2 → 0 as y → 0. In essence, this condition asserts
that the bed does not directly act as a source or sink of turbulent dissipation.

• Although ν ∝ k2 → 0 as y → 0, we suppose that ν approaches zero slowly
enough so that turbulence is still an effective mixing mechanism near the bed.
Thus, the ensemble mean horizontal velocity should also vanish on the bed
(as also used by Lin and Falconer [27, p. 740]):

u = 0 on y = 0 .(12)

These three boundary conditions on the bed are the same as those used by
“low Reynolds” k-ε turbulent models [33, p. 64]. The difference here is that
we do not include the near-wall dependence upon local Reynolds numbers
Rt = k2/ενm and Ry =

√
ky/νm because these involve molecular viscosity

νm.
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The boundary conditions are different to those we used in an earlier treatment
of this problem [30]. The difference occurs because there we assumed that
the stress ∂u/∂y is small near the bottom and is more appropriate to weakly
turbulent flows. Here we seek the dynamics of flows with a strong level of
turbulence leading to the boundary condition (12).

3. Basis of the low-dimensional model. In this paper we consider flows that
vary “slowly” in the x and t directions. In this context, the meaning of “slow” is that
the dynamics are slower relative to the vertical mixing time induced by the turbulence.
In particular, the derivatives of the flow variables with respect to x and t are small
quantities that can be collected with the “nonlinear” part of the equations and treated
as perturbations. Hence we rewrite the equations as




0
u̇
v̇
η̇
k̇
ε̇


 =




0 0 ∂
∂y 0 0 0

0 ∂
∂y

(
ν ∂∂y

)
0 0 0 0

− ∂
∂y 0 2 ∂∂y

(
ν ∂∂y

)
0 − 2

3
∂
∂y 0

0 0 0 0 0 0
0 0 0 0 1

σk

∂
∂y

(
ν ∂∂y

)
0

0 0 0 0 0 1
σε

∂
∂y

(
ν ∂∂y

)







p
u
v
η
k
ε




+




∂u
∂x

−u∂u∂x − v ∂u∂y − ∂p
∂x + g sin θ − 2

3
∂k
∂x + 2 ∂

∂x

(
ν ∂u∂x

)
+ ∂

∂y

(
ν ∂v∂x

)
−u ∂v∂x − v ∂v∂y − g cos θ + ∂

∂x

[
ν
(
∂u
∂y + ∂v

∂x

)]
−u(x, η, t)∂η∂x + v(x, η, t)

−u∂k∂x − v ∂k∂y + ∂
∂x

(
ν
σk

∂k
∂x

)
+ Ph − λε

−u ∂ε∂x − v ∂ε∂y + ∂
∂x

(
ν
σε

∂ε
∂x

)
+ Cε1

T Ph − Cε2λ
ε2

k




= L(p,u) + F(p,u, λ) .(13)

Treating the time and lateral variations and the “nonlinear” terms as small, we see
that L(p,u) comprises the leading term in the equation.

With a little adaptation, the operator L has a critical space of equilibrium points
parametrized by the water depth η and the mean fields ū, k̄, and ε̄. To ensure that the
turbulent energy and turbulent dissipation are critical modes of L and thus retained
in our model of turbulent floods, we need k and ε to be conserved to leading order.
The parameter λ ∈ [0, 1] is an artificial parameter which we use to adjust the rate of
decay of turbulent energy and its dissipation; by making λ small we initially neglect
the natural turbulent decay, but when λ = 1 we recover the standard k-ε model. This
is reasonable because the combined effect of k̇ = −ε and ε̇ = −Cε2ε

2/k is a slow
algebraic decay of turbulence [28, p. 277] that is appropriate for the long-term center
manifold dynamics.

3.1. Vertical mixing. The operator L is considered to be the dominant feature
of the k-ε model (2). It is primarily composed of the differential operator

∂

∂y

(
ν
∂

∂y

)
,

which represents vertical mixing by turbulent eddies. By identifying this as the dom-
inant term in the equations we are physically supposing that turbulent mixing in the
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vertical is stronger than the other processes that redistribute momentum and turbu-
lent energy. For example, Lin and Falconer [27, p. 738] comment that “the shallow
regions of tidal embayments are usually well mixed.”

The boundary conditions on the bottom, (10) and (11), in conjunction with the
k and ε components of L in (13) admit homogeneous solutions k ∝ y1/3 and ε constant.
Such a cube-root profile in the vertical fits with arguments that the turbulence should
be weaker near the bottom due to its constraining effects. Given such a profile,
the turbulent diffusivity ν ∝ y2/3 and so the horizontal velocity component of L
also admits homogeneous solutions u ∝ y1/3. Although our long-wave model will be
expressed in terms of depth-averaged quantities, we base the vertical structure that
they measure on these cube-root profiles.

Traditionally, many theoretical approaches have assumed constant or near con-
stant vertical profiles (see [15, section 4.3.1] or [36, p. 670] for examples), as indeed
we also have in an earlier treatment of this problem [30]. However, as seen in experi-
ments the horizontal velocity profile is typically curved (see [51, Fig. 12], [7], or [54,
Fig. 2]) as is the turbulent energy (see [15, Fig. 4.25]). A logarithmic profile is a well-
established approximation; here we work with the cube-root profile as it is compatible
with the k-ε equations, is analytically tractable, and is a rough initial approximation
to the logarithmic profile.

These cube-root profiles result in downwards turbulent transport of momentum
and turbulent energy with constant flux and eventual removal from the fluid at the
bed. In order to maintain flow at leading order (only) we modify the conservative
free surface boundary conditions (6)–(7) to supply the requisite flux at leading order
and to remove the supply at higher order. We replace (6)–(7) with the boundary
conditions that on y = η

(1− aγ)

[(
1− η2

x

)(∂u

∂y
+

∂v

∂x

)
+ 2ηx

(
∂v

∂y
− ∂u

∂x

)]
=

1− γ

3η
u,(14)

(1− aγ)

[
∂k

∂y
− ∂η

∂x

∂k

∂x

]
=

1− γ

3η
k,(15)

where the artificial parameter γ, as for λ introduced earlier, is small in the asymptotic
scheme but eventually will be set to 1 to recover the desired boundary conditions (6)–
(7). Such manipulation of the governing equations has worked well in developing
analogous models of the laminar viscous flow of a thin fluid layer [44, 47]; the resulting
model was found to be independent of the two different manipulations. The particular
choice (14)–(15) here enables us to develop the necessary asymptotic expansions purely
in polynomials of y1/3 .

The center manifold analysis forms a power series in γ which needs to be summed
for γ = 1. The parameter a �= 1 is free for us to choose. Initially we omitted a,
equivalent to choosing a = 0, but after two years of exploration we determined that
an Euler transformation of the series in γ greatly improves the convergence; e.g., see
Hinch [21, Chap. 8]. Introducing a �= 0 is equivalent to such an Euler transformation.
Another view of a �= 0 is that of an over-relaxation parameter in an iterative scheme.
In this problem it appears that a ≈ 1/2 is a good compromise between conflicting
influences and is used henceforth.

From the special structure of the vertical mixing operator L with the modified
boundary conditions, we deduce that there are four critical modes of interest in the
long-term dynamics. These modes correspond to the leading-order conservation, and
hence long-life, of fluid mass, momentum, turbulent energy, and turbulent dissipation.
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These modes span the space M0:

(p,u) =

(
g(η − y), U 4

3

(
y
η

)1/3

, 0, H, K 4
3

(
y
η

)1/3

, E

)
,(16)

where U , H, K, and E are arbitrary functions of x and t. Note that the turbulent
diffusivity, ν, then also varies slowly in x and t; to leading order it is

ν0 = Cµ
16K2

9E

(
y

η

)2/3

.

As proven in Appendix A, the dominant operator L, linearized about the space
of equilibrium points, has eigenvalues which are all negative (due to the decaying
dynamics of turbulent dispersion), except for the four zero eigenvalues corresponding
to the four conserved modes. By continuity in the “nonlinear” perturbation F , the
center manifold is also exponentially attractive, at least for small enough nonlinearity.
Since all other modes decay exponentially quickly, the long time behavior of the flow
is determined by the functions U(x, t), H(x, t), K(x, t), and E(x, t). Respectively,
these represent the vertically averaged horizontal velocity, the surface elevation, the
vertically averaged turbulent energy, and the vertically averaged turbulent dissipa-
tion. In essence, we construct a “vertically averaged” model, but in u and k there is
structure in the vertical, roughly proportional to y1/3, whose amplitude we measure
by the vertical average.

3.2. Approximating the center manifold. Center manifold techniques sys-
tematically develop such a model in the vertically averaged quantities. Based on
the relatively low-dimensional space of exponentially attractive equilibria M0, center
manifold theory [9] suggests that the nonlinear terms F “bend” M0 to a nearby man-
ifold M of slow evolution. Further, M will similarly attract exponentially quickly
all solutions in its vicinity; in standard formulations M is called the center manifold.
Once on M, solutions evolve slowly according to a low-dimensional system of evolu-
tion equations—these evolution equations form the simplified model of the original
dynamics. This general approach to forming low-dimensional models of dynamical
systems is reviewed by Roberts [45].

We have never found it profitable to decompose dynamics into that on the null
space M0 and its complement. Many do this in order to write the center manifold as
a graph. We view the complement space as an artifice of the linearization, whereas we
are interested in a physically meaningful parametrization of the center manifold M.
Thus the appropriate geometric picture is simply the curving center manifold M em-
bedded in the original physical state space. Hence we construct the model in terms of
easily understandable physical quantities, namely the vertical averages. Nonetheless,
the physically relevant complement space at any point on M is the local direction of
projection of initial conditions [41, 11, 48]. Determining this projection is difficult for
nonlinear long-wave approximations and is beyond the scope of this paper.

In this problem, the center manifold M is parametrized by the four “amplitudes,”
U , H, K, and E, which are functions of x and evolve in time. Due to the difficult
nature of the nonlinear terms in the k-ε model (2) we have to be very careful about
these amplitudes and their derivatives. We introduce two independent small param-
eters: δ as an amplitude scale and ϑ to scale spatial derivatives. Then we treat the
flow fields and derivatives as

u, k = O(δ2
)
, ε = O(δ3

)
, η = h+O(δ2

)
, and

∂

∂x
= O(δϑ) .(17)
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Note that in this scaling, the turbulent length-scale � ∝ k3/2/ε = O(1). This ensures
that the turbulent eddies modelled by k and ε are not asymptotically larger than the
water depth; large-scale horizontal eddies are resolved by variations in the amplitudes
of the model. Also from these scalings, the turbulent diffusivity ν = O(k2/ε

)
= O(δ)

and thus the time-scale of vertical mixing is O(1/δ). Consequently, we must consider

horizontal scales larger than O(1/δ), which accounts for requiring the product δϑ
in the scaling of horizontal derivatives. In standard applications of center manifold
theory, we are free to scale the amplitudes in any reasonable fashion or, indeed, to treat
the amplitudes as independent; as discussed in [40] a change in the scaling just reorders
the appearance of the same set of terms in the model. In this application of center
manifold techniques, physical considerations and the nonstandard nonlinearities place
the constraints on the scaling that derivatives ∂

∂x = O(δϑ) and that the slope θ =

O(δ3ϑ
)
. Nonetheless, we exploit usefully some of the capability of center manifold

techniques to treat amplitudes as independent variables by the above introduction of
two independent small parameters, δ and ϑ.

Two other independent small parameters in this problem are γ, the artificial
forcing at the free surface, and λ, an artificial adjustment of turbulent interaction.
We treat all four of these parameters as independently small.

In terms of the field variables, we define the four amplitudes U , H, K, and E in
terms of physical quantities such that

ū = δ2U ,(18a)

η = h+ δ2H ,(18b)

k̄ = δ2K ,(18c)

ε̄ = δ3E ,(18d)

where the overbar denotes a vertical average over the whole fluid depth at any x and t;
for example,

ū =
1

η

∫ η

0

u dy.(19)

Denoting the collective amplitudes by s(x, t) = (U,H,K,E), we pose the low-
dimensional assumption that the evolution of the physical variables may be expressed
in terms of the evolution of the four amplitudes (effectively equivalent to the “slaving”
principle of synergetics [18]):

(p,u) = V(y, s) such that
∂s

∂t
= G(s) .(20)

In general, we cannot find these functions V and G exactly, as this would be tanta-
mount to exactly solving the original equations. Instead we determine asymptotic
approximations in the four small parameters.

It would be decidedly awkward to explicitly write out an asymptotic expansion
in the four asymptotic parameters. But it is also inappropriate to link their relative
magnitudes into one parameter as we need to find relatively high-order in γ but not in
the others. Thus we apply an iterative algorithm in computer algebra to find the center
manifold and the evolution thereon, which is based directly upon the approximation
theorem 3 in [9, 46] and its variants, as explained in detail by Roberts [46]. An outline
of the procedure follows.
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The aim is to find the functional V and evolution G such that the pressure,
velocity, and turbulence fields described by (20) form actual solutions of the scaled
turbulent equations—this ensures fidelity between our model and the fluid dynamics
of the k-ε equations. Suppose that at some stage in an iterative scheme we have some
approximation, Ṽ and G̃. We then seek a correction, V ′ and G′, to obtain a more
accurate solution to the turbulence equations. Substituting

(p,u) = Ṽ + V ′ such that
∂s

∂t
= G̃ + G′

into the scaled turbulence equations, then rearranging, dropping products of correc-
tions, and using a leading-order approximation wherever factors multiply corrections
(see [46] for details), we obtain a system of equations for the corrections which is of
the form

LV ′ = R̃+ EG′ ,(21)

where E = ∂V/∂s|s=0 is the basis for the linear subspace M0 in (16), and, most

importantly, R̃ is the residual of the scaled k-ε equations using the current approx-
imation Ṽ and G̃. This homological equation is solved by choosing corrections G′ to
the evolution so that the right-hand side is in the range of L; then the correction
to the fields V ′ is determined. The solution is made unique by requiring that the
amplitudes s have some specific physical meaning, here the vertical averages of the
fields as in (18). Then the current approximation Ṽ and G̃ is updated. The iteration
is repeated until the residual of the governing equations, R̃, becomes zero to some
order of error, whence the center manifold model will be accurate to the same order
of error (by the approximation theorem 3 of Carr [9]).

A computer algebra program was written to perform all the necessary detailed
algebra for this physical problem. A listing is given in Appendix B. The very impor-
tant feature of this iteration scheme is that it is performed until the residuals of the
actual governing equations are zero to some order of error. Thus the correctness of the
results that we present here is based only upon the correct evaluation of the residuals
and upon sufficient iterations to drive these to zero. The key to the correctness of the
results produced by the computer program is the proper coding of the k-ε turbulence
equations. These can be seen in the computed residuals within the iterative loop of
the program.

4. Constructing the low-dimensional model. As a first step in constructing
a dynamical model we discard any variation in x and any influence of slope θ. Thus
we first examine the dynamics of a uniform layer of turbulent fluid, k and ε nonzero,
slowly decelerating, u → 0, due to turbulent drag on the bed.

4.1. The physical fields to low-order. As discussed in section 3.2 on the
vertical mixing operator, the leading-order approximation to the shape of the center
manifold is just the solutions to LV = 0. We deduce that

u ≈ δ2U(x, t) 4
3

(
y
η

)1/3

, v ≈ 0, k ≈ δ2K(x, t) 4
3

(
y
η

)1/3

,

ε ≈ δ3E(x, t), and ν ≈ δCµ
16K2

9E

(
y
η

)2/3

.

At higher orders in the small parameters δ, ϑ, λ, and γ, we construct more refined
descriptions of the fluid flow and its dynamics through the evolution of the amplitudes.
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However, we leave the influence of spatial variations through nonzero ϑ until the
next section.

By iterations of the scheme outlined in the previous section we obtain a basic
description of the turbulence production and decay. The nonlinear processes and
boundary condition corrections modify the cube-root profile and simultaneously de-
termine the slow evolution of the amplitudes.

It is useful to record the asymptotic expansions directly in terms of physical
quantities η, ū, k̄, and ε̄ rather than the corresponding artificially scaled quantities H,
U , K, and E. We find the following expressions for the first significant modifications
to the fields within the fluid, written in terms of a scaled vertical coordinate ζ = y/η
which ranges from ζ = 0 at the bed to ζ = 1 at the fluid surface:

v ≈ 0 ,(22a)

u ≈ υ0(ζ)ū+ [Cε1σευ1(ζ)− σkυ2(ζ)]
ū3

k̄

+ (Cε2σε − σk) υ3(ζ)
λη2ūε̄

ν̃k̄
,(22b)

k ≈ υ0(ζ)k̄ + [Cε1σευ1(ζ) + σkυ2(ζ)] ū
2 + (Cε2σε + σk) υ3(ζ)

λη2ε̄

ν̃
,(22c)

ε ≈ ε̄+ Cε1σεεp(ζ)
ū2ε̄

k̄
+ Cε2σεεd(ζ)

λη2ε̄2

ν̃k̄
,(22d)

ν ≈ ν0(ζ)
k̄2

ε̄
+ [−Cε1σεν1(ζ) + σkν2(ζ)]

ε̄η2

k̄

+ [Cε2σεν3(ζ)− σkν4(ζ)]
ε̄3η4

k̄4
.(22e)

These expressions are correct to errors O(δ6 + λ3 + γ3, ϑ
)
, where, for example, a

multinomial term

δaλbγcϑd = O(δA + λB + γC , ϑD
)

if
a

A
+

b

B
+

c

C
≥ 1 and d ≥ D .

The vertical structure functions occurring in the expressions on the right-hand side
of (22) are as follows:

• For the turbulent dissipation,

εp(ζ) =
4

9
ζ4/3 − 8

9
ζ2/3 +

12

35
,

εd(ζ) = −243

512
ζ4/3 +

81

128
ζ − 405

3584
,

as shown in Figure 1. See the effect of turbulent dissipation production, at
a rate proportional to ū2, through the velocity shear. Since velocity shear is
largest near the bed, as seen in the shape of εp(ζ), this enhances turbulent
dissipation ε near the bed.
However, the natural turbulent dissipation within the fluid causes a greater
decay of turbulent dissipation near the bed, due to the smaller turbulent
energy there, and so counters this enhancement. Being proportional to 1/ν̃,
this effect on the ε-profile is greatest in weakly turbulent flows.

• For the turbulent energy density,

υ0(ζ) =
4

3
ζ1/3 + γ

(
1

12
ζ1/3 − 1

6
ζ5/3

)
,
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Fig. 1. The vertical structure of the turbulent dissipation field within the fluid as a function of
the scaled vertical coordinate ζ = y/η: –·–·–·–, εp(ζ); – – – –, εd(ζ).

υ1(ζ) =
16

135
ζ5/3 − 32

135
ζ +

8

81
ζ1/3,

υ2(ζ) =
1

9
ζ5/3 − 4

9
ζ2/3 +

3

10
ζ1/3,

υ3(ζ) = − 27

256
ζ5/3 +

9

64
ζ4/3 − 99

3584
ζ1/3,

as shown in Figure 2. Observe the cube-root structure in the vertical is mod-
ified to υ0(ζ). As shown in Figure 2, when γ is set to 1 to recover the original
boundary conditions from (15), the cube-root dependence is maintained near
the bed but is effectively flattened near the fluid surface to closely approx-
imate the absence of turbulent energy flux through the free surface. This
correction is simultaneously determined with a corresponding decay term in
the evolution equations, as seen below, due to the removal of the sustaining
flux. We look even closer at the effects of modifying the free surface boundary
conditions in section 4.2.
Also the effect of turbulent production, proportional to ū2, through the ve-
locity shear is largest near the bed; as seen in the shape of υ1(ζ) and υ2(ζ),
this enhances turbulent energy k near the bed.
However, the natural turbulent dissipation within the fluid causes a relatively
greater decay of turbulent energy near the bed as compared with the body
of the fluid, as seen in υ3(ζ), and so counters this enhancement. Being pro-
portional to 1/ν̃, this effect on the k-profile is greatest in weakly turbulent
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Fig. 2. The vertical structure functions for the turbulent energy density and horizontal velocity
fields within the fluid as a function of the scaled vertical coordinate ζ = y/η: , υ0(ζ) (with
γ = 1); – – –, 10× υ1(ζ); –·–·–·–, 10× υ2(ζ); · · · · ··, 10× υ3(ζ).

flows.
• The basic cube-root structure of the horizontal velocity is modified in exactly
the same way and for the same reasons as for the basic turbulent energy
k-profile.
Modifications of the velocity profile due to the turbulent production and
dissipation occur, but they occur primarily through the indirect effects of
modifications to the turbulent diffusivity profile ν(ζ). These are weak due to
the subtractions in (22b).

• The corresponding vertical structure of the turbulent mixing coefficient ν is
shown in Figure 3, where the five components are

ν0(ζ) =
20

9
ζ2/3 − 8

9
ζ2,

ν1(ζ) =
64

135
ζ2 − 128

135
ζ4/3 +

2944

8505
ζ2/3,

ν2(ζ) = −32

27
ζ +

4

5
ζ2/3 +

8

27
ζ2,

ν3(ζ) =
57

448
ζ2/3 − 3

4
ζ5/3 +
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Simultaneously with the determination of the above fields, the solvability con-
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Fig. 3. The vertical structure functions for the turbulent mixing coefficient within the fluid as
a function of the scaled vertical coordinate ζ = y/η: (right), ν0(ζ) (with γ = 1); – – –,
10× ν1(ζ); –·–·–·–, 10× ν2(ζ); · · · · ··, 10× ν3(ζ); (left), ν4(ζ).

dition for the linear equations of the form (21) supplies terms in the asymptotic,
low-dimensional evolution equations for the amplitudes of the four critical modes.
Writing these in terms of physical variables we find, with errors O(δ6 + λ3 + γ3, ϑ

)
,

that

∂η

∂t
∼ 0,(23a)

∂ū

∂t
∼ −56γν̃

81η2
ū− λ

16
[Cε2σε − σk]

ε̄ū

k̄
+

16

81

[
32

45
Cε1σε − σk

]
ν̃ū3

η2k̄
,(23b)

∂k̄

∂t
∼ −λ

[
7

8
+

Cε2σε
16σk

]
ε̄− 56γν̃

81σkη2
k̄ +

16

243

[
7 +

32Cε1σε
15σk

]
ν̃

η2
ū2,(23c)

∂ε̄

∂t
∼ −λ

9

8
Cε2

ε̄2

k̄
+

256

243
Cε1

ν̃ε̄

η2k̄
ū2,(23d)

where

ν̃(x, t) = Cµ
k̄2

ε̄
(24)

is a measure of the local turbulent diffusivity. These form a crude approximation
to the evolution equations for the four amplitudes of the model when there are no
horizontal variations.
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Table 1
Terms in the series expansions in γ of selected coefficients in the model for homogeneous tur-

bulent decay. The last row is the sum of known terms at γ = 1.

In ∂ū/∂t In ∂k̄/∂t

−ν̃ū/η2 −ν̃ūλ̃/η2 ν̃ū3/η2k̄ ν̃ū2/η2 −ε̄
1 0 +1.03889 +0.06542 +0.72385 +1.03100
γ +0.69136 −0.86096 +0.01388 −0.13682 −0.05665
γ2 +0.22783 +0.14923 −0.01564 −0.02193 +0.01602
γ3 +0.07479 +0.02700 −0.00921 +0.00569 +0.00250
γ4 +0.02448 +0.00462 −0.00333 +0.00814 +0.00027
γ5 +0.00801 +0.00069 −0.00080 +0.00549 −0.00002
γ6 +0.00262 +0.00006 −0.00003 +0.00300 −0.00003
γ7 −0.00086 −0.00002 +0.00017 +0.00147 −0.00001∑

1.02995 0.35950 0.05040 0.58892 0.99307

The two fifth-order evolution equations (23c)–(23d) summarize the turbulent pro-
duction and decay processes. Setting the artificial parameters λ = γ = 1 to approxi-
mate the dynamics of the original problem, observe, first, the natural decay of turbu-
lent energy and dissipation in the body of the fluid, second, decay of turbulent energy
with coefficient proportional to ν̃/η2 via turbulent mixing transporting energy to the
bed, and third, the generation of turbulence energy and its dissipation through the
shear in the vertical, proportional to ν̃ū2/η2.

The horizontal velocity evolution (23b) similarly includes terms ν̃ū/η2, which
represents the effective drag of the bottom via turbulent mixing to the bed, and weak
cubic, proportional to ν̃ū3/(η2k̄), and linear, proportional to ε̄ū/k̄, modification of
this drag through changes in the stress tensor in the momentum equations. (Note
that the coefficients are the difference of two terms, and that with the usual values
for the parameters (4) there is significant cancellation.)

The free surface stays horizontal, (23a), because there are no horizontal gradients
until we look at order ϑ effects in a later section.

4.2. Convergence in the artificial parameters. One limitation on the accu-
racy of the above model is that even within the k-ε model of turbulence the coefficients
are only approximate. This is due to both the modification of the free surface bound-
ary conditions on u and k to (14)–(15) and the introduction of λ in (13). Although
setting γ = 1 recovers the original boundary conditions (6)–(7) and λ = 1 recovers
the original k-ε model, there is no certainty that this will give a model which is a
good approximation to the “true” system. In essence the coefficients in the model are
multivariable Taylor series in γ and in λ. In this subsection we present evidence that
these series converge for γ = λ = 1, and so we can form a reasonable model.

Arbitrarily high-order terms in the center manifold expansion may be computed
in principle. Our computer algebra program currently is limited by memory and time
constraints to about 8th order in γ and lower orders in other parameters.2 This is
only attainable by the simplification of setting the k-ε parameters to the conventional
numerical values in (4). By executing the reduce program and discarding terms
O(δ6, γ8, λ2, ϑ

)
, we discover more terms in the series in γ. Listed in Table 1 are the

expansions of some of the coefficients appearing later in the models.
Look down the columns in the table and see that the coefficients in each series

2In some applications [31, 43, 55] such routine computations can be performed to 30th order and
are convincingly used to show the convergence or otherwise of the series expansions.
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generally decrease by at least a factor of two. This suggests that the radii of conver-
gence of the series in γ are roughly two or more. Thus simply evaluating the series at
γ = 1 is reasonably good—some are shown in the bottom line of the table.3

The convergence in the parameter λ is problematical because it seems to appear
always in the combination λη2ε̄/(ν̃k̄), that is λη2ε̄2/k̄3. Thus convergence depends
upon the properties of the solution which are generally unknown beforehand. We
suggest that truncating to linear terms in λ forms an adequate approximation. It
seems at least self-consistent to do this as later homogeneous solutions, namely (30)–
(33), show a balance for the relatively small value η2ε̄2/k̄3 ≈ 0.2. Thus the nonlinear
terms in λ are generally expected to have a negligible influence in most flows of
interest.4

First, the series are summed for γ = 1 as discussed in the previous subsection.
Then introducing

λ̃ =
λη2ε̄2

k̄3
= Cµλ

η2/ν̃

k̄/ε̄
∝ λ

vertical mixing time

turbulent eddy time
,(25)

for brevity we write the model of decay of homogeneous turbulent flow as follows,
with errors O(δ6, λ2, ϑ

)
,

∂η

∂t
= 0 ,(26a)

∂ū

∂t
= −(1.030 + 0.359 λ̃)

ν̃ū

η2
+ (0.0504− 0.243 λ̃)

ν̃ū3

η2k̄
,(26b)

∂k̄

∂t
= −(0.0927 + 0.993 λ̃)

k̄3

η2ε̄
+ (0.589 + 0.516 λ̃)

ν̃ū2

η2
,(26c)

∂ε̄

∂t
= −2.101 λ̃

k̄2

η2
+ (1.552− 3.215 λ̃)

ν̃ε̄ū2

k̄η2
.(26d)

Note that setting λ = 1 to recover the original problem is just equivalent to using
λ̃ = η2ε̄2/k̄3. Observe that the first terms on the right-hand sides of the above
equations represent decay terms through, for example, in the ū and k̄ equations,
turbulent transport to the stream bed. The last terms in the k̄ and ε̄ equations
represent the production of turbulence through the velocity shear.

One feature of the model derived here is that it has no adjustable coefficients. All
constants are derived from well-known physical parameters and accepted constants
of the k-ε equations. Despite its relative complexity, the model has been systemat-
ically derived and the constants which appear are well defined. However, there are
adjustable parameters, namely, the order of truncation of the series expansions. The
model (26), for example, contains just the low-order terms in expansions in δ and λ.

3Actually, the introduction of the parameter a, and the selection of a = 1/2, was motivated by
our original series in γ exhibiting singularities for γ ≈ −1, as indicated by Domb–Sykes plots [21].
These singularities ruined the convergence at γ = 1. However, an Euler transform of the series to
accelerate convergence is precisely equivalent to choosing nonzero a, and a few numerical experiments
lead to a ≈ 1/2 causing good convergence.

4We noticed in simulations that if ever η2ε̄2/k̄3 happened to become as large as approximately 3
at any point in x and t, then the dynamics became rapidly unstable. It may be that higher-order
terms in the parameter λ, perhaps formed into a Padé approximant, could stabilize such a local
instability. However, this aspect has not been explored as it is likely to involve infeasible amounts of
algebraic computation.
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4.3. Dynamics of spatial structure. The leading-order effect of horizontal
gradients, such as that due to a sloping free surface, is found by computing terms of
order ϑ in the asymptotic expansions. We describe these in this subsection.

Dominantly, horizontal gradients affect the velocity and pressure fields. By com-
puting terms to order δ3ϑ we find that the velocity fields (22a)–(22b) are modified
to

v = −ζ4/3η
∂ū

∂x
+O(δ6 + λ3 + γ3 + ϑ3

)
,(27a)

u = · · ·+ 3υ3(ζ)
gη2

ν̃

∂η

∂x
+O(δ6 + λ3 + γ3 + ϑ3

)
,(27b)

where the · · · indicate the terms on the right-hand side of (22b) and where υ3(ζ) is
drawn in Figure 2. The shape of v is required by the continuity equation. The modi-
fication to u asserts reasonably that at low levels of turbulence, large 1/ν̃, horizontal
accelerations through decreasing depth, ηx < 0, cause the fluid to respond with a
flatter profile through a subtraction of υ3(ζ) from υ0(ζ), as seen in Figure 2.

The structure of the fields within the fluid rapidly become more complicated at
higher order. We do not detail the fields any more.

By executing the computer algebra program and discarding generated terms
O(δ6, γ6, λ2, ϑ2

)
, we discover first-order effects of horizontal variations with sufficient

terms in the series in γ to sum them reliably for γ = 1. We find the same production
and decay terms identified in (26) and, in addition, extra terms in the horizontal
gradients. Using the accepted values (4) for the constants of the k-ε equations, we
obtain the following model with our best estimates of its coefficients:

∂η

∂t
∼ −∂(ηū)

∂x
,(28a)

∂ū

∂t
∼ −(1.030 + 0.359 λ̃)

ν̃ū

η2
+ (0.0504− 0.243 λ̃)

ν̃ū3

η2k̄

+

[
0.961− 0.019 λ̃− (0.019− 0.087 λ̃)

ū2

k̄

]
g

(
θ − ∂η

∂x

)

− (1.105 + 0.104 λ̃)ū
∂ū

∂x
− (0.032− 0.056 λ̃)

ū2

k̄

∂k̄

∂x

+ (0.025− 0.041 λ̃)
ū2

ε̄

∂ε̄

∂x
,(28b)

∂k̄

∂t
∼ −0.0927

k̄3

η2ε̄
− 0.993 ε̄+ (0.589 + 0.516 λ̃)

ν̃ū2

η2

− (0.025 + 0.011 λ̃)gū

(
θ − ∂η

∂x

)

− (1.106− 0.065 λ̃)ū
∂k̄

∂x
− (0.030 + 0.056 λ̃)k̄

∂ū

∂x

+ (0.025− 0.060 λ̃)
ūk̄

ε̄

∂ε̄

∂x
,(28c)

∂ε̄

∂t
∼ −2.101

ε̄2

k̄
+ (1.552− 3.215 λ̃)

ν̃ε̄ū2

k̄η2

+
(
−0.006 + 0.562 λ̃

)
g
ūε̄

k̄

(
θ − ∂η

∂x

)
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− 0.173 λ̃ε̄
∂ū

∂x
+ 0.533 λ̃

ε̄ū

k̄

∂k̄

∂x
− (1 + 0.735 λ̃)ū

∂ε̄

∂x
.(28d)

We expect that the coefficients in the above equations, when considered as a model
of the k-ε equations given in section 2, are accurate as shown. Except for the surface
equation (28a), the first line in each equation is the same as in the horizontally
homogeneous model (23); subsequent lines detail the additional terms needed to begin
modelling long waves. A simpler version of the above model, obtained by omitting
terms with small coefficients, is recorded in the introduction as the model (1).

Equation (28a) is an exact statement of the conservation of water and is not
modified by any higher-order effects. To order δ3ϑ, it may be written as

∂η

∂t
+ h

∂ū

∂x
= 0,(29a)

which is a linear description of the conservation of water. Similarly, with θ = 0 and in
very low levels of turbulence (ν̃ ≈ 0), the horizontal momentum equation (28b) may
be written to order δ3ϑ as

∂ū

∂t
= −0.961 g

∂η

∂x
.(29b)

This describes the horizontal acceleration due to slope of the fluid surface. These last
two coupled equations form a standard description of linear wave dynamics except
for one remarkable feature: the effect of gravity is reduced by the factor 0.961. For
example, this would predict that even low levels of turbulence reduce the phase speed
of waves by about two percent. As in thin films of viscous fluid [44], the phenomenon
is due to the response of the fluid, approximately v0(ζ) shown in Figure 2, being
at an angle to the forcing 1 (either due to gravity or horizontal pressure gradients)
when considered in the space of functions on [0, η]. Consequently, the forcing is less
effective. Such a depression in phase speed may be observable in the propagation of
long waves on turbulent flow.5

Returning to the order δ5 momentum equation (28b), we note several interesting
effects:

• The first line contains the turbulent drag terms identified in the previous
subsection.

• The second lines describe the effects of surface and bed slope. Within the
square brackets

– the first term gives the depression of wave speed discussed above;
– the second term very weakly enhances the phase speed correction in

turbulent flow;
– whereas it is difficult to ascribe one definite cause to the last term,

coefficient modifications of the form ū2/k̄ are common in this model and
reflect the relative importance of the turbulence on the mean flow.

• The third and fourth lines are dominated by the nonlinear advection term ūūx,
with coefficient approximately 1.1. This coefficient is larger than 1 because of
the shear: the maximum u(y) > ū advects itself faster than ū. This third line
also shows small “cross-talk” effects in the advection through the ū2

(
log k̄

)
x

and ū2 (log ε̄)x terms.

5This modelling approach shows that where there is vertical or cross-sectional structure, depth-
averaging or cross-sectional integration is generally unsound as a modelling tool. The reason is that it
is the size and structure of the dynamical modes which determine the evolution (here approximately
cube-root) and not the particular amplitudes used to measure the motion (here depth averages).
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The dynamics of k and ε averages are given by equations (28c)–(28d).
• The first lines of each equation are the same turbulent production and decay
terms identified in the previous subsection.

• The next line in each equation may arise from the modification of the turbu-
lent production through the change of the velocity profile, seen in (27b), due
to horizontal acceleration.

• The remaining terms simply represent horizontal advection by the fluid veloc-
ity. Note that different properties are advected at different effective speeds6

as indicated by the different coefficients of the ū∂/∂x terms—1.1 for ū and k̄,
and 1 for ε̄.

The model, (1), reported in the introduction is a simplified version of (28). The
solutions described in the next section show that the terms neglected from (28) in
writing (1) are relatively small, contributing at most a few percent in the numerical
balance of the terms, and so may be neglected at least for initial exploration.

The model (28) is purely hyperbolic, so a spatial diffusion is incorporated into (1)
to help stabilize simulations. It was physically appealing to incorporate the turbulent
diffusion (ν̃ūx)x into the ū equation, and similarly for k̄ and ε̄. The coefficients of
these terms were determined by executing the computer algebra program to higher
order in spatial derivatives but lower order in the artificial parameter λ. That the
coefficients are larger than that of turbulent diffusion in the k-ε-model is due to the
same process as that giving the enhanced Trouton vicosity in laminar flows, e.g.,
[38]. Such diffusion made hardly any difference to the simulations as a whole yet
usefully avoided the generation of unphysical and ruinous spikes in the numerical so-
lution. Higher-order terms in lateral derivatives may be able to refine the long-wave
expansion employed here and controlled by the parameter ϑ. Although the long-wave
approximation has been shown to converge in some simple dynamical circumstances
[31, 43, 55], such higher-order derivative terms may easily destabilize the model (1),
would involve enormous algebra to compute, and probably add little to the struc-
turally stable model (1). An important parameter is the rate of attraction to the
center manifold of the model, here locally proportional to ν̃/η2: when this is large
the long-wave approximation is expected to be very good. Fortunately, in this appli-
cation relatively rapid lateral variations are closely associated with the generation of
turbulence; hence the local eddy diffusivity ν̃ is typically large exactly where needed
to resolve the lateral structure. Thus in this work we truncate the model (1) to the
lateral effective diffusion terms.

5. Predictions of the new model. In this section we investigate some of the
predictions the newly derived model (1) might make. We look at decaying turbu-
lence, uniform flow on slopes, approximation to the St Venant equations, and a dam
break simulation.

5.1. Decaying turbulence. Homogeneous turbulence decays algebraically. If
there is no slope (θ = 0), no variations in x, no mean flow (ū = 0), and no surface
waves (η = const), then it is consistent to seek solutions of the model (1) in the form
k̄ ∝ t−2 and ε̄ ∝ t−3. Substituting and solving for the constants of proportionality,
the model 1, or (28), predicts the turbulence decays according to

k̄ ∼ 8.97 η2t−2 , ε̄ ∼ 12.8 η2t−3 , ν̃ ∼ 0.565 η2t−1 , λ̃ ∼ 0.227(30)

6Though due to the nonlinear interaction terms we should really report on the speeds associated
with the characteristics of the equations.
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for large time t. The turbulence ultimately decays with the balance ε̄ ∼ 0.48 k̄3/2/η.
However, the transients before this large time behavior may be long. There are

two regimes of interest characterized by large and small λ̃ compared to 0.227. (Recall
from (25) that λ̃ is the ratio of the vertical mixing time to the turbulent eddy mixing
time.)

• For small λ̃, high turbulence k̄, and low dissipation ε̄, the dissipation is roughly
constant, actually

ε̄ ≈ 1√
ε̄−2∞ + 15.1/k3

,

as the turbulence decays to (30) on a time-scale of approximately 2(η2/ε̄)1/3.
• For large λ̃, the vertical mixing time is relatively rapid and the turbulence
decays with a different power law for some time. We find that ε̄ ∝ k̄2.11,
which is only a little different from (30). The rate of decay towards (30) is
relatively slow,

(k̄, ε̄) ≈ A
(
t−0.90, 0.90 t−1.90

)
,

and forms a long lasting transient.
The above results are for a stationary fluid. Instead, if the fluid is moving with

uniform velocity on a horizontal bed, then the characteristics of the decaying bulk
motion and turbulence are different in detail. We seek solutions of the model (1)
in the form k̄ ∝ t−2 and ε̄ ∝ t−3, as before, but now with ū ∝ t−1. Substituting
and solving for the constants of proportionality, the model (1) may be rewritten as
a generalized eigenvalue problem for λ̃. It is then straightforward to determine that
the only positive solution is

ū ∼ 6.24 ηt−1, k̄ ∼ 23.2 η2t−2, ε̄ ∼ 49.6 η2t−3,

ν̃ ∼ 0.98 η2t−1, λ̃ ∼ 0.198.(31)

Numerical solutions show that there are long lasting transients of a similar nature
to those mentioned above for a stationary fluid. We do not elaborate further as this
class of solutions is less likely to be of interest in applications.

5.2. Roll waves on turbulence flow down a slope. Water flowing down a
slope generates turbulence that provides the drag to balance the gravitational forcing.
But if we suppose only the turbulent parameters are in quasi equilibrium, but not
the speed, then a St Venant approximation is obtained to the flow dynamics. When
the flow is fast enough and the turbulence weak enough, we see the spontaneous
development of turbulent roll waves. For flow down a slope the turbulent roll waves
appear with a finite wavelength (see Figure 4), whereas the St Venant approximation
predicts an infinite wavelength [34].

Let the downward bed slope be θ �= 0, but as in the previous subsection assume
there are no variations in x, that is, just a mean flow (ū �= 0) with no surface waves
(η = const). Then it is consistent to seek solutions of the model (1) in the form
ū ∝ η1/2θ3/2, k̄ ∝ ηθ, and ε̄ ∝ η1/2θ3/2. Substituting and solving for the constants
of proportionality leads to a nonlinearly perturbed eigenvalue problem for λ̃ which is
solved iteratively to give

ū ≈ 3.11 η1/2(gθ)1/2, k̄ ≈ 2.16 ηgθ , ε̄ ≈ 1.36 η1/2(gθ)3/2,

ν̃ ≈ 0.308 η3/2(gθ)1/2, λ̃ ≈ 0.184.(32)
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Fig. 4. The leading growth-rate, the real part of the eigenvalue α, for turbulent roll waves down
the critical slope θ = 0.602 showing that an instability will first arise at finite wavenumber l.

We expect this flow to be established on a time-scale of the vertical mixing, which is

Tmix =
η2

ν̃
≈ 4

√
η

gθ
.

The flow (32) appears to have a high level of turbulence consistent with flow along a
very rough channel.

Another interesting balance occurs when we assume that the production of tur-
bulence parameters, k̄ and ε̄, equals their dissipation through natural dissipation and
bed drag. This leads to a reduced model in the form of St Venant’s equation used in
open channel flow, e.g., [34]. Assume that at all times the production and dissipation
of k̄ and ε̄ are given in the first lines on the right-hand sides of (1c) and (1d). That is,
assume that the bed slope is small enough and that the flow is evolving slowly enough
that spatial and temporal gradients are negligible. Then seek a balance with k̄ ∝ ū2

and ε̄ ∝ ū3 to find

k̄ ≈ 0.224 ū2, ε̄ ≈ 0.0453 ū3/η, ν̃ ≈ 0.0992 ηū, λ̃ ≈ 0.184.(33)

With this balance the momentum equation (1b) becomes

∂ū

∂t
= −0.100

ū2

η
+ 0.96 g

(
θ − ∂η

∂x

)
− 1.11 ū

∂ū

∂x
+

∂

∂x

(
0.143 ūη

∂ū

∂x

)
,(34)
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which has exactly the same form as St Venant’s equation for open channel flow except
for the longitudinal diffusion term ∂x(ν0ūx) for coefficient ν0 = 0.143 ūη . Such a dif-
fusion term, with previously unknown but assumed constant diffusivity, was included
in St Venant’s model by Needham and Merkin [34]—that ν0 > ν̃ is due to the same
process as that giving the Trouton vicosity in laminar flows, e.g., [38]. The three other
coefficients are worthy of comment: the self-advection coefficient of (1.11) accounts
for the vertical nonuniformity of the velocity profile with mean ū; the influence of
gravity is reduced to 0.96 g because, as explained earlier for (29b), the response of
the fluid flow is not constant in the vertical so some of gravitational forcing is not
used; and lastly the bed drag ū2/η has coefficient 0.100 which is larger than typical
values. However, note that such drag coefficients have to vary depending upon the
roughness of the channel bottom as often expressed by different roughness coefficients
in Manning’s law, e.g., [6, p. 246] or [23, p. 137]. We surmise that the flows we
describe with model (1) have strong mixing in the vertical due to strong turbulence
generated by a rough channel bed or other extremely turbulent flows such as breaking
waves or dam spillways.

Needham and Merkin [34] analyzed a model close to (34) and deduced that the
balanced turbulent flow (33) became unstable if the Froude number F > 4 . The in-
stability developed into roll waves propagating along the flow; long waves were most
unstable. Here the Froude number F ≈ 0.96 θ/0.1 and so we might expect roll waves
to develop on flow down very steep slopes, θ > 0.42 , because of the effectiveness
of turbulent damping on lesser slopes. Analysis of the full model (1), rather than
the St Venant approximation (34), shows a slightly different picture. Seeking solu-
tions to the model (1) linearized about the equilibrium flow (32) for nondimensional
depth η = 1 and proportional to exp(ilx+ αt) leads to an eigenproblem for the com-
plex eigenvalue α as a function of wavenumber l and the slope θ. Plotted in Figure 4
is the growth-rate, the real part of the eigenvalue α, as a function of wavenumber l for
the critical slope θc = 0.602: observe the zero growth-rate at wavenumber l = 0.551;
for larger slopes θ, �{α} becomes positive here. In contrast to the St Venant model,
the unstable roll waves are here predicted to have a finite wavelength 2π/l = 11.4 .
The roll waves have similar shapes to that found by Needham and Merkin [34] and
for many other roll waves on a fluid: see in Figure 5 the steepening at the front of
the roll wave and the relatively longer tail. Here see we predict the turbulent inten-
sity k̄ is maximum a little behind the peak of the wave. In contrast to Needham and
Merkin’s model, we found no evidence for subcritical roll waves in our simulations.
One point of interest arose in the eigenvalue computations: over a wide range of slopes
and wavenumbers (< 1) we observed that the leading three eigenvalues were generally
well separated from the fourth. For example, for slope θ = 0.1, three eigenvalues had
�{α} ≈ −0.2 whereas the other had �{α} ≈ −0.9 . This suggests that for many
purposes a three mode model of turbulent flow may be sufficient rather than the four
mode model (1) derived here. We leave this for further research.

5.3. Simulate a dam breaking. One of the canonical flows of shallow water
occurs after a dam breaks. Here we simulate such a flow and resolve the water
slumping downstream and becoming extremely turbulent as it does so. For simplicity
we use the model (1) reported in the introduction.

Imagine a dam at x = 0 initially holding back water of nondimensional depth η =
1. At time t = 0 the dam breaks and releases the water to rush downstream. To
avoid overly poor conditioning in the numerics we let the water in front of the dam
be of depth η = 0.1 (all quantities will be nondimensional so that in effect g = 1).
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Fig. 5. Profile of two roll waves on different slopes obtained by numerical simulation of
model (1) until the solutions settled on a steadily propagating wave: solid, fluid depth η; dashed,
mean velocity ū/3; and dot-dash, mean turbulent intensity k̄/2.

Also, to smooth the initial few time steps, we actually set the initial depth η to a
tanh profile that smoothly varies between these extremes such that the water slope
was a maximum of 2 (rather large under the slowly varying assumption) at the dam.
The water is assumed initially quiescent, ū = 0 throughout, and has a low level of
turbulence, somewhat arbitrarily chosen to be k̄ = 0.0001. Turbulent dissipation
is initially set such that λ̃ = 0.227 so that the balance of decaying turbulence (30)
holds throughout.

The model (1) is simply discretized on a regular grid in space-time with a time
step of ∆t = 1/10 and space step of ∆x = 1/10. The equations are discretized using
a stencil 3 points wide in space using second-order accurate centered differencing
in space. The resulting ordinary differential equations together with appropriate
boundary conditions are integrated forward in time (with constant time step) as a set
of differential algebraic equations using the robust, second-order, backward difference
solver of [49]. The domain of simulation extended from six dam heights to the left
behind the dam to six dam heights downstream. We integrated over a time t = 6,
which is long enough for the disturbance to nearly reach the ends of the computational
domain (linear waves on the dammed water having nondimensional speed 1).

The results of this simulation are shown in Figures 6 and 7. Observe that when
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Fig. 6. Simulation of dam breaking showing (a) the water depth η and (b) the mean downstream

velocity ū. Observe the formation of a bore with superposed waves.
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Fig. 7. Simulation of dam breaking showing the time evolution of the turbulence parameters
(note the view point is rotated from Figure 6): (a) the turbulent energy density k̄ is highest just a
little behind the bore and then tails away; (b) the turbulent dissipation ε̄ behaves similarly; (c) the
turbulent eddy viscosity ν̃ is greatest at the front of the bore; and (d) the parameter λ̃, apart from a
peak at the front of the bore, is generally depressed from the decaying balance value of 0.227 in (30).
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Fig. 8. Compare model (1) (solid lines) with the experiments of Stansby, Chegini, and Barnes
[53, Fig. 8(c), p. 423] (dots), where water of depth 10 cm (η = 1) behind a dam rushes forward over

water of depth 4.5 cm (η = 0.45) after the dam (at x = 0) breaks. The time-scale T =
√
H/g =

0.1 secs.

the dam breaks, the water slumps down and rushes downstream in a turbulent bore.
The bore appears undular but may be evolving towards a series of solitary waves—
they cannot be differentiated on this time-scale. The turbulent structure shown in
Figure 7 has interesting features. Apparently the energy density peaks a little behind
the bore, then decays approximately linearly with distance. It appears that up to
time t = 7 the generation of turbulence is still significantly greater than its decay
as the peak is still growing. The turbulent dissipation and eddy viscosity behave
similarly, though the eddy viscosity appears to peak much closer to the front of the
turbulent bore. The parameter λ̃ plotted in Figure 7(d) reaffirms that relatively small
values appear relevant to such flows.7 The peak of λ̃ at the front of the bore predicts
that there is a lot of vertical mixing at the front, but less so behind the bore where λ̃
is smaller. All of the above seem physically reasonable.

A further similar simulation matches the experiments of Stansby, Chegini, and
Barnes [53]. In Figure 8 we plot a comparison of the water depth between the
model (1) and the experiment reported in Figure 8(c) of Stansby, Chegini, and
Barnes.8 The model (1) was solved with ∆x = 1/6, ∆t = 1/10 and initially η a

7We find that our model (1) becomes quickly unstable if ever the parameter λ̃ > 3 approximately.
8Unfortunately it does not seem reasonable to compare with the other two experiments of Stansby,

Chegini, and Barnes [53] as in both it appears from our digitization that water is not conserved by
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tanh profile, ū = 0, λ̃ = 0.227, and k̄ = 10−4, except for a bump in k̄ to 0.018 to
represent the initial plunging jet seen in the experiments. The location of the turbu-
lent bore is reasonably well predicted. It appears that the height of the undulations
in the model’s bore is approximately that of the turbulent fluctuations seen in the
water level.

This model that we have derived and solved in some cases of interest explicitly
accounts for the spatio-temporal variations of the intensity and broad nature of the
turbulence underlying the flow of shallow water.

Appendix A. Comments on theory in this application. This appendix
addresses the connection to the rigorous theory of center manifolds in this applica-
tion. We emphasize that throughout this paper we describe the application of center
manifold techniques and not the application of the rigorous center manifold theory.
There are two main reasons for this which we elaborate on below.

First, here we construct an infinite dimensional center manifold. At each point
in x there are four degrees of freedom, parametrized by η, ū, k̄, and ε̄; but there are
an infinitude of x positions and so there is an infinite number of degrees of freedom
in the mathematical model. However, there is currently very little theory on infinite
dimensional center manifolds appearing via slowly varying approximations, e.g., [16]
and what there is does not rigorously apply here, nor does it apply directly to many
other physically interesting models such as dispersion in pipes [32], laminar long-
wave, thin-film flows [44], and the dynamics in flow reactors [5]; the principal reason
is that ∂/∂x is an unbounded operator, because of its small scale characteristics,
whereas the slowly varying approximation treats ∂/∂x as small. Thus we use the
formal technique of constructing complete low-dimensional models [10, 39, 40, 41, 42],
techniques suggested and developed by standard applications of the theory. We expect
that eventually theory will be developed which supports the application of center
manifold concepts to slowly varying approximations.

But there is a second obstacle to supporting this model with theory. In standard
applications of center manifold theory the nonlinear terms in the original problem
are required to be smooth in the neighborhood of the equilibrium under consideration
(here the origin, a state of no flow, and no turbulence). However, here many nonlinear
terms are definitely not smooth; for example, turbulent dispersion terms such as
∂
∂x

(
Cµ

k2

ε
∂u
∂x

)
and interaction terms such as Cε2

ε2

k are unbounded as (u, k, ε) → 0 .

In rigorous applications of center manifold theory, one may choose the various critical
modes and parameters to have any set of relative orders of magnitude. The resulting
asymptotic expressions are the same [39], it is only the sequence in which the terms
appear that changes with a change in relative orders of magnitude. Indeed, this
reflects a very desirable property of a modelling procedure, namely, that the results
are essentially independent of arbitrary human-made assumptions (such as order of
magnitude) in the analysis. However, in this application the highly nonsmooth nature
of the original equations means that in order to apply the center manifold techniques
we need to choose carefully the various orders of magnitudes of the variables and
parameters, via (17). The aim, as in all asymptotic analyses, is to obtain a tractable
and physically relevant leading order problem. The techniques of center manifold

up to 6–7%, compared to better than 1% for their Figure 8(c). This is a significant discrepancy
which, if associated with the identification of the bore, would correspond to an error in its location
of up to ∆x ≈ 1.5 (15 cm). The discrepancy is likely to be due to entrained air [53, p. 422] which we
have not attempted to model, and which is likely to be insignificant in a real dam break [53, p. 407].
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theorems are then applied, it is just that the current center manifold theorems cannot
give rigorous justification.

Notwithstanding these theoretical limitations we consider that the systematic
techniques are applicable because of the attractivity of the manifold of equilibria,
M0, of the linear operator L. In the spirit of center manifold theory, we claim that
the “small nonlinear” terms on the right-hand side of (13) just perturb the shape
of M0 to a nearby manifold M and perturb the evolution thereon. Thus our last
task, and the one fulfilled in this appendix, is to prove the exponential decay to M0

at a nonzero level of turbulence. The “small nonlinear” terms will affect the rate of
decay to M, perhaps slowing the attraction in some regimes, but by continuity, since
M0 is exponentially attractive, M will be attractive for small enough nonlinearity.

Linearizing the k-ε equations (13) about M0,

(p0,u0) =
(
g(h− y), 4

3

(
y
h

)1/3
U(x, t), 0, H(x, t), 4

3

(
y
h

)1/3
K(x, t), E(x, t)

)
,(35)

we obtain (0, ∂u/∂t) = L(p,u), where the linear operator L is


0 0 ∂·
∂y 0 0 0

0 ∂
∂y

(
ν0

∂·
∂y

)
0 0 Cµ

∂
∂y

(
∂u0

∂y
2k0
ε0

·
)

−Cµ
∂
∂y

(
∂u0

∂y
k2
0

ε20
·
)

− ∂·
∂y 0 2 ∂∂y

(
ν0

∂·
∂y

)
0 − 2

3
∂·
∂y 0

0 0 0 0 0 0
0 0 0 0

Cµ

σk

∂
∂y

(
k2
0

ε0
∂·
∂y + 2k0

ε0
∂k0
∂y ·
)

−Cµ

σk

∂
∂y

(
∂k0
∂y

k2
0

ε20
·
)

0 0 0 0 0
Cµ

σε

∂
∂y

(
k2
0

ε0
∂·
∂y

)



,

subject to boundary conditions

p+
2

3
k = 0 on y = h ,(36)

u = 0 on y = 0 ,(37)

∂u

∂y
− u

3h
= 0 on y = h ,(38)

v = 0 on y = 0 ,(39)

k = 0 on y = 0 ,(40)

∂k

∂y
− k

3h
= 0 on y = h ,(41)

y2/3 ∂ε

∂y
→ 0 as y → 0 ,(42)

∂ε

∂y
= 0 on y = h .(43)

We seek solutions proportional to exp(λt). The first thing to note is that we
address a generalized eigenproblem

L
[

p0

u

]
=

[
0
λu

]
as the first row of L comes from the continuity equation.

Thus the first row, with the boundary condition (39), gives v = 0 for any eigen-
value λ. Furthermore, the third row, from the vertical momentum equation with the
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pressure boundary condition (36), then gives that p = − 2
3k for any λ. These con-

siderations give no constraint on the eigenvalue λ. Ignoring the p and v components
of the eigenproblem then leads to a standard eigenproblem—one where the operator
is in block, upper-triangular form. Thus consider the components in turn, starting
from the last, and we show that all eigenvalues must be nonpositive and thus M0 is
attractive.

• For any eigenfunction u, if turbulent dissipation ε �= 0, then

h4/3

Tσε

∂

∂y

(
y2/3 ∂ε

∂y

)
= λε ,(44)

where

T =
9h2

16ν̃
,

is the time-scale of cross-depth turbulent diffusion. Multiplying (44) by ε,∫ h
0
· · · dy, and integrating by parts we deduce

λ = −h4/3

Tσε

∫ h
0
y2/3

(
∂ε
∂y

)2

dy∫ h
0
ε2dy

≤ 0 ,

provided that the boundary conditions (43) (assuming ε �→ ∞ for y → h) and

ε
∂ε

∂y
= o
(
y−2/3

)
as y → 0(45)

are satisfied. The equality λ = 0 holds if and only if ∂ε/∂y ≡ 0, which leads
to

ε = E(x, t) ,

a function independent of y. Since (44) indicates nontrivial solutions near
y = 0 are of the form ε ∼ A + By1/3, then the condition (45) is effectively
equivalent to (42).
Further, apply Sturm–Liouville theory to (44) under boundary conditions (43)
and (42). Changing the vertical variable from y = hz3 to z, the eigenvalue
problem becomes

∂2ε

∂z2
= 9Tσελz

2ε ,

(a form of Bessel’s equation [1, (9.1.51)]) with the following normal separate
boundary conditions:

∂ε

∂z
= 0 on y = 0 and y = h.

Applying standard Sturm–Liouville theory, see, for example, Birkhoff and
Rota [8, pp. 296] or Hartman [20, pp. 337 and the following ones], we see that
the eigenvalues are discrete and must tend to infinity:

0 = λ1 > λ2 > · · · → −∞.
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Thus, linearly, solutions in the neighborhood of the manifoldM0 are attracted
exponentially quickly to it (at a rate at least as fast as exp(λ2t)).
Sturm–Liouville theory may be also applied directly for the u and k com-
ponents to show that any eigenvalues associated primarily with them are
discrete. We do not record the details in the following.

• Similarly, for any eigenfunction u, if turbulent dissipation ε = 0 but the
turbulent energy k �= 0, then

h4/3

Tσk

∂

∂y

(
y2/3 ∂k

∂y
+

2k

3y1/3

)
= λk.(46)

Multiplying this by y2/3 we rewrite it as

h4/3

Tσk
y−1/3 ∂

∂y

[
y2 ∂

∂y

(
y−1/3k

)]
= λy2/3k.

Multiplying by k,
∫ h
0
· · · dy and integrating by parts we deduce that

λ = −h4/3

Tσk

∫ h
0
y2
[
∂
∂y

(
y−1/3k

)]2
dy∫ h

0
y2/3k2dy

≤ 0,

provided (41) and

k = o
(
y1/12

)
as y → 0(47)

are satisfied. The equality λ = 0 holds here if and only if ∂
∂y

(
y−1/3k

) ≡ 0,

which together with boundary condition (40) implies that

k = K(x, t) 4
3

(
y
h

)1/3
with a function K(x, t) independent of y. Since the indicial equation of (46)
indicates that nontrivial solutions near y = 0 are of the form k ∼ Ay−2/3 +
By1/3, then the boundary condition (47) is equivalent to (40).

• The only possible eigenvalue associated with nonzero η is 0.
• Last, for any eigenfunction u, if ε = k = η = 0 but the horizontal velocity u �=
0, then

h4/3

T

∂

∂y

(
y2/3 ∂u

∂y

)
= λu,(48)

and we rewrite this as

h4/3

T
y−1/3 ∂

∂y

[
y4/3 ∂

∂y

(
y−1/3u

)]
= λu.

Multiplying by u,
∫ h
0
· · · dy and integrating by parts we deduce that

λ = −h4/3

T

∫ h
0
y4/3

[
∂
∂y

(
y−1/3u

)]2
dy∫ h

0
u2dy

≤ 0,



452 Z. MEI, A. J. ROBERTS, AND ZHENQUAN LI

provided (38) and

u = o
(
y1/6

)
as y → 0(49)

are satisfied. Similarly to the ε and k equations, the equality λ = 0 holds
here if and only if ∂

∂y

(
y−1/3u

) ≡ 0 . This and the boundary condition (40)
yields a unique solution

u = U(x, t) 4
3

(
y
h

)1/3
with U(x, t) independent of y. Since the indicial equation of (48) indicates
nontrivial solutions near y = 0 are of the form u ∼ A + By1/3, then the
boundary condition (49) is effectively equivalent to (37).

We have proven that if the boundary conditions (36)–(43) are satisfied, then,
except for the four-fold eigenvalue zero whose eigenfunctions span M0, the eigenvalues
of L are negative and bounded away from 0 . Thus we expect the manifold (35)
is locally attractive. Further, the time-scale of this attraction is the cross-depth
turbulent diffusion time-scale T .

Appendix B. Computer algebra constructs the model.
Here we list the reduce9 computer algebra program used to derive the long-wave

models of turbulent flow.
The algorithm is the iterative algorithm described in [46, 48] adapted to this diffi-

cult asymptotic problem. The program refines the description of the center manifold
and the evolution thereon until the residual of the governing differential equations are
driven to zero, to some asymptotic error. The key to the correctness of the results is
then in the correct coding of the residuals—see inside the iterative loop.

Note that because the thickness of the film is continuously varying in space and
time, and because of the cube-root structure in the vertical, it is convenient to work
with equations in terms of a scaled vertical coordinate z = 3

√
y/η so that the free

surface of the film is always z = 1. However, the turbulence equations are not explic-
itly rewritten in this new coordinate because the computer handles all the necessary
details of the transformation.

1 COMMENT Constructs a model of turbulent 2D flow of shallow water flow

2 on a flat slope based on the k-epsilon turbulence dynamical equations.

3 Calculates the centre manifold & reduced dynamic system on it for the

4 k-\epsilon model with the following boundary conditions for u, v, p, k

5 and \epsilon: u=v=k=deps/dy=0 at y=0, dk/dn=deps/dn=0 on y=eta. Fiddle

6 the free-surface BC to linearly force u & k at the surface. This gives

7 roughly cube-root profile in the vertical structure of u & k, whereas

8 eps is roughly constant. Write results in terms of z=(y/eta)^(1/3).

9 Here scale derivatives as ddx*del for better control.

10

11 Created 11/11/94, last modified 8/6/99;

12

13 % improve output appearance

14 on div; off allfac; on list; on revpri;

15 factor es,ks,eta,us,del,ddx,df,g;

16

17 % maximum order of calculation in del: linear=3; non-trivial=5

18 o:=5;

9At the time of writing, information about reduce was available from Anthony C. Hearn, RAND,
Santa Monica, CA 90407-2138, USA (reduce@rand.org).
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19 % truncate in parameters: d/dx; BC kludge; k-eps fudge

20 let { ddx^2=>0, gamm^4=>0, lamb^2=>0};

21 % let ddx=>0; gamm:=del^2*gam; lamb:=lam*del^2; % for initial results

22 cgam:=(1-gamm*1/2); % equivalent to an Euler transform of gam series

23 theta:=del^3*ddx*thet;

24

25 % turbulence constants---remove to get general formulae

26 C_m:=9/100; C_e2:=192/100; C_e1:=144/100; s_k:=1; s_e:=13/10;

27

28 % FOR ALL q SUCH THAT q>o LET del^q=0$

29 procedure ignore_order_gt(o); begin

30 IF o=3 THEN LET del^4=0;

31 IF o=4 THEN LET del^5=0;

32 IF o=5 THEN LET del^6=0;

33 IF o=6 THEN LET del^7=0;

34 IF o=7 THEN LET del^8=0;

35 IF o=8 THEN LET del^9=0;

36 IF o=9 THEN LET del^10=0;

37 IF o=10 THEN LET del^11=0;

38 IF o>=11 THEN LET del^12=0;

39 end;

40

41 % amplitudes and their dependences ( eta=h+hs )

42 depend us,x,t;

43 depend ks,x,t;

44 depend es,x,t;

45 depend hs,x,t;

46 let {df(us,t) => gu,

47 df(hs,t) => gh,

48 df(ks,t) => gk,

49 df(es,t) => ge

50 };

51

52 % since z=(y/eta)^1/3 we need the following for d/dx, d/dt & d/dy

53 etax:=del^2*del*ddx*df(hs,x);

54 procedure dfdx(a);

55 begin scalar aa,bb;

56 aa:=a*del^3*ddx; bb:=a*del*ddx;

57 return df(bb,x) +( df(aa,eta) -z/3/eta*df(aa,z) )*df(hs,x);

58 end;

59 procedure dfdt(a);

60 begin scalar aa,ugh;

61 aa:=a*del^2*del*ddx; ugh:=if gh=0 then 0 else gh/(del*ddx);

62 return df(a,t) +( df(aa,eta) -z/3/eta*df(aa,z) )*ugh ;

63 end;

64 depend z,y;

65 let df(z,y) => 1/(3*eta*z^2);

66 fs:={z=1}$

67

68 % procedures to solve for cross-stream structures

69 operator iav; linear iav;

70 operator ise; linear ise;

71 operator isk; linear isk;

72 operator isu; linear isu;

73 operator isp; linear isp;

74 operator isv; linear isv;

75 let {iav(z^~p,z) => 1/(p+1)

76 ,ise(z^~p,z) => ( z^(p+2) -3/(p+5) )/(p+1)/(p+2)

77 ,isk(z^~p,z) => ( z^(p+2) -z*4/(p+5) )/(p+1)/(p+4)

78 ,isu(z^~p,z) => ( z^(p+2) -z*4/(p+5) )/(p+1)/(p+2)

79 ,isp(z^~p,z) => ( z^(p+1) -1 )/(p+1)

80 ,isv(z^~p,z) => ( z^(p+1) )/(p+1)
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81 ,iav(z,z) => 1/2

82 ,ise(z,z) => ( z^3 -1/2 )/6

83 ,isk(z,z) => ( z^3 -z*2/3 )/10

84 ,isu(z,z) => ( z^3 -z*2/3 )/6

85 ,isp(z,z) => ( z^2 -1 )/2

86 ,isv(z,z) => ( z^2 )/2

87 ,iav(1,z) => 1

88 ,ise(1,z) => ( z^2 -3/5 )/2

89 ,isk(1,z) => ( z^2 -z*4/5 )/4

90 ,isu(1,z) => ( z^2 -z*4/5 )/2

91 ,isp(1,z) => ( z -1 )

92 ,isv(1,z) => ( z )

93 };

94 procedure mean(a); 3*iav(a*z^2,z);

95 procedure solv_e(a); 9/16*9*eta^2*s_e/anu*ise(z^2*a,z);

96 procedure solv_k(a); 9/16*9*eta^2*s_k/anu*isk(z^2*a,z);

97 procedure solv_u(a); 9/16*9*eta^2/anu*isu(z^2*a,z);

98 procedure solv_p(a); 3*eta*isp(z^2*a,z);

99 procedure solv_v(a); 3*eta*isv(z^2*a,z);

100

101 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

102 % initial approximation for the iteration

103

104 cbrt:=(4/3)*z$

105 vu:=del^2*cbrt*us;

106 vv:=0;

107 vp:=g*eta*(1-z^3) +del^2*8/9*ks*(-z);

108 vk:=del^2*cbrt*ks;

109 ve:=del^3*es;

110 vnu:=c_m*vk^2/ve;;

111 vmu:=c_e2*ve^2/vk;

112 vph:=0;

113

114 gu:=0;

115 gh:=0;

116 gk:=0;

117 ge:=0;

118

119 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

120 % iterate

121 anu:=c_m*ks^2/es$ % scaled typical diffusion

122 sinth:=theta-theta^3/6+theta^5/120-theta^7/5040$

123 costh:=1-theta^2/2+theta^4/24-theta^6/720$

124 repeat begin

125 write "

126 NEXT ITERATION

127 ----------------";

128

129 begin scalar Eqc;

130 ignore_order_gt(o);

131 % continuity equation for v

132 Eqc:=dfdx(vu)+df(vv,y);

133 ok:=if Eqc=0 then 1 else 0;

134 vv:=vv-solv_v(Eqc);

135 end;

136

137 % kinematic equation for eta

138 gh:=SUB(fs, vv-vu*etax )/del^2;

139

140 % mu equation for mu of sufficient order

141 begin scalar Eqmu;

142 ignore_order_gt(o+3);
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143 Eqmu:=(vmu*vk-C_e2*ve^2)$

144 ok:=if ok and(Eqmu=0) then 1 else 0;

145 vmu:=vmu-Eqmu/(del^2*cbrt*ks);

146 end;

147

148 % ph production equation of order m-1

149 begin scalar Eqph;

150 ignore_order_gt(o-1);

151 Eqph:=(vph-(df(vu,y)+dfdx(vv))^2-2*df(vv,y)^2-2*dfdx(vu)^2)$

152 ok:=if ok and(Eqph=0) then 1 else 0;

153 vph:=vph-Eqph;

154 end;

155

156 % epsilon equation of order m+1 & BC of order m

157 begin scalar Eqeps,BCe0,BCeh,gep;

158 ignore_order_gt(o+1);

159 Eqeps:= -dfdt(ve) -lamb*vmu +C_e1*(del*es/ks)*vnu*vph

160 +1/s_e*df(vnu*df(ve,y),y) -vu*dfdx(ve)-vv*df(ve,y)

161 +1/s_e*dfdx(vnu*dfdx(ve))$

162 BCe0:=del*sub(z=0,z^2*df(ve,y))$

163 BCeh:=del*sub(fs, df(ve,y)-etax*dfdx(ve) )$

164 ok:=if ok and(Eqeps=0)and(BCe0=0)and(BCeh=0) then 1 else 0;

165 gep:=+mean(Eqeps)-160/117*anu/eta*BCeh;

166 ve:=ve-solv_e( Eqeps-gep )/del

167 +27*eta*es/(32*ks^2*C_m*del)*BCe0*((1-z)^2-1/10);

168 ge:=ge+gep/del^3;

169 end;

170

171 % nu equation of order m+1

172 begin scalar Eqnu;

173 ignore_order_gt(o+1);

174 Eqnu:=vnu*ve-C_m*vk^2$

175 vnu:=vnu-Eqnu/(del^3*es);

176 end;

177

178 % k equation & (BC of order m-1)

179 begin scalar Eqk,BCk0,BCkh,gkp;

180 ignore_order_gt(o);

181 Eqk:= -dfdt(vk) -lamb*ve +vnu*vph +1/s_k*df(vnu*df(vk,y),y)

182 -vu*dfdx(vk)-vv*df(vk,y) +1/s_k*dfdx(vnu*dfdx(vk))$

183 BCk0:=del*sub(z=0, vk )$

184 BCkh:=del*sub(fs, (df(vk,y)-etax*dfdx(vk))*cgam -(1-gamm)*vk/3/eta )$

185 ok:=if ok and(Eqk=0)and(BCk0=0)and(BCkh=0) then 1 else 0;

186 gkp:=7/4*mean(z^3*Eqk) -28/9*anu/s_k/eta*BCkh;

187 vk:=vk+solv_k( -Eqk+cbrt*gkp )/del;

188 gk:=gk+gkp/del^2;

189 end;

190 % patch up nu again because of significant changes

191 % nu equation of order m+1

192 begin scalar Eqnu;

193 ignore_order_gt(o+1);

194 Eqnu:=vnu*ve-C_m*vk^2$

195 ok:=if ok and(Eqnu=0) then 1 else 0;

196 vnu:=vnu-Eqnu/(del^3*es);

197 end;

198

199 % v equation of order m-1 for p

200 begin scalar Eqv,BCph;

201 ignore_order_gt(o);

202 Eqv:=del*( -dfdt(vv) -df(vp,y) -g*costh -2/3*df(vk,y)

203 -vu*dfdx(vv)-vv*df(vv,y) +dfdx( vnu*(df(vu,y)+dfdx(vv)) )

204 +2*df(vnu*df(vv,y),y) )$
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205 BCph:=del*sub(fs, (vp+2/3*vk)*(1+etax^2)

206 -2*vnu*(df(vv,y)+dfdx(vu)-etax*(dfdx(vv)+df(vu,y)))

207 )$

208 ok:=if ok and(Eqv=0)and(BCph=0) then 1 else 0;

209 vp:=vp+(solv_p(Eqv) -BCph)/del;

210 end;

211

212 % u equation for u (& BC of order m-1)

213 begin scalar Equ,BCu0,BCuh,gup;

214 Equ:= -dfdt(vu) +g*sinth -dfdx(vp) -2/3*dfdx(vk)

215 -vu*dfdx(vu)-vv*df(vu,y) +2*dfdx(vnu*dfdx(vu))

216 +df(vnu*(df(vu,y)+dfdx(vv)),y)$

217 BCu0:=del*sub(z=0, vu )$

218 BCuh:=del*sub(fs, -(1-gamm)*vu/3/eta

219 +cgam*((df(vu,y)+dfdx(vv))*(1-etax^2)

220 +2*etax*(df(vv,y)-dfdx(vu))) )$

221 ok:=if ok and(Equ=0)and(BCu0=0)and(BCuh=0) then 1 else 0;

222 gup:=5/4*mean(z*Equ) -20/9*anu/eta*BCuh;

223 vu:=vu+solv_u( -Equ+gup*cbrt )/del;

224 gu:=gu+gup/del^2;

225 end;

226

227 showtime;

228 end until ok;

229

230 end;
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Abstract. Within the context of Liénard equations, we present the FitzHugh–Nagumo model
with an idealized nonlinearity. We give an analytical expression (i) for the transient regime corre-
sponding to the emission of a finite number of action potentials (or spikes), and (ii) for the asymptotic
regime corresponding to the existence of a limit cycle. We carry out a global analysis to study periodic
solutions, the existence of which is linked to the solutions of a system of transcendental equations.
The periodic solutions are obtained with the help of the harmonic balance method or as limit be-
havior of the transient regime. We show how the appearance of periodic solutions corresponds either
to a fold limit cycle bifurcation or to a Hopf bifurcation at infinity. The results obtained are in
agreement with local analysis methods, i.e., the Melnikov method and the averaging method. The
generalization of the model leads us to formulate two conjectures concerning the number of limit
cycles for the piecewise linear Liénard equations.
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1. Introduction. We consider the autonomous system

dv

dt
= p(v)− w,

(1.1)
dw

dt
= bv,

where t ∈ R, b > 0 , v(t) ∈ R represents the system status variable at time t, w(t) ∈ R

represents an additional variable, and p : R → R is a given function. These equations
are known as the Liénard system [23], [22]. Special cases of (1.1) provide mathematical
models for many applications in science and engineering. We mention here biology
[31], [17], electronics (e.g., the van der Pol model [38]), chemistry [19], and mechanics
(for instance, damped mass spring systems).

In this paper we consider the case of a cubic-like function for p. System (1.1) then
describes the behavior of an isolated excitable cell where v is the membrane potential
and w the recovery variable. When p is given by

p(v) = v(1− v)(v − a), where 0 < a < 1,(1.2)

system (1.1) is the polynomial FitzHugh–Nagumo model [8], [32]. It has given rise
to many studies and the reader is referred to the references given in [31] and [17].
There are no particular requirements with respect to the choice of p, except to have
a graphical representation similar to that given by (1.2). When p is a polynomial
function, it is difficult to obtain analytical results since exact solutions cannot be
obtained. In order to be able to go further with the study and the understanding of
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the model, we will follow the choice originally proposed by McKean [29], considering
that

p(v) = −v + h(v − a), where 0 < a < 1,(1.3)

and h is the Heaviside function

h(x) =

{
0 if x < 0,
1 if x > 0.

(1.4)

The study of model (1.1)–(1.3) with a diffusive term on v was initiated by McKean
[29] and developed considerably by Rinzel and Keller [34] and Wang [39], [40]. Their
analyses covered the existence and the stability of traveling wave solutions.

The use of idealized nonlinearity with the help of the Heaviside function has
become a classic procedure in the modeling of threshold effects in excitable media [3],
[6], [16]. This approach leads to analytical results concerning properties of the model
and provides a qualitative description for a more general class of functions. As far
as we know, no specific studies have been carried out on the model isolated in space
(1.1)–(1.3). More generally, we are going to study the following system:

dv

dt
= −λv + µh(v − a)− w,

(1.5)
dw

dt
= bv,

where

λ > 0, µ > 0, a > 0, and µ > λa.(1.6)

The latter condition shows the restriction that must be imposed upon p to obtain a
shape similar to that obtained with (1.2). We are going to carry out a global analysis
of equations (1.5) considering (λ, µ, a, b) as parameters. It should be noted that the
change of variables

(t̃, w̃, λ̃, µ̃) → 1√
b
(t, w, λ, µ)(1.7)

enables us to consider the case b = 1. Nevertheless, we will not make this choice given
the usefulness of the parameter b in the interpretation of the results. In addition, we
are going to consider the case b→ 0.

Our study covers the case where a constant input I is injected into the system:

dv

dt
= p(v)− w + I,

dw

dt
= bv.

We obtain (1.5) by putting w̃ = w − I, which, in the phase plane, corresponds to a
shift of the v-nullcline. The case of a variable current I(t) will be discussed briefly
and will be the subject of another paper. It should be noted that the FitzHugh–
Nagumo model has an additional term in the recovery variable ẇ = b(v − γw), and
the simplification γ = 0 introduces an artifact in the sense that a constant current
does not change the behavior. However, since we are not interested in the bistable
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regime, this limiting situation allows a qualitative description of the excitable regime
and captures the bifurcations of the complete system as γ → 0.

This article is organized as follows. In section 2, we present the context into
which we put our study and introduce the elements that are useful to our analysis.
In section 3, we discuss the so-called spike solution that corresponds to the emission
of a finite number of action potentials. Particular attention is given to the study
of the singular perturbed system obtained as b → 0. Section 4 is devoted to an
analytical study of periodic solutions, and a geometric analysis is given in section
5. We determine, in section 6, an approximation of the bigger limit cycle. Section
7 provides a mathematical link between excitability and oscillations. In the final
section, we summarize our results and we discuss the problem of the number of limit
cycles for the piecewise linear Liénard equations.

2. General. First, let us consider system (1.1) with p having a cubic shape
similar to that given by (1.2). For a smooth reaction function, p ∈ C1, classical
results from dynamical systems theory enable us to state the following proposition.

Proposition 2.1. The single fixed point E0 = (0, p(0)) is locally stable if and
only if p′(0) < 0. If p′(0) ≥ 0, a limit cycle, surrounding E0, appears via a Hopf
bifurcation.

Proof. The single fixed point of (1.1) is (0, p(0)). Its local stability is given by the
eigenvalues of the Jacobian matrix of (1.1) at (0, p(0)):

J =

[
p′(0) −1
b 0

]
.

For p′(0) < 0, we obtain local stability of the fixed point. The equality p′(0) = 0
corresponds to the Hopf bifurcation equation. The second part of the proposition
is obtained by constructing an invariant set containing E0 and using the Poincaré–
Bendixson theorem.

The Hopf bifurcation is a mechanism that is frequently encountered in the ap-
pearance of small-amplitude oscillations [13]. It is possible to specify the behavior
of the solution in the neighborhood of its Hopf bifurcation and to obtain, locally, an
analytical expression for the solution of system (1.1) [20]. However, the case that we
are going to look at is the so-called excitable one, which corresponds to p′(0) < 0.
There is no precise mathematical definition of excitability, and we say that a sys-
tem is excitable if a perturbation from its resting state leads to a large excursion for
the solution in the phase plane and a return to its resting state. This phenomenon is
characterized by a solution (v(t), w(t)) of (1.5) satisfying the following two properties:

(P1) ∃ 0 < t1 < t2, so that v is increasing on [t1, t2],
(P2) lim

t→+∞ v(t) = 0.

Such a solution will be called a spike solution. It should be noted that (P2) is always
satisfied when the domain of attraction of (0, p(0)) is the whole phase plane. For
our study, property (P1) is sufficient to characterize the excitability of our system.
When p is the function involved in (1.5), property (P1) will be satisfied as soon as
(v, w) crosses the threshold segment [−λa,−λa + µ] in the phase plane. These two
properties are in agreement with the characterization of excitability given in [1], i.e.,
the existence, in the phase space of the so-called amplifying set and decaying set.

We are going to examine the two phenomena associated with the emergence of an
action potential. These phenomena will be written according to the concept of spike



462 ARNAUD TONNELIER

solution and periodic solution. The spike solution is a transient regime characterized
by a finite number of action potentials. The periodic solution corresponds to the
emission of an infinite number of action potentials. It is an asymptotic regime that
shows the presence of a limit cycle. These two regimes represent the basic properties
of neuronal excitability [33], [15].

Before proceeding with an analytical study of these regimes, we are going to give
a qualitative interpretation of the dynamical behavior of system (1.1). This system
can be rewritten in a convenient form usually used within the context of self-excited
oscillations [30], [12]:

d2v

dt2
− p′(v)

dv

dt
+ bv = 0.

It is then useful to consider the energy derived from the harmonic oscillator (obtained
as p′ = 0) defined by

E =
1

2

(
dv

dt

)2

+
b

2
v2.

This gives a solution,

dE

dt
= p′(v)

(
dv

dt

)2

.(2.1)

We find the stability of the fixed point (0, p(0)), provided by Proposition 2.1, when
p′(0) < 0, which corresponds to damped oscillations in the neighborhood of this fixed
point. As p′ is not negative everywhere on R, it is not possible to obtain a conclusion
concerning the global stability of (0, p(0)). In particular, it is possible that the added
energy, when p′ > 0, is sufficient to give rise to a limit cycle. Equation (2.1) provides
information concerning this cycle to the extent that it must contain at least one root
of p′. Note that this result can be found using the Poincaré–Bendixson criterion.
When p is the cubic polynomial proposed by FitzHugh–Nagumo (1.2), system (1.1)
does not have a limit cycle [24]. Nevertheless, while keeping a similar shape for p, it
is possible to obtain a limit cycle. For example, for

p(x) =

{ −x if x ≤ 0,
10x(x− 0.3)(1− x) if not,

and b = 6, one observes, numerically, the existence of a stable limit cycle. Thus the
constraint on p, said to be of cubic shape, leaves a variability in the dynamical behavior
of (1.1). In the case we are going to study, where p is represented in Figure 2.1, we
will see that the energy input due to the jump discontinuity of v′, ∆v′ = µ when v
crosses the line v = a, may be sufficient to give rise to a limit cycle. In this case,
the limit cycle coexists with the fixed point (0, 0) and this situation is termed as hard
self-excitation.

Before beginning this study, it is necessary to specify the meaning given to a
solution of (1.5) when p is discontinuous. Geometrically, a solution corresponds to a
trajectory in the phase plane (v, w). If this trajectory crosses the line of discontinuity
transversally, the solution is easy to define: for t such that v(t) = a, v′(t) has a jump
discontinuity (v′(t+) − v′(t−) = ±µ), and elsewhere the solution is C1 and satisfies
(1.5) in the classical sense. In the case where the trajectory tangentially meets the
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v

a

p(v)

(a)

λ

a

p’(v)

-

µ - λ

v

(b)

Fig. 2.1. (a) The nonlinear function p and (b) its distributional derivative p′.

line of discontinuity, the solution satisfies v(t) = a on a nonempty set. In this case,
we speak of a generalized solution and approach the problem from a geometrical
point of view. It is not the purpose of this article to give a precise mathematical
characterization of this solution, and the reader is referred to [7], [18]. It should be
noted that the problem of discontinuous vector fields is covered extensively in control
theory, e.g., [5], [14].

Our main results are given in the following summary. In section 3, we demonstrate
that the spike solution contains only one spike when λ2 ≥ 4b and several spikes can
be emitted otherwise (depending on the initial conditions). In the former case, we
derive a simple expression for the solution as b → 0 and, in the latter, we give
the general expression for the spike solution. The next sections focus on the case
λ2 < 4b for which we derive, in section 4, analytical results on the existence and the
expression of the periodic solutions. The periodic orbits appear via a double limit
cycle bifurcation that we compute in the plane (a, b). Using a geometrical analysis
(section 5), we characterize the two periodic solutions, represented in the phase plane
by two concentric limit cycles. We show how in the limiting situation λ→ 0 and µ→ 0
the periodic orbits can be obtained with the use of the Melnikov function. Moreover,
we discuss the existence of two different types of unstable limit cycles referred to
either as a classical or a generalized solution. The generalized solution is related to
the discontinuity of the vector field. In section 6, the study as λ → 0 allows us to
capture and to describe the bigger limit cycle which is obtained as a Hopf bifurcation
at infinity. In section 7, we show how the spike solutions and the periodic solutions
are related.

3. Excitability and singular perturbation. The purpose of this section is to
study the spike solution. In particular, we characterize this solution by the number
of spikes that are part of the solution. This number corresponds to the number of
times that v crosses the threshold a, where v′− > 0 (where v′− designates the left-
hand derivative of v). This number includes the initial pulse corresponding to the
perturbation due to the initial condition, noted as (v0, w0). In order to simplify the
study we consider the case where w0 = 0. We distinguish between several cases,
according to the value of λ2 − 4b. We prove the following proposition.

Proposition 3.1. For λ2 ≥ 4b, there is a spike solution when a < v0 <
µ
λ . This

solution only presents a single spike.
Proof. First, we look at the case where λ2 > 4b. For v0 < a and as long as

v(t) < a, we have

v′′(t) + λv′(t) + bv(t) = 0.
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The solution is then given by

v(t) =
v0

r+ − r−

(−(λ− r−)er+t + (λ+ r+)e
r−t
)
,

where

r± =
1

2
(−λ±

√
λ2 − 4b).(3.1)

Let t̃ be the time defined by t̃ = 1/(r+ − r−) ln(1 + λ
r+
)/(1 + λ

r−
). If v0 > 0, v is

decreasing on [0, t̃ ] and increasing on [t̃,+∞[. In addition, we have limt→+∞ v(t) = 0
and thus ∀t > 0, v(t) < a. When v0 < 0, if ∀t, v(t) < a, the study is completed;
conversely, if there is a time t∗ so that v(t∗) = a, then the trajectory crosses the line
w = 0 for a value of v greater than a, and, given a time shift, the study corresponds
to the case where v0 > a.

If v0 > a, there is a time t∗ so that v(t∗) = 0 and w(t∗) = w1 > −λa + µ. If
we put t∗ = 0, this gives v(t) = w1

r+−r− (e
r−t − er+t) and thus ∀t > 0, v(t) < 0 and

limt→+∞ v(t) = 0.

The case where λ2 = 4b is dealt with in a similar way.

For λ2−4b ≥ 0, the response to an input I = I0δ(t−t0) is a single action potential
when I0 > a.

We will now obtain a simple analytical expression for the potential v. The previous
study showed the existence of several phases when a spike is emitted. This point can
be made more specific by studying the case b� 1. This situation models the behavior
of a system in which two time scales are involved; i.e., v is a fast variable and w is a
slow variable. The mathematical description of the excitability is a classical one (see,
for example, [17]) and is carried out using the singular perturbation theory. In our
case, the relevance is to allow explicit solutions that give a simple expression for v
according to the different phases of the spike solution.

Let there be (v0, w0) so that a < v0 <
µ
λ and w0 = 0. In addition, let us assume

that v0 − µ
λ is of order greater than a O(b). The variations of v can be separated

into four phases. The first phase, which is the excited phase, is fast and the motion is
governed approximatively by the system

dv

dt
= p(v)− w,

dw

dt
= 0,

which gives

v(t) =
1

λ

(
µ+ e−λt(λv0 − µ)

)
.(3.2)

This approximation is valid as long as v(t) is at a greater distance from the v-nullcline
than a O(b) value. If not, we enter the second phase where the dynamic is described
using a new time scale τ = bt. In this phase, v is adjusted to maintain a pseudoequi-
librium at w = p(v), and we have v(τ) = 1

λ (µ− w). We obtain

v(t) =
µ

λ
e−

τ
λ .(3.3)
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Fig. 3.1. Solution v(t) of (1.5) for (v0, w0) = (0.25, 0), λ = 1, a = 0.2, b = 0.05, and µ = 1.
Intervals T2 and T4 designate the durations of the two slow phases.

We enter into the third phase as v reaches a. We have a fast motion where v is given
by

v(t) =
µ

λ
(e−λt − 1) + a.(3.4)

The final phase is characterized by a slow return to the equilibrium state according
to

v(t) =
(
a− µ

λ

)
e−

τ
λ .(3.5)

We can easily find these results by observing that the roots r+ and r− given by (3.1)
are written r+ = − b

λ+O(b
2) and r− = −λ+O(b). The fast dynamic is obtained using

the zero order approximation, and the slow motion by using the first order one. The
different phases, (3.2)–(3.5), correspond to the charge and discharge of a capacitor,
and are graphically shown in Figure 3.1. They allow precise identification of the role
of each parameter. In particular, the amplitude of the potential is parameterized by
µ
λ and a. In addition, it is possible to obtain an approximation of the duration of
a spike T using the durations of the slow dynamics of phases two and four, written
T2 and T4, respectively. We consider that the duration of phase four is the time for
which v(t) = O(b). This gives

T = T2 + T4,

where

T2 =
λ

b
ln

µ

λa
+O

(
1

b

)
,

(3.6)

T4 = O

(
− ln b

b

)
.
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For b� 1, it is possible to obtain a simple description of the subthreshold response to
a variable input I(t). This response is the one given by an RC filter, where λ = 1

RC
and is written

v(t) = e−λ. ∗ I(t).
If we consider a train of impulses at regular intervals, the system reacts preferentially
at a high input frequency in that the higher the input frequency, the earlier a spike
is emitted. More precisely, with I(t) = I0

∑
ti
δ(t− ti), where ti = iT and i ∈ N, the

subthreshold response is given by

v(t) = I0e
−λt 1− eλ(n+1)T

1− eλT
,

where n is the index of the final pulse of I(t) before the system reaches the threshold.
Thus, for an input such as I0 < a with a small frequency

1

T
<

λ

ln( a
a−I0 )

,

the system cannot emit an action potential.
Now, and for the rest of this article, unless indicated otherwise, we are going to

consider the case in which λ2 − 4b < 0. We shall see that the model presents a richer
dynamic in the sense that the spike solution is able to present several action potentials.
In addition, we will show in the following section the existence of periodic solutions.
We continue the case of a solution satisfying limt→+∞ v(t) = 0 and, therefore, there
exists a constant C > 0 and a time t∗ starting from which we have

|v(t)| < Ce−
λ
2 t.

We can then define the Laplace transform of v

L(v)(p) =
∫ ∞

0

v(t)e−ptdt

for which the region of convergence is the half plane

D =

{
p ∈ C | Re(p) > −λ

2

}
.

We define the finite sequence of times, written (ti)0...2n−1, so that t0 = 0, and for
i �= 0, v(ti) = a and ∆v′(ti) = (−1)iµ. This sequence indicates the passage of
potential via the line of discontinuity and corresponds to a jump of the derivative of
v. An equivalent characterization of ti is given by v′(t−2j) > 0 and v′(t−2j+1) < 0. We
have, on ]t2i, t2i+1[, v(t) > a with v(t0) = v0 > a. The number n corresponds to the
number of spikes emitted by the system. For w0 = 0, we calculate

L(v)(p) = µ

p2 + λp+ b

n−1∑
i=0

(e−pt2i − e−pt2i+1) +
pv0

p2 + λp+ b
.

We write in the following r =
√
4b− λ2. Using inverse Laplace transforms gives

v(t) = v0α(t) +

2n−1∑
i=0

(−1)ih(t− ti)ϕ(t− ti),(3.7)
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Fig. 3.2. Solution v(t) of (1.5) for (v0, w0) = (1.6, 0), λ = 0.8, µ = 2, a = 0.4, and b = 1. This
spike solution presents two action potentials, or spikes.

where

ϕ(t) =
2µ

r
e−

λ
2 t sin

r

2
t,(3.8)

α(t) = e−
λ
2 t
(
cos

r

2
t− λ

r
sin

r

2
t
)
.(3.9)

The above expression characterizes the transient regime with (i) a term that depends
on the initial excitation, v0, and corresponds to damped oscillations of period 4π√

4b−λ2
,

and (ii) a sum of terms with the form (−1)iSti(hϕ) (where S is the shift operator)
reproducing an excitation when v′− > 0 (even i) or an inhibition v′− < 0 (odd i).
This sum shows the different crossing v = a and is defined implicitly by the existence
of times ti such as v(ti) = a. It is clear that t1 exists: it is given by the smallest
strictly positive solution of the equation

v0α(t) + ϕ(t) = a.

The sequence of times (ti) cannot be expressed with known functions and is im-
plicitly defined using expression (3.7). Figure 3.2 illustrates the case in which the
system generates two action potentials. The return to the resting state takes place
via damped oscillations and induces computational properties which differ from that
studied above. If we consider the case of a system that has not emitted a spike, its
subthreshold response to an input I(t) is given by

v(t) = α ∗ I,
corresponding to the response of an RLC filter, with λ = R

L and b = 1
LC , when an

input I is applied. In particular, the filter response is more significant for an input

signal having a resonant frequency close to
√
b− λ2

4 .

4. Periodic solutions. Let us assume that system (1.5) has a periodic solution.
According to the expression of the vector field, this solution delimits a domain con-
taining the origin, which is a stable fixed point. In addition, when λ �= 0, it is possible
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to construct an invariant region large enough to include this limit cycle. Thus, there
are at least two limit cycles surrounding the origin, with an alternation of stable and
unstable cycles, the largest being stable.

We are looking for a periodic solution (v(t), w(t)) ∈ (L2(0, T )
)2
, where T is the

period of the solution. This solution can be expressed in a Fourier series

v(t) =
∑
n

vne
2iπn t

T ,

(4.1)
w(t) =

∑
n

wne
2iπn t

T .

The technique used, which is known as the method of the harmonic balance (see [2],
for example), involves identifying (vn, wn) using the differential equation satisfied by
(v, w).

In the phase plane, a periodic solution crosses the line v = a at two points, one of
which satisfies w > 0 and the other w < 0. We set t1 and t2 as the two successive times
that satisfy v(ti) = a, i = 1, 2, so that ∀t ∈]t1, t2], v(t) > a. The time-translation
invariance of the periodic solution allows us to define the real τ so that t1 = −τ ,
t2 = τ , where 0 < τ < T

2 . The periodic solution looked for satisfies

v(t) =

{
> a on ]− τ, τ [,
< a on [−T

2 ,−τ [ ∪ ]τ, T2 ].
(4.2)

The function t→ h(v(t)− a) is a T -periodic function such as

h(v(t)− a) =

{
1 if t ∈ [−τ, τ ],
0 if not,

and we calculate that

h(v(t)− a) =
2τ

T
+
∑
n 	=0

1

πn
sin
(
2πn

τ

T

)
e2iπn

t
T .

Therefore we obtain

v(t) =
∑
n

cn sin
(
2πn

τ

T

)
e2iπn

t
T ,(4.3)

where

cn =
2µTi

−4π2n2 + bT 2 + i2πλTn
.

At this stage in the study, we may remark that the mean value of v is zero (which
could be seen directly with (1.5)). The mean value of w is w0 =

2µτ
T . The amplitude

spectrum of v is O
(

1
n2

)
, which ensures the normal convergence of the associated

Fourier series.
Let f be the function defined by

f(t) =
∑
n

icne
i2πn t

T .

With the help of trigonometric transformations, (4.3) is written

v(t) =
1

2
(f(t− τ)− f(t+ τ)).(4.4)
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We calculate

f(t) =
−2µ

r
(
cosh λT

2 − cos r2T
)eλ

4 (T−2t)
(
e−

λT
4 sin

r

2
(T − t) + e

λT
4 sin

r

2
t
)

(4.5)

for 0 ≤ t ≤ T , where r =
√
4b− λ2 and f is defined on R by periodicity. Therefore,

f is continuous on R and has a derivative for t �= ZT . Note that f does not depend
on the auxiliary variable τ . A periodic solution exists if and only if there is T and τ
such as 0 < τ < T

2 , solutions of

f(0)− f(2τ) = 2a,
(4.6)

f(−2τ)− f(0) = 2a,

so that v, given by (4.4), satisfies (4.2). We note x = T
2 and y = τ . Elementary

operations show that (4.6) can be written in the form

F (x, y) = 0,
(4.7)

F (x, y − x) = 0,

0 <y < x,

where

F (x, y) = µ sinhλx sin ry − µ sin rx sinhλy − ar(coshλx− cos rx) coshλy.(4.8)

The existence of periodic solutions for the differential system (1.5) is given by the
existence of roots for a system of transcendental equations. We have therefore reduced
the differential problem to an algebraic one that corresponds to a search for roots in
R. In contrast to perturbation methods, it is interesting to note that our analysis is
a global one and gives an analytical formula for a periodic solution.

Remark. A similar study can be carried out for λ2 − 4b > 0. We then write
r =

√
λ2 − 4b. We find that

f(t) =
−2µ

r
(
cosh λT

2 − cosh r
2T
)eλ

4 (T−2t)
(
e−

λT
4 sinh

r

2
(T − t) + e

λT
4 sinh

r

2
t
)
,

where T and τ are given by the resolution of (4.7) with F defined by

F (x, y) = µ sinhλx sinh ry − µ sinh rx sinhλy − ar(coshλx− cosh rx) coshλy.

(4.9)

Using r < λ, it is easy to show that F (x, y − x) < 0 when 0 < y < x, and, therefore,
there cannot be solutions of (4.7) with F given by (4.9), which confirms the result of
the previous section.

Starting from the study carried out above, it is possible to state several simple
properties concerning a periodic solution. First of all, it is easy to see that its existence
is controlled by parameters r, λ, and a

µ . In addition, we have the following bound for
the periodic solution:

‖v‖+∞ <
4µ√

4b− λ2
.
e

λT
2 + 1

e
λT
2 − 2

,
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which is valid for e
λT
2 > 2. In particular, we can see that the smaller the period, the

larger the bound.
Based on (4.7), in the general case, it is difficult to give conditions for the existence

of (T, τ). More precisely, two phenomena appear to make the study tricky: (i) the
presence of solutions of (4.7) that do not correspond to a periodic solution, and (ii) the
presence of a periodic solution not detected by our analysis. We will look more closely
at the second point in the next section. The first point arises from the fact that the
existence of exactly two solutions for the equation v(t) = a on [0, T ], corresponding
to (4.2), is not reported in system (4.7). These two situations can be illustrated by
looking at the solutions of (4.7) as a → 0. If we take a = 0, the resolution of (4.7)
leads to the family of solutions (Tk, τpk)k, where k ∈ N, k > 1:

Tk =
2kπ√
4b− λ2

,

(4.10)
τpk =

pkπ√
4b− λ2

, where pk = 1 . . . k − 1,

and the implicit functions theorem leads to the existence of these solutions for a
sufficiently small a. In fact, only the solution obtained for k = 2 is admissible; other
solutions do not satisfy the assumptions of our study (given by (4.2)). Numerically,
this solution corresponds to a stable limit cycle. As we have already mentioned, there
must be an unstable cycle separating the domain of attraction of the origin from the
stable cycle one. Therefore, we are in a situation where a limit cycle has not been
detected.

Before clarifying this situation, we carry out a numerical study of the specific case
used in [29], [34], and [39], where µ = 1 and λ = 1. The results are illustrated in
Figure 4.1, where we determine in the plane (a, b) the region where a periodic solution
exists. It appears that there is a value of a, noted a∗, for which there is no periodic
solution for a ≥ a∗. When a < a∗, the existence of a periodic solution is obtained for
b ≥ bf (a). The curve bf (a) is given by the resolution, in {(x, y) ∈ R

2/ 0 < y < x}, of
F (x, y) = 0,

F (x, x− y) = 0,(4.11)

det Fx,y = 0,

where Fx,y is the Jacobian matrix of the system above with respect to (x, y). Ge-
ometrically speaking, the latter condition corresponds to a tangential intersection
between the two curves defined by the equations F (x, y) = 0 and F (x, x−y) = 0. For
b = bf (a), there is a single unstable limit cycle. For b > bf (a), there are two concen-
tric limit cycles. The larger one is stable, and the smaller one is unstable, separating
the different domains of attraction. At b = bf (a) a fold limit cycle bifurcation (or
double limit cycle bifurcation) occurs. Several limiting situations can be analytically
specified. When a → 0, system (4.7) always has an admissible solution (given by
(4.10) with k = 2), and the only restriction on b is related to the existence of r. We
therefore have lima→0 bf (a) = 0.25.

We determine the value of a∗ using an asymptotic expansion of (4.7) as b→ +∞.
More exactly, we use an asymptotic expansion as r → +∞.

We write

x =
x1

r
+O

(
1

r2

)
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Fig. 4.1. Curve of the fold limit cycle bifurcation C = {bf (a), 0 ≤ a < a∗} so that there are
two periodic solutions if and only if b > bf (a) with a < a∗. Parameters are λ = 1, µ = 1. Curves
Cλ and Cλµ correspond to the two approximations given by (6.7).

as the expansion of x (it is easy to show that the zero order term is zero). The leading
order expansion of F (x, y) is

F (x, y) = a(cosx1 − 1)r +O(1),

which gives us the approximation

T =
4π

r
+O

(
1

r2

)
.

One notes the similarity with the expression (4.10) obtained above. In the same way,
if we write

y =
y1
r
+O

(
1

r2

)
,

the determination of y1 is carried out by canceling the higher order term of the
expansion of F (x, y). We find

2π sin(y1)− a

2
x2

2 − aπ2 = 0,(4.12)

and it should be noted that the expansion of F (x, y−x) leads to the same expression.
We show that x2 = 0 (while remarking that x2 is the first order term in the expansion
of T as b → 0 and using the symmetries of the differential equations (1.5)). We
therefore find a solution of (4.12) if and only if

a ≤ 1

π
,(4.13)

which enables us to obtain the value a∗ = 1
π (Figure 4.1). When a < a∗ and r is

large enough, we found two values of τ corresponding to exactly two limit cycles. We
remark that, asymptotically, both these cycles have the same period.
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We can now predict the behavior of system (1.5) for any (λ, µ). The change of
variables

(b̃, ã, t̃, ṽ, w̃) =

(
b

λ2
,
λ

µ
a, λt,

λ

µ
v,
w

µ

)

enables us to find the case previously studied. Condition (4.13) is then written as

a ≤ µ

λπ
,(4.14)

and the bifurcation curve obtained from bf is given by

b = λ2bf

(λ
µ
a
)
.(4.15)

Thus, for sufficiently small λ, the system has always a limit cycle. We will discuss
this point in more detail in section 6. For µ large enough, the condition for existence

of a periodic solution is written as b ≥ λ2

4 .

5. Geometrical study. We are going to specify the dynamical behavior of the
system in the phase plane. We also will make use of a geometrical analysis to char-
acterize solutions of the transcendental equations system (4.7) in the sense that the
search for periodic solutions should be carried out among the intersection points of
the two curves C1 = {(x, y), F (x, y) = 0} and C2 = {(x, y), F (x, y − x) = 0} in the
space region 0 < y < x. Three configurations can then be distinguished.

5.1. No periodic solution. The simplest situation is obtained when the two
curves C1 and C2 do not present any intersections. In this case, the origin is globally
attractive. We already have illustrated such a configuration in Figure 3.2 and have
shown that this case still appears when λ2 > 4b (in this case, C1 and C2 are defined
using F given by (4.9)).

5.2. Pair of admissible solutions. We have seen that when r → +∞, it is
possible to find exactly two pairs of solutions for system (4.7). When these solutions
lead to an expression for the limit cycle, given by (4.4), satisfying the hypotheses
(4.2), they correspond to solutions that are admissible. From numerical simulations,
it appears that this situation occurs when C1 and C2 are two closed convex curves
(in the region of the plane where 0 < y < x). In this case, there are exactly two
intersection points, which correspond to the two limit cycles (stable and unstable).

This configuration can also be found using perturbation methods. In particular,
we will show a mechanism for the birth of these two limit cycles in the phase plane.
We consider the following Hamiltonian system:

du

dt
= −w,

(5.1)
dw

dt
= bv

for which the Hamiltonian function, written H, is given by

H(v, w) = v2 +
1

b
w2.(5.2)
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System (1.5) can be written as a perturbation of the Hamiltonian system (5.1)

dv

dt
= −w − λg(v),

(5.3)
dw

dt
= bv,

where λ � 1 and g(v) = v − h(v − a). We take µ = λ, but we have seen that the
study can easily be extended to any (λ, µ) of the same order. It is easy to see that
for system (5.3) the origin becomes a focus. In order to have a closer look at what
becomes of the periodic trajectory of the center, we are going to use the Melnikov
method [11]. This method, which arises from the averaging method, enables us to
determine the periodic trajectories that are transformed into limit cycles and thus
obtain an approximation of these cycles. The Melnikov function, associated with the
level curve H(v, w) = v2 + 1

bw
2 = l2, is

M(l) =

∫ 2π

0

dt vg(v)|v=l cos t.

We obtain

M(l) = πl2 − 2h(l − a)
√
l2 − a2.

Level curves of the unperturbed Hamiltonian system which transform into limit cycles
are obtained as solutions of M(l) = 0. When l < a, the only solution is l = 0 and we
find that the trajectories tend towards the origin. When l > a, M(l) = 0 is written
as

l4 − 4

π2
l2 +

4

π2
a2 = 0.

There are solutions if and only if a ≤ 1
π . We then have the following result:

– If a = 1
π , there is a single limit cycle which corresponds to the level curve

defined by

H(v, w) =
2

π2
.(5.4)

– If a < 1
π , there are two limit cycles which correspond to the level curves

defined by

H(v, w) =
2

π2

(
1±

√
1− π2a2

)
.(5.5)

These results can be added to by using system (4.7). When µ = λ � 1, the second
order asymptotic expansion of F gives

F (x, y) = 2a
√
b(cos(2

√
bx)− 1)

+

(
− a

√
b(x2 + y2) +

a

4
√
b
(1− cos(2

√
bx))

+
(ax
2

− y
)
sin(2

√
bx) + x sin(2

√
by) + a

√
by2 cos(2

√
by)

)
λ2 +O(λ3).
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Canceling the zero order term gives

T =
2π√
b
+O(λ).

To find a zero order approximation of τ , written τ0, it is necessary to use the second
order expansion of F . In this case, the first order term of the expansion of T , written
as T1, is involved and the cancellation of the second order term of F (or of F (x, y−x))
is written as

−ab2T 2
1 − aπ2 + π sin(2

√
bτ0) = 0.

Note that the system obtained by the transformation λ→ −λ and t→ −t has a phase
portrait that is obtained from the original system taking the symmetric with respect
to the line w = 0. We then have T (−λ) = T (λ), τ(−λ) = τ(λ) and the expansion of
T and τ have the form

T = T0 + T2λ
2 + T4λ

4 + · · · ,
τ = τ0 + τ2λ

2 + τ4λ
4 + · · · .

In particular, we have T1 = 0 and, when a ≤ 1
π , we find two possible values for the

first term of the expansion of τ corresponding to the two limit cycles obtained above:

1τ0 =
1

2
√
b
arcsin(aπ),

2τ0 =
1

2
√
b
(π − arcsin(aπ)).

It is possible to obtain more refined approximations by continuing the series expansion
of T and τ using (4.7). The approximation of limit cycles is then given from (4.4),
(4.5). It is interesting to note the similarity of the expressions obtained here and those
obtained for large r. This result is not surprising given the change of variables (1.7).
In Figure 5.1 and Figure 5.2, we show a typical configuration under study. The two
limit cycles that have just been characterized correspond to solutions in the classical
sense in that they satisfy hypothesis (4.2) and can be obtained by our Fourier analysis.

5.3. Only one admissible solution. From numerical simulations, we observe
configurations where there is only one admissible solution for system (4.7). This
situation does not only appear when there is a single intersection between C1 and
C2 since, as we have already mentioned as a → 0, there can be several intersections
so that only one of which is suitable. Moreover, it is possible to find exactly two
intersections between C1 and C2 only one of which is suitable. This situation is
illustrated in Figure 5.3. We have therefore detected a single limit cycle that appears
to be the stable one. Naturally, the unstable cycle still exists and here we talk about
a generalized solution, insofar as we cannot define it in the classical sense. From
numerical simulations, we observe that the appearance of this generalized solution
corresponds to a bifurcation of curves C1 or C2 in that at least one of these two
curves no longer corresponds to a single closed curve (see Figure 5.3).

In the phase plane, the study of the vector field enables us to specify the un-
stable cycle, called a separatrix because it is the boundary between two domains of
attraction. We write the coordinate points (a,−λa), (a, yB) as A and B, respectively,
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Fig. 5.1. Unstable (dotted line) and stable (full line) limit cycles of system (1.5). The v-
nullcline is represented. The parameters are λ = µ = 0.1, a = 0.22, b = 1.
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Fig. 5.2. Curves C1 (thick line) and C2 (thin line). The two intersections correspond to the
two limit cycles given in Figure 5.1 (the parameters are given in Figure 5.1).

where yB ∈ I and I designates the interval [−λa,−λa+µ]. Let P be the parameter-
ized curve obtained when considering the solution of system (1.5) starting from A by
reversing the time. The equation for this curve is given by

x(t) = a(cos rt− λ
r sin rt)e

λt,

y(t) = −a
(
λ cos rt+ 2

r (b− λ2

2 ) sin rt
)
eλt

as long as x(t) < a. Let t∗ be the smallest real so that t∗ > 0 and x(t∗) = a. If
y(t∗) ≤ −λa + µ, then we take yB = y(t∗) and the curve Γ = [A,B] ∪ P is the
boundary being looked for. This situation is displayed in Figure 5.4. If we now have
y(t∗) > −λa+µ, we again consider the solution of system (1.5) by reversing the time
but with (x(t∗), y(t∗)) as the initial condition. This solution crosses the segment I at
the point B that is looked for. If this solution does not present an intersection with
I, we are in the presence of an unstable cycle that can be defined in a classical sense
given by the resolution of (4.7). Nevertheless, we have not succeeded in establishing
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Fig. 5.3. Curves C1 (thick line) and C2 (thin line). The line y = x is represented. The
parameters are those of Figure 5.4.
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Fig. 5.4. Stable limit cycle (full line) and unstable limit cycle (dotted line) marking the boundary
with the domain of attraction of (0, 0). The parameters are λ = 1, a = 0.3, b = 2, and µ = 3.

precise links between the existence of the point B and the solutions of (4.7).
Another approach is to consider a family of near systems, the solutions of those

tending towards those of (1.5). From this technique arises the mathematical difficulty
of the notion of limit being considered. However, let us define the system

dv

dt
= pδ(v)− w,

(5.6)
dw

dt
= bv,

where pδ(x) = −λx+ µhδ(x− a) and hδ is the continuous function defined by

hδ(x) =




0 if x ≤ 0,
x
δ if 0 < x < δ,
1 if x ≥ δ.

Numerically speaking, for small values of δ, the orbits of (5.6) are a good approxima-
tion of those of system (1.5). This result requires careful study, which we have not
undertaken here. The convenience of (5.6) is that they allow the application of classi-
cal theorems of existence as well as the usual numerical integration methods like the
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Runge–Kutta method. In addition, it seems possible to extend the results obtained
for the discontinuous system to these continuous piecewise linear systems as δ → 0.

6. Large relaxation time. In this section, we study the case of a small λ which
corresponds to a system with a large time constant. When λ � 1, the asymptotic
expansion of (4.8) is written as

F (x, y) = −2a
√
b(1− cos(2

√
bx)) + λµ(x sin(2

√
by)− y sin(2

√
bx)) +O(λ2).

(6.1)

Therefore we have

T =
2π√
b
+O(λ),

τ =
π

2
√
b
+O(λ).

The existence of a periodic solution for small λ has already been noted in section 4.
We obtain a single solution for τ which is related to the big cycle. The small cycle
cannot be captured by this limiting situation. Using the third order expansion of
F (x, y) and F (x, y − x), we find that

T =
2π√
b
+

π

4b
√
b
λ2 +O(λ3),

(6.2)
τ =

π

2
√
b
− aπ

2µ
√
b
λ+

π

16b
√
b
λ2 +O(λ3).

Using the first order expansion of T , we calculate

f(t) = − 2µ

λπ
sin

√
bt+O(1).

Calculation of the approximation of v, using (4.5), (4.4), (6.2), gives

v(t) =
2µ

λπ
cos

√
bt+O(1).(6.3)

The approximation that is obtained coincides with the term carrying the fundamental
frequency in the Fourier series of v. Using w0 = µ

2 , the limit cycle approximation is
given by

v2 +
1

b

(
w − µ

2

)2

=
4µ2

λ2π2
+O(1).(6.4)

Numerically speaking, this approximation appears to be a good one, even for large
values of λ. It is possible to refine the approximation obtained by using higher order
terms in the expansion (6.2). We then find

v(t) =
2µ

λπ
cos

√
bt+

µ

π

(
π√
b
− t

)
cos

√
bt+O(λ).(6.5)

Remark 1. The terms in the expansion of v have zero mean value.
Remark 2. Approximation (6.5) must be considered for t ∈ [0, T ]. This raises the

problem of matching at T , a problem that we will not discuss here since we will use
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Fig. 6.1. Stable limit cycle of system (1.5) (thick line) and its approximations given by (6.6)
(thin line) and (6.4) (dotted line). The parameters are λ = 0.8, µ = 1.5, a = 0.4, and b = 2.

approximation (6.3). From a numerical point of view, this approximation appears to
be better for a wide range of values of λ. This is due to the appearance of secular
terms in the asymptotic expansion (6.5).

Remark 3. If the expansion of T is continued, there is no term of third order,
which leads us to believe that T presents an even power series expansion.

It is interesting to compare the approximation that has just been calculated with
the one previously obtained (5.5). The value found for the largest cycle, in the case
of small (λ, µ), gives

v2 +
1

b

(
w − µ

2

)2

=
2µ2

λ2π2

(
1 +

√
1− λ2π2a2

µ2

)
,(6.6)

which, for small values of a, corresponds to the approximation (6.4). Numerically
speaking, this approximation is very precise, as shown in Figure 6.1.

Using approximations (6.4) and (6.6), we can formulate an approximate necessary
condition for the existence of a periodic solution since the expression of the vector
field requires that the interior of the limit cycle contains the point (a,−λa), which
yields to

b >
(λa+ µ

2 )
2

d2 − a2
(6.7)

with d ∈ {dλ, dλµ}, where d2
λ and d

2
λµ are the values of the right-hand term of equations

(6.4) and (6.6), respectively. Approximation (6.4) imposes the condition a < 2µ
λπ ,

which is a requirement greater than that given by (6.6). Even far from its validity
domain, approximation (6.7) remains useful. When λ = 1 and µ = 1, Figure 4.1
shows the approximation (6.7) obtained from the study for small λ (curve Cλ ) and
for small (λ, µ) (curve Cλµ). For small values of a, the requirement appears to be a

little too strong, in that it imposes b > π2

16 when b > 1
4 would do.

Let us precisely give the bifurcation giving rise to the stable limit cycle for small
λ. In this case, the system under study may be considered as a perturbation of

dv

dt
= µh(v − a)− w,
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(6.8)
dw

dt
= bv.

System (6.8) was previously considered as a perturbation of the Hamiltonian system
obtained for µ = 0. However, in this analysis, µ is not considered as a small parameter.
The harmonic balance method leads to the following two cases:

• τ does not exist and we find a family of periodic solutions defined by

H(v, w) = c2, where c < a,(6.9)

where H is given by (5.2).
• If we assume that τ exists, we find that the Fourier series expansion of v is
divergent and therefore there is no periodic solution such as v > a.

For an initial condition outside the ellipse obtained with c = a in (6.9), a solution of
(6.8) tends towards infinity since the orbits of system (6.8) are given by

v2 +
1

b
w2 = const for v < a,

v2 +
1

b
(w − µ)2 = const for v > a,

and, if we consider the sequence (wn)n∈N associated with the Poincaré section defined
by v = a, we have

wn = wn−1 + 2µ.

Thus, the orbits spiral around the origin and move away from it. The addition of the
perturbation −λv leads to (i) the destruction of the family of periodic solutions so
that v < a (the origin becomes a stable focus) and (ii) the appearance of a limit cycle
towards which the orbits converge while spiraling. We have seen that the birth of the
limit cycle takes place at ∞ since the diameter of the ellipse can be made arbitrarily
large. We are going to specify this result in bifurcation terms.

We write (r, θ) for the polar coordinates of (v, w) and, because we are interested
in the system at ∞, we introduce the variable u = 1

r . Given a change of variables, we
can consider the case b = 1. Writing (1.5) using the new variables gives

du

dt
= λu cos2 θ − u2µ cos θh

(
cos θ

u
− a

)
,

dθ

dt
= 1 + λ sin θ cos θ − uµ sin θh

(
cos θ

u
− a

)
.

We are interested in the behavior of the system for λ � 1 and u close to 0. In this
case, θ is a fast variable, the dynamic of which can be approximated by θ′ = 1. The
averaging theorem [11] enables us to consider the approximation given by the averaged
system

du

dt
=

1

2π

∫ 2π

0

dθ λu cos2 θ − u2µ cos θh(cos θ),

where we have used the approximation h( cos θ
u − a) ∼ h(cos θ) for small u > 0.

We find

du

dt
=
(λ
2
− µ

π
u
)
u,
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which shows the appearance of a stable limit cycle. The radius of this cycle is given
by u = λπ

2µ and is in agreement with the approximation (6.4). This is a supercritical
Andronov–Hopf bifurcation which appears at∞. As far as we know, such a bifurcation
was mentioned for the first time in [37].

7. Excitability and oscillations. We may interpret the appearance of oscilla-
tions as the limit behavior of a spike solution when the number of action potentials
becomes large. We are going to give mathematical content to this statement by show-
ing that the periodic solution, written as vγ(t), can be obtained as the limit of the
spike solution, written as vn(t), when the number of spikes n tends towards +∞.
Most often, the birth of oscillations is shown in terms of bifurcations using equations
based on system parameters. Here, the characterization is directly obtained from the
system solutions.

We consider (3.7), omitting the transient regime containing v0, because we are
interested in the asymptotic state. Using a time shift, we consider the symmetrical
sum obtained from (3.7):

vn(t) =

n∑
k=−n

φ(t− t2k)− φ(t− t2k+1),

where

φ(t) = h(t)ϕ(t)

and ϕ is given by (3.8). If we assume that the spikes are produced at periodic time
intervals, there exist T and τ so that t2k = kT − τ and t2k+1 = kT + τ . The existence
of the pair (T, τ) is studied in section 4. We should also note that the assumption just
made is linked to v0 insofar as not all orbits converge towards a periodic solution.

We have φ ∈ L1(R), and the Poisson formula, in the space of tempered distribu-
tions S ′, gives us

lim
n→+∞ vn(t) =

1

T

+∞∑
−∞

φ̂

(
k

T

)
2 i sin

(
2πτ

k

T

)
e2iπk

t
T .

As φ′, the distributional derivative of φ, is in L1(R), equality occurs for every t, and
we have the uniform convergence of the series. We calculate that

φ̂(w) =
2µ

2b− 8π2w2 + 4iπλw
,

giving

lim
n→+∞ vn(t) = vγ(t),

where vγ(t) is the periodic solution given by (4.3), which establishes the stated result.

8. Discussion. Estimation of the maximal number and relative positions of limit
cycles of a two-dimensional autonomous system is an open problem corresponding to
the second part of the sixteenth Hilbert problem. Given the difficulty of the general
problem, mathematicians have become interested in a particular system class, the
Liénard system:

dv

dt
= p(v)− w,

(8.1)
dw

dt
= v.
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Most results concern the case in which p is a polynomial function. Even in this case,
there are no general theoretical results and most approaches are local ones insofar as
they determine only the number of limit cycles for certain parameter values. Limit
cycles are obtained using perturbation methods via a Hopf bifurcation or a global
bifurcation (see [28] and the references therein). Some global approaches make it
possible to link the number of limit cycles to the roots of a polynomial [10], [25], but
the results remain to be demonstrated.

We have studied the Liénard system where p is a piecewise linear function (linear
on ] − ∞, a[ and on ]a,+∞[) allowing a finite jump discontinuity at a > 0. We
have shown that the limit cycles are characterized by the roots of a system of two
transcendental equations. These roots correspond to the period of the oscillations
and to an additional parameter. We have obtained an explicit expression of the
limit cycles as a function of these two roots. Our results are in agreement with
the local methods in that (i) the fold limit cycle bifurcation can be obtained as a
perturbation of a center and (ii) the large size limit cycle can be obtained as a Hopf
bifurcation at ∞. We might also consider the limit cycle obtained as a→ 0 as a kind
of degenerated Hopf bifurcation. We have shown the existence of at least two limit
cycles, and arguments similar to those used in [27] should enable us to demonstrate
that at most two limit cycles exist. When p is a polynomial function, such a result
can be obtained only for a polynomial of degree at least five [36]. It has already been
observed that discontinuous dynamical systems have a richer dynamic than regular
dynamical systems [9]. The obtained results, and numerical simulations that we have
carried out, lead us to formulate two conjectures concerning the number of limit cycles
of a piecewise linear Liénard system.

Conjecture 1. The Liénard system (8.1), with p piecewise linear on n+1 intervals
and having n finite jump discontinuity, has up to 2n limit cycles.

Conjecture 2. The Liénard system (8.1), with p continuous and piecewise linear
on n+ 1 intervals, has up to n limit cycles.

Conjecture 2 generalizes the result obtained in [26], [27] in which the authors
proposed a continuous, and piecewise linear on 2n + 1 intervals, function p so that
Liénard system (8.1) has exactly n limit cycles. The parity and periodicity of p appear
to be the two properties that limit the number of limit cycles.

Beyond mathematical interest of the system under study, it is of great importance
in mathematical biology where excitable systems are widely used [31], [17]. Our sys-
tem is a piecewise linear version of the FitzHugh–Nagumo equations with a simplified
version of the recovery process which provides an understanding of the behavior in a
transparent way. First of all, we have distinguished between two dynamics according
to the value of λ2 − 4b. When λ2 − 4b ≥ 0, the system is termed leaky integrator and
only a single spike can be emitted in response to an excitation given by the input
I = I0δ(t− t0). When λ2 − 4b < 0, the system is referred as being resonator. In this
case, the response is obtained as the superposition of

v(t) = e−
t
η sinΩt,

where η = 1
λ and Ω =

√
b− λ2

4 denote, respectively, the time constant and the natural
frequency of the system. When this response is a finite sum, we obtain what we call
a spike solution. In the case of infinite sum, we obtain a periodic solution for which
an analytical expression is given by

v =
1

2
(S−τf − Sτf),



482 ARNAUD TONNELIER

where S is the shift operator Syg(x) = g(x+ y) and f is a function that depends on
the period T . In the general case, it is not possible to have an explicit expression for
T and τ . However, we have obtained a set of approximate solutions which shows that
the period is well approximated using

T =
4π√

4b− λ2
.

We have detected two possible mechanisms for the appearance of oscillations: a fold
limit cycle bifurcation and a Hopf bifurcation at infinity.

A significant biological interest is the extension of our analysis to the complete
system where the recovery process is given by

dw

dt
= b(v − γw).

In this case, a change of variables allows us to rewrite the FitzHugh–Nagumo system
as the generalized Liénard equation

dv

dt
= F (v)− w,

dw

dt
= G(v).(8.2)

When p is the polynomial function (1.2), the two functions F and G are third degree
polynomial functions and, in contrast to the case γ = 0, three limit cycles can be
obtained. We plan to explore the piecewise linear case for which an analytical study
is possible but yields much more complicated expressions than those obtained in this
paper. Results on such an extension will be reported elsewhere.

There remains much work to be done on our system. The simplicity of the model
allows us to hope for analytical results for bursting [35]. The coexistence of a limit
cycle and a stable fixed point favors the existence of such a phenomenon when an
additional slow variable is added to the system. Another aspect is the study of coupled
equations. In particular, we hope for promising results concerning the dynamics of
coupled oscillators using the approximations obtained for the periodic solution. As
a first step, we plan to explore the forced system in the context of forced piecewise
linear systems [4], [21].

Acknowledgments. The author thanks J. Demongeot and J. L. Martiel for
many helpful discussions.
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we obtain conditions for successful wave propagation and failure. We show that, like the one-gap
system, steady-state multiplicity for the case of two gaps arises via a limit point bifurcation. We
also demonstrate that in some cases the presence of a large number of gaps promotes wavefront
propagation.
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1. Introduction. Wave propagation in spatially distributed media is relevant
to a large variety of biological and chemical systems, including nerve signal transmis-
sion, population dynamics, and combustion. There are many different ways in which
spatial inhomogeneity can be created. In all cases, spatial variation of the parameters
in reaction-diffusion equations has been shown to have important consequences for
traveling wave propagation and pattern formation. For example, Kay and Sherratt
[1, 2] considered the effect of spatial variation of the demographic kinetic parame-
ters on predator-prey systems. They were able to demonstrate that a small amount
of noise has no appreciable effect on the die-out of the regular oscillations after the
invasion of a front of predators with an irregular wake. However, moderate to large
levels of noise could lead to the persistence of regular oscillations, but generally with
a spatial frequency different from that which would normally be generated behind the
invasion front. For a scalar reaction-diffusion equation with a cubic kinetic term and
with a spatially varying diffusion coefficient, Xin [3] showed that, if the variation of
the diffusion coefficient from its mean is sufficiently large, traveling waves no longer
exist, so that a wavefront will begin to propagate from given initial conditions but will
then stop advancing—a phenomenon known as “quenching” or “wave-block.” Several
other authors have analyzed propagation with spatially varying diffusion coefficients
including wave-blocking phenomena in bistable reaction-diffusion systems [4, 5] and
the excitable FitzHugh–Nagumo equation [6].

In this paper we study wave propagation through localized regions of no excitabil-
ity in an otherwise excitable medium. Following Sneyd and Sherratt [7] and Lewis and
Keener [8], we will refer to these regions of no excitability as the “gaps.” Such a gap
model has relevance in several areas. For instance, the role of the gaps is analogous to
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that of fire breaks in flame propagation [9]. In the context of Ca2+ wave propagation
between inositol 1,4,5-trisphosphate (IP3) receptors [7], the gaps correspond to regions
of low IP3 concentration. The propagation of electrical excitation in cardiac tissue
also encounters regions of depressed excitability. For instance, the atrioventricular
node, the normal electrical pathway between the atria and ventricular myocardium,
is a localized region of low excitability and conductivity [8]. Finally, gaps can be
used to model demyelination of nerve fibers [10, 11] resulting from diseases of the
central nervous system [12]—in this case, the loss of myelin slows or even stops the
transmission of action potentials through the nerve cells.

Our excitable medium model is the bistable reaction-diffusion equation

ut = uxx + g(u, x)(1a)

on −∞ < x < +∞, t > 0, where the function g(u, x) is defined piecewise as follows:

g(u, x) =

{
f(u), −∞ < x ≤ x1, x2 < x ≤ x3, . . . , x2n < x < +∞,
0, otherwise.

(1b)

The kinetic term f is taken to be the cubic function

f(u) = u(1− u)(u− α), 0 < α <
1

2
,(1c)

that describes excitation outside the n gaps, [xi, xi+1] for i = 1, 3, . . . , 2n−1. Equation
(1a) is subject to the boundary conditions

u→ 1, x→ −∞,

u→ 0, x→ +∞,(1d)

with all the x derivatives tending to zero as x → ±∞. The bistable equation is
essentially a version of the nonlinear cable equation that has been used to describe
the flow of electricity along nerve axons [12]. Within the context of nerve impulse
transmission in particular, the bistable equation can be used as a model for myelinated
nerve axons. The same equation was also adopted by Lewis and Keener [8] as a model
system for the atrioventricular node in the heart. These authors studied the existence,
stability, and bifurcation properties of the steady states of the bistable equation (1a)
in the presence of a single gap. They developed a phase plane/geometric method that
allows the derivation of criteria for wave-block: their analysis indicates that wave-
block is associated with a limit point bifurcation; i.e., there exists a minimal gap
width above which wave-block occurs. Furthermore, they considered different gap
dynamics, including a leaky gap with a linear decay of u in addition to diffusion, and
a gap with small but nonzero excitability. A gap with linear decay was also considered
by Grindrod and Sleeman [10] and Grindrod [11] to describe leakage of ionic transport
from the axoplasm into small pockets of plasma held within the myelin sheath, while
a general analysis of the steady states of the bistable equation with a spatially varying
reaction term has recently been performed by Salazar and Solà-Morales [13].

The mechanism for successful propagation and failure through an active medium
with localized regions of no excitability was studied in detail by Poptsova and Guria
[14]. These authors performed initial-value computations of the bistable equation
as well as the two-variable excitable FitzHugh–Nagumo model, to demonstrate the



WAVE PROPAGATION IN DISTRIBUTED MEDIA 487

existence of a critical gap width for a single-gap system above which wave-block
(referred to by the authors as “locking-up”) occurs. They also performed initial-value
computations for a periodic sequence of gaps and spacings between the gaps, and they
demonstrated the existence of a critical separation distance below which wave-block
occurs.

The problem of wave propagation in the presence of several gaps separated by
different spacings is considered here. This is a substantially more complex situation
than propagation in a heterogeneous medium with a single gap. Our analysis parallels
the work by Lewis and Keener [8] and extends their geometric method to a hybrid
geometric-algebraic method for the case of multiple gaps. The method allows us to
obtain criteria for propagation failure in the bistable equation (1), where gap dynamics
is governed purely by diffusion, and to gain insight into the underlying dynamical
structure of the problem. Although the geometric method facilitates the visualization
of the steady states in the phase plane, setting up the equations governing these
steady states and solving for the critical quantities directly does give a systematic
way to construct these steady states. For two gaps with lengths less than the critical
length for a medium with a single gap, our analysis reveals the existence of a critical
spacing between the two gaps, below which the system approaches a steady state and
propagation is suppressed. However, if the first gap length is larger than the critical
length, with the second gap still being less than the critical length, there are two
critical values for the spacing: for values of the spacing less than the smaller critical
value and greater than the larger critical value, the system approaches a steady state.
The same phenomenon occurs in a medium with three gaps, provided that the final
gap length is less than the critical length for a medium with a single gap. For a given
value of the spacing between the first two gaps, there are two critical values for the
second spacing: for values of the second spacing less than the smaller critical value
and greater than the larger critical value, the system approaches a steady state. This
somewhat surprising result implies that the final spacing has a profound impact on
wave propagation and, in fact, promotes propagation across purely diffusive regions
only when its value is between the two critical values.

Hence, the bistable equation behaves in a dramatically different fashion than the
system we studied previously [15], in which a heterogeneous medium was considered
using a cubic autocatalysis model with autocatalyst decay in the gaps, which were
defined as the regions where the reactant concentration was zero. In this two-variable
model, the autocatalyst was taken to diffuse and react with a reactant loaded at a
constant initial concentration throughout a reaction domain except in the gap regions.
One of our main findings was that if any gap length is larger than a critical value,
wave propagation will be suppressed; unlike the case studied here, for three gaps in the
reaction domain there was only one critical value for the second spacing. Finally, our
predictions from the hybrid geometric-algebraic method are in excellent agreement
with numerical solutions of the system in (1) as an initial-value problem.

2. Wave propagation: Success and failure in a single-gap domain. In
the absence of heterogeneities, the bistable equation in (1) admits traveling wave
solutions that connect the two stable rest states, u = 0 and u = 1 (see, for example,
Keener and Sneyd [12]). The solution is of the form

u(x, t) = u(ξ) =
1

2

[
1− tanh(

√
2ξ/4)

]
, c =

1− 2α√
2

,(2)

where ξ = x − ct. Note that the direction of propagation changes at α = 1/2. This
traveling wave solution is a heteroclinic trajectory that connects the two saddle-points
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(0, 0) and (1, 0) in the (u, uξ) phase plane. In addition, the bistable equation exhibits
threshold phenomena (see [16]). Specifically, if the initial data is sufficiently small,
the solution of the bistable equation approaches zero uniformly in the limit t → ∞.
However, there are initial conditions with compact support lying between 0 and 1
for which the solution approaches 1 uniformly for large times and, as a consequence
of the comparison theorem for scalar parabolic operators, any two solutions of the
bistable equation that are ordered at some time remain ordered for all subsequent
times. Hence, initial conditions larger than the threshold will initiate a solution that
approaches 1 for large times. Finally, the traveling wave solution of the bistable
equation has been shown to be stable by Fife and McLeod [17], and in fact, starting
from any initial data that lies between 0 and α as x → +∞ and between α and 1
as x → −∞, the solution will become arbitrarily close to some phase shift of the
traveling wave solution (2) for sufficiently large times.

The impact of a single gap, of width W = x2 − x1, on the propagation of an
established permanent-form traveling wave was considered in detail by Poptsova and
Guria [14] and Lewis and Keener [8]. For W small but nonzero, the dynamics is
similar to the spatially uniform case with W = 0. Poptsova and Guria [14] and Lewis
and Keener [8] demonstrated that, as the front of the wave approaches the gap, it
slows down because there is no excitability within the gap. For W sufficiently small,
the front is able to supply sufficient u across the gap to excite the upstream side
of the gap. Thus, after a delay, the wavefront can propagate through the gap and,
after a sufficiently large distance, the front is able to recover fully and reestablish its
permanent waveform. As W is increased, the delay increases, but the wavefront is
still able to penetrate across the heterogeneity. Eventually, for W larger than some
critical value Wc, the solution approaches a spatially inhomogeneous steady state of
system (1), with ut = 0 and without any wave development beyond the gap. A similar
wave-block phenomenon was observed in the cubic autocatalytic system with decay
studied in [15].

This behavior is confirmed from a full numerical solution of the bistable equa-
tion (1) as an initial-value problem in an extended domain, with long intervals before
the first gap and after the last gap, to establish domain independence and to ensure
that u approaches the two rest states 1 and 0 on the space spanned by the eigen-
vectors obtained from the linearized version of (1) at the infinities. We utilize a
standard Crank–Nicolson-type implicit scheme for solving parabolic equations, with
the x-derivatives approximated by central differences. (The advantages of an implicit
scheme over an explicit scheme are obvious, as an explicit scheme would require very
short time steps for a reasonable spatial accuracy.) The translational invariance of
the system in x allows us to take x = 0 as the starting point of the computations.
We start the integrations with u = 0 everywhere except in the first 100 grid points,
where we set u = 1.0. The time-discretization uses a two-level scheme. In advancing
from time t to time t + ∆t, we replace the time derivative terms by first-order dif-
ferences involving the solution at the old time level and the as-yet-unknown solution
at the new time level. We evaluate the other terms using a weighted average of the
solution at the two time levels. At each time level, the fully discrete system is a set of
nonlinear algebraic equations, which we solve using Newton–Raphson iteration. The
accuracy of the numerical simulations was determined by careful convergence tests
under mesh refinement and time-step sizing. In all cases, grid sizes and time steps
were kept smaller than 10−1, while in some cases grid sizes and time steps as small
as 10−3 were employed to accurately resolve critical gaps and spacings.

Our results confirm the value Wc � 6.5 for α = 0.3 obtained by Lewis and
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Fig. 2.1. Numerical solution of (1) for α = 0.3 as an initial-value problem on a domain with
L = 90.0 and a gap of width W = 7.0 > Wc. Here u is plotted at equal times starting at t = 25.5.
The time lapse between any two successive curves is 22.5 time units.
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Fig. 2.2. Phase-portrait of uxx + f(u) = 0 in the (u, ux) phase plane for the steady-state in
Figure 2.1. H indicates the homoclinic orbit emanating from the saddle point (0, 0), and ψ the
transfer map of H. Solid curve: curve of ψ tangential to the stable manifold of the saddle (1, 0)
occurring at W =Wc = 6.402. Dashed curve: curve of ψ with W = 7.0.

Keener [8]. Figure 2.1 depicts the evolution of the wavefront towards a gap with
width W = 7.0. The wavefront slows down and eventually stops. The final result of
the evolution is a steady-state solution of the bistable equation. Lewis and Keener
developed a phase plane method to construct the steady-state solutions and to predict
the critical width Wc. Their method is essentially based on piecing together in the
phase plane the invariant manifolds that constitute the steady-state solutions. Below
we offer an algebraic version of the geometric method of Lewis and Keener.

Figure 2.2 shows the steady state of Figure 2.1 in the (u, ux) phase plane. Three
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curves in the phase portrait are of particular interest: (i) the curve H, which is
a portion of the homoclinic orbit emanating from the saddle point at (0,0) and is

described by ux = −
√
−2 ∫ u

0
f(υ)dυ; (ii) the transfer map of the homoclinic orbit by

the flow in the gap which maps points on H onto a new curve ψW defined by ψW :
[u, ux] 	→ [−uxW + u, ux]; (iii) the stable manifold of the saddle point (u, ux) = (1, 0)

described by ux = −
√
2
∫ 1

u
f(υ)dυ. Hence, the equations describing the steady state

are

uBx = −
√
−2
∫ uB

0

f(υ)dυ,(3a)

uC = −uBxW + uB ,(3b)

uCx = −
√
2

∫ 1

uC

f(υ)dυ,(3c)

uBx = uCx ,(3d)

where the superscripts B and C refer to points B and C, respectively, in the phase
plane and in Figure 2.1. The above are four equations for the five unknowns uBx , u

B , uCx ,
uC , and W . The existence of real solutions to these equations ensures that the trans-
fer map and the stable manifold of (1,0) intersect. However, the intersection can be
either tangent or transversal. To ensure a tangent intersection, and hence intersec-
tion at only one point, the slopes of the transfer map and the stable manifold must
coincide at point C. For this purpose we must express ψ as a function of u. However,
it is not possible to obtain an explicit expression for ψ(u), and therefore we resort to
the parametric representation

u = −W
√
−2
∫ t

0

f(υ)dυ + t,

ψ ≡ ux = −
√
−2
∫ t

0

f(υ)dυ,

where 0 ≤ t ≤ tmax with tmax = (2/3)(1+α)+(1/3)
√
4− 10α+ 4α2. Hence, the slope

ψu can be easily obtained: ψu = (dux/dt)/(du/dt). At point C, ux evaluated from

ψ, ux = −
√
−2 ∫ tC

0
f(υ)dυ, must be equal to ux evaluated from the stable manifold,

ux = −
√
2
∫ 1

uC f(υ)dυ. A comparison of

√
−2 ∫ tC

0
f(υ)dυ =

√
2
∫ 1

uC f(υ)dυ with

(3a), (3c), and (3d) indicates that tC = uB . Hence, the condition of equal slopes at
C,

ψu(t
C) =

f(uC)√
−2 ∫ uC

1
f(υ)dυ

,
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can be expressed in terms of uB and uC and, after being combined with (3a)–(3d),
gives a system of three nonlinear algebraic equations:∫ uB

0

f(υ)dυ =

∫ uC

1

f(υ)dυ,(4a)

f(uB)f(uC) = 2
f(uB)− f(uC)

uB − uC

∫ uB

0

f(υ)dυ,(4b)

Wc =
uC − uB√

−2 ∫ uB

0
f(υ)dυ

.(4c)

The first two equations can be solved with a simple trial-and-error procedure to obtain
uB and uC . The critical gap width Wc can then be obtained explicitly from (4c). For
α = 0.3, Wc = 6.402. An asymptotic analysis of these equations as α → 1/2 shows
that Wc ∼ 2

√
2[(1− 2α)/12]1/3 with uB,C ∼ 1− [(1− 2α)/12]1/3.

Finally, two points of interest in the phase portrait are u1, the maximum u value
on the homoclinic orbit H (see Figure 2.2), and u2, the u value on the stable manifold
of (1,0) with a slope the maximum of −ux on the homoclinic orbit. Lewis and Keener
[8] pointed out that different kinetic terms f that are the same on the intervals
0 < u < u1 and u2 < u < 1 would give the same Wc and the same steady states for
W > Wc. This is simply due to that fact that f does not play a role in the purely
diffusive gap. The kinetic term f , however, is critical in determining the shape of
the homoclinic orbit and the stable manifold. The same argument can be readily
extended to the case of two- and three-gap systems studied in the next two sections.

3. Propagation in a domain with two gaps. We consider the propagation
of a wavefront in a domain with two gaps of widths W1 and W2. The region of
excitability of length S between the two gaps will boost any wave passing through
the first gap before it encounters the second gap. Hence, we seek to determine the
minimum separation distance Sc between the two gaps that allows the wavefront to
propagate successfully through the whole domain. Numerical integration of (1) for
α = 0.3 suggests that Sc � 0.68 for W1 = W2 = 5. Figure 3.1(a) shows wave-block
for W1 = W2 = 5.0 (less than the critical value Wc = 6.402 for a domain with a
single gap) with a spacing S = 0.66. Figure 3.1(b) shows successful propagation of
the wavefront for S = 0.69 (for the same values of W1 and W2).

We now extend the geometric method developed by Lewis and Keener to the case
with two gaps. Figure 3.2 shows the phase portrait of the steady state in Figure
3.1(a). As with the one-gap case, we can compute the transfer map ψW2

: [u, ux] 	→
[−uxW2+u, ux] to obtain the mapped curve ψ and the stable manifold of the saddle-
point (1, 0). Notice that the transfer map of the homoclinic orbit is now defined by
the last gap W2, while the first gap W1 corresponds to curve DE emanating from
the stable manifold of (1,0) in the phase plane. Another curve of interest in Figure
3.2 is the phase orbit φ tangent to ψ. The monotonicity of ψW2 in W2 and the
continuity of ψ and any orbit in the phase plane ensures that, for a given W2, there
will be only one orbit tangent to the mapped curve ψ. This phase orbit is given

by ux = −
√
−2 ∫ u

0
f(υ)dυ + β, where β = u2

x at u = 0 for the phase orbit φ. We
shall demonstrate that this phase orbit determines the critical spacing for propagation
failure.
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Fig. 3.1. (a) Failure of wavefront propagation in a domain with two gaps, W1 = W2 = 5.0 <
Wc for a spacing between the two gaps of S = 0.66 with α = 0.3; (b) successful propagation for
W1 = W2 = 5.0 and S = 0.69. Here u is plotted at equal times from time t = 22.5. The time lapse
between successive curves is 22.5 time units.

The condition of equal slopes for ψ and φ, along with the fact that uCx evaluated
from ψ must be equal to uCx evaluated from φ, gives

f(tC)

W2f(tC) +

√
−2 ∫ tC

0
f(υ)dυ

=
f(uC)√

−2 ∫ tC
0
f(υ)dυ

,(5a)
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Fig. 3.2. Phase portrait of uxx + f(u) = 0. The phase orbit φ determines the critical spacing
between the two gaps. The tangent intersection between φ and ψ occurring at β = 0.04949 cor-
responds to the steady state in Figure 3.1(a). The phase orbit through C′ and C′′ corresponds to
β = 0.0357. The curve AB′C′D′E′F is a stable steady state for S = 0.49 < Sc and W1 =W2 = 5.0.
The curve AB′′C′′D′E′F is an unstable steady state for W1 = W2 = 5.0 and S = 0.13. Here uH
corresponds to the intersection of the homoclinic orbit with the u-axis.

where

uC = −W2

√
−2
∫ tC

0

f(υ)dυ + tC .(5b)

The above form a system of two equations for the two unknowns uC and tC , which
can be easily solved numerically. The constant β for the phase orbit φ can then be
obtained from

β = 2

{∫ uC

0

f(υ)dυ −
∫ tC

0

f(υ)dυ

}
,(5c)

which fully determines point C and the orbit φ. Point B can now be determined
from the second gap, which is purely diffusive: uC = uB − uBxW2, where u

B
x = uCx =

−
√
−2 ∫ tC

0
f(υ)dυ, or

uB = uC −W2

√
−2
∫ tC

0

f(υ)dυ,(5d)

which fully determines point B. We can now locate points D and E from the require-
ment that uEx evaluated from the stable manifold must be equal to u

D
x evaluated from

φ, which when combined with (5c) yields

∫ uC

0

f(υ)dυ −
∫ tC

0

f(υ)dυ =

∫ uD

0

f(υ)dυ −
∫ 1

uE

f(υ)dυ.(6a)
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Table 3.1
Lower critical spacing between two gaps of width W1 and W2 obtained from the initial-value

problem and the geometric method for α = 0.3.

W1 W2 Equation (7)

4.0 4.0 0.32
5.0 5.0 0.65
6.0 6.0 1.36

The final equation is then obtained from the first gap: uE = uD − W1u
E
x , with

uEx = −
√
2
∫ 1

uE f(υ)dυ as obtained from the stable manifold. We therefore have

uE − uD =W1

√
2

∫ 1

uE

f(υ)dυ.(6b)

A comparison of uBx = −
√
−2 ∫ uB

0
f(υ)dυ with uCx = −

√
−2 ∫ tC

0
f(υ)dυ shows that

uB ≡ tC . We then have four equations, (5a), (5d), (6a), and (6b), for the four
unknowns uB , uC , uE , and uD. We can now utilize the phase orbit φ to obtain an
explicit expression for the critical spacing Sc between the two gaps:

Sc =

∫ uD

uC

du√
−2 ∫ u

0
f(υ)dυ + β

.(7)

For S < Sc, wave-block occurs. The dashed-dot line in Figure 3.2 depicts one such
steady state for S = 0.49; as in the single-gap case, there are actually two steady
states, one of which stable (associated with C ′) as we shall demonstrate later on.

The steady state in Figure 3.1(a) can also be constructed with an alternative
method. The phase orbit φ in Figure 3.2 can be mapped by the flow in the first gap
W1. The mapped curve, say ψ

′, can be easily obtained as follows: simple diffusion
in the first gap implies uE − uD = −W1u

D
x , which, with u

D
x evaluated from φ, gives

uE − uD = W1

√
−2 ∫ uD

0
f(υ)dυ + β, the equation for ψ′. This curve, not shown in

Figure 3.2, will intersect the stable manifold transversally exactly at point E. (It can
be shown that the point at which φ intersects the −ux axis will be mapped into the
region to the right of the stable manifold of (1,0).) We can then easily locate point
D (DE is parallel to the u-axis), and hence a simple integration on φ from C to D
will give Sc.

Table 3.1 shows the critical spacing obtained from (7) (obviously one must first
use (5a), (5c), (5d) and (6a), (6b) to obtain uB , uC , uD, uE , and β) and the initial-
value problem for different values of W1 = W2. We notice that Sc increases as the
gap width increases. The variation of Sc as a function of W2 for given W1 (< Wc) as
obtained from (7) is given in Figure 3.3. Clearly, for a domain with two equal gaps,
wave propagation will fail at the final gap if W1 =W2 > Wc, where Wc is the critical
gap width for the single-gap domain. On the other hand, if W1 = W2 = Wc/2, the
wavefront will propagate even if both gaps are brought together, so Sc → 0 in this
limit. All curves in Figure 3.3 blow-up to infinity as W1 approaches Wc from below:
from Figure 3.2, as W2 approaches Wc, point C moves close to the stable manifold of
(1,0), while the segment DE moves closer to the u-axis.

For a domain with two unequal gaps, with W2 < Wc and W1 < Wc, it is clear
that, with W1 fixed, Sc → ∞ as W2 → Wc. Also if W2 < Wc −W1, Sc → 0 and
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Fig. 3.3. Critical spacing Sc for a two-gap system as a function of W2 for different W1 values
with W1 < Wc, obtained from (7).

the wavefront will propagate successfully in this case even if the two gaps merge.
However, for W1 > Wc the situation can be dramatically different: from Figures
3.4(a) and 3.4(b), where W1 = 7.0 > Wc and W2 = 5.0 < Wc, we see that there is
a critical spacing length between the two gaps for successful propagation. From the
initial-value problem, we obtain Sc � 0.765 in this case. This phenomenon is quite
different from what we found in [15], where we showed that, if any gap length is larger
than the critical length for a domain with a single gap, wave propagation is always
blocked. Of course, the fundamental differences between the two systems are that the
system in [15] is a two-variable model and the dynamics in the gap is characterized by
a linear decay of the autocatalytic intermediate species in addition to pure diffusion.
Furthermore, we anticipate wave-block when S → ∞ as Figure 2.1 shows. This then
implies that there exists a second critical length for S above 0.765. From the initial-
value problem, we find that this second critical spacing is approximately 5.13; see
Figure 3.5 for a numerical experiment with W1 = 7.0, W2 = 5.0, and S = 5.13. This
is also different from what we met in [15], where a sufficiently large spacing promotes
propagation: for the present problem with two gaps, a sufficiently large spacing can
inhibit propagation across the purely diffusive region. These observations do not
necessarily imply that, whenever there is decay in the gap (as in [15]), facilitation
of propagation will not occur. Indeed, we anticipate that facilitation could certainly
occur if the decay were sufficiently small with respect to the negative portion of the
kinetic term f .

Interestingly, in some circumstances, successful propagation can occur in one
direction but not in the other direction; i.e., the assymmetry due to multiple gaps can
induce unidirectional block. For instance, consider the case W1 = 7 and W2 = 5. For
a spacing S between the two critical spacings, the wave will propagate successfully;
however, reversing the direction of propagation, i.e., W1 = 5 and W2 = 7, will block
the wavefront for all S as W2 > Wc for a single-gap system.

Figure 3.6 is a phase plane representation of the steady state in Figure 3.5. ψ2 is
the curve obtained from mapping the homoclinic orbit H forW2 = 5. However, unlike
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Fig. 3.4. (a) Failure of wavefront propagation in a domain with two gaps, W1 = 7.0 > Wc,
W2 = 5.0 < Wc, for a spacing between the two gaps S = 0.75 with α = 0.3; (b) successful propagation
for W1 = 7.0 > Wc, W2 = 5.0 < Wc, and S = 0.78. Here u is plotted at equal times starting at
t = 25.5. The time lapse between successive curves is 25.5 time units.

the phase portrait in Figure 3.2, where point B is located in the region u > α, point
B in Figure 3.6 is located to the left of the maximum value of −ux for the homoclinic
orbit. Point B is then mapped into point C, with BC parallel to the u axis. There is
a periodic orbit φ within H passing through C, and one can use this periodic orbit to
define CD in the spacing between the two gaps. Point D is then connected to point
E on the stable manifold of (1,0), with point E defined from the curve ψ1 resulting
from the mapping of the periodic orbit φ for W1 = 7. We shall demonstrate that this
periodic orbit determines the second critical spacing for a two-gap system.

An algebraic representation of the phase portrait can be obtained as follows: the
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Fig. 3.5. Wave propagation in a two-gap domain with W1 = 7.0 > Wc, W2 = 5.0 < Wc, and
S = 5.13, leading eventually to wave-block. Contrast with Figure 3.4(b), where wave propagation is
successful. Here u is plotted at equal times from time t = 25.5, with a time lapse between successive
curves of 25.5 time units.
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Fig. 3.6. Phase portrait of the steady state in Figure 3.5. Curve ψ2 results from mapping the
homoclinic orbit H, and ψ1 from mapping the periodic orbit φ within H.

equation of any periodic orbit within H is given by

ux = −
√
1

2
u4 − 2(α+ 1)

3
u3 + αu2 − β,

where β ∈ [0, βmax = −(1/6)α4 + (1/3)α3], a constant parameterizing the periodic
orbits within H, with β = βmax corresponding to point (α, 0). We now utilize the
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parametric representation of ψ1,

u = −W1

√
1

2
t4 − 2(α+ 1)

3
t3 + αt2 − β + t ≡ f1(t, β),

ψ1 = ux = −
√
1

2
t4 − 2(α+ 1)

3
t3 + αt2 − β ≡ f2(t, β),

from which the slope of ψ1 with respect to u can be easily obtained as dux/du =
(dux/dt)/(du/dt) = f1(t, β)/f2(t, β). To ensure a tangent intersection at E, the slope
of ψ1 with respect to u must be equal to the slope of the stable manifold at E:

f(uE)√
−2 ∫ uE

1
f(υ)dυ

=
f2(t

E , β)

f1(tE , β)
.(8)

The requirement that uEx evaluated from ψ1 equal u
E
x evaluated from the stable man-

ifold gives √
−2
∫ uE

1

f(υ)dυ =

√
1

2
(tE)

4 − 2(α+ 1)

3
(tE)

3
+ α(tE)

2 − β,(9)

and, as ED represents a purely diffusive process,

uD = uE −W1

√
−2
∫ uE

1

f(υ)dυ.(10)

With tE ≡ uD, equations (8), (9), and (10) are a system of three equations for the
three unknowns uE , uD, and β. With BC now a purely diffusive process and uBx = uCx
with ux evaluated from the homoclinic orbit, we obtain

uC = uB +W2

√
−2
∫ uB

0

f(υ)dυ.(11)

The final equation originates from the requirement that ux evaluated from the homo-
clinic orbit at B equal ux evaluated from the periodic orbit at C:

−
√
1

2
(uC)

4 − 2(α+ 1)

3
(uC)

3
+ α(uC)

2 − β =

√
−2
∫ uB

0

f(υ)dυ.(12)

Thus (11) and (12) form a system of two equations for the two unknowns uC and uB .
The periodic orbit φ can then be used to obtain an explicit expression for the second
critical spacing S

′
c,

S
′
c =

∫ uD

uC

du√
1
2u

4 − 2(α+1)
3 u3 + αu2 − β

,(13)

where β = 9.897×10−4 for W1 = 7 and W2 = 5. The second critical spacing obtained
from (13) is S

′
c � 5.15, in excellent agreement with the 5.13 value obtained from the

initial-value problem in Figure 3.5. The agreement between the expression in (13)
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Fig. 3.7. Critical spacings for a two-gap system as a function of W2 for different W1 values
with W1 > Wc.

and the initial-value problem improves as we increase the domain size and decrease
the space and time steps in our numerical scheme.

Figure 3.7 shows the variation of Sc with W2 for given W1 (> Wc). Notice the
existence of a closed region in the S −W2 parameter space, outside of which there
is block and inside of which there is successful propagation. As W1 increases, the
region for successful propagation shrinks, while asW1 approaches Wc from above, the
turning point close to the line W2 =Wc moves towards infinity.

4. Propagation with three gaps. Figure 4.1(a) shows wave-block for W1 =
W2 = W3 = 5 < Wc with α = 0.3. The first spacing is S1 = 0.66, and the second
spacing S2 = 0.69. Figure 4.1(b) depicts the successful propagation of a wavefront for
S1 = 0.66, S2 = 0.72. The numerical solution of the bistable equation as an initial-
value problem indicates that for S1 = 0.66, S2,c � 0.71 for W1 =W2 =W3 = 5.

We now construct the steady-state wavefront for a domain with three gaps. Figure
4.2 shows the phase plane portrait of the steady state in Figure 4.1(a). Point C can
be found from the solution of (5a), (5b), with W2 replaced by W3. Once u

C and
tC are known, β2 for the phase orbit φ2 can be evaluated from (5c). The remaining
equations are

uF = uG −W1

√
2

∫ 1

uG

f(υ)dυ,(14a)

S1 =

∫ uF

uE

du√
−2 ∫ u

0
f(υ)dυ + β1

,(14b)

W2

√
−2
∫ uD

0

f(υ)dυ + β2 + u
D = uE ,(14c)



500 YANG, KALLIADASIS, MERKIN, AND SCOTT

0 10 20 30 40 50 60 70 80 90

0.0

0.5

1.0

1.5

2.0

2.5

3.0

(a)

0 10 20 30 40 50 60 70 80 90

0.0

0.5

1.0

1.5

2.0

2.5

3.0
1 2 3 4 5 6

(b)

Fig. 4.1. (a) Propagation failure through a three-gap domain with W1 =W2 =W3 = 5.0 < Wc.
The spacings between the three gaps are S1 = 0.66 and S2 = 0.69; (b) successful propagation with
W1 = W2 = W3 for S1 = 0.66 and S2 = 0.72. Here u is plotted at equal time intervals from time
t = 35 with a time lapse between successive curves of 35 time units.

β2 − β1 = 2

{∫ uD

0

f(υ)dυ −
∫ uE

0

f(υ)dυ

}
,(14d)

β1 = 2

{∫ uF

0

f(υ)dυ −
∫ 1

uG

f(υ)dυ

}
,(14e)

where β1 is the constant for the phase orbit φ1. Hence, we have a system of five equa-
tions with five unknowns, uG, uF , uE , uD, and β1, which can be solved numerically to
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Fig. 4.2. Phase-portrait of uxx + f(u) = 0 for the three-gap steady state in Figure 4.1(a). The
phase orbits φ1,2 determine the smallest critical size of the second spacing.

Table 4.1
Critical second spacing as a function of the first spacing S1 for a domain with three gaps

W1 =W2 =W3 = 5.0 for α = 0.3.

S1 Equation (14)

0.06 0.81
0.21 0.77
0.36 0.74
0.51 0.71
0.66 0.70

determine the points G,F,E,D and the phase orbit φ1. The second critical spacing,
S2,c, can then be obtained explicitly from

S2,c =

∫ uD

uC

du√
−2 ∫ u

0
f(υ)dυ + β2

.(15)

Equations (14a), (14c)–(14e), and (15) form a system of five equations for the five
unknowns, uG, uF , uE , uD, and β1. Alternatively, for a given S2, the first critical
spacing, S1,c, can be obtained from (14b).

Table 4.1 gives the critical length of the second spacing obtained from (15). All
gap lengths were taken as equal to 5. Notice the weak dependence of S2,c on S1. For
S2 → ∞ and S1 < Sc we anticipate wave-block, as in this case the third gap has no
influence on the first two gaps and the system behaves essentially as a two-gap system
with the resulting steady state being exactly the same as the steady state associated
with a two-gap domain. This then means that there exists a second critical length,
S
′
2,c, above 0.71 and such that the wave fails to propagate for S2 < S2,c, S2 > S

′
2,c

and propagates successfully for S2,c < S2 < S
′
2,c. The analytical construction of S

′
2,c

follows a procedure similar to that for the two-gap system in the previous section.
From the initial-value problem, we find S

′
2,c � 9.0—see Figure 4.3 for a numerical

experiment with S1 = 0.66 and S2 = 9.0. Hence, like the one-spacing case analyzed
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Fig. 4.3. Wave propagation in a three-gap domain with W1 = W2 = W3 = 5.0 and S1 = 0.66,
S2 = 9.0, leading eventually to wave-block. Contrast with Figure 3.1(b), where wave propagation is
successful. Here u is plotted at equal times from time t = 35, with a time lapse between successive
curves of 35 time units.

in section 3, successful propagation is observed for values of S2 between the two critical
values.

It is now useful to summarize the critical conditions for propagation across two
or three gaps. From these conditions, a series of “rules” can be established to allow
us to predict whether a wave will pass through an array of two or three gaps:

(i) Two-gap system.

1. W1 > Wc � 6.5 and W2 < Wc. There exist two critical spacings Sc, S
′
c, with

Sc < S
′
c. We have three cases:

– for S < Sc, the wave is blocked.
– for Sc < S < S

′
c, wave propagation is successful.

– for S > S
′
c, the wave is blocked.

2. W1 < Wc and W2 < Wc. There exists only one critical spacing, Sc. Here we
have two cases:
– for S < Sc, the wave is blocked.
– for S > Sc, wave propagation is successful.

3. W2 > Wc. The wave is blocked independently of W1.

(ii) Three-gap system. The situation here is much more complicated, and the
development of critical conditions for successful wave propagation and failure requires
a case-by-case analysis. Here, we focus on the case W1 = W2 = W3 = 5.0. Sc is the
critical spacing for a two-gap system with W1 = W2 = 5.0. S1,2 are the spacings
between the first two and last two gaps, respectively.

1. S1 < Sc. There exist two critical spacings for S2, S2,c, and S
′
2,c, with S2,c <

S
′
2,c. Here we have three cases:
– for S2 < S2,c, the wave is blocked.

– for S2,c < S2 < S
′
2,c, wave propagation is successful.

– for S2 > S
′
2,c, the wave is blocked.

2. S1 > Sc. There exists only one critical spacing for S2, S2,c. We now have two
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cases:
– for S2 < S2,c, the wave is blocked.
– for S2 > S2,c, wave propagation is successful.

5. Propagation with several gaps. The procedure outlined in the previous
sections can be generalized to an N -gap domain. In this case we have a system
of 3N − 3 equations for the 3N − 3 unknowns, βi (i = 1, 2, . . . , N − 2), ui (i =
1, 2, . . . , 2N − 2), and one of S1, S2, . . . , SN−1 (for Wi (i = 1, 2, . . . , N) fixed):

ui = ui+1 +W i+1
2

√
−2
∫ ui

0

f(υ)dυ + βi−2, i = 3, 5, . . . , 2N − 1,

βi+1 − βi = 2

{∫ u2i+2

0

f(υ)dυ −
∫ u2i+1

0

f(υ)dυ

}
, i = 2, 3, . . . , N − 2,

Si =

∫ u2i+1

u2i+2

du√
−2 ∫ u

0
f(υ)dυ + βi

, i = 1, 2, . . . , N − 1,

where u1 = u2 +W1

√
2
∫ 1

u1 f(υ)dυ and β1 = 2{
∫ u2

0
f(υ)dυ − ∫ 1

u1 f(υ)dυ}.
We must therefore fix N − 2 of the spacings Si or, alternatively, fix 2N − 2

spacings and gaps from the total number of 2N − 1 spacings and gaps. Obviously,
the spacings have to be chosen such that −ux always decays as x increases, and
hence uxi

(i = 2N − 1, 2N − 2, . . . , 1) should be a decreasing sequence of xi (i =
2N − 1, 2N − 2, . . . , 1). In other words, the phase plane of an N -gap system should
form a “staircase” from the point where the mapped curve intersects the phase orbit
φN−1 until the point x1. We notice that the point u

2N−1 is always determined from
the transfer map of the homoclinic orbit through the final gap WN , and hence only
points ui (i = 2N − 2, 2N − 3, . . . , 1) need to be determined.

The existence of two critical values for S in a two-gap domain, and two critical
values for S2 in a three-gap domain, renders the development of rules for prediction of
wave propagation and failure in anN -gap system almost a prohibitive process. Indeed,
even for the relatively simple case of four gaps and three spacings, we anticipate, by
analogy with the three-gap system, that there will be two critical values for S1, S2,
and S3. (Clearly, for a sufficiently large S2 the four-gap system should approach the
steady state of the system {W1, S1,W2} in Figure 3.1(a).) We have to emphasize here
that we always require the final gap WN < Wcr. (Wcr is the critical gap length for
a medium with a single gap.) At the same time as we increase the number of gaps,
the critical values of the spacings between the gaps should decrease: the number
of phase orbits, which represent the various invariant manifolds of the steady state,
increases, and the “staircase” that links all these orbits gets closer to a continuous
curve. (Notice, for example, that the value of Sc in (7) decreases as the distance
between uC and uD decreases.) Therefore, a large number of spacings/gaps can
actually promote wavefront propagation across purely diffusive regions. Figure 5.1
shows successful propagation in an extended domain with a random distribution of
gaps occupying 80% of the domain [100, 200]. Notice that the wavefront propagates
successfully and without significant slowing through the spacings of length 0.51 and
0.60, which are smaller than 0.68, the smallest critical spacing between a two-gap
system with W1 =W2 = 5.0 considered in section 3.

The question of successful propagation/failure for a large number of gaps (larger
than the three considered in section 4) can be addressed by generating a large number
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Fig. 5.1. Successful wave propagation in an extended domain with a random distribution of
gaps occupying 80% of the domain [100, 200]. All gaps are taken to be equal to 5. The sequence of
spacings is the following: 1.33, 2.58, 0.72, 2.40, 0.99, 0.51, 0.72, 1.48, 1.11, 0.60, 2.18, 0.69, 1.57,
1.94, and 1.18. The time lapse between successive curves is 75 time units.

of random distributions of gaps with a given “void fraction” (fraction of the domain
occupied by the gaps). We then have to numerically determine from the initial-
value problem the probability (percentage “pass rate”) that a wave will successfully
propagate along the whole length of the domain. For this purpose, we performed
numerical simulations with 20 different random distributions of gaps with length 5
occupying 80% of the domain [100, 200] and a total of 15 spacings in this domain. In
all cases, the wave propagated successfully through the medium. However, there might
be a particular combination of spacings/gaps which blocks the wavefront. Although
an accurate estimate of the probability for successful propagation might require a
number of distributions much larger than 20 (which would be computationally a very
intensive process), the fact that 20 different random distributions lead to successful
propagation indicates a high probability for success.

The above observations depend on the value of the excitability threshold α. In
general, as α decreases, the homoclinic orbit that connects to (0, 0) shrinks and, al-
though there is more available space in the phase plane for the phase orbits associated
with the steady state, the critical spacings decrease as the intersection between the
mapped curve and the phase orbit φN−1 gets closer to the u-axis. (At the same time,
a more excitable system should require smaller critical spacings for successful propa-
gation.) However, the critical gaps for successful propagation should increase as the
distance between the homoclinic orbit and the stable manifold increases.

In addition, we also computed the average speed of the wavefront, defined as the
speed of the point at which u = 1/2 and based on the time it takes for the front to
travel from the first to the last gap. A very interesting conclusion is that, for the
system in Figure 5.1 with 16 gaps in the domain [100, 200], the front travels faster
than in the cases of 1, 2, or 3 gaps with a void fraction 80% in the same domain. This
result along with the main conclusions of the previous sections should have significant
implications for a number of areas where the bistable equation in (1) is used as a model
system to study wave propagation in heterogeneous media. For example, as Poptsova
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and Guria [14] point out, in the context of biophysics, malfunction of the propagation
of an impulse in cardiac tissue can cause different cardiac diseases such as ischemia
and arrhythmia, which might be explained by the presence of local nonexcitable areas
in the cardiac fibre.

6. Multiplicity and stability of solutions. Lewis and Keener [8] proved that,
for the one-gap case, if the gap length is larger than the critical length, there exist
two steady-state solutions arising via a limit point bifurcation. In this study, we take
the two-gap case as an example and show that, if the spacing length is less than (for
W1,2 < Wc fixed) or the first gap length is larger than (for W2 < Wc and S fixed) the
corresponding critical length, there will also be two steady-state solutions arising via a
limit point bifurcation (two such steady states, AB′C ′D′E′F and AB′′C ′′D′E′F , are
depicted in Figure 3.2). From the phase plane analysis in the two-gap case, we have
shown that either the spacing length or the gap length is related to the phase orbit
constant β, and so we take β as our bifurcation parameter. A bifurcation diagram
for this system is shown in Figure 6.1, with β∗ = 0.04949 and u∗(x4) = 0.3464. To
acquire further information about the steady solutions, we consider the bifurcation
structure of the system uxx + f(u) = 0 in more detail.

0.0 0.01 0.02 0.03 0.04 0.05 0.06

0.0

0.1

0.2

0.3

0.4

0.5

( 4)

*

Fig. 6.1. Bifurcation diagram for u(x4) of the steady-state solution vs. phase orbit constant
β in the two-gap case. The solid line represents stable solutions, and the dashed line represents
unstable solutions. The critical β is β∗ = 0.04949. The parameters are α = 0.3 and W2 = 5.0.

Let v = ux and v = GH(u) =
√
−2 ∫ u

0
f(u)du describe the homoclinic orbit H for

v > 0 on u ∈ (0, uH). The function GH(u) is strictly decreasing for u ∈ (α, uH), with
uH the maximum value of ū on the homoclinic orbit, and thus can be inverted on this
region, u = G−1

H (v) ≡ UH(v). Similarly, v = GC(u) =
√
−2 ∫ u

0
f(v)dv + β describes

the phase orbit through points C ′ and C ′′ of Figure 3.2, and therefore we can use
u = G−1

C (v;β) = UC(v;β) to describe the decreasing portion of the phase orbit with
constant β. We can now express the map ψW2 as

ψW2 : [UH(v), v]→ [vW2 + UH(v), v]
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and look for a solution to

vW2 + UH(v) = UC(v;β),

where v ≡ ux(x4) is a solution of the steady-state equation. Rearranging this equation,
we obtain

F (v;β) = vW2 + UH(v)− UC(v;β) = 0.

Assume now that we know a solution of the steady-state equation for β = β0 with
ux(x4;β0) = v0; then

F (v0;β0) = v0W2 + UH(v0)− UC(v0;β0) = 0.(16a)

By expanding F in a Taylor series about (v0, β0), we get

F (v;β) ∼ [W2 + U
v
H(v0)− UvC(v0;β0)](v − v0)− UβC(v0;β0)(β − β0)

+
1

2
[UvvH (v0)− UvvC (v0;β0)](v − v0)

2 − 1

2
UββC (v0;β0)(β − β0)

2

− UvβC (v − v0)(β − β0) + {h.o.t.} ,(16b)

where

UvH(v0) =
dUH
dv

(v0), UvC(v0, β0) =
∂UC
∂v

(v0, β0), UβC(v0, β0) =
∂UC
∂β

(v0, β0),

UvvH (v0) =
d2UH
dv2

(v0), UvvC (v0, β0) =
∂2UC
∂v2

(v0, β0), UββC (v0, β0) =
∂2UC
∂β2

(v0, β0),

UvβC (v0, β0) =
∂2UC
∂v∂β

(v0, β0).

Thus, bifurcations can occur when

W2 + U
v
H(v0)− UvC(v0;β0) = 0.(16c)

Note that UvH(v0) < 0 is necessary for obtaining solutions to this equation, because
W2 and −UvC(v0;β0) are both > 0. This is always the case for the branch of the
homoclinic orbit that we have chosen to work with. However, this is not the case on
the u ∈ (0, α) portion of the homoclinic orbitH, which also means that all bifurcations
occur when u > α. By solving the two equations (16a) and (16c), we can get v0 and
β0 as a function of v0.

We now let

β∼β0 + εβ1 + ε
2β2 + · · · , v ∼ v0 + εv1 + ε

2v2 + · · · ,

where 0 < ε � 1. When these series are substituted into (16b), one gets the O(ε)
term

−UβC(v0;β0)β1 = 0,

which implies β1 = 0. At O(ε
2) we find

−UβC(v0;β0)β2 +
1

2
[UvvH (v0)− UvvC (v0;β0)]v

2
1 = 0,
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and hence β2 is arbitrary. Choosing β2 = −1 yields

v1 = ±
√

−2UβC(v0;β0)

UvvH (v0)− UvvC (v0;β0)
,

which is real if the quantity in the root is > 0, i.e.,

− UβC(v0;β0)

UvvH (v0)− UvvC (v0;β0)
> 0.

We can easily confirm that this always the case, and hence we have two solutions
which coalesce at β = β0 and vanish as β increases above β0. From the phase portrait
in Figure 3.2 and from (5d), (6b), and (7), we can see that the two steady-state
solutions correspond to different first gap and spacing lengths. That is, if we fix W2

and S, there are two solutions with different first gaps. Alternatively, if we fix W1

and W2, there two solutions with different spacings. Finally, the solution branch with
v < v0 immediately following the bifurcation point has

W2 + U
v
H(v)− UvC(v;β) > 0,

while the solution with v > v0 has

W2 + U
v
H(v)− UvC(v;β) < 0.

Whenever there are two solutions, the upper solution (as in Figure 6.1) is unstable
and the lower is stable. Lewis and Keener [8] proved the stability of the steady states
for the one-gap case by constructing time-independent lower and upper solutions of
(1). We follow the same method here to study the stability of the two branches in
Figure 6.1. Although our discussion is confined to the two-gap case, it can be extended
to any number of gaps.

Following Pauwelussen [18], we call χ a lower solution of the equation Nu ≡
ut − uxx − g(u, x) = 0 if χ satisfies Nχ ≤ 0 on differentiable segments of χ and
χx(x

+, t) ≥ χx(x
−, t) on any point x at which χx has discontinuities. Similarly, ω is

an upper solution when it satisfies the same conditions with all the inequality signs
reversed. Using upper and lower solutions, the following lemma from Pauwelussen
[18], which is an extension of a theorem by Aronson and Weinberger [16] based on the
comparison principle, allows us to examine the asymptotic behavior of the solutions as
t→ ∞: if ω(x) is an upper solution of (1), then u(x, t;ω) is a nonincreasing function
of t, with limt→∞ u(x, t;ω) = q(x), where q(x) the largest stationary solution of (1)
satisfying the inequality q(x) ≤ ω(x). Similarly, if χ(x) is a lower solution of (1), then
u(x, t;χ) is a nondecreasing function of t, and limt→∞ u(x, t;χ) = τ(x), where τ(x) is
the smallest possible stationary solution of (1) such that τ(x) ≥ χ(x).

Therefore, a steady state ū(x) with χ < ū < ω, where χ and ω are lower and upper
solutions, respectively, and arbitrarily close to ū, is stable since, as t → ∞, u(x, t;χ)
will tend to the smallest steady state that is greater than or equal to χ, and u(x, t;ω)
will tend to the largest steady state that is smaller than or equal to ω. Because χ and
ω are arbitrarily close to ū (by construction), the smallest steady state and the largest
steady state is ū. Hence, limt→∞ u(x, t;χ) = limt→∞ u(x, t;ω) = ū, which proves the
stability of ū. On the other hand, a steady state ū(x) with ω < ū < χ, where χ and ω
are lower and upper solutions, respectively, and arbitrarily close to ū, is unstable since
u(x, t;ω) approaches the largest steady state that is smaller than ω. This solution is
the smaller of the two steady states and is associated with the lower branch in Figure
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Fig. 6.2. Steady-state solution (solid line) and time-independent upper solution (dot-dashed
line) for a two-gap system.

6.1, indicating that the smaller solution is stable and the largest solution unstable. At
the same time, u(x, t, χ) will not approach a steady state as there is no steady-state
solution larger than χ.

We now construct an upper solution ω, with ω < ū. From x = xD to xC in
Figure 6.2, we take ω to closely follow curve χ with ωx(xC) = ūx(xC) + ε, with ε
arbitrarily small. Because curve χ is monotonic with dū/dūx < 0 in the region of
interest, we require that ε > 0 such that ω < ū. For xC < x < xB , we take ω to be a
straight line such that ω and ωx are continuous at x = xC . The equation for ω(xB) is
then ω(xB) = −W2(ūx(xC) + ε) +UC(ūx(xC) + ε, β). The remainder of ω is taken to
be the homoclinic orbit with ω continuous. Thus, ω is a solution everywhere except
x = xB , where ωx is not continuous for ε �= 0. Finally, for ω to be an upper solution,
the jump condition ωx(x

+
B) < ωx(x

−
B) must be satisfied. We therefore require that

ω(xB) < UH(ūx(xC) + ε) for points with ū ∈ (α, ūH), where U ′
H < 0. This gives the

inequality

−W2(ūx(xC) + ε) + UC(ūx(xC) + ε, β)− UH(ūx(xC) + ε) < 0,

which, when expanded in a Taylor series at ε = 0, yields

−W2(ūx(xC)) + UC(ūx(xC), β)− UH(ūx(xC))

− (W2 + U
′
C(ūx(xC), β)− U ′

H(ūx(xC)))ε+ · · · < 0.

Because ū(x) is the steady-state solution, we have that

−W2(ūx(xC)) + UC(ūx(xC), β)− UH(ūx(xC)) = 0,

and since ε is positive and arbitrarily small, for ω to exist we require that

W2 + U
′
C(ūx(xC), β)− U ′

H(ūx(xC)) > 0.

Similar arguments can be used to construct the lower solutions, as well as lower and
upper solutions with χ < ū < ω. Notice that in all cases and independently of the
number of gaps, the lower and upper solutions require only one discontinuity at the
downstream edge of the last gap (point B in Figure 6.2 for a two-gap system).



WAVE PROPAGATION IN DISTRIBUTED MEDIA 509

7. Conclusion. We have considered wave propagation in an excitable medium
through localized regions of no excitability (the “gaps”) by using the bistable equation
as a model system. We extended the geometric method of Lewis and Keener for a
single gap domain to a hybrid geometric-algebraic method for the case of multiple
gaps. The method allowed us to obtain criteria for successful wave propagation and
failure (“wave-block”) in the bistable equation. For a system with two and three gaps,
we found that there are two critical values for the last spacing when all other spacings
are fixed: for values of the second spacing that are less than the smaller critical value
and greater than the larger critical value, wave-block occurs. Our findings can be
readily extended to a larger number of gaps. We also demonstrated that much like
the one-gap case, a two-gap system exhibits multiplicity and is such that there are
two steady states with different values of the first gap for a fixed second gap and
spacing, and two steady states with different spacings for fixed first and second gaps.
Finally, in some cases increasing the number of gaps/spacings was found to promote
wavefront propagation across purely diffusive regions as the critical gaps for successful
propagation increase and the critical spacings decrease.

Acknowledgment. We thank the anonymous referee for useful comments and
suggestions.
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Abstract. A model is developed to describe energetic materials with phase transformations from
solid to liquid to gas with an exothermic chemical reaction. The model uses a phase variable and
a reaction progress variable as thermodynamically independent state variables. A configurational
force balance is used to derive an evolution law for the phase variable. The evolution equation for
the reaction progress variable is posed as a basic law. In various limits the material is a classical
elastic solid, a Newtonian viscous liquid, and a compressible gas. The model is examined in relation
to classical equilibrium thermodynamics in a quasi-static limit. The model formulation is specialized
to simple motions which are analyzed in a companion paper.
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1. Introduction. This paper presents a thermodynamically self-consistent
model that can describe a material that undergoes phase transitions from solid to
liquid to gas with an exothermic chemical reaction. The model development is quite
basic and is likely to have wider applications, but the motivation for the study is
to describe the behavior and properties of energetic materials such as those used in
pyrotechnic materials such as condensed explosives and solid propellants.
Condensed phase energetic materials (EMs) are most typically room temperature

organic solids that bind substantial chemical energy in molecular bonds. Upon initia-
tion of chemical reaction between submolecular constituents within the solid, energy
is released that is subsequently available to do work or is converted into heat. The
advantage of the condensed phase explosive is that the energy per unit volume is
approximately a thousand times higher than its premixed, gaseous counterpart.
For the purposes of illustration and to help us develop a conceptual framework,

we will consider the energetic material HMX, [CH2 −N(N02)]4, [1] (a solid explosive
compound) to be a base-line energetic material. HMX is solid at room temperature
and pressure, and when fully chemically decomposed, its gaseous products are simple
gases like water vapor, carbon dioxide, and molecular nitrogen. There are thousands
of known energetic (explosive) compounds, so our choice of HMX is both practical
(because of its wide use) and representative, in that nearly all of the modeling issues
considered here apply to similar materials. Fundamental scientific questions surround
the phenomena of ignition and release of energy in these materials (EMs) subsequent
to impact with a piston or due to a rapid shearing motion. At high impact speeds,
(typically on the order of 1000 m/sec), simple hydrodynamic models give an adequate
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description for both ignition and transition to detonation. Hydrodynamic models are
expressed in the form of the Euler equations for reactive gas dynamics [2], which
balance kinetic energy, elastic potential energy, and the chemical energy released by
the reaction. By virtue of the speed of collision and the short duration of the ignition
event, one can justify the neglect of other types of energy and their transfer. However,
at lower impact speeds (typically below 1000 m/sec) one must fully take into account
the solid nature of the material. In contrast, models for lower-speed impact must
reflect a large number of types of energy and mechanisms by which energy in the
condensed phases can be transformed, localized, and dissipated. A successful model
must be able to describe three-dimensional stress distributions, heat conduction, phase
transformations, and chemical reaction as the material changes from solid to liquid
to gas.

Thus, accounting for the change in phase and chemical reaction are essential parts
of modeling the ignition of energetic solids. In order to do this in a continuum mod-
eling framework, one must add additional thermodynamic state variables that reflect
the internal degrees of freedom that measure the extent of reaction and phase change
in the material. Necessarily, one must posit additional balance laws and provide the
required constitutive theory to complete a model formulation. One does this by using
physical considerations (that may lie in the proposed model’s subscale physics) to
pose the required additional balance laws. For example, in the case of classical com-
bustion theory (see Williams [3] for a representative discussion of the derivation of the
commonly used equations of combustion theory), the additional state variables that
correspond to the internal degrees of freedom are the mass fractions of all the indepen-
dent chemical species. The additional balance laws are literal statements of molecular
mass balance for each independent species. Other constitutive forms required to de-
scribe the evolution of the mass fraction variable are based on well-known laws of
collisional reaction (in the case of gaseous chemical reaction), Fickean diffusion, and
so on. Importantly, the added balance laws themselves have an identifiable, molecular
origin and are directly related to physically unambiguous statements of mass balance.
However, while the physics at the molecular subscale is clear, the continuum-scale
formulation embraces the added (partial) mass conservation statements as primitive,
physical laws that must be given by ansatz.

When modeling the phase changes from solid to liquid to gas it is also impor-
tant to have a physical understanding of the molecular origins of state variables and
constitutive forms that describe the phase change. On the molecular scale, a typical
EM solid like HMX is comprised of nitrated hydrocarbon molecules that reside in a
highly ordered crystal lattice. Large quantities of energy are released only if there is
a chemical reaction between smaller pieces of the molecule, juxtaposed or dislodged
by deformation, which subsequently release their chemical energy through elementary
exothermic reactions typical of those for the gas-phase chemistry. For example, the
liquid phase of HMX is known to be very reactive and short-lived compared to the
solid phase; likewise HMX vapor is extremely reactive [4], [5]. The liquid phase is
molecularly less well ordered than the solid, with larger average intermolecular dis-
tances than the solid. If correlated to the average intermolecular spacing (say), the gas
phase is less ordered than the liquid. Thus a state variable (sometimes called an order
parameter or a phase field variable) can be introduced to reflect a continuum measure
of molecular order of the condensed phases (solid crystalline and liquid phases) and
the gaseous phase. We will call the order parameter, or phase field variable, simply
the phase variable φ and assume that it is normalized in such a way so that φ = 0
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corresponds to a solid, φ = 1 a liquid, and φ = 2 a gas.

In this formulation, the precise relationship of noninteger values of a phase variable
like φ to the molecular subscale structure of the material is somewhat ambiguous in
contrast to the unambiguous meaning of reactant mass fractions in combustion theory.
In a more advanced theory it is anticipated that φ will be assigned to specific molecular
coordinates. Advances in molecular dynamics of condensed phase systems do promise
to eventually provide a more substantial basis for physical assignment of the phase
variables, possibly based on the average molecular spacing (say) or other molecularly
based kinematic variables [6], [7].

Despite possible ambiguity in its precise physical interpretation, if a phase vari-
able is to be used in a model to represent an independent degree of freedom, it should
be constrained by standard principles found in the theory of continuum mechanics.
In the regions where the phase is pure (i.e., φ = 0, 1, or 2) the material properties
and the constitutive relations must describe the pure material with the properties of
that phase. We require that the formulation has a sense in which it is thermody-
namically and tensorially consistent. This allows further developments in a rational
and systematic manner in three dimensions. We consider a simplified model of an
EM (HMX, say) which we suppose has three relevant phases: a solid phase, a liquid
phase, and a gas phase. We assume that the path from solid to gas goes through the
successive phase transformations, solid → liquid → gas. Phase boundaries are to be
represented by (typically thin) regions across which the value of the phase variable
changes from one constant to another. Also, we will use a single (lumped chemistry)
progress variable λ, to describe the extent of exothermic chemical reaction λ with
value λ = 0 when no reaction has occurred and λ = 1 when the reaction is completed.
The model allows chemical reactions in any phase.

A key aspect of the model is explicit partitioning of the energy associated with
specific internal (thermal) energy, chemical reaction energy, elastic potential (defor-
mational) energy, and energies associated with phase change, such as the enthalpies as-
sociated with melting of the solid and evaporation of the liquid, and potential energies
stored at phase boundaries. The partitioning of the energy is represented by a decom-
position of the Helmholtz free energy ψ into the various parts associated with the en-
ergies listed above, such that ψ = ψthermal+ψelastic+ψreaction+ψphase+ψgrad(phase).
The constitutive forms used for ψthermal and ψelastic are found in discussions of
thermo-elastic materials. The constitutive forms for ψphase and ψgrad(phase) contain
the energies of phase change and energies stored near phase change interfaces. The
constitutive form for ψreaction can be found in a discussion of premixed combustible
materials. The free energies and other constitutive variables are allowed to depend on
both the phase variable φ and the reaction progress variable λ as well as the temper-
ature T and the deformation gradient F and the gradient of φ, 
∇φ. The governing
equations are formulated by statements of conservation of mass, momentum, energy,
evolution equations for the change in phase, and the progress of the chemical reaction.

The treatment we use to describe the evolution of the phase variable follows
classical treatments that arose in the discussion of solidification (for example, see
[8]) but specifically follows a consistent formulation pioneered by Gurtin [9]. Gurtin
has argued for a separate continuum balance of configurational forces acting near
the boundaries separating pure phases in the volumetric bulk. The arguments for
including these additional forces may be justified by consideration of short-range
van der Waals forces that typically are generated near phase boundaries due to local
changes in the intermolecular distances. The arguments for such configurational forces
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are similar to those used to explain classical surface tension forces. The hypothesis is
that if the configurational forces act in the vicinity of the boundary near the change
in phase and in the bulk, they can be in balance, and if so, they must not effect the
overall (conventional) momentum balances. Hence the force balance is posited as a
basic law. However, with the postulate of a balance of configurational forces comes the
consequence that those forces do work. The working rate is accounted for explicitly
in the overall energy balance.

The second law of thermodynamics (the Clausius–Duhem inequality) restricts the
form of the constitutive theory so that the rate processes are dissipative and entropy is
increasing. An important outcome of these arguments is the derivation of an evolution
equation for the phase variable φ that is essentially a Ginzburg–Landau equation
with additional forcing terms. The evolution equation for φ is a time-dependent,
reaction-diffusion equation which is amply capable of describing the pattern formation
associated with phase transformation. The richness of the resulting theory becomes
evident in the energy equation. Due to the decomposition of the Helmholtz free
energy, the energy equation contains contributions from all the different terms in
the partition and reflects the fact that in the energetic material, energy is converted
and distributed to many different forms such as elastic, kinetic, internal, and phase
gradient energy (stored in interfaces).

In the sections that follow, the development of the model is given, based on
the continuum-thermodynamic formulation described above. In section 2 we review
the continuum-thermodynamic formulation consistent with conventional combustion
theory [3], [10], [11], [12] that specifically includes a reaction progress variable. A
(nonstandard) presentation of the Helmholtz energy decomposition is given and the
attendant standard arguments for restrictions placed by the second law are given. In
section 3 we present a model for a material that changes from solid to liquid to gas
and present a Helmholtz free-energy decomposition that is suitable to describe such a
material, subject to second law restrictions. In section 4, the combined model for an
EM (with both phase change and chemical reaction) is then presented. In section 5 we
discuss various limiting cases of the model. We discuss the relationship of the model
to classical quasi-static thermodynamics and illustrate examples based on fits to HMX
properties to illustrate the dynamics of a phase change that would be calculated in
the classical theory. Section 6 presents special formulations of the model equation
for three important simple motions. These cases are (i) constant volume evolution
(which is a generalization of the classical constant volume explosion formulation found
in combustion theory), (ii) one-dimensional, time-dependent longitudinal compression
(expansion), and (iii) one-dimensional, time-dependent shear motion. The solution of
the equations for these three important cases for an HMX-like material is the subject
of the companion paper [13].

In what follows, a “c” subscript denotes a condensed phase, either solid or liquid,
an “f” subscript denotes fluid, either liquid or gas, an “s” subscript denotes solid,
an “l” subscript denotes liquid, and a “g” subscript denotes gas. The spelled out
subscripts “solid,” “liquid,” and “gas” refer to constant values for that pure phase.
The notation is kept as simple as possible in an attempt make the paper easier to
read. Bold face quantities can either be vectors or tensors. If obvious, the constant
arguments during differentiation are dropped. Our notation is standard, insofar as is
possible and follows a well-known text like Bowen [12].

1.1. Kinematics. Let the Eulerian (spatial) coordinates of position in the lab-
frame be given by x and the Lagrangian (material) coordinates (or particle coordi-
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nates) be given by X. For simplicity we will assume that X represent the initial
position of material particles. Then the mapping of the deformations that define the
particle trajectory paths is given by

x = x(X, t) .(1.1)

The deformation gradient F is defined by the derivative

F =
∂x

∂X
,(1.2)

and the velocity of particles v is defined by the time derivative of the particle tra-
jectories v = (∂x/∂t)X . The velocity gradient is L = 
∇v. Let the dot notation,
˙
(), refer to the material derivative. A standard identity that can be verified by the
previous definitions and the chain rule gives the material (particle-fixed) time deriva-
tive of the deformation gradient as Ḟ = LF . A statement of conservation of mass
in the material frame is that the ratio of the instantaneous density, ρ, of the particle
to a reference (ambient) density of the solid, ρ0, is equal to the determinant of the
deformation gradient

det(F ) =
ρ0
ρ
.(1.3)

2. Review of the thermomechanics for a simple model of a reactive
flow. The standard combustion model, for a premixed mixture that can explode
or burn, can be derived from a simple mixture theory; see references [3], [10], [11],
[12]. The combined model that we introduce later incorporates the features of the
standard combustion model, so we review its derivation. Importantly, the reaction
progress variable λ represents a product mass flux. Hence λ is treated differently from
the phase variable φ, which is introduced later to describe the change in phase from
solid to liquid to gas.
For the purpose of discussion, one assumes that there are only two distinct species,

fuel and product (say). The corresponding chemical reaction is written as F →
P + Qhc (heat). All physical properties of the two species such as the molecular
weights, specific heats, conductivities, etc. are assumed to be identical, save the heats
of formation, the weighted difference of which is the heat of combustion.
We start with the balance laws for conservation of mass, linear momentum (with-

out body forces), and energy:

ρ̇ + ρ (
∇ · v) = 0 ,(2.1)

ρ v̇ = 
∇ · σ + ρf ,(2.2)

ρė = σ : 
∇v − 
∇ · q + ρ r .(2.3)

In the energy equation, r is a volumetric energy production term that typically rep-
resents radiation or volumetric heating (or cooling) in combustion theory. The body
force is given by f . In addition, we invoke a primitive evolution law for the reaction
progress variable λ:

ρλ̇ = 
∇ · s+ ρΩ .(2.4)

The vector s is the flux of mass of reacted species per unit area per unit time and ρΩ
is the instantaneous rate of creation of mass of the reacted species per unit volume.
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Then λ is recognized as the mass fraction of the product species. Further, by direct
correspondence with the standard combustion equations, one can interpret s = ρλV ,
where V is the diffusion velocity of the product species (say), and where ρλ is the
partial density fraction of the same product.
To these basic laws we add the second law of thermodynamics, the Clausius–

Duhem inequality

ρ η̇ ≥ −
∇ ·
( q
T

)
+ 
∇ ·

(
Qhcs

T

)
+
ρr

T
,(2.5)

where Qhc, the heat of combustion, is the exothermic energy release per unit mass
and the term 
∇· (Qhc s/T ) represents the gradient of the entropy flux associated with
the chemical reaction.

2.1. Constitutive forms and restrictions. Next consider the classical forms
and assumptions that lead to the combustion equations of premixed materials found
in texts like [3] or [10]. The formulation uses the Helmholtz free energy, which is
defined in terms of the internal energy and entropy as ψ = e− Tη. We start with the
assumption that ψ is specified by

ψ = ψ(F , T, λ),(2.6)

and we assume similar dependencies for e, η, and all other thermodynamic variables.
Next we consider the implication of the entropy inequality and deduce various restric-
tion imposed by it on the constitutive formulation.
If we use the definition of the Helmholtz free energy to get an expression for

the entropy, as η = (e − ψ)/T , and take the material derivative, we obtain η̇ =
(ė− ψ̇ − ηṪ )/T . In particular the derivative ψ̇ appears and, using the form assumed
above, it is calculated as

ψ̇ =
∂ψ

∂F
F T : 
∇v +

∂ψ

∂T
Ṫ +

∂ψ

∂λ
λ̇ .(2.7)

Using this expression for ψ̇ and using the energy equation to replace ė in the entropy
inequality leads to an intermediate result:

(
σ − ρ ∂ψ

∂F
F T

)
: 
∇v − ρ

(
η +

∂ψ

∂T

)
Ṫ − (q −Qhcs) ·


∇T
T

− ρ∂ψ
∂λ
λ̇−Qhc
∇ · s ≥ 0 .

(2.8)

We restrict our choice in constitutive theory to forms that will automatically satisfy
this dissipation inequality as the physical processes in the material range over all ad-
missible deformations and temperature fields. For example, since 
∇v can be regarded
as an independent field, then in the standard way we restrict the form of the stress
tensor such that

σ = ρ
∂ψ

∂F
F T + σdiss ,(2.9)

where the dissipative stress σdiss satisfies σdiss : 
∇v ≥ 0. This last requirement is
clearly satisfied by the classical choice for a viscous fluid,

σdiss = νg(
∇ · v)I + 2µgD ,(2.10)
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where D = (
∇v+ 
∇vT )/2 and νg, µg are positive and are identified as the gas-phase
bulk and shear viscosities. The assumed form of the stress becomes

σ = ρ
∂ψ

∂F
F T + νg(
∇ · v)I + 2µgD .(2.11)

In a similar fashion, since Ṫ is independent, we require that the Helmholtz free
energy must satisfy Gibbs’ relation

∂ψ

∂T
= −η .(2.12)

The entropy inequality is now satisfied if the following reduced inequality is satisfied:

−(q −Qhcs) ·

∇T
T

− ρ∂ψ
∂λ
λ̇−Qhc
∇ · s ≥ 0 .(2.13)

If we assume that the change in the Helmholtz free energy with respect to the progress
variable is related to the heat of combustion (which also can be verified and put into
direct correspondence with forms derived in mixture theory of reacting gases; see [10],
[11], [12]),

∂ψ

∂λ
= −Qhc ,(2.14)

and we use the evolution equation for the progress variable ρλ̇− 
∇ · s = ρΩ, then the
reduced inequality can be recast as

−(q −Qhcs) ·

∇T
T
+ ρQhcΩ ≥ 0 .(2.15)

Finally we make the choice that the energy flux vector is the sum of a Fourier heat
conductive flux and an energy flux associated with the diffusion of the product species,

q = −k
∇T +Qhc s ,(2.16)

and we require that for an exothermic chemical reaction with Qhc > 0, the reaction
rate must be positive with Ω ≥ 0. With these restrictions the second law is auto-
matically satisfied. Recall that s represented the mass flux vector of the product
species, s = ρλV , where V is the diffusion velocity of that species. Without further
restriction we can make a standard assumption that the diffusion velocity is related
to the gradient of the species concentration through a Fick’s law relation,

s = ρλV = d 
∇λ ,(2.17)

where d ≥ 0 is a diffusion coefficient.
2.2. Temperature form of the energy equation. We present the temper-

ature form of the energy equation in terms of a specification of the Helmholtz free
energy, in order to set the stage for later discussions. We use the definition of the
specific internal energy in terms of the temperature and the entropy, e = ψ + Tη, to
obtain ė = ψ̇ + ηṪ + T η̇. Next we use the form of the Helmholtz energy ψ(F , T, λ)
and Gibbs’ relation η = −∂ψ/∂T to generate expressions for ψ̇ and η̇ as

ė =
∂ψ

∂F
F T : 
∇v +

∂ψ

∂T
Ṫ , η̇ = − ∂2ψ

∂T∂F
F T : 
∇v − ∂2ψ

∂T 2
Ṫ .(2.18)
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We then insert these expression into (2.3) and make some further simplifications. A
collection of terms appears that is associated with the stress-related dissipation(

σ − ρ ∂ψ
∂F

F T

)
: 
∇v = σdiss : 
∇v .

Using the classical definition of the specific heat at constant deformation (volume),

cv ≡ T ∂η
∂T

∣∣∣∣
F

= −T
(
∂2ψ

∂T 2

) ∣∣∣∣
F

,(2.19)

the energy equation can be rewritten as follows:

ρcvṪ = −
∇ · q + σdiss : 
∇v + ρT
∂2ψ

∂T∂F
F T : 
∇v .(2.20)

The term ρT (∂2ψ/∂T∂F )F T : 
∇v is a stress work term classically associated with
thermal stresses. As we will see below in the case of gaseous combustion for ideal
gases, this term is proportional to the pressure work term −p (
∇·v), where p = ρRgT
and Rg is the ideal gas constant.

2.2.1. The form of the Helmholtz free energy from classical combustion
theory. To complete the classical formulation for premixed combustion, one must
specify the form of the Helmholtz free energy. The forms can be extracted from the
correct forms found in the binary mixture theory of premixed gases; see [12], [3], [10],
[11]. Let B = FF T be the left Cauchy–Green tensor and let IIIB = (ρ0/ρ)

2 be the
third invariant of B. Then the form of the Helmholtz free energy for a thermally ideal
material, with the additional term required for the change in enthalpy associated with
combustion, is comprised of three parts: a thermal energy density ψ1 = cv[(T −T0)−
T ln(T/T0)], a strain energy density associated with the temperature (that defines the
pressure in terms of the density and temperature) ψ2 = −1/2RgT ln(IIIB), and the
chemical enthalpy ψ3 = −Qhcλ. Thus the total free energy ψ = ψ1 + ψ2 + ψ3 is

ψ = cv(T − T0)− cvT ln
(
T

T0

)
− 1
2
RgT ln(IIIB)−Qhcλ .(2.21)

It follows that the elastic part of the stress can be computed from this form of the
free energy and identifies the classical thermodynamic pressure p. In particular, we
have that ρ(∂ψ/∂F )F T = 2ρ(∂ψ/∂B)B = −ρRgTI ≡ −pI, which leads to the
identification of the pressure p by the ideal gas law, p = ρRgT . Also, the thermal

stress work term is rewritten ρ (∂ψ/∂F )F T : 
∇v = −p (
∇ · v). The corresponding
form of the entropy and the internal energy (obtained from the definition of the
Helmholtz free energy and Gibbs’ relation) are given by

e = cv(T − T0)−Qhcλ , η = cv ln

(
T

T0

)
+
R

2
ln(IIIB) .(2.22)

2.3. Summary of the governing equations for a premixed reactive fluid.
Here we summarize the results of the last section that reduce to the classical form of
the combustion equations for a premixed combustible fluid. These equations incorpo-
rate the various restrictions and constitutive forms that we assumed and are suitable
for solving initial value problems ordinarily associated with the theory of premixed
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combustion. The entropy (dissipation) inequality is not included in our list since it is
automatically satisfied by construction of the model. The equations for ρ,v, T , and
λ are

ρ̇ + ρ
∇ · v = 0 ,(2.23)

ρ v̇ = 
∇ · σ + ρf ,(2.24)

ρcvṪ = 
∇ · (k
∇T ) + σdiss : 
∇v − p(
∇ · v) + ρQhcΩ ,(2.25)

ρλ̇ = 
∇ · (d 
∇λ) + ρΩ ,(2.26)

with the constitutive relation for the stress given by σ = −ρRgTI+νg 
∇·vI+2µgD,
with σdiss = νg 
∇ · vI + 2µgD, and with D = (
∇v + 
∇vT )/2.

3. Thermomechanics of a model of a material with phase changes from
solid to liquid to gas. Here we develop a model for a material that can undergo
a phase change from solid to liquid to gas in preparation for the development of the
combined model, which includes chemical reaction and exothermic energy release. The
important difference in the development in this section from that in section 2 is the
introduction of a phase variable that is used to describe and delineate the separate
phases. In order to describe the phase transitions we introduce the (normalized)
variable φ so that φ = 0 corresponds to the solid phase, φ = 1 to the liquid phase,
and φ = 2 to the vapor phase. In its pure phases, solid, liquid, and gas, the material
is prescribed by classical models for that pure phase, i.e., a compressible elastic solid
and a compressible Newtonian liquid and gas.

A consistent thermodynamic formulation for the model is developed through an
extension of a formulation proposed by Gurtin [9]. Energy expended by the system
during a phase change is associated with configurational forces of two types—a config-
urational stress that acts at or near the boundaries between phases which is balanced
by a configurational force distributed in the bulk. The power expenditure of these
forces must be accounted for in the energy balance. If one assumes that the config-
urational forces in the material are balanced separately (this is a posited balance),
then the evolution of the phase field φ is constrained by the entropy inequality to
be dissipative and further considerations lead to the derivation of an evolution law
for φ. This is in contrast to the formulation of the last section, which considered
the evolution law for the progress variable λ as posited. Presumably (and we have
considered this in some detail that is not presented here), an alternative to deriving
the equation for φ is to pose an evolution equation as fundamental and then derive
the consequence of local balance for the configurational forces. Either way, one comes
to similar physical conclusions. The consequences of this choice, in absence of better,
physically based arguments, need to be judged against the forms of the equations that
result that allow us to solve interesting initial value problems.

The starting point is the form of the general laws. The differential form of the
general law for mass, (2.1), and momentum, (2.2), are unchanged from the previous
section. We turn to the more unfamiliar considerations of the force balance law
associated with the phase change and corresponding changes in the energy balance
next.

3.0.1. Force balances associated with the change in phase. Associated
with the evolution of the phase variable φ, we introduce a balance of configurational
stress ξ, a configurational internal force density πφ. The integral form of the balance
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law for a body in region B with boundary ∂B is∫
∂B

ξ ·n dA+
∫
B
(πφ) dV = 0,(3.1)

and with the use of the divergence theorem, the corresponding differential form of the
balance law is


∇ · ξ + πφ = 0 .(3.2)

3.0.2. Rate of work. The rate of work expended on B is due to the external
forces acting on the surface and within the volume of B. Gurtin [9] shows that the
correct form for the rate of work due to all stresses is

W ≡
∫
∂B

(
σn·v + ξ ·(φ̇n)) dA+ ∫

B
b·v dV.(3.3)

The integral form of the energy balance can be written in the standard way as the
material derivative of the total energy (internal and kinetic) equated to the rate of
work minus the energy flux out of the body plus the rate of heating by any other
source; thus

D

Dt

∫
B
ρ(e+ 1

2 |v|2) dV =W −
∫
∂B

q ·n dA+
∫
B
ρr dV .(3.4)

To obtain the differential form we convert the surface integrals into volume inte-
grals and use the divergence theorem. The resulting integral must hold everywhere
for all subvolumes, so the resulting integrand is set to zero, which leads to an inter-
mediate differential form (not shown). We then use the momentum equation and take
its dot product with the velocity v to get the standard work-energy statement on a
material path and subtract that result from the above-mentioned intermediate form
to get the following form of the energy equation:

ρė = −
∇ · q + σ : 
∇v + ξ · 
∇(φ̇)− πφφ̇+ ρr .(3.5)

The main difference from the classical form is the appearance of the two work terms
ξ · 
∇(φ̇) and −πφφ̇ that derive from the configurational forces. For upcoming consid-
erations of the entropy inequality, it is useful to use identities (which can be verified

easily in Cartesian index notation) to rewrite the term ξ · 
∇(φ̇) as

ξ · 
∇(φ̇) = ˙
∇φ · ξ + 
∇φ⊗ξ : L ,(3.6)

so that the revised energy equation reads as

ρė = −
∇ · q + σ : 
∇v +
˙
∇φ · ξ + 
∇φ⊗ξ : 
∇v − πφφ̇+ ρr .(3.7)

3.0.3. The entropy inequality. Finally, to these basic laws we must add the
second law of thermodynamics, the Clausius–Duhem inequality

ρ η̇ ≥ −
∇ ·
( q
T

)
+
ρr

T
.(3.8)

Note that since φ is not assumed to be related to a partial mass density of material,
there is no entropy flux term like 
∇· (Qhc s/T ) that appears in the combustion-based
entropy inequality (2.5). Equation (3.8) is the classical (inert) form of the entropy
inequality.
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3.0.4. Constitutive forms and restrictions from the entropy inequality.
We restrict our attention to a general class of constitutive equations and start with a
very general assumption that the free energy density ψ, the Cauchy stress σ, the con-
figurational stresses ξ, and the internal configurational force πφ, the entropy density
η, and the heat flux q at any point (x, t) are dependent on the deformation gradient

F , the temperature T , the phase field φ, the gradients 
∇T , 
∇φ, and the velocity
gradient L, such that we can write

ψ = ψ(F , T, φ, 
∇T, 
∇φ,L).(3.9)

We assume that σ, ξ, πφ, η, and q all depend on the same argument list, (F , T, φ, 
∇T,

∇φ,L). We use the definition of the Helmholtz free energy to get an expression for
the entropy, η = (e − ψ)/T , take the material derivative, and then use the energy
equation to replace ė and use the chain rule to replace ψ̇. These substitutions into
the entropy inequality lead to the intermediate result:(

σ − ρ ∂ψ
∂F

F T + 
∇φ⊗ξ

)
: 
∇v − ρ

(
η +

∂ψ

∂T

)
Ṫ −

(
πφ + ρ

∂ψ

∂φ

)
φ̇

−ρ ∂ψ

∂
∇T · ˙
∇T −
(
ρ
∂ψ

∂
∇φ − ξ

)
· ˙
∇φ− ρ

(
∂ψ

∂L

)
: L̇− q ·


∇T
T

≥ 0 .(3.10)

Again we restrict our choice of constitutive forms to those that automatically
satisfy this dissipation inequality as the physical process in the material ranges over
all admissible deformations and temperature and phase fields. We restrict the form
of the stress tensor such that

σ = ρ
∂ψ

∂F
F T − 
∇φ⊗ξ + σdiss ,(3.11)

where again σdiss must be chosen to satisfy σdiss : 
∇v ≥ 0. Later we will take σdiss
to be given by (2.10), where the shear and bulk viscosities are taken to be functions
of the phase field variable φ. We require that Gibbs’ relation be satisfied and that
the configurational force ξ be defined by the derivative of the Helmholtz free energy
with respect to the gradient of φ such that

η = −∂ψ
∂T

and ξ = ρ
∂ψ

∂
∇φ .(3.12)

We also assume that the Helmholtz free energy is independent of L = 
∇v and the
temperature gradient 
∇T so that

∂ψ

∂L
= 0 and

∂ψ

∂
∇T = 0(3.13)

hold. We also suppose that the energy flux vector is described by a Fourier heat
conduction law, q = −k
∇T , and insist that k is a positive constant that can be a
function of the temperature and the order parameter, i.e., k(φ, T ) ≥ 0. Then the
reduced dissipation inequality now has the form

−
(
πφ + ρ

∂ψ

∂φ

)
φ̇ ≥ 0 .(3.14)
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The final form of the reduced dissipation inequality is satisfied if we require that the
phase changes be dissipative and if we allow πφ to take the form

−
(
πφ + ρ

∂ψ

∂φ

)
= Bφ̇,(3.15)

where B ≥ 0. Equation (3.15) is an evolution equation for the phase variable φ.
Note that the configurational force balance (3.2) defines πφ = −
∇ · ξ and with the
configurational force identified by ξ = ρ(∂ψ/∂
∇φ) leads to πφ = −
∇ · (ρ∂ψ/∂
∇φ).
Thus (3.15) can be re-expressed as

Bφ̇ = 
∇ ·
(
ρ
∂ψ

∂
∇φ

)
− ρ∂ψ

∂φ
.(3.16)

Given appropriate forms for ψ (such as quadratic dependence of ψ on 
∇φ), (3.16)
is recognized as an advection, reaction-diffusion equation, which, given an assumed
form for ψ, can generate a Ginzburg–Landau equation. The coefficient B−1 is then
recognized as a kinetic rate constant for the phase transformation.

3.1. Temperature form of the energy equation. In order to show the cou-
pling between the thermal (temperature) field, the stress field, and the phase field, we
present an alternative form of the energy equation. Starting with the energy balance
(3.7) we use the definition of the specific internal energy in terms of the temperature
and the entropy, e = ψ + Tη, to obtain ė = ψ̇ + ηṪ + T η̇. Next we use the form of
the Helmholtz energy ψ(φ, T, 
∇φ,F ) and Gibbs’ relation, η = −∂ψ/∂T , to generate
expressions for ψ̇ and η̇:

ψ̇ =
∂ψ

∂F
F T : 
∇v +

∂ψ

∂T
Ṫ +

∂ψ

∂φ
φ̇+

∂ψ

∂
∇φ · ˙
∇φ ,(3.17)

η̇ = − ∂2ψ

∂T∂F
F T : 
∇v − ∂2ψ

∂T 2
Ṫ − ∂2ψ

∂T∂φ
φ̇− ∂2ψ

∂T∂
∇φ · ˙
∇φ .(3.18)

We then insert these expressions into (3.7) and make some further simplifications. In
the resulting collection, terms proportional to Ṫ drop out because of Gibb’s relation

η = −∂ψ/∂T . Likewise, terms proportional to ˙
∇φ drop out because of the relation
for the configurational stress ξ = ρ(∂ψ/∂
∇φ). A collection of terms appear that is
associated with the stress-related dissipation(

σ − ρ ∂ψ
∂F

F T + 
∇φ⊗ξ

)
: 
∇v = σdiss : 
∇v,

and a collection of terms associated with the dissipation induced by the phase trans-
formation appears,

−
(
ρ
∂ψ

∂φ
+ πφ

)
φ̇ = Bφ̇2 .

Using the classical definition of the specific heat at constant deformation (volume),
cv ≡ T (∂η/∂T )F = −T (∂2ψ/∂T 2)F , the energy equation can be rewritten as follows:

(3.19) ρcvṪ = −
∇ · q + σdiss : 
∇v +Bφ̇2 + ρT
∂2ψ

∂T∂F
F T : 
∇v

+ ρT
∂2ψ

∂T∂φ
φ̇+ ρT

∂2ψ

∂T∂
∇φ · ˙
∇φ+ ρr .
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Some straightforward physical interpretations can be made for the various terms.
The term σdiss : 
∇v is the viscous dissipation associated with the stress. The term
Bφ̇2 is a dissipation associated with the phase change. The term ρT (∂2ψ/∂T∂φ) φ̇
is an energy source term that is associated with enthalpic changes in phase (simi-
lar to those associated with the heat of combustion for reacting flows). The term

ρT (∂2ψ/∂T∂F )F T : 
∇v is (again) a stress work term classically associated with

thermal stresses. Similarly, the term ρT (∂2ψ/∂T∂
∇∂φ) · ˙
∇φ is a thermal stress work
term associated with the configurational stress of the phase change.

3.1.1. Invariance requirements and isotropy. Most energetic solids are en-
countered as fine-grained polycrystalline aggregates and are often modeled with con-
ventional isotropic liquid and gaseous forms. We now restrict our attention to isotropic
materials, and we ignore possible anisotropic properties in this model. As is con-
ventional we require that the material response is invariant under superposed rigid
changes of observer. It can be shown in a standard way that the constitutive de-
pendence on the deformation gradient F can be replaced by the left Cauchy–Green
tensor B = FF T and that the dependence on the velocity gradient is replaced by the
symmetric stretching tensor D = (L + LT )/2. Furthermore, isotropy requires that
the dependence on B appears through its principal scalar invariants IB = traceB,
IIB =

1
2

(
(traceB)2 − trace(B2)

)
, and IIIB = detB.

3.1.2. Constitutive specification of the Helmholtz free energy. Having
made arguments that constrain the general form of the constitutive description, we
next specialize the forms to extend the phase field constitutive forms and to capture
commonly used classical forms for the pure solid, liquid, and gas phases. Without
regard to exothermic chemical reaction, we will assume that the Helmholtz free energy
is composed of four parts, such that we can write

ψ = ψ1 + ψ2 + ψ3 + ψ4 .(3.20)

The first two, ψ1, ψ2, are to be associated with the formulation of the phase transform-
ations—the phase gradient energy density and the enthalpies associated with the
phase transition. The latter two, ψ3, ψ4, are of classical origins—the thermal energy
density and the strain energy density.
We assume that the Helmholtz free energy depends on 
∇φ only through ψ1 and

that the phase gradient energy density is specified with the explicit quadratic depen-
dence by

ψ1 =
1
2γφ|
∇φ|2 .(3.21)

It follows from (3.12) that the configurational force ξ is determined by the formula

ξ = ρ
∂ψ

∂
∇φ = ργφ

∇φ .(3.22)

The physical interpretation of the phase-configurational stress ξ is as a traction that
acts near or in the phase transition region in the direction of the gradient of 
∇φ, i.e.,
perpendicular to contours of constant φ.
Next we consider the contribution ψ2, the phase transition energy density which

reflects enthalpy changes during phase transition and is specified as

ψ2 =
1

2
ΨwellF(φ) + βm(φ)Qm

( T
Tm

− 1
)
+ βv(φ)Qv

( T
Tv

− 1
)
.(3.23)
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Fig. 1. Plot of ψ2 as a function of φ with T variation.

The constants Ψwell > 0, Qm < 0, and Qv < 0 represent a potential well depth and
the heats of melting and vaporization. The constants Tm > 0 and Tv > 0 represent
temperatures of melting and vaporization. The triple-well potential F(φ) can be
described by a smooth positive definite function whose isolated zeros are at φ = 0, 1,
and 2, representing three local minima. In addition, F(φ) is assumed to be locally
quadratic near the zeros at φ = 0, 1, and 2, i.e., near φ = 0, F ∼ φ2, near φ = 1,
F ∼ (φ−1)2, and near φ = 2, F ∼ (φ−2)2. As an illustration, F = [φ(φ−1)(φ−2)]2
has this property. The function βm(φ) is assumed to be smooth and monotonically
increasing and has values from 0 to 1 on the range 0 ≤ φ ≤ 1 with zero derivative
elsewhere. The function βv(φ) is similarly assumed to be monotonically increasing
with values from 0 to 1 on the range 1 ≤ φ ≤ 2. Note that the derivative of transition
energy density ∂ψ2/∂φ generates source terms in both the energy and phase equations
represented as

∂ψ2

∂φ
=
1

2
Ψwell

∂F
∂φ
(φ) + β′m(φ)Qm

( T
Tm

− 1
)
+ β′v(φ)Qv

( T
Tv

− 1
)
.(3.24)

Figure 1 illustrates the assumed dependence of ψ(φ, T ) on φ and T . Starting from
(a) through (d), temperature T is raised from below Tm to above Tv, representing a
standard melting-evaporation process. The transition energy density in case (a) has
its minimum at φ = 0. As T is increased through Tm and then Tv, we see a shift in the
global minima from pure solid to solid-liquid and to liquid-vapor. As T eventually
exceeds Tv as shown in (d), the energy minimizing well shifts to a vapor state at
φ = 2. The coefficients and functions Ψwell, βm, βv can be adjusted (if needed) to
reflect more accurately the physical properties observed in accordance with the phase
transformation. Here we have chosen very simple forms.

We again assume the classical form for the thermal energy density and choose ψ3
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(which has the same form as ψ1 in section 2) to be

ψ3 = cv [(T − T0)− T ln(T/T0)] ,(3.25)

where cv is the specific heat at constant deformation. This is consistent with simple
ideal models for solids, liquids, and gases.
Finally we choose a form for ψ4, the strain energy density. We assume that it is

composed of three subparts. The first part is associated with the thermal expansion
stresses commonly identified in the condensed phase:

ψ4a = −αc(φ)K
2ρ0

(T − T0) ln(IIIB) ,(3.26)

whereK is the solid bulk modulus and αc is the linear coefficient of thermal expansion.
We again take αc(φ) to be a smooth, nonzero function in the condensed phases, solid
and liquid, and zero in the gas phase. For example, αc(0) = αsolid, αc(1) = αliquid,
and αc(2) = 0. The second part of ψ4 is associated with the pressure commonly
identified in an ideal gas that we encountered in the previous section on gaseous
combustion:

ψ4b = −1
2
Rg(φ)T ln(IIIB) .(3.27)

Here Rg(φ) plays the role of the ideal gas constant except that it is assumed to be
nonzero in the gas phase and at or near zero in the solid and liquid condensed phase
such that Rg(0) = 0, Rg(1) = 0, Rg(2) = Rgas.
The third part, ψ4c, is based on properties of a compressible neo-Hookean, Blatz–

Ko solid [15] which is given as

ψBK =
µ

2ρ0
(IB − 3) + µ(1− 2ν)

2ρ0ν

(
III

−ν/(1−2ν)
B − 1

)
.(3.28)

The constants ν and µ here represent the Poisson ratio of the material and the elastic
Lamé parameter, µ. The contribution to the stress associated with this potential is

σBK = 2ρ
∂ψBK
∂B

B = µs
ρ

ρ0
B − µ ρ

ρ0
III

−ν/(1−2ν)
B I .(3.29)

We use this to model the elastic deformation of the solid, but for the liquid we
pose a slightly altered form of this potential based on purely isotropic deformations.
Consider the isotropic (either uniform contraction or expansion) given by x = sX,
where s is the stretch ratio of material line segments. It follows simply that F = sI,
B = s2I, IIIB = det(B) = (ρ0/ρ)

2 = s6, s = (ρ0/ρ)
1/3, B = (ρ0/ρ)

1/3I, and

(ρ0/ρ)
1/3 = III

1/6
B . For the Blatz–Ko solid, the isotropic stress is related to the

volume ratio by

σ = −µ ρ
ρ0

[(
ρ

ρ0

)− 2ν
1−2ν

−
(
ρ

ρ0

)− 1
3

]
I .(3.30)

We choose our model for the strain energy of the liquid to have the same functional
form for the isotropic stress dependence on the density ratio as that for the solid, and
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merely note that we replace the dependence on ρ0/ρ by III
1/2
B and work backwards.

The corresponding Helmholtz free energy for the liquid would take the form

ψBK(liquid) =
3

2

µ

ρ0
III

1/3
B +

µ(1− 2ν)
2ρ0ν

(
III

−ν/(1−2ν)
B − 1

)
.(3.31)

We can combine the two potentials for the solid and the liquid in the following
way. Let µs(φ) be a coefficient such that µs(0) = µsolid and it is zero for φ ≥ 1. Let
µl(φ) be a smooth function such that µl(1) = µliquid with µl(0) = µl(2) = 0. One
makes similar definitions for νs and νl. Let µc be defined as the sum µc = µl + µs,
and νc = νl + νs. Then the combined solid, liquid, elastic potential can be written as

ψ4c =
µs
2ρ0
(IB − 3) + 3

2

µl
ρ0
III

1/3
B +

µc(1− 2νc)
2ρ0νc

(
III

−νc/(1−2νc)
B − 1

)
.(3.32)

Note that other functional forms for the strain energy density could have been
chosen for ψ4c, but we chose the Blatz–Ko form since it has a simple reduction to
compressible linear elasticity in the limit of small strain, which is deemed convenient
for our purposes. We anticipate that as the solid become significantly nonlinearly
elastic, we expect that a phase transformation will occur so that the specific choice
of Blatz–Ko is not a sensitive one for the properties of the model. The deformational
portion of stress associated with this strain energy is ψ4c,

σdef ≡ 2ρ∂ψ4c

∂B
B = µs

ρ

ρo
B − µc ρ

ρo
III

−νs/(1−2νs)
B I + µl

ρ

ρo
III

1/3
B I .(3.33)

3.2. Total free-energy density and summary of constitutive forms. The
form of ψ = ψ1 + ψ2 + ψ3 + ψ4a + ψ4b + ψ4c is written as

ψ =
µs(φ)

2ρ0
(IB − 3) + µc(φ)(1− 2νs)

2ρ0νs

(
III

−νs/(1−2νs)
B − 1

)
+
3µl(φ)

2ρo
III

1/3
B

− αc(φ)K

2ρ0
(T − T0) ln(IIIB)− 1

2
Rg(φ)T ln(IIIB) strain energy density

− cv(φ)
[
T ln

(
T

T0

)
− (T − T0)

]
thermal energy density

+
1

2
ΨwellF(φ) + βm(φ)

(
T

Tm
− 1
)
Qm + βv(φ)

(
T

Tv
− 1
)
Qv

phase transition
energy density

+
1

2
γφ|
∇φ|2 . gradient energy density

(3.34)

The constitutive theory is essentially complete. The stress is given by the general
expression

σ = ρ
∂ψ

∂B
B − 
∇φ⊗ξ + σdiss,(3.35)

with ξ given by ξ = ργφ
∇φ and σdiss given by σdiss = µf (
∇ · v)I + 2µfD. The
stress formula becomes

σ = µs
ρ

ρ0
B − µc ρ

ρ0
III

−(νs/1−2νs)
B I + µl

ρ

ρo
III

1/3
B I

− αc(φ)K
ρ

ρ0
(T − T0)I − ρRg(φ)TI

− ργφ
∇φ⊗ 
∇φ+ νf (
∇ · v)I + 2µfD .(3.36)



526 G. A. RUDERMAN, D. S. STEWART, AND J. J.-I. YOH

The energy flux vector remains q = −k
∇T . The various source terms in the energy
and phase equations can be computed from the forms given in (3.34).
We can now summarize the governing equations for the phase change model as

ρ̇ + ρ
∇ · v = 0 ,(3.37)

ρ v̇ = 
∇ · σ + ρf ,(3.38)

ρcvṪ = 
∇ · (k
∇T ) + σdiss : 
∇v +Bφ̇2 + ρT
∂2ψ

∂T∂F
F T : 
∇v

+ ρT
∂2ψ

∂T∂φ
φ̇+ ρT

∂2ψ

∂T∂
∇φ · ˙
∇φ+ ρr ,(3.39)

Bφ̇ = 
∇ · (ργφ
∇φ)− ρ∂ψ
∂φ
,(3.40)

Ḟ = LF ,(3.41)

where B, cv, γφ, k, etc. are constitutive scalars which could be regarded as functions
of both φ and T . We have added the kinematic identity (3.41) in order to compute
the evolution of the displacement gradients.

4. The combined model: Modifications to include chemical reaction.
Here we list the modifications required to combine both models into one. First we
take the phase change model as the starting point and we retain all the assumptions
and assumed forms of the previous section, specifically in regards to the appearance
of φ. The configurational force balance (3.2) is retained as a fundamental balance
law (the consequence of which leads to the derivation of the evolution equation for φ,
equation (3.40)).
Next we assume that, in addition to φ, which measures the molecular order of

the phase, the mass fraction λ simultaneously measures the amount of exothermic
chemical reaction that has taken place. So λ is added to all the argument lists; in
particular, in the expression for ψ we assume the dependence

ψ = ψ(F , T, φ, λ, 
∇φ,L) .(4.1)

A statement of conservation of λ is added in the form of (2.4), which reflects a molec-
ularly based conservation of species. The second law must be modified to include the
entropy flux associated with the heat of combustion (so it takes the same form as
(2.5)),

ρ η̇ ≥ −
∇ ·
( q
T

)
+ 
∇ ·

(
Qhcs

T

)
+
ρr

T
.(4.2)

One argues the entropy inequality in exactly the same manner as in the previous
section, with the same assumptions and conclusions of section 3, with the additional
exception that one uses the evolution equation for λ, (2.4), to reduce the dissipation
inequality in the manner explained in section 2. The energy flux vector is identified
by the requirement of positivity of the left-hand side of (2.15), which leads to

q = −k
∇T +Qhcs .(4.3)

The vector s can be chosen according to Fick’s law such that

s = d 
∇λ .(4.4)



MODELING ENERGETIC MATERIALS I: FORMULATION 527

The Helmholtz free energy is designated as ψ = ψ1+ψ2+ψ3+ψ4a+ψ4b+ψ4c+ψ5, where
ψ1−4c are defined in the previous section and ψ5 is the chemical enthalpy ψ5 = −Qhcλ.
The configurational stress is again of the form ξ = ργφ
∇φ. The representation of the
stress is

σ = µs
ρ

ρ0
B − µc ρ

ρ0
III

−(νs/(1−2νs)
B I + µl

ρ

ρo
III

1/3
B I

− αc(φ)K
ρ

ρ0
(T − T0)I − ρRg(φ)TI

− ργφ
∇φ⊗ 
∇φ+ νf (
∇ · v)I + 2µfD .(4.5)

The various scalar material properties identified previously, such as cv, γφ, . . . , now
can also have explicit dependence on λ as well as φ and T .
A revised list of the governing equations for the combined model with reaction

and phase change is

ρ̇ + ρ
∇ · v = 0 ,(4.6)

ρ v̇ = 
∇ · σ + ρf ,(4.7)

ρcvṪ = 
∇ · (k
∇T ) + σdiss : 
∇v +Bφ̇2 + ρT
∂2ψ

∂T∂F
F T : 
∇v

+ ρT
∂2ψ

∂T∂φ
φ̇+ ρT

∂2ψ

∂T∂
∇φ · ˙
∇φ+ ρQhcΩ+ ρr ,(4.8)

Bφ̇ = 
∇ · (ργφ
∇φ)− ρ∂ψ
∂φ
,(4.9)

ρλ̇ = 
∇ · (d
∇λ) + ρΩ ,(4.10)

Ḟ = LF .(4.11)

With the specific constitutive forms chosen for ψ, the energy equation becomes

(4.12)

ρcvṪ = 
∇·(k
∇T )+νf (
∇·v)2+2µfD :D+Bφ̇2−αc(φ)K ρ

ρ0
T (
∇·v)−ρRg(φ)T (
∇·v)

+

{
−α

′
c(φ)

2
K
ρ

ρ0
T ln(IIIB)− ρ

R′
g(φ)

2
T ln(IIIB)− ρc′v(φ)T ln

(
T

T0

)

+ ρ

[
β′m(φ)

T

Tm
Qm + β

′
v(φ)

T

Tv
Qv

]}
φ̇+ ρQhcΩ+ ρr,

and the evolution law for φ becomes

(4.13) Bφ̇ = 
∇ ·
(
ργφ
∇φ

)
+ ρc′v(φ)

[
T ln

(
T

T0

)
− (T − T0)

]

− µ′s(φ)
2

ρ

ρ0
(IB − 3)− µ′c(φ)

2

ρ

ρ0

(1− 2νs)
νs

(
III

−νs/(1−2νs)
B − 1

)
+
3µ′l(φ)
2

ρ

ρo
III

1/3
B

+
α′
c(φ)

2
K
ρ

ρ0
(T − T0) ln(IIIB) +

1

2
ρR′

g(φ)T ln(IIIB)

− ρ1
2
Ψwell

∂F
∂φ

− ρ
[
β′m(φ)

(
T

Tm
− 1
)
Qm + β

′
v(φ)

(
T

Tv
− 1
)
Qv

]
.
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4.1. Material transition functions. An important ingredient of our model is
the use of φ-dependent material properties or material transition functions. Earlier
in section 2.4.2, we encountered βm(φ), βv(φ) in the specification of the phase transi-
tion energy density, µc(φ), µl(φ), µs(φ), αc(φ), Rg(φ) in the specification of the strain
energy density, cv(φ) in the specification of the thermal energy density, as well as func-
tions associated with dissipative processes like νf (φ). The model assumes that these
functions have limiting pure phase values when φ = 0, 1, 2. The structure of these
functions has an influence on the exact details of the spatial structure of the transition
layers and their dynamics when particular problems are solved. However, one makes
an implicit assumption that when the transitions occur in thin layers relative to other
geometric lengths, the structure within the layer does not strongly influence the in-
formation transmitted across the layer. This modeling precept is consistent with the
use of viscous dissipation to describe continuum shock structure when the shock is
molecularly thin.
For illustration sake, Figures 2 and 3 show typical transition functions that we

have used to carry out representative simulations discussed in the companion paper
[13]. These functions are constructed from simple polynomials in φ and their smooth
extensions. The figures clearly show the basic properties that are required. For
example, in Figure 2(c), the representation of the thermal expansion parameter αc(φ),
which has the same (constant) value in the solid and liquid phase, is zero in the gas
phase. Another example is that β′m(φ) is zero for all values of φ except for those
between 0 and 1, and terms that multiply β′m(φ) are only involved in the solid to liquid
transitions of melting or freezing and are totally absent in the liquid-gas transition of
evaporation and condensation.

5. Some limiting cases.

5.1. Pure phases. The results for pure phases can be identified by the con-
stitutive forms for the stress tensor. First we will consider the solid, φ = 0, in the
additional limit of small strain. The small strain limit is represented in terms of
the displacement gradient H = F − I, where |H| << 1. Define the small strain
tensor E = (H + HT )/2, and the left Cauchy–Green tensor can be written as
B = FF T = I + 2E + HHT . Our limiting form for the stress relation reduces
to

σ = −αsolid ρ
ρ0
K(T − T0)I +

2µsolid νsolid
1− 2 νsolid IE I + 2µsolidE ,(5.1)

When one considers the limit of a liquid, φ = 1, the expression for the stress becomes

(5.2)

σ = −αliquidK ρ

ρ0
(T−T0) I−µliquid ρ

ρ0

((
ρ

ρ0

)2 νliquid/(1−2 νliquid)

−
(
ρ

ρ0

)−2/3
)
I

+ νliquid(
∇ · v)I + 2µliquidD;

similarly for the limit of the gas, φ = 2, the expression for the stress becomes

σ = −ρRgasTI + νgas(
∇ · v)I + 2µgasD .(5.3)

5.2. Motionless phase transition. In this case we simply assume that the
system is nearly motionless with v ≈ 0 and consider the pure phase change from solid



MODELING ENERGETIC MATERIALS I: FORMULATION 529

ϕ

R
(ϕ

),
R

’(
ϕ)

0 1 2

0

300

600
R
R’

ϕ

ρ oγ
ϕ

0 1 2

0

2E-06

ϕ

α c(
ϕ)

,α
c’
(ϕ

)

0 1 2-0.0002

0

0.0002

αc

αc’

ϕ

µ c(
ϕ)

,µ
c’
(ϕ

)

0 1 2

-3E+09

0

3E+09

µc’
µc

(a)

(b)

(c)

(d)

Fig. 2. Plots of transition functions for HMX simulation and their derivatives with re-
spect to the phase variable. Shear modulus, ideal gas constant, thermal expansion coefficient,
and phase diffusion coefficient are shown from top to bottom.

to liquid with no chemical reaction. In addition, we neglect the thermal expansion
configurational forces, consistent with a nearly zero velocity field, and the thermal
dissipation associated with the phase transition. Further we assume that φ is in the
range 0 ≤ φ ≤ 1 and F(φ) is effectively a double-well potential. We take the specific
heat to be constant and are left with a thermal-diffusional model for the temperature
and phase field given by the equations

ρcvṪ = 
∇ · (k
∇T ) + ρβ′m(φ)
T

Tm
Qmφ̇(5.4)

and

Bφ̇ = 
∇ · (ργφ
∇φ)− ρ1
2
Ψwell

∂F
∂φ

− ρβ′m(φ)
(
T

Tm
− 1
)
Qm.(5.5)

These equations are a generalized form of a thermally dependent Ginzburg–
Landau theory of phase transitions often cited in discussions of solidification of binary
alloys (see, for example, Wheeler, Boettinger, and McFadden [14].) Simple systems
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Fig. 3. ϕ-dependent transfer functions (derivatives) for heat of phase transformations,
β′
m and β′

v. The third figure depicts the triple-well Ginzburg–Landau potential function and
its derivative.

of this form, with a double-well potential and a single latent heat term, that have
been analyzed in the literature have been shown to correspond to various forms of the
classical (sharp interface) description of phase transitions. Further analysis leads to
modified Stefan problems that incorporate surface tension and kinetic undercooling
[8].

5.3. Relation to the simpler theory of quasi-static phase transforma-
tion. Here we briefly discuss the manner in which our model relates to the theory
of quasi-static phase transformations that are a part of classical equilibrium ther-
modynamics. We assume that the changes in the state in the material happen so
slowly that all inertial effects can be neglected and that the material undergoes only
isotropic volume changes that are measured by changes in the density. The stress is
spherical so that σ = −pI. The deformation is homogeneous such that x = sX, with
F = sI, det(F ) = s = (ρ0/ρ), B = (ρ0/ρ)

2I, and strain invariants IIIB = (ρ0/ρ)
2

and IB − 3 = 3[(ρ0/ρ)2 − 1]. One neglects all spatial gradients.
Next we consider the volume changes that occur as the temperature rises when

the material is subjected to constant volumetric heating (given by constant r), un-
der isobaric (constant pressure) conditions. For simplicity, we will also assume that
the specific heat is constant in all phases. Then the change in the thermodynamic
states would be controlled by a simplified version of the energy equation (for the
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temperature) and the phase evolution equation. These are written as

ρcv
∂T

∂t
= ρ

(
β′m(φ)

T

Tm
Qm + β

′
v(φ)

T

Tv
Qv

)
∂φ

∂t
+ ρr ,(5.6)

B
∂φ

∂t
= −ρ1

2
Ψwell

∂F
∂φ

− ρ
[
β′m(φ)

T − Tm
Tm

Qm + β
′
v(φ)

T − Tv
Tv

Qv

]
,(5.7)

and for the purpose of illustration, (4.5) is simplified by linearizing ρ about ρ0 in the
solid and liquid phases to obtain the thermal equation of state, a relation between p,
ρ, T, and φ,

p =
6µc(φ)νs
1− 2νs

(
ρ

ρ0
− 1
)
+ αcK

ρ

ρ0
(T − T0)− ρRgT.(5.8)

The above equations are solved subject to the initial condition that the material is
initially solid and, at the reference temperature, φ(0) = 0 and T (0) = T0. For constant
pressure, a specified temperature, and φ, (5.8) determines the specific volume, V =
1/ρ. The solution of the initial value problem for T and φ determines a trajectory in
T, V, φ-space at fixed p. A typical solution shows that as the temperature rises in the
solid, the volume increases along the isobar. A phase transition (change in φ) does
not take place till the temperature nears the melting temperature, Tm. Above that
temperature local analysis shows that a change in stability of the state φ = 0 occurs
and then the transition from φ = 0 to φ = 1 occurs. Since the volumetric change is
small (4% or less), the deviation in a T, v isobar is not large in some sense. As the
temperature continues to rise, the second phase transition occurs near the vaporization
temperature, Tv. Since the thermal equation of state is effectively modeled by the
ideal gas law, a rather large change in the specific volume occurs. Finally, after the
phase transition to vapor is completed and φ = 2 is reached, the temperature continues
to climb on the gas phase isobar with increasing volume. Figure 4 show plots of a
T, V -trajectory for a isobaric phase transition for the HMX-like material described in
[13]. Figure 5 shows the corresponding φ, V -trajectory at different pressures. Again,
the purpose here is simply to illustrate that conventional notions of quasi-static phase
transformations described in classical thermodynamics are embedded in this model.

6. Special forms of the model for three simple motions. In this concluding
section we write out special and exact forms of the differential equations for the model
when the material undergoes three simple motions: (i) evolution at constant volume,
(ii) one-dimensional, time-dependent, longitudinal motion, and (iii) one-dimensional,
time-dependent shear motion. All three are very important in the analysis of ignition
of EMs. The three cases are the exclusive subject of the companion paper [13], in
which numerical simulation and the properties of the model are discussed further.

6.1. Constant volume evolution and thermal explosion. A simple but ex-
tremely important subcase that is studied extensively in combustion theory describes
the constant volume thermal explosion, where the velocity v and all spatial gradients
are exactly zero. The density is constant hence the volume of a material particle is
constant. For illustration, we neglect thermal expansion and assume constant specific
heat and gas constants. We are left with three ODEs in time for the temperature,
phase change, and reaction progress:

ρcv
∂T

∂t
= ρ

(
β′m(φ)

T

Tm
Qm + β

′
v(φ)

T

Tv
Qv

)
∂φ

∂t
+ ρQhcΩ+ ρr ,(6.1)
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large volume jump from liquid to gas happens at nearly constant temperature Tv.

B
∂φ

∂t
= −ρ1

2
Ψwell

∂F
∂φ

− ρ
[
β′m(φ)

T − Tm
Tm

Qm + β
′
v(φ)

T − Tv
Tv

Qv

]
,(6.2)

∂λ

∂t
= Ω.(6.3)

If one discards phase change, we recover the equations from standard combustion
theory for constant volume thermal explosion, cv(∂T/∂t) = QhcΩ , (∂λ/∂t) = Ω. Of
course, the more interesting behavior occurs when phase change is included. The
typical dynamics of these ODEs are discussed at length in [13].

6.2. Longitudinal motion. Next we turn to specializations of the equations to
simplified motions that lead to PDEs in one space dimension and one time dimension;
this is particularly suited to the study of ignition phenomena in EMs (which is one
of our main concerns). First we consider longitudinal compression associated with a
flyer-plate impact test. In this idealization, an infinite slab experiences a displacement
loading normal to its surface. Specifically we consider the following one-dimensional
motion:

x1 = X1 + f1(X1, t), x2 = X2, x3 = X3 ,(6.4)

where f1 is the 1-displacement.
For this motion, there is one nonzero velocity component, v1 = ∂f1/∂t|X(X1, t),

F is diagonal with F11 = ∂x1/∂X1 = 1 + f
′
1, and F22 = F33 = 1. The density

is related to the single strain gradient by 1 + f ′1 = ρ0/ρ. Also, B is diagonal with
B11 = (1 + f

′
1)

2, B22 = 1, B33 = 1. The first and third invariants of B are IB =
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Fig. 5. Phase-V trajectory of constant pressure under the thermo-quasistatic assumption.

2 + (1 + f ′1)
2 and IIIB = (1 + f

′
1)

2, with IIIB = (ρ0/ρ)
2 and IB − 3 = (ρ0/ρ)2 − 1.

Hence we use the density as the independent strain measure and replace f ′1. The one
nonzero component of the velocity gradient and rate of strain tensor are, respectively,
L11 = D11 = ∂v1/∂x1. Also, (
∇φ⊗ 
∇φ)11 = (∂φ/∂x1)

2. It then follows that all the
shear stresses are zero, σ12 = σ23 = σ13 = 0, and the normal stresses σ11 are given by

(6.5) σ11 = −µc
(
ρ

ρ0

)[(
ρ

ρ0

) 2νs
1−2νs −

(
ρ

ρ0

)−2
]
− αcK ρ

ρ0
(T − T0)

− ρRgT − ργφ
(
∂φ

∂x1

)2

+ (νf + 2µf )
∂v1
∂x1

.

The other normal stress are the same as the σ11 stress, minus the phase stress, i.e.,
σ22 = σ33 = σ11 + ργφ(∂φ/∂x1)

2.

The specific governing equations for longitudinal compression are the mass and
momemtum equations

∂ρ

∂t
+ v1

∂ρ

∂x1
+ ρ

∂v1
∂x1

= 0 ,(6.6)

(6.7) ρ

(
∂v1
∂t
+ v1

∂v1
∂x1

)
=

∂

∂x1

{
−µc

(
ρ

ρ0

)[(
ρ

ρ0

) 2νs
1−2νs −

(
ρ

ρ0

)−2
]

− αcK
ρ

ρ0
(T − T0)− ρRgT − ργφ

(
∂φ

∂x1

)2

+ (νf + 2µf )
∂v1
∂x1

}
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and the energy balance, phase evolution, and reaction progress evolution equations
that take the specific forms

ρcv

(
∂T

∂t
+ v1

∂T

∂x1

)
=

∂

∂x1

(
k
∂T

∂x1

)
+ (νf + 2µf )

(
∂v1
∂x1

)2

+ Bφ̇2 −
[
αcK

ρ

ρ0
T + ρRg(φ)T

]
∂v1
∂x1

+

{
−1
2
α′
c(φ)K

ρ

ρ0
T ln(IIIB)− 1

2
ρR′

g(φ)T ln(IIIB)− ρc′v(φ)T ln(T/T0)

+ ρ

[
β′m(φ)

T

Tm
Qm + β

′
v(φ)

T

Tv
Qv

]}
φ̇+ ρQhcΩ+ ρr,(6.8)

(6.9) B

(
∂φ

∂t
+ v1

∂φ

∂x1

)
=

∂

∂x1

(
ργφ

∂φ

∂x1

)
+ ρc′v(φ)

[
T ln

(
T

T0

)
− (T − T0)

]

− µ′s(φ)
2

ρ

ρ0
(IB − 3)− µ′c(φ)

2

ρ

ρ0

(1− 2νs)
νs

(
III

−νs/(1−2νs)
B − 1

)
− 3µ

′
l(φ)

2

ρ

ρo
III

1/3
B

+
α′
c(φ)

2
K
ρ

ρ0
(T − T0) ln(IIIB) +

1

2
ρR′

g(φ)T ln(IIIB)

− 1
2
ρΨwell

∂F
∂φ

− ρ
[
β′m(φ)

T − Tm
Tm

Qm + β
′
v(φ)

T − Tv
Tv

Qv

]
,

and

ρ

(
∂λ

∂t
+ v1

∂λ

∂x1

)
=

∂

∂x1

(
d
∂λ

∂x1

)
+ ρΩ .(6.10)

6.3. Shear motion. Now we turn to specialization of the equations to shear
motion, which again leads to PDEs in one space dimension, transverse to the motion,
and one time dimension. A nominal geometry is a slab of fixed thickness loaded on
one surface with constant velocity while the other is fixed. The bottom surface is
taken to be fixed (zero displacement) for the entire duration of the test. Specifically,
we consider the following one-dimensional motion:

x1 = X1 + f1(X2, t), x2 = X2 + f2(X2, t), x3 = X3 ,(6.11)

where f1 and f2 are the in-plane displacements, which can also be regarded as func-
tions of the spatial coordinate and time x2, t. Corresponding to this motion, one has
the velocities with dependencies v1(x2, t), v2(x2, t), and v3 = 0 and ∂/∂x1 = ∂/∂x3 =

0. The expression of the material time derivative is given by
˙
() = ∂/∂t+ v2 ∂/∂x2.

The shear deformation is described by

(F )ij =
∂xi
∂Xj

=


1 f ′1 0
0 1 + f ′2 0
0 0 1



ij

,(6.12)

(B)ij = (FF T )ij =


 1 + f ′12

f ′1(1 + f
′
2) 0

f ′1(1 + f
′
2) (1 + f ′2)

2 0
0 0 1



ij

,
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(L)ij = (
∇v)ij =
∂vi
∂xj

=


0 ∂v1

∂x2
0

0 ∂v2
∂x2

0

0 0 0


 , (D)ij =


 0 1

2
∂v1
∂x2

0
1
2
∂v1
∂x2

∂v2
∂x2

0

0 0 0



ij

.(6.13)

The invariants ofB are computed as IB = 1+f
′
1
2
+(1+f ′2)

2+1 and IIIB = (1+f
′
2)

2 =

(ρ0/ρ)
2 with 1 + f ′2 = ρ0/ρ. Also IB − 3 = (ρ0/ρ)2 − 1 + f ′12

. In addition, from the

kinematic identity, Ḟ = LF , we obtain two nontrivial relations ḟ ′1 = (1+ f
′
2)∂v1/∂x2

and ḟ ′2 = (1+f
′
2)∂v2/∂x2, where the material derivative is

˙
() = ∂/∂t+v2 ∂/∂x2. The

second of the two results just restates mass conservation and is equivalent to replacing
1+f ′2 with ρ0/ρ. But the first is an independent expression for the shear strain, which
can be recast in terms of the density and transverse velocity gradient as

˙
(f ′1) =

(
ρ0
ρ

)
∂v1
∂x2

.(6.14)

Finally, the contribution to the configurational stress has only one nonzero component,
(
∇φ⊗
∇φ)22 = (∂φ/∂x2)

2.

Using the density ρ and the shear strain f ′1 as the two independent kinematic
variables, we can now write down expressions for the components of the stress tensor.
The cross-plane shear stresses are zero, i.e., σ13 = σ23 = 0. The in-plane shear stress
σ12 is given by the expression

σ12 = µs f
′
1 + µf

∂v1
∂x2

.(6.15)

The in-plane normal stress σ22 is given by

(6.16) σ22 = −µc
(
ρ

ρ0

)[(
ρ

ρ0

) 2νs
1−2νs −

(
ρ

ρ0

)−2
]
− αcK ρ

ρ0
(T − T0)− ρRgT

− ργφ
(
∂φ

∂x2

)2

+ (νf + 2µf )
∂v2
∂x2

.

The specific governing equations for the shear motion for the full model are

∂ρ

∂t
+ v2

∂ρ

∂x2
+ ρ

∂v2
∂x2

= 0 ,(6.17)

ρ

(
∂v1
∂t
+ v2

∂v1
∂x2

)
=

∂

∂x2

[
µsf

′
1 + µf

∂v1
∂x2

]
,(6.18)

(6.19) ρ

(
∂v2
∂t
+ v2

∂v2
∂x2

)
=

∂

∂x2

{
−µc

(
ρ

ρ0

)[(
ρ

ρ0

) 2νs
1−2νs −

(
ρ

ρ0

)−2
]

− αc(φ)K
ρ

ρ0
(T − T0)− ρRg(φ)T − ργφ

(
∂φ

∂x2

)2

+ (νf + 2µf )
∂v2
∂x2

}
,
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(6.20) ρcv

(
∂T

∂t
+ v2

∂T

∂x2

)
=

∂

∂x2

(
k
∂T

∂x2

)
+

[
µf

(
∂v1
∂x2

)2

+ (νf + 2µf )

(
∂v2
∂x2

)2
]

+Bφ̇2 −
[
αcK

ρ

ρ0
T + ρRgT

]
∂v2
∂x2

+

{
−1
2
α′
c(φ)K

ρ

ρ0
T ln(IIIB)− 1

2
ρR′

g(φ)T ln(IIIB)− ρc′v(φ)T ln(T/T0)

+ ρ

[
β′m(φ)

T

Tm
Qm + β

′
v(φ)

T

Tv
Qv

]}
φ̇+ ρQhcΩ+ ρr ,

(6.21) B

(
∂φ

∂t
+ v2

∂φ

∂x2

)
=

∂

∂x2

(
ργφ

∂φ

∂x2

)
+ ρc′v(φ) [T ln(T/T0)− (T − T0)]

− µ′s(φ)
2

ρ

ρ0
(IB − 3)− µ′c(φ)

2

ρ

ρ0

(1− 2νs)
νs

(
III

−νs/(1−2νs)
B − 1

)
− 3µ

′
l(φ)

2

ρ

ρo
III

1/3
B

+
α′
c(φ)

2
K
ρ

ρ0
(T − T0) ln(IIIB) +

1

2
ρR′

g(φ)T ln(IIIB)

− 1
2
ρΨwell

∂F
∂φ

− ρ
[
β′m(φ)

T − Tm
Tm

Qm + β
′
v(φ)

T − Tv
Tv

Qv

]

and for chemical reaction are

ρ

(
∂λ

∂t
+ v2

∂λ

∂x2

)
=

∂

∂x2

(
d
∂λ

∂x2

)
+ ρΩ .(6.22)

Finally, the kinematic relation (6.14) for the shear strain (which must be included) is
expressed as

ρ

ρ0

(
∂f ′1
∂t
+ v2

∂f ′1
∂x2

)
=
∂v1
∂x2

.(6.23)

7. Conclusions. We have posed a three-dimensional model for a representative
energetic material with two independent state variables that represent the change in
phase and the extent of exothermic reaction. The model has a context and formulation
in which it is thermodynamically consistent. This is in contrast to other models which
may not be self-consistent because the constitutive theory is invoked a posteriori.
Gurtin’s notion of a fundamental balance of configurational forces leads to evolution
laws for the phase variable. Limiting forms of this model are consistent with classical
theories, but the model also yields limiting forms that can describe the transition
between two phases, if desired. The combined model is very rich in the sense that the
coupling between phase evolution and the energy equations is complex, due in part
to the necessary partition of the Helmholtz free energy.

In [13] we use experimental data based on the behavior and properties of HMX
to study representative dynamics of the three simple motions discussed in section 6.
The examples we develop show a variety of behavior observed over many time and
length scales. Strain localization and phase transition phenomena are observed, as
well as many other complex phenomena.
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A THERMOMECHANICAL MODEL FOR ENERGETIC MATERIALS
WITH PHASE TRANSFORMATIONS: ANALYSIS OF SIMPLE

MOTIONS∗
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Abstract. This paper examines the behavior of a thermomechanical model for energetic ma-
terials posed in the companion paper and specifically analyzes three simple motions: (i) constant
volume evolution, (ii) one-dimensional, time-dependent longitudinal compression (expansion), and
(iii) time-dependent shear. The model describes phase transitions from solid to liquid to gas and
exothermic chemical reaction. Thermal and mechanical properties are matched to the explosive HMX
in order to illustrate representative dynamics and transitions. Constant volume thermal explosion,
shock melting, and shear localization are demonstrated.

Key words. combustion, phase transformations, energetic materials

AMS subject classifications. 74A50, 74F10, 74F25, 74A15, 80A22, 80A25
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1. Introduction. This paper (paper II) is the second of two papers that de-
scribe a continuum model for the behavior of a condensed phase energetic material
that undergoes phase transformation. Such materials are often used in explosive and
pyrotechnic systems and are commonly known as solid explosives. Explosive materials
are usually stable solids at room temperature and pressure, and when subjected to
sufficiently strong mechanical or thermal stimulus, they undergo transitions to liquid
and gas before releasing the bulk of their stored energy by chemical reaction mainly
in the gas phase. Paper I [2] presented the continuum formulation that describes
phase transitions from solid to liquid to gas. The model also includes energy-release
due to chemical reaction. The state of the phase and the progress of the chemical
reaction are represented by two thermodynamically independent variables, φ and λ.
The phase variable φ takes on the value 0 for a pure solid, 1 for a pure liquid, and 2
for a pure gas. The progress of the (exothermic) chemical reaction is represented by
λ, which ranges from 0 (unreacted) to 1 (completely reacted).

Most of paper I explains the model’s formulation and assumptions and the re-
stricted form of the constitutive theory based on standard arguments from the second
law of thermodynamics. Following Gurtin’s suggestion [1], configurational forces are
assumed to be in global and local balance and further arguments lead to the derivation
of an evolution law for φ, which is of the advection, diffusion, reaction type. Following
combustion theory for a reactive mixture, an evolution law for the reaction progress
variable λ is posited as a fundamental law.

Hence, our model is fully three-dimensional and is thermodynamically and ten-
sorially consistent. Specialization of the model and limiting forms are examined in
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paper I, and the equations for the special cases of constant volume evolution, one-
dimensional, time-dependent longitudinal compression motion and time-dependent
shear motion are obtained. Solutions to initial boundary-value problems for the equa-
tions for these simple motions illustrate the behavior of the model and reveal its prop-
erties. The results testify to the model’s potential suitability for modeling complex
phenomena that involve both phase transformation and chemical reaction in one com-
bined framework. Material constants and properties of the energetic material (solid
explosive) HMX are used to determine representative values for the model. These
include properties such as (but not limited to) the elastic properties, viscosities, spe-
cific heats, gas constant, heats of melting (fusion), vaporization (condensation), and
combustion (detonation).

In section 2 the equations for the three-dimensional model are given. In section
3 we discuss how we assigned the material properties of HMX to the model. In
section 4 the special forms of the equations for the three simple motions are indicated
(and the reader is referred to paper I). We also solve the case for constant volume
evolution and discuss the properties of the underlying ODEs and their dynamics.
To avoid unnecessary repetition of previously stated equations, we will refer to the
equations as follows. For (6.1) of paper I, we will write (I 6.1). In section 5 the
numerical methodology is given for longitudinal and shear motions. Section 6 presents
representative numerical solutions for mechanically induced phase transformation and
includes examples of interesting properties of the model such as shear localization and
shock melting.

2. Mathematical formulations.

2.1. Kinematics and some definitions. The coordinates of position in the
lab-frame are given by x and the initial position of the material particles is given
by X. The mapping of the deformations is given by x = x(X, t). The deformation
gradient F is defined by the derivative F = ∂x/∂X. The left Cauchy–Green tensor
B = FF T is used to describe finite deformations. The velocity is defined by the
time derivative of the particle trajectories v = (∂x/∂t)X . The velocity gradient

is the gradient of the velocity field defined by the tensor L = �∇v. Let the dot

notation,
˙
(), refer to the material derivative. The rate of stretching tensor is given by

D = [�∇v + (�∇v)�]/2. The time derivative of the deformation gradient is Ḟ = LF .
Consideration of conservation of mass relates the instantaneous density ρ to a reference
(ambient) density of the solid, ρ0, by det(F ) = ρ0/ρ as well as det(B) = (ρ0/ρ)2.

2.2. General formulation. The derivation of the model and its constitutive
specification was the principal subject of paper I [2]. The arguments in paper I
developed a φ-dependent constitutive expression for the stress σ as

σ = µs
ρ

ρ0
B − µc

ρ

ρ0
III

−[νc/(1−2νc)]
B I + µl

ρ

ρ0
III

1/3
B I

− αcK
ρ

ρ0
(T − T0)I − ρRgTI

− ργφ�∇φ⊗ �∇φ + νf (�∇ · v)I + 2µfD .(2.1)

The material properties µc, µs, µl, αc, Rg, γφ, νf , and µf are assumed to be functions
of φ such that they are nonzero in the appropriate phase and are zero otherwise. The
shear modulus µs is associated with a Blatz–Ko compressible solid and µl is associated
with a liquid. The function µc represents the shear modulus of the condensed phase
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such that µc = µs + µl, with the properties that µc(0) = µs(0) = µsolid, µl(0) = 0,
µs(1) = 0, µc(1) = µl(1) = µliquid, and µc(2) = µs(2) = µl(2) = 0. The function αc is
associated with a thermal expansion stress, Rg is associated with the ideal gas constant
in a gas, νf and µf are associated with strain rate generated viscous stress, and γφ is
associated with phase change induced stresses that act in regions with nonzero phase
gradients. Derivatives of the φ-dependent functions appear as α′(φ, T ) = ∂α/∂φ|T .
The “s” subscript refers to the solid phase, the “l” subscript refers to the liquid phase,
and the “c” subscript refers to the condensed phase. Similarly the “f” subscript refers
to the fluid properties for both liquid and gas phases. If spelled out, the subscript
“solid,” “liquid,” or “gas” refer to a constant material property. The various scalar
material properties, such as cv, γφ, could have explicit dependence on λ as well as
φ and T . The governing equations for the model with reaction and phase change
(without body forces) are

ρ̇ + ρ�∇ · v = 0 ,(2.2)

ρ v̇ = �∇ · σ ,(2.3)

ρcvṪ = �∇ · (k�∇T ) + νf (�∇ · v)2 + 2µfD : D + Bφ̇2

− αcK
ρ

ρ0
T (�∇ · v) − ρRgT (�∇ · v)

+

{
−α′

c(φ)

2
K

ρ

ρ0
T ln(IIIB) − ρ

R′
g(φ)

2
T ln(IIIB) − ρc′v(φ)T ln(T/T0)

+ ρ

[
β′
m(φ)

T

Tm
Qm + β′

v(φ)
T

Tv
Qv

]}
φ̇ + ρQhc Ω + ρr ,(2.4)

Bφ̇ = �∇ ·
(
ργφ�∇φ

)
+ ρc′v(φ) [T ln(T/T0) − (T − T0)]

− µ′
s(φ)

2

ρ

ρ0
(IB − 3) − µ′

c(φ)

2

ρ

ρ0

(1 − 2νc)

νc

(
III

−νc/(1−2νc)
B − 1

)
+

3µ′
l(φ)

2

ρ

ρ0
III

1/3
B

+
α′
c(φ)

2
K

ρ

ρ0
(T − T0) ln(IIIB) +

1

2
ρR′

g(φ)T ln(IIIB)

− ρ
1

2
Ψwell ∂F

∂φ
− ρ

[
β′
m(φ)

(
T

Tm
− 1

)
Qm + β′

v(φ)

(
T

Tv
− 1

)
Qv

]
,(2.5)

ρλ̇ = �∇ · (d�∇λ) + ρΩ ,(2.6)

Ḟ = LF .(2.7)

Table 1 gives the values for material properties that appear in (2.1)–(2.7). The values
are based upon HMX along with references to the data source or a notation that we
have used a model value.

2.3. Material transition functions. An important ingredient of our model is
the use of φ-dependent material properties, or material transition functions. Their
most prominent use is in the definition of the source terms in the φ-evolution equation
and the energy (temperature) equation. Also, functions such as µc(φ), µs(φ), µl(φ),
αc(φ), Rg(φ), cv(φ) all change with the phase variable φ. The model assumes that
these are defined in such a way so that they take on proper values for pure phases
when the material has the limiting pure-phase values for φ. The φ-dependent material
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Table 1
Material properties typical of HMX.

Material property Value Refs.

density of β-HMX (ρ0) 1.71 g/cm3 [7]
density of liquid-HMX 1.65 g/cm3 [13]
specific heat at constant volume (cv) 1.5 × 103 J/kg K [7]

isothermal bulk modulus (K = ρ ∂p
∂ρ

∣∣∣
T
) 13.5 GPa [7]

shear modulus (µsolid) 2.46 GPa modeled
shear modulus (µliquid) 2.37 GPa modeled
Poisson’s ratio (νc) 0.414 calculated
viscosity coefficient (µf ) 0.45 N s/m2 [5]
bulk viscosity coefficient (νf ) -2/3 µf Stokes hypothesis
thermal expansion coefficient (αsolid) 0.000134 1/K [7]
thermal conductivity (k) .36 W/m K [7]
phase diffusion coefficient (ργφ) 1.0 × 10−6 m kg/s2 modeled
universal gas constant (Ru) 8313 J/kmole K
molar weight of β-HMX 296.2 kg/kmole [5]
gas constant per unit mass (Rgas) 300 J/kg K modeled
melting temperature (Tm) 558 K [5]
vaporization temperature (Tv) 588 K modeled
heat of melting (Qm) −200 × 103 J/kg [5]
heat of vaporization (Qv) −100 × 103 J/kg modeled
heat of combustion (Qhc) 5.0 × 106 J/kg [8]

rate of heat source (ρr) 5000 J/m3s modeled
frequency of Arrhenius kinetic (A) 9.3 × 1016 1/s [8]
activation temperature (Ea/Ru) 24660 K [8]
depth of phase well (Ψwell) 550 J/kg modeled

multiplication factor of φ̇ (B) 1.5 kg/m s modeled

transition functions used for this paper are listed in the appendix and are made up
of simple, smooth, or piece-wise smooth polynomials in φ.

Figure 1 shows the material transition functions β′
m(φ), β′

v(φ) that are used to
construct ψ2, which represents free-energy changes during phase transition and is
given by

ψ2 =
1

2
ΨwellF (φ) + βm(φ)Qm

( T

Tm
− 1
)

+ βv(φ)Qv

( T

Tv
− 1
)
,(2.8)

where Ψwell > 0 is a constant that describes the potential and Qm < 0 and Qv < 0 are
constants representing the heats of melting and vaporization. The constants Tm > 0
and Tv > 0 are melting and vaporization temperatures. Here we assume a specific
form for F (φ) (listed in the appendix) that is a smooth positive definite function with
isolated zeros at φ = 0, 1, and 2 representing three local minima. In addition, F (φ)
is assumed to be locally quadratic near the zeros at φ = 0, 1 and 2, i.e., near φ = 0,
F ∼ φ2, near φ = 1, F ∼ (φ − 1)2, and near φ = 2, F ∼ (φ − 2)2. The function
βm(φ) is assumed to be smooth and monotonically increasing and has values from 0
to 1 on the range 0 ≤ φ ≤ 1 with zero derivative elsewhere. Similarly, the function
βv(φ) is assumed to be monotonically increasing with values from 0 to 1 on the range
1 ≤ φ ≤ 2. The derivative of transition energy density ∂ψ2/∂φ generates source terms
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in the phase equation represented as

∂ψ2

∂φ
=

1

2
Ψwell ∂F

∂φ
(φ) + β′

m(φ)Qm

( T

Tm
− 1
)

+ β′
v(φ)Qv

( T

Tv
− 1
)
.(2.9)

Figure 2 illustrates the assumed dependence of ψ2(φ, T ) on φ and T . Starting from
(a) through (d), the temperature T is raised from below Tm to above Tv, representing
a standard melting-evaporation process. The transition energy density in (a) has its
minimum at φ = 0. As T is increased through Tm and then Tv, we see a shift in the
global minima from pure solid to solid-liquid and to liquid-vapor. As T eventually
exceeds Tv as shown in (d), the energy minimizing well shifts to a vapor state at
φ = 2. Figure 3 shows examples of the other material transition functions and their
derivatives.

3. Matching material properties to HMX. Here we discuss our fit of the
model’s material properties to mimic an energetic material like HMX. Figure 4 shows
a pressure-temperature plane that indicates regions where, from classical and exper-
imental considerations, HMX can be considered to be a static solid, liquid, or a gas
in thermodynamic equilibrium. Some of the boundaries (specifically the solid/liquid
boundary) are known from experiment. Note that solid phases of HMX are not differ-
entiated here, and it is assumed that the β-phase of solid HMX is representative. The
solid/liquid boundary is of particular interest and is computed via a Kraut–Kennedy
law. It is well known that HMX liquid is quite unstable [3] and once the liquid phase
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Fig. 2. Plot of ψ2 as a function of φ with T variation.

appears it quickly evolves into gas, partly from exothermic energy released by chem-
ical reaction in the condensed phase. For the purpose of our early modeling efforts,
we have decided to match the HMX melt temperature to the experimental melt tem-
perature T = 558 K and the evaporation temperature at T = 588 K. Figure 4 shows
a shaded box that represents the range of temperatures and pressures (level of stress)
predicted by computation with model.

In our model, p-V isotherms (where V = 1/ρ) can be obtained directly from (2.1)
by setting all derivatives equal to zero and by assuming a homogeneous deformation
such that B = (ρ0/ρ)2/3I and σ = −pI (where p is the pressure) to obtain

p = µc

(
ρ

ρ0

)[(
ρ

ρ0

) 2νc
1−2νc −

(
ρ

ρ0

)− 2
3

]
+ αcK

ρ

ρ0
(T − T0) − ρRgT .(3.1)

HMX liquid is approximately 4% less dense than HMX solid [13]. Figure 5 shows a
plot of an isotherm computed from (3.1) with values shown in Table 1. Experimental
data points on the solid isotherms obtained by Yoo and Cynn [10] are shown for
comparison. Since HMX liquid is so chemically unstable, experimental data for the
liquid isotherm is not available. One implication of the lower density for HMX liquid
is that the isothermal sound speed (the negative slope of the p-V isotherm) is greater
in the solid than in the liquid. Figure 6 shows a plot of an isotherm computed from
(3.1) for the ideal gas term that is proportional to Rg. Figure 7 shows a representative
isotherm on log-scales at 300 K, for the full range of values for the model when the
material is solid, liquid, or gas, as computed from (3.1).

4. Form of the model for three simple motions. Here we consider the dif-
ferential equations for the model when the material undergoes three simple motions:
(i) evolution at constant volume, (ii) time-dependent longitudinal motion, and (iii)
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one-dimensional, time-dependent shear motion. All three cases are amenable to exten-
sive computational and theoretical analysis and their discussion reveals the underlying
mathematical properties of the model. All three are very important in the traditional
analysis of ignition of energetic materials. The reduction for the three special motions
follow directly from the general form of equations (2.1)–(2.7) and were derived in the
last section of paper I.

4.1. Evolution at constant volume. An important simple case often consid-
ered in combustion theory describes constant volume thermal explosion, where the
velocity v as well as all spatial gradients are exactly zero and the density is constant.
For illustration (in this section only), we neglect thermal expansion and assume a con-
stant specific heat and gas constant. We are left with three ODEs in time for the tem-
perature T , phase variable φ, and reaction progress variable λ (see (I 6.1), (I 6.2), and
(I 6.3)). If phase change is discarded, we recover the equations from standard combus-
tion theory for constant volume thermal explosion, cv(∂T/∂t) = Qhc Ω , (∂λ/∂t) = Ω.
Of course, the more interesting behavior occurs when phase change is included.

Figure 8 shows an example of the time evolution of constant volume heating



MODELING ENERGETIC MATERIALS II: SIMPLE MOTIONS 545

Temperature (K)

P
re

ss
ur

e
(P

a)

300 550 800 1050
105

106

107

108

109

1010

Temperature (K)

P
re

ss
ur

e
(P

a)

300 550 800 1050
105

106

107

108

109

1010

Temperature (K)

P
re

ss
ur

e
(P

a)

300 550 800 1050
105

106

107

108

109

1010

S L G

Fig. 4. The solid curve is the melt temperature-pressure relation for β-HMX given by the
semi-empirical Kraut–Kennedy law [4], [7]. Dashed line and long-dashed line are constant melt
temperature and vapor temperature used in the current numerical simulation, respectively.

without chemical reaction starting from a solid (φ = 0) at an initial temperature of
T = 300 K. The heating rate r and the kinetic parameter B control the transformation
rates. It is possible to see (at least qualitatively) all of the phase change behaviors
expected during constant volume heating. As heat is first applied, the temperature
increases linearly. As the temperature increases further, the material begins to melt
and the endothermic process absorbs heat from the system. (In Figure 8 the slight
temperature decrease is barely visible in the nearly constant temperature interval.)
At the completion of the phase transformation to liquid, the temperature rises in the
liquid at a constant rate until the vaporization temperature is reached and second
phase transition from liquid to gas phase occurs. After that, constant rate heating in
the gas occurs.

The sharp transitions that are apparent in Figure 8 (for example, near the times
t = 0.05 and t = 0.09 sec) are the result of a bifurcation and a change of stability in
the ODEs near the transition temperatures Tm and Tv. To see this clearly, consider
the stability of the solid phase during constant rate heating. The temperature and
the phase variable can be represented to leading order as T = T0 + r t/cv and φ = 0
(with λ = 0 for all time), so that a stability analysis assumes that T and φ take the
form

T = T0 +
r

cv
t + T ′(t) + · · · , φ = φ′(t) + · · · ,(4.1)
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>
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implies that the

speed of sound is greater in solid than in the liquid HMX.

where T ′ and φ′ are assumed to be small. The linearization of (I 6.1), (I 6.2) with
β′
m ≈ 6φ′ and ∂F/∂φ ≈ 8φ′ is straightforward and leads to equations for T ′, φ′:

dT ′

dt
= 0 ,(4.2)

dφ′

dt
= − ρ

B

{
4Ψwell − 6Qm

(
1 − T (0)

Tm

)}
φ′ ,(4.3)

where T (0) is the leading-order temperature found from simple constant rate heating

T (0) = T0 +
r

cv
t .(4.4)

The stability properties of the solution for φ′ are governed by the sign of dφ′/dt
found on the right-hand side of (4.3). For early times, the argument is always negative,
since T (0) < Tm and Qm < 0. Consequently, the solution is exponentially stable. (It
is a simple matter to write down the exact solution of (4.3).) As the temperature
rises, the stability changes as dφ′/dt changes sign, and this time it is found by setting
the right-hand side of (4.3) exactly equal to zero. In this case the leading-order
temperature is

T (0) = Tm − 2

3

Ψwell

Qm
Tm .(4.5)
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Fig. 6. P-V isotherms at four different temperatures for HMX vapor (φ = 2).

For the case where |Ψwell/Qm| << 1, the phase transition temperature associated
with this simple change of stability is close to Tm. So we find that below the melt
temperature the perturbations are stable, but near the melt temperature the stability
changes type and becomes unstable. Any perturbation grows and subsequently an
abrupt transition occurs from φ = 0. Another point is that our assumed properties
for F strictly require a nonzero perturbation of φ to be combined with heating in order
to observe a phase transition. In cases other than constant volume evolution, other
source terms exist in the φ-evolution equation (specifically those related to derivatives
of the Helmholtz free energy associated with deformation) and they can be the source
of thermomechanical disturbances that can grow when the phase becomes dynamically
unstable.

Figure 9 shows a representative solution to (I 6.1)–(I 6.3) with an Arrhenius form
assumed for Ω = A(φ)(1−λ) exp[−Ea/(RuT )]. The function A(φ) is chosen to be zero
in the solid phase and takes the value listed in Table 1 in the gas phase. Initially the
material is solid and cold and heated at a uniform rate. So the phase transformations
from solid to liquid to gas occur in the same way as shown in Figure 8. However, for
this example, once the gas is in abundance, the chemical reaction starts and the gas
undergoes a classically well understood constant volume thermal explosion. If we had
chosen to adopt a more complex kinetic form for Ω, reaction could take place first in
the liquid phase. In the near future, we plan to use more realistic kinetic scheme for
HMX. Clearly there is the flexibility within this formulation to model many aspects
of condensed phase energy release.



548 J. J.-I. YOH, D. S. STEWART, AND G. A. RUDERMAN

Specific volume (m3/kg)

P
re

ss
ur

e
(P

a)

10-4 10-3 10-2 10-1 100105

106

107

108

109

1010

1011

ϕ=0, T=300 K

ϕ=1, T=900 K

ϕ=2, T=300 K

Specific volume (m3/kg)

P
re

ss
ur

e
(P

a)

10-4 10-3 10-2 10-1 100105

106

107

108

109

1010

1011

Specific volume (m3/kg)

P
re

ss
ur

e
(P

a)

10-4 10-3 10-2 10-1 100105

106

107

108

109

1010

1011

Fig. 7. P-V isotherms for solid, liquid, and vapor HMX at T = 300 K, drawn to a single range
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4.2. Longitudinal motion. Next we consider simple longitudinal motion. Typ-
ically, explosives are tested by subjecting them to impact with a flyer-plate. In an
idealization of this experiment, an infinite slab experiences a displacement loading
normal to its surface. As a computational matter, the same flow can be modeled as a
reverse impact experiment, where the sample is set into uniform motion and suddenly
comes to rest at the origin. We must consider following one-dimensional motion:

x1 = X1 + f1(X1, t) , x2 = X2 , x3 = X3 ,(4.6)

where f1 is the displacement in the 1-direction. There is one nonzero velocity com-
ponent, v1 = ∂f1/∂t|X(X1, t), and F and B are both diagonal, and B11 = (1 + f ′

1)2,
B22 = 1, B33 = 1. The first and third invariants of B are IB = 2 + (1 + f ′

1)2 and
IIIB = (1 + f ′

1)2 = (ρ0/ρ)2. Then IB − 3 = (ρ0/ρ)2 − 1. Hence we use the density as
the independent strain measure and replace f ′

1. The one nonzero component of the

rate of strain tensor is D11 = ∂v1/∂x1. Also (�∇φ⊗ �∇φ)11 = (∂φ/∂x1)2. It follows
that all the shear stresses are zero, σ12 = σ23 = σ13 = 0, and the normal stress σ11,
is given by (I 6.5).

The governing equations for longitudinal compression are the mass and momen-
tum equations in (I 6.6), (I 6.7), the energy equation (written in temperature form) in
(I 6.8), and the phase and reaction progress evolution equations, given by (I 6.9) and
(I 6.10). This special formulation is a set of five PDEs for the dependent variables
ρ, v1, T, φ, and λ in terms of the independent variables x1 and t.
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4.3. Shear motion. The specialization of the equations to shear motion leads
to PDEs in one space variable and time. The nominal geometry is a slab of fixed
thickness loaded at one surface with constant velocity. The other surface is taken
to be fixed (zero displacement) for the entire duration of the test. We consider the
following shear motion:

x1 = X1 + f1(X2, t), x2 = X2 + f2(X2, t), x3 = X3 ,(4.7)

where f1 and f2 are the in-plane displacements, which can also be regarded as func-
tions of the spatial coordinate and time x2, t. Corresponding to this motion one has
the velocities with v1(x2, t), v2(x2, t), v3 = 0, and ∂/∂x1 = ∂/∂x3 = 0. The expres-

sion of the material time derivative is given by
˙
() = ∂/∂t + v2 ∂/∂x2. The shear

deformation is described by (I 6.12) and (I 6.13). The invariants of B are computed

as IB = 1 + f ′
1
2

+ (1 + f ′
2)2 + 1 and IIIB = (1 + f ′

2)2 = (ρ0/ρ)2 with 1 + f ′
2 = ρ0/ρ.

Also IB − 3 = (ρ0/ρ)2 − 1 + f ′
1
2
. In addition, from the kinematic identity Ḟ = LF ,

we obtain two nontrivial relations ḟ ′
1 = (1 + f ′

2)∂v1/∂x2 and ḟ ′
2 = (1 + f ′

2)∂v2/∂x2,

where the material derivative is
˙
() = ∂/∂t + v2 ∂/∂x2. The second of the two results

is equivalent to replacing 1 + f ′
2 with ρ0/ρ. The first is an independent expression

for the shear strain which can be recast in terms of the density and transverse ve-
locity gradient as in (I 6.14). Finally, �∇φ⊗ �∇φ has only one nonzero component,

(�∇φ⊗�∇φ)22 = (∂φ/∂x2)2.
We use the density ρ and the shear strain f ′

1 as the two independent kinematic
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Fig. 9. Constant volume thermal explosion.

variables. We can now write down expressions for the components of the stress tensor.
The cross-plane shear stresses are zero, i.e., σ13 = σ23 = 0. The in-plane shear stress
σ12 is given by the expression (I 6.15). The in-plane normal stress σ22 is given by (I
6.16).

The specific governing equations for the shear motion are listed in (I 6.17)–(I 6.22).
Finally the kinematic relation (I 6.14) for the shear strain (which must be included)
is expressed as in (I 6.23). This special formulation is a set of seven PDEs for the
dependent variables ρ, v1, v2, T, φ, λ, and f ′

1 in terms of the independent variables x2

and t.

5. Numerical methodology. We have implemented an efficient high-order
temporal scheme for stiff equations based on the method of lines (MOL) to solve
for longitudinal and shear motions. The MOL can be implemented for various choices
of spatial discretization. For discretization of convective terms we use a fourth-order
convex essentially nonoscillatory (ENO) method [6] combined with a third-order, low-
storage, semi-implicit Runge–Kutta method [9] for the MOL-ODEs. We do not de-
scribe the ENO discretization here. Interested readers are referred to [6].

5.1. Description of low-storage semi-implicit Runge–Kutta solver. A
more comprehensive discussion of the temporal scheme can be found in [9], and only
a brief description of the method is given below. To solve a system of autonomous
ODEs of the form u′ = f(u)+g(u), we use an explicit scheme for the nonstiff term f
and an implicit scheme for the stiff term g. We solve the system in an explicit/implicit
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Fig. 10. Temperature, phase, pressure, and density fields for a representative shear experiment
(vshear = 600 m/s, T0 = 550 K).

hybrid fashion to achieve high-order accuracy and stiffly stable calculation. A typical
third-order method of this kind is given below:

kj = ajkj−1 + h[f(uj−1) + g(uj−1 + c̄jkj−1 + cjkj)],

uj = uj−1 + bjkj(5.1)

(j = 1, . . . , 3),

where h is the time increment, and the coefficients of the scheme are as follows:
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(5.2)

with a1 = 0, c̄1 = 0.

In many instances where implicit calculation is not required, one can simply assign
zero to the stiff vector g and assign the entire source as a nonstiff vector f and the
standard explicit Runge–Kutta scheme is recovered.
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Fig. 12. Snapshots of density, temperature, pressure, and phase field (from top to bottom)
taken at time t = 5, 15, 30µsec from Figures 10 and 11 of the plane shearing experiment.

5.2. Implementation. Before starting the computation one writes the govern-
ing PDEs in a conservative form such that limiting forms of the equations admit
discontinuous solutions which are also admitted by the numerical approximation. Fur-
ther, the stiff and nonstiff terms must be intelligently separated. In particular, con-
vective terms, which are a priori discretized in space via a fourth-order convex ENO
scheme, are always treated as nonstiff terms. The viscous stress terms of momentum
equations are treated as nonstiff and are discretized by a fourth-order central differ-
encing. Only the reaction source term, Ω, is treated as stiff and is subjected to the
implicit numerical procedure. Otherwise the explicit method solves all the remaining
terms of the equations.

We consider the shear motion to illustrate the numerical implementation. After
converting the equations into a conservative form and separating the stiff and nonstiff
terms, we can write the conservative variables and the fluxes as follows:
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− ∂
∂x2

(ρf ′
1v2) + ρ0

∂v1
∂x2

− ∂
∂x2

(ρλv2)



, and g =




0
0
0
0
0
0
ρΩ



,(5.3)

where ω1 and ω2 are the right-hand-side source terms of T and φ. The convective
terms are discretized by the fourth-order convex ENO scheme [6] and the resulting
semidiscretized equations ut = f +g are a system of autonomous ODEs in u and are
integrated in time via the third-order Runge–Kutta method as discussed earlier.

6. Simulations of longitudinal and shear motions. We have validated the
code written for the full model through a series of graduated tests. Since equations
that correspond to classical elastodynamics and classical gas dynamics can be obtained
simply by suppressing the appropriate terms, limiting versions of the code can be
used to solve problems with exact solutions, like standard Riemann problems or small
amplitude linear wave propagation. These tests are fully documented in Yoh’s Ph.D.
thesis [11]. Similar test cases can be found in Ruderman’s thesis [12]. For example,
Riemann problems have been computed for a special case of an ideal gas. In the special
limiting case of small-displacement elasticity for shear motions, with the assumption of
constant material properties, one can show that there are dilatation waves that travel
at
√

(λs + 2µs)/ρ0 and shear waves that travel at
√
µs/ρ0, where λs = 2µsνc/(1 −

2νc).

6.1. One-dimensional shear motions. Here we discuss representative solu-
tions to an initial boundary-value problem that represents numerical experiments for
shear motion. The problem set up is as follows: A slab of material 15 mm thick in
the x2-direction is initially at an elevated temperature and suddenly subjected to a
constant velocity shearing motion at the edge x2 = 15 mm while the edge at x2 = 0 is
held fixed. The material is thermally insulated. For the purpose of these experiments,
the gas phase is suppressed and does not appear, hence the transitions documented
here occur only between solid and liquid. We show representative results for two
different initial conditions. First, we consider the initial temperature at 550 K with
the constant shear velocity of 600 m/s, dubbed shear case A. In the second case, the
initial temperature is slightly above the melting transition temperature at 560 K with
a lower shearing velocity of 200 m/s, dubbed shear case B. Shear case B exhibits
more complex dynamics associated with multiple regions of phase change. Both cases
show generic elastic wave interactions and reflections within solid-fluid regions. The
computational domain has 500 points spread uniformly over 15 mm.

Figures 10 and 11 show x2-t contour plots of the thermodynamic variables T , φ,
p, ρ, the velocities v1 and v2, and the displacement gradient f ′

1(X2). Initially the hot
sample, just below the melting temperature at 550 K, is exposed to the wall shear
at 600 m/s. The rapid shearing at x2 = 15 mm produces sufficient heating to cause
rapid melting in a thin layer near the moving boundary. This is easily observed in
Figure 10(a) and 10(b) for the temperature T and phase variable φ, respectively. The
shearing motion is then confined mostly to a thin shear layer as seen in Figure 11(a)
for velocity v1 (in the direction of the imposed motion at x2 = 15 mm). Note that the
shear wave in the solid associated with v1 is clearly observed as a wave that initially
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Fig. 13. Temperature, phase, pressure, and density fields for a representative shear experiment
(vshear = 200 m/s, T0 = 560 K).

enters the domain at x2 = 15 mm and travels toward x2 = 0 mm and subsequently
reflects off the stationary wall.

Figure 11(b) for v2 displays waves that travel at the dilatational wave speed, which
is approximately twice the shear wave speed. The dilatational waves are generated
by the initial growth of the melted layer and are associated with pressure waves of
magnitude of approximately 108 Pa = 1 kbar. Note that the initial stress in the system
is elevated due to the effect of thermal expansion at the initially raised temperature.
Close inspection of the temperature and pressure fields shown in Figure 10(a), (c)
shows evidence of high frequency acoustic waves that can be traced to reflections and
transmissions of waves through the solid/liquid interface near x2 = 15 mm.
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Fig. 14. Shear velocity (v1), compression velocity (v2), and displacement gradient (du1/dX2)
fields for a representative shear experiment (vshear = 200 m/s, T0 = 560 K).

Figure 12 shows computed profiles for shear case A for ρ, T, p, and φ at times
5, 15, and 30 µsec, which represents time cuts across Figure 10(a)–(d). The profiles
show elevated temperatures and phase change (melting) confined to the layer near the
x2 = 15 mm boundary. The fluctuations in the pressure, density, and temperature
profiles are the result of the acoustic disturbances propagating through the solid and
across the solid/liquid layer.

Note that the layer of liquid that develops at x2 = 15 mm is a localized shear
layer and can be thought of as a shear band. The material in the melt layer has very
large v1-velocities and subsequently undergoes large deformation. The material in the
solid phase essentially remains fixed in place as the fluid layer slides across it.
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Fig. 15. Instantaneous profiles of density, temperature, pressure, and phase field (from top to
bottom) taken at time t = 5, 15, 30µsec corresponding to Figures 13 and 14 of the plane shearing
experiment.

Shear case B has the solid with its initial temperature slightly above the melt
temperature, suddenly subjected to a (lower) constant shear motion of 200 m/s. As
in case A, a melt layer forms near x2 = 15 mm and the dilation wave travels across the
slab. After reflection at the fixed wall, a second melt layer develops near x2 = 0 mm.
Figures 13, 14, and 15 show the additional complexity in the x2-t record. The second
melt layer causes additional scatter of waves generated near the x2 = 15 mm boundary,
and, in turn, the growth of the layer generates additional disturbances which transmit
through the regions. One recalls that there are additional terms in the φ-evolution
equation that are associated with the deformational part of the stress. We clearly see
that the stress waves (by themselves) can induce the phase transformation. One sees
transient phase generation carried on the subcharacteristics in the phase variable plot
Figure 13(b). The next set of experiments for longitudinal motions illustrates shock
melting.

6.2. One-dimensional longitudinal motion: Reverse impact. The results
discussed next are for two different longitudinal motions where a HMX specimen of
thickness 15 mm is initially solid at the melt temperature (T = 558 K) and subjected
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Fig. 16. Velocity, phase, pressure, density and temperature fields for a representative reverse-
impact (longitudinal) experiment (vimpact = −500 m/s, T0 = 550 K).

to a reverse impact at speed −500 m/s for longitudinal case A and −200 m/s for
longitudinal case B. The computational domain spans the 0.015 m with 500 mesh
points.

For longitudinal case A, Figures 16 and 17 illustrate the phenomenon of shock
melting as predicted by the model. Figure 16(a)–(e) clearly shows the emergence
of a shock wave from the stationary wall into the oncoming stream. Ahead of the
shock the material is solid with φ = 0; behind the shock the material is liquid with
φ = 1. The model predicts a shock with definite spatial structure as illustrated by the
structure profiles taken at t = 3µsec and shown in Figure 17. In the shocked state,
where the material has liquefied, there is a significant pressure increase to about
2.8 GPa (28 kbar)—a 20% density increase—and a drop in the temperature due to
the endothermic nature of the phase transformation. The pressure and density rise
monotonically across the shock structure. The temperature increases slightly, then
drops with the onset of the phase transformation from solid to liquid. Throughout
the structure, the phase changes monotonically from solid to liquid.

Longitudinal case B corresponds to a reverse-impact experiment where the impact
speed is reduced to −200 m/s but the initial temperature is raised slightly to 560 K,



MODELING ENERGETIC MATERIALS II: SIMPLE MOTIONS 559

0 5 10 15

0

1

X (mm)

Ph
as

e

0 5 10 15

1.0e+05

1.7e+09

3.3e+09

X (mm)

Pr
es

su
re

0 5 10 15
400

500

600

X (mm)

Te
m

pe
ra

tu
re

0 5 10 15

1600

1850

2100

X (mm)

D
en

sit
y

Fig. 17. Snapshots of density, temperature, pressure, and phase field (from top to bottom)
taken at time t = 3µsec from Figure 16 of the longitudinal exercise.

just two degrees above the melt temperature. Figure 18 shows the x1-t contour
plots. Figure 19 shows corresponding line cuts taken at time t = 3µsec. Similar to
longitudinal case A, shock induced phase transformation occurs; however, a stable
intermediate phase is produced behind the shock front with φ = 0.33. Interestingly,
the model can be shown to allow these intermediate states in φ due to the contributions
of the other stress-dependent source terms proportional to µ′

s(φ), µ′
c(φ), α′

c(φ), etc.
as found in (2.7). A complete analysis of all possible φ-states and their stability
is beyond the scope of this paper. However, we can illustrate the stability of the
intermediate state for longitudinal case B by a numerical evaluation as follows. We
take the evolution equation for φ, (I 6.9), to be rewritten as ∂φ

∂t = −v1
∂φ
∂x1

+ w2,
where w2 is the source term for the material derivative of φ. We then take the shock
structure as obtained numerically at t = 3µsec for both longitudinal cases A and B
and plot ∂φ/∂t versus φ in Figure 20. Stable equilibria points (in φ) are found by
the zeros of ∂φ/∂t. For longitudinal case A, only φ = 0 and φ = 1 are stable with
∂φ/∂t = 0. But for longitudinal case B, the intermediate state φ = 0.33 is found
to be stable. Our numerical experiments suggest that increasing the intensity of the
reverse impact causes the intermediate states to disappear with φ = 0, 1 as the only
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Fig. 18. Velocity, phase, pressure, density and temperature fields for a representative reverse-
impact (longitudinal) experiment (vimpact = −200 m/s, T0 = 560 K).

stable equilibria.

7. Conclusions. We have illustrated that our model, fitted to a real material,
leads to predictions of simple motions (constant volume evolution, shear motion, and
longitudinal motion) that are plausible. The model has the property that the con-
stitutive theory automatically changes with the phase and is consistent with classical
properties of that phase. We have shown that it is possible to fit the model to the
known behavior of a real material.

Although idealized, the representative numerical experiments exhibit extremely
rich behaviors. Strain localization phenomena occurred via melting in thin layers
in many of the trials we have conducted. The phase change phenomena is directly
coupled to the material loading through the change in material type and changes in
properties that are carried with the phase. We are ready to apply this new continuum
model to more complex physical problems of interest to us. Of course, extremely in-
teresting and varied mathematical problems, such as steady traveling waves and their
multidimensional stability, will arise that can profitably be analyzed by asymptotic
means. The models embedded within this larger model may have greater application
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Fig. 19. Snapshots of density, temperature, pressure, and phase field (from top to bottom)
taken at time t = 3µsec from Figure 18 of the longitudinal experiment.

to the general theory of phase transformation. Of specific near term interest to us is a
detailed study of the mechanically induced ignition of an energetic solid. We also plan
to pursue a simplified version of this model to more fully examine the processes of
classical melting/freezing and vaporization/condensation in the context of the model.
We also anticipate the near term application of the model to problems of vaporizing
fuels and condensed phase propellant combustion.

Appendix. List of φ-dependent functions for 0 ≤ φ ≤ 2.

F (φ) = [φ(φ− 1)(φ− 2)]
2

F ′(φ) = 2φ(4 − 18φ + 26φ2 − 15φ3 + 3φ4),

β′
m(φ) =

{
6φ(1 − φ)
0

for 0 ≤ φ ≤ 1,
otherwise,

β′
v(φ) =

{
6(φ− 1)(2 − φ)
0

for 1 ≤ φ ≤ 2,
otherwise,
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Fig. 20. dφ/dt versus φ for the two specialized reverse-impact experiments discussed. By
varying the initial temperature, T0, meta-stable state (φ ≈ 0.33) is shown as a local equilibrium
point on the experiment represented by the square symbols. In contrast, the experiment shown by
hollow circles suggests that φ = 1 is the only stable equilibria once the initial state is perturbed about
the unstable point at φ = 0, corresponding to the solid state under the impact loading.

µc(φ) =

{
2(µsolid − µliquid)φ

3 − 3(µsolid − µliquid)φ
2 + µsolid

2(µliquid)(φ− 1)3 − 3(µliquid)(φ− 1)2 + µliquid

for 0 ≤ φ ≤ 1,
for 1 ≤ φ ≤ 2,

µ′
c(φ) =

{
6(µsolid − µliquid)φ

2 − 6(µsolid − µliquid)φ
6(µliquid)(φ− 1)2 − 6(µliquid)(φ− 1)

for 0 ≤ φ ≤ 1,
for 1 ≤ φ ≤ 2,

µs(φ) =

{
2(µsolid)φ

3 − 3(µsolid)φ
2 + µsolid

0
for 0 ≤ φ ≤ 1,
for φ > 1,

µ′
s(φ) =

{
6(µsolid)φ

2 − 6(µsolid)φ
0

for 0 ≤ φ ≤ 1,
otherwise,

µl(φ) =

{
2(−µliquid)φ

3 − 3(−µliquid)φ
2

2(µliquid)(φ− 1)3 − 3(µliquid)(φ− 1)2 + µliquid

for 0 ≤ φ ≤ 1,
for 1 ≤ φ ≤ 2,

µ′
l(φ) =

{
6(−µliquid)φ

2 − 6(−µliquid)φ
6(µliquid)(φ− 1)2 − 6(µliquid)(φ− 1)

for 0 ≤ φ ≤ 1,
for 1 ≤ φ ≤ 2,

R(φ) =

{
2(−Rgas)(φ− 1)3 − 3(−Rgas)(φ− 1)2

0
for 1 ≤ φ ≤ 2,
for φ < 1,

R′(φ) =

{
6(−Rgas)(φ− 1)2 − 6(−Rgas)(φ− 1)
0

for 1 ≤ φ ≤ 2,
otherwise,
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αc(φ) =

{
2(αsolid)(φ− 1)3 − 3(αsolid)(φ− 1)2 + αsolid
αsolid

for 1 ≤ φ ≤ 2,
for φ < 1,

α′
c(φ) =

{
6(αsolid)(φ− 1)2 − 6(αsolid)(φ− 1)
0

for 1 ≤ φ ≤ 2,
otherwise,

ργφ(φ) =

{
6(−ργφ)φ2 − 6(−ργφ)φ
6(−ργφ)(φ− 1)2 − 6(−ργφ)(φ− 1)

for 0 ≤ φ ≤ 1,
for 1 ≤ φ ≤ 2,

cv(φ) = cv
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Abstract. Image inpainting is a special image restoration problem for which image prior models
play a crucial role. Euler’s elastica was first introduced to computer vision by Mumford [Algebraic
Geometry and its Applications, Springer-Verlag, New York, 1994, pp. 491–506] as a curve prior
model. By functionalizing the elastica energy, Masnou and Morel [Proceedings of the 5th IEEE
International Conference Image Processing, 3 (1998), pp. 259–263] proposed an elastica-based vari-
ational inpainting model. The current paper is intended to contribute to the development of its
mathematical foundation and the study of its properties and connections to the earlier works of
Bertalmio, Sapiro, Caselles, and Ballester [SIGGRAPH 2000, ACM Press, New York, 2000] and
Chan and Shen [J. Visual Comm. Image Rep., 12 (2001), pp. 436–449]. A computational scheme
based on numerical PDEs is presented, which allows the automatic handling of topologically complex
inpainting domains.

Key words. inpainting, elastica, prior models, Bayesian, variational method, bounded variation,
curvature, transport, diffusion, numerical PDE
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1. Introduction. Among museum conservators and restoration artists, inpaint-
ing refers to the practice of retouching or recovering damaged ancient paintings [14,
40]. The goal is to remove the cracks or recover the missing patches in an undetectable
manner.

The term digital inpainting was initially introduced into digital image processing
by Bertalmio, Sapiro, Caselles, and Ballester in [3], where the authors first made an
innovative construction of a third-order PDE inpainting model. Equally important
in [3] is that the authors demonstrated the broad applications of digital inpainting
in film restoration, text removal, scratch removal, and special effects in movies. The
same group of authors has also recently developed a variational inpainting model
based on a joint cost functional on the gradient vector field and gray values [1]. An
earlier variational inpainting model was studied by Masnou and Morel [27] in the
context of disocclusion in computer vision. Recently, Chan and Shen have proposed
the total variation (TV) inpainting model [8] and a new PDE inpainting model based
on curvature driven diffusions (CDD) [9]. In [8], Chan and Shen also discovered novel
applications in digital zooming and primal-sketch-based [26] image coding schemes.

Inpainting is essentially an interpolation problem, with special focus on situa-
tions in which image information is partially missing or inaccessible on certain two-
dimensional (2-D) regions. What makes image inpainting highly nontrivial is the
complexity of image functions, caused by the richness of geometric structures and a
large dynamic range of scales.

A simple but often sufficient mathematical model for generic nontexture images
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is the BV (bounded variation) space, where the most crucial low-level visual cue—the
edge—is permissible (see Rudin and Osher [36], Rudin, Osher, and Fatemi [37], and
Chambolle and Lions [7] for examples). Yet, in both the approximation community
and that of numerical analysis, as far as we know, there has not been much work on
the inpainting of BV functions. A recent related paper by Cohen et al. [12] discusses
the nonlinear approximation of BV functions, motivated by the wavelets thresholding
technique and the Rudin–Osher–Fatemi denoising model [37]. The nonlinear inter-
polation studied therein is for the near-optimal approximation and representation of
a given complete noisy image u0. But inpainting has a different objective, which is
to recover the entire clean image u from a given incomplete noisy image u0 observed
only outside a missing domain K.

The inpainting of BV images is generally an ill-posed problem, which can be seen
more clearly through a one-dimensional (1-D) example. Imagine that we know the
values (or even the derivatives) of a function f at a − h and a + h. If f is smooth,
then as h → 0 we can apply smooth interpolants such as Lagrange’s and Hermite’s to
infer the values of f on (a − h, a + h) with a certain degree of precision guaranteed.
But for a BV function f , all such smooth interpolants fail to work properly no matter
how small h is, since a “widthless” jump can always occur in (a − h, a + h). Under
the TV Radon measure, a single point in 1-D can have nonzero mass, which makes
the corresponding interpolation problem ill-posed generally. (In the high-dimensional
case, the BV interpolant performs better than in 1-D, due to its connection to the
minimal surface problem. See, for example, [8, 18].)

The good news is that images as BV functions are not too intractable. Each image
is a 2-D projection of a window of the 3-D world, in which individual objects often
have their geometric or surface reflectivity regularities. Such regularities partially
diminish the ill-posedness of the inpainting problem.

Given an image, if we partially cover it with a piece of paper of moderate size
and ask a person to guess what has been occluded in the original image, most people
will come up with a “rational” best guess. For example, if a green apple in a photo
is partially occluded by a piece of paper, then one often first estimates the occluded
boundary and then inpaints with the green color over the occluded area belonging to
the apple. All these decisions are realized by the best guesses or, more scientifically,
by Bayesian inference [16, 21, 30]. The two ingredients of Bayesian inference are the
prior model and data model. The data model is simple for most inpainting problems:
the available data is simply a part of a complete image that we try to restore. Thus
the prior model plays a crucial role in our inference process. For the apple experiment
mentioned above, the a priori knowledge of the shape and color of an apple is helpful
for a person trying to make a meaningful inpainting.

In order to develop a general inpainting model, one should never rely on the prior
model of a specific class of image objects (such as apples). The model must employ
generic regularities to better condition the ill-posedness. The Rudin–Osher–Fatemi
BV [37] and Mumford–Shah’s object-and-edge models [31] are the two most well-
known prior models for generic nontexture images. However, as Chan and Shen [8]
and Esedoglu and Shen [15] discussed, they become less suitable in some large-scale
inpainting problems where they lead to a violation of the connectivity principle in
vision psychology [20]. As a result, it is clear that a good inpainting model must
consider high-order geometric information such as the curvature feature of the level
sets [9].

In the current paper, we study a variational inpainting model that has arisen
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from a second-order plane curve model—Euler’s elastica. The gap between a prior
model for curves and that for images is formally bridged by the level set concept:
generally, a curve prior model can always be “lifted” to an image prior model once
being imposed on all the level sets of an image (similar to the coarea formula in the
theory of BV functions [18]). Indeed, this is how Masnou and Morel first proposed
this model for image inpainting in [27]. Our current paper is intended to (a) study the
mathematical foundation and properties of the inpainting models based on elasticas
and curvatures, (b) explore the connection of this work to the earlier empirical works
on PDE-based inpainting models, and (c) construct numerical PDE schemes for the
associated nonlinear PDEs. Compared with Masnou and Morel’s linear programming
algorithm in [27], the numerical PDE approach is more flexible in that it frees one
from laboring over edge detection or pixel coupling along the boundaries, and also
that it lifts the topological restriction on the inpainting domain K [27].

Euler’s elasticas were first introduced and seriously studied in computer vision by
Mumford [29] as a prior curve model. They were employed in the visual disocclusion
program in [32] to smoothly connect occluded edges and T-junctions. Earlier in
approximation theory, elasticas had been introduced as nonlinear splines by Birkhoff
and De Boor [4].

We are now ready to introduce the layout of the paper. We begin with a brief
introduction to the elasticas (section 2). Then, as in classical interpolation theory,
in section 3, we first study the generic local models for nontexture images. By the
method of moving frames, we are able to inpaint or interpolate the missing T-junctions
or corners inside the inpainting domain based on the elastica interpolant. We then
explain the approach that leads to Masnou and Morel’s algorithm on individually
“engineering” isophotes (i.e., level sets) [27]. A level set-type idea [34] formally “lifts”
this isophote-based model to an energy functional that acts directly on gray scale
images, a process that we shall call “functionalization.”

The rest of the paper is devoted to the mathematical analysis and computational
implementation of elastica-based inpainting models.

In section 4, by introducing the concept of the weak curvature of a general BV
function, we legitimize the functionalization of the elastica energy in the BV space.
The direct method for elastica inpainting is generally difficult due to the lack of
classical fine properties (such as convexity and lower semicontinuities [2]). But for
the extreme case of TV inpainting, we are able to rigorously establish the existence
theorems based on the theory of BV functions. We also discuss why the nonuniqueness
of the solutions to a general inpainting model should be somehow appreciated instead
of being cursed. The last part of the section discusses various relaxation schemes for
the constraints of the inpainting energy.

In section 5, we derive the formal Euler–Lagrange equation for a general curvature-
based inpainting model. The most interesting result is the structure of the associ-
ated flux field �V , which provides a formal way to unify the earlier empirical work
of Bertalmio et al. [3] on transport-based inpainting, and that of Chan and Shen on
CDD-based inpainting [9]. We therefore conjecture that transport and diffusion are
the two universal infinitesimal mechanisms for any PDE-based inpainting schemes.

In section 6, we explain our numerical schemes for the associated nonlinear Euler–
Lagrange equation and demonstrate several computational examples. The computa-
tional schemes have been inspired by various techniques in the classical literature of
computational fluid dynamics.

In the last section, we conclude with a brief discussion on the connection between
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the elastica inpainting model and a recent model by Ballester et al. [1] on the joint
interpolation of both the normal field �n = ∇u/|∇u| and gray values u.

2. Euler’s elastica and its Bayesian rationale. A curve Γ is said to be
Euler’s elastica if it is the equilibrium curve of the elasticity energy

E2[γ] =

∫
γ

(a + bκ2)ds,(2.1)

where ds denotes the arc length element, κ(s) the scalar curvature, and a, b two
positive constant weights. Extra constraints may include the positions and normal
directions of the two ends. Euler obtained the energy in 1744 in studying the steady
shape of a thin and torsion-free rod under external forces (see [23]).

Since both the arc length and curvature are intrinsic geometric features of a curve,
the elastica energy naturally extends to the curves on a general Riemannian manifold
M . For example, if M is embedded in a Euclidean space RN , a curve γ on M can be
expressed by the embedded coordinates

s → �x(s) = (x1(s), . . . , xN (s)).

Then �t = d�x/ds is the tangent and
∏
�xd�t/ds = κ�n defines the curvature, with

∏
�x

representing the orthogonal projection from T�xR
N to T�xM . For a general Riemannian

manifold M , the intrinsic derivative d�t/ds is defined by the Levi–Civita connection or
the covariant derivative (see Chern, Chen, and Lam [11], for example). Such extension
onto general manifolds is motivated by inpainting problems on arbitrary surfaces in
R3, for example, the inpainting of an incomplete image on the surface of a Coke can
in computer graphics.

By the calculus of variations, it can be shown that an elastica must satisfy

2κ′′(s) + κ3(s) =
a

b
κ(s).

For example, Mumford gives a detailed derivation in [29]. More generally, if the
elastica lives on a Riemannian surface, there will be an extra term due to the curving
of the surface:

2κ′′(s) + κ3(s) + 2G(s)κ(s) =
a

b
κ(s),

with G(s) denoting the Gaussian curvature of the surface. More studies in elasticas
on general Riemannian manifolds can be found in Langer and Singer [22].

The elastica was first seriously studied from the computer vision point of view
in Mumford’s paper [29], the introduction section of which provides a delightful view
of its mathematical history. According to [29], the key link between the elastica and
computer vision is founded on the interpolation capability of elasticas, as initially
proposed by Birkhoff and De Boor [4]. Such “nonlinear splines” [4], like classical
polynomial splines, are natural tools for completing the missing or occluded edges [32].

A remarkable feature of elasticas revealed by Mumford [29] is their Bayesian ratio-
nale, which enhances the interpolating role of elasticas in image and vision analysis. It
also sheds light on the choice of “2” for the curvature power in the energy formula (2.1).
Here we present a slightly polished version of Mumford’s original argument.

Consider the random walk of a drunk initially staying at the origin of a 2-D
ground. Assume that each individual step is straight. For some given fixed integer
N , we try to understand the distribution of all possible N -step polygonal walks. The
moving characteristics are the following:
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Fig. 2.1. Some sample paths for the drunk’s walking.

(a) Let hk denote the step size of the kth step. Then {hk : k = 1, 2, . . . , N} are
independently and identically distributed (i.i.d) of exponential type λ exp(−λh)
for some positive mean 1/λ.

(b) Let θk denote the orientation of the kth step, measured by the angle between
the walking direction and the x-axis, and define θ0 = 0. Let ∆θk = θk− θk−1

(k = 1, 2, . . . , N) denote the turn made at the kth step. The basic assumption
is that, at each step k, the larger the step size hk is, the more uncertain the
turn ∆θk will become. Precisely, ∆θk is a Gaussian of N(0, hkσ

2). Yet{
nk = ∆θk/

√
hk : k = 1, 2, . . . , N

}
is an independent set and also independent of all the hk’s.

Thus, an N -step polygonal walk γ is completely determined by the data

{h1, . . . , hN} ∪ {∆θ1, . . . ,∆θN},

and the likelihood is quantified by

λN exp(−λ(h1 + · · ·+ hN )) dh1 · · · dhN

× (
√
2πσ)−N exp

(
− 1

2σ2

[
(∆θ1)

2

h1
+ · · ·+ (∆θN )

2

hN

])
dn1 · · · dnN .

Up to a multiplicative constant, this probability density function is exactly

exp

(
−λL(γ)− 1

2σ2
‖κ2‖γ

)
,

where L denotes the length and ‖κ2‖γ the discrete analogy of
∫
γ

κ2ds. Therefore, the

minimization of the elastica energy (2.1), with a = λ and b = 1/(2σ2), is equivalent
to the maximum likelihood (ML) estimation of such random curves.

Remark 1. Notice that the walking drunk model presented here does not come
from the discrete sampling of the Brownian motion, since for the latter (in 2-D),
h2 (not h) is exponential and the turn ∆θ is uniform along the unit circle. The
dependence of the turns on the step sizes makes the paths smoother than the sampling
of Brownian motions, which makes the model a valuable curve model in computer
vision, where regularity is important. Figure 2.1 shows a computer simulation of the
paths.
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Fig. 3.1. Local (nontexture) image models and their approximation.

3. Local (nontexture) image models and elastica isophotes.

3.1. Generic local (nontexture) image models. To model the inpainting
of nontexture images, it is important to start with local and small inpainting do-
mains. Focusing on locality is a common practice in numerical mathematics, where
from differentiation, integration, and interpolation, to optimization, most well-known
numerical schemes (such as the Runge–Kutta schemes, Simpson’s integration rule,
and the Newton–Raphson searching strategy for zeros or valleys) are inspired by the
local models of the target functions, such as the linear model, parabolic model, and so
on [19, 39]. Digital inpainting, after all, is the numerical interpolation of 2-D images.
Therefore, it is crucial to first understand what an image looks like locally.

Imagine that we have a small aperture with a circular shape of radius r, and that
we focus on only the part that is captured within when it is moved over a 2-D gray
image. Suppose that the image only contains man-made nontexture objects, and that
their characteristic scale l � r. What sorts of local image patches will be observed
most frequently?

They can be grouped into four classes, labeled by “H,” “E,” “C,” and “T” (see
Figure 3.1), as follows:

(a) Class H. A local image patch belongs to this class if and only if it falls within
the homogeneous regions. Such a patch has very little intensity variation.

(b) Class E. This occurs when the aperture captures a fraction of the smooth
edge between two objects or homogeneous regions.

(c) Class C. Like class E, but the aperture captures a recognizable corner. Cor-
ners are also a universal feature of man-made objects, from tables, windows,
and books, to posters.

(d) Class T. This is the case in which the aperture captures a T-junction. T-
junction is an important cue for occlusion and the perception of orders in
the lost dimension of range [32]. A local T-junction patch is characterized
by three homogeneous gray values u1, u2, and u3 and two smooth edges—one
meets the boundary at its two ends while the other at only one end due to
occlusion.
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Notice that homogeneous regions are 2-D objects, edges are 1-D objects, and both
corners and T-junctions are isolated 0-D objects. Therefore, heuristically, in terms of
the probability (or frequency) of being observed through a small aperture, we have
the following relation:

Prob(H) � Prob(E) � Prob(C) or Prob(T ).

Of course, the probabilities do not necessarily represent their perceptual significance
in terms of vision inference. In fact, it seems that often the scattered singular features
can generate strong response from the vision system (e.g., the wavelets idea [13, 5, 35]).

Notice that class C is indeed very much “man-made” like its ancestors in our
3-D world, in the sense that a local engineering (or small perturbation) of the corner
can easily change a class C patch to class E. In this sense class C is unstable and
nongeneric.

3.2. Local edge interpolation by elasticas: Moving frames. Suppose an
image u0 has a local patch K missing, and we try to inpaint u0

∣∣
K

based on the
available information surrounding K.

By checking the available data close to K, we can easily determine which class
u0

∣∣
K

belongs to: H, E, or T. (Without a priori knowledge, one can never distinguish
the nongeneric class C from the generic class E.) The existence of a corner or the
exact configuration of the T-shape inside the inpainting domain will require extra
information or additional models and algorithms (especially for the coupling of the
three end points in the T-junction case). (For the corner case, for example, see
Shah’s recent work on elasticas with hinges [38].) In this paper, we shall assume
that eventually we do know the exact class that u0

∣∣
K

belongs to and the precise
configurations.

The first level of approximation will be based on the straight line curve model
(refer to the upper-right panel in Figure 3.1). For a class H type, one can average
the available boundary pixel values and inpaint u0

∣∣
K

by this mean value c. For a
class E type, we connect the two edge ends by a straight segment and inpaint the two
objects u1 and u2 by their boundary mean values c1 and c2. For a class C type, we
make two straight shoots from the boundary end points into the inpainting domain.
The orientations follow their cue left outside K. The two straight lines generate a
corner and also segment the patch K into two objects u1 and u2. Then u1 and u2 are
inpainted by their boundary mean values. For the last class T, we connect the two
coupled boundary end points by a straight line and shoot from the third one directly
toward the interior of K, as for class C. Then the three segmented objects u1, u2, and
u3 are inpainted by their boundary mean values c1, c2, and c3.

A second level of approximation is based on the elastica curve model (the upper-
left panel in Figure 3.1). That is, we shall interpolate the boundary end points by
elasticas instead of by straight line segments. We can improve the inpainting accuracy
by further approximating each individual (nonedge) isophote by an elastica for the
segmented regions, instead of simply making constant approximations. Therefore, we
need first to inpaint the missing edges including corners and T-junctions to reduce
classes E, C, and T to class H.

Along the boundary, each end point can be represented by (p, �n), with p denoting
its position and �n the normal to the edge, which can be computed from the image
available outside the inpainting domain K.

(a) For class E, to inpaint the missing smooth edge, we employ the elastica Γ
that satisfies the boundary conditions (p1, �n1) and (p2, �n2).
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(b) For class C, to inpaint the corner, we take a moving frame approach. The
corner is represented by an affine frame (p;�n′

1, �n′
2), with p denoting its un-

known position, and �n′
1 and �n′

2 the two unknown unit normals to the smooth
edges coming from the boundary end points (p1, �n1) and (p2, �n2). For each
i, the energy (2.1) of the elastica that meets the requirement at (pi, �ni) and
(p, �n′

i) is denoted by

E2((pi, �ni), (p, �n′
i)).

Then the corner is inpainted by a joint optimization:

min
(p;�n′1,�n

′
2)

E2((p1, �n1), (p, �n′
1)) + E2((p2, �n2), (p, �n′

2)).(3.1)

For example, if in the elastica energy (2.1) we choose a large ratio b/a (or a = 0
for the extremal case), then the solution to (3.1) shall be very close to the
straight line shooting method mentioned in the first level of approximation.

(c) For class T, we first inpaint the two coupled end points by an elastica Γ
(provided that we have established such coupling from other models or al-
gorithms, as pointed out in the second paragraph). To inpaint the occluded
edge from the clue of the third boundary end point (p3, �n3), we again take
the moving frame approach. Let (p, �n′

3) denote the junction position and
the normal direction of the occluded edge. Then the junction inpainting is
completed by solving

min
(p,�n′3)

E2((p3, �n3), (p, �n′
3)).(3.2)

Here an admissible p must stay on the disoccluded edge Γ.

3.3. Local inpainting by individually engineering the isophotes. After
the feature edges have all been interpolated, all four classes of local image inpainting
are essentially reduced to the inpainting of class H, the homogeneous patches. In the
same fashion as above, such patches can be inpainted by having the broken isophotes
interpolated by elasticas one by one from the boundary information. This is exactly
the idea underlying Masnou and Morel’s dynamical programming algorithm [27].

Generically, one can assume that the missing smooth patch u0

∣∣
K

is regular in the
sense that it lies close to a regular point where ∇u0 is nonzero (or by first applying
a small step of Gaussian diffusion). Thus the isophotes of u0 on K are well defined
and distinguishable, and each Γλ is uniquely labeled by its gray level u0 ≡ λ.

The trace of each Γλ on the boundary tells the coupling rule of boundary pixels.
Suppose that p1, p2 ∈ ∂K share the same gray level λ, and that the normals computed
from the available image data outside K are �n1 and �n2. Then we inpaint the λ-isophote
Γλ by an elastica Γ′

λ:

Γ′
λ = argmin

γλ�((p1,�n1),(p2,�n2))

∫
γλ

(a + bκ2)ds = argmin
γλ�((p1,�n1),(p2,�n2))

E2[γλ],(3.3)

where � means subject to the boundary conditions: γλ goes through p1 and p2, and
γ̇λ ⊥ �ni at the two ends. Notice that generally Γ′

λ does exist but may not be unique
(see [22, 29]).

As λ varies according to the available boundary data u0, (3.3) gives a family of
(and theoretically infinitely many) elasticas. On the other hand, if we denote this
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bundle of elasticas by

F ′ = {Γ′
λ : 0 ≤ λ ≤ 1},

then it is easy to see that F ′ is also the minimizer of the following energy for all
boundary admissible curve bundles F = {γλ : 0 ≤ γ ≤ 1}:

E[F ] =

∫ 1

0

E2[γλ] dλ(3.4)

or, more generally,

Ew[F ] =

∫ 1

0

w(λ)E2[γλ] dλ,(3.5)

with some positive weight function w(λ) (whose influence in application will be ex-
plained later). However, due to the lack of communication among the elasticas, there
exist two potential problems:

(1) two different elastica interpolants Γ′
λ and Γ′

µ with λ �= µ can meet inside the
inpainting domain K, while the original isophotes never met;

(2) even putting problem (1) on hold, generally, it is not guaranteed that the
elastica bundle

F ′ = {Γ′
λ : 0 ≤ λ ≤ 1}

does “weave” the entire inpainting domain K and leave no “holes.” Thus, the
inpainting can still be incomplete.

These issues have been taken care in Masnou and Morel’s algorithm [27]. Here we
propose to resolve these issues by working with the level-set function uK . (A similar
philosophy has now made the level-set method of Osher and Sethian [34] a great success
in the numerical computation of various interface motion problems.) An admissible
curve bundle F = {γλ}λ, which not only satisfies the boundary conditions but also
avoids the two problems, is uniquely and fully characterized by an inpainting function
uK that is “tangent” to u0 along ∂K. Conversely, working with uK instead of the
individual isophotes automatically resolves these problems. Thus, first we need to
translate the elasticity energies (3.4) or (3.5) into ones that are directly applicable to
the inpainting function uK .

4. The elastica inpainting model.

4.1. The functionalized elastica energy. Let u = uK be an admissible in-
painting, assumed to be smooth enough so that all the conventional differentiations
make sense in the following computation. Along any isophote γλ : u ≡ λ, the curva-
ture of the oriented curve is given by

κ = ∇ · �n = ∇ ·
( ∇u

|∇u|
)

.

On the other hand, let dt denote the length element along the normal direction �n (or
along the steepest ascent integral curve). Then

dλ

dt
= |∇u| or dλ = |∇u| dt.
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Therefore, the integrated elastica energy (3.5) now passes on to u by

J [u] = Ew[F ](4.1)

=

∫ 1

0

w(λ)

∫
γλ:u=λ

(a + bκ2)ds dλ(4.2)

=

∫ 0

1

∫
γλ:u=λ

w(u)

(
a + b

(
∇ · ∇u

|∇u|
)2
)

|∇u|dt ds(4.3)

=

∫
K

w(u)

(
a + b

(
∇ · ∇u

|∇u|
)2
)
|∇u| dx,(4.4)

since dt and ds represent a couple of orthogonal length elements. Now the energy
is completely expressed in terms of the inpainting u itself. Notice that this formal
derivation is much like the coarea formula for BV functions [18].

The weight function w(λ) can be set to 1. In applications, it can be defined based
on the histogram h(λ) of the given image. (h(λ) denotes the frequency of pixels with
gray value λ.) The histogram of an image typically contains several “humps,” each
of which corresponds to an object. Since human observers are very sensitive to the
regularity of object boundaries, we may assign a high weight to the pixels whose gray
values are typically near the “valleys” of the histogram. Therefore we may choose the
weight function in the form of

w(λ) = W (1− h(λ)),

with W (h) denoting a suitable positive and increasing function.

4.2. Admissible inpainting and the weak form of curvature. From now
on, let us consider the functionalized Euler’s elastica energy

J2[u] =

∫
K

(
a + b

(
∇ · ∇u

|∇u|
)2
)
|∇u| dx,(4.5)

with the conditions that

u
∣∣
Ω\K = u0

∣∣
Ω\K ,

∫
∂K

|Du| = 0, and |κ(p)| < ∞ a.e. along ∂K,(4.6)

where a.e. is in the sense of 1-D Hausdorff measure.
We have assumed that the original complete image u0 (typically on a square

domain Ω) belongs to BV(Ω) and has the property that∫
∂K

|Du0| = 0(4.7)

in the sense of the Radon measure
∫ |Du0|. Under such an assumption, the second

boundary condition on u follows naturally. This condition can be made more explicit
by the trace of BV functions [18]. Let u− and u+ denote the interior and exterior
traces of u along ∂K with respect to K. Then we have∫

∂K

|Du| =
∫
∂K

|u+ − u−| dH1.
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Thus the second condition is equivalent to the continuity condition

u− = u+ = u+
0 a.e. along ∂K by dH1.

We shall call assumption (4.7) on the original complete image the feasibility con-
dition for low-level inpainting models, which do not employ global feature recognition
or learning. It requires that there be no essential overlap between the boundary of
the inpainting domain K and the edges of 2-D objects in the image. Imagine, in
contrast, the opposite situation, in which an object is completely missing along its
boundary. Then no existing image information can possibly bring it back in the ab-
sence of high-level intelligence (such as face recognition and symmetry detection).
A low-level inpainting model, after all, is expected to interpolate incomplete objects
based only on the hints they leave on the exterior of the inpainting domain.

Finally, the last condition in (4.6) demands finite curvatures along the inpainting
boundary. Therefore a sudden turn of isophotes is not permitted along ∂K, and the
condition is therefore a first-order continuity constraint.

Although the concept of “curvature” for a BV function has been used for both the
elastica energy and the boundary conditions, its meaning has very much stayed at a
formal level, since an average BV function lacks the necessary regularity for discussing
curvatures in the conventional sense.

Therefore we introduce the concept of weak curvature, which may not be the only
possible generalization but seems to be general enough to serve image analysis.

Suppose u ∈ BV(K). Then |Du|(·) = ∫
· |Du| is a finite Radon measure on K,

and for any open subset Q ⊂ K,∫
Q

|Du| = sup
g∈C1

0 (Q,B1)

∫
Q

u ∇ · g dx,

where B1 denotes the unit ball centered at the origin in R2. Let supp(|Du|) denote
the support of the TV measure. Then for any p ∈ supp(|Du|) and any of its open
neighborhoods Np,

|Du|(Np) =

∫
Np

|Du| > 0.

Let ρ be a fixed radially symmetric nonnegative mollifier with compact support and
unit total integral, and set (for 2-D)

ρσ =
1

σ2
ρ
(x

σ

)
and uσ = ρσ ∗ u.

Then we define the weak absolute curvature κ̃(p) of u at p by

κ̃(p) = lim sup
σ→0

∣∣∣∣∇ ·
( ∇uσ
|∇uσ|

)
(p)

∣∣∣∣ ,(4.8)

where for those σ’s that give |∇uσ(p)| = 0 we define ∇·(∇uσ/|∇uσ|) to be∞. Finally,
for any pixel p outside supp(|Du|), we assign 0 to κ̃(p), since u is a.e. constant near a
neighborhood of p. Thus the weak absolute curvature is well defined everywhere for
an arbitrary BV function.

There are two important situations in image analysis in which the weak curvature
is indeed the ordinary curve curvature for p ∈ supp(|Du|). The first situation is
presented as follows.
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Proposition 4.1. Suppose that u ∈ C2(K) and that p ∈ K is a regular pixel:
∇u(p) �= 0. Then κ̃(p) = |κ(p)|.

Proof. Assume that the mollifier is supported on the unit ball B1. From the
definition of convolution

uσ(q) = ρσ ∗ u(q) =

∫
B1

ρ(y)u(q + σy) dy,

it is easy to see that there is a small neighborhood Np and some positive number a so
that uσ(q) is C2 over (σ, q) ∈ (−a, a)×Np. Since ∇u is continuous and nonvanishing
at p, we can further refine Np and a so that all ∇u(q + σy) (with (σ, q, y) ∈ (−a, a)×
Np × B1) are concentrated enough around ∇u(p). Then, thanks to the averaging
property of the mollifier, all ∇uσ(q) = (∇u)σ(q) are nonvanishing, which makes

�nσ(q) =
∇uσ(q)

|∇uσ(q)|
C1 on (−a, a)× Np. Then κσ(q) = ∇ · �nσ(q) is well defined on Np and continuous in
σ, especially at p:

|κ(p)| = lim
σ→0

|κσ(p)| = κ̃(p).

The second case occurs when p lies on an intensity edge between two objects.
Proposition 4.2. Suppose an oriented curve segment γ is a C2 submanifold in

K. Assume that near a given pixel p ∈ γ, on one side of γ, u = c+, and on the other,
u = c−, two constant gray values. Then κ̃(p) = |κ(p)|.

Proof. Since curvature is a second-order local feature, we can replace γ near p by
the curvature circle with radius r = 1/|κ(p)| and centered at q = p − r�n, where �n is
one of the unit normal vectors at p. Then both the data (c+, c−) and the geometry γ
are locally rotationally invariant (with respect to the center) in a neighborhood of p.
Since the mollifier ρ is radially symmetric and compactly supported, as long as σ is
small enough, uσ = ρσ ∗ u must also be locally rotationally invariant with respect to
the center, which means that locally near p, γ is also an isophote of uσ. Thus under
the same orientation of γ, κσ→0(p) = κ(p) and κ̃(p) = limσ |κσ(p)| = |κ(p)|. This
completes the proof.

One useful property of κ̃ which can be proven easily is its invariance under the
linear scaling of gray values. Let κ̃f (p) denote the weak curvature of a function f at
p.

Proposition 4.3. Let u ∈ BV(K) and v = a + bu for some constants a and
b �= 0. Then for any p ∈ K, κ̃u(p) = κ̃v(p).

With the help of the concept of weak curvature, the functionalized elastica en-
ergy (4.5) can be rigorously defined. A function u ∈ BV(K) is said to be admissible
if

κ̃ ∈ L2(K, |Du|).
For all such functions, the generalized elastica energy

J2[u] =

∫
K

(a + bκ̃2)|Du|(4.9)

is well defined and finite. Together with the boundary conditions (4.6), it defines the
so-called elastica inpainting model.
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The elastica inpainting model is difficult to analyze in terms of existence and
uniqueness, due to the nonconvexity of the energy and the involvement of curvature.
However, there is indeed a special, simple, yet very useful case for which one can
carry out the analysis successfully. This is the TV inpainting model first proposed
and implemented in Chan and Shen [8]. In the next subsection, we study the existence
and uniqueness of this special case.

4.3. The TV inpainting model of Chan and Shen. The TV inpainting
model of Chan and Shen [8] is an extreme case of elastica inpainting in which we weigh
highly against the total variation, i.e., a/b = ∞. Thus one is led to the minimization
of

TV(u) =

∫
Ω

|Du|.(4.10)

As in the study of minimal surfaces (De Giorgi [17]), the suitable companion condition
becomes

u
∣∣
Ω\K = u0

∣∣
Ω\K ,(4.11)

where Ω denotes the entire image domain, generally assumed to be a bounded Lips-
chitz domain. As in the study of minimal surfaces, Ω can be replaced by any open
neighborhood of K̄ (see [8]). We call the combination of (4.10) and (4.11) the noise-
free TV inpainting model.

Theorem 4.4 (existence of a noise-free TV inpainting). Suppose that the origi-
nal complete image u0 lies in BV (Ω) and takes gray values between 0 (black) and 1
(white). Then the noise-free TV inpainting model (4.10) and (4.11), together with the
gray value constraint u ∈ [0, 1], has at least one optimal inpainting.

Proof. Since the original complete image u0 is admissible, we can find a minimizing
sequence of admissible inpaintings (un)n. Then both∫

Ω

|Dun| and

∫
Ω

|un(x)|dx

are bounded because Ω is, and all un’s take values from [0, 1]. By the weak compact-
ness of BV functions, there is a subsequence, still denoted by (un)n for convenience,
that strongly converges to some utv ∈ L1(Ω) in the L1 norm. Apparently utv still
meets the constraints

utv

∣∣
Ω\K = u0

∣∣
Ω\K and utv(x) ∈ [0, 1].

By the lower semicontinuity of the TV measure with respect to the L1 convergence,∫
Ω

|Dutv| ≤ lim inf
n→∞

∫
Ω

|Dun| = min
u

∫
Ω

|Du|.

Thus utv must be a minimizer.
Another important issue for inpainting is how to deal with noise, since in ap-

plications (such as the restoration of degraded photos or films), the available part
of the image u0

∣∣
Ω\K is often noisy or contains misleading outliers (especially along

the damaged boundary of K). Chan and Shen [8] therefore modified the above TV
inpainting model by having the constraint (4.11) replaced by the denoising term

1

Area(Ω \ K)

∫
Ω\K

(u − u0)
2dx = σ2,(4.12)
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where σ2 is the variance of the homogeneous white noise, which can be estimated
from u0

∣∣
Ω\K by suitable statistical estimators. By such a constraint, we are assuming

that embedded within u0 is a clean image uc such that

u0(x) = uc(x) + n(x),

where the white noise n(x) is independent of uc. Since we pay attention only to its
second-order statistics, implicitly we are assuming that n(x) can be well approximated
by the Gaussian N(0, σ2).

Theorem 4.5 (existence of a TV inpainting for a noisy image). Given an image
observation u0 : u0(x) ∈ [0, 1] on Ω \ K, assume that there exists at least one image
uc : uc(x) ∈ [0, 1] in BV(Ω) that meets the denoising constraint (4.12). Then there
exists at least one optimal TV inpainting in BV(Ω) that satisfies both the denoising
requirement (4.12) and the gray scale constraint u ∈ [0, 1].

Proof. From the assumption on uc, there exists a minimizing sequence of admis-
sible inpainting (un)n that meets both the denoising constraint and the gray scale
constraint. Thanks to the gray scale constraint, (un)n must be bounded in BV(Ω).
Thus there is subsequence, still denoted by (un)n for convenience, which converges in
the L1 norm to some utv ∈ L1(Ω). Then by the lower semicontinuity property [18],∫

Ω

|Dutv| ≤ lim inf
n→∞

∫
Ω

|Dun| = min
u

∫
Ω

|Du|.

We can further refine the subsequence so that

un → utv a.e. on Ω.

Thus utv also meets the gray scale constraint utv ∈ [0, 1], and more importantly, by
the Lebesgue dominated convergence theorem,∫

Ω\K
(utv − u0)

2dx = lim
n

∫
Ω\K

(un − u0)
2dx.

Therefore, utv is indeed an optimal TV inpainting, subject to the two constraints
imposed.

Remark 2. If we drop the assumption that u0 ∈ [0, 1], and thus remove the gray
scale constraint on u, then under the natural assumption (see [7]) that

σ2 ≤ 1

area(Ω \ K)

∫
Ω\K

(u0 − 〈u0〉)2dx < ∞,

one can still establish the existence theorem by applying Friedrich’s trace inequal-
ity [24] and Fatou’s lemma. (Here 〈u0〉 is the mean value of u0 over the integration
domain.)

The solutions to both TV and elastica inpaintings can be nonunique. In our
opinion, such nonuniqueness of the models should not be cursed but appreciated,
since it is an important characteristic of the inpainting problem itself. Take, for
example, the image in Figure 4.1, whose middle square patch has been encrypted by
a random image. We now try to inpaint the square to restore the original complete
image.

It seems that we have a black (u = 0) bar and a white (u = 1) one against a gray
background (u = 1/2). A perceptually meaningful inpainting would be to fill in either
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U=1 

U=0.5 

L U=0 

L 

Fig. 4.1. Nonuniqueness: which is to blame, the model or the problem itself?

K
(inpainting domain)

E (extended domain)

Fig. 4.2. Inpainting Domain K.

the black color so that the image shows a black bar occludes a farther white bar, or
the white color for the opposite occlusion. Which one is more likely? The available
part of the image (both the geometry and colors) is perfectly symmetric. Thus it
appears as a half-half situation to human perception. In our opinion, such perceptual
uncertainty is the foundation of the nonuniqueness of inpainting models. In terms
of the Bayesian decision theory in vision analysis, nonuniqueness corresponds to the
situation in which the risk or cost function has many similar valleys which compete
with each other.

Fortunately, in many real applications, as Chan and Shen demonstrated in [8, 9],
the outputs from the TV inpainting model do always seem to be meaningful to human
vision. This is because, in most applications, the location, shape, and size of inpainting
domains are often randomly distributed.

4.4. Relaxation of the constraints. As we have seen, the original formulation
of the elastica inpainting model (4.5) and (4.6) has mainly been inspired by the image
processing point of view. But it is unclear whether the formulation is mathematically
feasible. In fact, as well practiced in the theory of BV functions and minimal sur-
faces [18], it is often more manageable to formulate the problem on a larger domain
than the original one. The TV inpainting model for noisy images mentioned above
has imparted this idea. The same can be done for general elastica inpaintings.

Let E be a subset contained in Ω \ K such that E ∪ K is open and contains the
closure of K (see Figure 4.2). For example, depending on the situation, one could
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simply take E = Ω \ K. Suppose for the original image u0,

J2[u0] =

∫
E∪K

(a + bκ̃2) |Du0|

is finite. We inpaint u0

∣∣
K

by the minimizer of

J2[u] =

∫
E∪K

(a + bκ̃2) |Du|,(4.13)

with the condition that

u
∣∣
E
= u0

∣∣
E

.(4.14)

In this way, the two other original boundary conditions in (4.6) are approximately
built into the energy itself.

If the available part of the image in the vicinity of K has been corrupted by ho-
mogeneous white noise with variance σ2, then the condition (4.14) is further replaced
by the fitting constraint

1

area(E)

∫
E

|u − u0|2 dx = σ2.(4.15)

Proposition 4.6. Let u ∈ BV(E ∪ K) be a minimizer of the elastica inpainting
(4.13) and (4.15). Then u automatically satisfies the mean value constraint

〈u〉 = 〈u0〉,
where 〈f〉 denotes the mean value of f over E.

Proof. The technique is similar to that used by Chambolle and Lions [7]. Assume
the contrary: 〈u〉 �= 〈u0〉. Define v = u − 〈u − u0〉. Then∫

E

|v − u0|2dx =

∫
E

|u − u0 − 〈u − u0〉|2dx <

∫
E

|u − u0|2dx = σ2 area(E),

where the strict inequality is due to the fact that, among all constants, the mean is
the best L2 fitting to a given signal. On the other hand, by the natural assumption
of u0 on E in Remark 2 of section 4.3,∫

E

|〈v〉 − u0|2dx =

∫
E

|〈u0〉 − u0|2dx ≥ σ2 area(E).

Therefore, there must exist some s ∈ [0, 1) such that∫
E

|sv + (1− s)〈v〉 − u0|2dx = σ2 area(E).

Define w = sv + (1 − s)〈v〉. By the invariant property of the weak curvature in
Proposition 4.3, we have

J2[w] =

∫
E∪K

(a + bκ̃2)|Dw| = s

∫
E∪K

(a + bκ̃2)|Du| <

∫
E∪K

(a + bκ̃2)|Du| = J2[u],

where the strict inequality is because u cannot be a constant (otherwise the con-
stant must be 〈u0〉 due to the fitting constraint, which is impossible since the whole
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argument starts with 〈u〉 �= 〈u0〉). This eventually contradicts the fact that u is a
minimizer.

Finally, even the fitting constraint (4.15) can be built into the energy functional
by minimizing

Jλ2 [u] =

∫
E∪K

(a + bκ̃2)|Du|+ λ

2

∫
E

(u − u0)
2dx.(4.16)

It can also easily be shown that a minimizer of Jλ2 [u] automatically satisfies the mean
value constraint.

The last formulation bears a formal Bayesian interpretation as Mumford did for
various segmentation models [30]. From the probability point of view, the conditional
probability

P (u0|u) = const. exp

(
−λ

2

∫
E

(u − u0)
2dx

)
is the generative data model, and the probability

P (u) = const. exp(−J2[u])

is the prior model. Together, the minimization of Jλ2 [u] corresponds to the method of
MAP, or maximum a posteriori probability, in the theory of statistical inference and
decision making.

4.5. Local analysis near a generic stationary point: The effect of the
curvature power p and p = 3. Generally, for any p ≥ 1, one could consider the
p-elastica energy

Jp[u] =

∫
Ω

(a + b|κ|p)|Du|,

and, if necessary, |κ| is replaced by the weak absolute curvature κ̃. This general form
of elasticity energy was also mentioned in Masnou and Morel [27]. So the question
arises naturally: is there any essential difference among all the different choices of p’s?
We claim that, indeed, in some sense p = 3 is the threshold.

Theorem 4.7. Suppose that u is C2 near a generic stationary pixel z, i.e.,

∇u(z) = 0 but the Hessian Hu(z) is nonsingular.

Then for all p ≥ 3, Jp[u] = ∞.
Therefore, generic stationary points are forbidden by the p-elasticity energy when

p ≥ 3.
Proof. Without loss of generality, assume that z = (0, 0) and u(z) = 0. Since

curvature is a second-order feature, we can assume that u coincides with its second-
order Taylor expansion at z:

u(x) = u(x1, x2) = (x1, x2)A(x1, x2)
T ,

where A is the nonsingular Hessian Hu(z). Thus A must be either elliptic or hyper-
bolic. Take the elliptic case, for example. Since both |∇u| and κ are invariant under
Euclidean transforms, we can assume that

A = diag(σ2
1 , σ2

2),
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with σ1 ≥ σ2 > 0. First we consider the case in which σ1 = σ2. For convenience, we
can assume that σ1 = 1. Then u = r2 = x2

1 + x2
2, and by section 4.1,∫

B1

κp|∇u|dx =

∫ 1

0

dλ

(∫
u=λ

κpds

)

=

∫ 1

0

2rdr

(
2πr

(
1

r

)p)

= 4π

∫ 1

0

(
1

r

)p−2

dr.

Here, for convenience, we have assumed that the C2 neighborhood encloses B1. Thus
Jp on B1 is finite if and only if p < 3, and as a result, when p ≥ 3, Jp on Ω must blow
up. The general case follows easily from the fact that along any ellipse isophote

σ2
1x2

1 + σ2
2x2

2 = λ = r2,

the curvature is bounded by

σ1

r
≥ κ ≥ σ2

r
.

This completes the proof.
The p = 3 threshold has also appeared in the theoretical work by Bellettini, Dal

Maso, and Paolini [2] on boundary elastica energies. It is quite controversial whether
we should really encourage generic stationary points for general image interpolation
problems. On the one hand, if the p-elastica energy is also imposed outside the in-
painting domain K for denoising purposes (as in (4.16) below), then generic stationary
pixels should be allowed, and consequently p < 3 is required. On the other hand, ex-
isting interpolation mechanisms have seemed to generally discourage the emergence
of local minima or maxima over the missing domain K. For example, the axiomatic
interpolation approach of Caselles, Morel, and Sbert [6] has emphasized the constant
gradient condition (i.e., |∇u| = const.) along any normal integral line, while the har-
monic inpainting model discussed in Chan and Shen [8] is also generically against the
existence of a local minimum or maximum, due to the maximum principle of harmonic
functions. This issue needs more study.

5. The Euler–Lagrange equation. For the general elastica inpainting model
(4.13) or (4.16), the direct method is difficult due to the involvement of the geometric
quantity, curvature, which has no linear structure. That is, one cannot say much
about the curvature κu+v of the summation u + v, even when precise information
on κu and κv is available. Such an obstacle invalidates the classical linear approach
based on Sobolev spaces or the BV space. For example, it is unclear how to prove
that the minimizer to (4.16) actually exists.

In this situation, as is well practiced in the PDE method in image processing,
one is led to the study of the formal Euler–Lagrange equation. Often the PDEs can
handle geometry more explicitly than the variational formulation itself, as in the case
of mean curvature motions [28].

In this section, we first derive the formal Euler–Lagrange equation for the fitted
elastica inpainting model (4.16). We then show that the geometric meaning of the
equation unifies the early method of Bertalmio, et al. [3] based on transport PDEs,
and that of Chan and Shen [9] based on CDD. We conjecture that transport and CDD
are the two universal mechanisms for any low-level nontexture inpainting.



582 TONY F. CHAN, SUNG HA KANG, AND JIANHONG SHEN

t 
n 

Level lines

Fig. 5.1. The normal �n = ∇u/|∇u| and the tangent �t.

5.1. Derivation of the Euler–Lagrange equation. In the formal derivation,
we shall always assume that the image is smooth enough and that the curvature is
well defined.

Theorem 5.1. Let φ ∈ C1(R, (0,∞)) be given and

R[u] =

∫
E∪K

φ(κ)|∇u| dx.

Then the gradient descent time marching is given by

∂u(x, t)

∂t
= ∇ · �V (x, t), x ∈ E ∪ K, t > 0,

with the boundary conditions along ∂(E ∪ K)

∂u

∂�ν
= 0 and

∂(φ′(κ)|∇u|)
∂�ν

= 0(5.1)

(�ν denotes the outer normal of the boundary). The flux field �V is given by

�V = φ(κ) �n − �t

|∇u|
∂ (φ′(κ)|∇u|)

∂�t
.(5.2)

Here �n is the ascending normal field ∇u/|∇u|, and �t the tangent field (whose exact
orientation does not matter due to the parity of �t in the expression) (see Figure 5.1).

Proof. For later convenience, we write 〈f〉 = ∫
E∪K fdx, and the boundary integral

〈f〉∂ =
∫
∂(E∪K)

fds, with ds denoting the Euclidean arc-length element. Then the

variation of R → R + δR is by

δR = 〈δ(φ(κ)|∇u|)〉
= 〈φ(κ) δ|∇u|〉+ 〈|∇u| δφ(κ)〉

=

〈
φ(κ)

∇u

|∇u| · δ∇u

〉
+ 〈φ′(κ)|∇u| δκ〉

= −〈∇ · (φ(κ)�n) δu〉+ 〈φ′(κ)|∇u| δκ〉.

Here in the last line, in order to justify the drop of the boundary integral from the
divergence theorem (or integration by parts)〈

φ(κ)

|∇u|
∂u

∂�ν
δu

〉
∂

,
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we impose the first boundary condition by noticing that φ(κ) > 0:

∂u

∂�ν
= 0 along ∂(E ∪ K).(5.3)

Next, we need to work out the variation of the curvature:

δκ = δ

(
∇ · ∇u

|∇u|
)
= ∇ ·

[
1

|∇u| ∇(δu) +∇u δ

(
1

|∇u|
)]

= ∇ ·
[

1

|∇u|∇(δu)− ∇u

|∇u|3 (∇u · ∇(δu))

]

= ∇ ·
[

1

|∇u| {I − �n ⊗ �n}∇(δu)

]
.

Here I denotes the identity transform, and P = �n⊗ �n the orthogonal projection onto
the normal direction. Noticing that I = �n ⊗ �n + �t ⊗ �t, we have

〈φ′(κ)|∇u| δκ〉 =
〈

φ′(κ)|∇u| ∇ ·
[

1

|∇u| {
�t ⊗ �t }∇(δu)

]〉

=

〈
−∇(φ′(κ)|∇u|) ·

[
1

|∇u| {
�t ⊗ �t }∇(δu)

]〉
.

We have dropped the boundary integral after applying the divergence theorem:〈
φ′(κ) �ν · {�t ⊗ �t }∇(δu)

〉
∂

.

This is well justified under the Neumann boundary condition (5.3) because, from (5.3),
�ν · ∇u = 0, or equivalently, �ν = ±�t, along ∂(E ∪ K). Therefore,〈

φ′(κ) �ν · {�t ⊗ �t }∇(δu)
〉
∂
= 〈φ′(κ) �ν · {�ν ⊗ �ν}∇(δu) 〉∂
= 〈φ′(κ) �ν · ∇(δu) 〉∂
=

〈
φ′(κ)

∂(δu)

∂�ν

〉
∂

=

〈
φ′(κ)δ

(
∂u

∂�ν

)〉
∂

= 〈φ′(κ) δ(0) 〉∂ = 0.

Let us now come back to the calculus of variation. Noticing that �t ⊗ �t is symmetric,
we have

〈φ′(κ)|∇u|δκ〉 =
〈
−{�t ⊗ �t }

[
1

|∇u|∇(φ′(κ)|∇u|)
]
· ∇(δu)

〉

=

〈
∇ · {�t ⊗ �t }

[
1

|∇u|∇(φ′(κ)|∇u|)
]

δu

〉
.

Here, to justify the drop of the boundary integral〈
−�ν · {�t ⊗ �t }

[
1

|∇u|∇(φ′(κ)|∇u|)
]

δu

〉
∂

,

we require that, along ∂(E ∪ K),

�ν · {�t ⊗ �t }
[

1

|∇u|∇(φ′(κ)|∇u|)
]
= 0.
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Since �ν = ±�t along ∂(E ∪ K), we get the second boundary condition:

∂(φ′(κ)|∇u|)
∂�ν

= �ν · ∇(φ′(κ)|∇u|) = 0 along ∂(E ∪ K).(5.4)

Eventually, under the boundary conditions (5.3) and (5.4), we have

δR =

〈
−δu ∇ ·

[
φ(κ) �n − 1

|∇u| {
�t ⊗ �t }∇(φ′(κ)|∇u|)

] 〉

=

〈
−δu ∇ ·

[
φ(κ) �n − 1

|∇u|
∂(φ′(κ)|∇u|)

∂�t
�t

] 〉
= 〈−δu ∇ · �V 〉.

This completes the proof.
Therefore, the gradient of R[u] is in the divergence form. The vector field �V shall

be called the flux field in this paper. The theorem shows that the flux field has a nat-
ural decomposition in the normal and tangent fields. Moreover, it is morphologically
invariant.

Proposition 5.2. The flux field �V is morphologically invariant.
Proof. Let g be any smooth morphological transform of gray scales:

u → g(u), g′(u) > 0.

We show that for any image u the fluxes �Vu = �Vg(u). Notice that κ, �n, and �t are
already morphologically invariant. Furthermore,

1

|∇g(u)|
∂(φ′(κ)|∇g(u)|)

∂�t
�t =

1

g′(u)|∇u|
∂(g′(u)φ′(κ)|∇u|)

∂�t
�t

=
g′(u)

g′(u)|∇u|
∂(φ′(κ)|∇u|)

∂�t
�t

=
1

|∇u|
∂(φ′(κ)|∇u|)

∂�t
�t,

where we have applied the fact that u, and therefore g′(u), are both constant in the

tangent direction. Thus �Vg(u) = �Vu.
Masnou and Morel (private communication) have also worked out the Euler–

Lagrange equation (5.2), although it is not expressed in the above geometric form.
Corollary 5.3. For the elastica inpainting model (4.16), the gradient descent

marching is given by

∂u(x, t)

∂t
= ∇ · �V (x, t)− λE(x) (u(x)− u0(x)), x ∈ E ∪ K, t > 0,

with the boundary conditions (5.1) and

�V = (a + bκ2) �n − 2b

|∇u|
∂(κ|∇u|)

∂�t
�t,(5.5)

λE(x) = λ · 1E(x) (1E is the indicator of E).(5.6)

In numerical computation, as Marquina and Osher [25] proposed, the weighted
gradient descent method generally converges faster than the original one:

∂u

∂t
= |∇u| ∇ · �V − |∇u| λE (u − u0).(5.7)
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By such modification, without the fitting term, the evolution equation is morpholog-
ically invariant since the g′(u) factors (associated with a morphological transform g)

cancel each other out in ∂u/∂t and |∇u|, while the flux field �V is already morpholog-
ically invariant. If b = 0, we have the well-known mean curvature motion [28].

Our numerical PDE scheme in the coming section is applied to the modified
gradient descent equation (5.7).

5.2. The inpainting mechanisms of transport and diffusion. We now show
that the flux field �V beautifully offers a unified viewpoint on the earlier work of
Bertalmio et al. on transport-based inpainting [3] and on that of Chan and Shen [8]
on CDD-based inpainting. In return, these earlier works help reveal the fine structure
of elastica inpainting from the PDE point of view.

The first high-order PDE-based inpainting model of Bertalmio et al. [3] is based
on the beautiful intuition of smoothness transport along isophotes:

∂u

∂t
= ∇⊥u · ∇L(u),(5.8)

where ∇⊥u = (−uy, ux) = |∇u| �t, and L(u) can be any smoothness measure of
the image u. For example, in the numerical experiment of [3], L is chosen to be
the Laplacian ∆u. The model carries the transport nature since, as the evolution
approaches its equilibrium state, we have

�t · ∇L(u) = 0 and
∂L(u)

∂�t
= 0,

which means that the smoothness measure remains constant along any completed
isophote. Thus, in terms of the available boundary data, the image evolves as though
transporting the boundary smoothness information along the restored isophotes into
the inpainting domain.

However, due to the lack of communication among the isophotes, the transport
may result in kinks inside the inpainting domain, just as shocks may develop in traffic
models. Thus in [3], (5.8) is implemented with the help of intermediate steps of
anisotropic diffusions. As we shall see below, such intuition is well supported by the
elastica inpainting.

On the other hand, in [9], in order to realize the so-called connectivity principle
in perceptual disocclusion, Chan and Shen proposed the CDD inpainting model

∂u

∂t
= ∇ ·

(
g(κ)

|∇u|∇u

)
,(5.9)

where g : R → [0,+∞) is a continuous function satisfying g(0) = 0 and g(±∞) = +∞.
If g is replaced by 1, then this is the classical TV anisotropic diffusion. Here g(κ)
has been introduced to penalize large curvatures and encourage small ones, since
physically D = g(κ)/|∇u| denotes the diffusivity coefficient. With this action, the
reconnection of objects which were broken by the inpainting domain is generally en-
couraged.

It has remained a mystery why we can have two seemingly orthogonal inpainting
mechanisms: the model in [3] transports information along isophotes, while the CDD
inpainting model [9] diffuses information across. We now explain that the elastica
inpainting model makes a unification by incorporating both mechanisms.
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We have established in Theorem 5.1 that the flux �V for the inpainting energy
R[u] consists of two components: the normal part �Vn = φ(κ)�n and the tangential part

�Vt = − 1

|∇u|
∂(φ′(κ)|∇u|)

∂�t
�t.

The normal flux �Vn precisely corresponds to Chan and Shen’s CDD program (5.9)
with g(κ) = φ(κ).

On the other hand, the tangential component can be written as

�Vt = −
(

1

|∇u|2
∂(φ′(κ)|∇u|)

∂�t

)
∇⊥u,

and its divergence as

∇ · �Vt = ∇⊥u · ∇
( −1
|∇u|2

∂(φ′(κ)|∇u|)
∂�t

)

because ∇⊥u is divergence-free. It corresponds to the scheme of Bertalmio et al. in
the form (5.8), with the smoothness measure

Lφ =
−1

|∇u|2
∂(φ′(κ)|∇u|)

∂�t
.

We can further work out the expression to

Lφ =
−1

|∇u|2
(
|∇u| φ′′(κ)

∂κ

∂�t
+ φ′(κ) [∇⊗∇u](�n,�t )

)
.

Here [∇⊗∇u](•, •) denotes the Hessian bilinear form. Thus in a simple case such as
φ(s) = |s| and κ �= 0, it simplifies to

Lφ =
±1

|∇u|2 [∇⊗∇u](�n,�t ),

which more closely resembles the experimental choice in Bertalmio et al. [3] of the
Laplacian

∆u = trace(∇⊗∇u) = [∇⊗∇u](�n, �n ) + [∇⊗∇u](�t,�t ).

In summary, the elastica inpainting scheme combines both the transport mech-
anism of the Bertalmio group’s model and the CDD mechanism of Chan and Shen’s
model. It thus provides a theoretical foundation for these two earlier empirical works.
In return, the earlier works also shed light on the meaning of the flux field �V and the
PDE interpretation of elastica inpainting.

6. Computation and examples.

6.1. Numerical implementation. In this section, we explain the numerical
scheme for the evolution equation (5.7):

∂u

∂t
= |∇u| ∇ · �V − |∇u| λE (u − u0),
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where the flux �V and λE are as given in Corollary 5.3. We remind our readers that
the factor |∇u|, as suggested by Marquina and Osher in [25], is for accelerating the
time marching.

Let (i, j) denote a general pixel, and time be digitized to n = 0, 1, . . . , with a
small time step h. Thus un(i,j) denotes the value of u at pixel (i, j) at time nh. Then

un+1
(i,j) = un(i,j) + h

(
|∇un(i,j)| F (un(i,j))− |∇un(i,j)| λE,(i,j) (u

n
(i,j) − u0,(i,j))

)
,

where F (un(i,j)) = ∇ · �V n
(i,j) and u0 is the available image.

We now focus on the spatial digitization of the right-hand side at a fixed time
nh. Thus we shall conveniently leave out the superscript n. Following Marquina and
Osher [25], the accelerating factor |∇u(i,j)| in front of F (u(i,j)) is approximated by
the central differencing

|∇u(i,j)| = 1

2

√
(u(i+1,j − u(i−1,j))2 + (u(i,j+1) − u(i,j−1))2,(6.1)

and the factor |∇u(i,j)| in front of λE,(i,j) (u(i,j) − u0,(i,j)) by the upwind scheme

|∇u(i,j)| =
√
(upwind Dxu(i,j))2 + (upwind Dyu(i,j))2,

upwind Dxu(i,j) =

{
u(i,j) − u(i−1,j) if (u(i+1,j) − u(i−1,j))(u(i,j) − u0,(i,j)) > 0,
u(i+1,j) − u(i,j) if (u(i+1,j) − u(i−1,j))(u(i,j) − u0,(i,j)) < 0.

The upwinding on y is similar.
Now we focus on the discretization of F (u(i,j)) = ∇ · �V(i,j). Write �V = (V 1, V 2)

and

�n = (n1, n2) =

(
ux
|∇u| ,

uy
|∇u|

)
, �t = (t1, t2) =

(
− uy
|∇u| ,

ux
|∇u|

)
.

Then

V 1 = (a + bκ2) n1 − 2b

|∇u|
(
t1Dx(κ|∇u|) + t2Dy(κ|∇u|)) t1

= (a + bκ2)
Dxu

|∇u| +
2b

|∇u|3 (−Dyu Dx(κ|∇u|) + Dxu Dy(κ|∇u|)) Dyu,

where the partial derivative symbols Dx and Dy are introduced to ease the placement
of subscripts. The expression of V 2 can be worked out similarly. Based on the half-
point central differencing, we have

F (u(i,j)) = ∇ · �V(i,j) = DxV
1
(i,j) + DyV

2
(i,j)

=
(

V 1
(i+ 1

2 ,j)
− V 1

(i− 1
2 ,j)

)
+
(

V 2
(i,j+ 1

2 ) − V 2
(i,j− 1

2 )

)
.

Thus we need to specify the half-point values for all the quantities involved. Take
the x-half-point (i+1/2, j), for example. For the curvature, we take the min-mod [33]
between the whole pixels:

κ(i+ 1
2 ,j)

= minmod(κ(i+1,j), κ(i,j)), minmod(α, β) =
sign(α) + sign(β)

2
min(|α|, |β|).
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(i,j)(i-1,j) (i+1,j)

(i+1,j+1)

(i+1,j-1)(i,j-1)

(i,j+1)(i-1,j+1)

(i-1,j-1)

(i+1/2, j)

Half-point 

Grid (Pixel)

Points used for Dx at (i+1/2, j)

Points used for Dy at (i+1/2,j)

Fig. 6.1. Grid description for the finite difference schemes.

Average Min−Mod

ForwardOriginal without D

Fig. 6.2. Experimental results show the advantage of the min-mod discretization in (6.2). The
upper left panel is the original complete image of a ribbon. The inpainting domain is a square cov-
ering the middle part. The other three images are the outputs of the numerical inpainting schemes
based on the forward substitution, the average discretization, and the min-mod discretization, sepa-
rately. (See the text for more details.) The min-mod scheme seems to yield better edge sharpness,
as expected from the shock wave computation in computational fluid dynamics.

Dx’s at an x-half-point (i+1/2, j) are approximated by the central differencing of the
two adjacent whole pixels (i + 1, j) and (i, j). For examples (see Figure 6.1),

Dxu(i+1/2,j) = u(i+1,j) − u(i,j),

Dx(κ|∇u|)(i+1/2,j) = κ(i+1,j) |∇u|(i+1,j) − κ(i,j) |∇u|(i,j).
Here |∇u|(i,j) is as in (6.1). The Dy’s at an x-half-point (i+1/2, j) are approximated
by the min-mod of the Dy’s at the two adjacent whole pixels (i + 1, j) and (i, j) (see
Figure 6.1). For instance, for Dyu(i+1/2,j),

Dyu(i+1/2,j) = minmod

(
1

2
(u(i+1,j+1) − u(i+1,j−1)),

1

2
(ui,j+1) − u(i,j−1))

)
.(6.2)

The same can be done for Dy(κ|∇u|) at (i + 1/2, j). Then |∇u|2 at (i + 1/2, j) is
naturally defined as the sum of squares of Dxu(i+1/2,j) and Dyu(i+1/2,j). Therefore,
eventually, all quantities involved are expressed by the gray levels u(i,j) at whole
pixels.

Numerical experiments in Figure 6.2 have shown the advantage of the min-mod
discretization for Dy at x-half-points, compared with two other competing methods
(w = u or κ|∇u|): the forward substitution of Dyw(i+1/2,j) by Dyw(i,j), and the
average substitution by

1

2

(
u(i+1,j+1) − u(i+1,j−1)

2
+

u(i,j+1) − u(i,j−1)

2

)
.
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A blurred image with 80 lost packets Deblurring and error concealment by TV inpainting

Fig. 6.3. TV inpainting for the error concealment of a blurry image with packets randomly lost
when transmitted through a wireless network [10].

The image to be inpainted

20 40 60 80 100 120 140

10
20
30

The elastica inpainting

20 40 60 80 100 120 140

10
20
30

Fig. 6.4. An example of elastica inpainting for scratch removal.

As in computational fluid dynamics, the min-mod method seems to catch sharper
edges (or shocks) more effectively.

6.2. Examples. We provide several numerical examples of elastica inpainting.
Figure 6.3 shows an application of the TV inpainting model (with b = 0 in the

elastica model (4.16)) for the error concealment of wireless image transmissions where
packets are randomly lost. (To be applicable to a blurry image with a linear blurring
kernel H, model (4.16) should have the least square data model replaced by (choosing
E = Ω \ K)

λ

2

∫
Ω\K

(Hu − u0)
2dx.

See the recent paper by Chan and Shen [10] for more detail.) The TV inpainting
model works well for most local inpainting problems but becomes problematic when
applied to the inpainting of incomplete images with large-scale missing domains (see
Chan and Shen [8]). For the latter, the curvature term in the elastica model becomes
necessary.

Figure 6.4 shows the output of the elastica inpainting model when applied to the
digital restoration of an old scratched photograph (image source: [3]). The example
shows what an inpainting model must be able to accomplish: consistently reconnecting
all the broken isophotes, including broken edges with low contrasts (like the shadow
of the nose).

The next two figures demonstrate two universal effects of curvature-based in-
painting. The example in Figure 6.5 shows that if more weights are put against
the curvature term in the elastica model, the inpainted isophotes and edges become
smoother and perceptually better. The second example in Figure 6.6 explains that
as more weights are put against the curvature term, the model tends to favor the
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TV inpainting : b/a = 0

b/a = 20

Original Image

b/a = 10

Fig. 6.5. Effect I of elastica inpainting:
a larger weight b against the curvature term
produces smoother isophotes and edges and
better visual results.

b/a = 0
Original image with
Inpainting domain

b/a = 5 b/a = 20

Fig. 6.6. Effect II of elastica inpainting:
a large weight b against the curvature term
favors the connectivity principle: the model
encourages the connection of separated parts.

Original Image Inpainting Domain

TV Inpainting Curvature Inpainting

Original Image Inpainting Domain

TV Inpainting Curvature Inpainting

Fig. 6.7. Two more examples of elastica inpainting.

connectivity principle in perception [9, 20, 32]. That is, unlike the extreme case of TV
inpainting, the model encourages connection.

The last figure (Figure 6.7) shows two more examples of elastica inpainting, where
one can further appreciate the power of the elastica inpainting model and the numer-
ical PDE approach. Large scale “communication” among the separated parts is made
possible simply because of a good image or curve prior model—Euler’s elastica.

7. A remark on the inpainting model of Ballester et al. [1]. Before con-
cluding, we would like to direct our readers to a recent paper by Ballester, Bertalmio,
Caselles, Sapiro, and Vergera [1] that is closely connected to our own. We shall
conveniently call it the BBCSV model below.

The BBCSV variational inpainting model inpaints both the normal field �n =
∇u/|∇u| and the gray value image u simultaneously over the extended inpainting
domain K ∪ E, based on the boundary data u0 and �n0. (To be consistent and more
readable, we have followed our own notations in the current paper.) The BBCSV
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model tries to minimize the energy

J [u, �n] =

∫
K∪E

|∇ · �n|p (a + b|∇u|)dx + α

∫
K∪E

(|∇u| − �n · ∇u)dx(7.1)

in a suitably defined admissible space (see [1]).
The second fitting term is used to enforce the ideal meaning of �n: �n = ∇u/|∇u|.

Therefore, ideally, the BBCSV energy J [u, �n] is essentially reduced to∫
K∪E

∣∣∣∣∇ ·
[ ∇u

|∇u|
]∣∣∣∣p (a + b|∇u|)dx,(7.2)

which is different from the p-elastica energy in the current paper:∫
K∪E

(
a + b

∣∣∣∣∇ ·
[ ∇u

|∇u|
]∣∣∣∣p

)
|∇u|dx.

The major difference between the two is that the elastica model leads to morpholog-
ically invariant flows, as shown in Theorem 5.1 and Proposition 5.2.

We refer to [1] for further interesting discussion.
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Abstract. The APEX method is an FFT-based direct blind deconvolution technique that
can process complex high resolution imagery in seconds or minutes on current desktop platforms.
The method is predicated on a restricted class of shift-invariant blurs that can be expressed as
finite convolution products of two-dimensional radially symmetric Lévy stable probability density
functions. This class generalizes Gaussian and Lorentzian densities but excludes defocus and motion
blurs. Not all images can be enhanced with the APEX method. However, it is shown that the method
can be usefully applied to a wide variety of real blurred images, including astronomical, Landsat,
and aerial images, MRI and PET brain scans, and scanning electron microscope images. APEX
processing of these images enhances contrast and sharpens structural detail, leading to noticeable
improvements in visual quality. The discussion includes a documented example of nonuniqueness, in
which distinct point spread functions produce high-quality restorations of the same blurred image.
Significantly, low exponent Lévy point spread functions were detected and used in all the above
examples. Such low exponents are exceptional in physical applications where symmetric stable laws
appear. In the present case, the physical meaning of these Lévy exponents is uncertain.
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1. Introduction. The APEX method is an FFT-based direct blind deconvolu-
tion technique introduced by the author in [9]. The significance of the present paper
lies in the successful use of that method in sharpening a wide variety of real blurred
images, as opposed to the synthetically blurred images discussed in [9]. The rea-
sons behind these successful applications are not fully understood. Not all images
can be usefully enhanced with the APEX method. The present paper is essentially
self-contained and may be read independently of [9].

Blind deconvolution seeks to deblur an image without knowing the point spread
function (psf) describing the blur. Most approaches to that problem are iterative
in nature. Because nonuniqueness is compounded with discontinuous dependence
on data, such iterative procedures are not always well-behaved. When the iterative
process is stable, several thousand iterations may be necessary to achieve useful recon-
structions. However, as shown in [9], by limiting the class of blurs, noniterative direct
procedures can be devised that accomplish blind deconvolution of 512 × 512 images
in seconds on current desktop platforms.

The APEX method assumes the image g(x, y) to have been blurred by a restricted
type of shift-invariant psf h(x, y), one that can be expressed as a finite convolution
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product of two-dimensional (2-D) radially symmetric Lévy stable probability density
functions. Such so-called class G psfs include Gaussians, Lorentzians, and their convo-
lutions. However, the class G also excludes defocus and motion blurs and convolutions
of such blurs with Gaussians and Lorentzians.

The synthetically blurred images g(x, y) used in [9] were created by numerical
convolution of sharp images f(x, y) with class G psfs h(x, y). Such blurred images
necessarily obey the convolutional model g(x, y) = h(x, y)⊗ f(x, y) + noise, on which
the APEX method is predicated. In a real image, the blur need not be radially sym-
metric nor shift-invariant and may otherwise be poorly approximated by an element
of G. More fundamentally, the blurring operator may not even be linear. Applicabil-
ity of the APEX method to a given real image is far from obvious. Therefore, useful
sharpening of any such image with an APEX-detected psf is always instructive.

Stable distributions are the natural generalization of the Gaussian distribution.
Their theory was developed by Paul Lévy in the 1930s in connection with his work
on the central limit theorem (see [17]). In the simplest radially symmetric case, these
distributions are characterized by an exponent β, 0 < β ≤ 1, with β = 1 corresponding
to the Gaussian distribution, and β = 1/2 corresponding to the Cauchy or Lorentzian
distribution. Because stable distributions have infinite variance when β < 1, their
appearance in physical contexts sometimes poses philosophical difficulties. In the
present case, use of such heavy-tailed psfs as the framework for the APEX method is
motivated by the important role Lévy densities appear to play in numerous imaging
systems. This is documented in section 2. When the APEX method is applied to a
given image in the manner described below, a Lévy psf with a specific value of β is
necessarily detected. That value of β may not be indicative of the actual physical
process that created the image. This is true even if deblurring with the detected
psf significantly improves the image. As shown in section 4, there are in general
infinitely many distinct values of β that can produce useful reconstructions from the
same blurred image. In some cases, the usefully enhanced image may not have been
blurred by a class G psf to begin with. In other cases, APEX processing does not
significantly improve the image.

Below, we exhibit ten images where APEX processing provided noticeable im-
provement. These examples encompass such diverse imaging applications as astro-
nomical, Landsat, and aerial images, MRI and PET brain scans, a scanning electron
microscope image, a face image, and other types of interesting images. In some cases,
the improvement is due primarily to an increase in contrast. In other cases, there is
demonstrable sharpening of structural detail in addition to increased contrast. In all
cases, the change in image quality is more than cosmetic, as APEX processing signif-
icantly alters the image Fourier transform. It is noteworthy that low exponent stable
laws, with β � 1/2, were detected and used to deblur all of the images shown below.
Such β-values are exceptional in physical contexts where radially symmetric Lévy
densities appear. Whether or not these values have a physical origin cannot be ascer-
tained in the present case. Moreover, the APEX detection procedure may not be well
founded. Nevertheless, the fact remains that the use of such psfs produced valuable
restoration of real imagery from important fields of science and technology. To the
author’s knowledge, this application of sub-Cauchy stable laws in image processing is
new and unanticipated.

In recent years, there has been considerable interest in image processing tech-
niques that can be formulated as initial value problems in nonlinear PDEs. An in-
structive survey of these developments may be found in [11]. In particular, novel
approaches to image deblurring have been devised, based on integrating well-posed
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nonlinear anisotropic diffusion equations [33], [38]. In contrast, the APEX method
centers around ill-posed continuation in linear fractional diffusion equations. As noted
in section 7, for the type of finely textured imagery considered in the present paper,
APEX processing compares favorably with what is feasible with nonlinear methods.
This indicates that the APEX method can be a useful addition to PDE-based image
analysis.

2. Imaging systems, Lévy processes, and the class G. The occurrence and
analysis of Lévy processes in the physical sciences are subjects of significant current
interest; see [1], [2], [4], [32], [39], [40], [41], [44], and the references therein. An
important special case involves 2-D radially symmetric Lévy stable densities h(x, y),
implicitly defined in terms of their Fourier transforms by

ĥ(ξ, η) ≡
∫
R2

h(x, y)e−2πi(ξx+ηy)dxdy = e−α(ξ2+η2)β , α > 0, 0 < β ≤ 1.(1)

The cases β = 1 and β = 1/2 correspond to Gaussian and Lorentzian (or Cauchy)
densities, respectively. For other values of β, h(x, y) in (1) is not known in closed
form. When β = 1, h(x, y) has slim tails and finite variance. For 0 < β < 1,
h(x, y) has fat tails and infinite variance. As noted in [44], there are examples in
science where the occurrence of a stable law can be deduced from “first principles”
in terms of physical mechanisms that do not explicitly involve the parameter β. One
such instance is the Holtsmark distribution describing the gravitational field of stars
(see [17]). There, mathematical analysis reveals the value β = 3/4. Such cases must
be distinguished from the many other cases in which empirically obtained data with
fat tails are fitted to a Lévy law, and the exponent β is inferred from these data. Given
the limitations of physical measurements, such empirically established Lévy processes
do not have the degree of scientific legitimacy that attends the Holtsmark distribution.
The considerations of the present paper generally lie in this weaker scientific realm.
Nevertheless, as will be seen below, techniques derived from such considerations turn
out to be effective.

Image intensifiers, charge-coupled devices, and numerous other electronic devices
are used in a wide variety of astronomical, industrial, biomedical, military, and surveil-
lance imaging systems; see [3], [14], [15], [18], [31]. Each such device has a psf h(x, y)
characterizing that device’s imaging properties. The psf is a probability density func-
tion since it is nonnegative and integrates to unity. Use of such a device to image an
object f(x, y) produces a blurred image g(x, y) = h(x, y) ⊗ f(x, y), where ⊗ denotes
convolution. An ideal device would have h(x, y) = δ(x, y). The Fourier transform

ĥ(ξ, η) of the psf is generally complex-valued and is called the optical transfer func-
tion (otf). The absolute value of the otf is the modulation transfer function (mtf).

In [42], it is noted that electron optical mtfs are often nearly Gaussian in shape,
and that this should be expected from the central limit theorem, since the process of
converting incoming signal photons into the final image that is observed on a screen
involves many intermediate stages. However, it is also observed in [42] that when such
mtfs are fitted with Gaussians, the fitted curves often have slimmer tails than is the
case for the true mtfs.

A systematic study of electron optical mtfmeasurements is the subject of [22], [24],
and [27]. There, the author claims the empirical discovery that a wide variety of
electronic imaging devices, including phosphor screens and some types of photographic
film, have otfs ĥ(ξ, η) that are well described by (1) with 1/2 ≤ β ≤ 1. For any given
device, the values of α and β can be determined using specialized graph paper [28].
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Other instances of electron optical stable laws are mentioned in [23], [26], and [30].
Analysis of the physical mechanisms responsible for such non-Gaussian behavior is
not included in these works. An understanding of such mechanisms may lead to the
design of imaging devices with low values of β. The latter parameter affects the
attenuation of high frequency information in the recorded image. Deconvolution of
that image in the presence of noise is generally better behaved at low values of β than
it is at high values of β.

The characterization (1) is useful in other areas of optics. The otf for long-
exposure imaging through atmospheric turbulence [21] is known to be given by (1),
with β = 5/6 and α determined by atmospheric conditions. Also, as shown in [25],
the analytically known diffraction-limited otf for a perfect lens [43, p. 154] can be
approximated over a wide frequency range by (1), with β = 3/4 and α a properly
chosen function of the cutoff frequency.

The range of β values discussed above, namely, 1/2 ≤ β ≤ 1, mirrors that found
in most other physical contexts where symmetric stable laws appear or are surmised.
Values of β � 1/2 seem to be relatively rare in applications. Examples of such β values
occur in [29], where mtf data for 56 different kinds of photographic film are analyzed.
Good agreement is found when these data are fitted with (1) and the pairs (α, β)
characterizing each of these 56 mtfs are identified. It is found that 36 types of film
have mtfs where 1/2 ≤ β ≤ 1. The remaining 20 types have mtfs with values of β in
the range 0.265 ≤ β ≤ 0.475.

We now consider imaging systems composed of various elements satisfying (1).
Such systems might be used to image objects through a turbulent atmosphere or
through other distorting media whose otfs obey (1). The resulting composite otf has
the form

ĥ(ξ, η) = e−
∑J

i=1 αi(ξ
2+η2)βi

, αi ≥ 0, 0 < βi ≤ 1.(2)

Such an object corresponds to a multifractal law in [4]. We define the class G to
be the class of all psfs h(x, y) with Fourier transforms satisfying (2). We shall be
interested in image deblurring problems

Hf ≡
∫
R2

h(x− u, y − v)f(u, v)dudv ≡ h(x, y) ⊗ f(x, y) = g(x, y),(3)

where g(x, y) is the recorded blurred image, f(x, y) is the desired unblurred image,
and h(x, y) is a known psf in class G. The blurred image g(x, y) includes (possibly
multiplicative) noise, which is viewed as a separate additional degradation,

g(x, y) = ge(x, y) + n(x, y).(4)

Here, ge(x, y) is the blurred image that would have been recorded in the absence of
any noise, and n(x, y) represents the cumulative effects of all errors affecting final
acquisition of the digitized array g(x, y). Neither ge(x, y) nor n(x, y) are known, only
their sum g(x, y). The unique solution of (3) when the right-hand side is ge(x, y) is
the exact sharp image denoted by fe(x, y). Thus

h(x, y) ⊗ fe(x, y) = ge(x, y).(5)

3. Deblurring with the SECB method. The SECB method is a direct FFT-
based image deblurring technique designed for equations of the form (3), when h(x, y)
is known and belongs to G. The method is based on inverse diffusion equations, and
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features an important new slow evolution regularizing constraint. Such regularization
leads to smaller error bounds for the reconstructed image f(x, y), as a function of the
noise level ε in the blurred image g(x, y), than is mathematically possible with the ba-
sic Tikhonov–Miller method. Significantly, the method does not impose smoothness
constraints on the unknown image f(x, y), nor does it require knowledge of the noise
statistics other than an L2 upper bound ε. Naturally, the method works best when
ε is small. The above important theoretical advantages, coupled with the practical
advantages of fast computation through FFT algorithms, render the SECB method a
valuable tool in blind deconvolution. Theoretical analysis of the SECB method, along
with error bounds and documented comparisons with the Tikhonov–Miller method,
may be found in [5] and [6]. Comparisons with other widely used nonlinear proba-
bilistic algorithms, including the Lucy–Richardson and maximum entropy methods,
may be found in [7]. Image deblurring with class G psfs is just one example of an
extensive class of ill-posed PDE problems [8]. That class includes problems ranging
from analytic continuation in the unit disc to the time-reversed Navier–Stokes equa-
tions. As shown explicitly in [8], use of the “slow evolution” constraint in that class
of problems leads to stronger stability estimates in terms of ε than previously known
“Hölder-continuity” estimates.

For class G psfs, we may define fractional powers Ht, 0 ≤ t ≤ 1, of the convolution
integral operator H in (3) as follows:

Htf ≡ F−1
{
ĥt(ξ, η)f̂(ξ, η)

}
, 0 ≤ t ≤ 1.(6)

Class G psfs are intimately related to diffusion processes, and solving (3) is mathe-
matically equivalent to finding the initial value u(x, y, 0) = f(x, y) in the backwards-
in-time problem for the generalized diffusion equation

ut = −
J∑
i=1

λi(−∆)βiu, λi = αi(4π
2)−βi , 0 < t ≤ 1,

u(x, y, 1) ≈ g(x, y).

(7)

When f(x, y) is known, u(x, y, t) = Htf is the solution of (7) at time t. The SECB
method is a regularization method for solving the ill-posed problem (7) that takes
into account the presence of noise in the blurred image data g(x, y) at t = 1. With
f , g, and n as in (3) and (4), and u(t) the solution of (7), let ε, M be known positive
constants such that

‖u(0)‖2 = ‖f‖2 ≤ M, ‖u(1) − g‖2 = ‖n‖2 ≤ ε, ε � M,(8)

where ‖ ‖2 denotes the L2 norm. For any constant K > 0 such that K � M/ε, define
s∗ (ε,M,K) by

s∗ =
log {M/(M −Kε)}

log(M/ε)
.(9)

The “slow evolution” constraint applied to the backwards-in-time solution of (7) re-
quires that there exist a known small constant K > 0 and a known fixed small s > 0,
with s/s∗ 
 1, such that

‖u(s) − u(0)‖2 ≤ Kε.(10)
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Knowledge of the regularization parameters K and s represents a priori information
about the solution of (3). As is well known, some form of a priori information is
always necessary in the solution of ill-posed problems. Given K and s, the SECB
solution of the backwards problem for (7) is defined to be that initial value u†(0)
which minimizes

‖u(1) − g‖2
2 + K−2 ‖u(s) − u(0)‖2

2(11)

over all choices of initial values u(0) in L2. The SECB deblurred image f†(x, y) ≡
u†(0) can be obtained in closed form in Fourier space. With z denoting the complex
conjugate of z,

f̂†(ξ, η) =
ĥ(ξ, η)ĝ(ξ, η)

|ĥ(ξ, η)|2 + K−2|1 − ĥs(ξ, η)|2 ,(12)

leading to f†(x, y) upon inverse transformation. In practice, FFT algorithms are used
to obtain f†(x, y). This may result in individual pixel values that are negative or that
exceed 255, the maximum value in an 8-bit image. Accordingly, all negative values
are reset to the value zero, and all values exceeding 255 are reset to the value 255.
One way of obtaining initial estimates for K and s in (12) is as follows. With ε, M ,
and the psf h(x, y) known, fix s > 0 in the range 0.001 ≤ s ≤ 0.01 and construct the
operator Hs as in (6). If fπ(x, y) is a prototype image for the class of images under
consideration, we can estimate K in (10) by evaluating ‖Hsfπ − fπ‖ /ε. We may
then compute s∗ in (9) and verify that s/s∗ 
 1. This is usually the case, as s∗ is
infinitesimally small, provided that Kε � M . This initial choice of K can be refined
interactively when the reconstructed image is a recognizable object. With s fixed as
above, increasing K increases resolution until a threshold value is reached. Further
increases in K bring out noise. Conversely, if the initial choice of K brings out noise,
K must be decreased. Note that for 512 × 512 images, 20 trial SECB restorations,
each with a different value of K, can be obtained simultaneously in about 10 seconds
of cpu time on an MIPS R12000 (400MHz) workstation. A visually optimal value
of K for fixed small s is usually easily found. We may also form and display

u†(x, y, t) = Htf†(x, y)(13)

for selected decreasing values of t lying between 1 and 0. This simulates marching
backwards in time in (7) and allows monitoring the gradual deblurring of the image.
As t ↓ 0, the partial restorations u†(x, y, t) become sharper. However, noise and
other artifacts typically become more noticeable as t ↓ 0. Marching backwards from
t = 0.2 to t = 0, say, may allow detection of features in the image before they become
obscured by noise or ringing artifacts.

The above discussion assumed that the psf h(x, y) was known. As shown in
sections 5 and 6, such marching backwards in time becomes much more vital in the
blind deconvolution problem, where the initial APEX-detected psf may erroneously be
too wide. Theoretically, use of too wide a psf all the way to t = 0 implies sharpening
features that may have already become infinitely sharp at some t0 > 0. In practice,
this leads to severe ringing and other undesirable artifacts at t = 0. Here, it is often
advisable to start marching backwards from t = 1.

It should be noted that the class G is only a small subclass of the class of in-
finitely divisible densities [17]. The latter class includes multimodal nonsymmetric
psfs associated with linear diffusion equations more complex than (7). Detection of
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such psfs from blurred image data would require considerable extension of the APEX
method discussed below.

4. Nonuniqueness in blind deconvolution. Blind deconvolution of images is
a mathematical problem that is not fully understood. Well-documented examples of
the kinds of behavior that may occur are of particular interest. In this section, we
highlight important nonuniqueness aspects of that problem that are helpful in under-
standing the results of the APEX method. Let fe(x, y) be a given exact sharp image,
let h(x, y) be a Lévy point spread function, and let ge(x, y) = h(x, y) ⊗ fe(x, y). We
shall show that, given the blurred image ge(x, y), there are in general many point
spread functions hi(x, y) �= h(x, y) that deblur ge(x, y), producing high quality recon-
structions fi(x, y) �= fe(x, y), with hi(x, y) ⊗ fi(x, y) ≈ ge(x, y).

The sharp 512×512 Sydney image fe(x, y) in Figure 1(a) was synthetically blurred
by convolution with a Cauchy density h(x, y) with α0 = 0.075, β0 = 0.5. This
produced the blurred image ge(x, y) in Figure 1(b). To avoid distractions caused
by noise, the blurred image ge(x, y) in this experiment was computed and stored in
64-bit precision. Deblurring this noiseless image with the correct psf values α = 0.075,
β = 0.5, produces Figure 1(c). This is in excellent visual agreement with fe(x, y) in
Figure 1(a), as expected. However, the visual quality in Figures 1(d)–(f) is generally as
good as that in Figure 1(c); the latter three images were deblurred with Lévy densities
with values (α, β), where α > α0, β < β0, and they differ from Figure 1(a) in contrast
and brightness. All deblurred images were obtained using the SECB method with
s = 0.001 and K = 10000. One-dimensional (1-D) cross sections of the four distinct
psfs used in Figure 1 are displayed in Figure 2. These psfs also exhibit distinct heavy
tail behavior not shown in Figure 2.

One can imagine four photographers, simultaneously photographing the identical
scene depicted in Figure 1(a), yet producing the four distinct images shown in Figures
1(c)–(f) through use of different lenses, film, filters, exposures, printing, and the
like. In practice, given only the blurred image in Figure 1(b), any one of these four
restorations would be considered highly successful. Convolution of each reconstruction
with its corresponding psf in Figure 2 reproduces the blurred image in Figure 1(b).

For any restoration f(x, y) of the exact image fe(x, y) in Figure 1(a) and any
norm ‖ ‖, we can evaluate the relative error ‖f − fe‖ / ‖fe‖. Define the discrete
L1, L2, and Hm norms as follows:

‖f‖1 = N−2
N∑

x,y=1

|f(x, y)|,

‖f‖2 =

{
N−2

N∑
x,y=1

|f(x, y)|2
}1/2

,

‖f‖Hm =

{
N−2

N∑
ξ,η=1

(
1 + ξ2 + η2

)m |f̂(ξ, η)|2
}1/2

.

(14)

The relative errors in the L1, L2, H1, and H5 norms for each of the four restora-
tions in Figure 1 are shown in Table 1. As might be expected, image (c) is the closest
to image (a) in each of these norms, since the correct psf values were used to obtain
image (c) from image (b). It is also evident from Table 1 that the four restorations
are distinct from one another, since they differ from image (a) by different amounts.
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Fig. 1. Nonuniqueness in blind deconvolution. Distinct psfs exist that produce high quality
reconstructions from the same blurred image. (a) Original sharp 512× 512 Sydney image. (b) Syn-
thetically blurred Sydney image created by convolution with Lorentzian density with α0 = 0.075,
β0 = 0.5. Blurred image computed and stored in 64-bit precision. (c) Deblurring of image (b)
using correct parameters α = 0.075, β = 0.5. (d) Deblurring of image (b) using α = 0.1301264,
β = 0.44298. (e) Deblurring of image (b) using α = 0.1950345, β = 0.403889. (f) Deblurring of
image (b) using α = 0.2360994, β = 0.369666. Notice that images (d), (e), and (f) were found
using specific pairs (α, β), where α > α0 and β < β0. All deblurred images were obtained using the
SECB procedure with s = 0.001 and K = 10000.
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Fig. 2. Four distinct psfs that deblur image (b) in Figure 1. Curves C, D, E, and F are
1-D cross sections of the 512 × 512 psfs that respectively produced images (c), (d), (e), and (f) in
Figure 1. These psfs also exhibit distinct heavy tail behavior.

Table 1
Relative errors in various norms for the four deblurred images in Figure 1.

Restoration Parameters α, β L1 L2 H1 H5

Image (c) α = 0.075, β = 0.500 2.13 % 3.52 % 4.13 % 19.66 %
Image (d) α = 0.130, β = 0.443 6.63 % 8.37 % 8.67 % 21.11 %
Image (e) α = 0.195, β = 0.404 12.64 % 15.53 % 15.75 % 25.52 %
Image (f) α = 0.236, β = 0.370 12.54 % 15.08 % 15.31 % 26.17 %

Most important, the fact that image (e) is a significantly poorer approximation to
image (a) in these norms than is image (c) does not imply that image (e) is an in-
accurate representation of the visual scene depicted in image (a). Notice also that
image (f) is not as sharp as image (e), although it is closer to image (a) in three of
the four norms.

Iterative algorithms are the most common approach to blind deconvolution. Con-
vergence proofs for such iterative procedures are seldom available. The above example
illustrates some of the difficulties underlying any analysis of convergence. Such anal-
ysis should allow for the possibility of infinitely many useful limit points, while the
mathematical characterization of such limit points is not obvious. Moreover, as is
evident from Table 1 and has been known for some time, the use of Lp or Hm norms
in assessing the visual quality of a reconstruction can be misleading.

5. Marching backwards in time and the APEX method. The APEX
method is a blind deconvolution technique based on detecting class G psf signa-
tures by appropriate 1-D Fourier analysis of the blurred image g(x, y). The detected
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psf parameters are then input into the SECB algorithm to deblur the image. Let
fe(x, y) be an exact sharp image as in (5). Since fe(x, y) ≥ 0,

|f̂e(ξ, η)| ≤
∫
R2

fe(x, y)dxdy = f̂e(0, 0) = σ > 0.(15)

Also, since ge(x, y) = h(x, y) ⊗ fe(x, y) and h(x, y) is a probability density,

ĝe(0, 0) =

∫
R2

ge(x, y)dxdy =

∫
R2

fe(x, y)dxdy = f̂e(0, 0) = σ > 0.(16)

Using σ as a normalizing constant, we may normalize Fourier transform quanti-
ties q̂(ξ, η) by dividing by σ. Let

q̂∗(ξ, η) =
q̂(ξ, η)

σ
(17)

denote the normalized quantity. The function |f̂e∗(ξ, η)| is highly oscillatory, and

0 ≤ |f̂e∗| ≤ 1. Since fe(x, y) is real, its Fourier transform is conjugate symmetric.

Therefore, the function |f̂e∗(ξ, η)| is symmetric about the origin on any line through
the origin in the (ξ, η) plane. The same is true for the blurred image data |ĝ∗(ξ, η)|.

All blurred images in this and the next section are of size 512×512 and quantized
at 8 bits per pixel. For any blurred image g(x, y), the discrete Fourier transform is a
512 × 512 array of complex numbers, which we again denote by ĝ(ξ, η) for simplicity.
The “frequencies” ξ, η are now integers lying between −256 and 256, and the zero
frequency is at the center of the transform array. This ordering is achieved by pre-
multiplying g(x, y) by (−1)x+y. We shall be interested in the values of such transforms
along single lines through the origin. The discrete transforms |ĝ∗(ξ, 0)| and |ĝ∗(0, η)|
are immediately available. Image rotation may be used to obtain discrete transforms
along other directions. All 1-D Fourier domain plots shown in this paper are taken
along the axis η = 0 in the (ξ, η) plane. In these plots, the zero frequency is at the
center of the horizontal axis, and the graphs are necessarily symmetric about the
vertical line ξ = 0. Examples of such plots are shown in Figures 3, 5, and 10.

The class of blurred images g(x, y) considered in the present paper can be de-
scribed in terms of the behavior of log |ĝ∗(ξ, η)| along lines through the origin in the
(ξ, η) plane. While local behavior is highly oscillatory, global behavior is generally
monotone decreasing and convex. This is shown in Figure 3 for two typical images
along the line η = 0. In [9], a large class of images with that property was exhibited,
the class W. The blurred images considered here may be loosely characterized as
being in class W. Not all blurred images may be so characterized. For example, if
the Cindy Crawford image g(x, y) in Figure 3(a) were convolved with a wide Gaussian
psf to form a new blurred image g1(x, y), global behavior in log |ĝ1∗(ξ, 0)|, away from
the origin, would be monotone decreasing and concave. Application of the APEX
method to several concave examples is discussed in [9]. Convolution of Figure 3(a)
with a defocus psf produces a different kind of blurred image g2(x, y), and global
behavior in log |ĝ2∗(ξ, 0)| is neither concave nor convex. Instead, there is a regular
pattern of sharp singularities corresponding to successive zeroes of the defocus otf.
Use of the APEX method in the manner to be described below is intended only for
blurred images with Fourier behavior analogous to that shown in Figure 3.

The APEX method is based on the following observations. In the basic relation

g(x, y) = h(x, y) ⊗ fe(x, y) + n(x, y),(18)
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Fig. 3. Behavior of a normalized Fourier transform in types of blurred images g(x, y) con-
sidered in the present paper. (a) log |ĝ∗(ξ, 0)| in an image of Cindy Crawford. (b) log |ĝ∗(ξ, 0)|
in a Washington, DC Landsat image. While local behavior is highly oscillatory, global behavior is
generally monotone decreasing and convex.

we may safely assume that the noise n(x, y) satisfies∫
R2

|n(x, y)|dxdy �
∫
R2

fe(x, y)dxdy = σ > 0,(19)

so that

|n̂∗(ξ, η)| � 1.(20)

Consider the case in which the otf is a pure Lévy density ĥ(ξ, η) = e−α(ξ2+η2)β . Since
g = ge + n,

log |ĝ∗(ξ, η)| = log |e−α(ξ2+η2)β f̂e
∗
(ξ, η) + n̂∗(ξ, η)|.(21)

Let Ω = {(ξ, η) | ξ2 + η2 ≤ ω2} be a neighborhood of the origin, where

e−α(ξ2+η2)β |f̂e∗(ξ, η)| 
 |n̂∗(ξ, η)|.(22)

Such an Ω exists since (22) is true for ξ = η = 0, in view of (20). The radius ω > 0
of Ω decreases as α and n increase. For (ξ, η) ∈ Ω we have

log |ĝ∗(ξ, η)| ≈ −α(ξ2 + η2)β + log |f̂e∗(ξ, η)|.(23)

Because of the radial symmetry in the psf, it is sufficient to consider (23) along a
single line through the origin in the (ξ, η) plane. Choosing the line η = 0, we have

log |ĝ∗(ξ, 0)| ≈ −α|ξ|2β + log |f̂e∗(ξ, 0)|, |ξ| ≤ ω.(24)

Some type of a priori information about fe(x, y) is necessary for blind deconvo-

lution. In (24), knowledge of log |f̂e∗(ξ, 0)| on |ξ| ≤ ω would immediately yield α|ξ|2β
on that interval. Moreover, any other line through the origin could have been used
in (23). However, such detailed knowledge is unlikely in practice. The APEX method

seeks to identify a useful psf from (24) without prior knowledge of log |f̂e∗(ξ, 0)|. The
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method assumes instead that fe(x, y) is a recognizable object, and typically requires
several interactive trials before locating a suitable psf. As previously noted, such
trial SECB restorations are easily obtained. Here, prior information about fe(x, y)
is disguised in the form of user recognition or rejection of the restored image, and
that constraint is applied at the end of the reconstruction phase, rather than at the
beginning of the detection phase.

In the absence of information about log |f̂e∗(ξ, 0)|, we replace it by a negative
constant −A in (24). For any A > 0, the approximation

log |ĝ∗(ξ, 0)| ≈ −α|ξ|2β −A(25)

is not valid near ξ = 0, since the curve u(ξ) = −α|ξ|2β − A has −A as its apex.
Choosing a value of A > 0, we best fit log |ĝ∗(ξ, 0)| with u(ξ) = −α|ξ|2β − A on the
interval |ξ| ≤ ω, using nonlinear least squares algorithms. The resulting fit is close
only for ξ away from the origin. The returned values for α and β are then used in
the SECB deblurring algorithm. Different values of A return different pairs (α, β).
Experience indicates that useful values of A generally lie in the interval 2 ≤ A ≤ 6.
Increasing the value of A decreases the curvature of u(ξ) at ξ = 0, resulting in a
larger value of β together with a smaller value of α. A value of A > 0 that returns
β > 1 is clearly too large, as β > 1 is impossible for probability density functions [17].
Decreasing A has the opposite effect, producing lower values of β and higher values
of α. As a rule, deconvolution is better behaved at lower values of β than it is when
β ≈ 1. A significant observation is that an image blurred with a pair (α0, β0) can often
be successfully deblurred with an appropriate pair (α, β), where α > α0 and β < β0.
Examples of this phenomenon were shown in Figure 1 in connection with the blurred
Sydney image. An effective interactive framework for performing the above least
squares fitting is the fit command in DATAPLOT [20]. This is a high-level English-
syntax graphics and analysis software package developed at the National Institute of
Standards and Technology. This software tool was used throughout this paper.

The following version of the APEX method, using the SECB marching backwards
in time option (13), has been found useful in a variety of image enhancement problems
where the image g(x, y) is such that log |ĝ∗(ξ, 0)| is generally globally monotone de-
creasing and convex, as shown in Figure 3. Choose a value of A > 2 in (25) such that
the least squares fit develops a slight cusp at ξ = 0. Using the returned pair (α, β) in
the SECB method, obtain a sequence u†(x, y, t) of partial restorations as t decreases
from t = 1, as illustrated in the Cindy Crawford sequence1 in Figure 4. Often, the
initial choice of A results in a psf that is too wide in physical space, i.e., wider than
the unknown psf that might have blurred the image. Use of that psf all the way to
t = 0 will result in oversharpening. Typically, high quality restorations will be found
at positive values of t, and these will gradually deteriorate as t ↓ 0. At t = 0, the
restoration may exhibit severe ringing and other undesirable artifacts [9, Figure 13],
indicating that continuation backwards in time has proceeded too far in (7). Ter-
minating the continuation at some appropriate t = t1 > 0 is equivalent to rescaling
the value of α without changing the value of β. If the pair (α, β) produces a high
quality restoration at t = t1 > 0, the pair (α1, β), where α1 = (1 − t1)α, will produce
the same quality results at t = 0. Thus, marching backwards in time is equivalent
to simultaneously sampling numerous values of α while keeping β fixed. This process

1Given a 512× 512 blurred image as input, the APEX procedure computes and displays a time
marching sequence of 10 partial restorations in about 10 seconds on an MIPS R12000 (400MHz)
workstation.
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   t=1.0             t=0.8             t=0.7              t=0.6

   t=0.5              t=0.4             t=0.2             t=0.0

Fig. 4. Enhancement of a Cindy Crawford image by marching backwards from t = 1 with an
APEX-detected psf. Image sequence shows a gradual increase in contrast as t decreases. Undesirable
artifacts at t = 0 indicate that continuation backwards in time has proceeded too far. Best results
are highly subjective in this case, but probably occur at some t > 0.5. Note the sharpness of the
earrings near t = 0.5.

can be repeated with a different choice of A, resulting in a different value of β. In
general, there will be many values of A in (25) returning pairs (α, β) that produce
good reconstructions at some tαβ > 0. A large number of distinct pairs (α∗, β∗) can
thus be found that produce useful, but distinct, results at t = 0. Indeed, this is the
process that was used to obtain the four psfs shown in Figure 2.

We have been assuming ĥ(ξ, η) to be a pure Lévy otf in (18). For more general
class G otfs (2), we may still use the approximation log |ĝ∗(ξ, 0)| ≈ −α|ξ|2β − A and
apply the same technique to extract a suitable pair (α, β) from the blurred image.
Here, the returned APEX values may be considered representative values for the αi, βi
in (2), producing a single pure Lévy otf approximating the composite otf.

6. Application to real images. The developments in sections 2 through 5 are
predicated on two assumptions. The first assumption is that the blurred image g(x, y)
obeys the simple convolution equation (3) rather than a more general, possibly non-
linear, integral equation

Hf =

∫
R2

h(x, y, u, v, f(u, v))dudv = g(x, y).(26)

In addition to linearity, (3) implies that the blur is isoplanatic. The second assumption
is that the point spread function h(x, y) belongs to a restricted class of unimodal,
radially symmetric, probability density functions, the class G defined in (2). In [9],
successful blind deconvolution of synthetically blurred images, with added noise, was
demonstrated. Such synthetically blurred images necessarily obey (2) and (3).

The applicability of the preceding theory to real blurred images is by no means
assured. Deviations from linearity, isoplanatism, unimodality, and radial symmetry
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Fig. 5. The APEX method of psf detection. (a) log |ĝ∗(ξ, 0)| on |ξ| ≤ 250 in the 8-bit English
village image. (b) A least squares fit of log |ĝ∗(ξ, 0)|, with u(ξ) = −α |ξ|2β − 3.75 on |ξ| ≤ 200,
develops a cusp at ξ = 0 and returns α = 0.251274, β = 0.242246.

are possible. Moreover, the class G excludes motion and defocus blurs. In addition,
the types and intensities of noise processes in real images may differ fundamentally
from the noise models typically used in numerical experiments. Therefore, only limited
success on a narrow class of images can be expected in real applications.

The examples discussed below involve images obtained from multiple sources using
diverse imaging modalities. Some of these images have been used as test images in
the literature. In this paper, each of these images is assumed to have been blurred by
some unknown process, and we seek to improve visual quality by APEX processing.
All images are of size 512 × 512 and are quantized at 8 bits per pixel.

Our first example is a well-known English village image denoted by g(x, y) and
shown in Figure 5(a) together with log |ĝ∗(ξ, 0)| on |ξ| ≤ 250. The plot displays
globally convex monotone behavior. In Figure 5(b), the APEX fit of log |ĝ∗(ξ, 0)| with
u(ξ) = −α|ξ|2β−A on the interval |ξ| ≤ 200 is shown. With A = 3.75, the fit develops
a cusp at ξ = 0 and returns α = 0.251274, β = 0.242246. With these psf parameters,
SECB deblurring using s = 0.01, K = 1300, and continuation backwards in time
terminated at t = 0.5 produces Figure 6(b). This is compared with the original in
Figure 6(a).

The extent of sharpening in Figure 6(b) becomes evident when zooming in on
selected parts of the image. In Figure 7, roof lines on the first three houses are
compared before and after APEX processing. There is noticeable enhancement of
structural detail in the roof shingles and stone fronts of the three houses in Figure 7(b).
In Figure 8(b), Holstein cows grazing in the meadow, not previously identifiable, are
clearly visible. So are individual chimney bricks. In Figure 9(b), buildings in the
distance, not readily noticed in Figure 9(a), become well defined.

It should be noted that the use of a different value of A, and/or a different
neighborhood of the origin Ω in Figure 5(b), may return a different psf pair (α, β). In
that case, backwards continuation in the SECB method may need to be terminated
at some other value of t to obtain the best image. However, with good choices of
A and Ω, the new image would again be a high quality representation of the visual
scene in Figure 6(b), while differing from Figure 6(b) at individual pixels. This is
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Fig. 6. Enhancement of the English village image. (a) Original 8-bit image. (b) SECB
deblurred image using s = 0.01, K = 1300, with APEX-detected values α = 0.251274, β = 0.242246,
and with continuation backwards in time terminated at t = 0.5.

A B

Fig. 7. Extent of sharpening in the English village scene becomes evident when zooming in on
selected parts of the image. (a) Roof lines in the original image. (b) Roof lines in the enhanced
image.

the nonuniqueness phenomenon previously discussed in connection with the Sydney
image in Figure 1.

Deconvolution of Figure 6(a) with the above APEX-detected psf significantly
alters its Fourier transform. As shown in Figure 10(a), the Fourier transform in
Figure 6(b) (dashed curve) decays less rapidly as |ξ| increases than was the case in
the original Figure 6(a) (solid curve). Evidently, APEX processing amplifies high
frequency image components in a stable coherent fashion, resulting in the overall
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Fig. 8. Extent of sharpening in the English village scene becomes more evident with zooming.
Holstein cows grazing in the meadow in image (b) are not readily identifiable in image (a).

A B

Fig. 9. Extent of sharpening in the English village image becomes more evident with zooming.
The enhanced image (b) shows buildings in the distance not immediately apparent in the original
image (a).

improvements visible in Figures 6 through 9. The “before and after” Fourier transform
pattern shown in Figure 10(a) occurs in every example discussed in this paper, with
the exception of the F15 image in Figure 12; the anomalous behavior in that case is
shown in Figure 10(b).

The next example is the boat image in Figure 11(a). With A = 4.0, the APEX fit
on |ξ| ≤ 250 returned α = 0.518155, β = 0.215083. Using these values in the SECB
method, with s = 0.01, K = 1300, and continuation terminated at t = 0.5, produced
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Fig. 10. APEX processing significantly alters Fourier transform behavior. (a) English village
image before and after processing. (b) F15 terrain image in Figure 12 before and after processing.
The behavior shown in (b) is exceptional; all other examples in the present paper conform with the
behavior shown in (a).

A B

Fig. 11. Enhancement of the boat image. The APEX method with A = 4.0 on |ξ| ≤ 250 yields
α = 0.518155, β = 0.215083. Using these parameters, with s = 0.01, K = 1300, and backwards
continuation terminated at t = 0.5, the SECB method applied to image (a) produces image (b). The
number 7 2 7 on the side of the boat in image (b) was not easily identifiable in image (a).

Figure 11(b). Enhancement has now rendered visible the number 7 2 7 on the left
side of the boat. Other identifiable details include the stripe along the left trouser
leg of the man on the ground, the lettering on the sign hanging from the boat to his
right, and part of the stone work and stairway to the left of the lighthouse.

The F15 plane image in Figure 12(a) is another interesting example. The aim
here is to enhance the background terrain. With A = 3.5, the APEX fit on |ξ| ≤ 250
develops a cusp at ξ = 0 and returns α = 0.856096, β = 0.107289. Using these
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Fig. 12. Striking enhancement of terrain features in an F15 image. The APEX method with
A = 3.5 on |ξ| ≤ 250 yields α = 0.856096, β = 0.107289. Using these parameters, with s =
0.01, K = 1000, and backwards continuation terminated at t = 0.25, the SECB method applied
to image (a) produced image (b). Condensation trails behind the aircraft in image (b) were not
immediately evident in image (a).

values in the SECB method, with s = 0.01, K = 1000, and backwards continuation
terminated at t = 0.25, produces rather striking enhancement of the ground features
in Figure 12(b). This example is noteworthy on two counts: the exceptionally low
value of β detected by the APEX method and the previously mentioned unexpected
Fourier behavior shown in Figure 10(b).

Beginning with Figure 1, all of the examples discussed so far involve images of
familiar objects. This allows for relatively easy evaluation of the results of APEX
processing. The next five examples involve less familiar objects. Moreover, fine de-
tails visible on a modern high resolution computer screen are sometimes lost in the
printing process. Consequently, improvements in image quality in some of the next
examples may seem less obvious than in previous examples. At the same time, the
performance of the APEX method in reconstructing real details of familiar objects
provides a measure of confidence in the results obtained when that method is applied
to unfamiliar objects.

Figure 13(a) is a Landsat image of the Washington, DC area. With A = 4.25, the
APEX fit on |ξ| ≤ 250 returns α = 0.540825, β = 0.182410. Using these parameters in
the SECB method, with s = 0.01, K = 1300, and continuation terminated at t = 0.5,
produces Figure 13(b). There is a significant increase in resolution in Figure 13(b),
which improves definition of several landmarks and thoroughfares. The Washington
Monument, the bridges over the Potomac, Pennsylvania and Maryland Avenues ra-
diating from the Capitol, Massachusetts Avenue to the north, and Virginia Avenue
and the Southeast Freeway to the south are some of the features that are more easily
identified in the enhanced image.

Figure 14(a) is a scanning electron microscope image of a mosquito’s head. A
prominent feature is the insect’s compound eye. With A = 4.0, the APEX fit on |ξ| ≤
250 yields α = 0.734259, β = 0.156963. Using these values in the SECB method, with
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Fig. 13. Enhancement of a Washington, DC Landsat image. The APEX method with A = 4.25
on |ξ| ≤ 250 yields α = 0.540825, β = 0.182410. Using these parameters, with s = 0.01, K =
1300, and backwards continuation terminated at t = 0.5, the SECB method applied to image (a)
produced image (b). Increased resolution in image (b) improves definition of several landmarks and
thoroughfares.

A B

Fig. 14. Enhancement of a scanning electron microscope image of a mosquito’s head showing
the compound eye. The APEX method with A = 4.0 on |ξ| ≤ 250 yields α = 0.734259, β = 0.156963.
Using these parameters, with s = 0.001, K = 10, and backwards continuation terminated at t = 0.4,
the SECB method applied to image (a) produced image (b). APEX processing enhances contrast and
brings the eye into sharper focus. Further applications in electron microscopy are discussed in [10].

s = 0.001, K = 10.0, and backwards continuation terminated at t = 0.4, produces
Figure 14(b). Evidently, APEX processing results in significant overall improvement.
In particular, the eye appears in much sharper focus. Further applications to electron
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Fig. 15. Enhancement of a sagittal MRI brain image. The APEX method with A = 4.0 on
|ξ| ≤ 250 yields α = 0.333267, β = 0.209416. Using these parameters, with s = 0.01, K = 1300, and
backwards continuation terminated at t = 0.35, the SECB procedure applied to image (a) produced
image (b). APEX processing noticeably improves feature definition in areas between two and four
o’clock.

microscopy are discussed in [10].

The sagittal MRI (magnetic resonance imaging) brain image in Figure 15(a) has
been used as a test sharp image in previous publications. In [5] and [7], syntheti-
cally blurred versions of that sharp image were used in a comparative evaluation of
restoration algorithms when the psf is known. Here, we consider further sharpening
the sharp image by blind deconvolution. With A = 4.0, the APEX fit on |ξ| ≤ 250
returns α = 0.333267, β = 0.209416. Using these parameters in the SECB procedure,
with s = 0.01, K = 1300, and continuation terminated at t = 0.35, produced the
image in Figure 15(b). Substantial improvement is apparent over the whole image. In
the sector between two and four o’clock, in particular, sharpening of structural detail
significantly improves feature definition.

In PET (positron emission tomography) imaging, a positron emitting radionuclide
is injected into the patient and used to tag glucose molecules in their course through
the brain. The metabolic rate of glucose is a key parameter that reflects cerebral
function and indicates the extent to which regions of the brain are active. Performing
specific mental tasks activates various parts of the brain, causing increased glucose
uptake and hence increased positron emission. Centers of activity translate into rel-
atively bright spots in the PET image. However, blurring by the scanner psf tends
to average out such relative differences, resulting in loss of contrast. Figure 16(a) is a
PET image of a transverse (horizontal) slice through the brain. Blind deconvolution
is used to enhance that image. With A = 5.0, the APEX fit on |ξ| ≤ 250 returns
α = 0.198931, β = 0.284449. Using these parameters in the SECB method, with
s = 0.001, K = 5.0, and backwards continuation terminated at t = 0.6, produces
Figure 16(b). Note that both images in Figure 16 show identical features, but the
contrast has been increased in the APEX-processed image, with some regions becom-
ing darker while others have become lighter. In particular, several bright spots appear
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Fig. 16. Enhancement of a transverse PET brain image. The APEX method with A = 5.0 on
|ξ| ≤ 250 yields α = 0.198931, β = 0.284449. Using these parameters, with s = 0.001, K = 5.0, and
backwards continuation terminated at t = 0.6, the SECB procedure applied to image (a) produced
image (b). Bright spots in the enhanced image (b), indicating areas of the brain responding to
applied external stimuli, are more clearly defined than in the original image (a).

A B

Fig. 17. Enhancement of the Whirlpool galaxy (M51) image. The APEX method with A = 4.0
on |ξ| ≤ 250 yields α = 0.451615, β = 0.221955. Using these parameters, with s = 0.001, K =
5.0, and backwards continuation terminated at t = 0.5, the SECB applied to image (a) produced
image (b). APEX processing increases resolution and enhances luminosity in the spiral arms and
galactic cores.

in Figure 16(b) that were not as readily apparent in the original image.

Our last example is the Whirlpool galaxy (M51) in Figure 17(a). With A = 4.0,
the APEX fit on |ξ| ≤ 250 yields α = 0.451615, β = 0.221955. Using these values in
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the SECB method, with s = 0.001, K = 5.0, and backwards continuation terminated
at t = 0.5, produced Figure 17(b). In the enhanced image, the spiral arms are more
luminous and better defined, and the luminous cores are larger in both the spiral
galaxy and its companion. The dark connecting arm between the two galaxies is also
more clearly defined. These enhancements are due to a change in Fourier transform
behavior brought about by deconvolution with the APEX-detected psf. This change
in Fourier behavior is similar to that shown in Figure 10(a), although it is more
pronounced. A concomitant effect of deconvolution is amplification of data noise,
which now becomes visible against the dark background in Figure 17(b).

Clearly, in this galaxy image as in the preceding PET image, there is no way
of knowing whether the enhanced image conforms with reality. Conceivably, the
increased luminosity in Figure 17(b) may be exaggerated. However, the bright areas
along the galactic arms in Figure 17(b), as well as the bright spots in Figure 16(b),
did not materialize spontaneously. These areas must have been just below some
brightness threshold in the original image, and APEX processing has served the very
useful purpose of revealing their presence. If such areas appear overenhanced, this
can be corrected by repeating the SECB procedure and terminating continuation at
higher values of t.

7. Anisotropic diffusion, total variation deblurring, and the “staircase
effect.” As is evident from the survey [11], there is considerable interest in the use of
anisotropic diffusion equations to perform various tasks in image processing. In pure
denoising applications, such methods have been found to be effective at removing
high levels of noise while preserving edges in an image. An important related idea
is the use of the total variation norm for regularizing the image restoration problem
[12], [13], [16], [33], [37], [38]. The Euler–Lagrange problem for minimizing the total
variation can be written as a nonlinear anisotropic diffusion equation, with a forcing
term that describes convolution of the unknown image with the known psf. This
is supplemented by homogeneous Neumann boundary conditions together with the
blurred image as initial data; see [33]. Deblurring the image is equivalent to stepwise
numerical computation of this nonlinear initial value problem until a steady state is
reached.

Total variation deblurring is especially useful for recovering “blocky” images, i.e.,
images that are nearly piecewise constant and have many edges [12], [16]. For this
reason, the total variation blind deconvolution approach in [13] aims primarily at
recovering blocky images that had been blurred by psfs with sharp edges. This is
the case with defocus and motion blurs; a defocused satellite image is the example
used in [13]. The authors observe that their algorithm is more effective on defocused
images than it is on Gaussian blurred images. In a complementary role, the APEX
method can also handle blocky images, but it is based on detecting class G blurs, a
class that includes heavy-tailed psfs but excludes defocus and motion blurs.

A major drawback of the total variation approach is the so-called “staircase ef-
fect,” whereby the deblurred image can develop spurious piecewise constant regions.
This often produces an “oil painting” appearance that does not correspond to the
true image and prevents identification of fine detail. For this reason, the authors in
[12] and [16] conclude that total variation deblurring is not useful for images that are
not nearly piecewise constant. In [34], [35], it is proved that total variation restoration
necessarily leads to the staircase effect. In [19], the mathematical premise of minimiz-
ing image total variation is questioned, and the authors prove that because of their
fine texture, most natural images are not of bounded variation. Therefore, in images
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Fig. 18. Staircase effect in total variation deblurring of the Sydney image. (a) Synthetically
blurred 512× 512 Sydney image, previously used in Figure 1(b), was computed in 64-bit precision.
(b) Deblurring of image (a) using the known psf and the total variation scheme in [33], with noise
variance parameter βΣ = 0.001, Lagrange multiplier λ = 50, CFL restriction ∆t = 0.1(∆x)2, and
stepwise integration to time T = 100∆t. The strong “oil painting” effect in image (b) impairs
recognition and occurs with other choices of βΣ ≤ 0.001 and λ ≥ 50. Compare with the SECB
deblurred image in Figure 1(c).

with fine texture, total variation deblurring must inevitably smooth out texture.

The following example illustrates why total variation deblurring is typically not
useful for the type of textured imagery considered in this paper. The blurred noise-
less 512× 512 Sydney image, previously used in Figure 1(b), was deblurred using the
total variation scheme described in [33, section 5]. This is a pure deblurring prob-
lem in which the synthetically blurred input image, Figure 18(a), was computed in
64-bit precision. Moreover, the precisely known psf was used. The aim here is to
evaluate the reconstructive ability of the total variation scheme under the most favor-
able circumstances. As recommended in [33], in this noiseless case the noise variance
parameter βΣ should be chosen small, while the Lagrange multiplier λ should be cho-
sen large. Here, several values of βΣ in the range 0.00001 ≤ βΣ ≤ 0.01 were tried,
together with several values of λ in the range 1 ≤ λ ≤ 100. The CFL restriction
∆t = 0.1(∆x)2 was applied with all these choices, and no sign of computational in-
stability was detected. Figure 18(b) is the result of stepwise numerical computation
of the nonlinear diffusion problem in [33, section 5] up to time T = 100∆t, using
βΣ = 0.001 and λ = 50. The “oil painting” effect in Figure 18(b) occurs with other
choices of βΣ ≤ 0.001 and λ ≥ 50, and the deblurred image does not improve if more
time steps are taken. SECB deblurring of the same image is shown in Figure 1(c).
In the presence of noise, the SECB deblurred image is less sharp, but maintains its
strong qualitative edge over Figure 18(b). It should be noted that the authors in [33]
did not intend their scheme to be used for images as seriously blurred as Figure 18(a).
However, the staircase effect is still pronounced, even with more mildly blurred images.

8. Concluding remarks. Setting aside all theoretical considerations, APEX
processing is a practical enhancement technique that can sharpen significant classes
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of images originating from diverse imaging modalities. One important feature of this
approach is its fast implementation on desktop platforms. Even with large image
sizes, numerous trial restorations can be accomplished in seconds or minutes of cpu
time. This makes for easy fine tuning of parameters and a quick determination of
whether the APEX method significantly improves a given image. Once improvement is
detected, fine tuning must be used to obtain optimal results. Here, another important
feature of the APEX method plays a useful role. This is the marching-backwards-
in-time option characteristic of class G psfs, which allows for deconvolution to be
performed in slow motion. Robustness is a third important property of the APEX
method, allowing detection of multiple psfs capable of significant sharpening. This
substantially increases the probability of finding a useful candidate.

On the theoretical side, this paper raises new questions. The first of these is the
existence of several useful psfs, as demonstrated for the Sydney image in Figure 1.
This phenomenon warrants further investigation. A second question concerns the
important role Lévy psfs appear to play in numerous imaging systems. The discus-
sion in section 2 has surveyed inferences of stable laws that have been made from
mtf measurements. Development of methods of analyzing imaging systems that can
rigorously establish such laws, and predict the Lévy exponent β, would be a major
advance.

Reconciling the results of section 2 with the behavior of large classes of images
raises additional questions. Electronic imaging psfs h(x, y) are found to have Lévy

exponents β > 0.5 in most cases, so that log ĥ(ξ, 0) = −α|ξ|2β is a monotone decreas-
ing concave function on ξ > 0. However, as illustrated in Figure 3, all images g(x, y)
used in this paper are such that global behavior in log |ĝ∗(ξ, 0)| is generally monotone
decreasing and convex. Another large class of images with this convexity property,
the class W, was described in [9]. When such images are APEX-fitted with a Lévy
psf in the manner shown in Figure 5(b), a value of β ≤ 0.5 is inevitably detected. An
average value of β = 0.23 was found for the six images in Figures 4, 6, 11, 15, 16,
and 17, and significantly lower values were found for the three images in Figures
12, 13, and 14. A possible partial explanation for this discrepancy is provided by the
Sydney experiment in Figure 1. There, the APEX method detected several useful
psfs with values of β smaller than the value that was used to blur the image. The de-
tected β-values in the above nine images may likewise underestimate the true imaging
system β-values. An entirely different scenario may be that the APEX method pro-
vides generic low exponent Lévy psfs capable of enhancing a wide variety of images,
independently of the imaging physics that created them. Other generic enhancement
techniques have been used for some time in image processing (see [36, Chapter 10]).
More recent approaches based on nonlinear diffusion equations are also intended as
generic enhancement methods [11]. However, nonlinear methods generally require
large numbers of iterations and may not be well suited for real-time processing of
complex high resolution imagery.

Whatever may be the reasons behind it, the effectiveness of the APEX method
on many types of images is undeniable, and the method is a useful addition to the
image processing toolbox.
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Applications, Birkhäuser Boston, Cambridge, MA, 2001.



THE APEX METHOD IN IMAGE SHARPENING 617
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Abstract. Propagation of pulses in myelinated fibers may be described by appropriate solutions
of spatially discrete FitzHugh–Nagumo systems. In these systems, propagation failure may occur
if either the coupling between nodes is not strong enough or the recovery is too fast. We give an
asymptotic construction of pulses for spatially discrete FitzHugh–Nagumo systems, which agrees well
with numerical simulations, and discuss the evolution of initial data into pulses and pulse generation
at a boundary. Formulas for the speed and length of pulses are also obtained.
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1. Introduction. Effects of spatial discreteness are important in many physi-
cal and biological systems comprising interacting smaller components such as atoms,
quantum wells, cells, etc. Examples include the motion of dislocations [13], crys-
tal growth and interface motion in crystalline materials [6], the motion of domain
walls in semiconductor superlattices [4, 8], sliding of charge density waves [14], and
pulse propagation through myelinated nerves [2]. The mathematical study of spatially
discrete models is challenging because of special and poorly understood phenomena
occurring in them that are absent if the continuum limit of these models is taken.
Paramount among these phenomena is the pinning or propagation failure of wave
fronts in spatially discrete equations. Physically, the pinning of wave fronts is related
to the existence of Peierls stresses in continuum mechanics [17], relocation of elec-
tric field domains [1] and self-sustained oscillations of the current in semiconductor
superlattices [18, 4], electric current due to the sliding of charge density waves [14],
saltatory propagation of impulses in myelinated fibers and its failure [2], etc.

Mathematical understanding of the propagation failure of wave fronts in spatially
discrete equations experienced significant progress after a paper by Keener [20]. In
[20], Keener used comparison principles to characterize the pinning of wave fronts and
their motion for spatially discrete reaction-diffusion equations of the form

un,t = d(un+1 − 2un + un−1) + f(un),(1.1)

where f is a bistable source term and d measures the strength of the coupling. Models
described by (1.1) include the spatially discrete Nagumo equation for nerve conduction
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[12, 26] or crystal growth [6], and the Frenkel–Kontorova model for motion of dislo-
cations [13]. More recently, a number of results on the existence of traveling wave
fronts un(t) = v(n − ct) with smooth profiles v have been established [31, 24, 10].
These papers do not precisely characterize the propagation failure of a wave front
for critical values of the control parameters. For a piecewise linear source function,
an explicit description has been given by Fáth, extensively using the properties of
special functions [11]. In the general case, we have found that propagation failure
can be explained as a loss of continuity of the wave front profile in critical values
of the control parameter [7]. Furthermore, the smoothness of the wave front profile
just before the propagation failure occurs can be exploited to obtain an analytical
description of wave fronts and their speed near critical parameter values [7, 9]. This
theory has been extended to spatially discrete reaction-diffusion-convection equations
describing dynamics of domain walls in semiconductor superlattices [8].

These advances in the mathematical understanding of propagation phenomena
have occurred for spatially discrete scalar reaction-diffusion equations. Similar phe-
nomena occur in models of calcium release at discrete sites [22]. The latter consist
of scalar reaction-diffusion equations with spatially inhomogeneous source terms that
are close to f(u) times a series of delta functions centered at spatially periodic sites.
Comparatively little progress has been made in understanding wave propagation and
failure in spatially discrete systems. Anderson and Sleeman [2] have extended Keener’s
techniques to discrete reaction-diffusion systems modelled by the FitzHugh–Nagumo
(FHN) dynamics [12, 26]. Hastings and Chen [16] have proved the existence of pulse
traveling waves for a myelinated nerve model with a Morris–Lecar type of dynamics.
They also comment on the difficulties of extending their results to the FHN system.
An attempt to understand the mechanisms of propagation failure in the FHN system
has been carried out by Booth and Erneux [5]. They consider slow recovery and very
special limiting (small) values of the parameters characterizing the bistable source
and the spatial diffusivity in the FHN system. Furthermore, they also impose partic-
ular boundary and initial conditions. With these restrictions, they could study how
a specific disturbance localized in one cell propagated to neighboring ones until the
resulting front failed to propagate. No construction of pulses or formulas for their
velocity were given.

In this paper, we asymptotically construct pulse solutions of the spatially discrete
FHN system describing nerve conduction through myelinated fibers. We also discuss
how the pulses may fail to propagate. Our ideas could be extended to spatially discrete
systems whose cell dynamics contain widely separated time scales corresponding to
fast excitation and slow recovery variables. Among these systems, let us cite models
for bursting behavior in pancreatic β cells [30] or the much more difficult case of
front propagation in voltage-biased semiconductor superlattices [4]. In the latter, a
separation of time scales exists, but it is not obviously included as a small parameter
in the equations. In our presentation, we have chosen the FHN dynamics for its
simplicity. This model has been widely used to understand issues that are obscured
by technical complications in more realistic models of nerve conduction. We consider
the following system of dimensionless equations:

ε
dun
dt

= d (un+1 − 2un + un−1) +Aun(2− un)(un − a)− vn,(1.2)

dvn
dt

= un −Bvn,(1.3)

n = 0,±1, . . . . Here un and vn are the membrane potential and the recovery variable
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Fig. 1.1. Nullclines for the space-independent FHN model with different values of a.

(which acts as an outward ion current) at the nth excitable membrane site (node of
Ranvier). The cubic source term is an ionic current, and the discrete diffusive term
is proportional to the difference in internodal currents through a given site. The
constants A and B are selected so that the source terms in the FHN system are O(1)
for un and vn of order 1, that the only stationary uniform solution is un = 0 = vn,
and that the FHN system has excitable dynamics (A = 1, B = 0.5 is a good choice;
see Figure 1.1). The constant ε > 0 is the ratio between the characteristic time scales
of both variables. We assume ε � 1, that is, fast excitation and slow recovery. A
dimensional version of (1.2) and (1.3) was derived in the appendix of [3] from an
equivalent-circuit model of myelinated nerves. For background on similar models, see
[28, 29, 21, 25].

We shall study pulse propagation in the spatially discrete FHN system (1.2) and
(1.3) by asymptotic methods. At first sight, such a task is hopeless: asymptotic
methods require a degree of smoothness at appropriate time or length scales, and the
spatial variable n in these systems is discrete. However, we can use the separation
between time scales in the FHN system to show that a pulse is made out of two
“sharp” wave fronts separating regions of slow spatial variation. Wave fronts are
smooth solutions of the continuous variable z = n− ct/ε, and perturbative arguments
apply straightforwardly to them. Thus the theory of wave front propagation for
spatially discrete scalar reaction-diffusion equations plays an important role in our
construction of pulses.

Let U1 < U2 < U3 denote the three zeros of the cubic nonlinearity f(u) in (1.1).
U1 and U3 are stable solutions for d = 0. A wave front is a solution of (1.1) with a
smooth profile un(t) = u(n − ct) moving at a speed c such that u(∓∞) = U1 and
u(±∞) = U3. If f(u) is odd about u = U2 and d is sufficiently small, a stationary
solution of (1.1) exists and therefore no wave fronts can propagate (see [10]). As the
source term departs from this symmetric form, front propagation is made easier. In [7],
we selected d = 1 and f(u) = F −Ag(u), where g(u) is odd about its middle zero and
F is an external force that quantifies departure from symmetry. Notice that we can
obtain (1.1) with d = 1/A and f = (F/A)− g(u) after rescaling time. We found that
wave fronts propagate for |F | > Fc, where Fc > 0 depends on A and the specific g(u)
that we adopt. Equivalently, we could set f(u) = −u(u− a)(u− 2) and use a− 1 as a
control parameter instead of F . After the “external force” a surpasses a critical value
sufficiently far from the symmetry point a = 1, stationary fronts may cease to exist
and propagating wave fronts may appear. See Figure 1.2(a). Notice that the limiting
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Fig. 1.2. (a) Critical values acl and acr as functions of d. (b) Critical wcl(a, d) and wcr(a, d)
for a = 0.5. (c) Critical wcl(a, d) and wcr(a, d) for d = 0.5.

case considered by Booth and Erneux (“slow capture near a limit point”), d = O(a2),
a → 0+, corresponds to the parameter region in the lowest corner in this figure. In
this region, propagation failure is the normal situation. We could, alternatively, fix a
and set f(u) = −w − u(u− a)(u− 2), using w as the control parameter. Then there
are critical values wcl(a, d) and wcr(a, d) such that wave fronts fail to propagate if
wcl < w < wcr; see Figure 1.2(b). How does the parameter a affect the critical values
of w? Assume that a < acl(d) for a fixed value of d, so that wave fronts propagate
for w = 0. To compensate for this effect, we need a small critical value wcl(a, d) of
the parameter w. As a departs more and more from acl(d), larger and larger critical
values wcl(a, d) are needed to return to the situation of propagation failure. A similar
situation occurs with wcr(a, d). Thus the critical values of w increase (in absolute
value) as |a− ac| increases; see Figure 1.2(c). The effect of increasing the diffusivity
d is to shrink the parameter range in which stationary fronts exist. In fact, as d → ∞
(the continuum limit), the width of the pinning interval is conjectured to decrease
exponentially quickly to zero for certain nonlinearities [6, 23]. Propagation failure
can be understood as a loss of continuity of the moving front as appropriate critical
parameter values are approached. Increasing the discrete diffusivity and deforming the
source term sufficiently far from odd symmetry about its middle zero both facilitate
the propagation of wave fronts [7, 9]. Reciprocally, weakening the coupling between
cells and diminishing the “external force” a− 1 helps induce propagation failure.

For the spatially discrete FHN system, the description of wave propagation is more
complicated. This also happens for the spatially continuous FHN system (D∂2u/∂x2

instead of discrete diffusion). Depending on the initial condition, stable wave trains
or pulses may be approached as time elapses [27, 15, 19]. Pulses cannot be obtained
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for ε larger than a critical value. For discrete diffusion, we can construct pulses,
provided that ε is smaller than a critical value εc(a, d), a is outside a certain interval
(corresponding to propagation failure in the scalar case), and the initial condition
is chosen appropriately. Our construction combines the theory of front depinning
developed in [7] with Keener’s asymptotic ideas [19] developed for the FHN model
with spatially continuous diffusion. Our results agree very well with direct numerical
solutions of (1.2) and (1.3).

The key ideas of an asymptotic theory for (1.2) and (1.3) in the limit as ε → 0
are simple. First, pulses consist of regions in which un(t) vary smoothly with n,
separated by moving sharp interfaces (fronts). In the first type of region, we may set
ε = d = 0 and obtain a description of slow recovery. The sharp interfaces are wave
fronts with smooth profiles, un(t) = u(z), vn(t) = v(z), with z = n − ct/ε. Then v
is constant at each side of a front, and the excitation variable u obeys the spatially
discrete Nagumo equation, whose fronts we can characterize [7, 9]. A stable pulse is
obtained when the velocity of the leading front is equal to that of the trailing front
[19]. This condition fixes the pulse width. Its violation or propagation failure of any
of the fronts bounding the pulse result in propagation failure thereof. Notice that we
use an analytic expression for the wave front velocity of the Nagumo equation, valid
as a is near its critical value for propagation failure. For small values of d, the front
propagation range is narrow, and the formula for wave front velocity holds for all
appropriate values of a; see Figure 1.2(a). For larger values of d, the interval where
propagation occurs is wide, and we can use our approximation only for a close to
its critical values acl and acr. Outside these parameter ranges, the velocity of the
Nagumo wave fronts should be calculated numerically.

The rest of the paper is organized as follows. In section 2, we recall certain
needed results on wave front propagation and failure for the spatially discrete scalar
reaction-diffusion (Nagumo) equation. Section 3 contains the main theoretical ideas
of this paper, with the asymptotic construction of pulses for the discrete FHN system.
These ideas and our results are tested by numerically solving the FHN system with
appropriate boundary conditions in section 4. Comments on propagation failure of
pulses in the FHN system are made in section 5. Section 6 briefly discusses how a
pulse may be generated by applying a temporary stimulus at one end of a fiber with
finitely many nodes. The last section contains our conclusions.

2. The spatially discrete Nagumo equation. We consider the equation

dun
ds

= d (un+1 − 2un + un−1) + un(2− un)(un − a)− w(2.1)

for some constant w and denote h(u,w, a) = u(2 − u)(u − a) − w. As long as
min h(u, 0, a) < w < max h(u, a, w), this is a “cubic” source having three zeroes
Ui(w, a), i = 1, 2, 3, U1 < U2 < U3. Wave front solutions joining U1 and U3 (the two
stable zeros) exist. A theory of the pinning and propagation of fronts for this type of
equation has been developed in [7, 8]. We sketch its implications for (2.1) below.

First assume w = 0, so that the asymmetry of the source is controlled by the
parameter a. For d fixed, there are values acl(d) and acr(d) such that the following
hold:

• The fronts joining u = 0 and u = 2 are stationary if acl(d) ≤ a ≤ acr(d). No
front propagation is possible.

• Outside this interval, there exist traveling wave fronts un(s) = u(n − cs)
joining 0 and 2. For a > acr(d), increasing fronts move to the right and de-
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creasing fronts move to the left. For a < acl(d), fronts move in the opposite
way: decreasing fronts move to the right and increasing fronts move to the left.

The values acl(d) and acr(d) can be approximately calculated as follows. In a large
lattice, we decrease or increase a from 1 until we obtain a stationary solution un(a)
whose linear stability problem has a zero eigenvalue; see Figure 1.2.

Now we fix a and vary w. The asymmetry of the source is controlled by a and
w. For fixed d and a, critical values wcl(a, d) and wcr(a, d) are found such that the
following hold:

• The fronts joining U1(w, a) and U3(w, a) are stationary if wcl(a, d) ≤ w ≤
wcr(a, d).

• Outside this interval, there exist traveling wave fronts un(s) = u(n − cs)
joining U1(w, a) and U3(w, a). For w < wcl, these fronts move to the left if
they increase from U1 to U3, and to the right if they decrease from U3 to U1.
For w > wcr, fronts decreasing from U3 to U1 move to the left, and increasing
fronts move to the right.

To calculate wcl and wcr, we start by fixing a and finding a value w = w0 at which
stationary solutions exist for a large lattice. We now decrease or increase w from this
value until we obtain a stationary solution un(w) whose linear stability problem has
a zero eigenvalue; see Figure 1.2.

For w near any of its critical values, we can use the following formula to predict
the speed of the fronts for |w| > |wc|:

c(a, d, w) ∼ sign(w − wc)

√
αβ(w − wc)

π
.(2.2)

The parameters α and β, given by α =
∑

φn, β = 1
2

∑
[−6un(wc) + 2(2 + a)]φ3

n (see
[7, 9]), are functions of a, d, and the critical value of w. In these formulas, φ is a
positive eigenfunction of the linear stability problem for un(wc) with

∑
φ2
n = 1, and

un(wc) is a stationary solution of (2.1) with w = wc [9]. If w is not close to its critical
values, the speed c(a, d, w) should be calculated numerically.

A peculiarity of the Nagumo equation is the scenario for front propagation failure.
As we approach the critical values for a, w, or any other appropriate pinning control
parameter, the front profiles become less smooth and a number of steps appear. In
the limit as the control parameter tends to its critical value, the transition regions
between steps become infinitely steep, the front profile becomes discontinuous, and
its velocity vanishes [7, 9].

3. Asymptotic construction of pulses. As we will discuss below, an appro-
priate initial condition evolves towards a pulse. In particular, we need to fix the
parameters d > 0, a < acl(d) (the case a > acr(d) follows by symmetry), and ε
smaller than a certain critical value, εc(a, d). This last condition also holds for the
spatially continuous FHN system, which has two pulse solutions (one stable and one
unstable) for ε < εc. These solutions coalesce at εc and cease to exist for larger ε
(see [26, 27]). A pulse consists of regions of smooth variation of u on the time scale
t, separated by sharp interfaces in which u varies rapidly on the time scale T = t/ε.
In the regions where u varies smoothly, we can set ε = d = 0, thereby obtaining the
reduced problem

un(2− un)(a− un)− vn = 0,(3.1)

dvn
dt

= un −B vn.(3.2)
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These regions are separated by sharp interfaces (moving fronts), at which un varies
rapidly as un(t) = u(z), vn(t) = v(z), with z = n− ct/ε. There, to leading order,

−c du
dz

= d [u(z + 1)− 2u(z) + u(z − 1)] + u(z) (2− u(z)) (a− u(z))− v,(3.3)

−c dv
dz

= 0.(3.4)

Thus v is a constant equal to the value vn(t) at the last point in the region of smooth
variation before the front. Equation (3.3) has a wave front solution as discussed in the
previous section. We can now discuss different regions in the asymptotic description
of a pulse as follows:

1. The region of smooth variation of u in front of the pulse, described by (3.1)
and (3.2). In this region, un = U1(vn), so that

dvn
dt

= U1(vn)−B vn,

and initial data evolve exponentially fast towards equilibrium, un = vn = 0.
2. The pulse leading edge. Let v(t) be the value of vn at the last point of

the region in front of the pulse. Eventually, v → 0. At the leading edge,
un(t) = u(n − ct/ε) is a wave front moving towards the right with speed
C = c(a, d, v)/ε measured in points per unit time t. We have the boundary
conditions u(−∞) = U3(v) and u(∞) = U1(v) for the monotone decreasing
profile u(z) which satisfies (3.3). It is convenient to call c−(v) = c(a, d, v).
Eventually, C ∼ c−(0)/ε, and un decreases from un = 2 to un = 0 across the
leading edge of the pulse.

3. The region between fronts: un = U3(vn) and

dvn
dt

= U3(vn)−B vn.

There is a finite number of points in this region. On its far right, vn = v → 0.
As we move towards the left, vn increases until it reaches a certain value V (t)
corresponding to that in the trailing wave front.

4. The trailing wave front: vn(t) = v(z) = V , and un(t) = u(z) obeys (3.3)
with boundary conditions u(−∞) = U1(V ) and u(∞) = U3(V ). This front
increases monotonically with z, and it moves with speed C = c(a, d, V )/ε
measured in points per unit time t. It is convenient to denote c+(V ) =
c(a, d, V ). We shall indicate how to determine V below. Clearly, if the pulse
is to move rigidly, we should have c+(V ) = c−(0) after a sufficiently long
transient period.

5. Pulse tail. Again un = U1(vn) and dvn/dt = U1(vn) − Bvn. Sufficiently far
to the left, vn = un = 0.

The number of points between wave fronts of the pulse is not arbitrary: it can be
calculated following an argument due to Keener for the spatially continuous case [19].
Let τ be the delay between fronts, i.e., the time elapsed from the instant at which
the leading front traverses the point n = N to the instant when the trailing front is
at n = N . Clearly,

τ =

∫ V (t)

v(t−τ)

dv

U3(v)−Bv
.(3.5)
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The number of points between fronts, l(t), can be calculated as

l =
1

ε

∫ t

t−τ
c−(v(t)) dt.(3.6)

On the other hand, the separation between fronts satisfies the equation

dl

dt
=
c−(v(t))− c+(V (t))

ε
.(3.7)

The three equations (3.5), (3.6), and (3.7) can be solved to obtain the three unknowns
τ , l, and V (t). (The function v(t) is determined by solving (3.2) with un = U1(vn) in
the region to the left of the leading front.)

After a transient period, v(t) → 0 and V (t) → V (a constant value), so that we
have the simpler expressions

τ =

∫ V

0

dv

U3(v)−Bv
,(3.8)

dl

dt
=
c−(0)− c+(V )

ε
,(3.9)

instead of (3.5) and (3.7), respectively. The number of points at the pulse top is now

l =
c−(0)τ

ε
=
c−(0)
ε

∫ V

0

dv

U3(v)−Bv
.(3.10)

This equation yields V as a function of l. Then (3.9) becomes an autonomous
differential equation for l that has a stable constant solution at l = l∗ such that
c−(0) = c+(V (l)): at l = l∗, the right-hand side of (3.9) has a slope −[U3(V ) −
BV ] c′+(V )/c−(0) < 0.

Recapitulating, for appropriate initial conditions, the leading and trailing fronts
of a pulse evolve until l reaches its stable value at which c−(0) = c+(V (l∗)) and (3.10)
holds. To compute l∗, we first determine V ∗ = V (l∗) by using c−(0) = c+(V (l∗)).
Then we calculate τ = τ∗ (which does not depend on ε!) from (3.8) and l∗ = c−(0)τ∗/ε.
Our construction breaks down if the number of points between fronts falls below 1.
This yields an upper bound for the critical value of ε above which pulse propagation
fails: εc ∼ c−(0)τ∗.

The asymptotic length of the pulse tail is obtained by first calculating the time

needed for vn to go from 0 to V (l∗) to the left of the trailing front: T =
∫ V
0
dv/[U1(v)−

v]. The tail length is then L = c−(0)T/ε.

4. Numerically calculated pulses. We shall compare numerical solutions for
different representative values of d with the approximate pulses provided by our theory.
As initial data, we have adopted our approximate pulses. We have also used hump-
like profiles with compact support for un(0) and vn(0). It is important that vn(0) = 0
at the leading edge of un(0) and to its right, and that vn(0) = V ≈ wcr(d) at the
trailing edge, where vn(0) reaches its maximum. Had we chosen vn(0) = 0 for all n,
the un profile would have split into two pulses traveling in opposite directions as time
elapsed; see Figure 4.1. The region between leading and trailing fronts of the pulse
acquires its asymptotic shape quite quickly, but the pulse tail is usually rather long
and evolves slowly towards its final form.
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Fig. 4.1. Splitting of an initial profile into two pulses propagating in opposite directions for
d = 0.1, a = 0.5, and ε = 0.006.

• d = 1. In this case, acl = 0.996. We choose a = 0.99 < acl and analyze
front propagation for the rescaled Nagumo equation (2.1) first. The front
propagation thresholds for these values of d and a are wcl = 0.0038 and
wcr = 0.0095. Figure 4.2(a) shows the speeds of leading and trailing fronts
as functions of w, as predicted by (2.2). For w = 0, the leading front should
move at speed c−(0) = 0.0093. The relation c+(V ) = c−(0) yields the asymp-
totic value V ∗ = 0.0133 at the trailing front joining U1(V

∗) = −0.00665
to U3(V

∗) = 1.9933. The time elapsed between fronts is τ∗ = 0.00652,
as calculated from (3.8). Then our upper bound for the critical value of
ε is εc = 0.000064. Choosing a smaller value, ε = 0.000005, we obtain
a pulse speed of C = c−(0)/ε = 1869 points per unit time and a pulse
width of l∗ = Cτ∗ ∼ 13 points. Our numerical solution of the full FHN
system (1.2) and (1.3) yields a pulse speed C = 2000 and a width of 13
points for ε = 0.000005. The trailing front joins −0.006647 and 1.993 with
V ∗ = −0.0133; see Figure 4.2(b). Note that the relative error in the pre-
dicted speed C is 0.0655. Obviously, rescaling the speed to C = c−(0)/ε
amplifies the error in our predictions. We have not been able to observe
pulses for ε ≥ 0.0000076, which is smaller but not far from our estimation
εc = 0.000064. Let us now choose a = 0.5 which is far from acl. Then
wcl = 0.3194 and wcr = 0.3287. Equation (2.2) predicts c−(0) = 0.09983,
whereas the trailing front joins −0.316 to 1.71 at V ∗ = 0.6. If ε = 0.01,
the speed and width of the pulse are C = 9.983 and l∗ = 0.351C ∼ 4, ac-
cording to our theory. Numerically, we observe C = 64.7 and l∗ = 25. The
source of these large errors is the value c−(0) = 0.09983 predicted with for-
mula (2.2). If we replace this value by the numerical front speed calculated
directly, c−(0) = 0.673, we obtain C = 67.3 and l∗ ∼ 24 points, which better
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(a) (b)

(c) (d)

Fig. 4.2. (a) Predicted speeds for wave fronts of the Nagumo equation (2.1) with d = 1, a = 0.99.
The horizontal line marks the condition c+(w) = c−(0), thereby graphically yielding w = V ∗. (b)
FHN pulse for ε = 0.000005. (c) Predicted and numerical speeds for wave fronts of (2.1) with d = 1,
a = 0.5. The horizontal lines mark c+(w) = c−(0). (d) FHN pulse for ε = 0.01.

fit the numerically observed values.
• d = 0.1. In this case, acl = 0.567, and we shall choose a = 0.5 < acl. Let

us first analyze front propagation for the rescaled Nagumo equation (2.1).
For these values of d and a, we obtain wcl = 0.0307 and wcr = 0.6175.
Figure 4.3(a) shows the predicted speeds of the leading and trailing fronts as
functions of v, as given by formula (2.2). For w = 0, the leading front should
move with speed c−(0) = 0.075662. At the trailing front, c+(V ) = c−(0)
yields V ∗ = 0.648, U1(V

∗) = −0.33328, and U3(V
∗) = 1.666. The time

elapsed between fronts is τ∗ = 0.39266, which gives l∗ = 0.0297/ε. Our
bound for the critical value of ε is εc = c−(0)τ∗ = 0.029. Selecting ε = 0.003,
we predict C = 25.22 and l∗ ∼ 10 points. Direct numerical calculations yield
a pulse speed C = 26.38 and a pulse width of about 10 points. The trailing
front joins −0.3269 to 1.675 with V ∗ = 0.6578; see Figure 4.3(b). We have
not been able to obtain pulses for ε ≥ 0.007, which is four times smaller than
our upper bound of 0.029.

• d = 0.01. In this case, acl = 0.195, and we shall choose a = 0.1 < acl. Let
us first analyze front propagation for the rescaled Nagumo equation (2.1).
The front propagation thresholds for these values of d and a are wcl = 0.0136
and wcr = 1.0784. Figure 4.4(a) shows the predicted speeds of leading and
trailing fronts as functions of w according to (2.2). For w = 0, the leading
front should move with speed c−(0) = 0.052. Then the trailing front has
V ∗ = 1.092 corresponding to c+(V ) = c−(0), and it joins U1(V

∗) = −0.6
to U3(V

∗) = 1.4. The time elapsed between fronts is τ∗ = 0.748, and the
pulse width, l∗ = 0.297/ε. Our bound for the critical value of ε is εc =
c−(0)τ∗ = 0.058. Selecting ε = 0.001, we predict C = 52 and l∗ = 39 points.
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Fig. 4.3. (a) Predicted speeds for the Nagumo equation (2.1) with d = 0.1 and a = 0.5. The
horizontal line graphically yields V ∗ such that c+(V ∗) = c−(0). (b) Profiles of the FHN pulse for
ε = 0.003 (c) Trajectories of one point, u0(t), v0(t), as the FHN pulse propagates through it.

Fig. 4.4. (a) Predicted speeds for the Nagumo equation (2.1) with d = 0.01 and a = 0.1.
(b) FHN pulse for ε = 0.001. (c) Trajectory of one point, u0(t), as the FHN pulse propagates
through it.
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Numerical observations yield C = 77.7 (a relative error of 0.3) and a pulse
width of 59 points. Furthermore, the trailing front joins −0.59 to 1.4 with
V ∗ = 1.095; see Figure 4.4(b). Again the observed errors in the pulse speed
and width are due to errors in the prediction of c−(0) given by formula (2.2).
Replacing this value by the numerically computed front speed c+(0) = 0.078,
we obtain C = 78 and l∗ ∼ 58, better fit to the real values.

Let us now describe the situation for other values of d. Our asymptotic theory
agrees with the numerical results, provided that ε is sufficiently small, but the velocity
of the Nagumo wave fronts should be either approximated by (2.2) or calculated
numerically depending on how close to zero wcl happens to be. For d < 0.01, the
length of the intervals in which fronts of the Nagumo equation propagate is very small.
Then the front speeds are always very small and given by (2.2) with great accuracy.
Our asymptotic description of the pulse agrees very well with numerical solutions of
the FHN system. If d > 1, the spatially discrete FHN system can be approximated
by its continuum limit. The length of the pinning intervals for the Nagumo equation
is below 0.001, and the wave front velocities are essentially a correction of the wave
front velocities for the spatially continuous Nagumo equation (see [21]):

c =
√
d c0

(
1− k1c

2
0

2d
+O

(
c40
d2

))
,(4.1)

c0 =
2U2(w)− U1(w)− U3(w)√

2
,(4.2)

k1 = −
∫∞
−∞ e−c

2
0sV ′

0(s)V
′′′′
0 (s) ds

12c40
∫∞
−∞ e−c20sV ′

0(s)V
′′
0 (s) ds

.(4.3)

Here V0 is the appropriate wave front solution of the equation

c−2
0 V ′′

0 − V ′
0 + V0 (2− V0)(V0 − a)− w = 0.(4.4)

5. Propagation failure. Two facts may lead to propagation failure: a value of
ε that is too large or a ∈ (acl(d), acr(d)).

Let us consider the first cause of propagation failure now. If ε surpasses a certain
critical value εc, recovery is too fast and a stable pulse cannot be sustained. This
situation also occurs in spatially continuous FHN systems. In these systems, there
exist two pulses (one pulse is stable, the other unstable) for ε < εc; they coalesce at
εc and cease to exist for larger ε. In the discrete FHN system, the phenomenon of
wave front propagation failure implies that pulses may propagate only if a < acl(d)
or a > acr(d). As indicated by (3.10), the number of points between the two fronts
of the stable pulse decreases as ε increases towards εc(a, d). Eventually the two fronts
coalesce, and it is not possible to propagate a stable pulse for ε > εc(a, d). If we start
with an appropriate pulse-like initial condition, we find the scenario of propagation
failure depicted in Figures 5.1 and 5.2. For small d (d = 0.1), the variable vn ceases
to be almost constant at the leading edge of the pulse, and the distance between
the two fronts diminishes. While vn ∼ 0 at the rightmost point of the leading front,
vn ∼ w > 0 at the leftmost point. Thus, un in this front decreases from U3(w) to zero
as n increases. The value w increases with ε, and U3(w) decreases. At the same time,
the leading front speed diminishes as w increases until w surpasses the propagation
threshold and the leading front stops. Since the back front goes on moving, the pulse
vanishes; see Figure 5.1. For large d (d = 1), a decremental pulse is formed. Its
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Fig. 5.1. Snapshots of the excitation and recovery variables for d = 0.1, a = 0.5, and ε = 0.007,
illustrating propagation failure of the pulse for ε > εc.
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Fig. 5.2. Same as Figure 5.1 for d = 1, a = 0.99, and ε = 0.0000076.
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width and height decrease as it moves until it disappears; see Figure 5.2. Numerical
simulations of the FHN system show that εc → 0 as a tends to either acl(d) or acr(d).

Let us assume now that a ∈ (acl(d), acr(d)). Then the leading front cannot
propagate with vn = v = 0. We need vn ∼ v < wcl(a, d) < 0. However, in the region
in front of the leading edge, vn and un evolve towards 0, whereas we have un > 0
at the leading front. Thus dvn/dt = un − Bvn ≥ 0 there, and vn will increase until
vn > 0, which contradicts our previous assumption. Thus we cannot have stable
propagating pulses. Furthermore, there are no stationary pulses of the type we have
discussed for this range of a: if vn = un/B, the source un(2 − un)(a − un) − vn =
un(2− un)(un − a)− un/B has only one zero, not three as in our construction. This
does not preclude the existence of other pulses, such as those corresponding to the
homoclinic orbit in the phase space of the spatially continuous FHN system. However,
we have not observed stable stationary pulses of this type in the spatially discrete FHN
system.

6. Pulse generation at a boundary. So far, we have considered the motion
of a pulse (or its failure) in a sufficiently large myelinated nerve fiber. We have not
discussed how such a pulse might be created in a more realistic situation. Clearly,
nerve fibers have finitely many nodes of Ranvier, and pulses are typically generated
at the fiber boundary. Thus we are led to consider how a pulse might be generated
by an excitation at a boundary and how the pulse propagates or fails in a finite fiber.
This problem was tackled by Booth and Erneux [5] using parameter values for which
the FHN pulse fails to propagate. We shall now discuss different parameter ranges.

Nerve fibers may have either a few nodes of Ranvier (e.g., 20 for neurons of the
central nervous system [25]) or several hundred nodes (in the peripheral nervous sys-
tem [29]). Thus we shall consider a finite FHN system with N nodes and a Neumann
boundary condition at the right end, uN+1 = uN . At the left end, we impose u0(t) = 2
for 0 ≤ t ≤ 0.05, and u0(t) = 0 for t > 0.05. The results corresponding to param-
eter values d = 0.1 and a = 0.5 are depicted in Figures 6.1 (for which ε = 0.006)
and 6.2 (for which ε = 0.003). The asymptotic theory predicts that fully developed
FHN pulses (corresponding to N = ∞) would have widths of l∗ ≈ 5 and l∗ ≈ 10,
respectively. The left boundary condition ensures that the membrane potential un is
excited during sufficient time, so that a wave is generated at the left end of the fiber.

The excitation at the left boundary induces a wave front that propagates with a
velocity given approximately by C = c−(0)/ε along the finite fiber for the parameter
values we consider. For example, C ≈ 12.6 for ε = 0.006, which is close to the
numerically observed value of 10 in Figure 6.1. Similarly, C ≈ 25.22 for ε = 0.003,
which is close to the numerically observed value of 26 in Figure 6.2. If the fiber is
long enough, a second wave front follows the first one, and their mutual distance
rapidly approaches the asymptotic value l∗. (The number of nodes between fronts is
4 in Figure 6.1, while the asymptotic theory predicts l∗ ≈ 5; in Figure 6.2, numerical
observation confirms the asymptotic value l∗ ≈ 10.) The numerical solution of the
finite FHN system shows that an eventually truncated FHN pulse comprising the
two wave fronts and the region between them is formed, provided that N is at least
twice l∗. Otherwise, at best only the first wave front is shed at the boundary, as
shown in Figure 6.2(a). Pulses fail to propagate in fibers whose parameters fall in the
propagation failure region, as discussed in section 5.
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Fig. 6.1. Snapshots of the excitation (solid line) and recovery (dotted line) variables for an
FNH system with N nodes and d = 0.1, a = 0.5, and ε = 0.006. (a) Profiles at times 0.4, 0.6, and
0.8 for N = 8. (b) Profiles at times 0.4, 1.4, and 2.4 for N = 24.

Fig. 6.2. Snapshots of the excitation (solid line) and recovery (dotted line) variables for an
FNH system with N nodes and d = 0.1, a = 0.5, and ε = 0.003. (a) Profiles at times 0.1, 0.2, and
0.3 for N = 8. (b) Profiles at times 0.1, 0.4, 0.7, and 1.0 for N = 24.
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7. Conclusions. We have constructed stable pulses of the spatially discrete
FHN system by asymptotic methods. In a pulse, there are regions where the excita-
tion variable varies smoothly, separated by sharp fronts. These fronts are solutions of
the discrete Nagumo equation with a constant value of the recovery variable. Their
shape and speed can be approximately calculated near parameter values correspond-
ing to front propagation failure or near the continuum limit. For long times, their
width is given by the only stable solution of a one-dimensional autonomous system.
We have compared the asymptotic results with numerical solutions of the FHN system
and analyzed different scenarios for failure of pulse propagation. Besides the classical
scenario of small separation between the time scales of excitation and recovery (large
ε as in the spatially continuous FHN system), propagation failure of fronts for the spa-
tially discrete Nagumo equation provides a different mechanism of propagation failure
of pulses for the discrete FHN system. Wave fronts and pulses can be generated at
a boundary and propagate or fail to propagate along a finite FHN system. If the
number of nodes is sufficiently large, the two wave fronts comprising an FHN pulse
can be shed at the boundary, and their separation rapidly reaches the value given
by the asymptotic theory. This is true even if the fiber is too short to accommodate
the slowly varying regions at the back of the second wave front of the pulse. In long
fibers, a fully developed FNH pulse may be generated by an over-threshold stimulus
applied during a short time at one end of the fiber.

REFERENCES

[1] A. Amann, A. Wacker, L. L. Bonilla, and E. Schöll, Dynamic scenarios of multistable
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Abstract. We consider a predator-prey system with nonmonotonic functional response: p(x) =
mx

ax2+bx+1
. By allowing b to be negative (b > −2

√
a), p(x) is concave up for small values of x > 0 as

it is for the sigmoidal functional response. We show that in this case there exists a Bogdanov–Takens
bifurcation point of codimension 3, which acts as an organizing center for the system. We study the
Hopf and homoclinic bifurcations and saddle-node bifurcation of limit cycles of the system. We also
describe the bifurcation sequences in each subregion of parameter space as the death rate of the
predator is varied. In contrast with the case b ≥ 0, we prove that when −2

√
a < b < 0, a limit

cycle can coexist with a homoclinic loop. The bifurcation sequences involving Hopf bifurcations,
homoclinic bifurcations, as well as the saddle-node bifurcations of limit cycles are determined using
information from the complete study of the Bogdanov–Takens bifurcation point of codimension 3
and the geometry of the system. Examples of the predicted bifurcation curves are also generated
numerically using XPPAUT. Our work extends the results in [F. Rothe and D. S. Shafer, Proc. Roy.
Soc. Edinburgh Sect. A, 120 (1992), pp. 313–347] and [S. Ruan and D. Xiao, SIAM J. Appl. Math.,
61 (2001), pp. 1445–1472].

Key words. predator-prey system, Hopf bifurcation, homoclinic bifurcation, Bogdanov–Takens
bifurcation, saddle-node bifurcation of limit cycles, limit cycle
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1. Introduction. The classical predator prey model with an inhibition response
function was introduced in Freedman and Wolkowicz [12] to establish a veritable
paradox of enrichment. In this paper we analyze the classical predator-prey model
with a specific inhibition response function, the Holling type IV response function. In
particular, we study the model


ẋ = rx

(
1 − x

K

)
− yp(x) = p(x)(F (x) − y),

ẏ = y(−d+ cp(x)),

x(0) ≥ 0, y(0) ≥ 0,

(1.1)

where x and y denote the density of the prey and predator populations, respectively,
r,K, d, and c are positive constants, and F (x) = rx(1 − x

K )/p(x).
The specific growth rate of the prey population in the absence of predator popula-

tion is assumed to satisfy logistic growth, and so r denotes the intrinsic growth rate of
the prey population, and K denotes the carrying capacity. The natural death rate of
the predators is denoted by d, and the predator response function is denoted by p(x).
It is assumed that the rate of conversion of prey captured to predator is proportional
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to the predator response function, where c is the constant of proportionality or yield
constant.

The predator-prey system (1.1) has been extensively studied by many authors.
(See Ruan and Xiao [28] and Wolkowicz [30] for an extended list of references.) In
the literature, different functions have been used to model the predator response.
(See Holling [15] and Freedman and Wolkowicz [12] for a description of the general
conditions that this function should satisfy.) In Wolkowicz [30], assuming only these
general conditions and a technical assumption, a complete one parameter bifurcation
analysis of (1.1) was carried out using the carrying capacity K as the bifurcation
parameter. It was proved that the model has rich dynamics, including parameters for
which there is a homoclinic bifurcation. It was pointed out that both supercritical and
subcritical Hopf bifurcations are possible, and that when there is a subcritical Hopf
bifurcation, there must be parameters for which there is a saddle-node bifurcation of
limit cycles and a range of parameters for which there are at least two limit cycles.
To do a more detailed analysis, it is useful to specify the function p(x).

The form most often used (see, for example, Holling [14]), is the Holling type
II form, p(x) = mx

b+x , also associated with Monod and Michaelis–Menten. This is
an increasing function that saturates, i.e., has a finite positive limit as x approaches
infinity. For a very nice description of the biological interpretation of each of the pa-
rameters, see Rinaldi, Muratori, and Kuznetsov [24], where they also study the effect
of periodically forcing each of the parameters individually, and propose a universal
bifurcation diagram.

In this paper we consider the Holling type IV functional response, associated with
Monod–Haldane (see Andrews [1]):

p(x) =
mx

ax2 + bx+ 1
,(1.2)

where a and m are positive constants, and b > −2
√
a (so that ax2 + bx + 1 > 0 for

all x ≥ 0 and hence p(x) > 0 for all x > 0).
When a is positive, this function increases to a maximum and then decreases,

approaching zero as x approaches infinity. Thus, p(x) models the situation where the
prey can better defend or disguise themselves when their population becomes large
enough, a phenomenon called group defense. See [12] and [28] for more information
about this phenomenon and examples of populations that use this strategy.

The response function (1.2) has been primarily considered assuming m positive
and a and b nonnegative. In this case, for x sufficiently small, p(x) resembles the
Holling type II model while for large x the effect of inhibition is seen (Figure 1.1(a)).
If −2

√
a < b < 0 and a is nonnegative, p(x) remains nonnegative, the inhibition

effect is still observed for large x, however, for x small p(x) resembles the Holling
type III (sigmoidal) function (Figure 1.1(b)). We shall show in section 5 that for
model (1.1) with the nonmonotonic response function (1.2), the organizing center of
the bifurcation diagram is at

b = −√
a, d =

mc

b+ 2
√
a
, K =

2√
a
,

where there is a Bogdanov–Takens bifurcation of codimension 3. Ignoring the neg-
ative, but physically relevant, values of b misses this important fact as well as some
rich dynamics of the model.
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xO

p(x)

(a) b ≥ 0

xO

p(x)

(b) −2
√
a < b < 0

Fig. 1.1. Response functions.

Using the response function (1.2) in (1.1), the model to be considered is


ẋ = rx
(
1 − x

K

)
− y

mx

ax2 + bx+ 1
= p(x)(F (x) − y),

ẏ = y

(
−d+ c

mx

ax2 + bx+ 1

)
= y(−d+ cp(x)),

x(0) ≥ 0, y(0) ≥ 0,

(1.3)

where

F (x) =
r

m

(
1 − x

K

)
(ax2 + bx+ 1)(1.4)

and

K, r, m, a, c, d > 0, and b > −2
√
a.(1.5)

Rothe and Shafer [25, 26] considered the system


dx

dτ
= rx

[(
1 − x

K

)((x
λ
− 1
)(x

µ
− 1

)
+ x

)
− y

]
,

dy

dτ
= −y

(x
λ
− 1
)(x

µ
− 1
)
,

(1.6)

which may be obtained from (1.3) by rescaling time t via

τ =

∫ t

0

[
1

ax2(t) + bx(t) + 1

]
dt

and by assuming that the system always has two equilibria inside the positive quad-
rant. Using results for polynomial systems and taking ( 1

K , 1
λ ,

1
µ ) as parameters, the

authors studied the bifurcations of the model. Rothe and Shafer were the first to
consider the case b negative (−2

√
a < b). However, after the transformation and

reduction to (1.6), the effect of allowing b < 0 was hidden. They proved that there is
a set of parameters for which there is a cusp of codimension 2, in a neighborhood of
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which the system realizes every phase portrait possible under small smooth pertur-
bation. They also indicated that there is a cusp of codimension at least 3, but did
not prove that the codimension is exactly 3. They point out for parameters near this
cusp there is a semi-stable limit cycle. The results of [26] are in terms of parameters
which are composites of the model parameters and thus are more difficult to interpret
for the biological system.

In [28], Ruan and Xiao restricted b = 0 in (1.3) and carried out a global analysis.
In particular, they proved that a limit cycle cannot coexist with a homoclinic loop.
They determined a set of parameters for which the system has a unique limit cycle
which is stable and another for which no cycles exist. They also studied the Bogdanov–
Takens bifurcation of codimension 2.

Model (1.3) involves 7 parameters (see (1.5)) that all have biological interpreta-
tions. By rescaling the state variables and time we could eliminate 3 of them. For
example, we could eliminate a, m, and c by using

(t, x, y) −→
(√

a

mc
t,

1√
a
x,

c√
a
y

)
(1.7)

and replacing r by
√
a

mcr, K by
√
aK, d by

√
a

mcd, and b by 1√
a
b. Similarly, using the

change of variables

(t, x, y) −→
(
t

r
,

r

mc
x,

r

m
y

)
,

and replacing a by ( r
mc )

2a, K by mc
r K, d by 1

rd, and b by r
mcb we could eliminate

r,m, and c. We choose not to do this so that the effect of all the parameters may be
easily seen in our results.

The x and y axes, the nonnegative cone and its interior are all invariant sets with
respect to system (1.3). A standard phase plane argument can be used to show that
all solutions initiating in the positive cone are bounded (see [30]).

This paper is organized as follows. Section 2 contains the linear analysis of the
equilibria, where we emphasize how this depends on the slope of the prey isocline. In
section 3 we give the geometric properties of the predator and prey isoclines, and we
show how the parameters (1.5) influence the geometry of the isoclines. In section 4,
we study the effect of this geometry on the existence, number, and criticality of Hopf
bifurcations which occur as d̂ = d

mc is varied. We determine that the parameter r
plays no role here. In section 5, we continue our analysis, examining the degener-
ate equilibria, especially the cusp points of codimension 2 and 3. In section 6 we
consider the global dynamics. We conclude with section 7 where we summarize our
results, compare them with other closely related results, and indicate their biological
significance.

2. Linear stability analysis. We consider equilibrium solutions to exist only if
they lie in the nonnegative cone. System (1.3) has at most four equilibrium solutions.
Two always lie on the boundary of the nonnegative cone: E0 = (0, 0), representing the
extinction of both species, and EK = (K, 0), representing the extinction of the preda-
tor population and the density of the prey population equilibrating at the carrying
capacity.

Let λ ≤ µ denote the two possible solutions of the quadratic equation cp(x) = d,
and Eλ = (λ, F (λ)) and Eµ = (µ, F (µ)) denote the corresponding equilibria. Whether
zero, one, or both of these other equilibria exist and sit in the nonnegative cone
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p(x)
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(a) Parameters λ and µ
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.

y=F(x)

K

Eλ.
E µλ a

1
0

(b) Isoclines and equilibria

Fig. 2.1. Typical geometry for system (1.3).

depends on the relative positions of the prey isocline y = F (x) and the predator
isoclines x = λ and x = µ. Figure 2.1(b) illustrates one of the possible positions,
where both Eλ and Eµ exist.

Define

d̂ =
d

mc
,

p̂(x) =
p(x)

m
.

(2.1)

Then cp(x) = d or p̂(x) = d̂ is equivalent to

ĝ(x) = ad̂x2 − (1 − bd̂)x+ d̂ = 0.(2.2)

If we define

d̂M =
1

b+ 2
√
a
,

∆0 = (1 − bd̂)2 − 4ad̂2,

(2.3)

then from a simple calculation it follows that for d̂ ∈ (0, d̂M ], (2.2) has two positive
roots λ ≤ µ where

λ :=
1 − bd̂−√

∆0

2ad̂
, µ :=

1 − bd̂+
√

∆0

2ad̂
.(2.4)

If d̂ ∈ (0, d̂M ), then λ < 1√
a
< µ. As d̂ increases, λ increases and µ decreases. When

d̂ = d̂M , λ = µ = 1√
a

(Figure 2.1(a)). When d̂ > d̂M , λ and µ are no longer real.

Then E0 and EK are the only equilibria in the nonnegative cone, and EK attracts all
orbits initiating in the positive cone.

Next we investigate the stability of the equilibrium solutions E0, EK , Eλ, and Eµ

by linearizing about each one. The variational matrix about any equilibrium (x̄, ȳ) is

V (x̄, ȳ) =

[
p′(x̄)(F (x̄) − ȳ) + p(x̄)F ′(x̄) −p(x̄)

cp′(x̄)ȳ cp(x̄) − d

]
.(2.5)
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Table 2.1
Linear analysis of the equilibrium solutions.

Fixed point K < λ < µ λ < K < µ λ < µ < K

E0 saddle saddle saddle

EK attracting node saddle attracting node

Eλ does not exist repeller repeller F ′(λ) > 0

attractor attractor F ′(λ) < 0

Eµ does not exist does not exist saddle

An easy calculation indicates that E0 is always a saddle point. For Eµ, note that the
determinant of V (µ, F (µ)) is

det
(
V (µ, F (µ))

)
= cȳp(µ)p′(µ) =

cd̂m2F (µ)(1 − aµ2)

(aµ2 + bµ+ 1)2
,(2.6)

and that for d̂ ∈ (0, d̂M ), µ > 1√
a

. Hence, if Eµ lies in the positive cone, i.e., when

µ < K, det(V (µ, F (µ))) < 0, therefore Eµ is a saddle point.
Similarly, when Eλ lies in the positive cone, i.e., if λ < K, det(V (λ, F (λ))) > 0.

Further, the trace of V (λ, F (λ)) is

tr V (λ, F (λ)) = p(λ)F ′(λ).(2.7)

Hence, Eλ is an attractor (resp., repeller) if F ′(λ) < 0 (resp., F ′(λ) > 0).
From the discussion above, it is clear that there is a saddle-node bifurcation

involving Eλ and Eµ when d̂ = d̂M .
The two eigenvalues of the variational matrix about EK are −r < 0 and −d +

cp(K) = mc[p̂(K) − d̂]. Thus EK is an attracting node if d̂ > p̂(K). It is a saddle

point if d̂ < p̂(K). If d̂ = p̂(K), EK undergoes a transcritical bifurcation. As d̂
increases from 0, the steady state bifurcations outlined below occur.

1. If K < 1√
a

, denote d̂λK = p̂(K). A transcritical bifurcation involving Eλ

and EK occurs when d̂ = d̂λK . EK changes its stability from a saddle point
to an attracting node. When d̂ = d̂M , a saddle-node bifurcation involving Eλ

and Eµ occurs outside the nonnegative cone.

2. If K > 1√
a

, denote d̂µK = p̂(K). A transcritical bifurcation involving Eµ

and EK occurs when d̂ = d̂µK . EK changes its stability from a saddle point

to an attracting node. When d̂ = d̂M , a saddle-node bifurcation involving Eλ

and Eµ occurs inside the positive cone.

3. If K = 1√
a

, then p̂(K) = d̂M . When d̂ = d̂M , Eλ, Eµ, and EK coalesce

at EK . Phase portrait analysis shows that EK is an asymptotically stable
degenerate node.

The linear analysis for system (1.1) is summarized in Table 2.1.

3. Geometry of the isoclines. The geometry of the prey and predator isoclines
plays an important role in the analysis of both the local and global bifurcations. We
begin with a useful observation about the intersections of the prey isocline y = F (x)
with the predator isoclines, the lines x = λ and x = µ.

Lemma 3.1. Consider F (λ) and F (µ):
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1. If 0 < K < 2√
a

and d̂ ∈ (0, d̂M ), then F (λ) > F (µ).

2. If K = 2√
a
, then F (λ) = F (µ) if and only if d̂ = d̂M . Otherwise, if d̂ ∈

(0, d̂M ), then F (λ) > F (µ).

3. If K > 2√
a
, then there exists d̂c,

d̂c =
1

aK + b
,(3.1)

satisfying d̂c ∈ (0, d̂M ) such that

• if 0 < d̂ < d̂c, then F (λ) > F (µ);

• if d̂ = d̂c, then F (λ) = F (µ);

• if d̂c < d̂ < d̂M , then F (λ) < F (µ);

• if d̂ = d̂M , then F (λ) = F (µ).

Proof. If d̂ ∈ (0, d̂M ), two interior equilibria Eλ and Eµ exist and λ < µ. By
(2.2), we have

λ+ µ =
1 − bd̂

ad̂
, λµ =

1

a
.(3.2)

Then

F (λ) − F (µ) =
r

mK

[−a(λ3 − µ3) + (aK − b)(λ2 − µ2) + (bK − 1)(λ− µ)
]

=
r(λ− µ)

mK

[−a((λ+ µ)2 − λµ) + (aK − b)(λ+ µ) + (bK − 1)
]

= − r(λ− µ)

ad̂2mK

[
(1 − bd̂)2 − ad̂ 2 − d̂(aK − b)(1 − bd̂ ) − ad̂ 2(bK − 1)

]
= − r(λ− µ)

ad̂2mK
[1 − (aK + b)d̂ ].

(3.3)

For 0 < K < 2√
a

and 0 < d̂ < d̂M , (aK + b)d̂ < (b + 2
√
a)d̂M < 1. Note that

λ < µ; therefore, F (λ) > F (µ).

For K = 2√
a

, if d̂ ∈ (0, d̂M ), then (aK + b)d̂ < 1, hence F (λ) > F (µ). It also

follows from (3.3) that F (λ) = F (µ) if and only if d̂ = d̂M .
Assume that K > 2√

a
. By F (λ) − F (µ) = 0 we obtain either λ = µ or

1 − (aK + b)d̂ = 0.(3.4)

Hence, if d̂ = d̂M , F (λ) = F (µ). If d̂ ∈ (0, d̂M ), we can solve (3.4) to obtain d̂ = d̂c
such that the rest of the results follow.

The prey isocline y = F (x) is a cubic polynomial with limx→−∞ F (x) = ∞ and
limx→∞ F (x) = −∞. It is either decreasing or has two humps, a local minimum with
x coordinate Hm and a local maximum with x coordinate HM , where Hm and HM

are the solutions of the quadratic equation F ′(x) = 0, or, equivalently,

3ax2 − 2(aK − b)x+ 1 − bK = 0.(3.5)

Let

∆1 = a2K2 + abK + b2 − 3a.(3.6)
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a
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K
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Fig. 3.1. Three basic regions V0, V1, and V2 in the bK plane, Q = (
√
a, 1√

a
) (See Proposition

3.2).

Then when ∆1 ≥ 0, we have

Hm :=
1

3a
[aK − b−

√
∆1 ], HM :=

1

3a
[aK − b+

√
∆1 ].(3.7)

Hm is always to the left of HM , i.e., Hm ≤ HM . The number and the position of the
humps of the prey isocline inside the positive cone are determined by the signs of ∆1

and 1 − bK. For K > 0, the curve defined by ∆1 = 0 (part of an ellipse) is tangent
to 1 − bK = 0 at the point Q(

√
a, 1√

a
).

A straightforward analysis of the signs of the quantities ∆1 and 1− bK gives the
following proposition.

Proposition 3.2. The two curves

C1 : K =
1

2a
[
√

3(4a− b2) − b], −2
√
a ≤ b ≤ √

a,

C2 : K =
1

b
, b > 0,

(3.8)

divide the region K > 0, b > −2
√
a into 3 subregions V0, V1, and V2 (see Figure 3.1):

V0 =

{
−2

√
a < b <

√
a

0 < K < 1
2a [
√

3(4a− b2) − b]

}
∪
{ √

a ≤ b

0 < K < 1
b

}
,

V1 =
{
0 < b,

1

b
≤ K

}
,

V2 =

{
−2

√
a < b ≤ 0

1
2a [
√

3(4a− b2) − b] < K

}
∪
{

0 < b <
√
a

1
2a [
√

3(4a− b2) − b] < K < 1
b

}
.

(3.9)
In regions V0, V1, and V2, the prey isocline has 0, 1, and 2 humps in the first quadrant,
respectively (see Figure 3.2).
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Fig. 3.2. The positions of the two humps of the prey isocline as a function of K and b. A ∗
indicates the position of the line x = 1√

a
.

1. Along C1, the two humps of the prey isocline coalesce at an inflection point
with x coordinate

HI =
aK − b

3a
(HI = Hm = HM ).

2. Along C2,
• if K > 1√

a
, then Hm = 0, i.e., the left hump sits on the y-axis;

• if 0 < K < 1√
a

, then HM = 0, i.e., the right hump sits on the y-axis;

• if K = 1√
a

, then Hm = HM = HI = 0, i.e., the inflection point sits on

the y-axis.
3. In region V0, the prey isocline is decreasing and hence there are no humps

inside the first quadrant.
4. In region V1, only the right hump HM sits inside the positive cone and

• if K = 2√
a
, then HM = 1√

a
,

• if K > 2√
a
, then HM > 1√

a
,

• if K < 2√
a
, then HM < 1√

a
.

5. In region V2, both humps sit inside the first quadrant. For (b,K) ∈ V2,
• if K = 2√

a
and b < −√

a, then Hm = 1√
a
,

• if K = 2√
a

and b > −√
a, then HM = 1√

a
,

• if K = 2√
a

and b = −√
a, i.e., at the point P = (−√

a, 2√
a

), Hm =

HM = 1√
a

,

• if K > 2√
a
, then Hm < 1√

a
< HM ,

• if K < 2√
a

and −2
√
a < b < −√

a, then 1√
a
< Hm < HM
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• if K < 2√
a

and −√
a < b <

√
a, then Hm < HM < 1√

a
.

Next we consider how the left and right humps of the prey isocline move as either
b or K is varied.

Proposition 3.3.
1. For any fixed b satisfying b > −2

√
a, as K increases, HM moves to the right

and Hm moves to the left. Also

lim
K→∞

HM = ∞,

lim
K→∞

Hm = − b

2a
. (Note that this is positive if and only if b < 0.)

2. For any fixed K > 0,
• if 2b+ aK ≤ 0 (and −2

√
a < b < −√

a), as b increases,
– HM moves left,
– if 0 < K < 2√

a
, then Hm moves right,

– if K > 2√
a
, then Hm moves left,

– if K = 2√
a
, then Hm = 1√

a
;

3. if 2b+ aK > 0, as b increases,
– Hm moves left,
– if 0 < K < 2√

a
, then HM moves right,

– if K > 2√
a
, then HM moves left,

– if K = 2√
a
, then HM = 1√

a
.

Also

lim
b→−2

√
a
Hm =

2 +
√
a− |√aK − 1|

3
√
a

,

lim
b→−2

√
a
HM =

2 +
√
a+ |√aK − 1|

3
√
a

,

lim
b→∞

Hm = −∞,

lim
b→∞

HM =
K

2
.

Proof. The limits follow from straightforward calculations.
To study the movement of the humps, we need the following derivatives from

(3.7):

∂HM

∂K
=

b+ 2aK + 2
√

∆1

6a
√

∆1

,

∂Hm

∂K
=

−(b+ 2aK) + 2
√

∆1

6a
√

∆1

;

(3.10)

∂HM

∂b
=

2b+ aK − 2
√

∆1

6a
√

∆1

,

∂Hm

∂b
= − 2b+ aK + 2

√
∆1

6a
√

∆1

.

(3.11)

1. Inside the region V1 ∪ V2, for any fixed b > −2
√
a, we have b + 2aK > 0. By

(3.10), ∂HM

∂K > 0, i.e., as we increase K, the right hump moves to the right. For the
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left hump, by (3.10) we have

∂Hm

∂K
=

b2 − 4a

2a
√

∆1(b+ 2aK + 2
√

∆1)
.

For b ≥ 2
√
a, the left hump does not lie inside the positive cone. Hence, if it exists,

∂Hm

∂K < 0; i.e., as we increase K, the left hump moves left.
2. Fix K inside the region V1 ∪ V2.
First note that the distance between the two humps has a minimum 2√

3a

√
b2 − a

along the line segment 2b+ aK = 0 when −2
√
a ≤ b ≤ −√

a.
In the subregion where 2b+ aK < 0, by (3.11), ∂HM

∂b < 0, so as we increase b, the
right hump moves left. The sign of

∂Hm

∂b
=

a( 4
a −K2)

2
√

∆1(2
√

∆1 − 2b− aK)

indicates the direction that the left hump moves in.
Similarly, in the subregion where 2b + aK > 0, the results follow from ∂Hm

∂b < 0
and

∂HM

∂b
=

a( 4
a −K2)

2
√

∆1(2b+ aK + 2
√

∆1)
.

4. Hopf bifurcations. From the analysis in section 2, Eλ is the only candidate
for a Hopf bifurcation. It follows from (2.7) that if a Hopf bifurcation occurs, it occurs
when λ coincides with a hump of the prey isocline y = F (x), i.e., when λ is such that
F ′(λ) = 0 or, equivalently,

3aλ2 − 2(Ka− b)λ+ 1 −Kb = 0.(4.1)

Eliminating λ from ĝ(λ) = 0 and F ′(λ) = 0, we obtain

(4a− b2)(aK2 + bK + 1)d̂ 2 + 2(abK2 + 2(b2 − 2a)K + b)d̂+ 3(1 − bK) = 0.(4.2)

For each fixed a > 0, (4.2) determines the Hopf bifurcation surface d̂(b,K). This
is illustrated in Figure 4.1. The significance of P , Q, and R will be discussed in
Proposition 4.3 and Theorem 5.2.

Note that, depending on the values of a and b, there may be one or two values of
d̂ at which a Hopf bifurcation occurs. These may be found explicitly by solving (4.2)

for d̂ to obtain

d̂± =
−(abK2 + 2(b2 − 2a)K + b) ± (2 + bK)

√
∆1

(4a− b2)(aK2 + bK + 1)
.(4.3)

4.1. Existence of Hopf bifurcations. Our analysis is based on the positions
of the humps of the prey isocline relative to the vertical line x = 1√

a
. We study the

Hopf bifurcation on the surface (4.2) by fixing (b,K) in each region Vi (i = 0, 1, 2)

and using d̂ as a bifurcation parameter.
Theorem 4.1. Fix all parameters except d̂ > 0. Provided that Hm �= HM , a

generic Hopf bifurcation occurs
1. at Eλ = (Hm, F (Hm)), when d̂ = d̂−, if 0 < Hm < 1√

a
and
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.

.
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.
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Fig. 4.1. Hopf bifurcation surface d̂ = d̂(b,K).

2. at Eλ = (HM , F (HM )), when d̂ = d̂+, if 0 < HM < 1√
a

.

No other nondegenerate Hopf bifurcations occur in the interior of the positive cone.
Proof. Consider the variational matrix about Eλ = (λ, F (λ)) (see (2.5)). It is

clear from (2.2), (2.5), and (2.7) that V (λ, F (λ)) has pure imaginary eigenvalues if
and only if 0 < λ < 1√

a
and F ′(λ) = 0, and hence λ = Hm or λ = HM .

If λ = Hm, then d̂ = p̂(Hm). Substituting (3.7) in p̂(Hm) yields

d̂ = p̂(Hm) =
3[aK − b−√

∆1]

2a2K2 + 2abK − b2 + 6a− (2aK + b)
√

∆1

= d̂−.

Similarly, if λ = HM , then d̂ = p̂(Hm), and we can show that p̂(HM ) = d̂+.
Next we verify the transversality condition. At Eλ with λ = Hm or HM , let γ

be the real part of the eigenvalue. Then a straightforward calculation from (2.5) and
(2.7) gives

γ =
1

2
p(λ)F ′(λ) = −

( rm
2K

) λ(3aλ2 − 2(aK − b)λ+ 1 − bK)

aλ2 + bλ+ 1
.(4.4)

Using Maple [29], we obtain

∂γ

∂d̂
= −

rm∂λ
∂d̂

27a2K

[
3a(bK − 1)(2a2K2 + 2abK − b2 + 6a)

− (4a3K3 + 3a2bK2 + 2b3 − 9ab+ 2)
(
Ka− b−

√
∆0

)]
.

(4.5)

Note that ∂λ
∂d̂

= − λ
d̂
√

∆0
�= 0 as long as λ > 0 and so ∂γ

∂d̂
= 0 if and only if the

term in square brackets in (4.5) equals 0. This occurs only when Hm = 0 or HM = 0
or Hm = HM = HI . Thus the transversality condition is satisfied.

The only other equilibria of (1.3) are E0, Eµ, and EK . No nondegenerate Hopf
bifurcation can occur at any of these equilibria, since the corresponding variational
matrix always has real eigenvalues in each case.
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2 O a

.

a

b

a
2 .

.

K

1

a

DH

a

.
No Hopf 

No Hopf 

Fig. 4.2. The existence and criticality of Hopf bifurcations in the bK plane as d̂ is varied.

By the above theorem, if the predator isocline has a hump inside the positive
cone, and the hump is to the left of the vertical line x = 1√

a
, there exists a d̂ defined

by (4.3) such that system (1.3) undergoes a Hopf bifurcation. Hence, if we define

V 1
1 =

{
(b,K) ∈ V1

∣∣∣K > 2√
a

}
,

V 0
2 =

{
(b,K) ∈ V2

∣∣∣b < −√
a, K < 2√

a

}
from Theorem 4.1 and Proposition 3.2 (as shown in Figure 3.2), we obtain the follow-
ing corollary as illustrated in Figure 4.1 and Figure 4.2.

Corollary 4.2. Fix all parameters except d̂ > 0 and allow d̂ to vary (see
Figure 4.2).

1. No Hopf bifurcation occurs if
(a) (b,K) ∈ V0 ∪ V 1

1 ∪ V 0
2 ,

(b) (b,K) ∈ C1,
(c) (b,K) ∈ C2 and K < 1√

a
or K > 2√

a
.

2. There is exactly one Hopf bifurcation and it occurs at (HM , F (HM )) when

d̂ = d̂+ if
(a) (b,K) ∈ C2 and 1√

a
< K < 2√

a
or

(b) (b,K) ∈ V1, K < 2√
a

.

3. There is exactly one Hopf bifurcation and it occurs at (Hm, F (Hm)) when

d̂ = d̂− if
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• (b,K) ∈ V2, K > 2√
a

.

4. There are exactly two Hopf bifurcations: one occurs at (Hm, F (Hm)) when

d̂ = d̂−, and the other occurs at (HM , F (HM )) when d̂ = d̂+ if
• (b,K) ∈ V2, K < 2√

a
, and b > −√

a.

Proof. Recall that a Hopf bifurcation occurs when Eλ = (λ, F (λ)) coincides with
a hump, i.e., when either Hm = λ or HM = λ with 0 < λ < 1√

a
. The results 2(b), 3,

and 4 are the consequences of Theorem 4.1 and Proposition 3.2. It remains to prove
1 and 2(a).

Now for (b,K) ∈ V0, y = F (x) has no humps. For (b,K) ∈ V 1
1 , y = F (x)

has only one hump, with HM > 1√
a
. For (b,K) ∈ V 0

2 , y = F (x) has two humps,

with 1√
a
< Hm < HM . For (b,K) ∈ C1, Hm = HM = HI . For (b,K) ∈ C2, if

K < 1√
a
, HM = 0; if K > 2√

a
, Hm = 0 and HM < 1√

a
. Thus a Hopf bifurcation is

precluded in all cases.

4.2. Criticality of the Hopf bifurcations. In a study [30] of Hopf bifurcation
in systems of the form (1.1), the following formula for the Liapunov coefficient, σ, was
obtained:

σ(x) = −p(x)F ′′(x)p′′(x)
p′(x)

+ p(x)F ′′′(x) + 2p′(x)F ′′(x).(4.6)

We will use this formula to give a complete description of the criticality of the Hopf
bifurcation at d̂ = d̂+ and d̂ = d̂−.

Proposition 4.3.
1. When the Hopf bifurcation occurs at Eλ with λ = HM , it is always supercrit-

ical.
2. Define the curve DH (Figures 4.1 and 4.2) connecting the two points P (−√

a,
2√
a
) and Q(

√
a, 1√

a
):

DH :
16a4K4 + a2b(8a− 3b2)K3 − a2(144a− 15b2)K2

− 8ab(9a− b2)K + 16b4 − 144ab2 + 300a2 = 0.
(4.7)

When the Hopf bifurcation occurs at Eλ with λ = Hm, it is supercritical if
(b,K) ∈ V2 below DH; it is subcritical if (b,K) ∈ V2 and −2

√
a < b < −√

a
or above DH.

3. For (b,K) ∈ DH, a degenerate Hopf bifurcation occurs at Eλ with λ = Hm

when d̂ = d̂−.
Proof. If the Hopf bifurcation occurs at Eλ with λ = HM , it follows from (4.6)

that we have

σ(HM ) =
F ′′(HM )

p′(HM )
[2p′2(HM ) − p(HM )p′′(HM )] + p(HM )F ′′′(HM )

=
2m2

(aH2
M + bHM + 1)3

F ′′(HM )

p′(HM )
− 6ra

mK
p(HM ).

(4.8)

Note that p′(HM ) > 0 and F ′′(HM ) < 0. It then follows from (4.8) that σ < 0,

i.e., when the Hopf bifurcation occurs at Eλ = (HM , F (HM )) with d̂ = d̂+, it is
supercritical.

Assume that when d̂ = d̂−, a Hopf bifurcation occurs at Eλ with λ = Hm. By
(4.6),

σ(λ) =
2r[3a2λ3 − 9aλ− 2(b− aK)]

K(1 − aλ2)(aλ2 + bλ+ 1)
.(4.9)
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Note that when λ ∈ (0, 1√
a
), the denominator of (4.9) is positive. Consider σ defined

by (4.9) as a function of b, K, and λ. Using λ as the parameter with λ ∈ (0, 1√
a
),

then σ = 0 defines a simple curve connecting the two points P (−√
a, 2√

a
) and

Q(
√
a, 1√

a
). Now we develop an expression for this curve segment called DH.

If the Hopf bifurcation occurs at x = λ, then λ satisfies both (2.2) and (4.1). For

the Hopf bifurcation to occur at Eλ = (Hm, F (Hm)) when d̂ = d̂−, it follows that

λ =
(2 + bK)d̂−

3 − (b+ 2aK)d̂−
.(4.10)

Substituting (4.10) into (4.9) and using (4.3), we obtain an implicit equation σ = 0
which defines a simple curve in the bK plane, along which the Liapunov coefficient of
the Hopf bifurcation vanishes. Using Maple [29], we can solve the equation and obtain

K = −b±√
b2−4a

2a , which is not real for −√
a ≤ b ≤ √

a, and an implicit equation of b
and K, which can be simplified to

16a4K4 + a2b(8a− 3b2)K3 − a2(144a− 15b2)K2

− 8ab(9a− b2)K + 16b4 − 144ab2 + 300a2 = 0.
(4.11)

For K > 0, (4.11) defines a cusp curve with the cusp point located at P . The
upper branch of the cusp curve is above the line K = 2√

a
and is not relevant because

it is an artifact of simplification. The lower branch passes through the point Q where
it is tangent to C2. Only the curve segment DH is relevant since there are no humps
for (b,K) ∈ V0. Along the curve segment DH, the Hopf bifurcation is degenerate.
One can verify that for (b,K) above the curve DH, σ > 0, and so a subcritical Hopf
bifurcation occurs at the left hump. Below the curve segment DH, σ < 0, and so a
supercritical Hopf bifurcation occurs at the left hump.

At the two points P (−√
a, 2√

a
) and Q(

√
a, 1√

a
), if the Hopf bifurcation occurs,

it occurs at λ = 1√
a
, and the associated σ = 0. The Hopf bifurcation is therefore

degenerate.
The next theorem follows from Theorem 4.1, Corollary 4.2, and Propositions 4.3.
Theorem 4.4. Fix all parameters except d̂ > 0 and allow d̂ to vary (see Fig-

ures 3.2, 4.1, and 4.2).
1. In region V1 \ V 1

1 , a supercritical Hopf bifurcation occurs at (HM , F (HM ))

when d̂ = d̂+.
2. In region V2, for K > 2√

a
, above the curve DH, a subcritical Hopf bifurca-

tion occurs at (Hm, F (Hm)) when d̂ = d̂−.
3. In region V2, for K > 2√

a
, below the curve DH, a supercritical Hopf bifur-

cation occurs at (Hm, F (Hm)) when d̂ = d̂−.
4. In region V2, for b > −√

a, K < 2√
a

, below the curve DH, two Hopf

bifurcations occur. When d̂ = d̂−, one occurs at (Hm, F (Hm)). When d̂ =

d̂+, one occurs at (HM , F (HM )). They are both supercritical.
5. In region V2, for K < 2√

a
, above the curve DH, two Hopf bifurcations occur.

When d̂ = d̂−, one occurs at (Hm, F (Hm)) and is subcritical. When d̂ = d̂+,
one occurs at (HM , F (HM )) and is supercritical.
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Fig. 5.1. Positions of the isoclines and equilibria at the cusp bifurcation of codimension 2, (a),
(c), (d), and 3, (b).

5. The cusp points of codimension 2 and 3. From the analysis in sections 3
and 4, when

K =
2√
a
, d =

mc

b+ 2
√
a

= mcd̂M ,(5.1)

two equilibria Eλ and Eµ coalesce on the vertical line x = 1√
a

. That is,

Eλ = Eµ =

(
1√
a
,
r(b+ 2

√
a)

2m
√
a

)
:= E∗.

Using (2.6) in (2.5) it follows that the equilibrium E∗ has two zero eigenvalues.
From Proposition 3.3 and Figure 5.1, the position of E∗ is described below. If

b ∈ (−2
√
a,−√

a), then E∗ is at the left hump (Figure 5.1(a)). As b increases in this
range, the right hump moves to the left until b = −√

a, when the two humps coalesce
and E∗ is at the inflection point (Figure 5.1(b)). For b ∈ (−√

a,∞), E∗ is at the right

hump (Figure 5.1(c)). As b increases, the left hump moves to the left until b =
√
a

2 ,
when the left hump reaches the y-axis and leaves the first quadrant (Figure 5.1(d)).

In this section, we prove that E∗ is a cusp singularity of codimension 2 for all
b ∈ (−2

√
a,∞) except at b = −√

a where it is a cusp singularity of codimension 3.
This generalizes the results in [28] and [26]. In [28] they only consider b = 0, and
hence the cusp singularity of codimension 2. In [26], they proved that there is a set of
parameters for which there is a cusp of codimension 2 for (1.6). They also indicated
that there is a cusp of codimension at least 3, but did not prove that the codimension
is exactly 3.
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For any b ∈ (−2
√
a,∞) and K, d satisfying condition (5.1), system (1.3) becomes


ẋ = rx

(
1 −

√
a

2
x

)
− mxy

ax2 + bx+ 1
,

ẏ = y

[
− mc

b+ 2
√
a

+
mcx

ax2 + bx+ 1

]
,

(5.2)

which has a unique equilibrium E∗ in the positive cone. Using a series of transforma-
tions, we shall reduce system (5.2) to normal form.

The translation

X = x− 1√
a
, Y = y − r(b+ 2

√
a)

2m
√
a

,(5.3)

brings E∗ to the origin. Expanding the right-hand side of the resulting system in a
Taylor series about the origin, we obtain


Ẋ = − m

b+ 2
√
a
Y − r

√
a(b+

√
a)

2(b+ 2
√
a)

X2 +R10(X,Y ),

Ẏ = − acr

2(b+ 2
√
a)
X2 +R20(X,Y ),

(5.4)

where Ri0 (i = 1, 2) is C∞ in (X,Y ) and Ri0(X,Y ) = O(|(X,Y )|3).
Reversing time and making the transformation

X = X, Z =
m

b+ 2
√
a
Y,

system (5.4) becomes


Ẋ = Z +
r
√
a(b+

√
a)

2(b+ 2
√
a)

X2 +R11(X,Z),

Ż =
acmr

2(b+ 2
√
a)2

X2 +R21(X,Z),

(5.5)

where Ri1 (i = 1, 2) is C∞ in (X,Z) and Ri1(X,Z) = O(|(X,Z)|3).
Making the near-identity transformation

u = X, v = Z +
r
√
a(b+

√
a)

2(b+ 2
√
a)

X2 +R11(X,Z),(5.6)

we obtain {
u̇ = v,
v̇ = δ1u

2 + δ2uv +R22(u, v),
(5.7)

where R22 is C∞ in (X,Z), R22(u, v) = O(|(u, v)|3), and

δ1 =
acmr

2(b+ 2
√
a)2

, δ2 =
r
√
a(b+

√
a)

(b+ 2
√
a)

.(5.8)

Thus we have the following theorem.
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Theorem 5.1. For any b > −2
√
a, if d and K satisfy (5.1) and b �= −√

a, then
the equilibrium E∗ is a cusp point of codimension 2 (a Bogdanov–Takens bifurcation
point).

If b = −√
a, the cusp point is at the inflection point of F (x) (Figure 5.1(b)), and

by (5.8), δ2 = 0 in the normal form (5.7). Thus the Bogdanov–Takens bifurcation is
degenerate and the codimension of the cusp singularity is at least 3. To show that
the codimension is exactly 3, one needs to show that system (5.7) is C∞ equivalent
to the generic normal form of the cusp point of codimension 3. This is the approach
taken in the following theorem.

Theorem 5.2. If (b, d̂,K) is at the point R (Figure 4.1), i.e.,

b = −√
a, K =

2√
a
, d =

mc√
a
,(5.9)

then the equilibrium E∗ = ( 1√
a
, r

2m ) is a cusp point of codimension 3 (a degenerate

Bogdanov–Takens bifurcation point).
Proof. It has been shown [8, 18, 21] that any system which has a cusp point of

codimension 3 is C∞ equivalent to the following:{
ẋ = y,
ẏ = x2 + y[βx3 +O(x4)] + y2Q4(x, y),

(5.10)

where β �= 0. Thus, we will prove this theorem by showing that there exist smooth
coordinate changes which take system (1.3) with the parameter values (5.9) into (5.10).

Under condition (5.9), E∗ = ( 1√
a
, r

2m ). As in the case b �= −√
a, after translating

the equilibrium to the origin and performing a Taylor expansion, we obtain


Ẋ = − m√
a
Y +

√
amX2Y − 1

2
arX3 +Q10(X,Y ),

Ẏ = −1

2

√
acrX2 −mc

√
aX2Y +

1

2
arcX3 +Q20(X,Y ),

(5.11)

where Qi0 (i = 1, 2) is C∞ in (X,Y ) and Qi0(X,Y ) = O(|(X,Y )|4).
Reversing time and rescaling

X = X, Z =
m√
a
Y,

system (5.11) becomes


Ẋ = Z − aX2Z +
1

2
arX3 +Q11(X,Z),

Ż =
crm

2
X2 +mc

√
aX2Z − crm

√
a

2
X3 +Q21(X,Z),

(5.12)

where Qi1 (i = 1, 2) is C∞ in (X,Z) and Qi1(X,Z) = O(|(X,Z)|4).
Using the near-identity transformation

u = X, v = Z − aX2Z +
1

2
arX3 +Q11(X,Z),(5.13)

and changing u, v into x, y, we obtain{
ẋ = y,
ẏ = g1(x) + yg2(x) + y2Q2(x, y),

(5.14)
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where

g1(x) =
cmr

2
x2 +O(x3),

g2(x) =

(
mc

√
a+

3

2
ra

)
x2 −mcax3 +O(x4),

Q2(x, y) (i = 1, 2) is C∞ in (x, y) and Q2(x, y) = O(|(X,Z)|4).
Let

ω0 = ydy − [g1(x) + yg2(x) + y2Q2(x, y)]dx.(5.15)

By using the 1-form (5.15) for system (5.14), we develop the normal form for the cusp
singularity.

(1) Reduction of g1(x) to x2. Since g′′1 (0) = crm �= 0, there exists a local diffeo-
morphism in x near the origin,

X = L(x) = 3

√
crm

2
x+O(x2),

such that

X2dX = g1(x)dx.(5.16)

By this diffeomorphism, the term g1(x) is reduced to x2. Writing x instead of X, ω0

becomes

ω0 = ydy − [x2 + yg3(x) + y2Q3(x, y)]dx,(5.17)

where

g3(x) = αx2 + βx3 +O(x4)

with α = (mc
√
a+ 3

2ar)
3√4acmr
acmr and β = − 2

r .
(2) Elimination of x2 term from g3(x). Let S(x, y) = 1

2y
2− 1

3x
3. Then dS(x, y) =

ydy − x2dx. Thus

yx2dx = y2dy − ydS.(5.18)

Substituting (5.18) into (5.17), we obtain

ω0 = (1 + αy)dS(x, y) − αy2dy − y[βx3 +O(x4) + yQ3(x, y)]dx.(5.19)

It follows that

ω0

1 + αy
= dS(x, y) − αy2

1 + αy
dy − y[βx3 +O(x4)] + yQ4(x, y)

1 + αy
dx

= dS(x, y) − αy2

1 + αy
dy − y[βx3 +O(x4) + yQ4(x, y)]dx,

(5.20)

where for i = 3, 4, Qi(x, y) is C∞ in (x, y) and Qi(x, y) = O(|(x, y)|4). Now a near-
identity transformation

X = x, Y = y + · · ·(5.21)
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transforms the exact 1-form dS(x, y) − αy2

1+αy dy into dS(X,Y ), where the term

Y X3dX remains unchanged. Writing x and y instead of X and Y , system (1.3)
in a neighborhood of E∗ is thus equivalent to (5.10). Since β = − 2

r �= 0, E∗ is a cusp
point of codimension 3.

By Theorem 5.1, if K = 2√
a

and d = mc
b+2

√
a

but b �= −√
a, the cusp point is

of codimension 2. One can find standard analysis for this codimension 2 bifurcation
in Dumortier [6], Dumortier and Roussarie [7], Kuznetsov [18], and Marděsić [21].
In [28], the authors study this cusp point in the case b = 0 and develop a versal
unfolding using K and d as distinguished parameters. The analysis of the cusp point
of codimension 2 in the case b �= 0 is similar; thus we will present only the codimension
3 versal unfolding of the cusp singularity. By the analysis in section 3, we have several
different choices for the parameters to unfold the codimension 3 singularity: (b, d,K),
(b,m,K), (b, c,K), (a, b, d), . . . . In this paper, we take (b, d,K) as the bifurcation
parameters and develop a versal unfolding for the codimension 3 cusp singularity when
these three parameters are perturbed near the point (b0, d0,K0) = (−√

a, mc√
a
, 2√

a
). We

study the bifurcations of this unfolding by using the results in [8] and [21].
We wish to study system (1.3) for parameters (b, d,K) in a neighborhood of (−√

a,
mc√
a
, 2√

a
). Thus we let 


b = −√

a+ ε1,

d = mc√
a

+ ε2,

K = 2√
a

+ ε3

(5.22)

in (1.3) and we study the bifurcations of the resulting system


ẋ = rx

[
1 − x

2√
a

+ ε3

]
− mxy

ax2 + (−√
a+ ε1)x+ 1

,

ẏ = y

[
−
(
mc√
a

+ ε2

)
+

mcxy

ax2 + (−√
a+ ε1)x+ 1

]
,

(5.23)

for ε = (ε1, ε2, ε3) sufficiently small.
Theorem 5.3. For parameters ε = (ε1, ε2, ε3) sufficiently small, system (5.23)

is a generic unfolding of the cusp singularity of codimension 3.
Proof. It has been shown in [8] that a generic unfolding, with the parameters

(ν1, ν2, ν3), of the codimension 3 cusp singularity is C∞ equivalent to{
ẋ = y,
ẏ = ν1 + x2 + y[ν2 + ν3x+ x3 +O(x4)] + y2Q(x, y).

(5.24)

Using the method and results of [8, 10], we will show that system (5.23), with parame-
ters (ε1, ε2, ε3), is also a generic unfolding of the codimension 3 singularity by showing
that there exist smooth coordinate changes which take (5.23) into (5.24) with

D(ν1, ν2, ν3)

D(ε1, ε2, ε3)

∣∣∣
ε=(0,0,0)

�= 0.

System (5.23) has a cusp point at ( 1√
a
, r

2m ) if ε = (0, 0, 0). Applying the transla-

tion

x̄ = x− 1√
a
, ȳ = y − r

2m
,
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and expanding system (5.23) in the power series about the origin, we have{
˙̄x = L11(x̄) + ȳL12(x̄) + ȳ2Q10(x̄, ȳ),
˙̄y = L21(x̄) + ȳL22(x̄) + ȳ2Q20(x̄, ȳ),

(5.25)

where Qi0(0, 0) = 0 (i = 1, 2) and

L11(x̄) =
r(aε3 + 2

√
aε1ε3 + 2ε1)

2
√
a(
√
a+ ε1)(2 +

√
aε3)

+

√
arε3

2 +
√
aε3

x̄

+

√
ar(a3/2ε3 − 4

√
aε1 − 2ε21)

2(
√
a+ ε1)2(2 +

√
aε3)

x̄2 − a2r

2(
√
a+ ε1)2

x̄3 +O(x̄4),

L12(x̄) = − m√
a+ ε1

+
a3/2m

(
√
a+ ε1)2

x̄2 − a2m

(
√
a+ ε1)2

x̄3 +O(x̄4),

L21(x̄) =
r

2m

(
−ε2 − mcε1√

a(
√
a+ ε1)

)
− a3/2cr

2(
√
a+ ε1)2

x̄2 +
a2cr

2(
√
a+ ε1)2

x̄3 +O(x̄4),

L22(x̄) = −ε2 − mcε1√
a(
√
a+ ε1)

− a3/2cm

(
√
a+ ε1)2

x̄2 +
a2mc

(
√
a+ ε1)2

x̄3 +O(x̄4).

By the transformation

x̃ = x̄, ỹ = L11(x̄) + ȳL12(x̄) + ȳ2Q10(x̄, ȳ),(5.26)

system (5.25) is C∞ equivalent to{
˙̃x = ỹ,
˙̃y = L21(x̃) + ỹL22(x̃) + ỹ2Q2(x̃, ỹ),

(5.27)

where

L21(x̃) =
r

2a
√
a

(
(cmε1 − aε2) +O(|ε|2))+

r

2
√
a

(
ε3(cmε1 − aε2) +O(|ε|3)) x̃

+
[1
2
mcr +O(|ε|)

]
x̃2 −

[1
2

√
acmr +O(|ε|)

]
x̃3 +O(x̃4),

L22(x̃) =
1

2a

(−2mcε1 + 2aε2 + a
√
arε3 +O(|ε|2))+ r

(−ε1 + aε3 +O(|ε|2)) x̃
−

√
a

2

(
3
√
ar + 2cm+O(|ε|)) x̃2 + (acm+O(|ε|)) x̃3 +O(x̃4).

Note that for ε sufficiently small, c20(ε) := ∂2L21

∂x̃2 (0) = 1
2mcr +O(|ε|) �= 0. Thus,

in the proof of Theorem 5.3, we can reduce L21(x̃) to a quadratic polynomial without
linear terms. First, by rescaling ỹ and time t using

x̂ = x̃, ŷ = ỹ
√
c20(ε), t =

1√
c20(ε)

t̃,

the coefficient of x̃2 in L21(x̃) becomes 1 +O(|ε|), and the coefficient of x̃ becomes

c10(ε) =
1√
amc

[
ε3(mcε1 − aε2) +O(|ε|3)] .
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Then the translation

x̂ = c10(ε) +O(|ε|3) + û, ŷ = v̂,(5.28)

brings system (5.27) to{
˙̂u = v̂,

˙̂v = L̂21(û, ε) + v̂L̂22(û, ε) + v̂2Q̂2(û, v̂),
(5.29)

where

L̂21(û, ε) = ν̂1(ε) + û2 +O(û3),

L̂22(û, ε) = ξ̂0(ε) + ξ̂1(ε)û+ ξ̂2(ε)û
2 − ξ̂3(ε)û

3 +O(û4),

and

ν̂1 =
1

a
√
amc

(
mcε1 − aε2 +O(|ε|2)),

ξ̂0 =
1

a
√

2rmc

[−2cmε1 + 2aε2 + a
√
arε3 +O(|ε|2)],

ξ̂1 =

√
2r

mc

(−ε1 + aε3 +O(|ε|2)),
ξ̂2 =

√
a

2mcr

(
3
√
ar + 2mc+O(|ε|)),

ξ̂3 = 3a

√
ar

2mc
+O(|ε|).

Consider the corresponding 1-form of (5.29):

v̂dv̂ −
[
L̂21(û, ε) + v̂L̂22(û, ε) + v̂2Q̂2(û, v̂)

]
dû = 0.(5.30)

Now we reduce L̂21(û, ε) to ν̃1 + û2. Denote

L̂(û, ε) = ν̂1(ε)û+
1

3
û3 +O(û4).

Using the Malgrange preparation theorem [5], we find a coordinate change of the form

û = Φ(ũ, ε) = φ(ε)ũ+O(ũ2),(5.31)

where φ(0) = 1 such that

L̂(Φ(ũ, ε), ε) = ν̃1(ε)ũ+
1

3
ũ3,

and ν̃1(ε) = ν̂1(ε) + O(|ε|2). Performing this coordinate change to family (5.30) and
writing v̂ = ṽ, we obtain

ṽdṽ −
[
L̃21(ũ, ε) + ṽL̃22(ũ, ε) + ṽ2Q̃2(ũ, ṽ)

]
dũ = 0,(5.32)
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where

L̃21(ũ, ε) = ν̂1(ε) + ũ2,

L̃22(ũ, ε) = ξ̃0(ε) + ξ̃1(ε)ũ+ ξ̃2(ε)ũ
2 − ξ̃3(ε)ũ

3 +O(ũ4),

and ξ̃i(ε) = ξi(ε) +O(|ε|2) (i = 0, 1, 2, 3).
Then similar to step (2) in the proof of Theorem 5.2, using S(ũ, ṽ) = 1

2 ṽ
2 − 1

3 ũ
3,

and a near-identity transformation of the form

ũ = u,
ṽ = v + 1

3ξ2(ε)v
2 +O(v3),

(5.33)

we eliminate the term ṽũ2 in (5.32), and system (5.23) is C∞ equivalent to{
u̇ = v,

v̇ = ν̃1 + u2 + v[ξ̃0 + ξ̃2u− ξ̃3u
3 +O(u4)] + v2Q(u, v).

(5.34)

For ε sufficiently small, the dominant terms in ν̃1 and ξ̃i (i = 0, 2, 3) remain unchanged.
Hence, we keep the previous notation.

For system (5.34), ξ̃3(0) = 3a
√

ar
2mc > 0. Thus the rescaling

u =
1

ξ̃
2
5
3

U, v =
1

ξ̃
3
5
3

V, t̃ = ξ
1
5
3 τ

shows that system (5.23) is equivalent to{
ẋ = y,

ẏ = ˜̃ν1 + x2 + y[
˜̃
ξ0 +

˜̃
ξ1x− x3 +O(x4)] + y2Q(x, y),

(5.35)

where we have replaced (U, V, τ) with (x, y, t).
To apply the results from [8], we change the sign of the term x3y in the second

equation of (5.36) to positive by the transformation(
x, y, t, ˜̃ν1,

˜̃
ξ0,

˜̃
ξ1

)
−→

(
x, −y, −t, ˜̃ν1, − ˜̃

ξ0, − ˜̃
ξ1

)
;

then system (5.35) becomes{
ẋ = y,

ẏ = ˜̃ν1 + x2 + y[
˜̃
ξ0 +

˜̃
ξ1x+ x3 +O(x4)] + y2Q(x, y).

(5.36)

To simplify the expressions for the parameters, we make the rescaling


ν1 = 5

√
81r2

4a4(mc)12
˜̃ν1,

ν2 = 10

√
9

64a7r4(mc)6
˜̃
ξ0,

ν3 = 10

√
64r4

9a3(mc)2
˜̃
ξ1.

(5.37)
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This yields (5.24), where using Maple, we obtain


ν1 = mc
√
a(mcε1 + aε2)

+ 2(mc)2ε21 + 4amcε1ε2 + a2ε22 +O(|(ε1, ε2)|3),
ν2 = −2mcε1 − 2aε2 + a

√
arε3

+
1

4

[−4(mc)2ε21 − 3a2
√
amcrε23 − 4a2ε22 − 16amcε1ε2

+2amc(3
√
ar +mc)ε1ε3 + 2a2(

√
ar +mc)ε2ε3

]
+O(|ε|3),

ν3 = − ε1 + aε3 +
1

4

[−2rmcε21 − 3a2mcrε23 − 2arε1ε2

+
√
amc(11

√
ar + 4mc)ε1ε3 + 4

√
a(2

√
ar +mc)ε2ε3

]
+O(|ε|3),

(5.38)

and

D(ν1, ν2, ν3)

D(ε1, ε2, ε3)

∣∣∣
ε=(0,0,0)

= −a3rmc �= 0.

So system (5.23) with parameters ε = (ε1, ε2, ε3) is a generic family unfolding the
codimension 3 cusp singularity.

By Theorem 5.3, system (5.23) is a generic family unfolding the cusp singularity of
codimension 3. So by the main theorem in [8], system (5.23) has the same bifurcation
set with respect to ε3 as (5.24) has with respect to ν, at least up to a homeomorphism
in the parameter space. This bifurcation set is a cone with vertex at the origin of the
parameter space.

If ν1 > 0, system (5.24) obviously has no equilibria. In a neighborhood of the
origin, ν1 = 0 is a saddle-node bifurcation plane. Crossing the plane in the direction of
decreasing ν1, two equilibria are created: a saddle and an antisaddle (node or focus).
Correspondingly, from (5.38), there is a surface in the parameter space (ε1, ε2, ε3)
defined by ν1(ε1, ε2) = 0:

ε2 = −mc

a
ε1 +

mc

a
√
a
ε21 +O(ε31).(5.39)

Along this surface, system (5.23) has a saddle-node bifurcation. Substituting (5.22)
into (2.2), it follows that the exact saddle-node bifurcation surface is given by

ΣSN : ε2 = −mc√
a

ε1√
a+ ε1

,(5.40)

which is consistent with (5.39). To the right of the surface ΣSN , system (5.23) has no
equilibria, thus all the bifurcation surfaces are located to the left of ΣSN . Since up
to a homeomorphism in the parameter space, each bifurcation surface is a cone with
vertex at the origin; they can best be visualized by drawing their trace on the sphere

S =
{
(ν1, ν2, ν3)

∣∣∣ν1 < 0, ν2
1 + ν2

2 + ν2
3 = ε0, ε0 > 0 sufficiently small

}
to the left of the surface ΣSN .

As in Figure 5.2, let Γ = S ∩ ΣSN be the intersection of the “half” sphere S
with ΣSN . Then along Γ, except for the two points b1 and b2, there is a saddle-node
bifurcation. The next result follows from the bifurcation diagram given in Figure 3 of
[8].
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Σ
Γ

. SN

3ε

2

ε1

b2

S

ε

b1

Fig. 5.2. Γ, the intersection curve of the saddle-node bifurcation surface ΣSN with the half
sphere S.

Theorem 5.4. For system (5.24), using ε = (ε1, ε2, ε3) as parameters, the bifur-
cation diagram on S is given in Figure 5.3.

On S, there are three bifurcation curves as shown in Figure 5.3:
• a curve H of Hopf bifurcations,
• a curve Hom of homoclinic bifurcations, and
• a curve SNlc of saddle-node bifurcations of limit cycles.

As shown in Figure 5.3, the curve SNlc joins a point h2 on H to a point c2 on Hom,
and SNlc is tangent to H at h2 and tangent to Hom at c2. The curves H and Hom

have first order contact with the boundary of S at the points b1 and b2. In the
neighborhood of b1 and b2, system (5.24) is an unfolding of the cusp singularity of
codimension 2. This corresponds to the bifurcations along K = 2√

a
with (d, b) in the

neighborhood of (mc√
a
,−√

a). If b > −√
a, the cusp singularity of codimension 2 is at

the right hump, while if b < −√
a, it is at the left hump.

Along the arc b1h2 of the curve H, a supercritical Hopf bifurcation occurs with
a stable limit cycle appearing when the arc b1h2 is crossed from right to left. Along
the arc h2b2 of the curve H, a subcritical Hopf bifurcation occurs with an unstable
limit cycle appearing when the arc h2b2 is crossed from left to right. The point h2

is a degenerate Hopf bifurcation point, i.e., a Hopf bifurcation point of codimension
2. The point h2 in Figure 5.3 corresponds to the degenerate Hopf curve DH in
Figures 4.2 and 6.1, which represents a three dimensional curve of codimension 2
Hopf bifurcations, projected onto the bK plane.
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.
Γ

.

.

.

.b

Hom

ε3

ε1

H

H

omH

P*

c

h2

SNlc

1

b2

2

Fig. 5.3. Bifurcation diagram for system (5.24) on S.

Along the curve Hom, except at the point c2, a homoclinic bifurcation of codi-
mension 1 occurs. When the arc b1c2 of Hom is crossed from left to right, the two
separatrices of the saddle point coincide and a stable limit cycle appears. The same
phenomenon gives rise to an unstable limit cycle when the arc c2b2 of Hom is crossed
from right to left. The point c2 corresponds to a homoclinic bifurcation of codimension
2 (see [2, 23, 27] for references).

The curves H and Hom intersect transversally at a unique point P ∗ representing
a parameter value of simultaneous Hopf and homoclinic bifurcation. The point P ∗ in
Figure 5.3 corresponds to the curve HH in Figure 6.1, a projection to the bK plane
of the three dimensional curve along which Hopf and homoclinic bifurcations occur
simultaneously.

For parameter values in the curved triangle P ∗h2c2, there exist exactly two limit
cycles; the inner one is unstable and the outer one is stable. These two limit cycles
coalesce in a generic way in a saddle-node bifurcation of limit cycles when the curve
SNlc is crossed from left to right. On the arc SNlc itself, there exists a unique semi-
stable limit cycle.

6. Global dynamics. In the previous section we proved that a degenerate
Bogdanov–Takens bifurcation of codimension 3 occurs when (5.9) is satisfied. There-
fore, when the parameters (1.5) are varied in a neighborhood of (5.9), a degenerate
homoclinic bifurcation, degenerate Hopf bifurcation, and saddle-node bifurcation of
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limit cycles must occur. In this section, using the information obtained from the anal-
ysis of the codimension 3 Bogdanov–Takens bifurcation and the geometry of system
(1.3), we study the role of each of the parameters (1.5) in the global bifurcations
of system (1.3). In order to do this, we determine when certain phenomena occur
simultaneously. We then combine this information with the local dynamics stud-
ied in section 4 to determine the sequence of bifurcations in the different regions of
parameter space as d̂ = d

mc is varied.

6.1. Periodic orbits and homoclinic loops. It was proved in [30] that if
system (1.3) has a limit cycle in the positive cone, it has to surround a hump of
the prey isocline. In this subsection we prove several theorems which help determine
whether system (1.3) has periodic orbits or homoclinic loops. Throughout this section,
by periodic orbits we mean nontrivial periodic orbits.

Theorem 6.1. For system (1.3), the horizontal line y = F (λ) can intersect the
prey isocline y = F (x) at most three points in the first quadrant. If there is a periodic
orbit, it lies entirely to the left of EK and Eµ (if Eµ exists). Furthermore,

• if λ �= Hm, HM , the periodic orbit must surround Eλ and another intersection
point (x∗, F (x∗)), where F (x∗) = F (λ);

• if λ = Hm or HM , the periodic orbit must surround Eλ, the tangent point of
y = F (λ) with y = F (x).

Proof. From (1.4) it is clear that y = F (x) is a cubic polynomial and hence
y = F (λ) can intersect y = F (x) at at most three points.

If d̂ ≥ d̂M , then ẏ ≤ 0 along all orbits and hence system (1.3) has no periodic

orbits. The only case remaining is 0 < d̂ < d̂M .
Using standard phase plane arguments, it is clear that any periodic orbit must lie

entirely to the left of EK and Eµ (if Eµ exists). By a consequence of the Poincaré–
Bendixson theorem, a periodic orbit in the plane must surround an equilibrium. By
phase plane analysis, Eλ is the only candidate.

Consider an auxiliary function of the form L(x, y) = M(x) +N(y), where M(x)
and N(y) are continuous and differentiable and satisfy the following equations, re-
spectively:

p(x)M ′(x) = d− cp(x), M(λ) = 0, x > 0,

yN ′(y) = F (λ) − y, N(F (λ)) = 0, y > 0.
(6.1)

Solving these equations, we obtain a function L(x, y) defined in the first quadrant.
Along the trajectories of system (1.3) we have

d

dt
L(x, y) = (d− cp(x))[F (x) − F (λ)].(6.2)

For d̂ ∈ (0, d̂M ), (6.2) can be rewritten as

L̇(t) =
d

dt
L(x(t), y(t)) =

mcad̂

ax2 + bx+ 1
(x− λ)(x− µ)[F (x) − F (λ)].(6.3)

Denote

µ̄ = min {µ,K}.(6.4)

If there is a closed orbit, L̇ must undergo a change of sign along this orbit. If
λ = Hm or HM , then L̇ changes sign when x = λ, and if λ �= Hm or HM , L̇ can change
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sign only when x = µ or x = x∗ �= λ, where F (x∗) = F (λ). Therefore, λ = Hm or
HM , and the periodic orbit surrounds Eλ, or there exists a x∗ ∈ (0, λ) ∪ (λ, µ̄) such
that F (x∗) = F (λ), and (x∗, F (x∗)) sits inside the closed orbit.

Corollary 6.2. For system (1.3), if Eλ is the only intersection point of the
horizontal line y = F (λ) with the prey isocline y = F (x), and λ �= HM , then there
are neither periodic orbits nor homoclinic loops.

Theorem 6.3. Assume d̂ ∈ (0, d̂M ). Neither periodic orbits nor homoclinic loops
exist if either

1. F ′(x) ≤ 0 for all x ∈ (λ, µ̄), or
2. F ′(λ) ≥ 0 and F ′(µ) ≥ 0.

Proof. To prove the theorem, we make a change of variables and rescale time by
setting

u = lnx, v = ln y, τ =

∫ t

0

1

ax2 + bx+ 1
dt(6.5)

to obtain {
u̇ = m[F (eu) − ev],
v̇ = −mcĝ(eu),

(6.6)

where ĝ(x) is defined in (2.2).
1. We proceed by using the Dulac criterion with the positive auxiliary function

B(v) = emβv, where β is a nonnegative constant to be determined.
The divergence

div (B(v)[u̇, v̇]) = −memβv[−euF ′(eu) + βmcĝ(eu)]
= −memβvR(eu, β),

(6.7)

where

R(x, β) = −xF ′(x) + βmcĝ(x)

=
3ar

mK
x3 +

(
ad̂mcβ − 2r(aK − b)

mK

)
x2

+

[
(bd̂− 1)mcβ − r(bK − 1)

mK

]
x+mcβd̂.

(6.8)

It follows from Theorem 6.1 that a periodic solution or a homoclinic loop must
lie entirely inside the strip {

(x, y)
∣∣0 < x < µ̄, y > 0

}
.

Thus it is enough to show that there exists a β1 ≥ 0 such that

R(x, β1) ≥ 0, x ∈ (0, µ̄).(6.9)

Consider the cubic, R(x, 0). By the hypothesis, R(x, 0) > 0 for λ < x < µ̄.
Therefore (6.9) is satisfied with β1 = 0, unless there is either one or two simple roots
of R(x, 0) inside the interval (0, λ). We now consider this case.

Note that limx→±∞R(x, β) = ±∞ for any β ≥ 0, and ĝ(λ) = ĝ(µ) = 0, ĝ(x) < 0 if
x ∈ (λ, µ), and ĝ(x) > 0, otherwise. Therefore for β > 0, there is always one negative
root of R(x, β) and for β > 0 sufficiently small there are two positive roots in (0, λ].
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Since R(λ, β) = −λF ′(λ) ≥ 0 for all β ≥ 0, and since ĝ(x) > 0 for x ∈ [0, λ), there
exists β1 > 0 such that R(x, β1) has a double root in (0, λ], and thus R(x, β1) ≥ 0 for
x ∈ (0, µ̄).

2. The argument is similar. Using the auxiliary function B(v) = e−mβv, the
divergence

div (B(v)[u̇, v̇]) = me−mβvR(eu, β),(6.10)

where R(x, β) = xF ′(x) + βmcĝ(x). Note that limx→±∞R(x, β) = ∓∞ for all β ≥ 0,
the hypothesis implies that F ′(x) > 0 for λ < x < µ, and there is always a root of
R(x, β) such that x ≥ β rather than a negative root.

Corollary 6.4.
1. Assume K �= 2√

a
. There exists a d̃ ∈ (0, d̂M ) such that for all d̂ > d̃, system

(1.3) has neither periodic orbits nor homoclinic loops.

2. Assume K > 2√
a

. Then for all d̂ > d̂c (d̂c was defined in (3.1)), system

(1.3) has neither periodic orbits nor homoclinic loops if
• (b,K) ∈ V 1

1 , or
• (b,K) ∈ V2 and F (0) < F (λ).

Proof. 1. As d̂ ∈ (0, d̂M ) increases, λ and µ tend to 1√
a

monotonically from the

left and right side, respectively. Hence if K �= 2√
a
, neither the left nor the right

hump is at 1√
a
, and so there exists a d̃ ∈ (0, d̂M ) such that for d̂ ∈ (d̃, d̂M ), there are

no interior equilibria or both of the interior equilibria satisfy either F ′(λ) > 0 and
F ′(µ) > 0 or F ′(x) < 0 for all x ∈ (λ, µ̄). By Theorem 6.3, in either case, system
(1.3) has no periodic orbits nor homoclinic loops.

2. This is a direct consequence of part 3 of Lemma 3.1 and Theorem 6.1.
Corollary 6.5. For system (1.3) with parameters (1.5), if (b,K) ∈ V0 ∪ V 0

2 ,

then for any d̂ > 0, system (1.3) has neither periodic orbits nor homoclinic loops.
Proof. For any (b,K) ∈ V0, F

′(x) < 0 for all x > 0, so the result follows from
Theorem 6.3.

Assume (b,K) ∈ V 0
2 , and d̂ ∈ (0, d̂M ). In this region, 0 < 1√

a
< Hm < HM < K.

By Lemma 3.1, since K < 2√
a
, F (λ) > F (µ). If µ ≥ HM , then F (λ) > F (HM ),

and there is a unique intersection of y = F (λ) and y = F (x). The result follows
from Corollary 6.2. If 1√

a
< µ < HM , besides (λ, F (λ)), any other intersection of

y = F (λ) and y = F (x) must have x coordinate great than µ. The result follows from
Theorem 6.1.

Theorem 6.6. Fix all parameters except d̂ > 0.
1. No homoclinic bifurcation can occur for d̂ ∈ (0, d̂µK) (where d̂µK is the value

of d̂ at the transcritical bifurcation involving Eµ and EK).
2. When a homoclinic bifurcation occurs,

• if F ′(µ) < 0, then it is supercritical,
• if F ′(µ) > 0, then it is subcritical.

Proof. Part 1 is obvious since in this case, if Eµ does not exist, Eλ is the only
equilibrium inside the positive cone and it is never a saddle. EK cannot form a
saddle loop as the x-axis is invariant. Part 2 follows from a standard result [2], since
tr(V (µ, F (µ))) = p(µ)F ′(µ) (see (2.5)).

Theorem 6.7. Fix all parameters except d̂ > 0. For (b,K) ∈ V2 and K > 2√
a
,

there exists a d̂l ∈ (d̂µK , d̂M ) such that a homoclinic loop bifurcation involving Eµ

occurs when d̂ = d̂l.
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Proof. If a homoclinic loop bifurcation occurs, it involves Eµ; hence it occurs for

d̂ ∈ (d̂µK , d̂M ). For d̂ < d̂µK(< d̂−), Eλ is the only equilibrium in the interior of the
first quadrant and it is asymptotically stable. Since solutions are bounded, there must
either be no limit cycles or an even number, excluding semistable periodic orbits. For
d̂ > d̂M , system (1.3) has no limit cycles. By Corollary 4.2, there is exactly one Hopf

bifurcation which occurs at (Hm, F (Hm)) when d̂ = d̂− and changes the parity of the

limit cycles. Therefore, there must exist a d̂l ∈ (d̂µK , d̂M ) such that a homoclinic loop
bifurcation occurs to compensate for this change in the number of limit cycles.

6.2. Simultaneous phenomena. We will subdivide V0, V1, and V2 using the
curves defined below along which simultaneous phenomena occur for some d̂ > 0:

NS: a Hopf bifurcation at Eλ with λ = Hm and a neutral saddle at Eµ

when µ = HM ;
EµK : a Hopf bifurcation at Eλ with λ = Hm or λ = HM and a transcritical

bifurcation involving Eµ and EK ;
HH: a Hopf bifurcation at Eλ with λ = Hm and a homoclinic loop

involving Eµ;
Dhom: a homoclinic bifurcation involving Eµ when Eµ is a neutral saddle,

i.e., µ = HM (degenerate homoclinic bifurcation);
ST : a saddle-node bifurcation of limit cycles and a transcritical bifurcation

involving Eµ and EK .

In the rest of this subsection, we will find analytic expressions for curves EµK and NS
and prove that curves HH and Dhom must exist in certain regions in parameter space.
We will prove the existence of the curve ST in the next subsection. Information about
these curves is summarized in Table 6.1 and illustrated in Figure 6.1 and Figure 6.4.

Proposition 6.8. In the bK plane (Figure 6.1), along the curve

NS : K = −2

b
, −√

a < b < 0,(6.11)

there exists a unique d̂ ∈ (0, d̂M ) such that a Hopf bifurcation at (Hm, F (Hm)) and a
neutral saddle at (HM , F (HM )) occur simultaneously. To the left of NS the neutral
saddle at (HM , F (HM )) occurs before the Hopf bifurcation at (Hm, F (Hm)). To the
right of NS this ordering is reversed.

Proof. Recall from Theorem 4.1 that a Hopf bifurcation occurs at (Hm, F (Hm))

where d̂ = d̂− as given in (4.3). In a similar manner to the proof of Theorem 4.1, it
can be shown that for 2√

a
< K < 1

b , a neutral saddle occurs at (HM , F (HM )) when

d̂ = d̂+, as given in (4.3). We thus obtain

d̂+ − d̂− =
(2 + bK)

√
∆1

(4a− b2)(aK2 + bK + 1)
.(6.12)

Clearly, when K = − 2
b , d̂+ = d̂− = 3K

2(aK2−1) , thus the Hopf bifurcation and the neu-

tral saddle occur simultaneously at this value of d̂. Note that b2−4a < 0. Hence when
−2

√
a < b < − 2

K , d̂+ < d̂−, the neutral saddle occurs before the Hopf bifurcation,
and when − 2√

a
< b < 1

K , the order is reversed. To complete the proof we note that

∆1 = 0 only when λ = Hm = HM = HI = µ, which corresponds to the point P .
Recall that a transcritical bifurcation involving Eµ and EK occurs when K > 1√

a

and d̂ = d̂µK = p̂(K) (see (2.1)).
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Fig. 6.1. The subregions of the bK plane determined by the degenerate phenomena of Table 6.1.

Proposition 6.9. In the bK plane (Figure 6.1), along the curve

EµK : b =
3 − aK2

K(aK2 − 2)
, K >

√
2

a
,(6.13)

there exists a unique d̂ ∈ (0, d̂M ) such that the Hopf bifurcation and the Eµ and EK

transcritical bifurcation occur simultaneously. The curve EµK is tangent to C1 at

(0,
√

3/a). Along this curve, if b < 0, the Hopf bifurcation occurs at the left hump,
and if b > 0, the Hopf bifurcation occurs at the right hump.

1. For (b,K) ∈ V1 \ V 1
1 ,

(a) if (b,K) is above EµK , the transcritical bifurcation occurs before the
Hopf bifurcation at Eλ with λ = HM ;

(b) if (b,K) is below EµK , the Hopf bifurcation at Eλ with λ = HM occurs
before the transcritical bifurcation.

2. For (b,K) ∈ V2 \ V 0
2 ,

(a) if (b,K) is to the left of EµK , the transcritical bifurcation occurs before
the Hopf bifurcation at Eλ with λ = Hm;

(b) if (b,K) is to the right of EµK , the transcritical bifurcation occurs after
the Hopf bifurcation at Eλ with λ = Hm and, if K < 2√

a
, it occurs before

the Hopf bifurcation at Eλ with λ = HM ;
(c) if (b,K) is below EµK , the Hopf bifurcations at Eλ with λ = Hm and

λ = HM occur before the transcritical bifurcation.
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Proof. Let K = µ and set Hm = λ (see (2.4) and (3.7)),


K =
1 − bd̂+

√
∆0

2ad̂
,

aK − b−√
∆1

3a
=

1 − bd̂−√
∆0

2ad̂
.

(6.14)

Eliminating d̂ from (6.14), we obtain (6.13).

Eliminating d̂ from µ = K and HM = λ yields (6.13).
From Theorem 4.4 it follows that the branch of EµK with b < 0 corresponds to

the Hopf bifurcation at (Hm, F (Hm)), whereas the branch with b > 0 corresponds
to the Hopf bifurcation at (HM , F (HM )). The ordering of the Hopf bifurcation at
(HM , F (HM )) and the transcritical bifurcation follows from part 1 of Proposition 3.3.
As K increases across EµK with b > 0, the right hump moves to the right. Thus
in the region above EµK , the transcritical bifurcation must occur before the Hopf
bifurcation at (HM , F (HM )), and in the region below, the ordering must be reversed.

To the left of EµK , it follows from Proposition 6.8 that a Hopf bifurcation can
occur at the same time as a neutral saddle. Thus in this region the transcritical
bifurcation must occur before the Hopf bifurcation at (Hm, F (Hm)). To the right

of EµK , notice that on C2 above Q, Hm = 0. When d̂ = d̂µK , λ > Hm. Fix d̂.
For K slightly below C2, λ > Hm, but K < µ. Therefore the Hopf bifurcation at
(Hm, F (Hm)) occurs before the transcritical bifurcation in this region.

For system (1.3), if b = 0, it was proved in [28] that the Hopf bifurcation and
homoclinic bifurcation cannot occur simultaneously. However, for b < 0 they can hap-
pen simultaneously along the curve HH. The bifurcation analysis of the codimension
3 cusp singularity in section 5 (Theorem 5.3) indicates that in a neighborhood of the
point P , there exist curves DH, HH, and Dhom emanating from P :

DH : K = KDH(b),
HH : K = KHH(b),

Dhom : K = KDhom(b),
(6.15)

HH and Dhom are tangent to DH at P , and Dhom is to the left of HH, which is to
the left ofDH. Recall that an analytic expression forDH was derived (see (4.11)). For

any (b,K) along HH in a neighborhood of P , there exists a d̂l such that when d̂ = d̂l,
the system undergoes both a Hopf bifurcation and a homoclinic loop bifurcation.
For any (b,K) along Dhom in a neighborhood of P , there exists a d̂Dhom ∈ (0, d̂M )

such that when d̂ = d̂Dhom, system (1.3) undergoes a degenerate (codimension 2)
homoclinic loop bifurcation. Also in a neighborhood of P , for any (b,K) in the region

between DH and Dhom, there exists a d̂sn ∈ (0, d̂M ) such that when d̂ = d̂sn, system
(1.3) undergoes a saddle-node bifurcation of limit cycles. In Figure 6.1 and Figure 6.2,
we use a dot-dash line to illustrate Dhom and a dashed line to illustrate HH. The
global extension of the curve Dhom has been observed numerically using XPPAUT.
In the following we prove the position of NS with respect to Dhom and HH.

Lemma 6.10. Fix all parameters as in (1.5) except d̂ > 0. For K < 2√
a

and

K > 2√
a

to the right of NS, if a homoclinic bifurcation occurs, it is supercritical.

Proof. By Proposition 3.2, if K < 2√
a
, HM < 1√

a
≤ µ. If K > 2√

a
to the

right of NS, then HM < µ. Hence in both cases, F ′(µ) < 0. It follows from part 2
of Theorem 6.6 that if a homoclinic bifurcation occurs in either of these cases, it is
supercritical.
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Fig. 6.2. V ∗, subregion of V2, bounded by Dhom, DH, and C2. For (b,K) ∈ Vsn, the shaded

region, there exists a d̂sn > 0 such that when d̂ = d̂sn, system (1.3) undergoes a saddle-node
bifurcation of limit cycles.

Corollary 6.11. Dhom lies to the left of NS.
Before we establish the relative positions of NS and HH, we need the following

results.
Lemma 6.12.
1. For (b,K) ∈ V2 \ V 0

2 and to the left of NS, any homoclinic bifurcation that
occurs must occur before the Hopf bifurcation.

2. For (b,K) ∈ V2, K ≥ 2√
a

to the right of EµK , any homoclinic bifurcation

that occurs must occur after the Hopf bifurcation.
3. For (b,K) ∈ V2\V 0

2 , K < 2√
a

to the right of EµK , any homoclinic bifurcation

that occurs must occur after the Hopf bifurcation at (Hm, F (Hm)) and before
the Hopf bifurcation at (HM , F (HM )).

4. For (b,K) ∈ V2 \ V 0
2 , below EµK with b > 0, both Hopf bifurcations occur

before any homoclinic bifurcation.
5. For (b,K) ∈ V1\V 1

1 , any homoclinic bifurcation that occurs must occur before

the Hopf bifurcation at (HM , f(HM )) when d̂ = d̂+.
Proof. 1. For (b,K) ∈ V2 \ V 0

2 and to the left of NS, from Theorem 4.4 and

Proposition 6.8, the Hopf bifurcation at (Hm, F (Hm)) with d̂ = d̂− occurs after

the neutral saddle at (HM , F (HM )) with d̂ = d̂+. This implies that for d̂ ≥ d̂+

Hm ≤ λ ≤ µ < HM , and hence F ′(λ) ≥ 0 and F ′(µ) > 0. By part 2 of Theorem 6.3,

there are no periodic orbits or homoclinic loops for d̂ ≥ d̂+.
2. For (b,K) ∈ V2 and K ≥ 2√

a
, it follows from Theorem 4.4 that the only Hopf

bifurcation that occurs is at the (Hm, F (Hm)) when d̂ = d̂−, and it is subcritical.
By part 2(b) of Proposition 6.9, the Hopf bifurcation occurs before the Eµ and EK

transcritical bifurcation. Hence by part 1 of Theorem 6.6, no homoclinic bifurcation
occurs for d̂ ∈ (0, d̂−].
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3. For (b,K) ∈ V2 and K < 2√
a

, by part 2(b) of Proposition 6.9, the transcritical

bifurcation involving Eµ and EK occurs after the Hopf bifurcation at (Hm, F (Hm))

when d̂ = d̂− and before the Hopf bifurcation at (HM , F (HM )) when d̂ = d̂+. A
similar argument to that for part 2 shows that no homoclinic bifurcation occurs in
(0, d̂−], and a similar argument to that for part 1 shows that no homoclinic bifurcation

occurs for d̂ ≥ d̂+.
4. For (b,K) ∈ V2 \ V 0

2 , below EµK (b > 0), by Theorem 4.4, Hopf bifurcations
occur at Eλ when λ = Hm and λ = HM . But by part 2(c) of Proposition 6.9, both
Hopf bifurcations occur before the transcritical bifurcation involving Eµ and EK ,
which implies any homoclinic bifurcation must occur after both Hopf bifurcations.

5. For (b,K) ∈ V1 \ V 1
1 , by Theorem 4.4, there is one Hopf bifurcation at

(HM , F (HM )) when d̂ = d̂+. If d̂ ≥ d̂+, then HM ≤ λ < µ̄ and F ′(x) ≤ 0 for

x ∈ (λ, µ̄). Thus by part 1 of Theorem 6.3, for d̂ ≥ d̂+ no homoclinic loops can
exist. Hence any homoclinic bifurcation that occurs must occur before the Hopf
bifurcation.

Proposition 6.13. Fix all the parameters in (1.5) except d̂ > 0. If (b,K) is

outside the region bounded by NS, C1, and EµK (Figure 6.1), for all d̂ ∈ (0, d̂M ), a
Hopf bifurcation and a homoclinic bifurcation cannot occur simultaneously.

Proof. It follows from Theorem 4.4 that no Hopf bifurcations can occur for (b,K)
in the regions V0, V

0
2 , and V 1

1 . The proofs for V1 \ V 1
1 and V2 \ V 0

2 follow from
Lemma 6.12.

Recall that in the neighborhood of P , there exists a curve HH along which the
Hopf bifurcation at the left hump and a homoclinic bifurcation occur simultaneously.
Let VHH be the region bounded by curves NS, K = 2√

a
, and EµK (b < 0). Now we

prove the following theorem regarding the extension of the curve HH in VHH .
Theorem 6.14. Fix all parameters except d̂ > 0. In VHH , there exists a curve

HH: K = KHH(b) with finite end point at P (−√
a, 2√

a
) (Figure 6.1). For any

(b,K) ∈ HH, there exists a unique d̂hh ∈ (d̂µK , d̂M ), such that when d̂ = d̂hh, the
subcritical Hopf bifurcation at (Hm, F (Hm)) and a homoclinic loop bifurcation occur
simultaneously.

Proof. By Theorem 6.7, for (b,K) ∈ VHH there exists d̂l ∈ (d̂µK , d̂M ) such

that a homoclinic bifurcation occurs at d̂ = d̂l. By Proposition 6.13, if the curve
K = KHH(b) exists, it lies inside the region VHH .

Now we prove that in VHH , for fixed K > 2√
a
, there exists a b ∈ (− 2

K , 3−aK2

K(aK2−2) )

such that the subcritical Hopf bifurcation at the left hump and a homoclinic bifurca-
tion involving Eµ happen simultaneously when d̂ = d̂−(< d̂+).

(a) First we show that along NS, any homoclinic bifurcation at d̂ = d̂l occurs
before the Hopf bifurcation.

From Proposition 6.8, if b = − 2
K (i.e., (b,K) ∈ NS), a Hopf bifurcation at

(Hm, F (Hm)) and a neutral saddle at (HM , F (HM )) occur simultaneously when d̂ =
3K

2(ak2−1) . Then for d̂ ∈ [ 3K
2(aK2−1) , d̂M ), we have F ′(λ) ≥ 0 and F ′(µ) ≥ 0. By

Theorem 6.3 neither periodic orbits nor homoclinic loops can exist. Hence along NS,
any homoclinic bifurcation occurs before the Hopf bifurcation.

(b) Next we show that along EµK , the Hopf bifurcation occurs before any homo-
clinic bifurcation.

This is obvious since the Hopf bifurcation occurs at d̂ = d̂µK , and any homoclinic

bifurcation occurs when d̂ > d̂µK .
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Table 6.1
Curves in the bK plane corresponding to degenerate phenomena. For the last 7 curves, there

exists a d̂ such that the indicated bifurcation occur.

Name Phenomenon Expression

C1 Hm = HM K =

√
3(4a−b2)−b

2a
,

−2
√
a < b ≤ √

a

(3.8)

C2 Hm = 0 or HM = 0 K =
1

b
, b > 0 (3.8)

EµK Hopf & Eµ − EK transcritical b =
3 − aK2

K(aK2 − 2)
(6.13)

NS Hopf & neutral saddle K = −2

b
(6.11)

BT Bogdanov–Takens K =
2√
a

(5.1)

DH Degenerate Hopf σ(K, b) = 0 (4.11)

HH Hopf & homoclinic K = KHH(b) Theorem 6.14

Dhom Degenerate homoclinic K = KDhom(b) (6.15)

By (a) and (b), for any K with (b,K) in VHH there exists at least one b∗ ∈
(− 2

K , 3−aK2

K(aK2−2) ) such that at (b∗,K), there exists a unique d̂ ∈ (d̂µK , d̂M ) such that

a Hopf bifurcation and a homoclinic loop bifurcation occur simultaneously.
Remark 6.15. Theorem 5.4 proves the local existence of the curve HH emanating

from P and lying between the curves NS and DH. Theorem 6.14 shows that this
curve may be globally extended into the region VHH . Since both NS and EµK tend
to b = 0 as K → ∞, the global extension of HH should do the same. In Figure 6.1
we have drawn the curve HH as a single branch emanating from P and lying above
DH in VHH . This representation of HH is supported by numerical simulations using
XPPAUT [11]; however, we have not been able analytically to preclude that HH has
multiple branches or crosses the curve DH.

We summarize the relevant curves in the bK plane in Table 6.1. As shown in
Figure 6.1, we use these curves to divide V0, V1, and V2 into the following subregions:

V0 = V 1
0 ∪ V 2

0 ,

V1 =

4⋃
k=1

V k
1 ,

V2 =

11⋃
k=0

V k
2 .

6.3. Saddle-node bifurcation of limit cycles. Let V ∗ be the subregion of V2

(Figure 6.1) bounded by Dhom, DH, and C2; i.e.,

V ∗ = V 1
2 ∪ V 2

2 ∪ V 6
2 ∪ V 8

2 ∪ V 9
2 ∪ V 10

2 .(6.16)

To study the saddle-node bifurcation of limit cycles for parameters away from P , we
introduce a line segment L in the following proposition (see Figure 6.2).



BIFURCATION ANALYSIS OF A PREDATOR-PREY SYSTEM 671

Proposition 6.16. In the bK plane, the line

L : K = − b

a
+

2√
a

(6.17)

lies between the curves C2 and DH and is tangent to C1, DH, and C2 at Q. In region
V2, below this line, F (0) > F (HM ); above the line, F (0) < F (HM ); and on the line,
F (0) = F (HM ).

Proof. The proof follows from direct calculations.
As shown in Figure 6.2, the line L subdivides the region V ∗ into two subregions.

Denote the shaded subregion below L by

Vsn =

{
(b,K) ∈ V ∗

∣∣∣ K < − b

a
+

2√
a

}
.

Proposition 6.17. Fix all the parameters except d̂ > 0. If (b,K) ∈ Vsn, there

exists a d̂sn ∈ (0, d̂−) such that when d̂ = d̂sn, system (1.3) undergoes a saddle-node
bifurcation of limit cycles.

Proof. For (b,K) ∈ Vsn, it follows from Proposition 6.16 that there exists a d̂0 > 0

such that for d̂ ∈ (0, d̂0), F (λ) > F (HM ). By Corollary 6.2, system (1.3) has neither

periodic orbits nor homoclinic loops for (b,K) ∈ Vsn and d̂ ∈ (0, d̂0). Further, it

follows from Theorem 4.4 that there exists a d̂− ∈ [d̂0, d̂M ) such that when d̂ = d̂−,
system (1.3) undergoes a subcritical Hopf bifurcation at (Hm, F (Hm)). Recall that

Eλ is asymptotically stable for 0 < d̂ < d̂− (see Table 2.1) and so an unstable periodic

orbit must be destroyed as d̂ increases through d̂−.
(1) In Vsn for K ≥ 2√

a
and to the right of the curve NS, from Theorem 4.4, there

are no other Hopf bifurcations. From Lemma 6.10 any homoclinic bifurcation that
occurs in supercritical. Thus, the only way to create the unstable limit cycle that
must be destroyed in the subcritical Hopf bifurcation is to first have a saddle-node
bifurcation of limit cycles.

(2) In Vsn for K < 2√
a
, by part 5 of Theorem 4.4, in addition to the subcritical

Hopf bifurcation at d̂ = d̂−, and there is a supercritical Hopf bifurcation at d̂ = d̂+.
From Lemma 6.10, any homoclinic bifurcation that occurs is supercritical. By a
similar argument as for case (1), there must be a saddle-node bifurcation of limit
cycles before the two Hopf bifurcations.

(3) In Vsn for K ≥ 2√
a
, by Theorem 6.7 there exists a d̂l such that when d̂ = d̂l

system (1.3) undergoes a homoclinic bifurcation. By Lemma 6.12, this homoclinic
bifurcation must occur before the Hopf bifurcation. By definition, to the right of
Dhom there must be a supercritical homoclinic bifurcation. Thus, an unstable limit
cycle must already surround the asymptotically stable equilibrium. This limit cycle
must have been created by a saddle-node bifurcation of limit cycles.

Proposition 6.18.
1. In the bK plane (Figure 6.3), the curve

Csn : b =
3 − aK2

K
, K ≥

√
3

a
(6.18)

lies between the curves C1 and EµK and is tangent to them at (0,
√

3/a).

For (b,K) ∈ Vsn, below this curve, if d̂ ∈ (0, d̂µK), system (1.3) has no closed
orbits. Therefore the saddle-node bifurcation of limit cycles must occur after
the transcritical bifurcation involving Eµ and EK .
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Fig. 6.3. In the shaded subregion of Vsn below Csn, the saddle-node bifurcation of limit cycles

occurs after the transcritical bifurcation involving Eµ and EK . In the shaded subregion of Vsn to the
right of EµK , the saddle-node bifurcation of limit cycles occurs before the transcritical bifurcation.

2. For (b,K) ∈ Vsn to the right of the branch of EµK with b < 0, a saddle-node
bifurcation of limit cycles occurs before the transcritical bifurcation involving
Eµ and EK .

Proof. Note that in Vsn, F (0) > F (HM ). As d̂ increases from 0, there exists a d̂0

such that for d̂ = d̂0, λ = λ0 where F (λ0) = F (HM ) and λ0 < Hm. By Corollary 6.2,

for 0 < d̂ < d̂0, there are no periodic orbits or homoclinic loops. Therefore, the
saddle-node bifurcation of limit cycles must occur for some d̂ > d̂0.

Setting µ = K and F (λ) = F (HM ) in (1.4), (2.4), and (3.7) and eliminating d̂,
we obtain (6.13) and (6.18). By Proposition 6.9, if (b,K) satisfies (6.13), then when

d̂ = d̂µK , we have λ = Hm. Hence (6.13) is not relevant and (6.18) corresponds

to d̂µK = d̂0. Straightforward calculations show that curve (6.18) lies between C1

and EµK , is tangent to both C1 and EµK at (0,
√

3/a), and lies below L in Vsn.

Consideration of the sign of F (λ)−F (HM ) when d̂ = d̂µK shows that for (b,K) ∈ Vsn
below curve (6.18), d̂0 > d̂µK , and above curve (6.18), d̂0 < d̂µK . Therefore, the result
follows.

On the other hand, for (b,K) ∈ Vsn to the right of the branch of the curve
EµK with b < 0, the Hopf bifurcation at (Hm, F (Hm)) occurs at the same time as
or before the transcritical bifurcation involving Eµ and EK . By Proposition 6.17,
for (b,K) ∈ Vsn, the Hopf bifurcation at (Hm, F (Hm)) occurs after the saddle-node
bifurcation of limit cycles. Therefore in this region a saddle-node bifurcation of limit
cycles must occur before the transcritical bifurcation.

As shown in Figure 6.4, the segment of Csn between Dhom and DH and the
segment of L between Dhom and EµK divide the regions V 8

2 and V 10
2 into subregions

V ia
2 , V ib

2 , and V ic
2 (i = 8, 10). For the saddle-node bifurcation of limit cycles and its
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Fig. 6.4. In Vsn, the curve Csn and line L divide the regions V 8
2 and V 10

2 into subregions V ia2 ,

V ib2 , and V ic2 (i = 8, 10).

relative order with respect to the transcritical bifurcation involving Eµ and EK , we
make the following remark.

Remark 6.19.
1. By Proposition 6.18, for (b,K) in V 8a

2 and V 10a
2 , the saddle-node bifurcation

of limit cycles occurs after the transcritical bifurcation involving Eµ and EK .

2. When d̂ = 0, system (1.3) has a degenerate graphic with a line segment of
equilibria. The bifurcation analysis of this type of graphic is very complicated
(see [9] for reference), and will appear elsewhere.

3. For (b,K) in V ic
2 (i = 8, 10) and V 9

2 , above the line L, a saddle-node bifurca-
tion of limit cycles may occur or the required limit cycles may come from a
bifurcation of the degenerate singularity when d̂ = 0. Numerical simulations
show that for (b,K) in V ic

2 (i = 8, 10) and V 9
2 , above the line L, system (1.3)

has two limit cycles for d̂ > 0 very small.
4. For (b,K) in V ib

2 (i = 8, 10) and V 6
2 , it follows from Proposition 6.18 that

there exists a curve that lies between Csn and EµK . For (b,K) on this curve,

there exists a d̂sn > 0 such that a saddle-node bifurcation of limit cycles and
the transcritical bifurcation involving Eµ and EK occur simultaneously. This
curve ST may not be unique.

6.4. Sequences of bifurcations. Although a three dimensional Hopf bifurca-
tion surface is shown in Figure 4.1, it is not convenient to visualize the entire bifurca-
tion diagram for system (1.3) in (b, d̂,K) space. Instead we describe the bifurcation

diagram as d̂ varies for fixed b and K inside each subregion (see Figure 6.1) of the bK
plane. The sequences of bifurcations that occur in the interior of each subregion are
given using the “dictionary of phase portraits” in Table 6.2. The sequences on the
boundaries of each subregion are not included. These can easily be deduced by read-
ing Tables 6.3–6.5 vertically. On the boundaries various simultaneous or degenerate
bifurcations occur.
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Table 6.2
Dictionary of phase portraits.

x

y

O x

y

O x

y

O
A B C

x

y

O x

y

O x

y

O

D E F

x

y

O x

y

O x

y

O

G H I

Table 6.3
Sequences of phase portraits for (b,K) ∈ V0.

V 1
0

A D I

(0, d̂µK) (d̂µK , d̂M ) (d̂M ,∞)

V 2
0

A I

(0, d̂λK) (d̂λK ,∞)

Theorem 6.20. Fix all parameters except d̂ > 0. For (b,K) ∈ V0, when d̂ > 0
increases, the sequence of phase portraits occurring in the interior of each subregion
is given in Table 6.3. In the table, moving from left to right as d̂ increases, the phase
portrait changes as a result of one of the following bifurcations:

• the transcritical bifurcation involving Eλ and EK that occurs at d̂ = d̂λK ;
• the transcritical bifurcation involving Eµ and EK that occurs at d̂ = d̂µK ;

• the saddle-node bifurcation involving Eλ and Eµ that occurs at d̂ = d̂M .
Proof. By Corollary 6.5, system (1.3) has neither periodic orbits nor homoclinic

loops for (b,K) ∈ V0. As d̂ ∈ (0, d̂M ) is varied, if K > 1√
a
, the only bifurcation

that can occur is the transcritical bifurcation involving Eµ and EK that occurs when

d̂ = d̂µK and the saddle-node bifurcation that occurs when d̂ = d̂M . If 0 < K < 1√
a
,

the only bifurcation that can occur is the transcritical bifurcation involving Eλ and
EK that occurs when d̂ = d̂λK .

Theorem 6.21. Fix all parameters except d̂ > 0. For (b,K) ∈ V1, when d̂ > 0
increases, the sequence of phase portraits occurring in the interior of each subregion
is given in Table 6.4. In the table, moving from left to right as d̂ increases, the phase
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Table 6.4
Sequences of phase portraits for (b,K) ∈ V1.

V 1
1

B F E I

(0, d̂µK) (d̂µK , d̂l) (d̂l, d̂M ) (d̂M ,∞)

V 2
1

B F D I

(0, d̂µK) (d̂µK , d̂+) (d̂+, d̂M ) (d̂M ,∞)

V 3
1

B A D I

(0, d̂+) (d̂+, d̂µK) (d̂µK , d̂M ) (d̂M ,∞)

V 4
1

B A I

(0, d̂+) (d̂+, d̂λK) (d̂λK ,∞)

portrait changes due to one of the following bifurcations:
• the transcritical bifurcation involving Eλ and EK that occurs at d̂ = d̂λK ;
• the transcritical bifurcation involving Eµ and EK that occurs at d̂ = d̂µK ;

• the saddle-node bifurcation involving Eλ and Eµ that occurs at d̂ = d̂M ;

• the supercritical Hopf bifurcation that occurs when d̂ = d̂+;
• a supercritical homoclinic bifurcation that occurs when d̂ = d̂l.

For (b,K) ∈ V 3
1 ∪ V 4

1 , the sequence is complete up to an even number of saddle-node
bifurcations of limit cycles. For (b,K) ∈ V 1

1 ∪V 2
1 , the sequences are complete up to an

even number of saddle-node bifurcations of limit cycles and an even number of extra
supercritical homoclinic bifurcations.

Proof. In V1 for d̂ > 0 sufficiently small, Eλ is an unstable node. Since solutions
are bounded, a simple phase plane argument shows that there must be a stable limit
cycle surrounding Eλ.

If (b,K) ∈ V 1
1 , by Theorem 4.4, system (1.3) does not undergo Hopf bifurcations.

Thus there must exist d̂l such that when d̂ = d̂l there is a supercritical homoclinic
bifurcation destroying the limit cycle described above. Further, a transcritical bifur-
cation involving Eµ and EK occurs when d̂ = d̂µK . By Theorem 6.6, d̂µK < d̂l. Thus,

for d̂ ∈ (0, d̂µK), the system has a stable periodic orbit. For d̂ ∈ (d̂l, d̂M ), the system
has no periodic orbit.

If (b,K) ∈ V 2
1 , by Theorem 4.4, system (1.3) undergoes a supercritical Hopf bifur-

cation when d̂ = d̂+ (λ = HM ). It follows from Proposition 6.8 that the Hopf bifurca-

tion occurs after the transcritical bifurcation involving Eµ and EK at d̂ = d̂µK . For

d̂ ∈ (d̂+, d̂M ), 0 < HM < λ < 1√
a
< µ < K. By part 1 of Theorem 6.3, system (1.3)

has neither periodic orbits nor homoclinic loops and hence has the phase portrait D.
If (b,K) ∈ V 3

1 , the sequence of bifurcations is the same as in V 2
1 except that the

supercritical Hopf bifurcation occurs before the transcritical bifurcation involving Eµ

and EK . Hence by part 1 of Theorem 6.3, no homoclinic bifurcations can occur.
If (b,K) ∈ V 4

1 , then 0 < K < 1√
a
. For d̂ ∈ (0, d̂M ), K < µ. In this case, the

transcritical bifurcation involves Eλ and EK and occurs when d̂ = d̂λK . Note that
since µ > K, no homoclinic bifurcation can occur by part 1 of Theorem 6.6.

Theorem 6.22. Fix all parameters except d̂ > 0. For (b,K) ∈ V2, when d̂ > 0
increases, the sequence of phase portraits occurring in the interior of each subregion
is given in Table 6.5. In the table, moving from left to right as d̂ increases, the phase
portrait changes as a result of one of the following bifurcations:
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Table 6.5
Sequences of phase portraits for (b,K) ∈ V2. In the three regions indicated by a †, above the

line L, instead of a saddle-node bifurcation of limit cycles, there could be a degenerate bifurcation
for d̂ = 0. In this case the sequence of phase portraits would begin with C instead of A. If more than
one sequence is shown for a given region, it indicates that all of the sequences given are possible.

V 0
2

A D I

(0, d̂µK) (d̂µK , d̂M ) (d̂M ,∞)

V 1
2

† A C B F D I

(0, d̂sn) (d̂sn, d̂−) (d̂−, d̂µK) (d̂µK , d̂+) (d̂+, d̂M ) (d̂M ,∞)

V 2
2

† A C B A D I

(0, d̂sn) (d̂sn, d̂−) (d̂−, d̂+) (d̂+, d̂µK) (d̂µK , d̂M ) (d̂M ,∞)

V 3
2

A B A D I

(0, d̂−) (d̂−, d̂+) (d̂+, d̂µK) (d̂µK , d̂M ) (d̂M ,∞)

V 4
2

A B F D I

(0, d̂−) (d̂−, d̂µK) (d̂µK , d̂+) (d̂+, d̂M ) (d̂M ,∞)

V 5
2

A D F D I

(0, d̂µK) (d̂µK , d−) (d̂−, d̂+) (d̂+, d̂M ) (d̂M ,∞)

A D H F D I

V 6
2

(0, d̂µK) (d̂µK , dsn) (d̂sn, d̂−) (d̂−, d̂+) (d̂+, d̂M ) (d̂M ,∞)

A C H F D I

(0, d̂sn) (d̂sn, dµK) (d̂µK , d̂−) (d̂−, d̂+) (d̂+, d̂M ) (d̂M ,∞)

V 7
2

A D F E I

(0, d̂µK) (d̂µK , d̂−) (d̂−, d̂l) (d̂l, d̂M ) (d̂M ,∞)

V 8a,b,c
2

A D H F E I

(0, d̂µK) (d̂µK , d̂sn) (d̂sn, d̂−) (d̂−, d̂l) (d̂l, d̂M ) (d̂M ,∞)

V 8b,c
2

A C H F E I

(0, d̂sn) (d̂sn, d̂µK) (d̂µK , d̂−) (d̂−, d̂l) (d̂l, d̂M ) (d̂M ,∞)

V 8c
2

C H F E I

(0, d̂µK) (d̂µK , d̂−) (d̂−, d̂l) (d̂l, d̂M ) (d̂M ,∞)

V 9
2

† A C B F E I

(0, d̂sn) (d̂sn, d̂−) (d̂−, d̂µK) (d̂µK , d̂l) (d̂l, d̂M ) (d̂M ,∞)

V 10a,b,c
2

A D H G E I

(0, d̂µK) (d̂µK , d̂sn) (d̂sn, d̂l) (d̂l, d̂−) (d̂−, d̂M ) (d̂M ,∞)

V 10b,c
2

A C H G E I

(0, d̂sn) (d̂sn, d̂µK) (d̂µK , d̂l) (d̂l, d̂−) (d̂−, d̂M ) (d̂M ,∞)

V 10c
2 C H G E I

(0, d̂µK) (d̂µK , d̂l) (d̂l, d̂−) (d̂−, d̂M ) (d̂M ,∞)

V 11
2

A D G E I

(0, d̂µK) (d̂µK , d̂l) (d̂l, d̂−) (d̂−, d̂M ) (d̂M ,∞)
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• the transcritical bifurcation involving Eµ and EK that occurs at d̂ = d̂µK ;

• the saddle-node bifurcation involving Eλ and Eµ that occurs at d̂ = d̂M ;

• a Hopf bifurcation that occurs when d̂ = d̂− or d̂ = d̂+;
• a homoclinic bifurcation that occurs when d̂ = d̂l;
• a saddle-node bifurcation of limit cycles that occurs when d̂ = d̂sn.

For (b,K) ∈ V 0
2 , the sequence is complete.

For (b,K) ∈ V 2
2 ∪ V 3

2 , the sequences are complete up to an even number of extra
saddle-node bifurcations of limit cycles.

For (b,K) ∈ V 1
2 ∪ V 4

2 ∪ V 5
2 ∪ V 6

2 ∪ V 7
2 ∪ V 9

2 , the sequences are complete up to
an even number of extra supercritical homoclinic bifurcations and an even number of
extra saddle-node bifurcations of limit cycles.

For (b,K) ∈ V 8
2 ∪ V 10

2 ∪ V 11
2 , the sequences are complete up to saddle-node bifur-

cations of limit cycles and an even number of extra homoclinic bifurcations.
Proof. The region V2 has 12 subregions V i

2 (i = 0, 1, . . . , 11).
1. For (b,K) ∈ V 0

2 , 0 < 1√
a
< Hm < HM < K. It follows from Theorem 4.4

and Corollary 6.5 that system (1.3) does not undergo Hopf bifurcations and has
neither periodic orbits nor homoclinic loops. The only bifurcations that can occur
are a transcritical bifurcation involving Eµ and EK at d̂ = d̂µK and a saddle-node

bifurcation involving Eλ and Eµ at d̂ = d̂M . The transcritical bifurcation must occur
before the saddle-node bifurcation involving Eλ and Eµ.

2. For (b,K) ∈ V 1
2 ∪ V 2

2 ∪ V 6
2 , 0 < Hm < HM < 1√

a
< K. It follows from

Theorem 4.4 that there exist d̂− and d̂+ (d̂− < d̂+) such that when d̂ = d̂−, a

subcritical Hopf bifurcation occurs at (Hm, F (Hm)), and when d̂ = d̂+, a supercritical
Hopf bifurcation occurs at (HM , F (HM )).

For (b,K) ∈ V 1
2 , by Proposition 6.9, the Hopf bifurcation at (Hm, F (Hm)) occurs

before the transcritical bifurcation involving Eµ and EK , i.e., d̂− < d̂µK < d̂+. For

d̂ ∈ (d̂+, d̂M ), there are two equilibria, Eλ and Eµ, satisfying HM < λ < 1√
a
< µ < K.

By Theorem 6.3, the system has neither periodic orbits nor homoclinic loops. The
two equilibria Eλ and Eµ disappear through a saddle-node bifurcation when d̂ = d̂M .

If (b,K) is below the line L, by Proposition 6.17, there exists a d̂sn < d̂+ such that
the system undergoes a saddle-node bifurcation of limit cycles. If (b,K) is above the
line L, by part 3 of Remark 6.19, this saddle node bifurcation of limit cycles may not
occur; instead, two limit cycles bifurcate from d̂ = 0.

For (b,K) ∈ V 2
2 , it follows from Proposition 6.9 that the only difference from

the case when (b,K) ∈ V 1
2 is that the transcritical bifurcation involving Eµ and EK

occurs after the Hopf bifurcation at d̂ = d̂+.
For (b,K) ∈ V 6

2 , it follows from Proposition 6.9 that the transcritical bifurcation
involving Eµ and EK occurs before both Hopf bifurcations. Since V 6

2 sits entirely

below the line L, by Proposition 6.17, there must exist a d̂sn ∈ (0, d̂−) such that
system (1.3) undergoes a saddle-node bifurcation of limit cycles. From part 4 of

Remark 6.19, it is not clear whether d̂sn < d̂µK or d̂µK < d̂sn.
3. For (b,K) ∈ V 3

2 ∪ V 4
2 ∪ V 5

2 , 0 < Hm < HM < 1√
a
< K. By Theorem 4.4, there

are two supercritical Hopf bifurcations, the first at d̂ = d̂− and the second at d̂ = d̂+.
It follows from Proposition 6.9 that if (b,K) ∈ V 3

2 , d̂− < d̂+ < d̂µK ; if (b,K) ∈ V 4
2 ,

d̂− < d̂µK < d̂+; if (b,K) ∈ V 5
2 , d̂µK < d̂− < d̂+.

4. For (b,K) ∈ V 7
2 , 0 < Hm < 1√

a
< HM < K. By Theorem 4.4, there exists

a d̂− ∈ (0, d̂M ) such that when d̂ = d̂−, system (1.3) undergoes a supercritical Hopf
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Table 6.6
Additional homoclinic bifurcations observed for (b,K) ∈ V 1

2 as d̂ is varied.

F E F

(d̂µK , d̂l1) (d̂l1, d̂l2) (d̂l2, d̂+)

bifurcation. By Proposition 6.9, d̂µK < d̂−. By Theorem 6.7 and Lemma 6.10, there

exists a d̂l such that when d̂ = d̂l, the system undergoes a supercritical homoclinic
bifurcation. The homoclinic bifurcation must destroy the periodic orbit created by
the Hopf bifurcation, so d̂l > d̂−.

5. For (b,K) ∈ V 8
2 ∪V 9

2 ∪V 10
2 ∪V 11

2 , 0 < Hm < 1√
a
< HM < K. By Theorem 4.4,

there exists a unique d̂− ∈ (0, d̂M ) such that when d̂ = d̂−, system (1.3) undergoes a
subcritical Hopf bifurcation. Therefore, an unstable periodic orbit must exist when
d̂−− ε < d̂ < d̂− for some ε. This periodic orbit must be created in either (i) a saddle-

node bifurcation of limit cycles for some d̂sn < d̂−, or (ii) a degenerate bifurcation

at d̂ = 0 creating an even number of limit cycles, or (iii) a subcritical homoclinic
bifurcation. In cases (i) and (ii), the outside, asymptotically stable periodic orbit
would have to be destroyed in a supercritical homoclinic bifurcation. Thus, in all
three cases, there must exist a d̂l at which a homoclinic bifurcation occurs.

By definition of Dhom, the homoclinic bifurcation changes stability and is sub-
critical in V 11

2 and supercritical in V 8
2 ∪ V 9

2 ∪ V 10
2 . By definition of HH, d̂l < d̂− to

the left of HH and d̂l > d̂− to the right of HH. By definition of EµK , d̂− < d̂µK to

the right of the branch of EµK with b < 0, and d̂− > d̂µK to the left of this branch.

For (b,K) ∈ V 11
2 , there is a subcritical homoclinic bifurcation at d̂ = d̂l (i.e.,

case (iii) occurs) and by part 1 of Lemma 6.12, d̂l < d̂−. By part 1 of Theorem 6.6,

d̂µK < d̂l. Therefore 0 < d̂µK < d̂l < d̂− < d̂M .
For (b,K) ∈ V 10

2 ∪V 9
2 ∪V 8

2 , the homoclinic bifurcation is supercritical. In V 10a
2 ∪

V 10b
2 ∪V 8a

2 ∪V 8b
2 and V 9

2 below the line L case (i) occurs. In V 10c
2 ∪V 8c

2 and V 9
2 above

the line L, case (i) or (ii) occurs.
6. By part 1 of Theorem 6.6 and part 1 of Theorem 6.3, there is no homoclinic

bifurcation for (b,K) ∈ V 2
2 ∪ V 3

2 . Solutions are bounded. There are either an even

number or zero limit cycles for d̂ > 0 sufficiently small, and there are no limit cycles
for d̂ > d̂M . We have considered all the other possible local and necessary global
bifurcations. Hence, the sequences are complete as described in Table 6.5 up to
saddle-node bifurcations of limit cycles and homoclinic bifurcations as indicated in
the statement of the theorem.

Remark 6.23. The sequence of phase portraits in Table 6.5 is complete up to
saddle-node bifurcations of limit cycles and homoclinic loop bifurcations. For (b,K) ∈
V 1

2 and d̂ ∈ (d̂µK , d̂+), numerical simulations using XPPAUT [11] suggest that in

addition to the critical values shown in the table, there could exist d̂l1, d̂l2 ∈ (d̂µK , d̂+)

such that when d̂ = d̂l1 and d̂ = d̂l2, system (1.3) undergoes homoclinic bifurcations
and includes the subsequence of phase portraits listed in Table 6.6.

Numerical continuation of bifurcation curves carried out with the software Auto
(through the XPPAUT [11] interface), supports our analysis. Fixing a = m = c =
r = 1, which is consistent with the rescaling (1.7), we calculated the two parameter
bifurcation sets in dK space, for b = 0,−0.5,−1.5 (Figure 6.5). Fixing K in Figure 6.5
and allowing d to vary vertically, we obtain sequences of bifurcations indicated by our
analysis.
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Fig. 6.5. Two dimensional bifurcation diagram from XPPAUT [11]: a = m = c = r = 1.
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7. Discussion. This study was stimulated by a series of papers [13, 19, 24]. In
[24], six mechanisms for periodically forcing the classical predator-prey model with
Holling type II response functions were shown, surprisingly, to have topologically
equivalent 2-parameter bifurcation diagrams for the associated first return map with
respect to fold, flip, and Neimark–Sacker bifurcation curves of the first and second
iterates and period doubling cascades. Even more unexpectedly, in [13] it was shown
that the eight mechanisms for periodically forcing the analogous predator-prey model
in a chemostat not only produced topologically equivalent diagrams, but these dia-
grams were topologically equivalent to the ones for the classical model. They con-
jectured a “universal diagram” for forced predator-prey systems. In [24] the authors
state explicitly that it would be of interest to extend their analysis to a predator-prey
model that has saddle-node bifurcations of limit cycles and homoclinic bifurcations
for the unforced system. System (1.3) seemed like an ideal choice, since we were aware
from previous studies [12, 30, 25, 26, 28] that it had the indicated bifurcations as the
carrying capacity was varied. We felt certain that it should be possible to obtain
2-parameter bifurcation diagrams of the periodically forced version of system (1.3)
that were not topologically equivalent to the ones in [13] and [24].

To our surprise, when the carrying capacity was forced, the 2-parameter bifur-
cation diagram was not significantly different [32]. In order to find parameters that
would produce different diagrams, it was necessary to perform a more detailed bifur-
cation analysis on the unforced system, i.e., system (1.3), in order to understand the
role of all of the parameters, and this was the motivation for this paper.

In fact, based on the results in this paper, in [32], we are able to show that for the
Holling type IV response functions, different mechanisms for periodic forcing result
in topologically distinct 2-parameter bifurcation diagrams and hence can be different
than the postulated universal diagram.

Our work in this paper, analyzing local and global bifurcations of system (1.3),
extends and complements the work in [12, 30, 25, 26, 28]. We now understand the role
of perturbing each of the parameters on the dynamics. We described, for any fixed a >
0, −2

√
a < b, and K > 0, the sequence of bifurcations and associated phase portraits

which occur as d
cm > 0 is varied. These results are summarized in Figure 6.1 and

Tables 6.1–6.5 and include both local and global bifurcations. In particular, explicit
regions in parameter space are provided for all of the phase portraits illustrated in
Table 6.2, including regions where there are at least two limit cycles. We showed that
for any a, r > 0 and −2

√
a < b there is a Bogdanov–Takens bifurcation of codimension

2 when d = cm
b+2

√
a

and K = 2√
a

with b �= −√
a and a Bogdanov–Takens bifurcation of

codimension 3 when b = −√
a, d = cm√

a
, and K = 2√

a
. We proved that the parameters

b, d, K give a versal unfolding of the codimension 3 bifurcation.
Although the model (1.3) contains seven parameters, our analysis shows that the

parameter r has no effect on the existence and stability of equilibria, or of limit cycles
created by Hopf bifurcations. Further, as seen in the results above, the parameters
c, d, and m always occur in the ratio d

cm , and the parameter a acts as a scaling factor
for b and K. These latter relations are not surprising given that a, c, and m could be
removed via the rescaling (1.7), but these relations seem to indicate that this is the
most “natural” way to reduce the seven parameters to four.

As discussed above, variation of the parameter d, the death rate of the predator,
results in many different bifurcation sequences depending on the values of the other
parameters. However, there is a common theme to all the sequences. For d > 0 small
enough, any system starting with positive initial conditions will lead to coexistence of
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the predator and the prey. For d large enough (i.e., d > mc
b+2

√
a
), all initial conditions

will result in extinction of the predator. In between there exists a range of values of
d for which either coexistence or extinction of the predator can occur depending on
the initial conditions. Most notably, if the initial prey population is large enough,
then extinction of the predator will result regardless of the initial size of the predator
population.

Our analysis allows us to describe the tremendous variation in the bifurcation
sequences. In particular, we have shown that the coexistence of the predator and
the prey can be in the form of a steady state or periodic solution, or, for some sets
of parameters, both. We have not been able to exclude the possibility of further
variation due to limit cycles appearing and disappearing in global bifurcations. Such
variations can lead to biologically interesting sequences of bifurcations. One example,
which we have observed numerically, discussed and listed in Table 6.6, involves two
homoclinic bifurcations that occur in succession as d is increased. The result is that
the system goes from a state where coexistence is possible to one where it is not and
then back again. This gives rise to the surprising result that, for this set of parameters,
increasing the per capita death rate of the predator actually increases the predator
population’s chance of survival (or analogously, reducing the per capita death rate of
the predator reduces the predator population’s chances of survival).
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Abstract. This paper deals with the weak formulation of a free (moving) boundary problem
arising in theoretical glaciology. Considering shallow ice sheet flow, we present the mathematical
analysis and the numerical solution of the second order nonlinear degenerate parabolic equation
modelling, in the isothermal case, the ice sheet non-Newtonian dynamics. An obstacle problem
is then deduced and analyzed. The existence of a free boundary generated by the support of the
solution is proved and its location and evolution are qualitatively described by using a comparison
principle and an energy method. Then the solutions are numerically computed with a method of
characteristics and a duality algorithm to deal with the resulting variational inequalities. The weak
framework we introduce and its analysis (both qualitative and numerical) are not restricted to the
simple physics of the ice sheet model we consider nor to the model dimension; they can be successfully
applied to more realistic and sophisticated models related to other geophysical settings.

Key words. ice sheet models, nonlinear degenerate equations, free boundaries, weak solutions,
finite elements, duality methods

AMS subject classifications. 35K65, 35K85, 65C20, 65N30

PII. S0036139901385345

1. Introduction. Modelling ice sheet dynamics has been a challenging problem
since the beginning of the century, but nowadays the scientific community is show-
ing a renewed, growing interest towards this problem. In fact, our understanding
of climate system dynamics depends on the comprehension and predictability of the
ice sheet dynamics. Large ice sheets influence and are influenced by climate, and
their oscillations may be responsible for sudden shifts in climate in the recent geolog-
ical past (Fowler [30]). The study of ice sheet models (ISM) is fundamental to the
construction and comprehension of global energy balance models (EBM) and general
circulation models (GCM) (see, for instance, Tarasov and Peltier [38] for a coupled
ISM/EBM model). Various physically based theories have appeared during the last
decades in order to explain the flow of these large ice masses, but a proper mathe-
matical treatment is not available yet. This introduces the main aim of this paper,
which is to present the mathematical and numerical analysis of an obstacle problem
formulation for the study of the slow, isothermal, one-dimensional flow of ice along a
rigid impermeable bed. This paper is organized as follows: after a brief description
of the model equation and its strong formulation (section 2), we introduce in section
3 some weak formulations that we shall use later. The well-posedness of the model is
then considered. Section 4 is devoted to the (qualitative) study of the free (moving)
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boundary defined by the model. The quantitative analysis is done in section 5, where
we numerically solve the problem by using, among other techniques, the algorithm
proposed in Bermúdez and Moreno [8]. Some numerical tests are then performed, and
additional information is provided by the consideration of specific real data. Finally,
in section 6, we discuss our results and their scope.

2. Model equation and strong formulation. The model equation is the one
proposed in Fowler [29], describing the evolution of the thickness h(t, x) for a two-
dimensional plane ice sheet. (z = h(t, x) is the top surface of the ice sheet.) Ice is taken
to be incompressible, and the flow is very slow. It flows as a viscous medium under
its own weight, owing to gravity. A number of additional simplifying assumptions
are used in the derivation of the model we consider (isothermal flow, shallow ice
approximation, a flat, rigid, and impermeable bed, etc.). We refer to [29] for details on
the modelling; for a more general introduction to glaciology, see, for instance, Hutter
[32], Paterson [36], and Lliboutry [33]. According Fowler [29], the local thickness of
the ice sheet satisfies the following nonlinear diffusion equation:

ht =

(
hn+2

n+ 2
|hx|n−1hx − ubh

)
x

+ a on I(t),(2.1)

where a = a(t, x) is a given scaled fixed accumulation-ablation rate function (a < 0
signifies ablation) and ub is a (given) function representing the basal velocity. For
each fixed t the domain I(t) represents the (unknown) bounded real interval where
h(t, x) > 0 (i.e., I(t) := {x /h(x, t) > 0}). Notice that the physically relevant rate
functions a(t, x) are changing sign functions, which are positive in the central (ac-
cumulation) region of the ice sheet and negative near the margins (the boundaries
of I(t), i.e., in the ablation region); see Fowler [30, p. 95]. The exponent n that
appears in (2.1) represents the so-called Glen’s exponent, and it is usually assumed
that n ≈ 3 (see Fowler [29]). We shall assume n = 3, but the qualitative analysis
remains unchanged for any n > 1 (non-Newtonian case). As regards the appropriate
(mechanical) boundary condition, it depends on the thermal regime which we consider
at the base. There are two possible geophysical situations corresponding to slip or
no slip conditions. We shall consider both of them, generalizing in this way Fowler’s
approach.

When basal ice reaches the melting point, there is a net heat flux arriving at the
bed of the ice sheet, and consequently basal melt water is produced: the ice begins to
slide. Sliding is expected only where the basal ice is at the melting point. When ub
(the sliding velocity) is a prescribed function of (t, x) (i.e., ub = ub(t, x)), this equation
is a nonlinear diffusion-convection equation for h. It corresponds to slip conditions
along an assumed temperate bed (warm-based ice sheet). Once the base reaches the
melting point, we assume that the ice above remains cold. Our aim is to show how
it is possible to solve this model for a general, prescribed velocity field. For a slow
shallow flow over a flat cold base, there is no sliding (i.e., ub ≡ 0), and the isothermal
ice sheet equation (2.1) becomes just

ht =

(
hn+2

n+ 2
|hx|n−1hx

)
x

+ a on I(t).(2.2)

We shall refer to (2.2) as the pure diffusive case. As discussed in Fowler [29], when
a cold-based flow regime is considered and the no slip condition is prescribed (due
to infinite slope), singularities appear at the margins during the advance of fronts of
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a land-based ice sheet (such as the one which covered North America in the last ice
age). Classical (finite-differences) numerical methods can fail. A further complication
arises due to the fact that the domain where the equation holds is unknown. In fact
it has to be determined as part of the solution.

The original strong formulation can be stated in the following terms: let T > 0,
L > 0 be positive fixed real numbers, and let Ω = (−L,L) be an open bounded interval
of R (a sufficiently large, fixed spatial domain). Given an accumulation-ablation rate
function a = a(t, x), an eventually zero sliding velocity function ub = u(t, x) defined
on a large fixed parabolic domain Q = (0, T ) × (−L,L), and an initial thickness
h0 = h0(x) ≥ 0 (bounded and compactly supported) on Ω, find two curves S+, S− ∈
C0([0, T ]), with S−(t) ≤ S+(t), a set I(t) := (S−(t), S+(t)) ⊂ Ω for any t ∈ [0, T ],
and a sufficiently smooth function h(t, x) defined on the set QT :=

⋃
t∈(0,T ) I(t) such

that

(SF) :=




ht =

[
hn+2

n+ 2
|hx|n−1hx − ubh

]
x

+ a in QT ,

h = 0 on {S−(t)} ∪ {S+(t)}, t ∈ (0, T ),

h = h0 on I(0),

(2.3)

and h(t, x) > 0 on QT . Notice that, for each fixed t ∈ (0, T ), I(t) = (S−(t), S+(t)) =
{x ∈ Ω : h(t, x) > 0} denotes the ice-covered region. The curves S±(t) are called the
interface curves or free boundaries associated with the problem and are defined by

S−(t) = Inf{x ∈ Ω : h(t, x) > 0}, S+(t) = Sup{x ∈ Ω : h(t, x) > 0}.

These curves define the interface separating the regions in which h(t, x) > 0 (i.e, ice
regions) from those in which h(t, x) = 0 (i.e., ice-free regions). In the physical context
they represent the propagation fronts of the ice sheet. The above formulation needs
two different refinements. First, we have to prescribe some additional information
on the spatial derivative of h at the free boundary. (We shall assume that the ice
flux is zero there; see (3.2).) To introduce the other refinement it is useful to recall
that many other examples of degenerate equations are typical of slow phenomena and
satisfy the finite speed of propagation property (see, e.g., Dı́az [17]).

Assuming a ≡ 0, for instance, if h0 has a compact support, then h(t, .) also
has a compact support in R for any t ∈ [0, T ]. So, if a ≡ 0, the domain QT
can be found through the support of the solution h(t, x) of the doubly nonlinear
parabolic equation over the whole space (0, T )×R and satisfying the initial condition
h(0, x) = h0(x), x ∈ R. Unfortunately, the physically relevant case, a 
≡ 0, is much
more complicated. Indeed, the finite speed of propagation still holds if a(t, .) has
compact support in R (for fixed t ∈ (0, T )). Moreover, in that case it can be shown
that supp(h(t, .)) ⊂ supp(a(t, .)), and therefore a(t, .) vanishes on the free bound-
ary. Nevertheless, in glaciology models it is well known (see Fowler [30, p. 95]) that
a(t, .) < 0 near the free boundaries (i.e., the margins of the ice sheet), and so there
must exist another reason (other than the degenerate character of the equation) jus-
tifying the occurrence of the free boundaries S−(t), S+(t). This is a mathematical
modelling problem. We must make sure that the mathematical solutions are non-
negative compactly supported solutions (i.e., physically admissible). In short, for a
sufficiently large fixed spatial domain, the physically admissible solutions are com-
pactly supported nonnegative bounded functions such that a < 0, where h = 0 (in
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particular, in the free boundary), and this is not predicted by the solutions of the dif-
fusion equation (despite its degenerate character). Mathematically it is then possible
(for special choices of the accumulation/ablation rate function) to have negative (no
physically admissible) solutions corresponding to negative thickness! A practical way
to overcome these inconsistencies is proposed in the following section.

3. Weak formulations. In this section we show that proper mathematical mod-
elling in terms of weak formulations of the physical problem must be considered if the
assumed physics have to be respected (i.e., if just physically admissible solutions have
to be computed).

Let T , L, and Ω be as before and set Q := (0, T ) × Ω ⊂ R
2. The new model we

present is based upon the fact that we can extend the function h(t, x) outside of QT
(the ice-covered regions) by zero on Q\QT = [(0, T )×Ω]\QT (the complementary ice-
free region). This extension still satisfies a nonlinear equation (this time of multivalued
type) having the great advantage of being defined on an a priori known domain Q =
(0, T )×Ω (whose parabolic boundary is Σ = ∂Q = (0, T )×∂Ω). This type of problem
is known in the literature as an obstacle problem. In our case the obstacle function is
ψ ≡ 0, the null function. Obstacle problems arise in many contexts related to friction,
elasticity, thermodynamics, and so on (see, e.g., Duvaut and Lions [27] for further
details). The multivalued formulation we propose appeared first in Dı́az and Schiavi
[21] (where the no slip condition was considered) to describe the slow, isothermal, one-
dimensional flow of cold ice (i.e., all the ice is below melting point and the melting
point is reached only at the bed) along a hard (i.e., rigid, impermeable) bed. Our
results can be generalized to deal with the two-dimensional case that describes the
evolution of a three-dimensional ice sheet. Here we extend that model to consider
(prescribed) sliding along a temperate base. This introduces a nonlinear convective
term into the multivalued equation which describes the movement of the ice masses.
In order to properly characterize the behavior of h near the free boundary, we assume
that the ice flux is not singular in the sense that

hn+2

n+ 2
|hx|n−1hx − ubh ∈ L1(Q).(3.1)

Notice that, formally, this implies

(hm)x = 0 on {S−(t)} ∪ {S+(t)}, t ∈ (0, T ),(3.2)

where m = 2(n + 1)/n. Introducing the maximal monotone graph of R
2, β, defined

by

β(r) = ∅ (the empty set) if r < 0, β(0) = (−∞, 0], β(r) = 0 if r > 0,(3.3)

the obstacle formulation (written in terms of a multivalued equation) is the following:
given a bounded, sufficiently large interval Ω = (−L,L) ⊂ R, a rate function a ∈
L∞(Q), a sliding velocity ub ∈ L∞(Q), and a compactly supported initial data h0 ∈
L∞(Ω), find a sufficiently smooth function h(t, x) which is a solution of

(MF) :=



ht −

(
hn+2

n+ 2
|hx|n−1hx − ubh

)
x

+ β(h) � a(t, x) in Q,

h(t, x) = 0 on Σ,

h(0, x) = h0(x) on Ω.

(3.4)
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Notice that β is multivalued just where h is zero, i.e., at the free boundaries. Moreover,
by definition (3.3), we have that 0 ∈ β(0). Now, let h be a solution (in a weak sense
to be specified later) of (3.4), for almost every x ∈ Ω and ∀ t ∈ (0, T ). It is clear that
in the null set Q \QT we must have β(0) � a(t, x). This condition shows that, if β is
multivalued at the origin, then it is possible to have solutions with a nonempty null
set (i.e., Q \QT 
= ∅) corresponding to equations in which a 
= 0 on Q \QT , and thus
new results are possible with respect to the single valued case (β ≡ 0).

Details on this kind of (multivalued) formulations, (MF), and maximal monotone
graphs can be found in Brezis [11]. It is well known that the multivalued equation
(3.4) can be written in terms of the so-called complementarity formulation for obstacle
problems, which states: given Ω, a, ub, and h0 as before, find a sufficiently smooth
function h such that

(CF) :=




ht −
(
hn+2

n+ 2
|hx|n−1hx − ubh

)
x

− a ≥ 0 in Q,[
ht −

(
hn+2

n+ 2
|hx|n−1hx − ubh

)
x

− a

]
h = 0 in Q,

h ≥ 0 in Q,

h = 0 on Σ,

h = h0(x) on Ω.

(3.5)

It is obvious that if a regular function h verifies the strong formulation, then its
extension by zero over Q \QT (which we will denote again by h) satisfies trivially the
complementarity formulation, assuming that a(t, x) satisfies the condition

a(t, x) ≤ 0 on Q \QT .
A more general framework is obtained if we define φ(r) = |r|n−1

r, r ∈ R, n > 1, and
ψ(s) = sm, with s ≥ 0 and m = 2(n + 1)/n > 1. (In fact, the existence and the
uniqueness of solutions and some qualitative properties remain true if we replace φ
by any real continuous strictly increasing convex function such that φ(0) = 0, and β
as before; see (3.3).) Introducing the new variable u = u(t, x) and the real function
b(s) in form

u := hm = ψ(h) =⇒ u1/m = h = ψ−1(u) := b(u),(3.6)

we have φ(ψ(h)x) = φ(ux) = |ux|p−2
ux, where p = n + 1. The previous multivalued

formulation is the following: given Ω, a, ub, and u0 = ψ(h0) as before and a constant
µ = nn/[2n(n + 1)n(n + 2)], determine a function u(t, x) = ψ(h(t, x)) which is the
solution of

(GF) :=




b(u)t − [µφ(ux)− ubb(u)]x + β(u) � a(t, x) in Q,

u(t, x) = 0 on Σ,

b(u(0, x)) = b(u0(x)) on Ω.

(3.7)

This general formulation, (GF), is the one that we shall use to deal with the well-
posedness of the model problem (3.4). Notice that we can write β(u) instead of
β(b(u)) because β(u) ≡ β(h) := β(b(u)) in Q. The equivalence is readily understood,
observing that h (i.e., the original variable) and u have exactly the same support.
The same remark applies to the boundary condition on Σ.
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3.1. On the existence and uniqueness of weak solutions. Problem (3.7)
admits various notions of solutions according to the required spatial and time regu-
larity. In any case we must start by assuming some regularity on the data a(t, x),
ub(t, x), and u0(x). In our case it will be enough to assume that

a ∈ L∞(Q), ub ∈ L∞(0, T : W 1,∞(Ω)), and u0 ∈ L∞(Ω).(3.8)

Motivated by (3.1), a natural notion of weak solution is the following.
Definition 3.1. A function u ∈ L1(Q) is a weak solution of (3.7) if u ∈ Lp(0, T :

W 1,p
0 (Ω)), b(u) ∈ L1(Q), u(t, x) ≥ 0 a.e. (t, x) ∈ Q, and there exists a function

j ∈ L1(Q) such that j(x, t) ∈ β(u(t, x)) a.e. (t, x) ∈ Q and∫
Q

(ζtb(u)− ζj + ζa)dxdt+

∫
Ω

ζ(0, ·)b(u0)dx =

∫
Q

ζx[µφ(ux)− ubb(u)]dxdt

for any ζ ∈ Lp(0, T : W 1,p
0 (Ω)) ∩ L∞(Q), ζt ∈ L∞(Q), and ζ(T, ·) = 0.

Assuming (3.8) and that b, φ are the power functions indicated above, the exis-
tence of a weak solution can be obtained by different methods, for instance, by an
easy modification of Theorem 2.3 and Proposition 3.2 of Benilan and Wittbold [4].
In fact, in order to check assumption (H1) of [4] it is useful to replace function b by
its truncation

bM (r) :=

{
b(r) if r ∈ [0,M ],

b(M) if r ∈ [M,+∞),

with M > 0 an upper bound of any weak solution. (We shall come back to this point
later; see Proposition 3.3.) Proving the uniqueness of (and the comparison principle
for) weak solutions is a more delicate task due to the presence of the nonlinear term
b(u). This type of result is well known (see, for instance, Dı́az and de Thelin [18]) in
the case in which we additionally know that the weak solution is differentiable with
respect to time in the sense that b(u)t ∈ L1(Q). (We recall that from the definition
of weak solutions we know merely that b(u)t ∈ Lp

′
(0, T : W−1,p′(Ω)) + L1(Q) with

p′ := p/(p − 1).) In order to get such results, a weaker notion was introduced in
previous works by different authors (see Boccardo et al. [10] for the case of b(u) = u,
and Carrillo and Wittbold [15] for a general nondecreasing function b(u)): the notion
of a renormalized solution, coming originally from a different context (Di Perna and
Lions [24]). In fact both notions coincide in the class of bounded functions u ∈ L∞(Q),
which is our case, as we shall prove in this section.

For the sake of simplicity in the exposition we assume that

ub(t, ·) is spatially constant.(3.9)

So, by some trivial modifications of the results of Carrillo and Wittbold [15] we arrive
at the following result.

Theorem 3.2. Assume ai, ub, and u0,i satisfying (3.8) and (3.9) for i = 1, 2. Let
ui be weak solutions of problem (3.7) associated with the data ai and u0,i, respectively.
Then for any t ∈ [0, T ]∫

Ω

[b(u1(t, ·))−b(u2(t, ·))]+dx ≤
∫

Ω

[b(u0,1)−b(u0,2)]+dx+

∫ t

0

∫
Ω

[a1(s, x)−a2(s, x)]+dxds,

where [f ]+ = max(f, 0). In particular, b(u0,1) ≤ b(u0,2) and a1(t, x) ≤ a2(t, x), on
their respective domains of definition, implies that b(u1(t, x)) ≤ b(u2(t, x)) for any
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t ∈ [0, T ] and a.e. x ∈ Ω. Consequently, there is at most one weak solution of problem
(3.7).

We point out that the above comparison remains true even if the functions ui are
not homogeneous at the boundary but satisfy u1(t, x) ≤ u2(t, x) for any t ∈ [0, T ] and
a.e. x ∈ ∂Ω. This is again a trivial modification of the result by Carrillo and Wittbold
[15], which will be used in the following section.

The boundedness of the associated weak solutions can be deduced from the above
comparison principle as follows.

Proposition 3.3. Let u be any weak solution of problem (3.7); then

‖u‖L∞(Q) ≤ M0,(3.10)

with

M0 := b−1

(
max{‖b(u0)‖L∞(Ω) , 1} expT

{[ ‖a‖L∞(Q)

max{‖b(u0)‖L∞(Ω) , 1}
+ ‖(ub)x‖L∞(Ω)

]})
.

Proof. We take as a candidate supersolution a spatially constant function of the
form u2(t, x) := b−1(Ceλt) for some C > 0 and λ ∈ R to be determined. Then
u1(t, x) ≤ u2(t, x) for any t ∈ [0, T ] and a.e. x ∈ ∂Ω and b(u0,1) ≤ b(u0,2) holds if

C = max{‖b(u0)‖L∞(Ω) , 1}.
Finally, by substituting u by u2 in (3.7), it is easy to check that

a2(t, x) := λCeλt + (ub)x(x)Ceλt,

and so condition a1(t, x) ≤ a2(t, x) is satisfied if, for instance,

λ = C−1 ‖a‖L∞(Q) + ‖(ub)x‖L∞(Ω) ,

which implies the result.
We point out that although the application of the present version of the compari-

son principle given in the above theorem requires condition (3.9), the a priori estimate
(3.10) can be obtained without using a comparison principle (see, for instance formula
(13) of Benilan and Wittbold [4]), and so the boundedness of u remains true also when
(ub)x 
= 0, as we shall consider later.

4. On the free boundary. In this section we shall study both thermal regimes
at the base. In the first case the bed is assumed to be cold (below melting point).
No sliding is prescribed (i.e., ub ≡ 0), and the pure diffusive case is analyzed. Next,
we assume the ice sheet to be warm-based; the bed is then temperate, and sliding
is prescribed (i.e., ub = ub(t, x)). Here we are not concerned with the switching
mechanism between cold-temperate dynamics. (Results in that direction can be found
in Fowler and Schiavi [31] and Dı́az and Schiavi [22].) Our aim is to qualitatively
describe the behavior of the free boundaries by means of a priori estimates on the
support of the solution.

4.1. The no slip condition (pure diffusive case): Existence of the free
boundary and the waiting time property. In this section we shall prove the
existence of a nonempty null set

N(h(t, ·)) :=
{
(t, x) ∈ {t} × Ω

h(t, x)
= 0

}
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for the (unique) solution h(t, x) of the problem


ht − µφ(ψ(h)x)x + β(h) � a(t, x) in Q,

h(t, x) = 0 on Σ,

h(0, x) = h0(x) on Ω,

(4.1)

which can be deduced from the general formulation (GF) written in terms of the
original variable h and of the functions φ and ψ introduced before. Assuming extra
regularity of the solution (i.e, h ∈ C(Q̄)), we are able to analyze a great number of
geophysical phenomena related to location and evolution of the free boundary and
associated with the behavior of the function a(t, x).

We shall now deal with the existence and location of the free boundary defined by
problem (4.1). To show the existence of a free boundary as well as to locally estimate
its location, we will use a technique based on the comparison result of section (3.1),
which consists of the construction of appropriate local super-sub solutions having
compact support. Thus, for all ε > 0, we define the set

Nε(a(t, ·)) :=
{
(t, x) ∈ {t} × Ω

a(t, x)
≤ −ε

}
(4.2)

and the set Sε(a(t, .)) = Q \Nε(a(t, ·). Then we have the following result.
Theorem 4.1. Let h ∈ C(Q̄), h ≥ 0, be a solution of (4.1), and let ε be a small

real positive number such that the set Nε(a(t, .)) is not empty. Then there exist R > 0
and T0 ≥ 0 such that ∀t ≥ T0 we have

N(h(t, ·)) ⊃ {(t0, x0) ∈ Nε(a(t0, .)) : d(x0, Sε(a(t, .))) ≥ R}.
Proof. The proof is based on an original idea of Evans and Knerr [28], which ap-

plies when n = 1 and a(t, x) ≡ 0. See also Dı́az and Hernández [20] for its adaptation
to the case n > 1. In our multivalued case, with n > 1 but a(t, x) 
≡ 0, we argue as
follows. We consider the set Nε(a(t, .)) and define the function

h̃(t, x) = ψ−1 (η(|x− x0|) + ψ(U(t))) ,

where

η(r) = c r
p

p−1 , c =
p− 1

p

( ε
2

) 1
p−1

,(4.3)

and U(t) is the (unique) solution of the initial value problem{
U ′ + 1

2β(U) � − ε
2 ,

U(0) = ||h0||L∞(Ω).
(4.4)

It is easy to state that U(t) = [− ε
2 t+ ||h0||L∞ ]+, whence

U(t) ≡ 0 ∀t ≥ T0 =
2

ε
||h0||L∞(Ω).

On the other hand, as by construction φ(ψ(h̃)x)x = φ(ηx)x = ε/2, we have (in
Nε(a(t, .)))

h̃t − µφ(ψ(h̃)x)x + β(h̃)
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≡ d

dt

[
ψ−1 (η(|x−x0|)+ψ(U(t)))

]−µφ(ηx(|x−x0|))x+β
(
ψ−1 (η(|x−x0|)+ψ(U(t)))

)
⊇ ψ

′
(U)

ψ′
(
ψ−1 (η(|x−x0|)+ψ(U(t)))

)U ′−µφ(ηx(|x−x0|))x+1

2
β(ψ−1(η(|x−x0|)))+1

2
β(U)

⊇ U ′ +
1

2
β(U)− µφ(ηx(|x− x0|))x + 1

2
β
(
ψ−1(η(|x− x0|))

) � −ε ≥ a(t, x).

Using the comparison principle written in terms of the original variable h, the
following estimate holds (see Benilan and Wittbold [4]):

||h||L∞(Q) ≤ ||h0||L∞(Ω) +

∫ t

0

||a||L∞(Ω) = M(t).

Then

||h||L∞(Q) ≤ M(t) ≤ h̃(t, ·) on Nε(a(t, ·))
iff ψ−1 (η((|x− x0|)) + ψ(U(t))) ≥ M(t); i.e., η(|x − x0|) + ψ(U(t)) ≥ ψ(M(t)). In

particular, this is true if c |x− x0|
p

p−1 ≥ ψ(M(t)); by (4.3) the above reads

|x− x0| ≥ ψ(M(T ))
p−1
p

(p−1
p )

p−1
p ( ε2 )

1
p

= R,(4.5)

and (4.5) implies that h̃ ≥ h on ∂Nε(a(t, .)). At t = 0 we use the monotonicity of
ψ−1:

h̃(0, x) = ψ−1 (η(|x− x0|) + ψ(U(0))) = ψ−1 (η(|x− x0|) + ψ(||h0||L∞))

≥ ψ−1 (ψ(||h0||L∞)) = ||h0||L∞ ≥ h0(x) ≥ 0.

Summarizing, if (t, x) ∈ Nε(a(t, ·)) is such that |x− x0| ≥ R, then

ht − µφ(ψ(h)x)x + β(h) � a ≤ inf
(
h̃t − µφ(ψ(h̃)x)x + β(h̃)

)
in Nε(a(t, ·)),

h(t, x) ≤ h̃(t, x) on ∂Nε(a(t, ·)),

h0(x) ≤ h̃(0, x) on Nε(a(0, ·)).
Next, from the comparison result (Theorem 3.2) it follows that

0 ≤ h(t, x) ≤ h̃(t, x) in Nε(a(t, .)),

and we end up observing that h(t, x0) = 0 ∀t ≥ T0 = 2
ε ||h0||L∞ and x0 satisfies

inequality (4.5), i.e., (t, x0) ∈ {Nε(a(t, .))/|x− x0| ≥ R}.
We shall now analyze the so-called waiting time property. As discussed in Fowler

[30, p. 95], the slope of the surface is singular in advance but finite in retreat. This
distinction causes the degenerate diffusion equation above to have waiting-time be-
havior, because following a retreat, the margin slope must rebuild itself before another
advance it possible. The following property applies if the initial data is sufficiently
flat in the ablation region.
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Theorem 4.2. Let h ∈ C(Q̄), h ≥ 0, be a solution of problem (4.1). Let
δ = η−1(ψ(M)) and B+

δ (x0) = {x ∈ Ω/ x ∈ [x0, x0 + δ)}, with M = ||h||L∞(Q),

x0 = S+(0), c̃ = (p−1
p )ε

1
p−1 , and η(|x− x0|) = c̃ |x− x0|

p
p−1 . Assume that there exists

T ∗ > 0 such that a(t, x) ≤ −ε a.e. x ∈ B+
δ (x0) and t ∈ (0, T ∗). If x0 ∈ Ω satisfies

0 ≤ h0(x0) ≤ ψ−1(η(|x− x0|)), then
∃ t∗, 0 < t∗ ≤ T ∗, such that S+(0) = S+(t) ∀t ∈ (0, t∗).

Proof. We define the function

h̃(x) := ψ−1(η(|x− x0|)) in B+
δ (x0)× (0, T ∗).

Then

ht−µφ(ψ(h)x)x+β(h) � a ≤ −ε ≤ inf
(
h̃t−µφ(ψ(h̃)x

)
x
+β(h̃)) in B+

δ (x0)× (0, T ∗).

On ∂B+
δ (x0) × [0, t∗] we have to verify that h ≤ M ≤ h̃ = ψ−1(η), and this is

iff ψ(M) ≤ η = c̃|x − x0|
p

p−1 . On ∂B+
δ this reads as ψ(M) ≤ c̃δ

p
p−1 . Using that

δ = η−1(ψ(M)),

h ≤ M ≤ h̃ ⇐⇒ ψ(M) ≤ c̃[η−1(ψ(M))]
p

p−1

⇐⇒
[
ψ(M)

c̃

] p−1
p

≤ η−1(ψ(M)) ⇐⇒ η

([
ψ(M)

c̃

] p−1
p

)
≤ ψ(M),

and this is always verified as can be deduced by applying the definition of the function
η. Then we have

ht − µφ(ψ(h)x)x + β(h) � a ≤ inf(h̃t − µφ(ψ(h̃)x)x + β(h̃)) in B+
δ (x0)× (0, t∗),

h(x0, 0) = h0(x0) ≤ h̃(x) = ψ−1(η(|x− x0|)) on B+
δ (x0),

h(t, x) ≤ M ≤ h̃(x) on ∂B+
δ (x0)× (0, t∗).

Finally, the comparison result shows that 0 ≤ h(t, x) ≤ h̃(x), and so h(t, x0) ≡ 0
∀t ∈ (0, t∗).

4.2. The slip condition (diffusive-convective case): Existence of the free
boundary and the waiting time property. In this section we shall consider the
general formulation (GF), assuming that ub 
≡ 0 and without assuming (3.9). Even
if Theorem 3.2 can be extended to cover cases in which (3.9) is not satisfied, the
presence of the convection term makes the method of super- and subsolutions very
hard to apply. Thus, in order to prove the existence of the free boundary, we shall
use a different technique called the energy method. It has been developed by different
authors in the last twenty years for the study of nonlinear problems for which the
maximum principle fails (see, for instance, the monograph of Antontsev, Dı́az, and
Shmarev [2]). In fact, although this energy method can be applied in different ways,
we shall follows the ideas introduced in Dı́az and Galiano [19] in order to apply the
method to some fluid dynamics problems. We start by pointing out that the equation
of problem (3.7) can be written in terms of a nonconservative transport multivalued
equation in the form

b(u)t + ubb(u)x − µφ(ux)x + (ub)xb(u) + β(u) � a(t, x) in Q.(4.6)
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In this way, the equation involves the material derivative b(u)t + ubb(u)x, which
can be associate to a virtual non-Newtonian fluid with a reactive term (ub)xb(u)+β(u).
We shall prove the existence of the free boundary in terms of the so-called finite speed
of propagation near a given point x0.

In the next results we shall assume that ub is a globally Lipschitz continuous
function. Thus, we can define the characteristics of the associate flow by


d

dt
X(t, x) = ub(t,X(t, x)) on (0, T ),

X(0, x) = x.

(4.7)

As usual in continuum mechanics, given a ball Bρ(x0) = {x ∈ R : |x− x0| ≤ ρ}, we
denote the transformed set by

Bρ(x0)t = { y ∈ R : y = X(t, x) for some x ∈ Bρ(x0)}.
Theorem 4.3. Let b, φ, β, a, and u0 be as in section 3. Let ub be a globally

Lipschitz continuous function on Q. For ε ≥ 0 let Nε(a(t, ·)) := {(t, x) ∈ {t} ×
Ω/ a(t, x) ≤ −ε}. Assume also that ε = 0 if m(p− 1) > 1, and ε > 0 if m(p− 1) ≤ 1.
Let u0 = 0 on a ball Bρ0(x0) for some x0 such that (t, BρT (x0)) ⊂ Nε(a(t, ·)) for
any t ∈ [0, T ] and some L ≥ ρ0. Then there exists a Tε ∈ (0, T ] and a function
ρ : [0, Tε] → [0, ρ0] such that u(t, x) = 0 a.e. x ∈ Bρ(t)(x0) for any t ∈ [0, Tε].

Proof. We introduce the change of variable b(w(t, x)) = b(u(t, x))eλt. Then, it is
easy to prove that w satisfies the equation

b(w)t + ubb(w)x − µeλt(1−(p−1)m)φ(wx)x + [(ub)x + λ]b(w) + β(w)(4.8)

� a(t, x)eλt in Q.

Thus, by taking λ > 2C with C = ‖(ub)x‖L∞(Q) (which is finite, since ub is a globally

Lipschitz continuous function), we have that [(ub)x + λ] ≥ C > 0. By multiplying,
formally, by w (i.e., by some arguments of regularization, localization, and passing to
the limit, as in Dı́az and Veron [23]), we get that if ρ ≤ L, then∫

Bρ(x0)t

∂

∂t
Ψ(w)dx+

∫
Bρ(x0)t

ubΨ(w)xdx+ µeλt(1−(p−1)m)

∫
Bρ(x0)t

|wx|p dx

≤ µeλt(1−(p−1)m)w(t, ·) |wx(t, ·)|p−1
wx(t, ·)

∣∣
∂Bρ(x0)t − ε

∫
Bρ(x0)t

wdx,

where

Ψ(w) := wb(w)−
∫ w

0

b(s)ds(4.9)

and we used that w ≥ 0 and that β(w)w = {0}. Now, by using the Reynolds transport
lemma, ∫

Bρ(x0)t

∂

∂t
Ψ(w) +

∫
Bρ(x0)t

ubΨ(w)x =
d

dt

∫
Bρ(x0)t

Ψ(w(t, y))dy.

Thus, integrating in (0, t) and using the information on u0, we get that∫
Bρ(x0)t

Ψ(w(t, y))dy + C1

∫ t

0

∫
Bρ(x0)t

|wx|p dyds
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≤ C2

∫ t

0

w(s, ·)
∣∣∣|wx(s, ·)|p−1

wx(s, ·)
∣∣
∂Bρ(x0)t

∣∣∣ ds− ε

∫ t

0

∫
Bρ(x0)t

wdxds,(4.10)

with

C1 = µ min
t∈[0,T ]

eλt(1−(p−1)m), C2 = µ max
t∈[0,T ]

eλt(1−(p−1)m).

Assume now, for the moment, that 1 < (p − 1)m and ε = 0. Then we define the
energies

B(t, ρ) = sup
0≤s≤t

∫
Bρ(x0)s

Ψ(w(s, y))dy, E(t, ρ) =

∫ t

0

∫
Bρ(x0)t

|wx|p dyds.(4.11)

Using Hölder inequality and the interpolation-trace inequality of Dı́az and Veron [23],
we get that

B + E ≤ K

(
∂E

∂ρ

)ω
(4.12)

for some positive constant K and some ω > 1, and the result follows in a standard
way (see, e.g., Dı́az and Veron [23], or Antontsev, Dı́az, and Shmarev [2]). In the case

1 ≥ (p− 1)m and ε > 0 we pass the term ε
∫ t
0

∫
Bρ(x0)t

wdxds to the left-hand side of

the inequality (4.10), and we introduce the additional energy function defined as

C(t, ρ) =

∫ t

0

∫
Bρ(x0)t

|w| dyds.

(Remember that |w| = w.) Then, we can apply Theorem 1 of Antontsev, Dı́az, and
Shmarev [1], with λ = 0 since the interpolation-trace inequality (2.6) of that paper
applies also to the limit case λ = 0. Thus, we arrive at the inequality

E + C ≤ K

(
∂(E + C)

∂ρ

)ω
(4.13)

for some positive constant K and some ω > 1, and the theorem holds.
Remark 4.1. We point out that, due to the presence of the convective term and the

specific exponents involved in (4.6), the statement of the parabolic part of Dı́az and
Veron [23] is not directly applicable, and this is the reason for using the characteristic
transformation argument. Notice, also, that in contrast with the case ub = 0, now it
may occur that Tε < T for any ε ≥ 0, and notice too that the energy method allows
the consideration of the case ε = 0 when m(p− 1) > 1. Moreover, any estimate of the
function ρ(t) automatically gives an estimate on the location of the free boundary.
Finally, we indicate that it is possible to get global consequences of the above result by
estimating (globally) the energies introduced in (4.11). (For some related arguments,
see, e.g., Dı́az and Veron [23] or Antontsev, Dı́az, and Shmarev [2].) Unfortunately
the above information on the free boundary is quite implicit and difficult to manage.
This also justifies the use of numerical methods.

The waiting time property can also be studied by energy methods once it is
reformulated in terms of the characteristics associated with ub. Notice that if ub ≡ 0,
then the characteristics are vertical lines.
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Theorem 4.4. Let b, φ, β, a, ub, ε, Nε(a(t, ·)), and x0 be as in the previous
theorem but now with L > ρ0. Let u0(x) = 0 on a ball Bρ0(x0) for some x0 and
satisfying that∫

Bρ(x0)t

Ψ(u0(y))dy ≤ θ[(ρ− ρ0)
+]ω/(ω−1) for any ρ0 ≤ ρ ≤ L(4.14)

for some small enough θ > 0 and some L > ρ0, where Ψ is defined by (4.9) and ω > 1
is the exponent given in (4.12) or (4.13). Then, there exists T0 ∈ (0, T ] such that
u(t, x) = 0 a.e. x ∈ Bρ0(x0)t for any t ∈ [0, T0], where Bρ0(x0)t = {y ∈ R : y =
X(t, x) for some x ∈ Bρ0(x0)}, with X(t, x) the characteristics defined by (4.7).

Proof. The proof follows from the same arguments as those used by Antontsev,
Dı́az, and Shmarev [1], but adapted to our framework. Thus, the integration by parts
formula (4.10) must be replaced by∫

Bρ(x0)t

Ψ (w(t, y))dy + C1

∫ t

0

∫
Bρ(x0)t

|wx|p dyds

≤
∫ t

0

w(s, ·)
∣∣∣|wx(s, ·)|p−1

wx(s, ·)
∣∣
∂Bρ(x0)t

∣∣∣ ds
− ε

∫
Bρ(x0)t

wdx+

∫
Bρ(x0)t

Ψ(u0(y))dy.

(4.15)

In particular, inequality (4.12) becomes the nonhomogeneous one,

B + E ≤ K

(
∂E

∂ρ

)ω
+ θ(ρ− ρ0)

ω/(ω−1)
+ ,

and the conclusion holds thanks to a technical lemma (see, e.g., Lemma 1 of An-
tontsev, Dı́az, and Shmarev [1]).

5. Numerical solution. This section is devoted to the numerical solution of the
ice sheet moving boundary problem whose multivalued formulation (MF) is stated in
(3.4). We first introduce the total derivative notation in conservative form,

Dh

Dt
=

∂h

∂t
+

∂

∂x
(ubh),

so that the complementarity formulation (CF) given by (3.5) can be posed as


Dh

Dt
−
(
hn+2

n+ 2
|hx|n−1hx

)
x

− a ≥ 0 in Q,[
Dh

Dt
−
(
hn+2

n+ 2
|hx|n−1hx

)
x

− a

]
h = 0 in Q,

h ≥ 0 in Q,

h = 0 on Σ,

h = h0(x) on Ω.

(5.1)

An overview of different numerical strategies for solving free boundary problems
(fixed domain methods, front-tracking, and front-fixing methods, adaptative algo-
rithms, and others) can be found in [34]. Our approach is based on fixed domain
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methods, upwinding time discretization, and duality methods for nonlinearities. More
precisely, in the recent paper [13] a first attempt was made to solve (5.1) by combining
this approach with a fixed point method for the nonlinear diffusive term. Indeed, the
linearization process was based on freezing the nonlinear diffusive term at each step
of the algorithm.

In the subsequent paper [14], in order to solve a temperature-profile coupled prob-
lem, this method was combined with the algorithm proposed in [12] to approximate
ice sheet temperature distribution. However, this profile approximation procedure re-
quires extremely small time steps and, consequently, it leads to very high computing
times to obtain an accurate stationary solution.

In the present work, to overcome the drawbacks of the previously described numer-
ical approach, we express the nonlinear diffusive term by means of a monotone opera-
tor. As usual in glaciology (see section 2), let n = 3. Hence, m = 2(n+1)/n = 8/3 > 1
and p = n+ 1 = 4. Then, by using (3.6), we introduce the following new variable u,

u(t, x) = h8/3(t, x),(5.2)

so that problem (5.1) can be written in terms of u as


D

Dt
(u3/8)− µ

(|ux|2ux)x − a ≥ 0 in Q,[
D

Dt
(u3/8)− µ

(|ux|2ux)x − a

]
u = 0 in Q,

u ≥ 0 in Q,

u = 0 on Σ,

u = u0(x) = h
8/3
0 (x) on Ω,

(5.3)

where the constant µ takes the value µ = (3/8)3

5 . Notice that formulation (5.3) allows
us to introduce a maximal monotone operator to express the nonlinear diffusive term
and implicitly contains a convective term.

In view of the particular nonlinear diffusive term in (5.3), the classical method
analyzed in the framework of linear diffusion problems (p = 2) by Nochetto and Verdi
[35] cannot be applied. In the same manner, the nonlinear diffusive terms treated in
the recent paper [16] do not cover the case of (5.3).

In fact, the nonlinear p-Laplacian term has been numerically studied in [6] and the
references therein, but without including either convection or free boundary aspects.

The combination of characteristic methods with duality algorithms for solving
(5.3) is justified by its previous validation in analogous free boundary problems in
other topics (lubrication [3, 25, 26], phase change [9], and gas flow [7], for example).

One goal of this work is to propose a numerical solution method for approximating
the ice sheet profile for prescribed accumulation-ablation rates and the sliding velocity
of ice. A further goal is to illustrate the qualitative properties that were analyzed in
section 4.

5.1. Time semidiscretization. As in previous works in the glaciology setting
[13, 14], problem (5.3) is discretized in time using the scheme of characteristics. For
this, let T and M be fixed positive real numbers, and let ∆t be the time step so
that T = M∆t. In short, this upwinded time scheme is based on the approximation
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of the total derivative; see Pironneau [37] for linear convection-diffusion equations.
Thus, in our particular nonlinear convection case, for m = 0, 1, . . . ,M(M = T/∆t),
we consider the approximation

D

Dt
(u3/8)((m+ 1)∆t, x) ≈ (um+1)3/8(x)− Jm(x) (um)3/8(χm(x))

∆t
,(5.4)

where

um+1(x) = u((m+ 1)∆t, x) in Ω(5.5)

and Jm(x) is obtained by numerical quadrature techniques in the expression

Jm(x) = J(tm+1, x; tm) = 1−
∫ tm+1

tm
(ub(τ, χ(x, t

m+1; τ)))x dτ,

where J is the Jacobian associated with the change of variable mapping x → χ(t, x; τ).
Notice that the presence of J arises from the application of the characteristics method
when the convection is written in conservative form (see Bercovier, Pironneau, and
Sastri [5] for details).

The value χm(x) is given by χm(x) = χ((m+1)∆t, x;m∆t), χ being the solution
of the final value problem


dχ(t, x; s)

ds
= ub(s, χ(x, t; s)),

χ(t, x; t) = x.

(5.6)

The next step consists of the substitution of the approximation (5.4) into (5.3) to
obtain the following sequence of nonlinear elliptic complementarity problems.

For m = 0, 1, 2, . . . ,M , find um+1 such that


(um+1)3/8 − Jm((um)3/8 ◦ χm)

∆t
− µ

∂

∂x

(|um+1
x |2um+1

x

)− am+1 ≥ 0 in Ω,

um+1 ≥ 0 in Ω,[
(um+1)3/8 − Jm((um)3/8 ◦ χm)

∆t
− µ

∂

∂x

(|um+1
x |2um+1

x

)− am+1

]
um+1 = 0 in Ω,

um+1 = 0 in ∂Ω,

u0(x) = h0 = (h0)
8/3 in Ω,

(5.7)
where am+1(x) = a((m+ 1)∆t, x) and “◦” denotes the composition symbol.

5.2. Spatial discretization. First, in order to solve the nonlinear complemen-
tarity problem (5.7) to obtain um+1, we pose the following equivalent variational
inequality formulation.

Find um+1 ∈ K such that

1

∆t

∫
Ω

(um+1,)3/8 (ϕ− um+1) dx+ µ

∫
Ω

| um+1
x |2 um+1

x (ϕ− um+1)xdx

≥ 1

∆t

∫
Ω

Jm ((um)3/8 ◦ χm)(ϕ− um+1) dx+

∫
Ω

am+1 (ϕ− um+1)dx

∀ϕ ∈ K,

(5.8)
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where K = {ϕ ∈ W 1,4
0 (Ω) /ϕ ≥ 0 a.e. in Ω}.

Next, the duality algorithm proposed in Bermúdez and Moreno [8] is applied to
the variational inequality (5.8). For this, (5.8) is expressed in terms of the indicatrix
function IK of the convex K in the following form.

Find um+1 ∈ W 1,4
0 (Ω) such that

1

∆t

∫
Ω

(um+1)3/8(ϕ− um+1)dx+ µ

∫
Ω

| um+1
x |2 um+1

x (ϕ− um+1)xdx+ IK(ϕ)− IK(um+1)

≥ 1

∆t

∫
Ω

Jm ((um)3/8 ◦ χm)(ϕ− um+1)dx+

∫
Ω

am+1(ϕ− um+1)dx ∀ϕ ∈ W 1,4
0 (Ω).

(5.9)
Moreover, the use of subdifferential calculus leads to the equivalent formulation

ξm+1
1 = −(A(um+1)− fm) ∈ ∂IK(um+1),(5.10)

where ∂IK(u) denotes the subdifferential of the convex function IK at the point u;
see Brezis [11] for more details. Moreover, the operator A : W 1,4

0 (Ω) → W−1,4/3(Ω)
is defined by

〈A(ϕ), ψ〉 = 1

∆t

∫
Ω

ϕ3/8ψdx+ µ

∫
Ω

| ϕx |2 ϕxψxdx,

and the element fm ∈ W−1,4/3(Ω) is defined by

〈fm, ψ〉 =
∫

Ω

am+1ψdx+
1

∆t

∫
Ω

Jm((um)3/8 ◦ χm)ψdx.

Therefore, (5.10) is equivalent to the following problem.
Find um+1 ∈ W 1,4

0 (Ω) such that

1

∆t

∫
Ω

(um+1)3/8 ψ dx+

∫
Ω

ξm+1
1 ψ dx+ µ

∫
Ω

ξm+1
2 ψxdx

(5.11)

− 1

∆t

∫
Ω

Jm((um)3/8 ◦ χm)ψdx =

∫
Ω

am+1 ψ dx ∀ψ ∈ W 1,4
0 (Ω),

ξm+1
1 ∈ ∂IK

[
um+1

]
,(5.12)

ξm+1
2 = Λ

(
∂um+1

∂x

)
,(5.13)

where Λ(v) =| v |2 v = v3.
The application of the Bermúdez–Moreno algorithm [8] to solving the nonlinear

problem (5.11)–(5.13) introduces the following new unknowns (multipliers) qm+1
1 and

qm+1
2 ,

qm+1
1 ∈ ∂IK

[
um+1

]− ω1u
m+1,(5.14)

qm+1
2 = Λ

(
∂um+1

∂x

)
− ω2

∂um+1

∂x
,(5.15)
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defined in terms of the positive parameters ω1 and ω2. So, (5.11) is equivalent to

1

∆t

∫
Ω

(um+1)3/8ψdx+

∫
Ω

(qm+1
1 + ω1u

m+1)ψ dx+ µ

∫
Ω

(
qm+1
2 + ω2

∂um+1

∂x

)
∂ψ

∂x
dx

=

∫
Ω

am+1ψ dx +
1

∆t

∫
Ω

Jm ((um)3/8 ◦ χm)ψdx ∀ψ ∈ W 1,4
0 (Ω).

(5.16)
Now, since ∂IK and Λ are maximal monotone operators, the definitions given by
(5.14) and (5.15) can be characterized by their respective identities (see [8]):

qm+1
1 = (∂IK)ω1

λ1

[
um+1 + λ1q

m+1
1

]
,(5.17)

qm+1
2 = Λω2

λ2

[
∂um+1

∂x
+ λ2q

m+1
2

]
.(5.18)

In (5.17) and (5.18), the functions (∂IK)ω1

λ1
and Λω2

λ2
denote the Yosida approximations

for the operators (∂IK − ω1I) and (Λ − ω2I) with positive parameters λ1 and λ2,
respectively (see Brezis [11], for example). Next, to discretize (5.16)–(5.18) in space,
we consider piecewise linear Lagrange finite elements. More precisely, for a given
positive parameter h we build a uniform finite element mesh τh for Ω. Thus, let
xi = (i − 1)h, i = 1, . . . , N + 1, be the mesh nodes. Now, we introduce the classical
finite elements spaces and sets:

Vh = {ϕh ∈ C0(Ω) / ϕh |E∈ P1 ∀E ∈ τh},
V0h = {ϕh ∈ Vh / ϕh |∂Ω= 0},(5.19)

Kh = {ϕh ∈ V0h / ϕh(xi) ≥ 0, i = 1, . . . , N + 1},

where E denotes a standard finite element interval.
Then, the fully discretized problem can be posed as follows.
Find um+1

h ∈ Kh such that

1

∆t

∫
Ω

(um+1
h )3/8ψh dx+ ω1

∫
Ω

um+1
h ψh dx+ µω2

∫
Ω

∂um+1
h

∂x

∂ψh
∂x

dx

=

∫
Ω

am+1
h ψh dx+

1

∆t

∫
Ω

Jm((umh )3/8 ◦ χm)ψh dx−
∫

Ω

qm+1
1,h ψh dx

−µ

∫
Ω

qm+1
2,h

∂ψh
∂x

dx ∀ψh ∈ V0h.

(5.20)

Thus, by treating the first term in (5.20) in explicit form at each step of the inner
multipliers loop, the numerical algorithm for solving the fully discretized problem
(5.20), (5.18), and (5.17) can be sketched as follows.
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Step 0 : Initialize (um+1
h )0 (equal to umh , for example)

Step j : For a given(um+1
h )j , compute (um+1

h )j+1 ∈ V0h

by solving the linear problem

ω1

∫
Ω

(um+1
h )j+1ψh dx+ µω2

∫
Ω

∂(um+1
h )j+1

∂x

∂ψh
∂x

dx

= − 1

∆t

∫
Ω

(um+1
h )

3/8
j ψh dx −

∫
Ω

(qm+1
1,h )j ψh dx− µ

∫
Ω

(qm+1
2,h )j

∂ψh
∂x

dx

+

∫
Ω

am+1
h ψh dx+

1

∆t

∫
Ω

Jm (((umh )j)
3/8 ◦ χm) ψh dx ∀ψ ∈ V0h.

(5.21)
The multipliers updating (indexed by j) is provided by the following expressions:

(qm+1
1,h )j+1 = (∂IK)ω1

λ1
[(um+1

h )j+1 + λ1(q
m+1
1,h )j ],(5.22)

(qm+1
2,h )j+1 = Λω2

λ2

[
∂

∂x
(um+1
h )j+1 + λ2(q

m+1
2,h )j

]
.(5.23)

The convergence of the duality method is established in Bermúdez and Moreno [8] and
Bermúdez [7] under the technical constraint λiωi = 0.5 for i = 1, 2. For this particular
choice of the parameters, the Yosida approximations can easily be computed and are
given by

(∂IK)ω1
1

2ω1

(r) = −2ω1 | r |,

Λω2
1

2ω2

(r) = 2Λ 1
ω2

(2r)− 2ω2 r ,

where Λλ(r) = (r− s)/λ, the value s being the real solution of the nonlinear equation
λs3 + s = r, which has been solved for each r by using Cardano’s formulae.

5.3. Numerical results: Comparison tests. In order to validate the correct
performance of our numerical approach, we have considered a first test (Test 1), which
presents a closed form stationary solution. It corresponds to a no sliding case (i.e.,
ub = 0) and is adapted from Paterson [36]. More precisely, in Test 1, for a sufficiently
large time interval (0, T ), we consider the open set Ω = (−L,L) and the following
piecewise constant accumulation-ablation function:

a(x) =




a1 if 0 ≤ |x| < R,

−a2 if R ≤ |x| ≤ L,
(5.24)

where L > 1, a1 > 0, a2 > 0, and R ∈ (0, 1). Moreover, we assume that

a1R = a2(1−R)(5.25)
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Fig. 5.1. Computed numerical solution of Test 1; t = 0(−), t = 5(· · ·), t = 75(−−),
stationary (−).

holds. Thus, for the particular values a1 = 0.01 and a2 = 0.03, we have the steady
state solution

η(x) =




H

[
1−

(
1 +

a1

a2

)1/3 ( |x|
L

)4/3
]3/8

if |x| ≤ R,

H

(
1 +

a2

a1

)1/8(
1− |x|

L

)1/2

if R ≤ |x| ≤ 1,

0 if 1 ≤ |x| ≤ L,

(5.26)

where H = (40 a1 R )1/8 represents the thickness at x = 0 (the ice divide).
Moreover, in Test 1 the values L = 2 and R = 0.75 have been chosen so that

H = 0.86. As initial conditions for the evolutive problem, we have considered

η0(x) =




c (1− |x|4/3)3/8 if |x| ≤ 1,

0 if 1 ≤ |x| ≤ 2,
(5.27)

with c = 0.5.
For the numerical solution a uniform finite element mesh with N = 4001 nodes

and a time step ∆t = 1 have been taken.
In Figure 5.1 we present the initial profile (t = 0), the computed solutions for

t = 5 and t = 75, and the stationary exact solution (which matches the numerical
approximation for t = 125) for Test 1. Figure 5.1 is obtained with the described
Bermúdez–Moreno method with ω1 = 15 and ω2 = 30. The computed results agree
with the same test example solved with another numerical approach in Calvo, Durany,
and Vázquez [13], but computing time is highly reduced (by about 99 per cent). Notice
that in Figure 5.1 for t = 5 the ice sheet is retreating. The ice mass shrinks until
t = 25, and then it expands with time until reaching the stationary solution given by
expression (5.26). The initial contraction is mainly due to the fact that accumulation
taking place at the center cannot balance the initial effect of ablation near the margins.

Test 2 is proposed to simulate the behavior of the concave profile when increasing
the sliding velocity. In this case, we take L = 2 and R = 1 in (5.24), so that
(5.25) is not verified. Thus, in Figures 5.2 and 5.3 several examples are presented by
considering the velocity field

ub(t, x) =

{
C x2 if x ≥ 0,

−C x2 if x < 0
(5.28)
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-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

( X )

Ic
e 

S
he

et
 P

ro
fil

e 
( 

Z
 )

Fig. 5.2. Numerical solution of Test 2 in the case C = 0.005; t = 0(−), t = 5(−−),
t = 50(· · ·), t = 90(−).
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Fig. 5.3. Numerical solution of Test 2 in the case C = 0.1; t = 0(−), t = 1(· · ·), t = 3(−−), t =
5(−).
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Fig. 5.4. Convex-concave initial condition η0 for c = 0.5 and c = 0.75.

and the initial condition (5.27). More precisely, Figure 5.2 shows the results obtained
for t = 5, t = 50, and t = 90 in the case C = 0.005, and Figure 5.3 presents the
computed profiles for t = 1, t = 3, and t = 5 when C = 0.1. These figures illustrate
how concave profiles disappear in the presence of enough convection (C = 0.1). The
values of time have been chosen to present the profiles that most emphasize this
realistic phenomenon. The time step, the number of nodes, and the parameters in
the Bermúdez–Moreno algorithm are the same as those used in Test 1.

Test 3 has been designed to illustrate the waiting time property discussed in sec-
tion 4. The idea is to show how when the initial condition of the problem has a
sufficiently flat convex-concave shape (see Figure 5.4), then the displacement of the
initial free boundary (S+(t0), for example) starts after a certain time (the waiting
time). Nevertheless, an instantaneous displacement occurs for a concave initial con-
dition (as (5.27), for example).

More precisely, in order to illustrate this so-called waiting time property, the
numerical solutions obtained from the initial condition (5.27) and the following alter-
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Fig. 5.5. Moving boundary S+(t) in Test 3, with convex-concave η0 (−) and purely concave
η0 (· · ·) initial conditions for c = 0.5.

native one,

η0(x) =




c (1− |x|4/3)3/8 if −0.75 ≤ x ≤ 0.75,

16.77 c

(
a2

2

)1/3

|x− 1|4/3 if 0.75 ≤ x ≤ 1,

16.77 c

(
a2

2

)1/3

|x+ 1|4/3 if −1 ≤ x ≤ −0.75,

0 otherwise,

(5.29)

are compared for different values of c. Thus, in Figures 5.5 and 5.6 the moving
boundaries are compared for the initial conditions (5.27) and (5.29) for c = 0.5 and
c = 0.75, respectively. Notice that the theoretical result stated in section 4 about
the waiting time property is a local one, while numerical observations yield a global
waiting time. To our knowledge the proof of global waiting time properties is an open
and difficult question.

Next we illustrate the relation between the waiting time and the initial ice mass
stated in the theoretical analysis. As the ice mass associated with an initial condition
such as (5.29) depends linearly on the parameter c, in Figure 5.7 we compare the
moving boundary evolution for different values of c in the absence of convection.
Notice how the waiting time decreases when the initial ice mass increases.

Finally, in Figure 5.8 the influence of convection for a fixed initial ice mass as-
sociated with c = 0.75 is illustrated. Thus, an increasing basal sliding reduces the
waiting time as expected in real situations.
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Fig. 5.6. Moving boundary S+(t) in Test 3, with convex-concave η0 (−) and purely concave
η0 (· · ·) initial conditions for c = 0.75.
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Fig. 5.7. Moving boundary S+(t) in Test 3, with convex-concave η0 function and C = 0 for
c = 0.5(−−), c = 0.75(· · ·), c = 0.9(−).
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Fig. 5.8. Moving boundary S+(t) in Test 3, with η0 and c = 0.75; C = 0(· · ·), C =
0.003(−−), C = 0.005(−), C = 0.01(· · ·), C = 0.05(.− .−).

6. Discussion. In this paper we have used different but equivalent weak formu-
lations, expressed in terms of either multivalued equations or variational inequalities
when the complementarity formulation is considered for numerical purposes. This ap-
proach makes more precise the original doubly nonlinear formulation of Fowler [29],
converting it into an obstacle problem for the associated operator. Assuming some ex-
tra regularity properties of the solution, we have given sufficient conditions (in terms
of a, the accumulation rate, and h0, the initial thickness) for the existence of the
free moving boundary and its spatial location. For this, we employed two different
methods: a comparison principle, combined with the construction of suitable barrier
functions in the case ub ≡ 0, and a local energy method if ub 
= 0. In both cases,
we prove rigorously the possible existence of a waiting time in the dynamics of the
free boundary, whose location and evolution can be qualitatively described as long
as suitable and physically admissible hypotheses on the data of the problem hold.
From the numerical point of view, the main advantage of the proposed new approach
follows from the introduction of a maximal monotone operator for the nonlinear diffu-
sive term that had already been treated in explicit form [13]. Thus, a duality method
can also be applied to greatly improve the speed of convergence with respect to the
previous work. In order to verify the good performance of the new algorithm as well
as the computational cost reduction, a problem with a closed form solution has been
tested. Moreover, to complete the theoretical results and reflect some realistic situ-
ations, several test examples illustrate some qualitative properties of the ice profile
and the associated free boundary.
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degenerada en Glacioloǵıa, in Electronic Proceedings of the XIV CEDYA-IV Congreso de
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Abstract. This paper provides a mathematical model of the phenomenon of phase transitions
in traffic flow. The model consists of a scalar conservation law coupled with a 2 × 2 system of
conservation laws. The coupling is achieved via a free boundary, where the phase transition takes
place. For this model, the Riemann problem is stated and globally solved. The Cauchy problem is
proved to admit a solution defined globally in time without any assumption about the smallness of
the initial data or the number of phase boundaries. Qualitative properties of real traffic flow are
shown to agree with properties of the solutions of the model.

Key words. hyperbolic conservation laws, phase transitions, macroscopic vehicular traffic
model, hyperbolic systems, partial differential equations

AMS subject classifications. 35L65, 90B20, 76T99

PII. S0036139901393184

1. Introduction. We are concerned with phase transitions in hyperbolic sys-
tems of conservation laws. By phase transition we mean a discontinuity separating
states belonging to different phases, i.e., having deep qualitative differences. Equiv-
alently, a phase boundary can be seen as a free boundary separating two different
models and whose evolution is determined by the solution on both of its sides. In
fact, besides the usual phase transitions in fluids that motivate the term, other phe-
nomena are described within this framework. Examples include those from nonlinear
elastodynamics [1] and from combustion theory [9, 20].

The present work deals with phase transitions in traffic flow. In the specialized
literature (see [15] and the many references therein), it has been shown that traffic
flow admits two distinct behaviors, depending on whether it is free or congested. In
this context, “mathematical models and theories . . . still cannot explain and predict
the experimental features of the phase transitions in real traffic flow which have been
found out . . .” [15, p. 257]. The model presented below gives such an explanation,
showing that “real traffic flow” can be described within the mathematical framework
provided here, based on hyperbolic conservation laws that develop phase transitions.

From the analytical point of view, we study a scalar conservation law coupled with
a 2×2 system of conservation laws. The coupling is achieved via the phase boundary,
i.e., a free boundary whose evolution is regulated by the Rankine–Hugoniot conditions.
The whole model admits a bounded variation (BV) weak solution defined globally
in time. Note that the total variation of the initial data is required merely to be
bounded.

The presence of phase transitions usually leads to a lack of uniqueness in the
solution to Riemann problems. A standard way out of this dilemma is the introduc-
tion of suitable admissibility conditions [1, 20]. Here, we do not need this provision
and, assigning the structure of the solution, select a unique solution to any Riemann
problem.
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From the point of view of traffic flow theory, the present model satisfies the re-
quirements stated in [2, 11] and is able to describe various phenomena reported in
Kerner’s review [15]. Indeed, Kerner’s work inspired the present paper, and we shall
often refer to it. More precisely, here we present a PDE-based model that can be rig-
orously stated and studied. The qualitative properties of its solutions fully agree with
the qualitative “three phase theory” given by Kerner [14] and supported by him [13]
with empirical studies. Furthermore, the mathematical techniques here adopted are
those typical of several phase transition models of continuum dynamics, providing a
mathematical justification of Kerner’s choice of the term “phase transitions” referring
to traffic flow.

The present work, while being in full agreement with Kerner’s observations, sug-
gests a different choice of terms in the distinction between synchronized flow and wide
moving jams, called by Kerner distinct phases. Here, both these configurations are
present and have the same properties underlined in [15]. But they essentially corre-
spond to waves of two different characteristic families, rather than to different phases;
see section 4 for a more detailed discussion.

A further example of qualitative agreement between the present model and the
observed phenomena is shown in Figure 1.1. Here, the fundamental diagram, i.e., the
“curve in the flow-density plane which gives a correspondence of the vehicle density
to the flow rate in traffic flow” [15, p. 254] is compared with the domain in which
the present model is defined and studied. Note that while the former picture consists
of measured data, the second is determined uniquely as an invariant domain for a
set of PDEs; indeed it displays the sets Ωf and Ωc defined in (2.5). These sets are
characterized as being invariant for the system of PDEs (2.3) introduced below; for
a characterization of invariant domains in systems of conservation laws, see [12].

ρ
R0

ρv
Free flow

Congested flow

Fig. 1.1. Left, an experimental fundamental diagram (from [15]; used with permission) and,
right, the one obtained from the model presented here as an invariant set for (2.3); see (2.5).

In section 4, further relations between this model and features of real traffic
flow will be considered. In particular, the classical Lighthill–Whitham [17] and
Richards [18] (LWR) model (2.1) gives a good solution of the traffic light prob-
lem (see [21, p. 71]. In section 4 we shall consider the solution of the same problem,
as provided by the model presented here, obtaining some reasonable improvements.
Quantitative tests on the present model are under investigation.

This paper is organized as follows. The next section deals with the statement of
the model. Then, section 3 is devoted to the Riemann problem, while the Cauchy
problem is left to section 5. The final section 6 contains the technical details.

Throughout, we focus on analytically tractable realistic situations rather than
aiming at maximal generality.
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2. The model. The two phases we shall be concerned with are free flow and
congested flow. In the case of free flow the classical LWR model

∂tρ+ ∂x (ρ · v) = 0, v = vf (ρ),(2.1)

is applicable. Here, ρ is the car density, while v = vf (ρ) is a suitable smooth decreasing
function giving the car speed v at traffic density ρ.

As the car density ρ increases, the assumption that the speed v is a function of
only ρ is no longer acceptable, as clearly shown by several observations (see [15], the
references therein, and Figure 1.1, left). As soon as v crosses a certain threshold, the
density-flow points are scattered in a cloud rather than along a line. This is congested
flow. Here, the standard LWR model (2.1) is inadequate. We propose to complete it
by means of the 2× 2 system (see [8]){

∂tρ+ ∂x(ρ · v) = 0,
∂tq + ∂x((q − q∗) · v) = 0,

v = vc(ρ, q),(2.2)

where ρ and v appear as independent variables. The weighted flow q is a variable
originally motivated by the linear momentum in gas dynamics; vc is given by the
speed law (2.4). The threshold parameter q∗ distinguishes between possible behaviors
of the flow; see [8]. The well-posedness of (2.2) in the sense of the theory of standard
Riemann semigroups [5, 6] follows from [3].

Thus, we propose the following model:

Free flow: (ρ, q) ∈ Ωf , Congested flow: (ρ, q) ∈ Ωc,

∂tρ+ ∂x [ρ · v] = 0,

{
∂tρ+ ∂x [ρ · v] = 0,
∂tq + ∂x

[
(q − q∗) · v

]
= 0,

v = vf (ρ), v = vc(ρ, q),

(2.3)

where Ωf and Ωc denote the free and the congested phases, respectively. In Ωf the
only variable is the car density ρ. Here, the car speed v is assumed to be a known
function vf of the car density: v = vf (ρ). In Ωc the variables are the car density ρ
and the car speed v or, equivalently, ρ and the weighted flow q; see [8]. Thus, at a
fixed density, different speeds are admissible, as raw data observations require. Note
that there may well be car densities at which the flow may be either free or congested.

In what follows we assume that the speed laws in the two phases are

vf (ρ) =

(
1− ρ

R

)
· V and vc(ρ, q) =

(
1− ρ

R

)
· q
ρ
.(2.4)

The former relation is the simplest standard linear choice (see, for instance, [22]), while
the latter was introduced in [8]. Here, R is the maximal possible car density and V is
the maximal possible speed. More general expressions can be considered, but we limit
ourselves to the expressions above in order to keep the formal analytical difficulties
at a minimum while maintaining all the more interesting qualitative features.

In the present model, the road is translation invariant both spatially and tempo-
rally, since none of the various functions appearing in (2.3)–(2.4) explicitly depends
on x or t. As a consequence, the model may not foresee where and when new queues
might form. To this aim, either time/space dependent terms should be introduced,
or nondeterministic disturbances should be added. Both possibilities are far from the
scope of the present paper. As a consequence, we impose the condition that if (2.3)
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is assigned an initial datum contained in a single phase, then the solution will be
contained in the same phase for all times. In other words, if the traffic flow is free (or
congested) on all the real line, it will remain free (or congested) for all times. This
leads us to require that Ωf be invariant with respect to (2.1) and, similarly, that Ωc
be invariant with respect to (2.2). We are thus lead to define (see Figure 2.1)

Ωf = {(ρ, q) ∈ [0, R]× [0,+∞[ : vf (ρ) ≥ V̂f , q = ρ · V },

Ωc =

{
(ρ, q) ∈ [0, R]× [0,+∞[ : vc(ρ.q) ≤ V̂c,

q − q∗
ρ

∈
[
Q1 − q∗

R
,
Q2 − q∗

R

]}
.

(2.5)

Here, V̂f and V̂c are the threshold speeds; i.e., above V̂f the flow is free, while below

V̂c the flow is congested. We impose that the two phases do not intersect and hence
that V̂f > V̂c; see Remark 2 in section 6. Moreover, V̂f ≤ V since d

dρ (ρv(ρ)) ≥ 0 in

the free phase. Q1 ∈ ]0, q∗[ and Q2 ∈ ]q∗,+∞[ depend on the various environmental
conditions and determine the width of the “cloud” in the congested phase. The case
in which one of the equalities Q1 = q∗ or Q2 = q∗ holds is simpler (see Remark 1
in section 6). Finally, we let (Q̌f − q∗)/Řf = (Q2 − q∗)/R, as is suggested from the
experimental data (see Figure 1.1) and is consistent with the “capacity drop” [15,
p. 254] that takes place when passing from the free phase to the congested one.

R
ρ

0

q

Ωcq∗

Ωf

Q1

Q2

ûf
ûc

ǔf
ǔc

ρ
R0

ρv

Ωc

Ωf

Fig. 2.1. Left, the fundamental diagram in the (ρ, q)-plane and, right, in the (ρ, ρv)-plane.

Note that maxΩf
ρv ≥ maxΩc ρv, according to the phenomenon of capacity drop.

The fundamental diagram Ωf ∪Ωc depends on the specific road to which the model is
applied and plays a central role, for the Riemann solver itself depends on its choice.

Note that (2.3) can be formally restated as a 2 × 2 system of conservation laws,
for instance by introducing the map

f(ρ, q) =

{
(ρ · vf (ρ), q · vf (q)) if (ρ, q) ∈ Ωf ,

(ρ · vc(ρ, q), (q − q∗) · vc(ρ, q)) if (ρ, q) ∈ Ωc,
(2.6)

and writing ∂t(ρ, q) + ∂x[f(ρ, q)] = 0. However, the solutions to (2.1)–(2.2) defined
below are not standard Lax solutions [6, 10, 16] to any 2 × 2 systems of hyperbolic
conservation laws. This fact will clearly follow from the next section.

We conclude this section with a remark on the parameters defining the model. The
maximal density R, the maximal speed V , and the threshold densities V̂f and V̂c have
a clear physical meaning and can be estimated as in other traffic models. Q1 and Q2

depend on the various environmental conditions. A possible way to determine them
consists of imposing the requirement that all measured data fall inside the domain
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Ωf ∪ Ωc. The situation with q∗ is more delicate. A posteriori, in section 4, we shall
see a property of the line q = q∗ that, indirectly, leads to a possible way to determine
q∗. A theory of the inverse problem for systems of hyperbolic conservation laws would
give better tools but is at present not available.

3. The Riemann problem. In the free phase the characteristic speed is λ(ρ) =
V ·(1−2 ρR ), while in the congested phase, from [8] we obtain the characteristic speeds
λ1, λ2, the eigenvectors r1, r2, the i-Lax curve q = qi(ρ; ρo, qo) exiting (ρo, qo), and
the Riemann invariants w1, w2. The following display summarizes this information:

r1(ρ, q) =

[
ρ

q − q∗

]
, r2(ρ, q) =

[
R− ρ
R
ρ q

]
,

λ1(ρ, q) =

(
2

R
− 1

ρ

)
· (q∗ − q)− q∗

R
, λ2(ρ, q) = vc(ρ, q),

∇λ1 · r1 = 2
q∗ − q

R
, ∇λ2 · r2 = 0,

q1(ρ; ρo, qo) = q∗ +
qo − q∗
ρo

ρ, q2(ρ; ρo, qo) =
ρ

ρo

R− ρo
R− ρ

qo,

w1 = vc(ρ, q), w2 =
q − q∗
ρ

.

(3.1)

In the (ρ, q)-plane the 1-Lax curves are the straight half-lines exiting (0, q∗), while the
2-Lax curves are convex, exit (0, 0), increase monotonically, and limρ→R q2(ρ, ρo, qo) =
+∞ for all (ρo, qo). Shock and rarefaction curves coincide, but the 2-Lax curves are
not straight lines. Hence, (2.2) is not a Temple system in the sense defined in [19].
The first family is not genuinely nonlinear, for∇λ1·r1 vanishes along the characteristic
line q = q∗.

By the Riemann problem we mean (2.3) together with the initial datum

(ρ, q)(0, x) =

{
(ρl, ql) if x < 0,
(ρr, qr) if x > 0.

(3.2)

If (ρl, ql) and (ρr, qr) are in the same phase, then the usual Lax solution to (2.1) or
to (2.2) will be used. Note that this solution attains values in the same phase of the
initial data, and no phase transition may arise.

If (ρl, ql) ∈ Ωf and (ρr, qr) ∈ Ωc, then an admissible solution to (2.3), (3.2) is a
self-similar function u: [0,+∞[× R �→ Ωf ∪ Ωc such that there exists a Λ ∈ R with

1. u(t, ]−∞,Λt[) ⊆ Ωf and u(t, ]Λt,+∞[) ⊆ Ωc;
2. the functions ul and ur, respectively defined by

ul(t, x) =

{
u(t, x) if x < Λ · t,
u(t,Λt−) if x > Λ · t,

ur(t, x) =

{
u(t,Λt+) if x < Λ · t,
u(t, x) if x > Λ · t,

are restrictions of Lax solutions to Riemann problems for (2.1) and (2.2),
respectively;

3. the Rankine–Hugoniot conditions

Λ · (ρ(t,Λt+)− ρ(t,Λt−)) = ρ(t,Λt+) · vc(t,Λt+)− ρ(t,Λt−) · vf (t,Λt−)
are satisfied for all positive t.
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In the other case (ρl, ql) ∈ Ωc and (ρr, qr) ∈ Ωf , conditions entirely analogous to the
ones above are required.

Statement 3 above ensures that the total number of cars is conserved.
Note that nucleation is not possible, since no phase boundary may arise in a

Riemann problem with data in a single phase. On the other hand, in the case of the
Cauchy problem, zones of free (resp., congested) traffic may well disappear and turn
into zones of congested (resp., free) traffic; see Figure 4.3.

We show below that it is possible to define a global Riemann solver for (2.3),
(3.2). Furthermore, this solver enjoys properties underlined in the literature [2, 11]
as not satisfied in several common models. Recall that a Riemann solver is a map
assigning to any pair of states ul, ur an admissible BV self-similar solution to (2.3),
(3.2).

The main tool in the construction of the Riemann solver is its consistency. Namely,
let R: (ul, ur) �→ R(ul, ur) denote a Riemann solver; i.e., x �→ R(ul, ur)(x) is the so-
lution computed at time 1 of the Riemann problem with data ul, ur. R is consistent
if the following two conditions hold for all ul, um, ur, and x̄:

I. R(ul, ur)(x̄) = ū ⇒
R(ul, ū) =

{ R(ul, ur) if x ≤ x̄,
ū if x > x̄,

R(ū, ur) =

{
ū if x < x̄,
R(ul, ur) if x ≥ x̄,

II.
R(ul, um)(x̄) = um

R(um, ur)(x̄) = um

}
⇒ R(ul, ur) =

{ R(ul, um) if x < x̄,
R(um, ur) if x ≥ x̄.

This property is enjoyed by the standard Lax solver [16] and is a necessary condition
for the well-posedness of the Cauchy problem.

Proposition 3.1. Assume that the fundamental diagram is as in Figure 1.1,
with V̂f ≥ V̂c. Then, there exists a Riemann solver assigning a unique self-similar
admissible solution to any Riemann problem (2.3), (3.2) for all pairs of initial states
in Ωf ∪ Ωc. Moreover,

(0) the Riemann solver is consistent;
(1) no wave travels faster than the cars;
(2) any solution attains values in Ωf ∪ Ωc, i.e., in a compact set where both car

density and car speed are bounded and nonnegative;
(3) if the initial data are in the same phase, the solution also attains values in

that phase;
(4) no 2 × 2 system of conservation laws may have as its Lax solutions those

defined by this Riemann solver.
Note that the vacuum state ρ = 0 is treated as any other state and does not lead

to any instability, unlike what happens in [2].
Aiming at the later use of this proposition for the Cauchy problem, we proceed

by first generalizing the usual Lax curves of the first and second families exiting a
fixed ul ∈ Ωf ∪ Ωc. Furthermore, if ur is on the generalized curve exiting ul, we will
suitably define the size Σi(u

l, ur) of the wave connecting ul to ur so that

c · ‖ur − ul‖ ≤ |Σi(ul, ur)| ≤ C · ‖ur − ul‖,(3.3)

C and c being suitable positive constants independent from ul, ur, and i. The role of
Σi will be essential in the study of the Cauchy problem.

Proof of Proposition 3.1. The proof is achieved through three steps.
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A. Generalized Riemann coordinates. Let ǔ = (Ř, Q̌) be the point in Ωf defined

by Q̌ = Ř · V and Q̌−q∗
Ř

= Q1−q∗
R ; see Figure 2.1, left. For (ρ, q) ∈ Ωf ∪Ωc, define the

generalized Riemann coordinates (w1, w2) as

w1 =

{
vc(ρ, q) if (ρ, q) ∈ Ωc,

V̂f if (ρ, q) ∈ Ωf ,

w2 =




q−q∗
ρ if (ρ, q) ∈ Ωc,

q−q∗
ρ if (ρ, q) ∈ Ωf , ρ ≥ Ř,

vf (ρ)− vf (Ř) +
Q̌−q∗
Ř

if (ρ, q) ∈ Ωf , ρ ≤ Ř.

(3.4)

The construction of the solution to the Riemann problem (2.3), (3.2) will be carried
out in the w coordinates. Define Wi =

Qi−q∗
R ; see Figure 3.1, right.

R
ρ

0

q

1

2

ulq∗

R
ρ

ρv

0

1

2 ul 0 w1

w2

V̂c V̂f
W1

ul 1

2

W2

Fig. 3.1. Generalized Lax curves exiting ul, with ul ∈ Ωc.

B. Generalized Lax curves and simple waves. First let wl ∈ Ωc. Then the gener-
alized 1-curve exiting wl is the segment w2 = wl2, w1 ∈ [0, V̂c], to which we add the
point (wl1, V̂f ); see Figure 3.1. Assume now that wr is on this generalized 1-curve;
i.e., wr2 = wl2. Then the solution to (2.3), (3.2) is the standard Lax solution as long
as wr ∈ Ωc. If w

r ∈ Ωf , the solution to (2.3), (3.2) is as follows:
– if wl2 > 0, a rarefaction followed by a phase transition;
– if wl2 = 0, a single phase transition acting as a contact discontinuity;
– if wl2 < 0, a single shock-like phase transition.

In all cases, the speed of the phase boundary is assigned by the Rankine–Hugoniot
conditions. The size of this wave is Σ1(w

r, wl) = wr1 − wl1.
The generalized 2-curve through wl, for wl ∈ Ωc, coincides with the standard Lax

curve; see (3.1). Hence, if wr lies on the 2-curve exiting wl, the solution to (2.3),
(3.2) is the standard Lax solution, and to the wave connecting wl to wr we assign size
Σ2(w

r, wl) = wr2 − wl2.
Now let wl ∈ Ωf . We formally assign the standard Lax curves of the scalar

equation (2.1) to the second family, defining the wave size as Σ2(w
r, wl) = wr2 − wl2.

Concerning the generalized 1-curve through wl, with wl ∈ Ωf , the following cases
are all the possibilities:

1. If wl2 ≥ w̌2, the generalized 1-curve consists of wl and of the segment w2 = wl2
in Ωc. If w

r belongs to it, the wave size is measured by Σ1(w
r, wl) = wr2−wl2,

and the solution to (2.3), (3.2) is
– if wl2 ∈ [0, w̌1], a shock-like phase transition;
– if wl2 = 0, a single phase boundary acting as a contact discontinuity;
– if wl2 < 0, a phase boundary followed by a rarefaction wave.

2. If wl2 < w̌2, then the generalized 1-curve is the lower side of Ωc, i.e., the seg-
ment w2 =

Q1−q∗
R , w1 ∈ [0, V̂c]. Let qm(ρ) = q∗+ ρ

R (Q1 − q∗) be the equation
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2
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Fig. 3.2. Generalized Lax curves exiting ul, with ul ∈ Ωf .

of this segment in the (ρ, q) coordinates, and consider the two functions

Λ̄(ρ) =
ρlvl − ρvc(ρ, qm(ρ))

ρl − ρ
and λ̄1(ρ) = λ1(ρ, qm(ρ)).

The former is the speed of the phase boundary joining ul ∈ Ωf to (ρ, qm(ρ)) ∈
Ωc, while the latter is the first characteristic speed of (ρ, qm(ρ)) ∈ Ωc. Con-
sider the following three subcases:

– Λ̄(Řc) ≤ λ̄1(Řc). Here the solution to (2.3), (3.2) is a phase transition
from ul to ǔc, followed by a 1-Lax rarefaction from ǔc to u

r.
– Λ̄(ρ) > λ̄1(ρ) for all ρ with Řc ≤ ρ ≤ ρr. In this case the solution
consists of a shock-like phase transition.

– Otherwise, let ρm be the smallest car density such that (ρm, qm(ρm)) ∈
Ωc with Λ̄(ρm) = λ̄1(ρm). The solution to (2.3), (3.2) is a compound
wave composed first by a phase transition and, attached to it, by a 1-Lax
rarefaction in Ωc.

This 1-wave (see Figure 3.2) is assigned the total size

Σ1(w
r, wl) = wr2 − wl2 + wl1 − wr1.(3.5)

C. The Riemann solver. From the above construction it follows that, given any
two points wl, wr in (Ωf ∪ Ωc)

2, the generalized curves defined above intersect in a
single point wm ∈ Ωf ∪Ωc, proving (2). The invariance of Ωf (resp., Ωc) with respect
to (2.1) (resp., (2.2)) ensures (3). Furthermore, the wave speeds are well ordered,
in the sense that any 1-generalized wave (eventually containing the phase boundary)
propagates more slowly than the generalized 2-wave that follows, since in Ωc

λ2(ρ, q)− λ1(ρ, q) =
q

R
+

(
1

ρ
− 1

R

)
q∗ > 0,(3.6)

which implies (0). Moreover, in the (ρ, ρv)-plane, the Rankine–Hugoniot speed of the
phase boundary connecting ul to ur is the slope of the segment joining (ρl, ρlvl) to
(ρr, ρrvr). This shows that also, in the case of phase boundaries, any 1-wave reaching
um is slower than any 2-wave exiting from wm.

Note that the fastest wave in the solution to (2.3), (3.2) has maximal speed
bounded above by the characteristic speed of the state on the right, i.e., by the traffic
speed, which shows (1).

Finally, (4) follows immediately from the above construction—for example, from
the presence of 3 waves in the solutions to some Riemann problems; see Figure
3.3.
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Fig. 3.3. The solution to a sample Riemann problem.

4. Qualitative properties of the solutions. In [21] a traffic light at x = 0
that turns red is simulated through the restriction to the quadrant t ≥ 0, x ≤ 0 of
the solution to the Riemann problem for (2.1) with initial data

ρ(0, x) =

{
ρi if x < 0,
R if x > 0.

The solution is a shock with negative propagation speed. The location of this shock
is the end of the queue of cars; each driver, as soon as he reaches it, brakes and
immediately stops the car. See Figure 4.1, left.

t

x
0

t

x
0

Fig. 4.1. Car paths when the traffic light turns red.

We now follow the same scheme but in the framework of (2.3). Assume Q1 < q∗
and assign the initial data

(ρ, q)(0, x) =

{
(ρi, qi) if x < 0,
(R, q) if x > 0,

with (ρi, qi) ∈ Ωf and q ∈ [Q1, Q2]. Computations based on the solution to Riemann
problems defined above show that there exist two threshold parameters ρ−i and ρ+

i

such that
– if ρi ≤ ρ−i or ρi ≥ ρ+

i , the same behavior as in (2.1) is obtained (see Figure 4.1,
left);

– if ρ−i < ρi < ρ+
i , the solution consists of a phase transition followed by a

rarefaction possibly attached to it (see Figure 4.1, right).
Reasonably enough, the LWR description of drivers braking suddenly to zero speed
works when there are either many slow cars or few fast cars. In the middle situation,
drivers brake and the traffic flow enters the congested region. Here, the car speed
continues to diminish, but smoothly.

It is remarkable to note that the description above holds independently from the
value of q ∈ [Q1, Q2] assigned to the state on the right.
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In the case of the traffic light turning green, the present model gives a description
similar to that provided by the LWR model.

In Kerner’s paper [15] there is a further distinction within the congested phase,
namely “synchronized traffic flow” and “wide moving traffic jams.” However, he
also claims, “On the flow density plane measured points related to fronts of wide
moving jams usually cannot be separated from points related to synchronized traffic
flow” [15, p. 265]. Usually, in the hyperbolic phase transition models common in
continuum dynamics, the term phase characterizes suitable subsets of the space where
the conserved quantities (or equivalent coordinates) may vary, with different phases
corresponding to disjoint sets.

On the other hand, the observations by Kerner do show the existence of two
qualitatively deeply distinct behaviors. This distinction is present also in (2.3): it
corresponds to the distinction between waves of the first and second families.

More precisely, “homogeneous-in-speed-states” [15, p. 260], i.e., a type of syn-
chronized flow, are described by states separated by a 2-contact discontinuity in the
congested phase. In fact, recall that the traffic speed does not change across a 2-
contact discontinuity; see (3.1).

Furthermore, the solid line J shown in Figure 4.2, left, which represents in [15] the
“wide moving traffic jam,” is here replaced by the 1-Lax curves near the line q = q∗,
shown in Figure 4.2, right. In fact, along q = q∗ we have ∇λ1 · r1 ≡ 0 (see (3.1)), and
the first characteristic family is linearly degenerate. Hence, near to that line, where
∇λ1 · r1 is small, a sharp increase in the density may persist for a long time.
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Fig. 4.2. The transition from free to wide jam. Left, measured data from [15] (used with
permission) and, right, the line where ∇λ1 · r1 = 0 in the model described here.

Finally, let us remark that the present model (2.3) describes how a congested zone
disappears into a free one due to the interaction of two phase boundaries. This may
happen only if behind the congested zone the density is very low, i.e., ρl < Řf ; see
Figure 4.3. Analogously, an interaction between two phase boundaries where ρ > Řf
may lead to a free zone disappearing.

ρ
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ρv
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ur

x
0

t

ul

um

ur

FreeFree

Fig. 4.3. An interaction between phase boundaries.
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5. The Cauchy problem. Consider the set U of BV ∩ L1 functions u:R �→
Ωf ∪Ωc such that there exists a partition of R into a finite number of disjoint intervals
I1, . . . , In, with u(Ii) ⊆ Ωf and u(Ii+1) ⊆ Ωc for all i. The more general case in
which (u − u−∞) ∈ L1 and (u − u+∞) ∈ L1 for some fixed states u−∞, u+∞ is a
straightforward extension involving only formal complications.

Given a function u ∈ U , we say that there is a change of phase at all points ξ ∈ R
where u(ξ−) and u(ξ+) belong to different phases.

Let uo ∈ U . Generalizing the corresponding definition in [6], we call an admissible
solution of the Cauchy problem for (2.3) on the time interval [0, T ], with 0 < T ≤ +∞,
any function u: [0, T ] �→ U such that

1. u is continuous with respect to the L1-norm;
2. for all test functions φ ∈ C1 (R �→ R) with compact support contained in

u−1(Ωf )∫ T

0

∫
R

(
ρ · ∂tφ+ ρ · vf (ρ) · ∂xφ

)
dx dt+

∫
R

ρo(x) · φ(0, x) dx = 0;

3. for all test functions φ ∈ C1 (R �→ R2) with compact support contained in
u−1(Ωc)

∫ T

0

∫
R


[ ρ

q

]
∂tφ+

[
ρ · vc(ρ, q)

(q − q∗) · vc(ρ, q)

]
∂xφ


 dx dt

+

∫
R

[
ρo(x)
qo(x)

]
φ(0, x) dx = 0;

4. the set of points at which there is a change of phase is the union of a finite
number of Lipschitz curves pi: [0, T ] �→ R such that if pi(τ) = pj(τ), then
pi(t) = pj(t) for all t ∈ [τ, T ];

5. at all points (t̄, x̄) where there is a change of phase, i.e., x̄ = pi(t̄), let Λ =
ṗi(t+) and introduce the left and right flows at (t̄, x̄) as

F l =

{
ρ(t̄, x̄−) · vf (ρ(t̄, x̄−)) if ρ(t̄, x̄−) ∈ Ωf ,
ρ(t̄, x̄−) · vc(ρ(t̄, x̄−), q(t̄, x̄−)) if ρ(t̄, x̄−) ∈ Ωc,

F r =

{
ρ(t̄, x̄+) · vf (ρ(t̄, x̄+)) if ρ(t̄, x̄+) ∈ Ωf ,
ρ(t̄, x̄−) · vc(ρ(t̄, x̄+), q(t̄, x̄+)) if ρ(t̄, x̄+) ∈ Ωc.

We require that

Λ · (ρ(t̄, x̄+)− ρ(t̄, x̄−)) = F r − F l.

We prove below that (2.3) admits a solution for all initial data in BV.
Theorem 5.1. For all uo ∈ BV, the problem (2.3) admits a solution u: [0,+∞[×

R �→ Ωf ∪ Ωc such that u(0, x) = uo(x).
The proof follows the currently standard wave-front tracking machinery already

used in various works; see [4, 7] and the references in [6]. We briefly recall below the
general construction, underlining only those details specific to the present construc-
tion.

For all uo ∈ Ωf ∪ Ωc, let Ψi(uo, σ) denote the point u on the generalized i-curve
exiting uo as defined in section 3 such that the wave from uo to u has size σ = Σi(u, uo).
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Fix a large n ∈ N and introduce the mesh sizes

δn1 =
1

2n
· V̂c, δn2 =

1

2n
· Q2 −Q1

R
, δ̄n2 =

1

2n
· (vf (0)− w̌2

)
.

Let

Ωnf =
{
u ∈ Ωf :w1 = V and w2 = W1 + kδn2 or w2 = vf (ρ̌) + kδ̄n2 ; k ∈ N

}
,

Ωnc =
{
u ∈ Ωf :w1 = hδn1 and w2 = W1 + kδn2 ;h, k ∈ N

}
,

Ωn = Ωnf ∪ Ωnc .

Approximate the initial data uo by means of a piecewise constant initial datum uno
attaining values in Ωn and such that ‖uno − uo‖L1 ≤ 2−n. At every point of jump
of uno we approximately solve the Riemann problem within the class of piecewise
constant functions. To this aim, we define an approximate solver as follows. Shocks,
contact discontinuities, and phase boundaries are solved exactly, i.e., they are given
the exact Rankine–Hugoniot speed. Centered rarefaction waves are approximated
through rarefaction fans. Let ul ∈ Ωn and ur ∈ Ωn be connected by a 1-rarefaction,
i.e., ur = Ψ1(u

l, k2−n), with λ1(u
l) < λ1(u

r); then the approximate solution to the
Riemann problem with data ul, ur is a fan of rarefaction shock attaining values in Ωn.
Differently from the usual wave-front tracking algorithms, to each of these “shocklets”

we assign the Rankine–Hugoniot speed λ = [ρv]
[ρ] . The approximation of compound

waves is obtained by gluing the solutions above. We thus obtain an approximate
solution

un(t) =
∑
α

uα · χ]xα−1(t),xα(t)] with uα+1 = Ψ2(Ψ1

(
uα, σ1,α

)
, σ2,α),(5.1)

where uα ∈ Ωn, xα−1(t) < xα(t) for all α and t. σi,α is the size of the i-wave in the
solution of the Riemann problem (2.3) with data uα, uα−1.

A global approximate solution is obtained as soon as suitable bounds on the total
variation and on the number of discontinuities are provided. To this aim we introduce
the following Glimm functional defined on all functions of the type (5.1):

V(u) =
∑
α

2∑
i=1

∣∣σi,α∣∣.(5.2)

The interaction estimates provided in section 6 lead to the following result.
Proposition 5.2. Fix n ∈ N. Then for all piecewise constant initial data uo

attaining values in Ωn such that TV(uo) < +∞ there exists an approximate solution
un: [0,+∞[× R �→ Ωn with the following properties:

(1) the function t �→ V(un(t)) is nonincreasing;
(2) any strip of the form [0, T ]× R contains finitely many interaction points.
The proof follows from Lemmas 6.1 and 6.2 below.
A standard [5, 6, 7, 10] limiting procedure based on Helly’s compactness theorem

leads to the existence of a global weak solution to (2.3).

6. Technical details. We collect here technical results useful in the preceding
sections.

Lemma 6.1. Assume that the approximate solution un is defined up to time T .
Then the map t �→ V(un(t)) is nonincreasing on the interval [0, T ].

Proof. Assume that only two waves interact. Consider the following cases:
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1. The interacting waves σ′, σ′′ both belong to the second family. Then there is
a single outgoing wave σ+, and σ+ = σ′ + σ′′.

2. The interacting waves σ′, σ′′ both belong to the first family, and no 2-wave
exits the interaction. Then, again, the resulting 1-wave satisfies σ+ = σ′+σ′′.

3. The interacting waves σ′, σ′′ both belong to the first family, and the resulting
wave σ+ is a 2-wave. Then the choice (3.5) again implies that σ+ = σ′ + σ′′.

4. The interacting waves σ−
1 and σ−

2 belong to different families. Then the
resulting waves σ+

1 , σ
+
2 satisfy σ+

i = σ−
i .

In all the cases above, V does not increase at the interaction time.

The general case of an interaction in which several waves take part follows by
standard arguments.

The presence of the line q = q∗, where ∇λ1 · r1 vanishes, makes the control of
the number of discontinuities more delicate. Indeed, the interaction of two waves,
a 1-contact discontinuity, and a 2-shock may produce a new 1-contact and O(2n)
rarefaction wavelets of the first family.

Lemma 6.2. Given an approximate solution defined up to time T , any strip of
the form [0, T ]× R contains finitely many interaction points.

Proof. The proof follows from Lemma 6.1, since the number of waves in un at
time t is bounded by O(1) · 2n · V(un(t)).

Remark 1. In the case Q1 ≥ q∗, the solution to the Riemann problem (2.3),
(3.2) is simpler. In fact, all the phase transitions along the lower border of Ωc behave
like shocks if Q1 > q∗, and like contact discontinuities if Q1 = q∗. Furthermore, the
number of discontinuities may not increase at any interaction.

Remark 2. Allowing V̂f = V̂c leads to the non–well-posedness of the Riemann
problem. Let the left state be ǔc and the right state be ûf = ûc; see Figure 2.1.
Then, a first solution to (2.3), (3.2) consists of a single Lax 2-wave in the congested
phase. Another solution consists of a phase transition from ǔc to ǔf followed by a
Lax 2-wave in the free phase.
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THIN FILM TRAVELING WAVES AND THE NAVIER SLIP
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Abstract. We consider the lubrication model for a thin film driven by competing gravitational
forces and thermal gradients on an inclined plane. We are interested in the general traveling wave
problem when the Navier slip boundary condition is used. We contrast (1) gravity dominated flow, (2)
Marangoni dominated flow, and (3) flow in which the two driving effects balance. For a “singular slip”
model we show that when Marangoni forces are present the resulting traveling wave ODE reduces
locally near the contact line to a case not considered previously in the literature. We compute an
asymptotic expansion of the solution near the contact line and compare with numerical simulations of
the full problem. Using numerical simulations and phase space analysis involving Poincaré sections,
we show that for all three problems there is a finite range of admissible contact angles for which
traveling wave solutions exist. Even in the well-studied case (1), this is a new observation that has
ramifications for the use of constitutive laws at the contact line in the case of singular slip. For case
(3) multiple traveling wave solutions are observed with the same contact angle.

Key words. thin liquid films, contact lines, traveling waves, nonlinear partial differential equa-
tions
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Introduction. Dynamic contact lines occur at the leading edge of a layer of
fluid coating a dry solid surface. Understanding how contact lines move has been the
subject of intense interest for several decades. In particular, it was shown by Dussan
and Davis [13] that motion necessarily implies a singularity of stress at the contact
line if the usual no-slip boundary condition is imposed between the fluid and the solid
surface. Two approaches to removing this singularity emerged early on, namely (i)
the precursor layer model and (ii) the Navier slip condition.

In 1964, Bascom, Cottington, and Singleterry [1] reported experimental observa-
tions of contact lines for thin liquid films. A very thin film was observed spreading
ahead of the thicker film, beyond the apparent location of the contact line. Based
on these and similar observations, one reasonable model is to assume that there is
a very thin layer of fluid ahead of the contact line. The contact line itself is then
replaced by a rapid transition from the thicker layer to the very thin layer. This is
the basis for the so-called precursor model studied in various contexts over a num-
ber of years. While this is an attractive and tractable way to remove the singularity
associated with the film thickness going all the way to zero, modeling the very thin
precursor layer using hydrodynamics can be questionable since its thickness is only a
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few Ångstroms. Within a continuum framework, this can be approached by including
additional physics, such as long range van der Waals forces [12, 34, 41] in a dynamic
model of the precursor layer itself (as in [16]).

The second approach that has received extensive study is to keep the distinct
contact line but remove the stress singularity by modifying the boundary condition
between the liquid and the solid surface at or near the contact line. The most promis-
ing way to do this is to introduce the Navier slip condition, proposed by Navier [32]
in 1832 during the long debate over whether a fluid can slide over a solid surface
[15]. The Navier condition was apparently first invoked in the context of lubrication
theory by Greenspan [17] and has since been included in numerous studies of contact
lines [2, 22, 31, 38, 39]. Again, this is an attempt to resolve the issue using only hy-
drodynamics, rather than dealing with the atomic scale forces that are undoubtedly
significant near the contact line. Nonetheless, it is plausible to believe that the effect
of these forces at the macroscopic scale could be captured in an empirical law like the
Navier slip condition. Once a choice of slip model is made, there is still the question
of the need for a boundary condition at the contact line. Greenspan [17] proposed
that the speed of the contact line is related to the contact angle. This was further
considered for spreading drops by Haley and Miksis [18] and Ehrhard and Davis [14].
Hocking [23] considers using the static contact angle for the dynamic problem. In the
case of complete wetting, a zero contact angle solution is preferred. For the general
lubrication PDE, existence of such “zero contact angle” solutions with slip was proved
rigorously in one space dimension [3, 8]. In this case, the zero contact angle condition
replaces the boundary condition or fixed contact angle condition at the contact line.
A natural question, which we address, is whether the PDE admits traveling wave
solutions with a prescribed nonzero contact angle condition.

In this paper, we consider a thin film being driven up an inclined solid surface
by a surface or Marangoni stress. These driven films have been studied extensively
theoretically, experimentally, and numerically [5, 6, 10, 11, 27, 28, 29, 37, 36]. In
particular, in a series of papers on the precursor model, we found interesting novel
structures for traveling waves and their stability [4, 6, 7]. Our purpose in this pa-
per is to explore the Navier slip model as an alternative to the precursor model for
Marangoni driven films. Among other conclusions, we find that for a given slip length
and film thickness, there is a finite range of contact angles that admit traveling wave
solutions.

In section 2, we give a brief derivation of the fourth order nonlinear PDE governing
the evolution of film height, using the lubrication approximation to the Navier–Stokes
equations for two-dimensional incompressible flow. This derivation shows how the
Navier slip condition enters the thin film PDE. Also in section 2 we show how traveling
wave solutions with a contact line satisfy a third order ODE, in which the traveling
wave speed is determined by the upstream height. The PDE and associated traveling
wave ODE can be used to study contact lines under three scenarios, each of which we
consider in this paper:

I. Flow in which gravity is the only driving force. For example, a layer of fluid
wetting a dry surface as it slides down the surface under the action of gravity.

II. Flow in which the Marangoni force dominates gravity.

III. Flow in which Marangoni force and the force due to gravity are balanced.

The main results of this paper, both analytical (in section 3) and numerical (in
section 4) concern flow in which forces are balanced, but our numerical results add
something to the understanding of the first two scenarios as well.
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In section 3 we analyze the traveling wave ODE near the contact line when
Marangoni forces are present, under the Navier slip condition. Curiously, the leading
order terms of the ODE are independent of the precise form of the Navier slip condi-
tion; we are led to the problem of finding a function y = y(x) (representing the film
height) that is positive for x > 0 and satisfies

yy′′′ = 1, x > 0, y(0) = 0.(1.1)

This equation would appear to fall under the extensive classification of solutions of the
more general third order ODE yny′′′ = 1 contained in the paper of Boatto, Kadanoff,
and Olla [9]. However, we observe that the case n = 1 is special, and we find a
different structure for the solutions. In section 3.1, we find a two-parameter family of
asymptotic solutions

y(x) = ax+
1

2a
x2 log x+ bx2 + h.o.t.,(1.2)

where h.o.t. denotes higher order terms and a > 0 and b are free parameters. We
show how the series can be continued indefinitely, and in section 3.1 we perform a
reduction to a polynomial planar vector field that establishes the dimension of the
solution set.

In section 4 we present various results of numerical integration of the third order
traveling wave ODE. The technique we use is similar to that in earlier studies of
the precursor layer model [6], but here we show how the entire phase space can be
understood by focusing on the structure of stable and unstable invariant manifolds
associated with equilibria. Phase portraits are three-dimensional, since the ODE
is third order, so we visualize invariant manifolds through their intersection with
carefully chosen Poincaré sections.

The numerical solutions are compared with the asymptotic form (1.2) near the
contact line. The numerical results highlight various interesting issues. We find a
finite range of contact angles for each wave speed. This has relevance for the use of a
boundary condition relating contact angle and wave speed, as considered in [14, 18],
or for the case of a fixed contact angle condition, as considered in [31, 38] for singular
slip and in [20, 21, 23] for nonsingular slip. Moreover, at a given speed and at a
given contact angle in this range, there may be several different traveling waves. The
latter property is specific to the case in which gravity and Marangoni effects balance
and is related to the nonconvexity of the flux function in the lubrication model. This
particular effect is well understood for the same problem in which a simpler precursor
film model is used to remove the contact line singularity [6].

2. The lubrication approximation and traveling waves. In section 2.1, we
outline the lubrication approximation and formulate the PDE that governs the motion
of the thin liquid layer, including the Navier slip condition. In section 2.2, we derive
a third order ODE whose solutions are traveling wave solutions of the PDE.

2.1. The thin film PDE. Consider a thin liquid film moving slowly up a flat
solid surface, inclined at an angle α to the horizontal. The film is driven by a constant
surface stress τ , and gravity also acts on the film, as indicated in Figure 2.1. We shall
consider the film to be uniform in the transverse direction. This means that the
transverse velocity is zero, the in-plane velocity (u, v) and pressure p are functions of
x, z, and time t, and the free surface is given by z = h(x, t), where h is a function to
be determined. The lubrication approximation reduces the description of the flow to
a PDE for h(x, t).
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x
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τ
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z = h(x,t)

α

Fig. 2.1. Thin film propagating up an inclined solid surface.

The Navier–Stokes equations for the two-dimensional flow of the figure are as
follows:

(a) ρ(ut + uux + vuz) = −px + µ(uxx + uzz) − ρg sinα,

(b) ρ(vt + uvx + vvz) = −pz + µ(vxx + vzz) − ρg cosα,

(c) ux + vz = 0.

(2.1)

Here, ρ is the density, taken to be constant, consistent with the incompressibility
condition (2.1c), and µ is the viscosity.

In the lubrication approximation, we exploit two small quantities to reduce the
complexity of the equations, keeping only leading order terms but maintaining a
balance between terms that are significant, namely surface stresses and viscous forces.
Let H be a typical thickness of the film, say a maximum thickness. This is assumed
small compared to a typical length scale L along the solid surface. The other small
parameter is the Reynolds number Re = ρUH/µ, calculated with respect to the
thickness length scale, but where U is a typical velocity in the x-direction parallel to
the solid surface.

The lubrication approximation that emerges as the leading order terms consists
of two equations, with unknowns velocity u parallel to the solid surface and pressure
p (the normal velocity v is given separately by the incompressibility condition (2.1c)):

(a) px = µuzz − ρg sinα,
(b) pz = −ρg cosα.

(2.2)

To this system we add boundary conditions at z = 0 and z = h:

(a) p = pA − γhxx on z = h,

(b) µuz = τ on z = h,

(c) k(h)uz = u on z = 0.

(2.3)

Here, pA denotes atmospheric pressure, γ is the coefficient of surface tension, taken
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to be constant, τ is a constant surface stress1 coupled to the flow by the rate of
shear strain appearing on the left-hand side of (2.3b). (Other mechanisms produce a
surface stress, such as gradients in the concentration of a surfactant or airflow over
the surface.) The boundary condition (2.3c) expresses the Navier slip condition, in
which k(h) is a coefficient with dimension of length that becomes essentially zero away
from the contact line (i.e., for h > h0 where h0 is small). As in earlier work on the
Navier slip condition, we take k(h) to be a smooth and positive function; it would be
possible to cut k(h) off at a specified distance from an advancing contact line. For
simplicity we choose only smooth functions k(h) as in [17, 18, 39, 31]. Specific forms
for k(h) will be given later.

To derive an equation for h(x, t), we first integrate system (2.2) using the bound-
ary conditions (2.3) to obtain an expression for u in terms of z and h. Then u is
averaged across the film to get an average velocity Q, expressed entirely in terms of
h and derivatives of h. Finally, this formula for Q is substituted into the equation

ht + (hQ)x = 0

expressing conservation of mass. This procedure, explained in detail and in greater
generality elsewhere [17, 31], leads to the single equation

ht +

{
τ

2µ
q(h) − ρg sinα

3µ
c(h) − ρg cosα

3µ
c(h)hx +

γ

3µ
c(h)hxxx

}
x

= 0,(2.4)

in which

q(h) = h2 + 2hk(h), c(h) = h3 + 2h2k(h)(2.5)

would be quadratic and cubic functions (respectively) were it not for the modifications
from the Navier slip condition.

From (2.4) we can realize the three cases of the introduction:
1. Gravity dominates: τ = 0.
2. Marangoni forces dominate: τ >> ρg sinα.
3. Gravity and Marangoni effects are in balance: τ ∼ ρg sinα.

In each case, a slightly different scaling of the variables leads to nondimensional equa-
tions. We give the details in the third case, rescaling the variables as in [6]. We
introduce length scales H, L and a corresponding time scale T :

h = Hĥ, x = x̂L, and t = T t̂.(2.6)

Balancing the competing convective effects of gravity and Marangoni forces in (2.4)
gives H = 3τ

2 sinαρg . Setting L to be the capillary length on which surface ten-

sion balances the driving forces gives L = ( 2γH2

3τ )1/3 = ( 3γτ
2ρ2g2 sin2 a

)1/3. The time
scale is then chosen to be the one on which all three of these effects balance, T =
2 µ
τ2 ( 4

9τγρg sinα)1/3.
This leads to the equation

ht +

((
h2 +

2

3
hK(h)

)
− (h3 + h2K(h))

)
x

(2.7)

= D
(
(h3 + h2K(h))hx

)
x
− ((h3 + h2K(h))hxxx

)
x
,

1Here, we assume a constant surface tension gradient, proportional to the constant tempera-
ture gradient in experiments [37, 36], in the regime in which surface tension depends linearly upon
temperature.
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where D = ρg cosαTH3

3µL and

K(h) =
3k(Hh)

H
.(2.8)

We remark that D is typically small and is zero for a vertical plane (α = π/2). It will
be convenient to label the flux f(h) on the left-hand side of (2.7),

f(h) =

(
h2 +

2

3
hK(h)

)
− (h3 + h2K(h)),(2.9)

and to use the notation

C(h) = h3 + h2K(h).(2.10)

Then the depth-averaged velocity Q is given by

Q = (f(h) −DC(h)hx + C(h)hxxx)/h,(2.11)

and the PDE (2.7) is

ht + f(h)x = D(C(h)hx)x − (C(h)hxxx)x.(2.12)

In cases 1 and 2, a similar rescaling leads to equations similar to (2.12) but with
different flux functions f(h) (see [31]). Specifically:

1. When gravity dominates, the thin film will be coating by flowing down the
solid surface. Reversing x so that increasing x is in the direction of flow, we obtain
(2.12) with

f(h) = h3 + h2K(h).(2.13)

2. When Marangoni forces dominate, the gravity term in the flux drops out, and
we are left with

f(h) = h2 + hK(h).(2.14)

2.2. Traveling waves. We seek traveling wave solutions of (2.12). These take
the form h(x, t) = h(x−st), where h is a function of the single traveling wave variable
ξ = x− st, and s is the wave speed. Substituting into the PDE, and integrating once,
we obtain (dropping the bars)

E − sh+ f(h) = DC(h)h′ − C(h)h′′′,(2.15)

in which ′ denotes differentiation with respect to ξ, and E is the constant of integra-
tion.

Now we are interested particularly in solutions that have a contact line, at which
h = 0. Since the ODE is autonomous, we can assume the contact line is at ξ = 0.
Upstream (i.e., ξ −→ −∞), we assume the traveling wave approaches a constant
height, with at least the first three derivatives approaching zero. Thus, we have
boundary conditions

h(−∞) = h−, h′(−∞) = h′′(−∞) = h′′′(−∞) = 0, h(0) = 0.(2.16)

Letting ξ −→ −∞, we find E = sh− − f(h−).
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At the other end, letting ξ −→ 0−, we have Q −→ s. (I.e., the average speed
approaches the speed of the traveling wave at the contact line.) Using (2.11), we can
rewrite (2.15) as

−s+Q(h) = E/h.

Letting h −→ 0 leads to the conclusion E = sh− − f(h−) = 0. Thus, the wave speed
s is determined by the upstream height h−:

s =
f(h−)

h−
.(2.17)

In conclusion, the traveling wave satisfies the ODE

C(h)h′′′ = sh− f(h) +DC(h)h′,(2.18)

with boundary conditions

h(−∞) = h−, h(0) = 0.(2.19)

Finally, we discuss the leading order terms at the contact line in (2.18). To do so,
we need to specify the constitutive function k(h) in the Navier slip condition (2.3c).
The form of this function is not decided upon [17, 18], but the idea is that slip should
be confined to a small neighborhood of the contact line, where h is very small. Thus,
k(h) should be chosen so that it is nearly zero unless h is very small. Typically, k(h)
is chosen to be a power of h; in order to satisfy the above requirement, this power
should be negative. Thus we take

k(h) = ηhn−2,(2.20)

with n < 2 and η > 0. In [17], the choice is n = 1. This slip model was derived
by Neogi and Miller for flow over a porous surface [33]. Other choices are possible,
including n = 2 which can model polymer flow [12]. Note that for n > 2, k(h) grows
away from the contact line. With the choice (2.20), the function K(h) defined in (2.8)
becomes

K(h) = βhn−2,(2.21)

with β = 3ηHn−3. In particular, there are two parameters in this relation, namely β
and n.

Now consider the leading order terms as h −→ 0, i.e., near the contact line. We
have C(h) = h3 +h2K(h) ∼ βhn. Asymptotics for f(h) depend on which case we are
considering. In case 1, in which gravity dominates, f(h) = h3 + h2K(h) ∼ βhn. In
case 2 and case 3, the terms from the Marangoni force are higher order. Specifically
in case 3, f(h) = (h2 + 2

3hK(h)) − (h3 + h2K(h)) ∼ 2
3βh

n−1.
Retaining leading order terms in the ODE, we get, in case 1, the equation

βhn−1h′′′ = s+ βhn−1 +Dβhn−1h′.(2.22)

Thus, for case 1, the choice n = 1 leads to a constant coefficient equation. Notably,
there is then no singularity at h = 0.

In cases 2 and 3, we obtain the singular equation

hh′′′ = −2

3
+Dhh′.(2.23)
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At the contact line, we expect h′ to be finite (although it would be reasonable to
consider solutions with a vertical tangent at the contact line). Moreover, the param-
eter D will be considered small or zero. Thus, we take Dhh′ ∼ 0 to leading order.
Note that in arriving at (2.23), we have depended on two important assumptions: (1)
There is a surface driving force τ > 0, and (2) n < 2 in (2.20).

Rescaling ξ in (2.23), and dropping the last term, we are led to consider the initial
value problem

yy′′′ = 1, y(x) > 0 for x > 0, y(0) = 0,(2.24)

in which x = −( 2
3 )1/3ξ and y(x) = h(ξ).

3. Solutions near the contact line. In this section we explore properties of
the initial value problem (2.24). In subsection 3.1 we establish an asymptotic series
solution that has two free parameters, and in subsection 3.2 we reduce the third
order equation to a planar vector field, whose phase portrait proves the existence of
a two-parameter family of solutions.

3.1. Asymptotics. In this subsection, we elaborate on the proposed family (1.2)
of solutions of (2.24) and show how the terms of an asymptotic series can be calculated
systematically. To this end, consider the series2

y(x) = ax+
1

2a
x2 log x+ bx2 + Σ(x),(3.1)

where Σ(x) is expressed as a series with coefficients to be determined:

Σ(x) =

∞∑
k=3

k∑
j=2

dk jx
k(log x)k−j .(3.2)

Note that the series is organized as a sum of terms of increasing order (as x →
0+). We will show that the coefficients dk j may be calculated in the same order:
d32, d33, d42, d43, d44, d52, . . . . In what follows, it will be helpful to adopt the convention
that dkm = 0 whenever m ≤ 1.

Consider a single term zkj(x) = xk(log x)k−j with k ≥ 3, 2 ≤ j ≤ k. Then

z′′′kj = xk−3
{
Ak(log x)k−j +Bkj(log x)k−j−1 + Ckj(log x)k−j−2 +Ak−j(log x)k−j−3

}
,

where the coefficients A,B,C are nonnegative; most importantly Ak > 0 for k ≥ 3.
They are given by the formulae

Ak =

{
k(k − 1)(k − 2) if k ≥ 3,

0 if k ≤ 2,
Bkj =

{
(3k2 − 6k + 2)(k − j) if k > j,

0 if k ≤ j,

Ckj =

{
3(k − 1)(k − j)(k − j − 1) if k ≥ j + 2,

0 if k ≤ j + 1.

2Hocking [19] considered a leading order expansion of this form for a correction to the trailing
edge of Huppert’s solution [24] for flow down an inclined plane.
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Thus

y′′′ =
1

ax
+

∞∑
k=3

k∑
j=2

dk jz
′′′
kj

=
1

ax
+ x−3

∞∑
k=3

k∑
j=2

αk jx
k(log x)k−j ,

(3.3)

where the coefficients αk j are linear combinations of the dkj ’s:

αkj = Akdkj +Bkj−1dkj−1 + Ckj−2dkj−2 +Ak−(j−3)dkj−3.(3.4)

(Recall dkm = 0 if m ≤ 1.)
Now substitute (3.1), (3.3) into (1.1):

[
ax+

1

2a
x2 log x+ bx2 +

∞∑
k=3

k∑
j=2

dk jx
k(log x)k−j




×

 1

ax
+

∞∑
k=3

k∑
j=2

αk jx
k−3(log x)k−j


 = 1.

(3.5)

Equating terms, we get a family of equations for the coefficients dkj (recall the coef-
ficients αkj depend linearly on the d’s):

x log x :
1

2a2
+ aα32 = 0,

x :
b

a
+ aα33 = 0,

(3.6)

xk−2(log x)k−j :

aαkj + 1
2aαk−1j + bαk−1j−1 + 1

adk−1j−1 +
∑

m+p=k+1

∑
n+q=j+1

dmnαpq = 0.
(3.7)

In the final sum, the additional constraints on the indices are implied from (3.5):

m ≥ 3, p ≥ 3, 2 ≤ n ≤ m, 2 ≤ q ≤ p.
In particular, these imply

m ≤ k − 2 and p ≤ k − 2.(3.8)

Also note that there is no contribution from the double sum if k = 4, or when j = 2.
Now from (3.4), we observe that the equation for the coefficient of xk−2(log x)k−j

has a term aAkdkj , and the other terms involve dkm with m ≤ j − 1 (these terms
come from αkj) and dmq with m ≤ k−1, 2 ≤ q ≤ m. Consequently, the equations can
be solved successively for the coefficients dkj in their natural order associated with
terms of increasing order in the asymptotic expansion. Thus, the asymptotic series
can be continued to all orders and defines a two-parameter family of formal solutions
of the ODE (1.1).
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3.2. Reduction to a planar vector field. In this subsection, we reduce the
ODE to a planar vector field that we analyze directly. While this is not a new tech-
nique (see, for example, [9, 40], where similar reductions are performed on other third
order ODEs related to similarity solutions of thin film equations), the real interest
lies in using the planar vector field to identify a family of solutions of the ODE with
the two-parameter family of asymptotic solutions in the previous subsection.

Consider the ODE (1.1):

yy′′′ = 1.(3.9)

Since this equation is autonomous and has a natural scaling invariance (scaling x by
a2 and y by a3 leaves the equation unchanged), we can reduce the equation to a second
order equation that is also autonomous. This is achieved by writing w = y′ and letting
the independent variable be y. Thus, (3.9) becomes the second order equation

yw
d

dy
w
dw

dy
= 1.(3.10)

Now y ddy is the logarithmic derivative, so we redefine the independent variable as
η = log y, leading to

w
d

dη
w
dw

dη
= w2 dw

dη
+ eη.(3.11)

Now we write this equation as a first order system and rescale to make it autonomous.
First let v = w dwdη . Then

w
dv

dη
= eη + vw, w

dw

dη
= v.(3.12)

Now we remove the singularity at w = 0 (or rather send it to infinity) by letting
u = 1/w. Then

du

dη
= −u3v,

dv

dη
= eηu+ v.(3.13)

Finally we scale the variables to make the system autonomous:

U = eη/3u, V = e−2η/3v,

leading to the system

U ′ =
1

3
U − U3V, V ′ = U +

1

3
V.(3.14)

In terms of the original variables, x, y, we have U = y1/3/y′, V = y1/3y′′. The
asymptotic form (1.2) of the solutions approaching y = 0 yields

U ∼ a−2/3x1/3 −→ 0+, V ∼ a−2/3x1/3 log x −→ 0−(3.15)

as x −→ 0+. Note that V/U ∼ log x −→ −∞ as x −→ 0+. Thus we are interested
in solutions of (3.14) approaching the origin as the independent variable η = log y
approaches −∞, with U(η) > 0, V (η) < 0.
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U ’ = U/3 − U3 V
V ’ = U + V/3    
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Fig. 3.1. Phase portrait for system (3.14).

The origin is an equilibrium with a double eigenvalue 1/3, but a single eigenvector
(U, V ) = (0, 1). The phase portrait is shown in Figure 3.1. Note that the saddle point
at V = −3U,U = −3−2/3 in the second quadrant is not relevant to us. The stable
and unstable manifolds correspond to solutions with y −→ ∞ or y −→ 0−. It is
straightforward to prove that the trajectories in the fourth quadrant have a unique
minimum as they cross V = −3U and cross the U axis as shown in the figure. Indeed,
dV/dU = 3 on the U axis and is zero on the line V = −3U . Moreover,

dV

dU
=

U + 1
3V

1
3U − U3V

< 3

and is positive for U > 0, V < 0. Thus, trajectories terminating at any point U1 > 0
on the U axis are monotonically increasing from a point (U0,−3U0) with 0 < U0 < U1

and decrease monotonically to the left of the line V = −3U . However, the V axis is
invariant for the vector field (3.14), so the trajectories are forced into the origin as η
decreases. On every ray V = −AU with A > 3, we have

dV

dU
=

U + 1
3V

1
3U − U3V

> −A.

Consequently, trajectories cross every such ray as they approach the origin, proving
that dV/dU −→ −∞ as η −→ −∞. In fact, neglecting the U3V term as trajectories
approach the origin, we find V ∼ 3U log(U/U0) as U −→ 0+.

This analysis of the fourth quadrant of the vector field proves that there is a
one-parameter family of trajectories parameterized by U0 > 0. The trajectories are
also invariant under translation of η by a constant, since system (3.14) is autonomous.
But η = log y, so this corresponds to multiplying y by a constant, accompanied by the
corresponding scaling of x, according to the natural scale invariance of (1.1). This is
the second parameter that is apparent in the asymptotic series. We have thus proved
the following proposition.
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Proposition 3.1. There is a two-parameter family of solutions of the initial
value problem (1.1).

4. Numerical results. In this section, we show results of numerical simulations
of the full traveling wave ODE in the spirit of [6]. In particular, we illustrate how
solutions corresponding to contact lines relate to the parameters a, b in the asymptotic
expansion derived in section 3.1, but we also explore the two simpler cases 1 and 2,
in which gravity or the Marangoni forces dominate, respectively.

It is convenient to write the third order equation as a first order system, in which
we replace h by u:

u′ = v,
v′ = w,
w′ = g(u, v, s),

(4.1)

where g(u, v, s) = su−f(u)
C(u) +Dv.

The main parameter s is the traveling wave speed. We take D = 0, corresponding
to fluid flowing down a vertical wall. The functions f, C were given in section 2:
Case I (gravity dominates): f(u) = u3 + u2K(u).
Case II (Marangoni force dominates): f(u) = u2 + uK(u).
Case III (gravity and Marangoni force are comparable): f(u) = u2 − u3 +K(u)( 2

3u−
u2).
Recall also the formulae for C and K:

C(u) = u3 +K(u)u2, K(u) = βun−2.(4.2)

In the function K, there are additional parameters β > 0 and n < 2; generally, we
take n = 1 and β = 0.01, but we shall also consider the effect of varying β.

Equilibria of system (4.1) are (u, v, w) = (u, 0, 0), with g(u, 0, s) = 0. I.e.,

f(u) = su.(4.3)

We study all the stable and unstable manifolds of equilibria, their boundaries, inter-
sections, and behavior at u = 0 in order to gain some understanding of the overall
phase portrait.

Computational algorithm. Trajectories for (4.1) are computed using the im-
plicit Adams method in the LSODE package. To compute trajectories along a stable
manifold starting near an equilibrium, we integrate backward in time. As for com-
puting trajectories forward in time along an unstable manifold, this process is stable
until the manifold comes near another equilibrium.

It is convenient and instructive (see [6]) to use a two-dimensional Poincaré section
Σu=const to represent these invariant manifolds. The Poincaré section with u constant
has the property that trajectories cross it transversally, unless v = 0. In particular,
the invariant manifolds intersect Σu in points or curves, depending on whether the
manifold is one- or two-dimensional. In the Poincaré section, we shall easily visualize
when a two-dimensional invariant manifold for one equilibrium is bounded by a one-
dimensional invariant manifold for a different equilibrium.

Transverse intersections of two-dimensional manifolds correspond to structurally
stable heteroclinic orbits between equilibria. In the Poincaré section, these appear as
transverse intersections of curves.
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We are interested in solutions (u, v, w)(ξ) that reach u = 0 at a finite value of
ξ. Specifically, we will say a trajectory (u(ξ), v(ξ), w(ξ)), ξ < ξ0 touches down at
ξ = ξ0 if u(ξ) −→ 0+ as ξ −→ ξ0− and u(ξ) > 0 for ξ < ξ0. Similarly, we will say
(u(ξ), v(ξ), w(ξ)) is unbounded if u(ξ) −→ ∞ as ξ −→ ±∞.

The numerical results were obtained for specific choices of parameters: s =
2/9, D = 0, n = 1. (The choice n = 1 was suggested in [17].) The choice of s
is intended to be representative of the physical solutions of interest. In case I, dif-
ferent choices of β are considered, while in cases II and III, β = 0.01 is taken to be
representative.

4.1. Case I: Gravity dominates. When gravity dominates, (4.1) has the cubic
polynomial flux function

f(u) = u3 + βu.(4.4)

Note that (4.1) has the symmetry property that it is unchanged by changing the sign
of u and ξ. (Then w changes sign, but v does not.)

-0.6 -0.4 -0.2 0 0.2 0.4 0.6

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

u

u3+ β   u 
su          

B 

M 

Fig. 4.1. f(u) and su.

In Figure 4.1, we show (4.3) for β = 0.01. The equation has two solutions corre-

sponding to equilibria of (4.1), namely u = ±
√

190
30 . (Note that the solution u = 0 is

not an equilibrium.) The associated equilibria are

B =

(
−
√

190

30
, 0, 0

)
, M =

(√
190

30
, 0, 0

)
.

Although B is not physical since it corresponds to negative u, it is nonetheless helpful
to consider the associated invariant manifolds.

Linearizing around M , we find the system has two complex conjugate eigen-
values with positive real part (corresponding to a two-dimensional unstable mani-
fold denoted WU (M)), and one real, negative eigenvalue (corresponding to a one-
dimensional stable manifold denoted WS(M)). Correspondingly, the equilibrium B
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Fig. 4.2. Case I with β = 0.01. (a) Σ0. (b) Trajectories with a contact line. Shown are only
the values at the first intersection with Σ0.

has a two-dimensional stable manifold WS(B) and a one-dimensional unstable man-
ifold WU (B).

As described in [6, 30], the nature of the two-dimensional manifolds changes from
node to focus as the parameter D varies away from zero. In discussing the phase
portraits here (with D = 0), we consider the focus case only, for which the two
associated eigenvalues are complex conjugates. This implies that, near M , solutions
along the unstable manifold spiral out. Thus to compute the unstable manifold, we
compute trajectories starting from a locus of points along a straight line through M
in the tangent plane.

Global picture of phase space. We are interested in how trajectories touch
down, so we study the Poincaré section Σ0 at u = 0. By symmetry, the invariant man-
ifolds of B and M are reflections of each other across the plane u = 0. The manifolds
WU (B) and WS(M) are one-dimensional, so they intersect Σ0 in isolated points, if
at all. Each one-dimensional invariant manifold has two connected components, or
branches, separated by the equilibrium. Referring to Figure 4.2(a), representing the
Poincaré plane u = 0, for β = 0.01, we observe that one branch of WU (B) intersects
Σ0 twice: first at (u, u′, u′′) = (0, 1.06, 3.9), then at (0,−60.0,−12.6).3 The other
branch is unbounded at u = −∞ and does not intersect Σ0. Similarly, one branch
of WS(M) intersects Σ0 at (u, u′, u′′) = (0, 1.06,−3.9), while the other branch is
unbounded at u = ∞ and does not intersect Σ0.

The two-dimensional manifolds WU (M) and WS(B) intersect Σ0 in curves (see
Figure 4.2(a)). WU (M) is bounded on both ends by the same branch ofWU (B). Near
this boundary WU (M) wraps around WU (B) an infinite number of times. The spiral
of WU (M) around the first intersection of WU (B) near (0, 1.06, 3.9) can be seen in
Figure 4.2(a). By the time WU (B) intersects the second time near (0,−60.0,−12.6),
the spiral of WU (M) has become so elongated that it cannot be resolved at this scale.

The points P on Σ0 of physical interest are those which represent trajectories
from M that hit u = 0 for the first time at P . These correspond to traveling wave

solutions which asymptote to u =
√

190
30 at ξ = −∞ and have a contact line. Although

trajectories continue into negative u values, solutions with u < 0 are no longer phys-

3Here and throughout this section, we give the numerical values of intersection points to one or
two decimal places.
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Fig. 4.3. Minimum slope at u = 0 as a function of β, case I.

ical. All trajectories in WU (M) hit u = 0. The curve of points corresponding to
first intersections are shown in Figure 4.2(b). Note that one end of the curve ter-
minates at u′ = 0. This corresponds to a trajectory that turns around at u = 0.
This same trajectory eventually winds around to intersect Σ0 again, this time with a
touchdown of slope u′ = −130.1, corresponding to the other end of the curve shown
in Figure 4.2(b). For trajectories inside this orbit, we obtain the finite range of touch-
down slopes, spanning −130.1 ≤ u′ ≤ 0. Such large slopes may of course take the
model outside its range of validity. However, the slopes here are dimensionless, and
may correspond in dimensional variables within the range of the model. This issue is
examined in the context of thin film rupture in the paper of Zhang and Lister [42].

Dependence of the range of contact slopes on β. In Figure 4.3, we show
how the minimum contact angle varies with the parameter β (from the Navier slip
condition (4.2)) in the range 0 < β < 2/9. Keeping s = 2/9, D = 0, and n = 1
fixed, the phase space of solutions is topologically equivalent for 0 < β < 2

9 . As

β → 0, M and B approach (±
√

2
3 , 0, 0). As β increases from 0, M and B move closer

together until all solutions of (4.3) vanish at β = 2
9 , where f ′(0) = s. For all β in

this range, the maximum contact slope is zero. The minimum contact slope decreases
with decreasing β, as seen above. The plot shows computed values for the minimum
value of u′ at u = 0 for β ranging from 0.001 to 0.22.

4.2. Case II: Marangoni convection dominates. Now consider (4.1) when
the Marangoni convection term dominates. In this subsection we consider only β =
0.01; in this case and in case III we compute solutions only in the physical range
u ≥ 0. The new flux function is quadratic:

f(u) = u2 + β.(4.5)

For different values of s, the ODE will have zero, one, or two equilibria. The case
with s = 2/9 is shown in Figure 4.4. The two equilibria are

B =

(
10 −√

19

90
, 0, 0

)
, M =

(
10 +

√
19

90
, 0, 0

)
.

M has a two-dimensional unstable manifold WU (M) and a one-dimensional sta-
ble manifold WS(M). B has a two-dimensional stable manifold WS(B) and a one-
dimensional unstable manifold WU (B).
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Fig. 4.4. f(u) and su, case II, with β = 0.01.

The dynamics at the contact line are now fundamentally different than in the
gravity dominated case. The flux function makes the differential equation (4.1) singu-
lar at u = 0. Note that if (u, v, w) touches down, then w = u′′ will become unbounded
in finite time, so an adaptive time step procedure such as the one we use is essential to
capture detailed behavior near u = 0. The most important difference from the gravity
dominated case is that now trajectories cannot be computed beyond u = 0. Thus,
trajectories generically fall into two cases: those which touch down in finite time and
those which escape to u = ∞. Between these two cases are heteroclinic orbits that
approach equilibria as ξ −→ ±∞.

Global picture of phase space. Since u′′ is unbounded at u = 0, it is not
possible to study Σ0. Instead, we choose the section Σ0.1 between B and M . The in-
formation about boundaries and dimensions can be read off as before. It is necessary,
however, to do further computations to find the range of contact slopes. Intersections
of the two-dimensional manifolds again correspond to heteroclinic orbits between equi-
libria, representing traveling wave solutions with a precursor layer, as in [6].

Both branches of WS(M) are unbounded. One does not pass Σ0.1. The other
branch intersects Σ0.1 at (u, u′, u′′) = (0.1, 0.16,−0.43), narrowly avoids u = 0, and
intersects again at (u, u′, u′′) = (0.1,−2.00, 20.71) before heading to u = ∞. In con-
trast, both branches of WU (B) touch down. One branch does not intersect Σ0.1. The
other intersects first at (0.1, 0.15, 0.52), then at (0.1,−1.72,−2.02) before touching
down. These intersection points are labeled in Figure 4.5.

The two-dimensional manifolds WU (M) and WS(B) intersect transversally in
a single heteroclinic orbit from M to B. Hence the two branches of WU (B) are
boundaries of WU (M). The curve WU (M) shown in the Poincaré section of Fig-
ure 4.5 represents trajectories that can intersect Σ0.1 several times. All trajectories
in WU (M) touch down, with a finite range of contact angles. For the specific pa-
rameters β = 0.01, s = 2/9, we find this range to be −2.436 < u′ < −0.464. Note
that, unlike in the gravity driven case, there are no trajectories with contact slope
arbitrarily close to 0.

4.3. Case III: The full equation. We now consider the full equation with
β = 0.01 and

f(u) = u2 − u3 + β

(
2

3
− u
)
.(4.6)
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Fig. 4.6. f(u) and su, case III, β = 0.01.

See [6] for a parallel discussion of the precursor model case without Navier slip. The
flux is now nonconvex, which means the ODE may have one, two, or three equilibria,
depending on the value of s. For s = 2/9, (4.3) has three solutions. We will find
that phase space becomes correspondingly more complicated. The three equilibria
(see Figure 4.6) are labeled

B = (1/30, 0, 0), M = (3/10, 0, 0), T = (2/3, 0, 0),

for bottom, middle, and top. M has a two-dimensional unstable manifoldWU (M) and
a one-dimensional stable manifold WS(M). The other equilibria B and T have two-
dimensional stable manifoldsWS(B),WS(T ) and one-dimensional unstable manifolds
WU (B),WU (T ).

As in the case where Marangoni convection dominates gravity, trajectories in the
invariant manifolds either will be heteroclinic orbits, unbounded, or will touch down.
There is a Lyapunov function that prevents periodic or homoclinic orbits (cf. [6]).
Solutions cannot be computed past u = 0 since the ODE becomes singular. In what
follows, we describe results with respect to the Poincaré section Σ0.2 between B and
M at u = 0.2.
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Fig. 4.7. Case III. (a) Σ0.2. (b) Blow-up of small box in (a).

The one-dimensional manifolds. WU (B), WU (T ), and WS(M) are the one-
dimensional invariant manifolds. One branch of WU (B) touches down and does not
pass through u = 0.2. The other branch becomes unbounded in u and passes Σ0.2

at (0.2, 0.739, 2.120). WU (T ) exhibits similar behavior, with an unbounded branch
that does not pass through Σ0.2 and a branch that touches down and hits Σ0.2 at
(0.2,−0.385,−0.164). Both branches of WS(M) touch down. One branch, WS

1 (M),
passes through Σ0.2 at (0.2, 0.169,−0.324). The other, WS

2 (M), passes through at
(0.2, 2.264,−1.503).

The unstable manifold of M. The manifold WU (M) crosses WS(B) in three
orbits, shown as intersection points in Figure 4.7(b). Note also that WU (M) wraps
infinitely many times around bothWU (B) andWU (T ). These spirals indicate connec-
tions from M to both T and B. Connections to B are already evident. Connections
to T would appear as an intersection of WU (M) and WS(T ) in any Poincaré section
placed between M and T .

The structure of the intersection of WU (M) with WS(B) is shown in more detail
in Figure 4.7(b). WU (M) intersects WS(B) three times. Each of these intersections
I1, I2, and I3 corresponds to a heteroclinic orbit from M to B. Furthermore, WS(B)
divides the qualitative behavior of trajectories on WU (M). All trajectories on the
same side asWU (T ), i.e., between I1 and I2 and between I3 andWU (T ), touch down.
All trajectories on the other side, i.e., between WU (B) and I1 and between I2 and I3,
are unbounded.
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The stable manifold of T. WS(T ) also has two boundaries, which are the two
branches of WS(M). The spiral at WS

1 (M) can be seen clearly, while the spiral at
WS

2 (M) is four orders of magnitude longer than it is wide, and requires corresponding
resolution to be seen.

The stable manifold of B. Each trajectory on the stable manifold of B (which
hits Σ0.2) comes out from B = (1/30, 0, 0), passes through u = 0.2, turns around, and
hits u = 0.2 again before touching down. Thus each trajectory appears as two points
on Σ0.2. WS(B) is split by WU (M) into four distinctly behaving sheets which we
label C1, C2, C3, and C4.

The sheet C1 approaches the heteroclinic orbit I1 at one end and wraps around
WS

1 (M) at the other. The sheet wraps back on itself around (0.2, 0,−1). Each
trajectory has one point between I1 and (0.2, 0,−1) (where u is increasing) and one
point between (0.2, 0,−1) and WS

1 (M) (where u is decreasing). Trajectories which
pass very close to I1 going out also pass very close to WS(M) coming back. In fact,
C1 spirals around WS

1 (M) infinitely many times.
Outgoing trajectories in C2 are bounded by I1 and I3. The trajectories which

pass very close to I1 spiral around WS
2 (M) on their second pass, and the trajectories

which pass very close to I3 spiral around WS
1 (M) when they return. Trajectories

between these two boundaries are very close to WS(T ) on their return.
Outgoing trajectories on C3 are bounded by I3 and I2. Trajectories that pass

near both of these orbits on the way out spiral tightly around WS
2 (M) on their way

back. Trajectories between the two boundaries form a thin loop that follows WS(T )
very closely, and stretches down to (0.2, 2.84,−1.86).

Finally, outgoing trajectories on C4 are bounded on one side by I2. The trajec-
tories which pass near to I2 spiral tightly around WS

1 (M) on their return journey.
Trajectories which pass further away from C1 return in a line that follows WS(T )
and eventually stretches beyond it.

Note that both WS
1 (M) and WS

2 (M) have quadruple spirals, that is, four sheets
wrapping around them infinitely many times. WS

1 (M) has one boundary each of
WS(T ), C1, C2, and C4, whereas WS

2 (M) has one boundary each from WS(T ) and
C2, and two from C3.

4.4. Connection to the asymptotics. In the computations for case III, for a
given wave speed s, we find a one-parameter family of trajectories that touch down.
Here we relate this one-parameter family to the two-parameter family of local touch
down solutions given by the asymptotics of section 2. Specifically for s = 2/9, we find
a finite range of values for the parameter a in the asymptotic solution.

With the scaling ξ− ξ0 = −( 2
3 )1/3x of section 2, the asymptotic expansion about

a point ξ = ξ0 of touchdown becomes

h(ξ) = −a
(

2

3

) 1
3

η +
1

2a

(
2

3

) 2
3

η2 log

(
−
(

2

3

) 1
3

η

)
+ b

(
2

3

) 2
3

η2 + h.o.t.,(4.7)

in which η = ξ−ξ0 < 0. In particular, the contact slope is given by v(ξ0) = −a ( 2
3

)1/3
.

We can read off the limiting value of v(ξ) as u approaches zero and thus obtain the
value of a. Corresponding values for b also come from the form (1.2). Specifically, we
find

w = u′′ =
1

a

(
2

3

) 2
3

log

(
−
(

2

3

) 1
3

η

)
+

3

2a

(
2

3

) 2
3

+ 2

(
2

3

) 2
3

b+ h.o.t.(4.8)
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Thus,

e

(
a( 3

2 )
2/3

w(ξ)
)
≈ −

(
2

3

)1/3

e(
3
2+2ab)(ξ − ξ0).(4.9)

Consequently, e(a(
3
2 )

2/3
w(ξ)) approaches a constant slope m as u approaches zero.

Computing this value of m from the calculated trajectory, and the parameter a as
above, the expression

m = −
(

2

3

)1/3

e(
3
2+2ab)(4.10)

determines b. In Figure 4.8, we show a sample comparison between the first three
terms of the asymptotic expansion with the corresponding numerical solution of the
full equation, with parameters a, b calculated as described above.

Range of a and b. Plotting the two asymptotic parameters a and b against each
other, for all trajectories on WU (M) which touch down, gives a curve in the (a, b)
plane. Consider the close up Poincaré section of the intersection between WU (M)
and WS(B). In Figure 4.9, we show this curve for points on WU (M) between I1 and
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I2 corresponding to trajectories that touch down in finite time. Points adjacent to I1
and I2 correspond to identical values of a and b, in fact, the same values as for the
branch of WU (B) that touches down. The curve in Figure 4.9 varies smoothly but
very nearly doubles back on itself. Trajectories near the heteroclinic orbits approach
B and then shoot off along WU (B).

The points along WU (M) from I3 to WU (T ) give another one-parameter family
of solutions. Their a, b values range continuously from the a, b value of the branch of
WU (B) that touches down (since I2 is another heteroclinic orbit) to the a, b value of
the branch of WU (T ). This second curve closely follows the first one.

5. Discussion. In this section, we discuss the significance of the results for the
traveling wave problem and the moving contact line. The most striking conclusion
from our numerical results is that for each of the three problems considered, there is
a limited range of contact angles. This particular observation has not been noted in
previous studies of the traveling wave problem with slip [31, 38] for the case of gravity
driven films. For the Marangoni cases II and III the effect is even more pronounced;
the range does not include a zero contact angle, in contrast to well-known results for
(2.12) without convection (i.e., f = 0) for both traveling waves [9] and weak solutions
of the full PDE [8, 3]. For example, in case I, Figure 4.2(b), for each contact slope u′

in the range (−130.1, 0], there is a unique traveling wave solution that touches down
with that slope. In contrast, in case III, not only are there no traveling waves that
touch down with zero slope, but for each slope in the range there can be more than
one traveling wave with that touchdown slope, as demonstrated in Figure 4.9.

In experiments, the contact line speed is often observed to be related to the
dynamic contact angle or the slope of the film as the thickness approaches zero.
For the model, this would result in a boundary condition relating the contact angle
to the speed of the wave. Since the upstream thickness is related to the speed s
via (2.17), for traveling waves, such a boundary condition becomes a relationship
between upstream thickness and contact angle. In case I, the boundary condition
would select a unique traveling wave, provided the contact slope is in the admissible
range. However, in case III, such a law does not in general select a unique traveling
wave. A similar nonuniqueness was found for the precursor model [6] in the case of
gravity and opposing Marangoni stress.

There is also the issue of whether the contact angle should be related to the slope
of the free surface at zero height, or to an observed slope, that might be taken to
be the maximum slope, generally slightly away from the contact line itself. There is
much discussion of this issue in the literature (see [25, 26] and the references therein).
The Navier slip condition is an attempt to incorporate in a continuum model the
physical effects at the molecular scale. For this reason, the asymptotic results apply
strictly at the contact line. As in [25], it would be possible to carry out matched
asymptotics to relate the asymptotic solution at zero height to solutions of the full
problem away from a small neighborhood of the contact line. In this paper, we have
instead compared numerical solutions with the asymptotic solution; the discussion
above is based on this comparison.

Case III is particularly interesting because of the nonconvex flux and the con-
nection to compressive and undercompressive waves discussed in [6]. The notion of
compressive and undercompressive carries over to this paper in the following way: we
call trajectories from M that touch down compressive traveling waves. If the trajec-
tory from T touches down, we refer to it as an undercompressive wave. Unlike the
precursor model in [6], we do not have characteristics ahead of the wave, hence these
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names are used to distinguish between cases where characteristics from the bulk film
go into the contact line (compressive) or come out of the contact line (undercompres-
sive). In the former case, information from the bulk can influence the contact line. In
the latter case, information from the contact line is carried into the bulk.

Note that there is a range of speeds for which we have three equilibria B, M , and
T . We conjecture that for speeds in an interval within this range, one branch of the
unstable manifold from T touches down to u = 0. Each such trajectory will have a
touchdown angle. It would be interesting to know if a given boundary condition at
the contact line selects a unique undercompressive wave.

It would be interesting to consider the traveling waves that touch down in the
context of the dynamic free boundary problem for the PDE (2.12). We expect that
the structure of case III is as rich as that for the precursor model [6, 4]. The contact
line raises a new issue: that of how to treat the free boundary for the full PDE. The
full nonlinear dynamics have not been explored, with the exception of [35], in which
a special case of the PDE without convection was studied.

Acknowledgment. We gratefully acknowledge helpful discussions with David
Schaeffer.
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Abstract. We consider existence and stability of dispersion-managed solitons in the two ap-
proximations of the periodic nonlinear Schrödinger (NLS) equation: (i) a dynamical system for a
Gaussian pulse and (ii) an average integral NLS equation. We apply normal form transformations
for finite-dimensional and infinite-dimensional Hamiltonian systems with periodic coefficients. First-
order corrections to the leading-order averaged Hamiltonian are derived explicitly for both approxi-
mations. Bifurcations of soliton solutions and their stability are studied by analysis of critical points
of the first-order averaged Hamiltonians. The validity of the averaging procedure is verified and the
presence of ground states corresponding to dispersion-managed solitons in the averaged Hamiltonian
is established.

Key words. existence and stability of pulses, optical solitons, dispersion management, averaging
theory, normal form transformations, errors and convergence of asymptotic series, periodic NLS
equation, integral NLS equation, Gaussian approximation
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1. Introduction.

1.1. Motivations. Ultrafast high–bit-rate optical communication networks are
enhanced by the dispersion management technology when two optical fibers of op-
posite dispersion are periodically concatenated into a line [1]. If the communication
network has low path-averaged dispersion and high local dispersion, the data signals
are optimally transmitted from the input to output ends through a periodic sequence
of compression and expansion cycles. The long-haul dispersion management is techno-
logically combined with standard loss management when a periodic chain of amplifiers
compensates distributive fiber losses.

Many recent experimental groups reported revolutionary performance of dispersion-
managed (DM) pulses in optical communication networks [2, 3]. Two regimes were
studied in detail: DM solitons and chirped return-to-zero pulses. DM solitons are time
bits transmitted stationary on the average through the long-haul communication net-
work [2]. The chirped return-to-zero pulses are weakly broadened on the average
due to transmission, and some post-transmission compression may be required at the
output of the network [3].

This paper addresses the stationary DM solitons and resolves yet open problems
of existence and stability of stationary DM solitons described by a periodic nonlinear
Schrödinger (NLS) equation. Theoretical studies of DM solitons are based on one
of the three averaging methods: (i) variational Gaussian approximation, (ii) asymp-
totic reduction to an integral NLS equation, and (iii) numerical split-step averaging
algorithm (see the latest reviews [4, 5, 6]).
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The variational Gaussian approximation truncates the periodic NLS equation at
a finite-dimensional Hamiltonian system with periodic coefficients. The truncation
is performed by integrating the Lagrangian density of the NLS equation over the
Gaussian pulse and varying the resulting function with respect to parameters of the
Gaussian pulse [7, 8]. Periodic orbits of the nonautonomous Hamiltonian system
correspond to stationary DM solitons [9, 10]. In an optimal design of the dispersion
map, the evolution length for dispersion variations is much shorter than the lengths
of average dispersion and fiber nonlinearity. Within this limit, the nonautonomous
Hamiltonian system can be averaged over the map period. The averaging procedure
results, at the leading-order approximation, in a planar dynamical system [11, 12].
Existence and stability of DM solitons can be studied by analyzing trajectories on
a phase plane near the critical points of the Hamiltonian system [13]. One of the
drawbacks of the Gaussian approximation is the lack of information about the error
of the averaging procedure.

The asymptotic reduction to an integral NLS equation is also based on averaging
of the periodic NLS equation over a short period of the dispersion map [14, 15]. The
method is, however, much more general, since the kernel for the averaging transforma-
tion is the most general Fourier solution of the linear periodic Schrödinger equation,
which includes the Gaussian pulse as a particular case. Stationary DM solitons are
approximated by the time pulse solutions of the nonlinear eigenvalue problem asso-
ciated with the integral NLS equation. The DM soliton solutions have constantly
rotating complex phase along the fiber [15, 16]. Only when the integral NLS equation
is approximated at the Gaussian pulse [17], the resulting dynamical system repro-
duces the same planar Hamiltonian system as in [13]. In the asymptotic reduction
method, the integral NLS equation can be viewed as the leading-order term in a set
of canonical transformations applied to the periodic NLS equation [18].

At last, the numerical split-step averaging algorithm is applied to separate the
pulse resolution in time and the almost periodic evolution of the pulse along the fiber
by averaging the output of the split-step method over many time periods [5, 6]. A
single pulse with a preserved value of energy was found to converge to a station-
ary DM soliton unless various resonances and temporal instabilities resulted in an
unpredictable loss of convergence of the numerical algorithm [6, 19].

We are motivated by a number of averaging methods applied to the periodic NLS
equation and by contradictory results on existence and stability of DM solitons found
within these methods. In order to justify and clarify these methods, we develop a
systematic asymptotic procedure for averaging of the periodic NLS equation, based
on normal form transformations. We extend the perturbation expansions to the next
order, where the first-order corrections to the leading-order equations are derived. The
validity of averaging methods and the errors (accuracy) of the leading-order and first-
order approximations are proved rigorously for a two-step dispersion map. Branches of
stationary DM solitons and their stability are analyzed within the averaged equations.

This paper is structured as follows. In section 1.2 we describe the physical model,
parameters, and normalizations. In section 1.3 we discuss two approximations of DM
solitons and summarize the previously known results, together with our main propo-
sitions. In sections 2.1–2.4 we study the Gaussian approximation, in combination
with the leading and first orders of the averaging method. We find explicitly ana-
lytical curves for existence and stability of the DM solitons in this lower-dimensional
approximation. In sections 3.1–3.3 we analyze the full PDE problem and prove con-
vergence of the leading and first orders of the averaging method. The existence of
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ground states is proved in the averaged equation but the analytical curves are im-
plicit in this higher-dimensional approximation. Section 4 describes open problems of
analysis beyond the first-order averaging theory.

1.2. Model and parameterizations. The NLS equation for optical pulses in
dispersion-compensated fibers is

i
∂U

∂Z
− 1

2
β2(Z)

∂2U

∂T 2
+ γ2(Z)|U |2U = 0,(1.1)

where U(Z, T ) is the electric field envelope of the carrier wave at the operating wave-
length λ0, while β2(Z) and γ2(Z) are the fiber dispersion and nonlinearity [1]:

β2 = − λ2
0

2πc
D(Z), γ2 = γ exp

[∫ Z

0

g(Z ′)dZ ′ − αZ

]
, γ =

2πn2

λ0Aeff
(> 0).(1.2)

All units in (1.1)–(1.2) have dimensional form, such that D(Z) is the dispersion coef-
ficient measured in ps/(nm × km), c is the speed of light in km/sec, |u|2 is the light
intensity in mW, n2 is the nonlinear refractive index in (µm)2/mW, Aeff is the effec-
tive fiber area in (µm)2, α is the distributive loss coefficient in km−1, and g(Z) is the
periodic amplification. For example, if Aeff = 50(µm)2, c = 3 105km/sec, λ0 = 1.5µm,
n2 = 2.5 10−11(µm)2/mW, and D = 0.12ps/(nm × km), then β2 ≈ −0.1ps2/km and
γ ≈ 2 10−3(mW × km)−1, which are reasonable values for these coefficients.

The dispersion map D(Z) consists of two piecewise-constant fibers of lengths L1

and L2 in km, such that L1 + L2 = LDM, which have dispersion values D1 and D2.
The total number of fiber segments is NDM. The amplification map g(Z) is periodic
with period LAM, where the ratio LDM/LAM is integer. A typical loss compensation
due to erbium-doped fiber amplifiers is

g = αLAM

NAM∑
n=1

δ(Z − nLAM ),(1.3)

where NAM is the number of amplifiers over the transmission line: Z ∈ [0, NDMLDM]
and the amplifiers compensate the losses exactly. As a result, the fiber nonlinearity
γ2(Z) is a periodic function with period LAM. We will use throughout the paper the
lossless approximation when γ2(Z) = γ is constant. The lossless approximation occurs

in the limit LAM � LDM, when limLAM→0

∫ Z
0

g(Z ′)dZ ′ = αZ. This approximation is
sufficiently accurate for modeling fibers with distributed (e.g., Raman) amplification
or fibers with several amplifiers at the dispersion compensation period LDM [1]. In
other cases, our results are still expected to hold qualitatively.

We can rescale variables (Z, T, U) by introducing characteristic pulse power P0

in mW, characteristic pulse width T0 in ps, and characteristic (nonlinear) length
LNL = (γP0)−1 in km:

Z = LNLz, T = T0t, U =
√

P0u.(1.4)

The periodic NLS equation (1.1) in new variables reduces to the dimensionless form
[1],

i
∂u

∂z
+

m

2ε
d
(z

ε

) ∂2u

∂t2
+

1

2
d0

∂2u

∂t2
+ |u|2u = 0,(1.5)
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with the dimensionless parameters

m =
λ2
0L1L2(D1 − D2)

4πcLDMT 2
0

, d0 =
λ2
0(D1L1 + D2L2)

2πcεT 2
0

, ε = γLDMP0.(1.6)

The normalized periodic function d(ζ) has the unit period for ζ = z/ε and zero

average: d(ζ + 1) = d(ζ) and
∫ 1
0

d(ζ)dζ = 0. It is defined explicitly as

d =
2

l
for ζ ∈ [0, l),

d =
2

l − 1
for ζ ∈ [l, 1),(1.7)

where 0 < l < 1 is the ratio of the first fiber leg to the total map period, i.e.,
l = L1/LDM. We assume that the first leg is for the focusing fiber, i.e., D1 > 0, and
the second leg is for the defocusing fiber, i.e., D2 < 0. As a result, the parameter m
is positive, m > 0. The general problem (1.5) has four parameters:

• m (> 0)—the strength of the local (varying) dispersion,
• d0—the strength of the average dispersion,
• ε (> 0)—the period of the dispersion map,
• l (0 < l < 1)—the relative length of the focusing fiber leg to the total map

period.
Parameters m and ε can be normalized to unity by applying the transformation

to the periodic NLS equation (1.5):

ζ =
z

ε
, τ =

t√
m

, w(ζ, τ) =
√

εu(z, t),(1.8)

where w(ζ, τ) solves the standardized periodic NLS equation:

i
∂w

∂ζ
+

1

2
d (ζ)

∂2w

∂τ2
+

1

2
D0

∂2w

∂τ2
+ |w|2w = 0, D0 =

εd0
m

.(1.9)

Thus, the periodic NLS equation (1.9) depends only on two parameters: l (through
d(ζ)) and D0.

In this paper, we study a formal asymptotic limit ε → 0 of solutions u(z, t) of the
periodic NLS equation in the form (1.5). This asymptotic limit corresponds to the
limit of small solutions w(ζ, τ) (in a L2(R) norm) of the periodic NLS equation in the
form (1.9).

1.3. DM solitons and main results on existence and stability. DM soli-
tons can be defined as special solutions of the periodic NLS equation (1.5) in two
conventional approximations: (i) Gaussian pulse [7, 8] and (ii) an averaged integral
NLS equation [14, 15].

Definition 1.1. A DM soliton is an approximate quasi-periodic solution of the
NLS equation (1.5) in the form of the Gaussian pulse with variable coefficients:

u(z, t) =
√

c exp

(
− t2

2(a + ib)
+ iφ

)
,(1.10)

where a(z + ε) = a(z), b(z + ε) = b(z), φ(z + ε) = φ(z) + εµ, and

c =
ea1/2√

2(a + ib)
, e =

√
2

π

∫ ∞

−∞
|u|2(z, t)dt.(1.11)
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The three varying parameters a(z), b(z), and φ(z) are the pulse width, chirp, and the
gauge rotation phase, respectively. The constant parameters µ and e are the phase
propagation constant and the pulse energy, respectively.

The variational equations are derived by minimizing the Lagrangian density of
the periodic NLS equation (1.5) at the Gaussian pulse (1.10) (see, e.g., [22]). It is
then found that the varying parameters a(z) and b(z) satisfy the nonautonomous
dynamical system:

da

dz
=

ea5/2b

(a2 + b2)3/2
,(1.12)

db

dz
=

m

ε
d
(z

ε

)
+ d0 − ea3/2(a2 − b2)

2(a2 + b2)3/2
.(1.13)

The phase parameter φ(z) is coupled with a(z) and b(z) by the nonhomogeneous
equation:

dφ

dz
=

ea1/2(3a2 + 5b2)

8(a2 + b2)3/2
.(1.14)

The dynamical system (1.12)–(1.13) has been studied numerically under different
parameterizations (see reviews [4, 5, 6]). The system was found to be Hamiltonian [9],
where the phase plane was used for matching trajectories of two autonomous systems
derived for the piecewise-constant function d(z). Existence of periodic solutions of
(1.12)–(1.13) was recently proved by Kunze [10]. The leading-order averaging system
was derived from (1.12)–(1.13) by Turitsyn et al. [11, 12]. A single branch of periodic
solutions of the system was found for d0 ≥ 0, while two branches coexist for dmin <
d0 < 0 at any given e [13].

Definition 1.2. DM soliton is a stationary pulse solution of the averaged integral
NLS equation:

µŴ (ω) = −1

2
d0ω

2Ŵ (ω)(1.15)

+

∫ ∫ ∞

−∞

sin [m(ω − ω1)(ω − ω2)]

m(ω − ω1)(ω − ω2)
Ŵ (ω1)Ŵ (ω2)Ŵ (ω1 + ω2 − ω)dω1dω2,

where Ŵ (ω) ∈ Hs(R) with s ≥ 1 and d0 > 0.
The integral NLS equation (1.15) is derived from the periodic NLS equation (1.5)

in the limit ε → 0 by using the asymptotic averaging method explained in section 3.
The integral NLS equation (1.15) follows from (3.15) for stationary pulse solutions:
V̂ (z, ω) = Ŵ (ω)eiµz, where Ŵ (ω) is real function.

Existence of stationary pulse solutions of (1.15) for d0 > 0 and µ > 0 was proved
by Zharnitsky et al. [18]. Recently Kunze proved existence of ground state solutions
Ŵ (ω) ∈ L2(R) for d0 = 0 and µ > 0 [20], which was a considerably more difficult
problem due to the absence of the gradient term in the Hamiltonian. Numerical
results suggest nonexistence of ground state solutions for d0 < 0 due to resonance of
stationary pulses with linear spectrum of the averaged integral NLS equation [13, 21].
Iterations of a numerical method for finding stationary pulse solutions of (1.15) diverge
for both branches of the Gaussian pulse solutions, which exist for (1.12)–(1.13) with
dmin < d0 < 0 (see details in [21]). No rigorous results on nonexistence of ground
states of (1.15) for d0 < 0 are yet available.
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Definitions 1.1 and 1.2 above are commuting in the sense that (i) the system
(1.12)–(1.13) can be averaged in the limit ε → 0 [13] and (ii) the variational Gaussian
approximation can be applied to the integral NLS equation (1.15) [17]. Both the
reductions result in the same set of equations for an averaged Gaussian pulse. In
order to analyze the parameter dependence of DM solitons, we consider the following
two equivalent parameterizations.

Suppose there exist periodic solutions of (1.12)–(1.13) or stationary pulse solutions
of (1.15). The DM solitons are parameterized as e = fµ(µ; d0, l, m, ε), where e =

fµ(µ) is a continuous (possibly multibranched) function of µ. Indeed, solutions Ŵ (ω)
of (1.15) smoothly depend on parameter µ in the domain of their existence, where
Ŵ (ω) ∈ Hs(R) with s ≥ 1. Then, the function e = fµ(µ) is defined by (1.11) as a
continuous function of µ. If there are several solutions of (1.15) for the same value of
µ, the function e = fµ(µ) has several branches for a fixed value of µ. Alternatively,
solutions (a(z), b(z)) of (1.12)–(1.13) smoothly depend on e in the domain of their
existence. Then, µ is defined by µ = (φ(z + ε) − φ(z))/ε = f−1

µ (e). The function
e = fµ(µ) is invertible for each branch of solution, where f ′

µ(µ) �= 0.
For an alternative parameterization, we define the effective pulse width as

τ2(z) =
2

e

√
2

π

∫ ∞

−∞
t2|u|2(z, t)dt(1.16)

and the minimal pulse width as

τ2min = min
z∈[0,ε]

τ2(z).(1.17)

The DM solitons are parameterized as e = fs(s; d0, l, m, ε), where s = 1/τ2min is the
square inverse of the minimal pulse width. The function e = fs(s) is a continuous
(possibly multibranched) function of s. For each branch of stationary pulse solutions
of (1.15), there exists a continuous map s = hµ(µ) defined by (1.16). Then, the
function e = fs(s) is parameterized by µ. Also, for each branch of periodic solutions
of (1.12)–(1.13), there exists a continuous function s = f−1

s (e) defined by

τ2min = min
z∈[0,ε]

(a2 + b2)

a
= min
z∈[0,ε]

a(z).(1.18)

Here we have used (1.10), (1.11), and (1.17) for the first equality and (1.12) for the
second equality. The function e = fs(s) is inverted for each branch of solution, where
f ′
s(s) �= 0.

Lemma 1.3. DM solitons are parameterized by three parameters: E = εe/
√

m
(energy), M = εµ (propagation constant), and S = ms (map strength).

Proof. The statement is proved by applying transformation (1.8) to the integral
quantities (1.11) and (1.16) and to the phase φ(z) of the Gaussian pulse (1.10).

The DM solitons can be analyzed in the Gaussian approximation for several alter-
native representations in variables E, M , and S: (i) on the plane (D0, E) for different
values of S; (ii) on the plane (S, E) for different values of S0; (iii) on the plane (S, M)
for different values of D0; and (iv) on the plane (M, E) for different values of D0. The
four equivalent representations are shown on Figure 1.1(a)–(d), where we reproduce
our main results on computations of the first-order averaging theory for the Gaussian
approximation. The parameter l is fixed at l = 0.1. The solid curves show the result
of the first-order averaging theory for ε > 0. The dotted curves show the result of the
leading-order averaging theory in the limit ε = 0.



AVERAGING OF DISPERSION-MANAGED SOLITONS 751

−0.03 0 0.03 0.06
0

1

2

3

4

5

6

7

AVERAGE DISPERSION (D
0
)

P
U

L
S

E
 E

N
E

R
G

Y
 (

E
)

S = 5.0 

S = 2.5 

0 5 10 15
0

2

4

6

8

10

MAP STRENGTH (S)

P
U

L
S

E
 E

N
E

R
G

Y
 (

E
)

D
0
 = −0.015 

D
0
 = 0.015 

0 1 2 3
0

5

10

15

20

PROPAGATION CONSTANT (M)

M
A

P
 S

T
R

E
N

G
T

H
 (

S
)

D
0
 = −0.015 

D
0
 = 0.015 

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.5

1

1.5

2

2.5

3

3.5

4

PROPAGATION CONSTANT (M)

P
U

L
S

E
 E

N
E

R
G

Y
 (

E
)

D
0
 = 0.015 

D
0
 = −0.015 

Fig. 1.1. Parameterizations of DM solitons in the first-order averaging theory for Gaussian
approximation: (a) plane (D0, E) for S = 2.5 and S = 5; (b) plane (S,E) for D0 = 0.015 and
D0 = −0.015; (c) plane (S,M) for D0 = 0.015 and D0 = −0.015; and (d) plane (M,E) for
D0 = 0.015 and D0 = −0.015. The dotted curves display the leading-order averaging theory.

There exists only one branch of periodic solutions of (1.12)–(1.13) for 0 < S ≤
Sthr, where Sthr ≈ 3.32. This branch extends for D0 ≥ 0 (see Figure 1.1(a)). When
S > Sthr, the dependence of E versus D0 becomes two-folded: two branches of periodic
solutions exist for Dmin < D0 < 0 and one branch exists for D0 ≥ 0. When S → ∞,
all branches of periodic solutions diverge to infinitely large values of E (see Figure
1.1(b)).

The role of planes (D0, E), (S, E), and (S, M) is different from that of the plane
(M, E) in the leading-order averaging theory. Indeed, the leading-order averaged sys-
tem (dotted curves on Figures 1.1(a)–(d)) describes only the lower branch of periodic
solutions for D0 < 0 (see Figure 1.1(a)). The functions E = fS(S) and M = hS(S) are
single-branched for any S (see Figures 1.1(b), (c)). However, the function E = fM (M)
has two branches at the leading-order approximation (see Figure 1.1(d)), i.e., two so-
lutions for E correspond to the same value of M , and vice verse.

For D0 ≥ 0, there is only one branch of periodic solutions. This branch is bounded
by the threshold value S < Sthr in the leading-order approximation (see Figures
1.1(a)–(c)), while the function E = fM (M) is unbounded on the plane (M, E) (see
Figure 1.1(d)). Thus, again the planes (D0, E), (S, E), and (S, M) give bad leading-
order approximations of periodic solutions compared to the plane (M, E).

The discrepancy between the four alternative parameterizations of periodic solu-
tions of (1.12)–(1.13) disappears in the first-order averaging approximation, shown on
Figures 1.1(a)–(d) by solid curves. Indeed, all curves are unbounded for D0 ≥ 0 and
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all curves become two-valued functions of S, M , and E for any D0 < 0. The upper
branch of periodic solutions on the planes (D0, E), (S, E), and (S, M) is captured in
the first-order averaging theory (see Figure 1.1(a)–(c)). On the other hand, the single
branch for D0 ≥ 0 and the two branches for D0 < 0 are weakly affected on the plane
(M, E) in the first-order approximation, compared to the leading-order theory (see
Figure 1.1(d)). Thus, the plane (M, E) is the most appropriate tool for analysis of
periodic solutions both in the leading-order and first-order averaging theory.

We can now formulate algebraically the main results of the paper for existence
and stability of DM solitons. The results are written in terms of parameters ε, m, d0,
e, µ, and s, while the transformation to parameters D0, E, M , and S is prescribed by
Lemma 1.3. The results are proved for the Gaussian pulse approximation by explicit
computations (section 2) and for the averaged integral NLS equation by standard
PDE analysis (section 3).

Proposition 1.4. Parameters of DM solitons have the following expansions in
powers of ε:

d0 = em1/2g
(0)
d (my) + εe2(1 − 2l)g

(1)
d (my) + O(ε2),(1.19)

µ =
e

m1/2
g(0)µ (my) + ε

e2

m
(1 − 2l)g(1)µ (my) + O(ε2),(1.20)

s = y + ε
e

m3/2
g(1)s (my, l) + O(ε2),(1.21)

where y is a parameter and the functions g
(0,1)
d , g

(0,1)
µ , and g

(1)
s are continuous for

y > 0.
Proof. Here we prove the result only in the limit ε → 0, when the leading-order

averaging theory results in the integral NLS equation (1.15). The kernel of (1.15)
is independent of l. Consider the scaling transformation Ŵ (ω) = λŴ ′(ω). This
transformation leaves (1.15) invariant if parameters µ, d0, e, s, and m in (1.11),
(1.15), and (1.16) transform as follows:

µ = λ2µ′, d0 = λ2d′
0, e = λ2s′, s = s′, m = m′.(1.22)

It is clear from (1.22) that the ratios d0/e and µ/e are invariant under this transfor-
mation and are, therefore, functions of s and m. The particular form used in (1.19)–

(1.20) has been chosen to match with explicit computations of functions g
(0)
d (my) and

g
(0)
µ (my).

Corollary 1.5. In the limit ε → 0, the functions e = fs(s), µ = hs(s), and
e = fµ(µ) have the form

e =
d0√

mg
(0)
d (ms)

, µ =
d0
m

g
(0)
µ (ms)

g
(0)
d (ms)

,
µ
√

m

e
= g(0)µ (g

(0)
d )−1

(
d0

e
√

m

)
.(1.23)

Corollary 1.6. In the limit ε → 0 and d0 = 0, the function e = fµ(µ) has the
form

e = αµ, α =

√
m

g
(0)
µ (ms∗)

,

where s = s∗ is the root of the equation g
(0)
d (ms∗) = 0.
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Proposition 1.7. In the limit ε → 0 and m → 0, the functions e = fµ(µ) and
s = fµ(µ) have the form

e2 = d0f̂µ(µ), s =
1

d0
ĥµ(µ).(1.24)

Proof. In the limit m → 0, the integral NLS equation (1.15) becomes the Fourier
form of the NLS equation. Consider the scaling transformation for the NLS equation:
Ŵ (ω) = λŴ ′(ω′) and ω = λ−1ω′. This transformation leaves the NLS equation
invariant if parameters µ, d0, e, and s in (1.11), (1.15), and (1.16) transform as
follows:

µ = µ′, d0 = λ2d′
0, e = λe′, s = λ−2s′.(1.25)

It is clear from (1.25) that the quantities e2/d0 and sd0 are invariant under this
transformation and are, therefore, functions of µ.

Proposition 1.8. A single branch of DM solitons exists and is linearly stable
for d0 ≥ 0 in both Gaussian and integral NLS approximations. Two branches of DM
solitons exist for d0 < 0 in the Gaussian approximation. For a fixed µ, the branch
with larger e is linearly unstable and the branch with smaller e is linearly stable.

Linearized stability of DM solitons in the Gaussian approximation (1.12)–(1.13)
was studied by Pelinovsky in the limit ε → 0 [13]. We extend this analysis in the first-
order averaging theory in section 2 of this paper. Zharnitsky et al. [18] proved that the
DM solitons are ground states of the averaged integral NLS equation (1.15) for d0 > 0.
The ground states realize a stable minimum of the Hamiltonian functional. We extend
this result for the first-order averaged Hamiltonian in section 3. Open problems for
nonexistence of ground states for d0 < 0 and nonexistence of quasi-periodic solutions
of the periodic NLS equation (1.5) are discussed in section 4.

2. Variational Gaussian approximation. Here we analyze the dynamical sys-
tem (1.12)–(1.13) derived in the variational Gaussian approximation. We construct
the Hamiltonian structure for the system and develop a systematic averaging proce-
dure based on the theory of canonical transformations in section 2.1. The first-order
corrections to the leading-order averaged theory are computed in section 2.2. Exis-
tence and stability of critical points of the first-order averaged Hamiltonian are studied
in sections 2.3 and 2.4.

The dynamical system (1.12)–(1.13) can be written as a Hamiltonian system in
canonical variables (ξ, η):

ξ = b − md−1

(z

ε

)
, η =

1

a
,(2.1)

where d−1(ζ) is the antiderivative of d(ζ) for ζ = z/ε with unit period and mean zero:

d−1(ζ) =

∫ ζ

0

d(ζ ′)dζ ′ −
∫ 1

0

dζ

∫ ζ

0

d(ζ ′)dζ ′.(2.2)

For the piecewise-constant approximation d(ζ) in (1.7), the mean-zero antiderivative
d−1(ζ) is

d−1 =
2ζ

l
− 1 for ζ ∈ [0, l),

d−1 =
2(ζ − 1)

(l − 1)
− 1 for ζ ∈ [l, 1).(2.3)
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The system (1.12)–(1.13) in canonical variables (ξ, η) has a classical Hamiltonian
structure:

dξ

dz
=

∂H

∂η
,

dη

dz
= −∂H

∂ξ
,(2.4)

where the Hamiltonian H = H(ξ, η, z/ε) is

H = d0η − e

(
η

1 + η2(ξ + md−1(z/ε))2

)1/2

.(2.5)

The decoupled equation (1.14) for the phase parameter φ(z) can be expressed through
H(ξ, η, z/ε) as

dφ

dz
=

1

4

(
d0η + η

∂H

∂η
− 2H

)
.(2.6)

There exists a canonical transformation from the Hamiltonian structure (2.4)–(2.5) to
the one studied in [9]. The canonical transformation (2.1) and the Hamiltonian (2.5)
were first reported by Turitsyn et al. [12]. The Hamiltonian structure (2.4)–(2.5)
is more convenient for developing a systematic averaging procedure based on series
of canonical transformations in powers of ε. We will study solutions of the system
(2.4)–(2.5) in the domain D+:

D+ = {(ξ, η) : ξ ∈ R, η > 0} .(2.7)

Lemma 2.1. Suppose the initial point (ξ0, η0) belongs to D+. Then, a solution
(ξ(z), η(z)) stays in D+ for any finite z: 0 ≤ z ≤ z0 < ∞.

Proof. Integrating (1.12) in the canonical variables (2.1), one can find

1

η1/2
=

1

η
1/2
0

+
e

2

∫ z

0

η(ξ + md−1)dz

(1 + η2(ξ + md−1)2)3/2
.

Since the integrand is never singular, the triangular inequality implies for 0 ≤ z ≤ z0
that ∣∣∣∣ 1

η1/2

∣∣∣∣ ≤ 1

η
1/2
0

+
eM

2
z0,

where

M = max
0≤z≤z0

η|ξ + md−1|
(1 + η2(ξ + md−1)2)3/2

.

Therefore, the point (η, ξ) never crosses the left boundary of D+ at η = 0. Direct
integration of (1.12)–(1.13) with the variables (2.1) and similar estimates of the re-
sulting integrals show that |ξ| and η remain bounded in the domain D+ for any finite
z: 0 ≤ z ≤ z0.

2.1. Averaging of the periodic Hamiltonian system (2.4)–(2.5). The pe-
riodic Hamiltonian system (2.4)–(2.5) is averaged according to the formalism of nor-
mal form transformations [23]. We denote ζ = z/ε such that H = H(ξ, η, ζ). In the
domain D+ defined by (2.7), there exists a near-identity generating function:

F (ξ, y, ζ) = ξy +

N+1∑
n=1

εnFn(ξ, y, ζ) + O(εN+2),(2.8)
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where the correction terms Fn(x, y, ζ) for 1 ≤ n ≤ (N + 1) are periodic mean-zero
functions of ζ:

Fn(x, y, ζ + 1) = Fn(x, y, ζ),

∫ 1

0

Fn(x, y, ζ)dζ = 0.(2.9)

The generating function F (ξ, y, ζ) defines the near-identical canonical transformation

x =
∂F

∂y
(ξ, y, ζ), η =

∂F

∂ξ
(ξ, y, ζ)(2.10)

and takes the Hamiltonian H(ξ, η, ζ) to the form

Hnew(x, y, ζ) = H(ξ(x, y, ζ), η(x, y, ζ), ζ) +
1

ε

∂F

∂ζ
(ξ(x, y, ζ), y, ζ)

= HN (x, y) + O(εN+1),(2.11)

where HN (x, y) is the Nth-order averaged Hamiltonian:

HN (x, y) =

N∑
n=0

εnhn(x, y).(2.12)

When the remainder term of order of O(εN+1) is neglected, the new canonical variables
(x, y) solve the averaged Hamiltonian dynamical system:

dx

dz
=

∂HN

∂y
,

dy

dz
= −∂HN

∂x
.(2.13)

The difference between solutions of the full system (2.4) and the averaged system
(2.13) is controlled with the accuracy of O(εN+1) on the interval 0 ≤ z ≤ z0. Conver-
gence and bounds of the normal-form transformations in Hamiltonian systems with
fast dependence on time was proved by Neishtadt [24].

The canonical transformation (2.10)–(2.11) follows from the invariance of the
Lagrangian of the system (2.4) [23]:

L = η
dξ

dz
− H(ξ, η, ζ) = −x

dy

dz
− Hnew(x, y, ζ) +

dF

dz
(ξ, y, ζ).

In the domain D+, the Hamiltonian H(ξ, η, ζ) is a C∞ function of ξ and η. Then, the
generating functions Fn(ξ, y, ζ) are C∞ functions of ξ and y. Provided the asymptotic
series (2.8) converges uniformly, there exists ε0 such that for 0 ≤ ε ≤ ε0

∂2F

∂y∂ξ
= 1 +

N+1∑
n=1

εn
∂2F

∂y∂ξ
+ O(εN+2) > 0.

According to the inverse function theorem, the near-identity transformations (2.10)
define classical perturbation series for ξ(x, y, ζ) and η(x, y, ζ) in powers of ε (see Chap-
ter 2.2(a) in [23]). Here, ζ is the fast “time” for periodic oscillations of H(ξ, η, z/ε)
and z is the slow “time” for averaged dynamics of the new canonical variables (x, y).

For N = 0, the leading-order averaged dynamical system is

dx

dz
=

∂h0

∂y
,

dy

dz
= −∂h0

∂x
,(2.14)
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where h0(x, y) is the leading-order averaged Hamiltonian H0(x, y):

H0(x, y) = h0(x, y) =

∫ 1

0

H(x, y, ζ)dζ.(2.15)

The leading-order averaged Hamiltonian can be computed explicitly from (2.3), (2.5),
and (2.15) as

h0(x, y) = d0y − e

2my1/2
log [f0(x, y)] ,(2.16)

where

f0(x, y) =
y(x + m) + (1 + y2(x + m)2)1/2

y(x − m) + (1 + y2(x − m)2)1/2
.(2.17)

The leading-order Hamiltonian h0(x, y) does not depend on parameter l. However,
the first-order correction term h1(x, y) does depend on l in the first-order averaged
Hamiltonian H1(x, y).

2.2. First-order averaged Hamiltonian H1(x, y). The first-order averaged
Hamiltonian can be easily derived from the formalism of the normal form transfor-
mations. It follows from (2.8), (2.10), and (2.11) that the first-order correction term
F1(x, y, ζ) is the periodic mean-zero function of ζ:

F1(x, y, ζ) = {h0(x, y) − H(x, y, ζ)}−1 ,(2.18)

where {H(x, y, ζ)}−1 is the mean-zero antiderivative of H(x, y, ζ) in ζ; see (2.2).
Expanding the near-identity canonical transformations (2.8) and (2.10) in powers of
ε, we define the perturbation series for ξ(x, y, ζ) and η(x, y, ζ):

ξ = x + εξ1(x, y, ζ) + O(ε2), ξ1 = −∂F1

∂y
(x, y, ζ),(2.19)

η = y + εη1(x, y, ζ) + O(ε2), η1 =
∂F1

∂x
(x, y, ζ).(2.20)

Similarly, the first-order correction term h1(x, y) is found in the form

h1(x, y) =

∫ 1

0

(
−∂H

∂x

∂F1

∂y
+

∂H

∂y

∂F1

∂x
− ∂2F1

∂ζ∂x

∂F1

∂y

)
(x, y, ζ)dζ(2.21)

=

∫ 1

0

(
∂H

∂y

∂F1

∂x

)
(x, y, ζ)dζ,(2.22)

where we have used (2.9) and (2.18) for the second equality in (2.22). The first-order
averaged dynamical system (2.13) then takes the form

dx

dz
=

∂h0

∂y
+ ε

∂h1

∂y
,

dy

dz
= −∂h0

∂x
− ε

∂h1

∂x
.(2.23)

A remarkable result is that the first-order correction term h1(x, y) vanishes in the case
of symmetric maps, when l = 1/2.

Lemma 2.2. When the dispersion map is symmetric, i.e., l = 1/2, then h1(x, y) =
0 and F1(x, y, 0) = F1(x, y, l) = 0.
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Proof. When d(ζ) = 4 for z ∈ [0, 1/2) and d(ζ) = −4 for z ∈ [−1/2, 0) (see (1.7)),
the mean-zero antiderivative function d−1(ζ) is even in ζ, i.e., d−1(−ζ) = d−1(ζ) (see
(2.3)). As a result, the Hamiltonian H(x, y, ζ) in (2.5) can be represented by the
Fourier cosine-series:

H(x, y, ζ) = h0(x, y) +

∞∑
n=1

cn(x, y) cos(2πnζ),(2.24)

where cn(x, y) are some Fourier coefficients. As a result, the first-order correction
term F1(x, y, ζ) given by (2.18) is computed as the Fourier sine-series:

F1(x, y, ζ) = −
∞∑
n=1

1

2πn
cn(x, y) sin(2πnζ).(2.25)

It is clear that F1(x, y, 0) = F1(x, y, 1/2) = 0. The first-order correction h1(x, y) given
by (2.22) is the average of the product of the Fourier cosine- and sine-series, which is
zero.

In general case, when l �= 1/2, the first-order averaging theory is equivalent to
the following result. If (x, y) solve the averaged equations (2.23) and (ξ, η) solve the
full equations (2.4)–(2.5) with close initial values—|ξ0−x0− εξ1(x0, y0, 0)| ≤ cxε

2 and
|η0−y0−εη1(x0, y0, 0)| ≤ cyε

2, where cx and cy are some constants, then the solutions
(x, y) and (ξ, η) remain within the linear accuracy in ε at the distances 0 ≤ z ≤ z0:

sup
z∈[0,z0]

|ξ(z) − x(z) − εξ1(x, y, ζ)| ≤ Cxε
2, sup

z∈[0,z0]
|η(z) − y(z) − εη1(x, y, ζ)| ≤ Cyε

2,

(2.26)

where Cx and Cy are some constants. The standard proof of this statement is based
on convergence of the perturbation series (2.19)–(2.20) [23].

When the dispersion map is symmetric with equal legs, i.e., l = 1/2, the correc-
tions ξ1(x, y, ζ) and η1(x, y, ζ) vanish at the points ζ = 0 and ζ = 1

2 . As a result, the
distance between solutions (x, y) and (ξ, η) remains within the quadratic accuracy in
ε at the ends of the dispersion map, i.e., at z = kε and z = (k − 1

2 )ε, where k ∈ Z+:

sup
z∈[0,z0]

|ξ(z = kε) − x(z = kε)| ≤ Cxε
2, sup

z∈[0,z0]
|η(z = kε) − y(z = kε)| ≤ Cyε

2.

(2.27)

This result is related to the Strang’s work [25] on symmetrization of the split-step
methods for solving PDEs. The quadratic convergence occurs only at the ends of the
dispersion map, while it is linear in the interior of the dispersion map.

Remark 2.1. The symmetric dispersion map with l = 1/2 can be translated for
any ζ0 such that d(ζ + ζ0) = −d(ζ0 − ζ). The first-order correction h1(x, y) vanishes
for all such symmetric maps. In particular, the symmetric dispersion map used in
numerical modeling of the NLS equation by the split-step method is d(ζ) = 4 for
ζ ∈ [0, 1/4) ∪ [3/4, 1) and d(ζ) = −4 for ζ ∈ [1/4, 3/4). This map is equivalent to our
symmetric map with l = 1/2 by the translation with ζ0 = 1/4.

The first-order correction term h1(x, y) can be found explicitly by direct compu-
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tations from (2.3), (2.5), (2.16), (2.18), and (2.22). The explicit formula is

h1(x, y) =
e2(1 − 2l)

8m2

[
(x + m)

1 + y2(x + m)2
− (x − m)

1 + y2(x − m)2

]

+
e2(1 − 2l)

16m3y2

[
log [f0(x, y)] +

2y(x − m)

(1 + y2(x − m)2)1/2
− 2y(x + m)

(1 + y2(x + m)2)1/2

]

×
[
log [f0(x, y)] +

xy

(1 + y2(x − m)2)1/2
− xy

(1 + y2(x + m)2)1/2

]

+
e2(1 − 2l)

16m3y2

[
3 + y2(x + m)2

(1 + y2(x + m)2)1/2
− 3 + y2(x − m)2

(1 + y2(x − m)2)1/2

]

×
[

1

(1 + y2(x + m)2)1/2
− 1

(1 + y2(x − m)2)1/2

]
,(2.28)

where f0(x, y) is defined by (2.17). We confirm from (2.28) that h1(x, y) = 0 for l =
1/2. The first-order averaged Hamiltonian H1(x, y) is analyzed next for existence and
stability of critical points. The critical points of the averaged Hamiltonian correspond
to the Gaussian approximation of the DM solitons.

2.3. Existence of critical points of the first-order averaged Hamilto-
nian. The first-order averaged Hamiltonian is H1(x, y) = h0(x, y) + εh1(x, y), where
h0(x, y) and h1(x, y) are given explicitly in (2.16) and (2.28).

Lemma 2.3. The points (0, y∗) are critical points of the first-order averaged
Hamiltonian H1(x, y) if y∗ is an extremum of the function H1(0, y):

H1(0, y) = d0y − e

2my1/2
log
[
f̂0(my)

]
+ ε

e2(1 − 2l)

16m3y2

[
log2

[
f̂0(my)

]
− 4my

(1 + m2y2)1/2
log
[
f̂0(my)

]
+

4m2y2

1 + m2y2

]
,(2.29)

where f̂0(my) = f0(0, y), i.e.,

f̂0(my) =

[
(1 + m2y2)1/2 + my

(1 + m2y2)1/2 − my

]
.

Proof. The variation of h0(x, y) in x leads to the only solution x = 0. The same
solution gives also an extremum of h1(x, y) in x. The variation of H1(0, y) in y defines
the critical point y = y∗.

Proof of Proposition 1.4. The first equation (1.19) follows from the condition

H ′
1(0, y) = 0. The continuous functions g

(0,1)
d are computed explicitly:

g
(0)
d = − 1

4m3/2y3/2

[
log
[
f̂0(my)

]
− 4my

(1 + m2y2)1/2

]
,(2.30)

g
(1)
d =

1

8m3y3

[
log2

[
f̂0(my)

]
(2.31)

− 2my(2 + 3m2y2)

(1 + m2y2)3/2
log
[
f̂0(my)

]
+

4m2y2(1 + 2m2y2)

(1 + m2y2)2

]
.
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The second equation (1.20) follows from the nonhomogeneous equation (2.6) reduced
for the perturbation expansion (2.19)–(2.20):

dφ

dz
=

1

4

[
d0y + y

dx

dz
+ y

∂ξ1
∂ζ

− 2H(x, y, ζ) + ε

(
d0η1 + η1

∂H

∂y
(x, y, ζ)(2.32)

+ y

(
∂ξ1
∂x

dx

dz
+

∂ξ1
∂y

dy

dz

)
+ y

∂ξ2
∂ζ

− 2

(
∂H

∂x
ξ1 +

∂H

∂y
η1

)
(x, y, ζ)

)
+ O(ε2)

]
.

Integrating (2.33) over ζ ∈ [0, 1] at the critical point (0, y∗), we define µ as

µ =
1

ε
(φ(z + ε) − φ(z)) =

1

4

[
d0y∗ − 2h0(0, y∗) − 3εh1(0, y∗) + O(ε2)

]
,(2.33)

where we have utilized (2.15) and (2.22). The continuous functions g
(0,1)
d in (1.20) are

computed explicitly:

g(0)µ =
1

16m1/2y1/2

[
5 log

[
f̂0(my)

]
− 4my

(1 + m2y2)1/2

]
,(2.34)

g(1)µ = − 1

64m2y2

[
5 log2

[
f̂0(my)

]
(2.35)

− 2my(8 + 9m2y2)

(1 + m2y2)3/2
log
[
f̂0(my)

]
+

4m2y2(4 + 5m2y2)

(1 + m2y2)2

]
.

The third equation (1.21) follows from (1.18):

s =
1

τ2min

= max
0≤z≤ε

η(z) = y + ε max
0≤ζ≤1

η1(0, y∗, ζ) + O(ε2).(2.36)

If (a, b) is a nonconstant periodic solution of z, then a(z) has at least two extremal
points on the interval z ∈ [0, ε). The extremal values for a(z) occur for z = z∗,
where b(z∗) = 0; see (1.12). It follows from (2.3) and (2.18) that d−1(ζ∗) = 0 and
F1(0, y∗, ζ∗) = 0 for ζ∗ = l/2 and ζ∗ = (1 + l)/2. As a result, b(z∗) = O(ε2) and
ξ(ζ∗) = O(ε2), see (2.1) and (2.19), i.e., a(z) and η(z) have extrema for z∗ = εζ∗.
Computing the derivative of F1(x, y, ζ) in x for (0, y∗, ζ), we find that the maximal

value of η1(0, y∗, ζ∗) occurs at ζ∗ = l/2 and the continuous functions g
(1)
s in (1.21) are

computed explicitly:

g(1)s =
m1/2y1/2

2

(
l +

l − 1

(1 + m2y2)1/2

)
+

(1 − 2l)

4m1/2y1/2
log
[
f̂0(my)

]
.(2.37)

Figures 1.1(a)–(d) are constructed with the help of explicit formulas (1.19)–(1.21),
(2.30)–(2.31), (2.34)–(2.35), and (2.37). The dotted curves show the limit ε = 0, the
solid curves show the results of the first-order averaging theory for ε > 0, with l = 0.1
fixed. The first-order averaging theory corresponds well to numerical analysis of the
full equations (1.12)–(1.13); see [4, 7, 8].

2.4. Stability of critical points of the first-order averaged Hamiltonian.
Linear stability of the critical points (0, y∗) in the first-order averaged system (2.23)
is defined by concavity of the quadratic form:

H1(x, y) − H1(0, y∗) =
1

2

∂2H1

∂x2

∣∣∣∣
(0,y∗)

x2 +
1

2

∂2H1

∂y2

∣∣∣∣
(0,y∗)

(y − y∗)2,(2.38)
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since the derivative of H1(x, y) in x is zero for any (0, y). The critical point (0, y∗)
is linearly stable if it corresponds to an extremum of the quadratic form (2.38); the
stable critical points are centers on the phase plane (x, y). The critical point is linearly
unstable if it corresponds to a saddle point of the quadratic form (2.38). The unstable
critical points appear as saddle points on the phase plane (x, y). It is easy to analyze
the linear stability of the critical point (0, y∗) with the help of the function e = fs(s)
shown on Figure 1.1(b).

Lemma 2.4. The critical point (0, y∗) of the first-order averaged Hamiltonian
H1(x, y) is stable for d0 ≥ 0. For d0 < 0, define sthr and sstab as the turning and
minimal points of the curve e = fs(s), i.e., f ′

s(sthr) = ∞ and f ′
s(sstab) = 0. The

critical point (0, y∗) is stable for d0 < 0 in the following cases: (i) for the upper
branch of the curve e = fs(s), when s ≥ sthr and (ii) for the lower branch of the curve
e = fs(s), when sthr < s < sstab.

Proof. It follows from (2.16) that

∂2h0

∂x2

∣∣∣∣
x=0

=
ey5/2

(1 + m2y2)3/2
> 0

for any y > 0. Therefore, there exists ε0 such that the curvature of H1(x, y) is positive
in x for 0 ≤ ε ≤ ε0. Then, the stability criterion is H ′′

1 (0, y∗) > 0, where

H ′′
1 (0, y) = −em3/2g

(0)′
d (my) − εe2m(1 − 2l)g

(1)′
d (my) = f ′

s(s)W (s),

where

W (s) =
[
g
(0)
d (my) + 2εe(1 − 2l)g

(1)
d (my) + O(ε2)

] [
1 + ε

e

m1/2
g(1)′s (my, l) + O(ε2)

]
.

For d0 > 0, it follows from Figure 1.1(b) and (1.19) that f ′
s(s) > 0 and g

(0)
d (my) > 0

for any y > 0. As a result, there exists ε0 such that the curvature of H1(0, y) is
positive in y for 0 ≤ ε ≤ ε0. Therefore, the critical point (0, y∗) is stable for d0 ≥ 0
and 0 ≤ ε ≤ ε0.

For d0 < 0, the upper and lower branches of the function e = fs(s) are separated
by the point s = sthr, where f ′

s(sthr) = ∞ (see Figure 1.1(b)). Since H ′′
1 (0, y) may not

be singular in the domain y > 0, the function W (s) changes sign at s = sthr. It follows

from (1.19) that g
(0)
d (my) < 0 for d0 < 0. Therefore, it is clear that W (s) > 0 for the

upper branch of e = fs(s) and W (s) < 0 for the lower branch of e = fs(s) on Figure
1.1(b). On the other hand, f ′

s(s) > 0 for the upper branch of e = fs(s) and f ′
s(s) < 0

for the lower branch of e = fs(s) between sthr < s < sstab, where f ′
s(sstab) = 0; see

Figure 1.1(b). As a result, the curvature of H1(0, y) in y is positive for the two cases
(i) and (ii). For the lower branch of e = fs(s) at s > sstab, the curvature of H1(0, y)
in y is negative, since f ′

s(s) > 0 and W (s) < 0. As a result, the critical point (0, y∗)
is linearly unstable for the lower branch of e = fs(s) at s > sstab.

Lemma 2.4 corresponds to Proposition 1.8 for Gaussian pulses in the first-order
averaging theory. At the plane (µ, e), the point s = sstab is the point of minimal e,
i.e., it is a branching point of the function e = fµ(µ). As a result, for d0 < 0, the
upper branch of the function e = fµ(µ) is linearly unstable, while the lower branch of
the function e = fµ(µ) is linearly stable [13].

We compute the phase plane H1(x, y) = const of the first-order averaged Hamil-
tonian from (2.16) and (2.28). The phase plane is shown on Figure 2.1(a)–(b) in
standardized variables X = x/m and Y = my for D0 = 0.015 and D0 = −0.015,
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Fig. 2.1. The contour levels of the first-order averaged Hamiltonian H1(X,Y ) for D0 = 0.015
(a) and D0 = −0.015 (b). The other parameters are E = 2 and l = 0.1.

with l = 0.1. In the initial-value problem, the energy parameter is constant, taken as
E = 2.

For D0 ≥ 0 there is only one critical point, which is a center (see Figure 2.1(a)).
The trajectories of the dynamical system (2.23) are all closed around the stable center
point. This dynamics corresponds to small oscillations of the DM soliton, perturbed
by an initial condition.
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For D0 < 0, two critical points coexist for the same value of E. The critical
point with a larger value of Y∗ is unstable (saddle point), while that with smaller
value of Y∗ is stable (center) (see Figure 2.1(b)). The critical point with a larger
value of Y∗ corresponds to a shorter DM soliton. If the shorter soliton is shortened
by an initial perturbation, i.e., Y (0) > Y∗, it is destroyed, since the trajectory (X, Y )
is unbounded on the phase plane of the first-order averaged system. We speculate
that the shorter soliton transforms into chirped quasi-linear waves but this process is
beyond the variational Gaussian approximation. Since solutions of (1.12)–(1.13) are
bounded in the domain D+ for any finite z, the transformation happens over infinite
propagation distances z.

In the other case, when the shorter DM soliton is broadened by the initial per-
turbation, i.e., Y (0) < Y∗, the trajectory (X, Y ) is trapped inside the separatrix loop
of the center point. In this case, the pulse undertakes large-amplitude oscillations
around the stable longer DM soliton, similarly to the case D0 ≥ 0. Instability of short
DM solitons along the lower branch of the (E, S) curve is confirmed in numerical
computations [7].

3. Reduction to an averaged integral NLS equation. Here we analyze and
extend the integral NLS equation (1.15), derived by means of averaging of the peri-
odic NLS equation (1.5). We develop a formal method of canonical transformations
for PDEs in section 3.1. In the leading and first orders in powers of ε, we prove
convergence of the periodic NLS equation (1.5) to an averaged integral NLS equation
in section 3.2. Existence of ground states of the first-order averaged Hamiltonian is
proved for the case d0 > 0 in section 3.3.

The periodic NLS equation (1.5) has the standard Hamiltonian structure:

i
∂u

∂z
=

δH

δū
, −i

∂ū

∂z
=

δH

δu
,(3.1)

where the Hamiltonian H = H(u, ū, z/ε) is

H =
1

2

∫ ∞

−∞

[
m

ε
d
(z

ε

) ∣∣∣∣∂u

∂t

∣∣∣∣2 + d0

∣∣∣∣∂u

∂t

∣∣∣∣2 − |u|4
]

dt.(3.2)

Lemma 3.1. Define a fundamental solution of the linear periodic equation

i
∂u

∂z
+

m

2ε
d
(z

ε

) ∂2u

∂t2
= 0(3.3)

in the operator form:

u(z, t) = T
(z

ε

)
u(0, t).(3.4)

The operator T (ζ) for ζ = z/ε is a unitary operator with unit period:

T−1(ζ) = T (ζ), T (ζ + 1) = T (ζ),(3.5)

where T̄ is complex conjugate.
Proof. In the Fourier space of t, the operator T (ζ) is a multiplication operator:

û(z, ω) = Tω(ζ)û(0, ω), Tω(ζ) = e−
im
2 d−1(ζ)ω

2

,(3.6)
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where d−1(ζ) is given by (2.2)–(2.3) and û(ζ, ω) is the Fourier transform of u(ζ, t) in
t. The two properties (3.5) follow from the Fourier form (3.6).

Using a linear canonical transformation

u(z, t) = T (ζ)v(z, t), ū(z, t) = T−1(ζ)v̄(z, t), ζ =
z

ε
,(3.7)

we eliminate the fast periodic term from (1.5) and rewrite the Hamiltonian system
(3.1) in new canonical variables (v, v̄),

i
∂v

∂z
=

δH

δv̄
, −i

∂v̄

∂z
=

δH

δv
,(3.8)

with the new Hamiltonian H = H(v, v̄, ζ):

H =
1

2

∫ ∞

−∞

[
d0

∣∣∣∣∂v

∂t

∣∣∣∣2 − |T (ζ)v|4
]

dt.(3.9)

The periodic NLS equation in new variables (v, v̄) can be written in the operator form:

i
∂v

∂z
+

1

2
d0

∂2v

∂t2
+ T−1(ζ)

(
|T (ζ)v|2 T (ζ)v

)
= 0.(3.10)

In the Fourier space of t, the operator equation (3.10) takes the form of a periodic
integral NLS equation:

i
∂v̂

∂z
(ω) − 1

2
d0ω

2v̂(ω) +

∫ ∫ ∞

−∞
Kω(ζ)v̂(ω1)v̂(ω2)¯̂v(ω1 + ω2 − ω)dω1dω2 = 0,(3.11)

where Kω(ζ) is defined by

Kω(ζ) = e−
im
2 d−1(ζ)(ω

2
1+ω

2
2−(ω1+ω2−ω)2−ω2) = eimd−1(ζ)(ω−ω1)(ω−ω2).(3.12)

The asymptotic reduction of (3.11) to an integral NLS equation is based on averaging
of the Hamiltonian (3.9) in ζ [18]. A direct averaging method produces the following
leading-order averaged Hamiltonian H0(V, V̄ ):

H0(V, V̄ ) = h0(V, V̄ ) =

∫ 1

0

H(V, V̄ , ζ)dζ =
1

2

∫ ∞

−∞

[
d0

∣∣∣∣∂V

∂t

∣∣∣∣2 −
∫ 1

0

|T (ζ)V |4dζ

]
dt.

(3.13)

The leading-order averaged Hamiltonian H0(V, V̄ ) generates the averaged integral
NLS equation in the operator form:

i
∂V

∂z
+

1

2
d0

∂2V

∂t2
+

∫ 1

0

T−1(ζ)
(
|T (ζ)v|2 T (ζ)v

)
dζ = 0.(3.14)

In the Fourier space of t, the integral NLS equation (3.14) takes an explicit form:

i
∂V̂

∂z
(ω) − 1

2
d0ω

2V̂ (ω) +

∫ ∫ ∞

−∞
〈Kω〉V̂ (ω1)V̂ (ω2)

¯̂
V (ω1 + ω2 − ω)dω1dω2 = 0,

(3.15)
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where 〈Kω〉 is the average of Kω(ζ) over ζ ∈ [0, 1]. When the antiderivative function
d−1(ζ) is given by (2.3), the kernel 〈Kω〉 is computed explicitly as

〈Kω〉 =
sin m(ω − ω1)(ω − ω2)

m(ω − ω1)(ω − ω2)
.(3.16)

The integral equation (3.15) with the kernel (3.16) becomes (1.15) for stationary pulse
solutions: V̂ (z, ω) = Ŵ (ω)eiµz.

The asymptotic reduction of the periodic NLS equation (1.5) to the averaged
integral NLS equation (3.15) was first derived in [14, 15]. Higher-order corrections to
the averaged integral NLS equation were considered in [26, 27] with the help of formal
Lie transformations. We develop a method of formal canonical transformations for
the Hamiltonian H(v, v̄, ζ) and, in addition, we prove convergence of the averaging
procedure at the leading and first orders in powers of ε.

3.1. Averaging of the periodic integral NLS equation (3.11)–(3.12).
The periodic integral NLS equation (3.11)–(3.12) can be averaged with the help of
the normal form transformations, formally generalized for infinite-dimensional Hamil-
tonian systems. In this generalization, the generating functional F (v, V̄ , ζ) replaces
the generating function F (ξ, y, ζ) (see (2.8)):

F (v, V̄ , ζ) =

∫ ∞

−∞
dt

[
vV̄ +

N+1∑
n=1

εnFn(v, V̄ , ζ) + O(εN+2)

]
,(3.17)

where the correction terms Fn(V, V̄ , ζ) for 1 ≤ n ≤ (N + 1) are periodic mean-zero
functions of ζ:

Fn(V, V̄ , ζ + 1) = Fn(V, V̄ , ζ),

∫ 1

0

Fn(V, V̄ , ζ)dζ = 0.(3.18)

The generating functional F (v, V̄ , ζ) defines the near-identical canonical transforma-
tion

v̄ =
δF

δv
, V =

δF

δV̄
,(3.19)

and takes the Hamiltonian H(v, v̄, ζ) to the form

Hnew(V, V̄ , ζ) = H(v(V, V̄ , ζ), v̄(V, V̄ , ζ), ζ) +
i

ε

∂F

∂ζ
(v(V, V̄ , ζ), V̄ , ζ)

= HN (V, V̄ ) + O(εN+1),(3.20)

where HN (V, V̄ ) is the Nth-order averaged Hamiltonian

HN (V, V̄ ) =

N∑
n=0

εnhn(V, V̄ ).(3.21)

When the remainder term of order of O(εN+1) is neglected, the new canonical variables
(V, V̄ ) solve the averaged Hamiltonian dynamical system:

i
∂V

∂z
=

δHN

δV̄
, −i

∂V̄

∂z
=

δHN

δV
,(3.22)
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The difference between solutions of the full system (3.8) and the averaged system
(3.22) is controlled with the accuracy of O(εN+1) on the interval 0 ≤ z ≤ z0.

The Lagrangian functional for the system (3.8) is transformed as follows:

L = i

∫ ∞

−∞
v̄

∂v

∂z
dt − H(v, v̄, ζ) = −i

∫ ∞

−∞
V

∂V̄

∂z
dt − Hnew(V, V̄ , ζ) + i

dF

dz
(v, V̄ , ζ),

(3.23)

where

dF

dz
=

1

ε

∂F

∂ζ
+

∫ ∞

−∞
dt

(
∂v

∂z

δF

δv
+

∂V̄

∂z

δF

δV̄

)
.

If F (V, V̄ , ζ) generates v̄ and V according to (3.19), then the Hamiltonian H(v, v̄, ζ)
transforms according to (3.20). The method of normal form transformations in (3.17)–
(3.23) is a formal algorithmic procedure. Still we are able to prove convergence of the
first-order averaged theory in a suitable function space; see section 3.2.

The difference between solutions of the averaged integral NLS equation (3.15) and
the periodic integral NLS equation (3.11) is defined with the help of the first-order
correction F1(V, V̄ , ζ) in (3.17). The first-order correction can be found from (3.9),
(3.13), and (3.20):

F1(V, V̄ , ζ) =
−i

2

{
|T (ζ)V |4 −

∫ 1

0

|T (ζ)V |4 dζ

}
−1

,(3.24)

where {∗}−1 stands for the mean-zero antiderivative in ζ defined by (2.2). Expanding
the near-canonical transformations (3.17) and (3.19) in powers of ε, we define the
perturbation series for v(V, V̄ , ζ):

v = V + εiΦ(V, V̄ , ζ) + O(ε2), v̄ = V̄ − εiΦ(V, V̄ , ζ) + O(ε2),(3.25)

where Φ(V, V̄ , ζ) is formally computed as

Φ =

{
T−1(ζ)

(
|T (ζ)V |2 T (ζ)V

)
−
∫ 1

0

T−1(ζ)
(
|T (ζ)V |2 T (ζ)V

)
dζ

}
−1

.(3.26)

In the Fourier form, Φ(V, V̄ , ζ) is expressed explicitly as Φ̂ω(V, V̄ , ζ):

Φ̂ω =

∫ ∫ ∞

−∞
{Kω(ζ) − 〈Kω〉}−1 V̂ (ω1)V̂ (ω2) ˆ̄V (ω1 + ω2 − ω)dω1dω2.(3.27)

With the use of correction Φ(V, V̄ , ζ), the first-order correction term h1(V, V̄ ) of the
new averaged Hamiltonian is found in the form

h1(V, V̄ ) = −i

∫ ∞

−∞
dt

∫ 1

0

(
|T (ζ)V |2 (T−1(ζ)V̄

)
T (ζ)Φ(V, V̄ , ζ) − c.c.

)
dζ,(3.28)

where c.c. stands for complex conjugation and we have used the periodicity of Φ(V, V̄ , ζ)
in ζ. The first-order correction h1(V, V̄ ) vanishes in the case of symmetric maps, when
l = 1/2.

Lemma 3.2. When the dispersion map is symmetric, i.e., l = 1/2, then h1(V, V̄ ) =
0 and Φ(V, V̄ , 0) = Φ(V, V̄ , l) = 0.
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Proof. If l = 1/2, then the mean-zero antiderivative function d−1(ζ) is even:
d−1(−ζ) = d−1(ζ). The operator T̂ω(ζ) and the kernel Kω(ζ) in (3.6) and (3.12) are
even functions of ζ and can be expanded into the Fourier cosine-series, e.g.,

Kω(ζ) = 〈Kω〉 +

∞∑
n=1

kωn cos(2πnζ).(3.29)

It follows from (3.27) that the first-order correction Φ̂ω(V, V̄ , ζ) is expanded into the
Fourier sine-series:

Φ̂ω(V, V̄ , ζ) =

∞∑
n=1

φωn(V, V̄ ) sin(2πnζ).(3.30)

The integrand of (3.28) contains only the product of the Fourier cosine- and sine-series,
which has zero mean.

The first-order averaged Hamiltonian is finally defined as H1(V, V̄ ) = h0(V, V̄ ) +
εh1(V, V̄ ), where h0(V, V̄ ) and h1(V, V̄ ) are given by (3.13) and (3.28).

3.2. Averaging theorems for the first-order averaged integral NLS
equation. Here we justify the first-order averaging theory for the periodic integral
NLS equation (3.10). In order to shorten notation, we introduce the operator Q(v, ζ)
for the cubic nonlinear term in (3.10):

Q(v, ζ) = Q(v, v, v, ζ), Q(u, v, w, ζ) = T−1(ζ)
(

T (ζ)u T (ζ)v T (ζ)w
)

.(3.31)

In the operator form,

Φ(V, V̄ , ζ) = {Q(V, ζ) − 〈Q〉(V )}−1 ,

and the first-order averaged integral NLS equation can be written in the form

i
∂V

∂z
+

1

2
d0

∂2V

∂t2
+ 〈Q〉(V ) + ε〈Q1〉(V ) = 0,(3.32)

where

〈Q〉(V ) =

∫ 1

0

Q(V, ζ)dζ,(3.33)

and

〈Q1〉(V ) =
δh1

δV
= i

∫ 1

0

[Q(V, V, Φ, ζ) − 2Q(V, Φ, V, ζ)] dζ.(3.34)

First, we list some properties of Q and Φ and formulate a local existence result for
the first-order averaged integral NLS equation (3.32).

Proposition 3.3. Let u, v, w be in Hs(R) (s ≥ 0); then the following inequalities
hold:

||Q(u, v, w, ζ)||Hs ≤ Cs||u||Hs ||v||Hs ||w||Hs ,(3.35)

||Q(u, ζ)||Hs ≤ Cs||u||3Hs ,(3.36)

||〈Q(u)〉||Hs ≤ Cs||u||3Hs ,(3.37)

||Φ(u, ū, ζ)|| ≤ Cs||u||3Hs ,(3.38)

||Q(u, u, Φ(u, ū, ζ), ζ)|| ≤ Cs||u||5Hs ,(3.39)

||〈Q(u, u, Φ(u, ū, ∗), ∗)〉|| ≤ Cs||u||5Hs .(3.40)
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Proof. The first inequality is proven using the well-known property of Hs(R)
with, e.g., s ≥ 1,

||uv||Hs ≤ Cs||u||Hs ||v||Hs ,

the isometric properties of T (ζ),

||T (ζ)u||Hs = ||u||Hs ,

and

T (ζ)Q(u, v, w, ζ) = T (ζ)uT (ζ)vT (ζ)w ⇒ ||T (ζ)Q(u, v, w, ζ)||Hs

≤ C||T (ζ)u||Hs ||T (ζ)v||Hs ||T (ζ)w||Hs ⇒ ||Q(u, v, w, ζ)||Hs ≤ C||u||Hs ||v||Hs ||w||Hs .

The remaining inequalities (3.36)–(3.40) are obtained by direct application of the first
inequality (3.35).

Proposition 3.4. Let V (0) ∈ Hs(R) with s ≥ 1. Then there exists z0 >
0 such that the first-order averaged equation (3.32) has a unique solution V (z) ∈
L∞([0, z0], Hs(R)).

Proof. The local existence for (3.32) with ε = 0 has been proven in [28] by using
the standard application of contraction mapping. In the general case, when ε �= 0,
the proof of local existence is similar. First, we rewrite (3.32) in the integral form:

V (z) = T0(z)V (0) +

∫ Z

0

T0(z − z′) (〈Q〉(V (z′)) + ε〈Q1〉(V (z′))) dz′,

where T0(z) is the operator associated with the fundamental solution of the linear
Schrödinger equation:

i
∂V

∂z
+

1

2
d0

∂2V

∂t2
= 0.

Estimating the difference between two solutions, we obtain

||V1(z) − V2(z)||Hs ≤ z0Cs(||V1(0)||Hs , ||V2(0)||Hs , ε)||V1(0) − V2(0)||Hs ,

which is a contraction if z0 is sufficiently small (uniformly in ε). Using the standard
energy estimates, we also obtain

∂

∂z
||V (z)||2Hs ≤ Cs(||V (z)||2Hs , ε)||V (z)||2Hs ,

where Cs is a smooth function in both variables, thus implying uniqueness.
Proposition 3.5. Let V (0) ∈ H1(R) and d0 �= 0. Then there exists a global

solution V ∈ L∞([0,∞), H1(R)) with initial data V (0).
Proof. For the proof we use first-order averaged Hamiltonian H1(V, V̄ ), conserved

in z. It is shown in section 3.3 that the Hamiltonian H1(V, V̄ ) is bounded uniformly
in ε ∈ [0, ε0], provided ||V ||L2 is fixed. Therefore, since the Hamiltonian is conserved
in z, the gradient term must be bounded:∫ ∞

−∞
|∂tV (z)|2dt ≤ C(||V (0)||L2 , ||∂tV (0)||L2 , d0),

which implies that ||V (z)||H1 is uniformly bounded, thus proving global existence of
solutions.
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Remark 3.1. If d0 = 0, then a global solution V (z) still exists in H1(R), although
it is not uniformly bounded.

Before proving convergence of the first-order averaging theory, we reproduce the
leading-order averaging theory from [28].

Theorem 3.6 (see [28]). Let V (z) ∈ L∞([0, z0], Hs(R)), where s ≥ 2, be a
solution of the averaged NLS equation (3.32) with ε = 0 and v(z) be a solution of the
full equation (3.10) such that ||v(0) − V (0)||Hs−2 ≤ Cε. Then, for sufficiently small
positive ε < ε0 we have v(z) ∈ L∞([0, z0], Hs−2(R)) and the solutions stay close at
the distances 0 ≤ z ≤ z0:

sup
z∈[0,z0]

||v(z) − V (z)||Hs−2 ≤ Cε.(3.41)

We prove the analogous theorem for the first-order averaged integral NLS equation
(3.32).

Theorem 3.7. Let V (z) ∈ L∞([0, z0], Hs(R)), where s ≥ 4, be a solution of
the first-order averaged integral NLS equation (3.32) and v(z) be a solution of the
full equation (3.10) such that ||v(0) − V (0) − iεΦ(V (0), V̄ (0), 0)||Hs−4 ≤ Cε. Then,
for sufficiently small positive ε < ε0 we have v(z) ∈ L∞([0, z0], Hs−4(R)) and the
solutions are ε-close on 0 ≤ z ≤ z0:

sup
z∈[0,z0]

||v(z) − V (z) − iεΦ(V, V̄ , ζ)||Hs−4 ≤ Cε2.(3.42)

Proof. We start with the averaged integral NLS equation (3.32) and use near-
identical transformations to transform it to the periodic integral NLS equation (3.10).
In the last step we compare the solutions of the transformed and the reduced equations
by using Gronwall’s inequality. This approach has a technical advantage over the
“direct” approach, which starts from the original equation (3.10) and transforms it
to the averaged equation (3.32). Indeed, for the periodic equation (3.10), there is no
a priori ε-independent estimate on the existence interval.

Let us make a transformation V = v1 − w1 in (3.32), where v1 is a new variable
and w1 is a small correction. We formally obtain

i
∂v1
∂z

+
1

2
d0

∂2v1
∂t2

+ Q(v1, ζ)(3.43)

= i
∂w1

∂z
+

1

2
d0

∂2w1

∂t2
+ Q(v1, ζ) − 〈Q〉(V ) + ε〈Q1〉(V ).

Choosing w1 = iεΦ(V, V̄ , ζ), we obtain

i
∂v1
∂z

+
1

2
d0

∂2v1
∂t2

+ Q(v1, ζ) = R1(V, ζ),(3.44)

where

R1(V, ζ) = −ε
∂

∂z
Φ(V, V̄ , ζ) + εi

1

2
d0

∂2

∂t2
Φ(V, V̄ , ζ)(3.45)

+ Q(v1, ζ) − Q(V, ζ) + ε〈Q1〉(V ).

We expand the right-hand side of (3.46) as

Q(v1, ζ) − Q(V, ζ) = Q(V + iεΦ, ζ) − Q(V, ζ)

= −iεQ(V, V, Φ, ζ) + 2iεQ(V, Φ, V, ζ) − ε2Q(Φ, Φ, V, ζ)

+ 2ε2Q(Φ, v1, Φ, ζ) + iε3Q(Φ, ζ).
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If 〈Q1〉(V ) is defined by (3.34), then (3.46) transforms to the periodic NLS equation
with a mean-zero error mismatch of order O(ε):

R1 = −ε
∂

∂z
Φ(V, V̄ , ζ) + εi

1

2
d0

∂2

∂t2
Φ(V, V̄ , ζ)

− iε{Q(V, V, Φ, ζ)} + 2iε{Q(V, Φ, V, ζ)}
− ε2Q(Φ, Φ, V, ζ) + 2ε2Q(Φ, v1, Φ, ζ) + iε3Q(Φ, ζ),

where {Q} stands for the mean-zero periodic part of Q in ζ. By using properties of
Q and Φ from Proposition 3.3 and taking into account the loss of two derivatives, we
find the estimate ||R1(V, ζ)||Hs−2 ≤ Cε.

Now, we carry out another transformation v1 = v2−w2, where w2 = −iε {R1(V, ζ)}−1.
The mean-zero antiderivative of R1(V, ζ) in ζ satisfies the estimate ||w2||Hs−2 ≤ Cε2.
After rearranging the terms we recover the equation

i
∂v2
∂z

+
1

2
d0

∂2v2
∂t2

+ Q(v2, ζ) = R2(V, ζ),(3.46)

where R2(V, ζ) has a long expression in powers of ε2 and higher. With the help of
Proposition 3.3, we can estimate all terms of R2 as ||R2(V, ζ)||Hs−4 ≤ Cε2. Comparing
solutions of (3.46) and (3.10), we obtain an equation for the difference f := v2 − v:

i
∂f

∂z
+

1

2
d0

∂2f

∂t2
+ Q(v2, ζ) − Q(v, ζ) = R2(V, ζ).(3.47)

The difference in the left-hand side of (3.47) can be estimated as

||Q(v2, ζ) − Q(v, ζ)||Hs−2 = ||Q(v2, ζ) − Q(f − v2, ζ)||Hs−2

≤ Cs(||f ||Hs−2 , ||v2||Hs−2)||f ||Hs−2 .

The growth of f can be estimated by using the standard energy estimates. We
differentiate the equation for f 1, 2, . . ., n times, multiply each of them with ∂kf
(k = 1, 2, . . ., n), subtract complex conjugates, and finally take the sum to obtain

∂

∂z
||f ||2Hn ≤ Cs(||f ||Hn , ||v2||Hn)||f ||2Hn + C||R2||Hn ||f ||Hn .

In the last inequality, we can take n: 0 ≤ n ≤ s − 4 (thus, we have to assume s ≥ 4)
and using Gronwall’s inequality, we obtain

||f(z)||Hs−4 ≤ C1(eC2zε2 + ||f(0)||Hs−4),

which proves (3.42).
Corollary 3.8. Suppose the dispersion map d(ζ) is symmetric with equal legs,

i.e., l = 1/2. If the solutions V (z) and v(z) are close in the sense of ||v(0) −
V (0)||Hs−4 ≤ Cε2, then for sufficiently small positive ε < ε0 the solutions remain
within the quadratic accuracy at the distances 0 ≤ z ≤ z0 at the points z = kε and
z = (k − 1

2 )ε, where k ∈ Z+:

sup
z∈[0,z0]

||v(z = kε) − V (z = kε)||Hs−4 ≤ Cε2.(3.48)

The quadratic convergence is based on the fact that h1(V, V̄ ) = 0 for l = 1/2
and Φ(V, V̄ , 0) = Φ(V, V̄ , l) = 0; see Lemma 3.2. As a result, we have an improved
(quadratic) convergence between solutions of the periodic integral NLS equation (3.11)
and the integral NLS equation (3.15). It is only the linear convergence between
solutions of the full and averaged equations valid at any point z of the dispersion map
in the general case l �= 1/2.
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3.3. Existence and stability of ground states of the first-order aver-
aged Hamiltonian. The first-order averaged Hamiltonian functional H1(V, V̄ ) is a
constant of motion in the averaged system; therefore its extrema are expected to be
stable solutions. Unfortunately, Hamiltonians in such problems are not bounded from
either above or below. The way out is to consider a constrained variational problem,
since there exists another conserved quantity e defined by (1.11). We show that the
obtained Hamiltonian possesses a constrained minimum for the case d0 > 0. The
constrained minimum implies stability of a stationary pulse in this case.

Let us consider the following minimization problem:

PE = inf

{
H1(V, V̄ ), V ∈ H1(R),

∫ +∞

−∞
|V |2dt = E

}
.(3.49)

First, we show that the Hamiltonian is bounded from below, PE > −∞, which is a
necessary condition for the presence of a smooth minimizer. Note that the Hamilto-
nian is unbounded from above for d0 > 0 because of the gradient term in (3.13).

Proposition 3.9. The Hamiltonian functional H1(V, V̄ ) is uniformly bounded
from below if d0 ≥ 0 and E is fixed.

Proof. Since the gradient term is positive, we need only to establish the bound-
edness of the other two terms. The leading-order term h0(V, V̄ ) can be bounded by
applying Hölder and Strichartz estimates [28]:∫ 1

0

∫ +∞

−∞
|T (ζ)V |4dtdζ =

∫ 1

0

∫ +∞

−∞
|T (ζ)V ||T (ζ)V |3dtdζ

≤
(∫ 1

0

∫ +∞

−∞
|T (ζ)V |2dtdζ

) 1
2
(∫ 1

0

∫ +∞

−∞
|T (ζ)V |6dtdζ

) 1
2

≤ E
1
2 CSE

3
2 = CSE2,

where we have used the isometry of T (ζ) in L2(R) as well as the Strichartz inequality:∫ +∞

−∞

∫ +∞

−∞
|T (ζ)V |6dtdz ≤ C2

sE3.

Now we estimate the first-order term h1(V, V̄ ) as∣∣∣∣
∫ 1

0

∫ +∞

−∞
T (ζ)V

2
T (ζ)V T (ζ)Φ(V, V̄ , ζ) dtdζ

∣∣∣∣
≤
(∫ 1

0

∫ +∞

−∞
|T (ζ)V |6dtdζ

) 1
2
(∫ 1

0

∫ +∞

−∞
|T (ζ)Φ(V, V̄ , ζ)|2dtdζ

) 1
2

≤ CSE
3
2

(∫ 1

0

∫ +∞

−∞
|Φ(V, V̄ , ζ)|2dtdζ

) 1
2

.

The integral of |Φ(V, V̄ , ζ)|2 in ζ can be estimated from the definition (3.26), rewritten
as

Φ(V, V̄ , ζ) =

∫ ζ

0

Ψ(ζ1, t)dζ1 −
∫ 1

0

∫ ζ2

0

Ψ(ζ1, t)dζ1dζ2 −
(

ζ − 1

2

)∫ 1

0

Ψ(ζ1, t)dζ1,

where we used the notation

Ψ(ζ, t) = T−1(ζ)
(
|T (ζ)V |2 T (ζ)V

)
.
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The product |Φ|2 contains 10 terms, which can be estimated in a straightforward
way using Strichartz estimate. We give an example of how to carry out one of these
estimates:∣∣∣∣∣

∫ 1

0

dζ

∫ ∞

−∞
dt

[∫ ζ

0

Ψ(ζ1, t)dζ1

∫ 1

0

∫ ζ3

0

Ψ(ζ2, t)dζ2dζ3

]∣∣∣∣∣
≤
∣∣∣∣
∫ 1

0

dζ

∫ ∞

−∞
dt

[∫ 1

0

|Ψ(ζ1, t)|dζ1

∫ 1

0

∫ 1

0

|Ψ(ζ2, t)|dζ2dζ3

]∣∣∣∣
=

∣∣∣∣
∫ ∞

−∞
dt

[∫ 1

0

|Ψ(ζ1, t)|dζ1

∫ 1

0

|Ψ(ζ2, t)|dζ2

]∣∣∣∣
=

∫ 1

0

dζ2

∫ 1

0

dζ1

∫ ∞

−∞
dt|Ψ(ζ1, t)||Ψ(ζ2, t)|

≤
(∫ 1

0

dζ1

∫ 1

0

dζ2

∫ ∞

−∞
dt|Ψ(ζ1, t)|2

) 1
2
(∫ 1

0

dζ1

∫ 1

0

dζ2

∫ ∞

−∞
dt|Ψ(ζ2, t)|2

) 1
2

≤
∫ 1

0

∫ ∞

∞
|Ψ(ζ, t)|2dtdζ.

The last integral is estimated using the definition of Ψ(ζ, t) and the Strichartz esti-
mate: ∫ 1

0

∫ ∞

−∞
|Ψ(ζ, t)|2dtdζ =

∫ 1

0

∫ ∞

−∞

∣∣∣T−1(ζ)
(

T (ζ)V 2T (ζ)V
) ∣∣∣2dtdζ

=

∫ 1

0

∫ ∞

−∞
|T (ζ)V |6dtdζ ≤ C2

SE3.(3.50)

Therefore the term h1(V, V̄ ) in the Hamiltonian H1(V, V̄ ) is bounded by CSE3/2CSE3/2

= C2
SE3.

The next step is to verify the subadditivity condition which is necessary for the
construction of a converging minimizing sequence [31]. The subadditivity property
holds in the case ε = 0 (see [28]). Here we show that it also holds for sufficiently small
ε.

Lemma 3.10. For any E > 0 there exist ε0 > 0 (which may depend on E) such
that for any 0 < ε < ε0 any minimizing sequence Vn possesses a subsequence Vnk

satisfying the subadditivity property

PE1+E2 < PE1
+ PE2 provided E = E1 + E2.(3.51)

Proof. The proof is a simple application of a scaling argument, followed by some
estimates using smallness of ε. Consider a one-parameter family V λ =

√
λV with

λ ∈ (0, 1); then

Eλ =

∫ ∞

−∞
|V λ|2dt = λE.

Introducing the notation for the Hamiltonian,

H1(V, V̄ ) = H(2)(V, V̄ ) − H(4)(V, V̄ ) + εH(6)(V, V̄ ),
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where H(2,4,6)(V, V̄ ) represent quadratic gradient term, positive quartic term, and the
sixth order perturbation term, respectively. The Hamiltonian then scales as follows:

Hλ
1 = λH(2) − λ2H(4) + λ3εH(6)

and then

Hλ
1 − λH1 = (λ − λ2)H(4) + (λ − λ3)εH(6) = λ(1 − λ)(H(4) + (1 + λ)εH(6)).

Note that for ε = 0, Hλ
1 > λH1, which implies the subadditivity PλE > λPE . The

latter results in (3.51) for the same E. For sufficiently small ε, the condition (3.51) is
expected to hold since H(6) is uniformly bounded. Indeed, if we fix E > 0, then for
ε = 0 the infimum is negative, P 0

E < 0, as shown in [28]. For positive ε, the infimum
cannot change by more than εC2

SE3; therefore P ε
E ≤ P 0

E + εC2
SE3 remains negative.

By definition, for any minimizing sequence we have H(Vn) → P ε
E and therefore

for sufficiently large n ≥ N the quartic term H(4) has to be bounded from below:

H(4) ≥ |P ε
E | − εC2

SE3 − δ(N) ⇒ H(4) ≥ |P 0
E | − 2εC2

SE3 − δ(N).

Then we prove the estimate:

H(4) + (1 + λ)εH(6) ≥ |P 0
E | − 2εC2

SE3 − δ(N) − 2εC2
SE3

= |P 0
E | − 4εC2

SE3 − δ(N) ≥ |P 0
E | − 5εC2

SE3,

where the last step in the inequalities was done by taking N sufficiently large. There-
fore, by requiring that

5εC2
SE3 <

1

2
|P 0
E |

we achieve the subadditivity condition for the minimizing sequence.
We will also use lemma on localization from [28]. The lemma says that finite

energy cannot propagate too far in the linear Schrödinger equation if the initial data
are sufficiently smooth.

Lemma 3.11 (see [28]). Let V ∈ H1(R), T (ζ) be a free Schrödinger propagator
and let

ε(ζ) = sup
ξ∈R

∫ ξ+1

ξ−1

|T (ζ)V |2dt.(3.52)

Then the following estimate holds:

ε(ζ) ≤ 2ε(0) +
√

ε2(0) + 2Cε(0)ζ.(3.53)

Now, we are ready to establish the convergence of a minimizing sequence. The
two results above make the convergence proof straightforward and very similar to the
one with ε = 0; see [28]. Therefore, we sketch only the proof of the main result,
providing details only when they are different from the case ε = 0.

Proposition 3.12. If d0 > 0 and 0 < ε <
|P 0

E |
10C2

S
E3 , then there exists a minimizer

W ∈ H1(R) ∩ C∞(R) of the constrained minimization problem (3.49).
Proof. First we observe that any minimizing sequence Vn ∈ H1(R) must possess

a bounded derivative ∫ ∞

−∞

∣∣∣∣∂Vn
∂t

∣∣∣∣2 dt < C,(3.54)
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for otherwise {H1(Vn, V̄n)}∞n=0 would have an unbounded subsequence (since H(2)(Vn, V̄n)
would dominate over H(4)(Vn, V̄n) and H(6)(Vn, V̄n), which are uniformly bounded).
Then there exists a weakly converging subsequence in L2(R). In order to assure the
strong convergence Vn → W with W satisfying the constraint (3.49), we have to show
that the sequence is tight (the energy does not escape to infinity1). We assume that
n > N with N sufficiently large so that the subadditivity condition would hold. Now,
we use the concentration-compactness principle [29], which says that there exists a
subsequence Vnk

, denoted by Vk, for which one of the following statements is true:
1. (convergence) For some sequence {tk}∞k=0 the translated sequence converges

to some limit Vk(t − tk) → W (as k → ∞) satisfying the constraint (3.49).
2. (vanishing) The following identity is true:

sup
y∈R

∫ y+1

y−1

|Vk|2dt → 0 as k → ∞.

3. (splitting) There exist E1, E2 > 0 (E = E1 + E2) such that for any ε > 0 one
can find two sequences vk, wk and K > 0 so that for any k > K we have∫ ∞

−∞
|Vk − (Wk + Uk)|2dt < ε,

where ∫ ∞

−∞
|Wk|2dt = E1,

∫ ∞

−∞
|Uk|2dt = E2

such that

dist(supp(Wk), supp(Uk)) → ∞.

Our goal is to rule out the second and the third possibilities in order to prove con-
vergence of a minimizing sequence. It has been shown in [28] for ε = 0 that van-
ishing implies that H(4)(Vk, V̄k) → 0. This is in contradiction with the sequence
being minimizing as the infimum is negative and H1(Vk, V̄k) → 0. The proof that
H(4)(Vk, V̄k) → 0 is based on Cazenave’s estimate [30],∫ ∞

−∞
|V |4dt ≤ C ||V ||2H1 sup

y∈R

∫ y+1

y−1

|V |2dt,(3.55)

and on the lemma on localization (3.52)–(3.53). Combing these estimates in a similar
way, we prove that H(6)(Vk) → 0.

We also show that the splitting may not occur. By contradiction, we assume
that splitting occurs and show that the sequence is not minimizing by using the
subadditivity condition (3.51). The proof is identical to the one in [28] and therefore
is omitted here.

Since both the vanishing and splitting scenarios do not occur, the concentration-
compactness principle implies that the sequence Vk → W strongly in L2(R) [29].
Using the standard argument (see section 3.1 in [28]), we show that Vk → W strongly
in H1(R). The minimizer weakly satisfies the Euler–Lagrange equation

−µW +
1

2
d0W

′′(t) + 〈Q〉(W ) + ε〈Q1〉(W ) = 0.(3.56)

1There is no problem with the local loss of compactness since on any finite interval I ⊂ R the
space H1(I) is compactly embedded in L2(I).
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Using the bootstrapping procedure, we show that the solution is smooth. If W ∈
H1(R), then 〈Q〉(W ) + ε〈Q1〉(W ) ∈ H1(R). Due to the presence of the term d0W

′′(t)
in (3.56), the solution is extended to function space W ∈ H3(R). Continuing this, we
obtain that W ∈ Hs(R) for any s ≥ 1 and W ∈ C∞(R).

The minimizer W (t) obtained in Proposition 3.12 defines a stationary pulse so-
lution V (z, t) = W (t)eiµz of the first-order averaged integral NLS equation, where
µ = f−1

µ (e) and e = fµ(µ) is a continuous function. Thus, the existence and stability
of a single branch of DM solitons is proved for d0 > 0 in the first-order averaged
integral NLS equation (3.32). This completes the proof of Proposition 1.8 for the
integral NLS approximation. If the stationary pulse solutions W (t) are computed nu-
merically, all other parameters of DM solitons can be computed for the case d0 > 0, in
direct correspondence with Proposition 1.4. Otherwise, the analytical dependencies
in (1.19)–(1.21) remain implicitly defined by the averaged integral equation (3.56).

4. Conclusion. We have studied existence and stability of dispersion-managed
(DM) solitons for the periodic NLS equation. We defined the DM solitons either as
periodic solutions of a low-dimensional system for parameters of a Gaussian pulse or
as stationary pulse solutions of the averaged integral NLS equation. In both cases, we
have found and analyzed the first-order averaged Hamiltonian. Some open problems
appear beyond this analysis and are worth mentioning here.

First, it is a conjecture that DM solitons do not exist as quasi-periodic solutions
of the periodic NLS equation (1.5), contrary to the approximating Gaussian pulses.
Recent work of Yang and Kath [19] discusses parametric resonances between localized
pulses and linear Bloch waves associated with the varying dispersion d(z). Asymptotic
and numerical analysis confirmed that the quasi-periodic pulses produce nonlocalized
radiation tails, which escape the localized region to infinity [19]. The radiation tail
is exponentially small in the limit ε → 0, i.e., it appears beyond any asymptotic
expansion in powers of ε. In our analysis, all the resonant terms are removed from
the leading and first order of the asymptotic series. As a result, the quasi-periodic
pulses exist in the averaged integral NLS equation (3.32), at least for d0 > 0.

Second, the first-order constrained Hamiltonian H1(V, V̄ ) was shown to possess a
constrained minimum only for d0 > 0. With the use of the new work by Kunze [20],
the constrained minimum can be shown to exist for d0 = 0. However, it is impossible
to prove whether or not a local extremum of the averaged Hamiltonian exists for
d0 < 0 even in the limit ε → 0. Indeed, the operator µ − 1

2d0∂tt is not positive-
definite for µ > 0 and d0 < 0, and a strong resonance occurs between spectra of a
localized pulse and linear waves. As a result, the Hamiltonian functional H1(V, V̄ ) is
unbounded from below even for the constrained problem (3.49).

Two branches of Gaussian pulse solutions exist for d0 < 0: one is stable and the
other one is unstable in the propagation in z. However, iterations of a numerical
method quickly diverge for the branch of unstable Gaussian pulses [13] and slowly
diverge for the branch of stable Gaussian pulses [21]. Rigorous analysis of existence
or nonexistence of stationary solutions of the problem (3.56) with d0 < 0 is not
completed yet.

Finally, the higher-order averaged Hamiltonian can be found and analyzed for the
case d0 > 0 in a similar manner. However, the constrained minimization procedure
fails already for the second-order Hamiltonian, which has a correction H(8)(V, V̄ )
that contains eight powers of V and V̄ . Because of such higher-order nonlinearity,
the correction H(8)(V, V̄ ) is not be bounded from below by the Strichartz estimate
(3.50). Therefore, higher-order averaged equations become less useful for analysis.
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Abstract. The Bremmer coupling series solution of the wave equation, in generally inhomo-
geneous media, requires the introduction of pseudodifferential operators. Such operators appear in
the diagonalization process of the acoustic system’s matrix of partial differential operators upon
extracting a principal direction of (one-way) propagation. In this paper, in three dimensions, uni-
form asymptotic expansions of the Schwartz kernels of these operators are derived. Also, we derive
a uniform asymptotic expansion of the one-way propagator appearing in the series. We focus on
designing closed-form representations, valid in the high-frequency limit, taking into account critical
scattering-angle phenomena. The latter phenomena are not dealt with in the standard calculus of
pseudodifferential operators. Our expansion is not limited by propagation angle. In principle, the
uniform asymptotic expansion of a kernel follows by matching its asymptotic behaviors away and
near its diagonal.

Key words. wave field decomposition, Bremmer series, uniform asymptotics
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1. Introduction. Directional wave field decomposition is a tool for analyzing
and computing wave propagation in configurations with a special directionality, such
as a waveguiding structure. Such a method consists of three main steps: (i) decom-
posing the field into two constituents, propagating “one-way” upward or downward
along a preferred or principal direction, (ii) computing the interaction of the coun-
terpropagating constituents, and (iii) recomposing the constituents into observables
at the positions of interest. The Bremmer series [1] then synthesizes the constituents
into a full-wave solution. Each term in the series represents a wave constituent that
has traveled up and down along the principal direction a number of times equal to
its order. Thus we are able to trace waves: evolution is no longer in time but now
in the vertical coordinate, vertical being identified with the principal direction. The
microlocal analysis of the one-way wave propagator can be found in Treves [2].

Applications of the generalized Bremmer series solution to the wave equation
include (i) the identification and elimination of multiple scattered wave constituents
and (ii) the formulation of various imaging and inverse scattering procedures in remote
sensing. In general, the inverse scattering problem can be decomposed into a coupled
inverse “contrast-source” or “reflectivity”–inverse “constituency” problem. With the
aid of time-reversal mirrors, each pair of successive terms in the Bremmer series can
be exploited to construct the reflectivity (see de Hoop [3]).

The generalized Bremmer series can be viewed as a full-wave extension of the
(high-frequency) geometrical ray series representation of the wave field embedded
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in the Kirchhoff approximation (see Frazer [4]). The Maslov canonical operator is
replaced by a Trotter product (see de Hoop, Le Rousseau, and Biondi [5]). The
Bremmer series–Trotter product approach encompasses the microlocal, Kirchhoff–
Maslov, representation of the wave field. Extensive lists of references to applications of
the generalized Bremmer series in exploration and crustal seismology, ocean acoustics,
and integrated optics can be found in Van Stralen, de Hoop, and Blok [6].

De Hoop [1] originally formulated the generalized Bremmer series modeling
method in the time-Laplace domain. Owing to the fact that the medium can vary in
the directions transverse to the preferred direction, pseudodifferential calculus became
a natural tool to introduce the up and downgoing Green’s functions: pseudodiffer-
ential operators appear in the directional (de)composition, in the downward and up-
ward propagation or continuation, and in the interaction (reflection and transmission)
between the counterpropagating constituents due to variations in medium properties
in the preferred direction. The time-Laplace domain is not amenable to computations,
however.

Various approaches have been developed over the years in the time-Fourier do-
main to approximate the operators appearing in the Bremmer series to make numerical
computations feasible. An overview of the approaches based on rational (paraxial) ex-
pansions of the operator symbols can be found in Van Stralen, de Hoop, and Blok [6].
An overview of approaches based on phase-screen-like approximations of the operator
symbols can be found in de Hoop, Le Rousseau, and Wu [7]. With these numerical ap-
proaches, however, critical “scattering-angle” phenomena such as the ones associated
with rays the tangents to which become horizontal (for example, turning rays) cannot
be modeled. With the approach proposed in this paper, this limitation is removed.
In particular media, spectral analysis can be employed to find exact time-Fourier
representations of mentioned operators (see Fishman, de Hoop, and van Stralen [8]).

In this paper, our goal is to gain analytic insight into the propagation and scat-
tering of waves as described by the generalized Bremmer series—while developing a
time-Fourier analysis of the constituent operators. We extend earlier results (Fish-
man, Gautesen, and Sun [9] and de Hoop and Gautesen [10]) in this direction that were
derived in two dimensions to three (and higher) dimensions. Instead of using pseu-
dodifferential operators in the time-Laplace domain, we will here employ microlocal
and uniform asymptotics techniques combined in the time-Fourier domain. We focus
our analysis on the development of a uniform asymptotic expansion of the transversal
part of the one-way wave operator kernel (of the square-root Helmholtz type) and the
associated one-way wave propagator. For the completion of the Bremmer coupling
series we refer the reader to our earlier paper.

The uniform asymptotic expansions also provide the basis for a numerical scheme.
Such a scheme would involve the computations of (i) a spatially varying effective
index of refraction and (ii) a spatially varying effective “distance” in the transverse
directions, and then applying the kernel. The effective index of refraction and the
effective metric are computed along the bicharacteristics constrained to the plane
spanned by transverse directions.

The outline of this paper is as follows. In the next section a summary of the
method of directional decomposition, leading to a coupled system of one-way wave
equations is given. In section 3, the medium is decomposed into thin slabs. In each
thin slab we introduce a “characteristic” Green’s function. In section 4 we intro-
duce representations of the square-root operator and the one-way wave propagator in
terms of the characteristic Green’s function. The key effort is developing a uniform
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asymptotic expansion of the characteristic Green’s function. Such an expansion in
the absence of transverse caustics is developed in section 5 and in the presence of
transverse caustics in section 6. In both cases an “inner” (near-field) and “outer”
(far-field) representation is derived upon which a matching procedure in a boundary
layer is invoked. The latter synthesizes the uniformly valid expression. Section 7
summarizes the main result of the paper: the uniform asymptotic expansion for the
square-root operator and the likewise expansion for the one-way wave propagator in
higher dimensions. We conclude with a discussion (section 8).

2. Directional wave field decomposition. For the details on the derivation
of the Bremmer coupling series solution of the acoustic wave equation, we refer the
reader to de Hoop [1]. Here, we restrict ourselves to a summary of this wave field
decomposition method.

Notation, transformations. We consider acoustic waves in a three-dimensional
configuration. In this configuration, let p denote the pressure and (v1,2, v3) = (v1, v2, v3)
the particle velocity. We introduce the Fourier transformation with respect to time t
as

(F{p, v1,2, v3})(x1,2, x3, ω) =

∫
t∈R≥0

{p, v1,2, v3}(x1,2, x3, t) exp(iωt) dt(2.1)

for Im{ω} > 0. Under this transformation, assuming zero initial conditions, we have
∂t → −iω.

In each subdomain of the configuration where the acoustic properties vary contin-
uously with position, the acoustic wave field {p, v1,2, v3} satisfies the system of partial
differential equations

∂kp− iωρ vk = fk,(2.2)

−iωκ p+ ∂1v1 + ∂2v2 + ∂3v3 = q.(2.3)

Here, ρ denotes the volume density of mass, κ the compressibility, q the volume source
density of injection rate, and fk the volume source density of force.

The spatial variation of the wave field along a direction of preference can now be
expressed in terms of the variation of the wave field in the direction perpendicular to
it. The direction of preference or principal direction is taken (globally) along the x3-
axis (or “vertical” axis) and the remaining (“transverse” or “horizontal”) coordinates
are denoted by (x1, x2) or x1,2.

The reduced system of equations. Directional decomposition requires a sepa-
rate handling of the horizontal or transverse component of the particle velocity. From
(2.2) and (2.3) we obtain

v1,2 = −iρ−1ω−1(∂1,2p− f1),(2.4)

leaving, upon substitution, the matrix differential equation (I, J = 1, 2)

(∂3δIJ − iωAIJ)FJ = NI , AIJ = AIJ(x1,2, D1,2;x3), D1,2 ≡ − i

ω
∂1,2,(2.5)

in which the elements of the acoustic field matrix1 are given by

F1 = p, F2 = v3,(2.6)

1Present ocean-bottom seismic acquisition technology allows both p and v3 to be measured.
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the elements of the acoustic system’s matrix operator by

A11 = A22 = 0,(2.7)

A12 = ρ,(2.8)

A21 = −D1(ρ
−1D1 )−D2(ρ

−1D2 ) + κ,(2.9)

and the elements of the notional source matrix by

N1 = f3, N2 = D1(ρ
−1f1) +D2(ρ

−1f2) + q.(2.10)

It is observed that the right-hand side of (2.4) and AIJ contain the spatial derivatives
D1,2 with respect to the horizontal coordinates only. In the sequel of the paper it
will become clear that D1,2 has the interpretation of horizontal slowness operator.
Further, it is noted that A12 is simply a multiplicative operator.

The coupled system of one-way wave equations. To distinguish up and
downgoing constituents in the wave field, we shall construct an appropriate linear
operator LIJ with

FI = LIJWJ ,(2.11)

which, with the aid of the commutation relation ([., .] denotes the commutator)

(∂3LIJ) = [∂3, LIJ ],(2.12)

transforms (2.5) into

LIJ (∂3δJM − iωΛJM )WM = −(∂3LIJ)WJ +NI .(2.13)

Transformation (2.11) should result in the diagonalization of the operator AIJ in the
sense that

AIJLJM = LIJΛJM ,(2.14)

where ΛJM is a diagonal matrix of operators. We denote LIJ as the composition
operator and WM as the wave column matrix. The expression in parentheses on the
left-hand side of (2.13) represents the two so-called one-way wave operators. The
first term on the right-hand side of (2.13) is representative for the scattering due to
variations of the medium properties in the vertical direction. The diffraction due to
variations of the medium properties in the horizontal directions is contained in ΛJM
and, implicitly, in LIJ . This diffraction comprises the multipathing of characteristics
that commonly occurs in geophysical configurations.

To investigate whether solutions of (2.14) exist, we introduce the column matrix

operators L
(±)
I according to

L
(+)
I = LI1, L

(−)
I = LI2.(2.15)

Upon writing the diagonal elements of ΛJM as

Λ11 = Γ(+), Λ22 = Γ(−),(2.16)

(2.14) decomposes into the two systems of equations

AIJL
(±)
J = L

(±)
I Γ(±).(2.17)
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By analogy with the case where the medium is translationally invariant in the hor-
izontal directions, we shall denote Γ(±) as the vertical slowness operators. Notice

that the operators L
(±)
1 synthesize the acoustic pressure and that the operators L

(±)
2

synthesize the vertical particle velocity. Through mutual elimination, the equations

for L
(±)
1 and L

(±)
2 can be decoupled as follows:

A12A21L
(±)
1 = L

(±)
1 Γ(±) Γ(±),(2.18)

A21A12L
(±)
2 = L

(±)
2 Γ(±) Γ(±).(2.19)

The partial differential operators on the left-hand sides differ from one another in the
case where the volume density of mass does vary in the horizontal directions.

To ensure that nontrivial solutions of (2.18)–(2.19) exist, one equation must imply
the other. To construct a formal solution, an ansatz is introduced in the form of a

commutation relation for one of the components L
(±)
J that restricts the freedom in

the choice for the other component. In the acoustic-pressure normalization analogue

one assumes that L
(±)
2 can be chosen such that

[A12L
(±)
2 , A12A21] = 0.(2.20)

In view of (2.19), Γ(±) must then satisfy

A12A21 − Γ(±) Γ(±) = 0.(2.21)

The commutation relation for L
(±)
1 follows as [L

(±)
1 , A12A21] = 0 and a possible solu-

tion of (2.17) is

L
(±)
2 = A−1

12 Γ
(±), L

(±)
1 = I.(2.22)

Since L
(±)
2 as given by (2.22) satisfies (2.20), the ansatz is justified. The solutions of

(2.21) are written as

Γ(+) = −Γ(−) = Γ = A1/2 with A = A12A21.(2.23)

Thus, the composition operator becomes

L =

(
I I

A−1
12 Γ −A−1

12 Γ

)
.(2.24)

Note that we have decomposed the pressure field according to

F1 = F
(+)
1 + F

(−)
1 with F

(+)
1 = W1, F

(−)
1 = W2.

In terms of the inverse vertical slowness operator, Γ−1 = A−1/2, the decomposition
operator then follows as

L−1 = 1
2

(
I Γ−1A12

I −Γ−1A12

)
.(2.25)

Using the decomposition operator, (2.13) transforms into

(∂3δIM − iωΛIM )WM = −(L−1)IM (∂3LMJ)WJ + (L−1)IMNM ,(2.26)
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which can be interpreted as a coupled system of one-way wave equations. The
propagation is captured by the left-hand side. The coupling between the counter-
propagating components, W1 and W2, is apparent in the first source-like term on the
right-hand side. The waves are excited by the second term on the right-hand side.
We have

−L−1(∂3L) =

(
T R
R T

)
,(2.27)

in which T and R represent the transmission and reflection operators, respectively:
let Y = A−1

12 Γ denote the admittance operator; then

R = −T = 1
2Y

−1 (∂3Y ).(2.28)

The two-way Helmholtz equation. Suppose that the medium does not vary
with x3. Eliminating F2 or v3 from (2.5) then leads to the second-order equation for
the pressure,

[∂2
3 + ω2A(x1,2, D1,2)]F1 = iω ρN2 + ∂3N1,(2.29)

the two-way Helmholtz equation, where A is given by (2.23).

3. Decomposition of the configuration into thin slabs. We will now de-
compose the medium into (thin) slabs. Each slab in our three-dimensional configura-
tion is assumed to be invariant in the direction of preference, x3: the compressibility,
κ, may vary in the transverse directions, whereas the density is assumed to be constant
all together. However, the medium may vary from slab to slab, and hence the vertical
coordinate x3 becomes a parameter that identifies the slab in our further analysis.

The characteristic operator. As mentioned, in our thin-slab analysis, we will
consider the following medium profile:

ρ = const.,(3.1)

κ(x1,2) = κ0 n2(x1,2);(3.2)

thus, setting κ0 = ρ−1c−2
0 , the wave speed follows from

c−2(x1,2) = c−2
0 n2(x1,2),

where n denotes the index of refraction. The operator in (2.23) is then given by

A(x1,2, D1,2) = −D2
1 −D2

2 + c−2
0 n2(x1,2).(3.3)

We will denote A as the transverse Helmholtz or characteristic operator.

Factorization, Green’s functions. We introduce the well-known Helmholtz
equation and “characteristic” Green’s function as (cf. (2.29))

[∂2
3 + ω2A(x1,2, D1,2)]G(x1,2, x3 − x′

3;x
′
1,2)

= −δ(x1 − x′
1)δ(x2 − x′

2)δ(x3 − x′
3).(3.4)

The vertical slowness operators Γ(±) factorize the Helmholtz operator (cf. (2.23)):

∂2
3 + ω2A(x1,2, D1,2) = [∂3 − iω Γ(+)(x1,2, D1,2)] [∂3 − iω Γ(−)(x1,2, D1,2)].(3.5)

The one-way Green’s functions G(±) associated with the two factors satisfy

[∂3 − iω Γ(±)(x1,2, D1,2)]G(±)(x1,2, x3 − x′
3;x

′
1,2)

= δ(x1 − x′
1)δ(x2 − x′

2)δ(x3 − x′
3).(3.6)
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Vertical slowness as phase variable. Note that the Fourier representation of
the causal Green’s function G yields

G(x1,2, x3 − x′
3;x

′
1,2) =

ω

2πc0

∫
ζ∈Z

G̃(x1,2, x
′
1,2; ζ) exp[i (ω/c0)︸ ︷︷ ︸

k0

|x3 − x′
3|ζ] dζ.(3.7)

Here, Z follows the real axis in the complex ζ-plane, below it for negative real parts
and above it for positive real parts. Since

ω2A(x1,2, D1,2) = ∂2
1 + ∂2

2 + (ω/c0)
2 n2(x1,2),(3.8)

G̃ satisfies (cf. (3.4))

[∂2
1 + ∂2

2 + (ω/c0)
2 (n2(x1,2)− ζ2)] G̃(x1,2, x

′
1,2; ζ) = −δ(x1 − x′

1)δ(x2 − x′
2),(3.9)

or, more formally,

−ω2[A(x1,2, D1,2)− c−2
0 ζ2] G̃(x1,2, x

′
1,2; ζ) = δ(x1 − x′

1)δ(x2 − x′
2).(3.10)

We can deform contour Z to a contour Z ′, say, such that the distance from a zero
crossing of n2(x1,2)− ζ2 remains finite.

Observe the symmetry G̃(x1,2, x
′
1,2;−ζ) = G̃(x1,2, x

′
1,2; ζ). Hidden inside the in-

tegral is a cut-off function in accordance with the microlocal representation of G.

4. Kernel representations in terms of the characteristic Green’s func-
tion.

The one-way propagator. Using the image principle, we can express the one-
way Green’s functions in terms of the Green’s function of the second-order Helmholtz
equation,

(4.1)

G(+)(x1,2, x3 − x′
3;x

′
1,2) + G(−)(x1,2, x3 − x′

3;x
′
1,2) = −2 ∂3G(x1,2, x3 − x′

3;x
′
1,2).

Hence, for x3 > x′
3,

G(+)(x1,2, x3 − x′
3;x

′
1,2) = −2 ∂3G(x1,2, x3 − x′

3;x
′
1,2).(4.2)

In fact, G ≡ G(+) is the kernel of the (upward) one-way wave propagator. In view of
(4.2) this kernel satisfies the property

∂2j
3 G = [−ω2A(x1,2, D1,2)]

jG, j = 1, 2, . . . ,(4.3)

for x3 > x′
3. We will pay special attention to the so-called thin-slab expansion of G.

The vertical slowness or square-root operator. The vertical slowness or
square-root operator Γ (see (2.23)) acts on the wave field as

(Γ{W1,W2})(x1,2) =

∫
x′1,2∈R

2

C(x1,2, x
′
1,2) {W1,W2}(x′

1,2) dx
′
1dx

′
2,(4.4)

where C denotes a Schwartz kernel. From this operator representation, we extract the
left vertical slowness symbol through the Fourier transformation

γ(x1,2, p1,2) =

∫
x′1,2∈R

2

C(x1,2, x
′
1,2) exp[−iω(xσ − x′

σ)pσ] dx
′
1dx

′
2,(4.5)
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where the summation convention has been invoked for σ ∈ {1, 2}. The left symbols of
the horizontal slowness operators D1,2 appear to be simply p1,2. The relation between
the left vertical slowness symbol and the horizontal slowness symbol constitutes the
generalized slowness surface.

We will now focus on finding integral representations for the Schwartz kernel.
First, note that the Schwartz kernel can be expressed in terms of the one-way Green’s
function,

C(+)(x1,2, x
′
1,2;x

′
3) = − lim

x3↓x′3

i

ω
∂3G(+)(x1,2, x3 − x′

3;x
′
1,2),(4.6)

C(−)(x1,2, x
′
1,2;x

′
3) = − lim

x3↑x′3

i

ω
∂3G(−)(x1,2, x3 − x′

3;x
′
1,2).(4.7)

With (4.2) we find that

C(x1,2, x
′
1,2;x

′
3) = − lim

x3↓x′3

2

iω
∂2
3G(x1,2, x3 − x′

3;x
′
1,2).(4.8)

Note that C is dependent on x′
3 through the index of refraction. We will suppress this

dependence in our notation.

The inverse vertical slowness operator. The inverse or reciprocal vertical
slowness operator admits the kernel identification

A−1/2(x1,2, x
′
1,2) = −2iωG(x1,2, 0;x

′
1,2).(4.9)

From the inverse vertical slowness operator, the higher fractional powers of the char-
acteristic operator can be obtained, viz., through the composition

Aj−1/2 = AjA−1/2.(4.10)

5. Uniform asymptotic expansion of the characteristic Green’s func-
tion: The absence of caustics.

The inner solution. The inner region is determined by the condition

||(x1 − x′
1, x2 − x′

2)|| = O(k−1
0 )

and corresponds to the behavior of the kernels near their diagonals. The inner region
is so close to the “source” at x′

1,2 that caustics have not (yet) formed.
We reconsider (3.4),

[∂k∂k + k2
0n

2(x1,2)]G(x1,2, x3 − x′
3;x

′
1,2) = −δ(x1 − x′

1)δ(x2 − x′
2)δ(x3 − x′

3)

and introduce the relative coordinate

yj = xj − x′
j , j ∈ {1, 2, 3}.

We expand the index of refraction about (x′
1, x

′
2) according to

n2(y1,2 + x′
1,2) = n2(x′

1,2) + 2n(x′
1,2) ([y1∂1 + y2∂2]n)(x

′
1,2)

+n(x′
1,2) [y1∂1 + y2∂2]

2n(x′
1,2) + (([y1∂1 + y2∂2]n)(x

′
1,2))

2 + . . . ,(5.1)
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where we differentiate (∂1,2) with respect to x′
1,2 while the argument of n and its

derivatives is x′
1,2. We invoke the expansion of the Green’s function in terms of y1,2,

G = G0 +G1 +G2 + . . . ,(5.2)

where the subscript indicates the order in y = (y2
1 + y2

2 + y2
3)

1/2. Then

[∂k∂k + k2
0n

2(x′
1,2)]G0(x1,2, x3 − x′

3;x
′
1,2)

= −δ(x1 − x′
1)δ(x2 − x′

2)δ(x3 − x′
3),(5.3)

[∂k∂k + k2
0n

2(x′
1,2)]G1(x1,2, x3 − x′

3;x
′
1,2)

= −2k2
0n(x

′
1,2) ([y1∂1 + y2∂2]n)(x

′
1,2) G0(x1,2, x3 − x′

3;x
′
1,2),(5.4)

[∂k∂k + k2
0n

2(x′
1,2)]G2(x1,2, x3 − x′

3;x
′
1,2)

= −2k2
0n(x

′
1,2) ([y1∂1 + y2∂2]n)(x

′
1,2) G1(x1,2, x3 − x′

3;x
′
1,2)(5.5)

−k2
0

[
n(x′

1,2) [y1∂1 + y2∂2]
2n(x′

1,2)

+(([y1∂1 + y2∂2]n)(x
′
1,2))

2
]

G0(x1,2, x3 − x′
3;x

′
1,2),

etc., with solutions obtained recursively as

G0(x1,2, x3 − x′
3;x

′
1,2) =

exp[ik0n y]

4πy
,(5.6)

G1(x1,2, x3 − x′
3;x

′
1,2) =

1
2 ik0y ([y1∂1 + y2∂2]n) G0(x1,2, x3 − x′

3;x
′
1,2),(5.7)

G2(x1,2, x3 − x′
3;x

′
1,2) =

ik0y

24n

{
4n[y1∂1 + y2∂2]

2n

+(3ik0ny + 1)([y1∂1 + y2∂2]n)
2 − y2[(∂1n)

2 + (∂2n)
2]

+
(∂1n)

2 + (∂2n)
2 − 2n[(∂1)

2 + (∂2)
2]n

(ik0n)2
(ik0ny − 1)

}
G0.(5.8)

Inner expansion in midpoint coordinates. In the spirit of the Weyl calculus
of kernel symbols (see [11, 21.6.5]), we can improve the above result by introducing
the midpoint coordinates

x̄j =
1
2 (xj + x′

j), j ∈ {1, 2, 3},
and re-expand the exponential according to

exp[ik0n(x
′
1,2) y] = exp[ik0n(x̄1,2) y]

{
1− 1

2 ik0y[y1∂1 + y2∂2]n

+ 1
8 ik0y[y1∂1 + y2∂2]

2n− 1
8k

2
0y

2([y1∂1 + y2∂2]n)
2 + . . .

}
,(5.9)

where the argument of n is now x̄1,2. The expansion for G (cf. (5.2) and (5.6)–(5.8))
can then be rewritten as

G =
exp[ik0n y]

4πy


1 +

ik0y

24n


 n[y1∂1 + y2∂2]

2n+ ([y1∂1 + y2∂2]n)
2

− y2[(∂1n)
2 + (∂2n)

2]

+
(∂1n)

2 + (∂2n)
2 − 2n[(∂1)

2 + (∂2)
2]n

(ik0n)2
(ik0ny − 1)


+ . . .


 .(5.10)
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Note that the odd order terms (up to this order, G1) have disappeared. The expansion
above has an improved error estimate, here O(y4): We now have (cf. (5.2)) G �
G0 +G2 and upon substitution it follows that

[∂k∂k + k2
0n

2(x1,2)]G = G0(x1,2, x3 − x′
3;x

′
1,2) k2

0O(y4).(5.11)

The outer solution. The outer region is determined by the condition

||(x1 − x′
1, x2 − x′

2)|| = O(1)

and corresponds to the behavior of the kernels away from their diagonals.
We reconsider (3.9),

[∂2
1 + ∂2

2 + k2
0(n

2(x1,2)− ζ2)] G̃(x1,2, x
′
1,2; ζ) = −δ(x1 − x′

1)δ(x2 − x′
2)

and we introduce the representation

G̃(x1,2, x
′
1,2; ζ) = C exp(ik0ψ),(5.12)

where C is a yet-to-be-determined constant. We expand ψ into phase and amplitude
contributions,

ψ = φ+
1

ik0
φ1 +

1

(ik0)2
φ2 + . . .︸ ︷︷ ︸

amplitude

.(5.13)

Substituting this expansion into the partial differential equation, and collecting equal
powers of (ik0), results in the eikonal equation

p2 + q2 + ζ2 − n2(x1,2) = 0,(5.14)

for the leading order; here p ≡ ∂x1φ and q ≡ ∂x2φ. The next order terms yield the
equation

2p (∂x1φ1) + 2q (∂x2φ1) + ∂x1p+ ∂x2q = 0,(5.15)

whereas the final order that we will account for implies the equation

2p (∂x1φ2) + 2q (∂x2φ2) + ∂2
x1

φ1 + ∂2
x2

φ1 + (∂x1φ1)
2 + (∂x2φ1)

2 = 0.(5.16)

Amplitude expansion. It is convenient to remove the singularities from φ1 and φ2.
This is accomplished by the change of functions,

φ1 = − 1
2 logφ+ ψ1,(5.17)

φ2 = 1
8φ

−1 + ψ2.(5.18)

With this change, (5.15)–(5.16) take the form

2p (∂x1ψ1) + 2q (∂x2
ψ1) + φ [∂2

x1
+ ∂2

x2
]logφ = 0,(5.19)

2p (∂x1ψ2) + 2q (∂x2
ψ2) + ∂2

x1
ψ1 + ∂2

x2
ψ1 + (∂x1

ψ1)
2 + (∂x2

ψ1)
2 = 0,(5.20)

supplemented with the initial conditions ψ1 = ψ2 = 0 at x1,2 = x′
1,2.
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Expansion in z = O(k−1
0 ). We now make the assumption that the propagation

distance satisfies

k0 |x3 − x′
3|︸ ︷︷ ︸

y3=z

= O(1).(5.21)

Thus we guarantee that the stationary point (where ∂ζφ = 0) of the integral repre-
sentation (3.7) remains at ζ = 0, and that

| exp[ik0 |x3 − x′
3|ζ]| = O(1).(5.22)

We then expand the relevant functions about ζ = 0, i.e.,

φ = I0 − 1
2ζ

2I1 − 1
8ζ

4I2 + . . . ,(5.23)

ψ1 = ψ10 + ζ2ψ11 + . . . ,(5.24)

ψ2 = ψ20 + . . . ,(5.25)

where I0, I1, I2 and ψ10, ψ11, ψ20 are independent of ζ.
The phase function. Invoking expansion (5.23) into (5.14), the equations deter-

mining the phase function become

P 2 +Q2 − n2(x1,2) = 0,(5.26)

P (∂x1I1) +Q (∂x2I1)− 1 = 0,(5.27)

P (∂x1
I2) +Q (∂x2

I2)− (∂x1
I1)

2 − (∂x2
I1)

2 = 0,(5.28)

where P = ∂x1I0 and Q = ∂x2I0. With eikonal equation (5.26) is associated the
Hamilton system

dx1

dµ
= P,

dP

dµ
= (∂1M)(x1,2),

dx2

dµ
= Q,

dQ

dµ
= (∂2M)(x1,2),

(5.29)

where M = 1
2n

2, supplemented by the initial conditions

(x1, x2)|0 = (x′
1, x

′
2), (P,Q)|0 = (α1, α2), α2

1 + α2
2 = n2(x′

1,2).(5.30)

The additional equations (5.27)–(5.28) comply with the initial conditions at µ = 0:
Ij = 0, j = 0, 1, 2, . . . .

In the Hamilton system (5.29), we expand the right-hand sides into a Taylor series
about the “source” coordinates, x′

1,2:

dP

dµ
= (∂1M)(x′

1,2) + y1∂1(∂1M)(x′
1,2) + y2∂2(∂1M)(x′

1,2),

dQ

dµ
= (∂2M)(x′

1,2) + y1∂1(∂2M)(x′
1,2) + y2∂2(∂2M)(x′

1,2).

(5.31)

We then evaluate the solutions to the Hamilton (see (5.29)–(5.31)) and eikonal (see
(5.26)) equations for small values of µ. The parametric representation of the Hamil-
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tonian flow follows as

y1 = P |0µ+ 1
2P1µ

2 + 1
3P2µ

3 + . . . ,

P = α1︸︷︷︸
P |0

+(∂1M)︸ ︷︷ ︸
P1

µ+ 1
2 [α1∂1 + α2∂2](∂1M)︸ ︷︷ ︸

P2

µ2 + . . . ,

y2 = Q|0µ+ 1
2Q1µ

2 + 1
3Q2µ

3 + . . . ,

Q = α2︸︷︷︸
Q|0

+(∂2M)︸ ︷︷ ︸
Q1

µ+ 1
2 [α1∂1 + α2∂2](∂2M)︸ ︷︷ ︸

Q2

µ2 + . . . ;

(5.32)

in these equations we differentiate (∂1,2) with respect to x′
1,2 while the argument of

(∂1,2M) is x′
1,2. For the purpose of the uniform matching, we will re-expand the

solution about the transverse midpoint coordinates x̄1,2 and give results as needed
later.

Solving system (5.32) for µ, α1, α2 in terms of y1, y2, yields

µ =
r2

n

(
1− 1

2

[y1∂1 + y2∂2]n

n
+

1

3

(
[y1∂1 + y2∂2]n

n

)2

+
1

8

(
[y⊥1 ∂1 + y⊥2 ∂2]n

n

)2

− 1

6

[y1∂1 + y2∂2]
2n

n

)
,(5.33)

α1,2 =
n

r2

(
y1,2(1− 1

2a
2
1) + y⊥1,2(a1 + a2)

)
,(5.34)

where the argument of n is x′
1,2,

r2 = (y2
1 + y2

2)
1/2(5.35)

and

y⊥1 = −y2, y⊥2 = y1,(5.36)

while

a1 = − [y⊥1 ∂1 + y⊥2 ∂2]n

2n
,

(5.37)

a2 =
1

12

(
([y⊥1 ∂1 + y⊥2 ∂2]n)([y1∂1 + y2∂2]n)

n2

−2
[y⊥1 ∂1 + y⊥2 ∂2][y1∂1 + y2∂2]n

n

)
;

note that a1 and a2 are of first and second order in y, respectively.
With the aid of relation

P ∂x1Ij +Q∂x2Ij =
dIj
dµ
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valid along a characteristic or ray, (5.26)–(5.28) take the form

dI0
dµ

= n2(x1,2),(5.38)

dI1
dµ

= 1,(5.39)

dI2
dµ

= (∂x1
I1)

2 + (∂x2
I1)

2.(5.40)

Explicit expansions of Ij near the “source” (µ small or, equivalently, r2 small) are
readily obtained from (5.38)–(5.40) using system (5.32) and solutions (5.33)–(5.34).
(Basically, such a procedure encompasses an expansion of (the argument of) n2 about
the fixed initial point (x′

1,2) in terms of y1,2; we then substitute the small µ expansion
(5.32) for y1,2 and re-expand the relevant coefficients about x̄1,2.) These expansions
are only needed for matching the inner and outer solutions. They are given as needed
later (see (5.54)–(5.58)).

The amplitude expansion. Invoking expansion (5.23)–(5.25) into (5.19)–(5.20),
the equations determining the amplitude become

2P ∂x1ψ10 + 2Q∂x2ψ10 + I0[∂
2
x1

+ ∂2
x2
]logI0 = 0,(5.41)

2P ∂x1ψ20 + 2Q∂x2ψ20 + (∂x1ψ10)
2 + (∂x2ψ10)

2 + [∂2
x1

+ ∂2
x2
]ψ10 = 0,(5.42)

supplemented with the initial conditions

ψ10 = ψ20 = 0 at x1,2 = x′
1,2.(5.43)

The next order equation, for ψ11, becomes

2P ∂x1
ψ11 + 2Q∂x2

ψ11 − (∂x1
I1)(∂x1

ψ10)− (∂x2
I1)(∂x2

ψ10)

− 1
2I1[∂

2
x1

+ ∂2
x2
]logI0 − 1

2I0[∂
2
x1

+ ∂2
x2
](I1/I0) = 0,(5.44)

supplemented with the initial conditions

ψ11 = 0 at x1,2 = x′
1,2.(5.45)

In (5.41)–(5.42) and (5.44),

P ∂x1ψij +Q∂x2ψij =
dψij
dµ

along a characteristic or ray. Upon solving these equations, about the stationary point
at ζ = 0, we obtain the transform-domain expansion for the characteristic Green’s
function,

G̃(x1,2, x
′
1,2; ζ) exp[−ik0(x3 − x′

3)ζ] = C
1√
I0

exp[ik0(I0 − 1
2ζ

2I1) + ψ10]{
1− ik0ζ(x3 − x′

3) +
1

ik0

(
1

8I0
+ ψ20 + ik0ζ

2

(
ψ11 +

I1
4I0

+ 1
2 [ik0(x3 − x′

3)]
2

)

− 1
8 (ik0ζ

2)2I2

)
+ . . .

}
.(5.46)
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Table 5.1
Relevant equations.

I0 I1 I2 ψ10 ψ20 ψ11
(5.38) (5.39) (5.40) (5.41) (5.42) (5.44)

Carrying out the inverse Fourier transform with the method of stationary phase then
results in

G(x1,2, x3 − x′
3;x

′
1,2) = C

(−ik0

2π

)1/2

exp(ψ10)
exp(ik0I0)

(I0I1)1/2{
1 +

1

ik0I0

(
3

8

(
1− I2I0

I2
1

)
+

(
ψ11

I1
+ ψ20

)
I0 +

1
2 [ik0(x3 − x′

3)]
2 I0
I1

)
+ . . .

}
.(5.47)

Effective index of refraction, effective metric and uniform asymptotic
expansion. As in the two-dimensional case [10], for notational convenience, we in-
troduce the effective index of refraction and effective horizontal distance as

ν ≡
[
I0
I1

]1/2

,(5.48)

χ1 ≡ [I0I1]
1/2,(5.49)

where the arguments are evaluated along the characteristics, whereas

r = [χ2
1 + z2]1/2.(5.50)

Then a uniform asymptotic expansion is

G(x1,2, x3 − x′
3;x

′
1,2) =

1

4πr
exp(ik0νr) exp(ψ10r

2/χ2
1)(5.51) 

 1 +
r

ik0νχ2
1

(
3

8

(
1− ν3I2

χ1

)
+ ν(νψ11 + χ1ψ20)

)

+
1

8

(
1− ν3I2

χ1

)(
(x3 − x′

3)
2

χ2
1r

2
[ik0νr(x3 − x′

3)
2 + r2 + χ2

1]

)
+ . . .


 .

The equations to be evaluated or solved are listed in Table 5.1.
In the outer region, χ1 = O(1), whence

r

χ1
∼ 1 +

(x3 − x′
3)

2

2χ2
1

= 1 +O(k−2
0 ),(5.52)

νr = νχ1 + ν
(x3 − x′

3)
2

2χ1
+O(k−4

0 ),(5.53)

and the uniform solution reduces to the outer solution (5.47) with

C =

(
i

8πk0

)1/2

.
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On the inner region, χ1 = O(k−1
0 ), whence

1

χ2
1

(
1− ν3I2

χ1

)
∼ −1

3

[(
∂1n

n

)2

+

(
∂2n

n

)2
]
,(5.54)

ν

χ2
1

(νψ11 + χ1ψ20) ∼ 1

12

[
[∂2

1 + ∂2
2 ]n

n
+

(
∂1n

n

)2

+

(
∂2n

n

)2
]
,(5.55)

ψ10

χ2
1

∼ 1

12

[
− [∂2

1 + ∂2
2 ]n

n
+

(
∂1n

n

)2

+

(
∂2n

n

)2
]
,(5.56)

νr ∼ ny

(
1 +

1

24

{
[y1∂1 + y2∂2]

2n

n
+

(
y1∂1n

n

)2

+

(
y2∂2n

n

)2

+

[(
∂1n

n

)2

+

(
∂2n

n

)2
](

−y2 +
(x3 − x′

3)
4

y2

)})
,(5.57)

1

r
∼ 1

y

(
1− 1

24

[(
∂1n

n

)2

+

(
∂2n

n

)2
]

r4
2

y2

)
,(5.58)

where r2 was defined in (5.35), and the argument of n is x̄1,2. Substitution of these
results into the uniform solution yields the inner solution (5.10).

The inner and outer solutions match when χ1 = O(k
−2/3
0 ), which scaling defines

the boundary layer.

6. Uniform asymptotic expansion of the characteristic Green’s func-
tion: The presence of a caustic. In the generic case of a heterogeneous slab,
caustics will form in the transverse directions. Following the Maslov approach, we
note that there will always be two coordinates chosen from (y1, y2) and their Fourier
duals (η1, η2) such that the solution in these coordinates remains asymptotically finite
and meaningful. The transition from one doublet of coordinates to another is followed
by the Keller–Maslov line bundle [11] that is accounted for in the solution’s ampli-
tude through a tensor product. We will discuss the mixed (y1, η2) case here; together
with the previous section, all necessary combinations can be found by permutation of
coordinates.

We reconsider (3.4) once again,

[∂k∂k + k2
0n

2(x1,2)]G(x1,2, x3 − x′
3;x

′
1,2) = −δ(x1 − x′

1)δ(x2 − x′
2)δ(x3 − x′

3),

and introduce a slight change in notation,

y1,2 = x1,2 − x′
1,2, z = x3 − x′

3.

We write the Green’s function in the form of an appropriate Fourier integral,

G(x1,2, x3 − x′
3;x

′
1,2) =

k0

2π

∫
R

Ĝ(y1, η2, z;x
′
1,2) exp(ik0η2y2) dη2.(6.1)

We now distinguish amplitude and phase according to

Ĝ(y1, η2, z;x
′
1,2) = A(y1, η2, z;x

′
1,2) exp[ik0φ(y1, η2, z;x

′
1,2)].(6.2)
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The inner solution. We expand the index of refraction, n2(x′
1,2 + y1,2), in the

partial differential equation in y2 about −q where q ≡ ∂η2φ. Upon substituting the
Fourier representation into the Helmholtz equation (3.4), after several integrations by
parts, we obtain the following equations.

Up to highest order (lowest order in (ik0)
−1), we recover the eikonal equation,

viz.,

p2 + η2
2 + r2 − n2(x′

1 + y1, x
′
2 − q) = 0,(6.3)

where p ≡ ∂y1φ and r ≡ ∂zφ. This is a pseudodifferential equation for φ. In the spirit
of the solution method of characteristics, we deduce the Hamilton equations for the
bicharacteristics,

dy1

dλ
= p,

dp

dλ
= (∂1M)(x′

1 + y1, x
′
2 − q),

dη2

dλ
= (∂2M)(x′

1 + y1, x
′
2 − q),

dq

dλ
= −η2,

dz

dλ
= r,

dr

dλ
= 0,

(6.4)

in which

M = 1
2n

2.

The Hamilton system is supplemented with initial conditions at λ = 0:

(y1, η2, z)|0 = (0, β2, 0), (p, q, r)|0 = (β1, 0, β3), β2
1 + β2

2 + β2
3 = n2(x′

1,2).(6.5)

In the next order, we recover the transport-like equation for A, viz.,

(∂2
y1 + ∂2

z )A+ 2ik0CA−DA = −δ(y1)δ(z),(6.6)

in which

CA = [p ∂y1 + r∂z + (∂2M)(x′
1 + y1, x

′
2 − q) ∂η2 ]A

+ 1
2

[
∂2
y1φ+ ∂2

zφ− (∂2
2M)(x′

1 + y1, x
′
2 − q) ∂2

η2φ
]
A,(6.7)

DA =
[
(∂2

2M)(x′
1 + y1, x

′
2 − q) ∂2

η2 − (∂η2q)(∂
3
2M)(x′

1 + y1, x
′
2 − q) ∂η2

]
A

+
[− 1

3 (∂
2
η2q)(∂

3
2M)(x′

1 + y1, x
′
2 − q) + 1

4 (∂η2q)
2(∂4

2M)(x′
1 + y1, x

′
2 − q)

]
A

+O((ik0)
−1).(6.8)

Observe that on the inner region the y1 and z derivatives are large, and, hence, the
inner transport-like equation reduces to

(∂2
y1 + ∂2

z )A+ 2ik0CA = −δ(y1)δ(z) + . . . .(6.9)

The phase function. First, we evaluate the solutions to the Hamilton (cf. (6.4))
and eikonal (cf. (6.3)) equations for small values of λ. The parametric representation
of the Hamiltonian flow follows from (6.4) as

y1 = β1λ+ 1
2 (∂1M)λ2 + . . . , p = β1 + (∂1M)λ+ . . . ,

η2 = β2 + (∂2M)λ+ . . . , q = −β2λ− 1
2 (∂2M)λ2 + . . . ,

z = β3λ, r = β3

(6.10)
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while, through integration of the canonical one-form along the bicharacteristic, the
phase function is found to be

φ = (β2
1 + β2

3)λ+ [β1(∂1M)− 1
2β2(∂2M)]λ2 + . . . ,(6.11)

in which the substitution (∂1,2M) = (∂1,2M)(x′
1,2) is understood.

Solving system (6.10) subject to the constraint in (6.5) for λ, β1, β2, β3 in terms
of y1, η2, z yields

λ = (R/γ)[1− γ−3( 1
2γy1(∂1M) + η2R(∂2M)) + . . .],(6.12)

β1 = (γ/R)[y1 + γ−3(− 1
2γz

2(∂1M) + η2y1R(∂2M)) + . . .],(6.13)

β2 = η2 − (R/γ)(∂2M) + . . . ,(6.14)

β3 = (γz/R)[1 + γ−3( 1
2γy1(∂1M) + η2R(∂2M)) + . . .],(6.15)

in which R ≡ (y2
1 + z2)1/2 and γ ≡ [n2(x′

1,2)− η2
2 ]

1/2. Substituting these solutions in
the remaining equations of system (6.10) gives

p = (γ/R)[y1 + γ−3( 1
2γ(y

2
1 +R2)(∂1M) + η2y1R(∂2M)) + . . .],

q = (R/γ)[−η2 + γ−4 1
2 (γ

2y1η2(∂1M) + (γ2 + 2η2
2)R(∂2M)) + . . .],

r = (γz/R)[1 + γ−3( 1
2γy1(∂1M) + η2R(∂2M)) + . . .],

(6.16)

whereas the phase function (6.11) takes the form

φ = γR [1 + γ−3( 1
2γy1(∂1M) + 1

2η2R(∂2M)) + . . .].(6.17)

The amplitude function. Having obtained the solution of the eikonal equation,
we now proceed with solving the transport-like equation. First, observe the following
property of functions F of k0φ:[

∂2
y1 + ∂2

z + 2ik0C
]
F = k2

0(p
2 + r2)

{
F ′′ + 2iF ′ +

1

k0φ
(F ′ + iF ) +

η2(∂2M)(x′
1,2)

2k0γ4
(F ′ + iF − 4ik0φF

′) + . . .

}
.

Using this property, the inner solution of (6.9) is constructed and found to be

A =
i

4
exp(−ik0φ)(6.18) {

H
(1)
0 (k0φ) +

η2(∂2M)(x′
1,2)

2γ4
k0φ

2[H
(1)
1 (k0φ)− iH

(1)
2 (k0φ)] + . . .

}
.

The outer solution. We assume that our wave field is a transient phenomenon
with dominant wave number k0. The outer region is determined by the condition

||(x1 − x′
1, x2 − x′

2)|| = O(1)

and corresponds to the behavior of the kernels away from their diagonals.
Amplitude expansion. In the outer region the derivatives of the amplitude A in

(6.2) are O(1). Thus we expand

A =
1

(k0φ)1/2

{
A0 +

1

ik0

(
A0

8φ
+A1

)
+ . . .

}
.(6.19)
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With this definition, A0 and A1 are continuous near the “source” (at x′
1,2). Substi-

tution of (6.19) into (6.6) and setting terms proportional to k
−n+1/2
0 , n = 0, 1, . . . ,

equal to zero yields the transport equations

LA0 = 0,(6.20)

LA1 − φ1/2D(φ−1/2A0) + ∂2
y1A0 + ∂2

zA0

+
1

φ
(∂2M)(x′

1 + y1, x
′
2 − q)

(
∂η2A0 +

3

4

q

φ
A0

)
− 1

2 (∂η2q) (∂
2
2M)(x′

1 + y1, x
′
2 − q)A0 = 0,(6.21)

where

LA = 2
dA

dλ
+

{
φ [∂2

y1 + ∂2
z ]logφ

− q

φ
(∂2M)(x′

1 + y1, x
′
2 − q)− (∂η2q)(∂

2
2M)(x′

1 + y1, x
′
2 − q)

}
A.(6.22)

The nonhomogeneous terms in (6.21) are continuous near the “source.”
In preparation for matching the inner and outer solutions, we consider the small

λ expansion of the solutions to (6.20)–(6.21):

A0 → A0|0
(
1− 3β2λ(∂2M)(x′

1,2)

4(β2
1 + β2

3)
+ . . .

)

= A0|0
(
1− 3β2(∂2M)(x′

1,2)φ

4(β2
1 + β2

3)
2

+ . . .

)
,(6.23)

A1 → A1|0 + . . . .(6.24)

Thus near the “source,” (6.19) takes the form

A =

(
1

k0φ

)1/2 {
A0|0

(
1 +

1

8ik0φ
− 3β2(∂2M)(x′

1,2)

32(β2
1 + β2

3)
2

[
8φ+

1

ik0

])
+

1

ik0
A1|0 + . . .

}
.

(6.25)

Inner solution on the outer scale. In preparation for developing the inner
solution on the outer region, we observe the asymptotic behavior of the amplitude
given in (6.18): We have

A =

(
i

8πk0φ

)1/2 {
1 +

1

8ik0φ
− 3η2(∂2M)(x′

1,2)

4γ4

[
φ− 5

8ik0

]
+ . . .

}
(6.26)

as k0φ becomes large. On the other hand, approaching the “source” as λ (i.e., φ)
becomes small, in this expression, gives

η2

γ4
→ β2

(β2
1 + β2

3)
2
,

cf. (6.10).
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Uniform asymptotic expansion. Matching the inner solution on the overlap-
ping region. The overlapping region is governed by λ small and k0λ large, i.e., φ small

and k0φ large (or R = O(k
−1/3
0 ), where R was defined just below (6.15)). Comparing

(6.25) with (6.26) yields the initial conditions for A0 and A1,

A0|0 =

(
i

8π

)1/2

,(6.27)

A1|0 =

(
i

8π

)1/2 9β2(∂2M)(x′
1,2)

16(β2
1 + β2

3)
2

.(6.28)

Thus the initial conditions for A0 and A1 are determined by matching the outer
expansion to the inner solution on the overlapping region. It is only now that the
outer solution is fully determined.

Uniform expansion. Finally, the uniform expansion is obtained by adding the
outer solution ((6.1), (6.2), and (6.19)) to the inner solution ((6.1), (6.2), and (6.18))
and subtracting the matching terms on the overlapping region (equation (6.26)). How-
ever, in the inner region caustics will not have developed yet and, hence, there the
noncaustic uniform asymptotic expansion of the previous section will apply.

Expansion in z = O(k−1
0 ). For use of the expansion of G in the kernels of

the vertical slowness operator and the thin-slab propagator, we will have to make the
assumption that the propagation distance satisfies

k0 |x3 − x′
3|︸ ︷︷ ︸

z

= O(1).(6.29)

Exploiting the small range of propagation to yield the thin-slab propagator, we expand

φ = I0 +
1
2z

2I1 +
1
8z

4I2 + . . . ,(6.30)

A0 = A00 + z2A01 + . . . ,(6.31)

A1 = A10 + . . . ,(6.32)

where I0, I1, I2 and A00, A01, A10 are independent of z.
The phase function. Substituting the expansion for φ in (6.3) yields up to leading

order

P 2 + η2
2 − n2(x′

1 + y1, x
′
2 −Q) = 0,(6.33)

where P = ∂y1I0 and Q = ∂η2I0. The associated Hamilton system, i.e., the counter-
part of (6.4) with the preferred (principal) components removed, becomes

dy1

dµ
= P,

dP

dµ
= (∂1M)(x′

1 + y1, x
′
2 −Q),

dη2

dµ
= (∂2M)(x′

1 + y1, x
′
2 −Q),

dQ

dµ
= −η2,

(6.34)

supplemented by the initial conditions (cf. (6.5))

(y1, η2)|0 = (0, α2), (P,Q)|0 = (α1, 0), α2
1 + α2

2 = n2(x′
1,2).(6.35)
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The equation for the next order term follows as

dI1
dµ

+ I2
1 = 0(6.36)

with solution

I1 =
1

µ
.(6.37)

(The initial condition has been matched with the inner solution.)
The equation for I2 follows as

dI2
dµ

+ 4I2I1 + (∂y1I1)
2 − (∂2

2M)(x′
1 + y1, x

′
2 −Q)(∂η2I1)

2 = 0.(6.38)

This equation simplifies from a computational point of view upon scaling I2 = µ−4Ī2;
then

dĪ2
dµ

+ [(∂y1I1)
2 − (∂2

2M)(x′
1 + y1, x

′
2 −Q)(∂η2I1)

2]µ4 = 0,(6.39)

supplemented by the initial condition

Ī2|0 = 0.(6.40)

We evaluate the solutions to the Hamilton (equation (6.34)) and eikonal (equa-
tion (6.33)) equations for small values of µ. The parametric representation of the
Hamiltonian flow follows as (compare with (6.10))

y1 = α1µ+ 1
2 (∂1M)µ2 + . . . , P = α1 + (∂1M)µ+ . . . ,

η2 = α2 + (∂2M)µ+ . . . , Q = −α2µ− 1
2 (∂2M)µ2 + . . . ,

(6.41)

while the leading-order constituent phase function is found to be (compare with (6.11))

I0 = α2
1µ+ [α1(∂1M)− 1

2α2(∂2M)]µ2 + . . . ,(6.42)

in which the substitution (∂1,2M) = (∂1,2M)(x′
1,2) is understood.

Solving system (6.41) subject to the constraint in (6.35) for µ, α1, α2 in terms of
y1, η2 yields

µ = (|y1|/γ)[1− γ−3( 1
2γy1(∂1M) + η2|y1|(∂2M)) + . . .],(6.43)

α1 = (γ/|y1|)[y1 + γ−3η2y
2
1(∂2M) + . . .],(6.44)

α2 = η2 − (|y1|/γ)(∂2M) + . . . ,(6.45)

in which γ = [n2(x′
1,2)−η2

2 ]
1/2 as before. Substituting these solutions into (6.42) then

yields (compare with (6.17))

I0 = γ|y1|[1 + γ−3( 1
2γy1(∂1M) + 1

2η2|y1|(∂2M)) + . . .].(6.46)

Amplitude expansion. Upon substituting (6.30)–(6.32) into (6.20)–(6.21), and
collecting leading-order terms, the equations for A00 and A10 follow as

L̃A00 = 0,(6.47)

L̃A10 + 2A01 − 3

4

Q

I2
0

(∂2M)(x′
1 + y1, x

′
2 −Q)A00 − D̃A00 = 0,(6.48)
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where

L̃A = 2
dA

dµ
+

[
I0 ∂2

y1 logI0 + I1 − Q

I0
(∂2M)(x′

1 + y1, x
′
2 −Q)

− (∂η2Q)(∂2
2M)(x′

1 + y1, x
′
2 −Q)

]
A,(6.49)

D̃A = −∂2
y1A− 1

I0
(∂2M)(x′

1 + y1, x
′
2 −Q) ∂η2A

+ I
1/2
0

[
(∂2

2M)(x′
1 + y1, x

′
2 −Q)

(
∂2
η2 +

∂η2Q

2I0

)
− (∂3

2M)(x′
1 + y1, x

′
2 −Q)((∂η2Q)∂η2 +

1
3 (∂

3
η2Q))

+ 1
4 (∂

4
2M)(x′

1 + y1, x
′
2 −Q) 1

4 (∂η2Q)2

](
A

I
1/2
0

)
,(6.50)

supplemented with the initial conditions (compatible with (6.27)–(6.28))

A00|0 =

(
i

8π

)1/2

,(6.51)

A10|0 =

(
i

8π

)1/2 9β2(∂2M)(x′
1,2)

16(β2
1 + β2

3)
2

.(6.52)

The next order equation, for A01, yields (cf. (6.20))

L̃A01 + 4I1A01 + L̃1A00 = 0,(6.53)

where

L̃1A = (∂y1I1)(∂y1A)− (∂η2I1)(∂
2
2M)(x′

1 + y1, x
′
2 −Q)(∂η2A)

+ 1
2

(
(∂2
y1I1)−

2P (∂y1I1)

I0
+

P 2I1
I2
0

+ 3I2 − 2I2
1

I0

)
A

+

[ (
QI1
I2
0

− (∂η2I1)

I0

)
(∂2M)(x′

1 + y1, x
′
2 −Q)

+

(
Q(∂η2I1)

I0
− (∂2

η2I1)

)
(∂2

2M)(x′
1 + y1, x

′
2 −Q)

+ (∂η2I1)(∂η2Q)(∂3
2M)(x′

1 + y1, x
′
2 −Q)

]
A.(6.54)

This equation simplifies from a computational point of view upon scaling A01 =
µ−2Ā01; then

L̃Ā01 + µ2L̃1A00 = 0(6.55)

with the initial condition Ā01|0 = 0.
We remark that the inhomogeneous term in (6.55) is continuous at the “source”

(x′
1,2) and

A01 → −3α2(∂2M)(x′
1,2)

8α4
1µ

A00|0 as µ → 0,
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Table 6.1
Relevant equations.

I0 I1 I2 A00 A10 A01

(6.33) (6.37) (6.39) (6.47) (6.48) (6.55)

cf. (6.41) for Q and (6.42) for I0. The inhomogeneous term in (6.48) is continuous at
the “source” (x′

1,2) since

−3

4

Q

I2
0

(∂2M)(x′
1 + y1, x

′
2 −Q) → 3

4

α2(∂2M)(x′
1,2)

α4
1µ

as µ → 0.

Effective index of refraction and effective metric. Again, we introduce an
effective index of refraction and effective horizontal distance as

ν ≡ [I0I1]
1/2,(6.56)

χ1 ≡
[
I0
I1

]1/2

,(6.57)

where the arguments are evaluated along the characteristics, whereas

r = [χ2
1 + z2]1/2.(6.58)

Then

G(x1,2, x3 − x′
3;x

′
1,2)(6.59)

=
k0

2π

∫
R

1

(k0νr)1/2
exp[ik0(νr + η2y2)]

{
A00 +

1

ik0

(
A00

8νr
+A10

)
+ . . .

}
dη2,

cf. (6.1), (6.2), (6.19), which represents the outer solution. The equations to be
evaluated or solved are listed in Table 6.1.

7. Uniform asymptotic expansions of the vertical slowness operator
and the one-way wave propagator.

The square-root operator kernel. Using (4.8), upon carrying out repeated
differentiation, we arrive at the uniform asymptotic expansion of the square-root
operator kernel,

C(x1,2, x
′
1,2;x

′
3) =

i

2πωχ3
1

exp(ik0νχ1) exp(ψ10)(7.1) 
 (ik0νχ1 + 2ψ10)


 1 +

1

ik0νχ1

(
3

8

(
1− ν3I2

χ1

)
+ ν(νψ11 + χ1ψ20)

) 


−1

2

(
1 +

ν3I2
χ1

)
+ . . .


 ,

in the absence of caustics, and the outer expansion,

C(x1,2, x
′
1,2;x

′
3) =

ik0

ωπ

∫
R

exp[ik0(νχ1 + η2y2)](7.2) {
1

(νχ1)1/2χ2
1

((
ik0νχ1 − 3

8

)
A00 + 2χ2

1A01 + νχ1A10 + . . .

)}
dη2,

in the presence of a caustic, to the order considered.
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The propagator kernel. Using (4.2), we arrive at the uniform asymptotic ex-
pansion of the one-way propagator kernel,

G(x1,2, x3 − x′
3;x

′
1,2)(7.3)

= −2(x3 − x′
3)




(
ik0ν

r
+

2ψ10

χ2
1

)
G(x1,2, x3 − x′

3;x
′
1,2)

− 1

4πr3
exp(ik0νr) exp

(
ψ10r

2

χ2
1

)
[
−1 +

1

8χ2
1r

2

(
1− ν3I2

χ1

)
(4χ4

1 + (x3 − x′
3)

2(r2 + χ2
1))

]
+ . . .




in the absence of caustics, and the outer expansion,

G(x1,2, x3 − x′
3;x

′
1,2) = −k0

π

∫
R

(x3 − x′
3)

r2(k0νr)1/2
(7.4)

exp[ik0(νr + η2y2)]

{(
ik0νr − 3

8

)
A00 + νrA10 + 2r2A01 + . . .

}
dη2,

in the presence of a caustic, to the order considered. In both cases, we observe that

lim
x3↓x′3

G(x1,2, x3 − x′
3;x

′
1,2) = δ(x1,2 − x′

1,2),

as it should.

8. Discussion. One of the main objectives of directional wave field decomposi-
tion is the introduction of the concept of “tracing waves.” A general theory for this,
employing the complete generalized Bremmer coupling series, has been developed
before. The application of the series, however, depends on solving an operator com-
position equation, the characteristic equation, and an associated one-way wave equa-
tion. In this paper, in smoothly varying media, we have obtained uniform asymptotic
expansions for both solutions valid in the “high- and mid-frequency” wave regime.

The method of uniform asymptotics consists of three components: (i) the con-
struction of a “far-field” or “outer” solution, representing an operator kernel away
from its diagonal and obtained by microlocal techniques suppressing locally medium
variations in the principal (here vertical) direction; (ii) the construction of a “near-
field” or “inner” solution, representing the operator kernel near its diagonal and ob-
tained mostly by Taylor-like expansions; (iii) matching the inner and outer solutions
in a boundary layer to all orders considered.

The result is a one-way wave field representation that is truly more general than
its microlocal counterpart. For example, the microlocal treatment of the one-way op-
erator solutions to the characteristic equation would require cut-offs removing critical-
angle scattering phenomena. Also, modal behavior is naturally included in our frame-
work of uniform asymptotics. Conceptually, our theory is an intermediate between
asymptotic-ray and full-wave theories in the sense that our theory is still asymptotic
but valid in a much larger frequency band (see also Thomson [12]).

From a computational perspective, the uniform asymptotic one-way wave propa-
gator falls into the category of propagators associated with the paraxial wave equation,
the phase-screen or split-step Fourier approximation, the phase-shift-plus-interpolation
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method, and so on. However, it does not suffer from any of the limitations of these
approaches. A desirable feature of a closed-form solution as presented in this paper
is its ease of use, in particular with a view to taking caustics into account. (In this
context, for a comparison with a ray tracing approach, see Ziomek [13]).

Hidden in the uniform asymptotic expansions are certain aspects of homogeniza-
tion: we have introduced an effective index of refraction and an effective metric, which
follow from the actual medium variations and are evaluated by means of ray methods.

Throughout the paper, the configuration has been assumed to be three-
dimensional. Previous two-dimensional results, obtained by more restrictive argu-
ments, are recovered by assuming that ∂2n ≡ 0 and integrating the characteristic
Green’s function over y2.

As a final remark, we indicate how variable density can be incorporated in the
analysis. For details on how it affects the decomposition procedure, see de Hoop [1].
The key in the approach presented in this paper is the introduction of an effective
wave speed, c′−2

(x1,2, ω) = c−2
0 n′2(x1,2, ω), with

n′2(x1,2, ω) = n2(x1,2) + c20

[
3[(D1ρ)

2 + (D2ρ)
2]

4ρ2
− (D2

1 +D2
2)ρ

2ρ

]
, ρ = ρ(x1, x2).

This change requires some straightforward adjustments of the asymptotic matching.
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Abstract. We present new bounds for the solution of the resolvent equation for plane Couette
flow. Both analytic methods and computation, using the Chebyshev tau spectral method, are used.
The emphasis is on determining the Reynolds number-dependence of the estimates. The main result
is the introduction of a weighted norm, which leads to optimal asymptotic behavior of the resolvent
for large Reynolds numbers.
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1. Introduction. Hydrodynamic stability of shear flows is a classic topic in
applied mathematics with roots in the 19th century. We refer to the books [14], [1],
[3], and [20] for an outline of the field and general background of this work.

In this paper we study plane Couette flow, i.e., flow of a viscous incompressible
fluid between two moving planes. It is assumed that there is no pressure gradient,
and so the stationary velocity profile is linear. The spectrum for Couette flow was
thoroughly investigated in the period 1950–1970. We mention the papers [26], [5],
and [7], which are concerned with bounds for the most unstable eigenvalues. These
efforts culminated in a paper of Romanov [18], where it is shown that all eigenvalues
λ satisfy Reλ ≤ −δ/R for some δ > 0. Here R denotes the Reynolds number. In
[18] the fact that the eigenvalues lie in the stable complex half-plane is combined
with semigroup theory to prove the nonlinear stability of plane Couette flow for all
Reynolds numbers. This is a rather special situation for shear flows; e.g., Poiseuille
flow becomes unstable for R > 5772. This was shown in [23] and [19]. The accurate
value of the critical Reynolds number was obtained in [15] with the same numerical
method we use in this paper to study the norm of the resolvent.

Although plane Couette flow is stable to infinitesimal perturbations, it can be
excited to turbulence by finite perturbations. There is a threshold value for the size
of the perturbations. Below this value the perturbations decay to zero, and above the
threshold the perturbation may lead to turbulence. The question of what the threshold
value is and its dependence on the Reynolds number is the motivation for the present
work. It has been known for a very long time that the threshold decreases with
increasing Reynolds number. In the beginning of the 1990s the hypothesis that the
threshold is proportional to R−β (for some β > 0) was starting to be investigated [25],
[24]. Computations in [16] suggest a β-value of approximately 5/4. The asymptotic
analysis of [2] suggests an approximate β-value of 1.

Another approach to this problem is found in [9], where a bound on the resolvent
operator in the entire unstable half-plane is used to show nonlinear stability. The
resolvent estimate depends on the Reynolds number. In [9] it is proven that Couette
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flow is stable to perturbations of amplitude ≤ CR−21/4. Thus 21/4 is an upper bound
on the exponent β.

The proof in [9] is based on a resolvent estimate which is obtained by computation.
In this paper, we analytically derive a resolvent estimate in a sector of the complex
(s-)plane, which covers all but a bounded part of the unstable half-plane. In this
estimate we include both the dependence on the Reynolds number and the complex
number s. For the Fourier transformed resolvent equation we give an estimate in the
entire unstable half-plane which holds for certain wave numbers. These results are not
sufficient for stability investigations but should be seen as the start of more detailed
investigations of the resolvent for Couette flow.

To obtain estimates directly applicable to nonlinear stability, we must resort to
numerical methods. An important result of this paper is obtained in this way. The
resolvent estimate of [9] is

‖u‖ ≤ CR2 ‖f‖ .(1.1)

Here u is the velocity field, f is the forcing, and we use the L2-norm. It is well
known that, with respect to this norm, the resolvent is increasingly nonnormal as
R grows. This means that the eigenfunctions of the linear problem are increasingly
nonorthogonal and that there exist initial perturbations such that the norm of the
solution of the linear problem grows initially. The largest possible growth increases
with R. By using a different norm, the normality properties of the resolvent and the
orthogonality properties of the eigenfunctions change.

If the resolvent R is normal with respect to the inner product defining the norm,
then with this norm

‖R‖N =
1

dist(ΩU ,Σ)
;(1.2)

see [8, p. 277]. Here ΩU = {s ∈ C : Re s ≥ 0} is the unstable half-plane, and Σ
is the spectrum. By considering the Fourier transformed eigenvalue problem with
streamwise wavenumber equal to zero, it is easy to see that the eigenvalue bound of
Romanov is sharp. Thus the right-hand side in (1.2) is proportional to R. If R is
nonnormal, then its norm is larger.

In this paper we introduce new norms by weighting the different velocity compo-
nents with R-dependent coefficients. We investigate several possibilities, and the best
result is

‖u‖3 ≤ CR ‖f‖3 .(1.3)

C denotes a generic constant. The norm with subscript 3 is introduced in section 2.2.
We see that we gain a factor R in the right-hand side. By the above argument, this
result is optimal in the sense that we can improve only the constant C; the exponent
of R cannot be lower than one.

We obtain (1.3) by numerical computations in which we maximize the Fourier
transformed resolvent over different wave numbers. The maximum occurs when the
streamwise wave number equals zero, corresponding to disturbances without stream-
wise variations.

In [13], the inequality (1.3) is used to considerably improve the exponent 21/4 for
the threshold mentioned above. In the present paper we also investigate the weighting
proposed in [9] and show that it does not lead to an improved exponent.
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1.1. Outline of the paper. A definition of the continuous problem and defini-
tions and notation for the various norms we will use are given in section 2.

Section 3 is devoted to the analytical resolvent estimate, which is given in The-
orem 3.1. The well-known reformulation of the problem in terms of u2 and η2 (the
normal component of the vorticity), instead of u and p, is presented in section 4. The
equations are also Fourier transformed. In the same section we state an analytical
estimate for the Fourier transformed problem, in Lemma 4.1. After this we turn to
numerical methods, which are applied to the reformulated problem.

In section 5 we present results of computations of the different norms of the
resolvent. The most important result is the optimal R-exponent in the resolvent
estimate for the third modified norm (defined in section 2.2). For the discretization we
use the Chebyshev spectral tau method developed in [15] for eigenvalue calculations.
Our method is described in detail in [12]. In [17] computations of the norm of the
resolvent (or equivalently the pseudospectra; see [17]) were performed for the Orr–
Sommerfeld equation. There a Chebyshev spectral method developed in [6] was used.
In [25] computation of the pseudospectra for the full Couette problem seems to have
been made using the same method as in [17].

Some remarks on estimates of higher order space derivatives are stated in sec-
tion 6.

2. Statement of the problem. Here we introduce the resolvent PDE. We
also define the resolvent operator. (It is not obvious how to do this because of the
special role of the pressure.) In section 2.2 we introduce notation for the norms we
will use. These norms are constructed as a weighted combination of the norms of the
components of the velocity field. The weights depend on the Reynolds number R.

2.1. The resolvent equation. We choose the coordinate system so that (nondi-
mensionalized) Couette flow is given by

U =


 x2

0
0


(2.1)

in the domain

Ω = {x ∈ R
3 : −1 < x2 < 1}.(2.2)

We use bold letters to denote vectors, and subscripts to identify the components, so
x2 is the second component of the vector x.

The resolvent equation is derived by linearizing the Navier–Stokes equations at
the flow (2.1) and then applying the Laplace transform. The result is

su + x2
∂u

∂x1
+


 u2

0
0


+ grad p =

1

R
∆u + f ,(2.3)

divu = 0,

with boundary conditions

u = 0, x ∈ ∂Ω.(2.4)

For this problem we are interested in the mapping of f to u. This function is defined
when the problem is uniquely solvable for u. We introduce the notation

R(s) : L2(Ω)3 → L2(Ω)3, R(s) : f → u,(2.5)
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and call R the resolvent operator. According to the result in [18], R is well defined
when Re s ≥ −δ/R for some δ > 0. This means that all eigenvalues for Couette flow
correspond to stable modes and have real part less than −δ/R. The focus in this
paper is on deriving bounds on the norm of R in the right half-plane (Re s ≥ 0) and
tracking the R-dependence of these bounds.

The pressure has a special role in (2.3). It is not uniquely determined, but this
is no problem from our point of view. See [11] and [27] for more information on the
properties of the pressure. In [27, p. 68] a resolvent estimate, including the pressure,
is given in Theorem 6.1. (For that result to hold, an additional condition on the
pressure must of course be added to determine it uniquely.)

It suffices to study (2.3) with f ∈ C∞
0 (Ω)3 such that div f = 0. Less regular

forcing can be treated by the standard closure argument for densely defined continuous
operators, once the appropriate estimate has been derived in the smooth case. A
forcing which is not solenoidal will be corrected by the pressure so that only the
solenoidal part affects the velocity field [27].

2.2. Weighted norms. All norms used in this article are defined by inner
products. The L2-inner product for scalar functions has the following definition and
notation:

(u, v) =

∫
Ω

u(x)v(x)dx, u, v ∈ L2(Ω).

We denote the complex conjugate of a function u by u. For the L2-inner product of
vector functions we have the same notation:

(u,v) =

3∑
k=1

(uk, vk), u,v ∈ L2(Ω)3.

Which of the above two inner products we have in mind will be clear from the argu-
ments.

In this paper we will also consider norms with R-dependent weights of the com-
ponents of u. We define the following three modified norms:

‖u‖2
1 = ‖u1‖2

+R2 ‖u2‖2
+R2 ‖u3‖2

,(2.6)

‖u‖2
2 = ‖u1‖2

+R ‖u2‖2
+ ‖u3‖2

,(2.7)

‖u‖2
3 = ‖u1‖2

+R2 ‖u2‖2
+ ‖u3‖2

.(2.8)

We emphasize that subscripts on norms are always used to identify the different
modified norms. The subscripts do NOT indicate p in the Lp-norms.

The modified norm (2.6) was suggested in [9], where it was conjectured that
it leads to a more favorable dependence of the Reynolds number in the resolvent
estimate. This turns out to be false, as we show in section 5. The two norms with
subscripts 2 and 3, respectively, which only weight the second component of the
velocity, turn out to be more suited for this purpose; see section 5.

3. The analytical estimate. Here we derive a resolvent estimate in a sector
of the complex plane. The result is similar to that of [27, Chapter 1, section 5],
the differences being that we track the Reynolds number-dependence of the estimate,
we treat a specific flow and domain so that we can give the numerical value of all
constants, and finally the domain in our case is unbounded; the result in [27] holds
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for bounded domains. To simplify the presentation, we treat only the case R ≥ 1. In
the application to hydrodynamic stability we are interested in the behavior for large
Reynolds numbers. When R < 1 we have a very viscous fluid. That simple situation
is covered by a general and classical result of Serrin [21]; see also [20, section 5.6].

To derive our a priori estimate, we assume that u, p is a smooth solution of (2.3).
The estimate we derive will immediately imply uniqueness for the velocity field; the
existence of a solution is established by standard methods [11], [22]. Now we scalar
multiply the resolvent equation (2.3) with u and integrate over Ω; this leads to

s‖u‖2 +

(
u, x2

∂u

∂x1

)
+ (u1, u2) + (u,grad p) =

1

R
(u,∆u) + (u, f).(3.1)

To simplify this equation, we use the following identities (easily derived by partial
integration using the fact that u = 0 on the boundary):

(u,grad p) = −(divu, p),(3.2)

(u,∆u) = −
3∑
k=1

∥∥∥∥ ∂u

∂xk

∥∥∥∥2

,(3.3)

Re

(
u, x2

∂u

∂x1

)
= 0.(3.4)

In (3.2) we can use the fact that the velocity field is solenoidal, and thus the pressure
disappears from (3.1). This simplification is unique for the L2-norm.

We use (3.2)–(3.4) in (3.1) and take the real and imaginary parts of the resulting
expression. After some rearrangement, we obtain

Re s‖u‖2 +
1

R

3∑
k=1

∥∥∥∥ ∂u

∂xk

∥∥∥∥2

= Re [(u, f)− (u1, u2)] ,(3.5)

Im s‖u‖2 + Im

(
u, x2

∂u

∂x1

)
= Im [(u, f)− (u1, u2)] .(3.6)

Using these two equations, we will derive the resolvent estimate of Theorem 3.1.
Before we state the theorem, we define the following two sectors in the complex
plane:

ΣR =

{
s ∈ C : Re s− 3 +

1

2R
|Im s| ≥ 0

}
,

Σ0 = {s ∈ C : Re s− 3− |Im s| ≥ 0}.

The sectors are plotted in Figure 3.1.
Theorem 3.1. If s ∈ ΣR, then the solution of the resolvent equation satisfies

‖u‖ ≤ 4
√
2R

|s− 3| ‖f‖ .(3.7)

If, furthermore, s ∈ Σ0, then we have the R-independent estimate

‖u‖ ≤
√
2

|s− 3| ‖f‖ .(3.8)



806 MATTIAS LIEFVENDAHL AND GUNILLA KREISS

✲

Im✻

Re

❏
❏

❏
❏

❏
❏

❏
❏

❏❏

✡
✡

✡
✡

✡
✡

✡
✡

✡✡

�
�

�
�

�

❅
❅

❅
❅

❅

3

6R

-6R

Σ0

∂ΣR✟✟✟✙

Fig. 3.1. The sectors of the complex plane in which the estimates of Theorem 3.1 holds.

Proof. Application of the Cauchy–Schwarz inequality and simple manipulations
of (3.5) and (3.6) give the following inequalities:

(Re s− 1) ‖u‖2
+

1

R

3∑
k=1

∥∥∥∥ ∂u

∂xk

∥∥∥∥2

≤ ‖u‖ ‖f‖ ,(3.9)

(|Im s| − 1) ‖u‖2 ≤ ‖u‖
∥∥∥∥ ∂u

∂x1

∥∥∥∥ + ‖u‖ ‖f‖ .(3.10)

We first prove (3.8) and thus assume s ∈ Σ0. We drop the derivative terms in (3.9)
and cancel ‖u‖; this leads to

‖u‖ ≤ 1

Re s− 1
‖f‖ .

The following inequalities hold for s ∈ Σ0:

1

Re s− 1
≤ 1

Re s− 3
≤

√
2

|s− 3| .

We have now proven (3.8).
We now use the inequality ab ≤ a2/4+ b2 on the first term in the right-hand side

of (3.10). After some rearrangement, we obtain(
|Im s| − 5

4

)
‖u‖2 −

∥∥∥∥ ∂u

∂x1

∥∥∥∥2

≤ ‖u‖ ‖f‖ .

We divide this inequality by R and add it to (3.9). This gives(
Re s− 1 +

1

R
|Im s| − 5

4R

)
‖u‖2 ≤

(
1 +

1

R

)
‖u‖ ‖f‖ .
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We use the fact that R ≥ 1 and cancel ‖u‖. This leads to(
Re s+

1

R
|Im s| − 9

4

)
‖u‖ ≤ 2 ‖f‖ .

Using the defining inequality for ΣR, we get

‖u‖ ≤ 4R

|Im s| ‖f‖ .

For s ∈ ΣR \ Σ0 we have

1

|Im s| ≤
√
2

|s− 3| .

This concludes the proof of (3.7) in ΣR \ Σ0. Since (3.8) implies (3.7) in Σ0, the
theorem is proven.

Remark. For the modified norms one cannot, in analogy with the above, take the
modified inner product of u with the resolvent equation. The reason for this is that
the pressure then is not eliminated. If one instead uses the above manipulations and
the equivalence of norms,

c(R) ‖u‖ ≤ ‖u‖X ≤ C(R) ‖u‖ (X = 1, 2 or 3),

then a resolvent estimate is obtained in the same regions as in the theorem above.
Now, however, the constant in the inequality will, asymptotically for large R, grow
faster than in the case of the L2-norm.

4. Transformation of the problem. The original problem (2.3) is an elliptic
system coupled with the divergence “constraint.” This is a PDE system with a very
special structure. We shall instead consider the useful and well-known reformulation
of the problem to one fourth order equation for the normal velocity u2 and a second
order equation for the normal vorticity. See [3] and [20]. Since the coefficients in
the PDE do not depend on the x1- and x3-coordinates, the problem can be Fourier
transformed in these variables. The Fourier transformed equation for the normal
velocity is called the Orr–Sommerfeld equation. Following [20], we refer to the Fourier
transformed equation for the normal vorticity as the Squire equation. We will also
give an analytical estimate for the solution of the transformed problem in Lemma 4.1.

Let η = curl u and g = curl f . The reduced and transformed system is(
LOS 0
−iξ3 LSQ

)(
û2

η̂2

)
− s

(
∆̂ 0
0 1

)(
û2

η̂2

)
=

( −∆̂f̂2

−ĝ2

)
.(4.1)

Here we have introduced the differential operators

∆̂ =
∂2

∂x2
2

− k2,

LOS =
1

R
∆̂2 − iξ1x2∆̂,

LSQ =
1

R
∆̂− iξ1x2
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and the notation k2 = ξ2
1 + ξ2

3 , where ξ1 and ξ3 are the wave numbers in the x1

and x3 directions, respectively. The system (4.1) is supplemented with the boundary
conditions

û2 = û′
2 = η̂2 = 0, x2 = ±1.(4.2)

The Fourier transforms of the remaining velocity components are given by

û1 =
iξ1û

′
2 − iξ3η̂2

k2
,(4.3)

û3 =
iξ3û

′
2 + iξ1η̂2

k2
.(4.4)

Considering ξ1 and ξ3 as parameters, the domain of the problem is (−1, 1) instead of
Ω. We will use the same notation for the L2-norm in this case as in section 2.2. The
domain we have in mind will be clear from the argument. For example, we have

‖û‖2
1 =

∫ 1

−1

(|û1|2 +R2|û2|2 +R2|û3|2
)
dx2.

Using the expressions (4.3) and (4.4) for û1 and û3, we obtain for the Fourier transform
of the velocity field

‖û‖2
=

∫ 1

−1

(
|û2(x)|2 + 1

k2
|û′

2(x)|2 +
1

k2
|η̂2(x)|2

)
dx.(4.5)

This expression allows us to compute ‖û‖ without explicitly determining û1 and û3.
From (4.1) we can derive estimates directly, for some parameter values, using only

integration by parts, div f = 0, and the following Poincaré inequality:

‖û‖ ≤ 4‖û′‖.

These estimates are collected in the following lemma.
Lemma 4.1. There is a constant C, independent of ξ1, ξ3, R, and Re s ≥ 0, such

that

‖η̂2‖2 ≤ CR2

1 + k2

(‖û2‖2 + ‖ĝ2‖2
)
.

If at least one of the inequalities |ξ1|R ≤ |ξ3|3, |ξ1|R ≤ 1/128, or ξ2
1 + ξ2

3 ≥ R hold,
then we also have the estimate

(1 + k2)‖û′
2‖2 + ‖û2‖2 ≤ CR2

1 + k4
‖f̂2‖2,

and it follows that there are constants C0, C2, and C3 such that

‖û‖ ≤ C0R
2|f‖,

‖û‖2 ≤ C2R
3
2 |f‖2,

‖û‖3 ≤ C3R‖f‖3.

We do not give the straightforward proof of the inequalities in Lemma 4.1.
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In analogy with (2.5), we introduce notation for the mapping

R̂(s, ξ1, ξ3) : L
2(−1, 1)3 → L2(−1, 1)3, R̂(s, ξ1, ξ3) : f̂ → û.

For the L2-norm we now show that ‖R(s)‖ can be determined by maximizing

‖R̂(s, ξ1, ξ3)‖

with respect to ξ1 and ξ3. For the modified norms this is also the case, and it is shown
in a similar manner.

We need Plancherel’s formula connecting the L2-norm of the transformed function
with that of the original unknown:

‖u‖2
=

1

4π2

∫ ∞

−∞

∫ ∞

−∞
‖û‖2

dξ1dξ3.

By definition, we have

‖R(s)‖2
= sup

f �=0

‖u‖2

‖f‖2 .(4.6)

We also have

‖û‖ = ‖R̂(s, ξ1, ξ3)f̂‖ ≤
(
sup
ξ1,ξ3

‖R̂(s, ξ1, ξ3)‖
)
‖f̂‖.(4.7)

Using (4.7) in Plancherel’s formula and then (4.6), we obtain the inequality

‖R(s)‖ ≤ sup
ξ1,ξ3

‖R̂(s, ξ1, ξ3)‖.(4.8)

Now we will show that there is actually equality in (4.8). This is done by constructing
a family of functions fε, with corresponding solutions uε, such that

lim
ε→0

‖uε‖
‖fε‖ = sup

ξ1,ξ3

‖R̂(s, ξ1, ξ3)‖.

We denote by ξ
(0)
1 and ξ

(0)
3 the values for which the maximum of the norm occurs,1

and by f̂0 the corresponding forcing, and thus we have

sup
ξ1,ξ3

‖R̂(s, ξ1, ξ3)‖ = ‖R̂(s, ξ
(0)
1 , ξ

(0)
3 )f̂0‖.

We will use a family of cut-off functions ϕε ∈ C∞
0 (R2) which satisfy

ϕε ≥ 0,∫
R

2

ϕ2
εdx = 1,

ϕε(ξ1, ξ3) = 0 if (ξ1 − ξ
(0)
1 )2 + (ξ3 − ξ

(0)
3 )2 ≥ ε.

1That the supremum is attained follows from the continuity and the decay for large ξ21 + ξ23 ,
which follow from the estimates of Lemma 4.1.
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Now we take as our function fε the inverse Fourier transform of

f̂ε(ξ1, x2, ξ3) = f̂0(x2)ϕε(ξ1, ξ3).

We have the following:∫ ∞

−∞

∫ ∞

−∞
‖ûε(·, ξ1, ξ3)‖2

dξ1dξ3

=

∫ ∞

−∞

∫ ∞

−∞
ϕ2
ε‖R̂(s, ξ1, ξ3)f̂0‖2dξ1dξ3 → ‖R(s, ξ

(0)
1 , ξ

(0)
3 )f̂0‖2

when ε → 0. Using the definition of ‖R‖ and Plancherel’s formula, we see that we
can obtain ‖R‖ by maximizing ‖R̂‖ over ξ1 and ξ3:

‖R(s)‖ = max
ξ1,ξ3

‖R̂(s, ξ1, ξ3)‖.(4.9)

5. Numerical results. In this section we numerically determine C and γ in the
expression

sup
Re s≥0

‖R(s)‖ ≈ CRγ .(5.1)

This is done for the four norms introduced in section 2.2. For this optimization we
use (4.9) and maximize

‖R̂(s, ξ1, ξ3)‖(5.2)

over Re s ≥ 0, ξ1 ≥ 0, ξ3 ≥ 0.
The numerical calculations of the resolvent norm are done by discretizing (4.1)

and (4.2) with a spectral Chebyshev tau method. The method is based on the classical
paper [15]. In [12] our method is described in detail.

Because of symmetry, it is sufficient to search the first quadrant of the ξ1-ξ3 plane.
The resolvent cannot have a local maximum (in the resolvent set); this maximum
principle is given in [4, p. 230]. The decay estimate of Theorem 3.1 in the sector ΣR,
combined with the maximum principle, implies that the maximization of ‖R̂(s, ξ1, ξ3)‖
can be restricted to Re s = 0. We thus have to maximize the function over three real
variables. However, as was noted in [25] and [9] in the case of the L2-norm, the
maximum seems always to occur for s = 0. We believe that this is the case for all
norms considered in this paper, and in section 5.1 we present results supporting this
fact.

In sections 5.2 and 5.3 we determine the values of C and γ in (5.1) for all four
different norms. For all the norms except ‖ · ‖1 the maximum of (5.2) occurs where
the second part of Lemma 4.1 is applicable. The exponents of R in the computed
resolvents agree with the resolvent bounds in the lemma.

5.1. The maximum occurs for s = 0. In this section we present computa-
tional results supporting the assumption

sup
Re s=0,ξ1,ξ3

‖R̂(s, ξ1, ξ3)‖ = sup
ξ1,ξ3

‖R̂(0, ξ1, ξ3)‖.

We have performed extensive computations. In Figure 5.1 we see typical results. For
a fixed Reynolds number we have plotted ‖R̂‖3 as a function of σ when s = iσ for
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Fig. 5.1. The value of ‖ ˆR(iσ, ξ1, ξ3)‖3 for R = 1000. For each plot, ξ3 is fixed to the value
shown above the plot. The four different curves in each plot correspond to ξ1 = 0, 0.1, 0.2, and 0.4,
respectively. On the horizontal axis we have the imaginary part of s for Re s = 0. All curves exhibit
the typical behavior, with maximum at s = 0. The peak in plot (a) is near the global maximum;
compare Table 5.3.

some different values of ξ1 and ξ3. The third modified norm turns out to be the most
interesting for our purposes; see section 5.3.

The corresponding computations for other Reynolds numbers and the other norms
of this paper have been made with the same result: The maximum occurs for s = 0.
The assumption is also supported by the fact that the peak at s = 0 is so sharp.
Furthermore, only a small range of ξ1 and ξ3 give values of ‖R̂‖ near the peak at
s = 0; the norm decays quickly for other choices of ξ1 and ξ3.

5.2. The L2- and first modified norms. For the standard norm, the following
R-dependence was established in [9]:

max
Re s≥0

R(s) = 0.0152R2.(5.3)

From Table 5.1 we conclude that our computations yield the same result. In Figure 5.2

we show ‖ ˆR(0, ξ1, ξ3)‖ as a function of ξ1 and ξ3. As was noted in [9], the maximum
occurs for ξ1 = 0, where the second part of Lemma 4.1 is applicable. Figure 5.2 can
be compared with Figure 1 in [9]. There the resolvent, scaled by k/(ξ3R

2), is plotted
as a function of ξ1R and k for R = 500, 1000. For a given R a simple change of
variables connects ξ1R and k to ξ1 and ξ3. Note that, along the vertical axis, where
ξ1 = ξ1R = 0, k = ξ3. As expected, the contour lines of the two figures are very
similar.

The object when constructing the modified norms is to find a norm where the
normality of the problem does not degenerate as R increases. Such a norm would
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Table 5.1
The norm of the resolvent for different Reynolds numbers in the L2-norm and the first modified

norm. The value of ξ3 for which the maximum occurs is also given. The ξ1-coordinate for the
maximum is zero. The values are determined with three significant digits.

L2-norm
R ξ3 ‖R‖
350 1.18 1860
1000 1.18 1.52 · 104

3500 1.18 1.86 · 105

104 1.18 1.52 · 106

1st modified norm
R ξ3 ‖R‖1
350 0 2.45 ·104

1000 0 2.00 ·105

3500 0 2.45 ·106

104 0 2.01 ·107

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

0.5

1

1.5

2

xi1

xi
3

Fig. 5.2. Contour plot of ‖R̂(0, ξ1, ξ3)‖ (L2-norm) for R = 1000. The contour lines represent
values in the range 300 to 13000. The maximum occurs along the ξ3-axis.

yield a smaller exponent γ than in (5.3), where it is two. The first modified norm was
suggested in [9] for this purpose. As we show below, however, the exponent is still
two in this case.

In Table 5.1 we present ‖R̂‖1 for some values of the Reynolds number. From this
table the values of C and γ in (5.3) can be reproduced by a least squares fit, and for
the first modified norm we obtain

‖R‖1 = 0.198R2.00.

We see that the first modified norm gives the same exponent and a larger (worse)
constant than the L2-norm.

There are some difficulties in the investigation for the first modified norm. The
maximum occurs for ξ1, ξ3 → 0, as can be seen in Figure 5.3. Moreover, we get
different limits depending on how we let ξ1 and ξ3 tend to zero. To find the maximum,
we approach the origin along the ray ξ1 = ξ3. In Figure 5.4 we show the norm of R̂
on this ray. The peak is sharp, but it is clear that the limiting value is 2.00 · 105 (for
R = 1000) as is shown in Table 5.1.



THE RESOLVENT FOR PLANE COUETTE FLOW 813
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Fig. 5.3. Contour plot of ‖R̂(0, ξ1, ξ3)‖1 for R = 1000. The contour lines represent values in
the interval (1000, 17000). The region around the origin (ξ1 ≤ 0.05 and ξ3 ≤ 0.05) is not resolved. A
high peak is located around the origin; as shown in Table 5.1, the maximum is 2 ·105. See Figure 5.4
for the limiting behavior at the origin.

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
3

10
4

10
5

10
6

xi1=xi3

N
or

m
 o

f r
es

ol
ve

nt

Fig. 5.4. The values of ‖R̂(0, ξ1, ξ3)‖1 for ξ1 = ξ3 and R = 1000. In this logarithmic plot it is
evident that the limiting value at ξ1 = ξ3 = 0 is 2 · 105.
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Fig. 5.5. The values of ‖R̂(0, ξ1, ξ3)‖2 for R = 1000 in the ξ1-ξ3 plane. The contour lines
represent values in the range 150 to 2000.

5.3. The second and third modified norms. In this section we present our
investigations of the second and third modified norms which achieve the goal and
yield lower (better) exponents γ. In Figures 5.5 and 5.6 we see the plots in the ξ1-
ξ3 plane for the second and third modified norms, respectively. In both cases the
maximum occurs along the ξ3 axis, where the second part of Lemma 4.1 is applicable.
In Table 5.2 we list the values of ‖R‖2 for different values of the Reynolds number.
From this table we obtain

‖R‖2 = 0.056R1.52.

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Fig. 5.6. The values of ‖R̂(0, ξ1, ξ3)‖3. In the left panel we have R = 350, and in the right,
R = 1000. The global maximum is along the ξ3 (vertical) axis. Observe the local maximum on the
ξ1-axis. See Table 5.3 for location and values of the global and local maxima.
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Table 5.2
The norm of the resolvent for different Reynolds numbers for the second norm. The value of

ξ3 for which the maximum occurs is also given. The ξ1-coordinate for the maximum is zero.

2nd modified norm
R ξ3 ‖R‖2
350 0.40 420
1000 0.31 2080
3500 0.24 1.41 · 104

104 0.18 6.92 · 104

Table 5.3
The third modified norm. In the first table we have the norm of the resolvent for different

Reynolds numbers. The maximum occurs for ξ1 = 0. In the second table we have the local maxima
which occur for ξ3 = 0 and the ξ1-values listed.

Global maxima
R ξ3 ‖R‖3
350 0.046 145
1000 0.028 413
3500 0.016 1450
10000 0.009 4130

Local maxima

R ξ1 ‖R̂‖3
350 0.20 132
1000 0.07 383
3500 0.02 1340
104 0.01 3840

In Figure 5.6 we see that, in addition to the global maximum on the ξ3 axis, there
is a local maximum on the ξ1 axis. In Table 5.3 we give the value and locations of the
global and local maxima. For increasing Reynolds number both maxima move along
the respective axes towards the origin. From the values in Table 5.3 we obtain

‖R‖3 = 0.413R1.00,(5.4)

in agreement with Lemma 4.1. Note that here we have the optimal exponent γ = 1.00.
The constant and the exponent in (5.4) are determined by a least squares fit of the
model function CRγ to the four values in Table 5.3. The agreement of the curve (5.4)
with the computed values is very good.

6. Remarks on regularity. Using a resolvent estimate of the type (1.1) or
(1.3), it is possible to derive an elliptic regularity estimate

‖u‖H2 ≤ C(R) ‖f‖ ,

which holds uniformly for Re s ≥ 0. Here we have the usual Sobolev H2-norm in the
left-hand side,

‖u‖2
H2

def
=

∑
|α|≤2

∥∥∥∥∂αu

∂xα

∥∥∥∥2

,

where α denotes a multi-index. This will lead to a constant C(R) which asymp-
totically grows faster than Rγ . Here γ = 2 for the L2-norm, and γ = 1 for the
third modified norm. More interesting from our point of view of nonlinear stability is
to have an estimate of some second derivatives satisfying the following two criteria.
First, the constant in the estimate should be proportional to Rγ . Second, via Sobolev
inequalities, it should be possible to bound the supremum norm with the combination
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of second and lower order derivatives. One possibility for doing this, used in [9], is

‖u‖2
H̃

def
= ‖u‖2

+
1

R

3∑
k=1

∥∥∥∥ ∂u

∂xk

∥∥∥∥2

+
1

R2

(∥∥∥∥∂2u

∂x2
1

∥∥∥∥2

+

∥∥∥∥ ∂2u

∂x1∂x2

∥∥∥∥2

+

∥∥∥∥ ∂2u

∂x2∂x3

∥∥∥∥2

+

∥∥∥∥∂2u

∂x2
3

∥∥∥∥2
)
,

which bounds the supremum norm according to

sup
x∈Ω

|u(x)| ≤ CsR
3/4 ‖u‖H̃ ;

see [10, Appendix 3]. As is shown in [9], this norm also satisfies the first criterion
above,

‖u‖H̃ ≤ CR2 ‖f‖ .

In [13] a variation of this approach is used for the third modified norm.

7. Conclusions. The analytical resolvent estimate of Theorem 3.1 exhibits the
expected property, deteriorating as the Reynolds number increases. The sector in
which it holds shrinks, and the constant grows. However, in the sector Σ0, which
does not depend on the Reynolds number, the estimate is independent of the Reynolds
number.

The result of Theorem 3.1 does not cover the entire unstable half-plane; still, it is
known that the resolvent is bounded there. To improve the estimate with analytical
techniques, it may be fruitful to consider the reformulated problem of section 4. One
such result is Lemma 4.1. It is the reformulated problem which is studied in the
investigations of the spectrum referred to in the introduction. We believe, however,
that deriving a completely analytical resolvent estimate in the entire unstable half-
plane would be extremely complicated.

We therefore employ numerical methods, which yield the estimate implying stabil-
ity, as was found in [9]. The main result of our computations is the optimal exponent
1.00 of the Reynolds number in (5.4). This is obtained by weighting the second com-
ponent of the velocity field with a coefficient that depends on the Reynolds number.
In [13] we use (5.4) to improve the theoretical bound on the perturbation threshold,
as discussed in the introduction.
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Abstract. We present a new model for traffic on a multilane freeway (with n lanes). Our basic
descriptors are the car density ρ (in cars/mile), taken across all lanes in the freeway, and the average
car velocity u (in miles/hour). The flux of cars across all lanes is given by ρu =

P n
i=1ρiui, where ρi

is the car density in the ith lane, and ui the velocity of cars in the ith lane. We shall track only ρ
and u and not what is going on in each individual lane.

On such multilane freeways, one often observes distinct stable equilibrium relationships between
car velocity and density. Prototypical situations involve two equilibria,

v = v1(ρ) > v = v2(ρ), 0 ≤ ρ < ρmax,

where v1(·) and v2(·) are monotone decreasing and satisfy v1(ρmax) = v2(ρmax) = 0. The upper
curve is typically stable for densities satisfying 0 ≤ ρ ≤ ρ1, whereas the lower curve is stable for
densities satisfying ρ2 ≤ ρ ≤ ρmax. Our interest is in the situation where 0 < ρ2 ≤ ρ1 < ρmax and
v2(ρ2) ≤ v1(ρ1).

In this paper we present a model that incorporates both equilibrium curves and a simple switch-
ing mechanism which allows cars to transit from one equilibrium curve to the other. This switching
mechanism, when combined with the continuity equation, produces relaxation or self-excited oscil-
lations in the system, and these oscillations are what interests us here.

Key words. microscopic and macroscopic traffic models, multiple equilibria, self-excited oscil-
lations, travelling waves
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1. Introduction. In this paper we present a new model for traffic on a multilane
freeway with n lanes. Our basic descriptors are the car density ρ (in cars/mile), taken
across all lanes in the freeway, and the average car velocity u (in miles/hour). The
flux of cars across all lanes is given by ρu =

∑n
i=1ρiui, where ρi is the car density in

the ith lane, and ui the velocity of cars in the ith lane. We shall track only ρ and
u and not what is going on in each individual lane. This model simplification will
ultimately yield a one-dimensional model.

On such multilane freeways, one often observes distinct stable equilibrium re-
lationships between auto velocity and density. Prototypical situations involve two
equilibria,

v = v1(ρ) > v = v2(ρ), 0 ≤ ρ < ρmax,(1.1)

where v1(·) and v2(·) are monotone decreasing and satisfy v1(ρmax) = v2(ρmax) = 0.
The upper curve is typically stable for densities satisfying 0 ≤ ρ ≤ ρ1, whereas the
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Fig. 1.1. Two equilibrium curves v1(ρ) and v2(ρ).

lower curve is stable for densities satisfying ρ2 ≤ ρ ≤ ρmax. Our interest is in the
situation where 0 < ρ2 ≤ ρ1 < ρmax and v2(ρ2) ≤ v1(ρ1); see Figure 1.1.

The explanation for the two curves is quite simple. For high density congested
traffic, lane changing and passing is difficult and dangerous, and this yields the slower
equilibrium curve. On the other hand, when the traffic is less dense, lane changing
and passing becomes easier, and this yields the faster equilibrium curve.

In this paper we present a model that incorporates both equilibrium curves and a
simple switching mechanism which allows cars to transit from one equilibrium curve
to the other.

Once again, our basic descriptors are the car density ρ and velocity u. We also
track

α = u− v1(ρ),

which represents the discrepancy between the actual car speed and the uncongested
equilibrium speed.

Our governing equations are

∂ρ

∂t
+

∂

∂x
(ρu) = 0(1.2)

and

∂α

∂t
+ u

∂α

∂x
=




−α

ε
, ρ < R(u),

((v2 − v1)(ρ)− α)

ε
, ρ ≥ R(u).

(1.3)

Here, u → R(u) is a monotone nondecreasing function defined on 0 ≤ u and satisfying

R(u) = ρ2, 0 ≤ u ≤ v2(ρ2), and R(u) = ρ1, v1(ρ1) ≤ u;(1.4)

see Figure 1.2.
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Fig. 1.2. Switching curve R(u).

For experimental data and the choice of the switch curve, we refer to the work
of Kerner [7, 8]. In his thesis, Sopasakis [9] gave an argument supporting the choice
ρ2 = ρ1 and R(u) ≡ ρ2, 0 ≤ u.

The motivation for system (1.2), (1.3) is as follows:
1. When there is no source term, i.e., the right-hand side of (1.3) is set to zero,

our model is the one introduced in [3]. This model turns out to be the rigorous
hydrodynamic limit of the microscopic follow-the-leader system (1.20)–(1.23)
(see below) with no right-hand side; see [2] and also [10].

2. In the case with a source term of the form −1/ε(V (ρ)− u), the above result
remains true; for details, see [6] and [2].

3. At least formally, the system we propose to study here is the limit of the
microscopic system (1.23), when the size of cars goes to zero.

We note that (1.2) and (1.3) imply that u satisfies

∂u

∂t
+ (u+ ρv′1(ρ))

∂u

∂x
=




v1(ρ)− u

ε
, ρ < R(u),

v2(ρ)− u

ε
, ρ ≥ R(u).

(1.5)

One motivation for the switching mechanism hypothesized here is as follows. We
assume that there are two natural modes in which drivers can operate. The first
is the fast mode and is characterized by the equilibrium curve ρ → v1(ρ), and the
second is the slow mode characterized by the slow curve ρ → v2(ρ). What we are
hypothesizing in (1.5) is that if the current state of traffic, (u, ρ), lies below the switch
curve ρ = R(u), drivers’ preferences will migrate towards the fast curve u = v1(ρ),
whereas if the traffic state, (u, ρ), lies above ρ = R(u), their preferences will migrate
towards the slow curve u = v2(ρ).

An alternative approach would be to hypothesize that, for all densities 0 ≤ ρ ≤
ρmax, the preferred state of an average driver is characterized by the homogenized
equilibrium curve

v(ρ) = a(ρ)v1(ρ) + (1− a(ρ))v2(ρ),
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where a(0) = 1, a′(ρ) ≤ 0 for 0 ≤ ρ ≤ ρmax, and a(ρmax) = 0. This latter approach
has been used in multiclass models of traffic flow; see, for instance, [4, 5] and many
other references.

For 0 < ρ ≤ ρmax, the system (1.2), (1.4), (1.5) is strictly hyperbolic, with distinct
wave speeds c1 = u + ρv′1(ρ) < c2 = u. Variants of this relaxation model with one
equilibrium and no switch curve have been studied by Aw and Rascle [3], Argall et
al. [1], Greenberg [6], and Aw et al. [2]. The principal results of those investigations
relevant to us here are that for any initial data ρ0(·) and u0(·) satisfying

0 ≤ u0(x) ≤ v1(ρ0(x)) and 0 ≤ ρ0(x) ≤ ρmax(1.6)

the system (1.2), (1.4), (1.5) has an appropriately defined weak solution satisfying
(1.6) for all future times. Thus the model presented here has no signals propagating
faster than the car velocities and yields none of the velocity reversals seen in the
Payne–Whitham models. These two observations are the basic strength of this class
of second-order model.

For simplicity, we restrict our attention to spatially periodic solutions—the ring
road scenario. We shall also work with a Lagrangian reformulation of the system.
When discretized, this Lagrangian system yields a follow-the-leader–type model.

We let l be the spatial period of our data ρ0(·) > 0 and assume that∫ l

0

ρ0(ξ)dξ = M(1.7)

is an integer. For any real number m ∈ [0,M ] we let x0(m) be the unique solution of

m =

∫ x0(m)

0

ρ0(ξ)dξ(1.8)

and x(m, t) be the solution of

∂x

∂t
(m, t) = ū(m, t)

def
= u(x(m, t), t) and x(m, 0) = x0(m).(1.9)

Here, ρ and u are solutions of (1.2), (1.4), and (1.5). The continuity equation (1.2),
when combined with (1.8) and (1.9), yields

m =

∫ x(m,t)

x(0,t)

ρ(ξ, t)dξ,(1.10)

and (1.10) in turn implies that

ρ̄(m, t)
def
= ρ(x(m, t), t) and γ̄(m, t)

def
=

∂x

∂m
(m, t)(1.11)

satisfy

ρ̄(m, t)γ̄(m, t) ≡ 1.(1.12)

Additionally, (1.9) implies that γ̄ and ū satisfy

∂γ̄

∂t
(m, t) =

∂ū

∂m
(m, t).(1.13)
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Finally, if we let

ᾱ(m, t)
def
= α(x(m, t), t) = ū(m, t)− V1(γ̄(m, t)),(1.14)

then (1.3) implies

∂ᾱ

∂t
(m, t) =




− ᾱ(m, t)

ε
, γ̄(m, t) >

1

R(ū(m, t))
,

((V2 − V1)(γ̄(m, t))− ᾱ(m, t))

ε
, γ̄(m, t) ≤ 1

R(ū(m, t))
,

(1.15)

where

V1(γ̄)
def
= v1

(
1

γ̄

)
and V2(γ̄)

def
= v2

(
1

γ̄

)
.(1.16)

In what follows, we assume that the functions V1(·) and V2(·) defined in (1.16) are

increasing and concave on [L
def
= 1/ρmax,∞) and satisfy

0 = V2(L
+) = V1(L

+),

0 < V
(p)
2 (γ̄) < V

(p)
1 (γ̄) for L < γ̄ < ∞ and p = 0, 1,(1.17)

and the limit relations

lim
γ̄→∞(Vi(γ̄), V

(p)
i (γ̄)) = (v∞i , 0), i and p = 1, 2,(1.18)

where v∞2 < v∞1 . The parameter L is interpreted as the length of a typical car on the
roadway.

Equations (1.13)–(1.15) also combine to give

∂ū

∂t
(m, t)− V ′

1(γ̄(m, t))
∂ū

∂m
(m, t) =




V1(γ̄(m, t))− ū(m, t)

ε
, γ̄(m, t) >

1

R(ū(m, t))
,

V2(γ̄(m, t))− ū(m, t)

ε
, γ̄(m, t) ≤ 1

R(ū(m, t))
.

(1.19)

1.1. The follow-the-leader model. In [6], Greenberg showed that for the La-
grangian system (1.9)–(1.19) the appropriate stable spatial differencing scheme was
downwind; see also [2]. Moreover, such differencing, with ∆m = 1 (recall that cars
are discrete), yields

dxm
dt

= ūm,(1.20)

γ̄m = xm+1 − xm,(1.21)

ρ̄m =
1

γ̄m
,(1.22)
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and

dūm
dt

− V ′
1(xm+1 − xm)(ūm+1 − ūm)

=




V1(xm+1 − xm)− ūm
ε

, xm+1 − xm >
1

R(ūm)
,

V2(xm+1 − xm)− ūm
ε

, xm+1 − xm ≤ 1

R(ūm)
.

(1.23)

This latter system implies that

ᾱm
def
= ūm − V1(xm+1 − xm)(1.24)

satisfies

dᾱm
dt

=




− ᾱm
ε

, xm+1 − xm >
1

R(ūm)
,

((V2 − V1)(xm+1 − xm)− ᾱm)

ε
, xm+1 − xm ≤ 1

R(ūm)
.

(1.25)

These equations hold for 1 ≤ m ≤ M and xM+1(t) = x1(t) + l, where again l is the
spatial period of our original data ρ0(·) and u0(·). The initial positions of the cars are
constrained to satisfy

xm+1(0)− xm(0) ≥ L
def
=

1

ρmax
,(1.26)

and these numbers are related to ρ0(·) by∫ xm+1(0)

xm(0)

ρ0(ξ)dξ
def
= ρ̄0

m(xm+1(0)− xm(0)) = 1.(1.27)

In section 2 we analyze a first-order integration scheme for the system (1.20)–
(1.22), (1.24), and (1.25). We obtain estimates which guarantee that

L ≤ xm+1(t)− xm(t) and 0 ≤ um(t) ≤ V1(xm+1(t)− xm(t))(1.28)

for all t ≥ 0. These estimates guarantee the consistency of the model. In section
3 we present some simulations with the discrete model. Here we see the persistent
periodic wave trains separating congested regions of slow-moving traffic from regions
of less dense faster-moving traffic. The waves separating these regions are analyzed
in section 4. In that section we revert to continuum model (1.9) and (1.11)–(1.19)
because it is analytically easier to work with.

2. A priori estimates. In this section we establish a priori estimates for solu-
tions of (1.20)–(1.22), (1.24), and (1.25). We integrate these equations with a first-
order Euler scheme. Specifically, we let ∆t be our time step, tn = n∆t, and for any
function fm(·) we let fnm denote the approximate value of fm(·) at tn. Our integration
scheme is

xn+1
m = xnm +∆tunm,(2.1)
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γ̄n+1
m = xn+1

m+1 − xn+1
m ,(2.2)

ρ̄n+1
m =

1(
xn+1
m+1 − xn+1

m

) ,(2.3)

ᾱn+1
m =

(
ūn+1
m − V1(x

n+1
m+1 − xn+1

m )
)
,(2.4)

where

ᾱn+1
m =

(
1− ∆t

ε

)
ᾱnm +∆t(V2 − V1)(x

n
m+1 − xnm)H (ρ̄nm −R(ūnm)) /ε(2.5)

and

H(s) =




0, s < 0,

1, s ≥ 0.
(2.6)

These equations hold for 1 ≤ m ≤ M and

xn+1
M+1 = xn+1

1 + l.(2.7)

Throughout, we assume that

0 ≤ ∆tV ′
1(L) ≤

1

2
and 0 ≤ ∆t

ε
≤ 1

2
.(2.8)

Remark. Recall that in section 1 we assumed ∆m = 1 in order to obtain the follow-
the-leader model. If instead we had allowed any 0 < ∆m, our (2.2) and (2.3) would
have been replaced by γ̄n+1

m = (xn+1
m+1 − xn+1

m )/∆m and ρ̄n+1
m = ∆m/(xn+1

m+1 − xn+1
m ).

Our basic integration scheme (2.1), (2.5) would be the same, but (2.8) would be
modified to ∆t

∆mV ′
1(L) ≤ 1

2 .
Theorem 2.1. Suppose that (2.8) holds and that for 1 ≤ m ≤ M

L ≤ xnm+1 − xnm and 0 ≤ unm ≤ V1(x
n
m+1 − xnm).(2.9)

Then (2.9) holds for n replaced by n+ 1.
Proof. The identities (2.1)–(2.6) imply that

γ̄n+1
m = γ̄nm +∆t

(
ūnm+1 − ūnm

)
(2.10)

and

ūn+1
m = V1

(
γ̄n+1
m

)
+ (ūnm − V1 (γ̄

n
m))

(
1− ∆t

ε

)
(2.11)

+ (V2 − V1) (γ̄
n
m)H (ρ̄nm −R (ūnm))

∆t

ε
,

and the inequalities

L ≤ γ̄nm, 1 ≤ m ≤ M,

0 ≤ ūnm = V1 (γ̄
n
m) + ᾱnm and ᾱnm ≤ 0, 1 ≤ m ≤ M,


(2.12)
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imply that

γ̄n+1
m ≥ F (γ̄nm)

def
= γ̄nm −∆tV1 (γ̄

n
m) .(2.13)

The fact that ∆t satisfies (2.8) implies that F (·) is monotone increasing on [L,∞),
and thus (2.9) and (2.13) imply

γ̄n+1
m ≥ F (L) = L,(2.14)

as desired. On the other hand, the inequalities

ūnm − V1 (γ̄
n
m) ≤ 0, (V2 − V1) (γ̄

n
m) ≤ 0,(2.15)

and (2.11) imply that

ᾱn+1
m = ūn+1

m − V1

(
γ̄n+1
m

) ≤ 0.(2.16)

The identity (2.11), when combined with (2.10), yields

ūn+1
m =

(
1− ∆t

ε

)
ūnm +

(
V1

(
γ̄nm +∆t

(
ūnm+1 − ūnm

))− V1 (γ̄
n
m)
)

+

(
∆t

ε

)
(1−H (ρ̄nm −R(ūnm)))V1(γ̄

n
m)(2.17)

+

(
∆t

ε

)
H (ρ̄nm −R(ūnm))V2(γ̄

n
m)

or

ūn+1
m =

(
1− ∆t

ε
−∆tV ′

1(δ
n
m)

)
ūnm +∆tV ′

1(δ
n
m)ū

n
m+1

+

(
∆t

ε

)
(1−H(ρ̄nm −R(ūnm)))V1(γ̄

n
m) +

(
∆t

ε

)
H(ρ̄nm −R(ūnm))V2(γ̄

n
m)(2.18)

for some δnm ≥ min
(
γn+1
m , γnm

) ≥ L, and (2.18) together with (2.6) and (2.8) and
unm ≥ 0, 1 ≤ m ≤ M , imply that ūn+1

m ≥ 0. This concludes the proof of Theorem
2.1.

The estimates contained in Theorem 2.1 guarantee that the densities

ρnm =
1

xnm+1 − xnm
, 1 ≤ m ≤ M,(2.19)

satisfy

0 ≤ ρnm ≤ ρmax.(2.20)

These estimates further imply that the approximate solutions defined in (2.1)–(2.7)
converge to solutions of the follow-the-leader model (1.20)–(1.22), (1.24), (1.25) as
∆t → 0+.
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3. Simulations. All computations in this section were run with the following
equilibrium relations:

v1(ρ) = v∞1

(
1− ρ

ρmax

)
and v2(ρ) = v∞2

(
1− ρ

ρmax

)
.(3.1)

These transform to

V1(γ) = v∞1

(
1− L

γ

)
and V2(γ) = v∞2

(
1− L

γ

)
,(3.2)

where L = 1/ρmax. The specific parameters used were

v∞1 = 100 feet/sec =
100× 3600

5280
= 68.1818 . . . mph,(3.3)

v∞2 = 40 feet/sec =
40× 3600

5280
= 27.2727 . . . mph,(3.4)

and

L = 15 feet.(3.5)

The latter number corresponds to a maximum car density of

ρmax =
1

15
cars/foot =

5280

15
= 352 cars/mile.(3.6)

We used the constant switch curve introduced by Sopasakis [9]:

γ(u) = γ∗, 0 ≤ u,(3.7)

with γ∗ = 20 feet. For initial data, we chose three sets of data:

x(k)
m (0) = 20m+ .1 sin

(
kmπ

200

)
(3.8)

for −∞ ≤ m ≤ ∞ and k = 1, 2, and 3. The observation that

x
(k)
400(0) = 8000 feet = 1.5151 . . . miles(3.9)

and

x
(k)
m+400(0) = x(k)

m (0) + 8000(3.10)

implies that we may interpret the data as initial data for a ring road with 400 cars
which is of length 1.5151. . . miles. We chose constant initial velocities

u(k)
m (0) = .5(V1(γ∗) + V2(γ∗)), 1 ≤ m ≤ 400,(3.11)

or

u(k)
m (0) = 17.5 feet/sec = 11.931818 . . . mph, 1 ≤ m ≤ 400.(3.12)
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Fig. 3.1. Periodic solutions at t = 2 for initial data k = 1.

These data guarantee points on both sides of the switch curve. Simulations were run
with relaxation times

ε = 1, 2, 4, and 8.(3.13)

Below, we show the long-time spatially and temporally periodic solutions at time
t = 2 hours when ε = 8 seconds. Figures 3.1, 3.2, and 3.3 correspond to the initial
data indexed by k = 1, 2, and 3, respectively. At earlier times the solution indexed
by each particular k had k discontinuities per period. This phenomenon persisted
to t = 2 hours for the solution indexed by k = 2, but the solution corresponding to
the index k = 3 converged, by t = 2 hours, to a solution with one discontinuity per
period.

The first two frames in each figure are self-explanatory. In the third frame of
each figure we plot the curve m → (γm = xm+1 − xm, um). This curve is shown
in black. The blue curves are the equilibrium curves γ → (γ, V1, (γ)) and γ →
(γ, V2(γ)), and the red curve is the image of u → (20, u). The red circle is the
image of (γ1, u1). Complete animations of all of these simulations may be found
at http://www.math.cmu.edu/∼plin/congestion/. The discontinuities in the profiles
propagate at the speed

c � 227.6± .1 cars/minute.(3.14)

An analysis of these solutions may be found in section 4.
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Fig. 3.2. Periodic solutions at t = 2 for initial data k = 2.
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Fig. 3.3. Periodic solutions at t = 2 for initial data k = 3.
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4. Travelling waves. The wave trains obtained in section 3 are basically dis-
crete approximations to travelling wave solutions to the continuum equations (1.9)–
(1.19). In this section our goal is to show that the continuum system (1.9)–(1.19)
actually supports such travelling waves. For definiteness we shall assume that the
switch curve introduced in (1.4) is the one derived by Sopasakis in [9], namely, the
curve

R(u) = ρ∗, 0 ≤ u.(4.1)

With this choice of switch curve, the Lagrangian equations become

∂γ̄

∂t
− ∂ū

∂m
= 0 and

∂ū

∂t
− V ′

1(γ̄)
∂ū

∂m
=




V1(γ̄)− ū

ε
, γ̄ > γ∗ =

1

ρ∗
,

V2(γ̄)− ū

ε
, γ̄ ≤ γ∗ =

1

ρ∗
.

(4.2)

Once again,

V1(γ̄) = v1

(
1

γ̄

)
and V2(γ̄) = v2

(
1

γ̄

)
,(4.3)

and we assume that both V1 and V2 are increasing and concave on [L,∞) and satisfy

0 = V2(L
+) = V1(L

+) and 0 < V
(p)
2 (γ̄) < V

(p)
1 (γ̄)(4.4)

for L < γ̄ < ∞ and p = 0, 1

and the limit relations

lim
γ̄→∞(Vi(γ̄), V

(p)
i (γ̄)) = (v∞i , 0), i and p = 1, 2,(4.5)

where 0 < v∞2 < v∞1 . L is related to ρmax by L = 1/ρmax.
We start by describing the portion of the wave trains in which both γ̄ and ū are

increasing in m. These solutions are functions of

ξ = m+ ct(4.6)

and are normalized so that

γ̄(0) = γ∗ and V2(γ∗) < u∗ < V1(γ∗).(4.7)

Once again, γ∗ = 1/ρ∗ (see (4.1)). Equation (4.2)1 implies that ū = u∗ + c(γ̄ − γ∗),
while (4.2)2 yields

c (c− V ′
1(γ̄))

dγ̄

dξ
=




V1(γ̄)− u∗ − c(γ̄ − γ∗)
ε

, γ̄ > γ∗,

V2(γ̄)− u∗ − c(γ̄ − γ∗)
ε

, γ̄ ≤ γ∗.

(4.8)

The requirement that γ̄ be increasing in ξ implies that γ̄ must satisfy dγ̄/dξ(0−) ≥
0 and dγ̄/dξ(0+) ≥ 0. Equations (4.7) and (4.8) then imply that these latter inequal-
ities may be met only if

c = V ′
1(γ∗).(4.9)
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In what follows, we let Γ∗ > L be the unique solution of

V ′
1(Γ∗) = V ′

2(L
+).(4.10)

If L < γ∗ < Γ∗, we let

Ū = V ′
1(γ∗)(γ∗ − L)(4.11)

and note that for V2(γ∗) < u∗ < Ū the equation

u∗ + V ′
1(γ∗)(γ̄ − γ∗) = V2(γ̄)(4.12)

has a unique solution γ− ∈ (L, γ∗) satisfying

V ′
1(γ∗) > V ′

2(γ−).(4.13)

On the other hand, if Γ∗ < γ∗, we let γl ∈ (L, γ∗) be the unique solution of

V ′
2(γl) = V ′

1(γ∗)(4.14)

and

Ū = V ′
1(γ∗)(γ∗ − γl) + V2(γl)(4.15)

and note that, for V2(γ∗) < u∗ < Ū , (4.11) has a unique solution γ− ∈ (γl, γ∗)
satisfying (4.12).

In what follows, we assume that the parameter u∗ in (4.8) satisfies V2(γ∗) < u∗ ≤
Ū , where Ū is defined in (4.10) or (4.14) as appropriate.

We now note that (4.2)2, when combined with (4.8), implies that the profile γ̄
must satisfy

V ′
1(γ∗) (V

′
1(γ∗)− V ′

1(γ̄))
dγ̄

dξ
=




V1(γ̄)− u∗ − V ′
1(γ∗)(γ̄ − γ∗)

ε
, γ̄ > γ∗,

V2(γ̄)− u∗ − V ′
1(γ∗)(γ̄ − γ∗)

ε
, γ̄ ≤ γ∗.

(4.16)

Once again, we normalize the profile by insisting that (4.7) hold. Noting that sign
(V ′

1(γ∗)− V ′
1(γ̄)) = sign (γ̄ − γ∗), that

V1(γ̄)− u∗ − V ′
1(γ∗)(γ̄ − γ∗) > 0, γ∗ < γ̄ < γ+,(4.17)

where γ∗ < γ+ is the unique solution of

V1(γ+)− u∗ − V ′
1(γ∗)(γ+ − γ∗) = 0,(4.18)

and finally that

V2(γ̄)− u∗ − V ′
1(γ∗)(γ̄ − γ∗) < 0, γ− < γ̄ < γ∗,(4.19)

where γ− is defined in (4.11), we see that (4.15) and (4.16) have a unique increasing
solution defined on (−∞,∞). For ξ < 0 the solution is given by the quadrature
formula

εV ′
1(γ∗)

∫ γ∗

γ̄(ξ)

(V ′
1(η)− V ′

1(γ∗))dη
(u∗ + V ′

1(γ∗)(η − γ∗)− V2(η))
= −ξ,(4.20)

and for ξ > 0 the solution is given by

εV ′
1(γ∗)

∫ γ̄(ξ)

γ∗

(V ′
1(γ∗)− V ′

1(η))dη

(V1(η)− u∗ − V ′
1(γ∗)(η − γ∗))

= ξ.(4.21)



CONGESTION ON MULTILANE HIGHWAYS 831

4.1. Periodic profiles. For any γ̄ ∈ (γ−, γ∗), we let Γ(γ̄) > γ∗ be the unique
solution of

V1(Γ(γ̄))− V1(γ̄) = V ′
1(γ∗)(Γ(γ̄)− γ̄)(4.22)

and note that

dΓ(γ̄)

dγ̄
=

(V ′
1(γ̄)− V ′

1(γ∗))
(V ′

1(Γ(γ̄))− V ′
1(γ∗))

< 0.(4.23)

We are now in a position to define the periodic wave trains. For −|ξa| < ξ ≤ 0, γ̄(ξ)
is given by (4.20), and |ξa| is given by

εV ′
1(γ∗)

∫ γ∗

γ̄a

(V ′
1(η)− V ′

1(γ∗))dη
(u∗ + V ′

1(γ∗)(η − γ∗)− V2(η))

def
= |ξa|,(4.24)

where γ− < γ̄a < γ∗. For 0 ≤ ξ ≤ ξΓ(γ̄a), γ̄(ξ) is given by (4.21), and ξΓ(γ̄a) is given
by

εV ′
1(γ∗)

∫ Γ(γ̄a)

γ∗

(V ′
1(γ∗)− V ′

1(η))dη

(V1(η)− u∗ − V ′
1(γ∗) ∗ (η − γ∗))

def
= ξΓ(γ̄a).(4.25)

We extend these solutions to all ξ via

γ̄(ξ) = γ̄(ξ + ξΓ(γ̄a) + |ξa|).(4.26)

The extended solution is a proper weak solution to (4.2). The relations (4.9) and (4.22)
imply that the Rankine–Hugoniot relations for (4.2) hold across the discontinuities

ξ = m+ V ′
1(γ∗)t = ξΓ(γ̄a) ± n(ξΓ(γ̄a) + |ξa|), n = 0, 1, . . . .(4.27)

Equation (4.22) also implies that

V ′
1(γ̄a) > V ′

1(γ∗) =
V1(Γ(γ̄a))− V1(γ̄a)

Γ(γ̄a)− γ̄a
> V ′

1(Γ(γ̄a)),(4.28)

and thus across these discontinuities the Lax entropy condition is satisfied. Recalling
that the particular solutions of interest to us must be M periodic, we see that (4.24)
and (4.25) imply that for some integer k ≥ 1, γ̄a and u∗ must be such that

kεV ′
1(γ∗)

[∫ γ∗

γ̄a

(V ′
1(η)− V ′

1(γ∗))dη
(u∗ + V ′

1(γ∗)(η − γ∗)− V2(η))

+

∫ Γ(γ̄a)

γ∗

(V ′
1(γ∗)− V ′

1(η))dη

(V1(η)− u∗ − V ′
1(γ∗)(η − γ∗))

]
= M.(4.29)

The condition that x(M, t) = x(1, t) + l implies that γ̄a and u∗ must also satisfy

kεV ′
1(γ∗)

[∫ γ∗

γ̄a

(V ′
1(η)− V ′

1(γ∗))ηdη
(u∗ + V ′

1(γ∗)(η − γ∗)− V2(η))

+

∫ Γ(γ̄a)

γ∗

(V ′
1(γ∗)− V ′

1(η))ηdη

(V1(η)− u∗ − V ′
1(γ∗)(η − γ∗))

]
= l.(4.30)
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We conclude this section with an analysis of (4.29) and (4.30). We first note that
the integer k ≥ 1 in these equations is equal to the number of discontinuities of γ̄(·)
per period. We also note that instead of using u∗ and γ̄a as our basic parameters we
may instead use γ− and γ̄a. With this choice,

u∗ + V ′
1(γ∗)(η − γ∗)− V2(η)

= V2(γ−) + V ′
1(γ∗)(η − γ−)− V2(η) > 0, γ− < η < γ∗,(4.31)

and

V1(η)− u∗ − V ′
1(γ∗)(η − γ∗)

= V1(η)− V2(γ−)− V ′
1(γ∗)(η − γ−) > 0, γ∗ < η < Γ(γ−),(4.32)

and solving (4.29) and (4.30) is equivalent to finding γ̄a ∈ (γ−, γ∗) and γ− < γ∗ such
that

kεV ′
1(γ∗)

[∫ γ∗

γ̄a

(V ′
1(η)− V ′

1(γ∗))dη
(V2(γ−) + V ′

1(γ∗)(η − γ−)− V2(η))

+

∫ Γ(γ̄a)

γ∗

(V ′
1(γ∗)− V ′

1(η))dη

(V1(η)− V2(γ−)− V ′
1(γ∗)(η − γ−))

]
= M(4.33)

and

kεV ′
1(γ∗)

[∫ γ∗

γ̄a

(V ′
1(η)− V ′

1(γ∗))ηdη
(V2(γ−) + V ′

1(γ∗)(η − γ−)− V2(η))

+

∫ Γ(γ̄a)

γ∗

(V ′
1(γ∗)− V ′

1(η))ηdη

(V1(η)− V2(γ−)− V ′
1(γ∗)(η − γ−))

]
= l.(4.34)

In what follows, we let L1(γ−, γ̄a, γ∗) and L2(γ−, γ̄a, γ∗) be the functions defined
by the left-hand sides of (4.33) and (4.34), respectively. If L < γ∗ < Γ∗ (see
(4.9)), the functions L1 and L2 are well defined for γ− ∈ (L, γ∗) and γ̄a ∈ (γ−, γ∗),
whereas if Γ∗ ≤ γ∗, these functions are well defined for γ− ∈ (γl, γ∗) (see (4.13)) and
γ̄a ∈ (γ−, γ∗). In either case, the observation that limγ̄a→γ−∗

Γ(γ̄a) = γ∗ implies that

L1(γ−, γ−
∗ , γ∗) = L2(γ−, γ−

∗ , γ∗) = 0. We further note that for γ− < γ̄a < γ∗

∂L1

∂γ̄a
(γ−, γ̄a, γ∗) = kεV ′

1(γ∗)

[
(V ′

1(γ∗)− V ′
1(γ̄a))

(V2(γ−) + V ′
1(γ∗)(γ̄a − γ∗)− V2(γ̄a))

+
dΓ(γ̄a)

dγ̄a

(V ′
1(γ∗)− V ′

1(Γ(γ̄a)))

(V1(Γ(γ̄a))− V2(γ−)− V ′
1(γ∗)(Γ(γ̄a)− γ−))

]
.(4.35)

The last identity, together with dΓ/dγ̄a(γ̄a) < 0, implies that ∂L1/∂γ̄a(γ−, γ̄a, γ∗) < 0.
The fact that

lim
γ̄a→γ+

−
L1(γ−, γ̄a, γ∗) = +∞(4.36)

then guarantees that for each L < γ∗ and admissible γ− there is a unique γ̄a(γ−, γ∗,M)
such that (4.33) holds. Thus, solving (4.33) and (4.34) is equivalent to finding an
admissible γ− < γ∗ so that

L2(γ−, γ̄a(γ−, γ∗,M), γ∗) = l.(4.37)



CONGESTION ON MULTILANE HIGHWAYS 833

The integral mean-value theorem, when combined with the definition of γ̄a(γ−, γ∗,M),
guarantees that

Mγ̄a(γ−, γ∗,M) ≤ L2(γ−, γ̄a(γ−, γ∗,M), γ∗) = Mg(4.38)

for some g ∈ (γ̄a(γ−, γ∗,M), Γ(γ̄a(γ−, γ∗,M))). These observations, together with
γ− < γ̄a(γ−, γ∗,M) and Γ(γ̄a(γ−, γ∗,M)) < Γ(γ−), imply that (4.37) has no solutions
for

l <




ML if γ∗ < Γ∗ (see (4.9) and (4.22)),

Mγl if γ∗ ≥ Γ∗ (see (4.9), (4.13), and (4.22))
(4.39)

and

l >




MΓ(L) if γ∗ < Γ∗ (see (4.9) and 4.22)),

MΓ(γl) if γ∗ ≥ Γ∗(see (4.9), (4.13), and (4.22)).
(4.40)

These estimates on the range of γ− → L2(γ−, γ̄a(γ−, γ∗,M), γ∗), though not partic-
ularly sharp, are all we could manage with this degree of generality on the functions
V1(·) and V2(·).
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ACOUSTIC PROPAGATION IN DISPERSIONS AND THE
GEOMETRIC THEORY OF DIFFRACTION∗
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Abstract. The ultrasonic characterization of emulsions relies principally upon the theory of
thermoacoustic scattering. For a single spherical particle of radius a suspended in a homogeneous
medium, the theory provides an exactly soluble solution to the scattering problem. Unfortunately,
direct computations with this solution are often ill-conditioned for certain ranges of the acoustic
wave number K and thermal wave number L. Recently the authors have developed a low frequency
(i.e., |Ka|, |La| � 1) approach to the theory based on a potential theory technique. This low
frequency theory is rapidly convergent and overcomes computation ill-conditioning. In this paper,
we pursue the single particle theory and consider the region in which |Ka| � 1 and |La| � 1, i.e., the
high frequency range of the thermal wavelength. To achieve this, we employ the geometric theory
of diffraction. We show that the high frequency solution agrees well with both the experimental
measurements and the exact solution in the region where |Ka| � 1 and |La| � 1. As in the low
frequency case, the high frequency solution may be applied to arbitrary scattering domains.

Key words. Helmholtz equation, Poisson equation, ultrasound spectroscopy, geometrical theory
of diffraction, low frequency limit, high frequency limit

AMS subject classifications. 35C10, 35J05, 35P25, 76Q05

PII. S0036139902404670

1. Introduction. Ultrasound techniques for the characterization of colloidal
systems are gaining wide acceptance, and many new ultrasound instruments have
recently appeared on the market. The bulk of these instruments claim to accurately
measure colloidal particle size distribution, in the case of oil-in-water emulsions at
concentrations of up to 30 percent. All these instruments determine particle size from
a measurement of ultrasonic attenuation as a function of frequency, together with
thermophysical data for the continuous and dispersed phases such as thermal diffu-
sivity. The claims depend on an accurate model of acoustic scattering in such systems.
A recent review [1] suggests that the reason for the accuracy of these instruments is
that scattering in water based systems is dominated by thermal scattering and that
multiple scattering of the thermal field is small. The review authors then suggest that
the ECAH model (named for Epstein–Carhart [2] and Allegra–Hawley [3]) upon which
most instruments are based is too mathematically complex to be of use in cases where
particle-particle interactions are important. In a previous paper [4] we showed that
the real deficiency of ECAH is not its complexity but the fact that it is ill-conditioned,
thereby leading to unreliability in its numerical predictions, despite the fact that it
is an exact theory for a single spherical particle. We demonstrated that, in the case
of silicone oil-in-water emulsions, ECAH was accurate to only a few volume percent
of the dispersed phase and that the increasing overestimation of the attenuation by
ECAH at higher concentrations was a result of unjustifiable approximations made in
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the multiple scattering model. In addition, high precision arithmetic was needed to
overcome the numerical instability of solutions to ECAH.

To overcome the ill-conditioning in ECAH, we developed in [4] a low frequency
solution to the problem of ultrasound propagation in dispersions. We adopted a
conventional approach first formulated by Lord Rayleigh [5], refined by Epstein and
Carhart [2] and Allegra and Hawley [3]. We call this the ECAH approach, and our
low frequency approximation the low frequency potential scattering theory (LFPST).
LFPST is based on an asymptotic approach first introduced by Kleinman [6], and
we showed that it accurately reproduces experimental results and numerical results
from ECAH computed using 24 digit precision arithmetic. The importance of this
problem relates to the use of ultrasound for characterizing soft solid and particulate
material in a wide range of industries including foods [7, 8] and pharmaceuticals [9].
Since very many such applications lie in the low frequency acoustic limit, an accurate
approximation in this limit is of great potential utility. The starting point for LFPST
is a set of linearized mass, momentum, and energy equations [4, 10] that reduce
to a set of Helmholtz equations, coupled through transmission boundary conditions
at the particle surface. It should be pointed out here that this solution at present
includes only thermal scattering and that the visco-inertial scattering terms have been
omitted for the sake of simplicity. The ECAH solution is not only ill-conditioned
[4, 10, 11, 12], but also, because it is based on spherical harmonics, cannot easily
be generalized to account for arbitrary particle shape. On the other hand, LFPST
is well-conditioned, can provide solutions to arbitrary accuracy, and lends itself to
boundary-integral and finite-element techniques that permit solution of the single
scattering problem for arbitrary particle shape. In our previous papers [4, 11] we
showed that, while it is true that many applications of ultrasound to food and similar
emulsions lie in the acoustic low frequency limit, a great proportion of experimental
data is high frequency regarding the thermal branch of the problem. In this paper
we develop a novel asymptotic description appropriate for the low frequency acoustic
limit (Ka � 1, where K is the acoustic wave vector and a is the particle radius) but
where, nevertheless, the problem is high frequency in the thermal field (La � 1, where
L is the thermal wave vector). Examples of such data are given later. We employ
the LFPST method for the low frequency acoustic branch (expansion of the acoustic
field in powers of iK [4, 11]) and the geometric theory of diffraction (expansion of
the thermal field utilizing inverse powers of iL [4]) for the high frequency thermal
branch. An iterative system of Poisson equations is formed, whose solution, dependent
upon the boundary conditions, provides coefficient values for the field expansions.
This approach is not intrinsically constrained by geometrical aspects of the domain.
We show, by making an appropriate scaling, that the boundary conditions may be
decoupled to second order, significantly simplifying the analysis. In section two, we
introduce the problem of thermoacoustic scattering. In section three, we give details of
the low frequency perturbation solution, and in section four, we present the geometric
theory of diffraction which is applied to the high frequency perturbation solution. In
section five, we combine the results of the previous two sections and introduce the
form of our perturbation solution together with the associated analytical solution of
the problem. Finally, in section six, we present the far field pattern for the solution
and compare it with experimental results and the exact solution.

2. Thermoacoustic scattering. We now introduce the model equations and
boundary conditions that quantify the problem, keeping our variables consistent with
those of [4] as much as possible. As in [4], we consider the scattering of a plane
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sound wave of radial frequency ω by a droplet with boundary B that has contrasting
thermal and compressive properties. For simplicity we will neglect the effects of
viscosity, as these are of secondary importance in oil-water emulsions, though these
can be incorporated into the formulation [1]. We define the domains D1 and D2 to
be regions outside and inside the drop, respectively, and n to be outward normal on
B. The linearized equation for momentum gives

iωρ∇Φ+∇P = 0,(2.1)

where Φ is the velocity potential, P is the pressure perturbation, and ρ is density.
Hence the pressure perturbation and velocity potential are related by

P = −iωρΦ.(2.2)

Conservation of energy gives

iωT + γσ∇2T +
(γ − 1)

β
∇2Φ = 0,(2.3)

where T is the temperature perturbation, γ the ratio of specific heats, β the coef-
ficient of thermal expansion, and σ = τ/ρCP the thermal diffusivity. (τ is thermal
conductivity and CP the specific heat at constant pressure.) Finally, the combination
of mass conservation and the first law of thermodynamics gives

iωP = −ρv2

γ
∇2Φ+

iωv2βρ

γ
T,(2.4)

where v is the adiabatic sound speed. Substituting (2.2) into (2.4) gives(
∇2 +

γω2

v2

)
Φ = iωβT,

and substituting for T in (2.3) gives a biharmonic equation for the velocity potential
Φ,

∇4Φ+

(
ω2γ

v2
+ i

ω

σ

)
∇2Φ+ i

ω3

σv2
Φ = 0.(2.5)

Equations for the pressure, velocity, density, and temperature variations are ob-
tained from the conservation of mass, momentum, and energy. Equation (2.5) may
be factorized as

(∇2 +K2)(∇2 + L2)Φ = 0,(2.6)

where, in the limit of small σω
/
v2,

K � ω

v

(
1 + i

(γ − 1)σω
2v2

)
, L �

( ω

2σ

)1/2

(1 + i).(2.7)

Here the wave number K corresponds to the acoustic wave of length 2πv/ω with
a small attenuation α = ω2σ(γ − 1)/2v3. The wave number L corresponds to a
much shorter wavelength disturbance due to heat conduction called the thermal wave.
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We can therefore express the velocity potential as the sum of a compressional wave
potential ϕ and a thermal wave potential ψ:

Φ = e−iωt (ϕ+ ψ + ϕ0) ,

where ϕ0 = eiKz is the incoming wave and ϕ and ψ satisfy separate Helmholtz
equations

(∇2 +K2)ϕ = 0 and (∇2 + L2)ψ = 0 in D1.(2.8)

The pressure and temperature perturbations are given by

P = −iωρe−iωt(ϕ+ ψ + ϕ0), T = e−iωt(Γcϕ+ Γtψ + ϕ0),

where

Γc =
−iK2ω(γ − 1)
β(ω + iγσK2)

and Γt =
−iL2ω(γ − 1)
β(ω + iγσL2)

.

Equivalent equations hold inside the droplet, so that

Φ = e−iωt (ϕ′ + ψ′) ,

(∇2 +K ′2)ϕ′ = 0 and (∇2 + L′2)ψ′ = 0 in D2.(2.9)

We use primes to denote quantities in the droplet phase. The wave numbers K ′ and
L′ are given by (2.7), but using the parameter values of the droplet. Finally we apply
boundary conditions on the potential fields ϕ, ψ , ϕ′, and ψ′, where ϕ and ψ must
satisfy the Sommerfeld radiation condition at infinity (see [15, 17]):

lim
r→∞ r

(
∂ϕ

∂r
− iKϕ

)
= 0, lim

r→∞ r

(
∂ψ

∂r
− iLψ

)
= 0.(2.10)

In addition, we require that the normal velocity, pressure, temperature, and heat flux
be continuous at the droplet boundary, giving the following four boundary conditions
on the boundary B:

(a) normal velocity

∂

∂n

(
eiKz + ϕ+ ψ

)
=

∂

∂n
(ϕ′ + ψ′) ,(2.11)

(b) pressure

eiKz + ϕ+ ψ = ρ̂ (ϕ′ + ψ′) , ρ̂ =
ρ′

ρ
,(2.12)

(c) temperature

Γc
(
eiKz + ϕ

)
+ Γtψ = Γ

′
cϕ

′ + Γ′tψ
′,(2.13)

(d) heat flux

Γc
∂

∂n

(
eiKz + ϕ

)
+ Γt

∂

∂n
ψ = τ̂

(
Γ′
c

∂

∂n
ϕ′ + Γ′t

∂

∂n
ψ′
)
, τ̂ =

τ ′

τ
.(2.14)
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For the case of a spherical droplet, a solution for the fields ϕ, ψ, ϕ′, and ψ′ may be
found as a Rayleigh series expansion in spherical harmonics (see [1]),

ϕ =

∞∑
n=0

in(2n+ 1)Anhn (Kr)Pn(cos θ), ϕ′ =
∞∑
n=0

in(2n+ 1)A′
njn (K

′ r)Pn(cos θ),

ψ =
∞∑
n=0

in(2n+ 1)Bnhn (Lr)Pn(cos θ), ψ′ =
∞∑
n=0

in(2n+ 1)B′
njn (L

′ r)Pn(cos θ),

ϕ0 =

∞∑
n=0

in(2n+ 1)jn (Kr)Pn(cos θ) = eiKz,(2.15)

where jn(z) and hn(z) are, respectively, the nth order spherical Bessel and Han-
kel functions [18]. The coefficients An, Bn, An

′, and Bn
′ are found by enforcing the

boundary conditions (2.11)–(2.14).

3. Low frequency potential scattering. As mentioned in the introduction,
while the ECAH solution given by (2.15) is exact [4], it suffers from a number of limi-
tations, most significantly that its implementation leads to ill-conditioning problems.
To eliminate this problem, the authors of [4] sought an asymptotic solution in the
limit when the particle size a is such that |Ka| and |La| � 1. This was achieved
by appealing to a method first presented by Kleinman [6] for the solution of low fre-
quency acoustic scattering problems. The method reduced the Helmholtz equation to
a sequence of potential problems by taking an integral transformation. We now give
a brief outline of the process. First, in solving the Helmholtz equations,(∇2 +K2

)
ϕ = 0 in D1,(3.1)

(∇2 +K ′2)ϕ′ = 0 in D2,(3.2)

in which ϕ satisfies the radiation condition at infinity in D1, we introduce the function

ϕ̃ = e−iKrϕ,(3.3)

which is regular at infinity, and we write (3.1) in the form

∇2ϕ̃ = −2iK
r

∂

∂r
(rϕ̃).(3.4)

A real valued function is said to be regular at infinity if

lim r → ∞, | rf(p) |< ∞, and lim r → ∞
∣∣∣∣r2 ∂(p)

∂r

∣∣∣∣ < ∞,

where r = |x| is the magnitude of the position vector x of an arbitrary point. Boundary
conditions on the surface connecting the two domains are transformed in terms of the
variable ϕ̃. To complete the process, ϕ̃ and ϕ′ are expressed as regular perturbation
expansions:

ϕ̃ =
∞∑
n=0

(iKa)nϕ̃n, ϕ′ =
∞∑
n=0

(iK ′a)nϕ′
n.(3.5)



ACOUSTIC PROPAGATION IN DISPERSIONS 839

For |Ka| < ln(2) this series converges (see [6]), and in practice it is rapidly convergent.
This offers a significant improvement on ECAH formulation since the error is bounded
by O(|Ka|m+1) if an mth order solution is used [4]. In other words, as long as |Ka| is
small, we are guaranteed to obtain an accurate estimation of the potential with only
a few terms. In contrast, due to the ill-conditioned nature of the ECAH system, it is
difficult to know if we have obtained an accurate estimation of the scattered potential.

If we substitute the expansions (3.5) into (3.2) and (3.4), we obtain, for m ≥ 0,
the equivalent system:

∇2ϕ̃m = − 2

ar

∂

∂r
(rϕ̃m−1) in D1,(3.6)

together with

∇2ϕ′
m =

1

a2
ϕ′
m−2 in D2,(3.7)

with the appropriate modifications to the boundary conditions. In (3.6) and (3.7) we
understand that

ϕ̃−1 = ψ̃−1 = 0 and ϕ′
−1 = ψ′

−1 = ϕ′
−2 = ψ′

−2 = 0.

If the fields are given this asymptotic description, then clearly the solution will only
be valid in the long wavelength limit. In this paper we also seek to examine the short
wavelength limit for which |La| � 1; this is addressed by the geometric theory of
diffraction [13] which we now introduce.

4. The geometric theory of diffraction. Partial differential equations play
a crucial part in many branches of mathematics, physics, and industry; however,
since explicit exact solutions exist for only relatively few problems, numerical and
asymptotic techniques were developed in a bid to elucidate the underlying physics
or mechanisms. The notion of asymptotic solutions was first conceived to provide
the functional dependence of partial differential equations upon their parameters and
data. The main feature of the method relies on rays, which are curves along which
the terms of the asymptotic expansion satisfy ordinary differential equations. This
method was successfully applied by Lewis and Keller [13] to the Helmholtz equation,
revealing the phenomenon of diffraction, from which the method gets its name. As a
starting point consider the following equation:

(∇2 + L2n2(x))ψ = 0;(4.1)

here the function n(x) relates to the refractive index of the media. In the case of
homogeneous media, n(x) = constant and as such admits plane wave solutions of the
form

ψ = ψ̃ein(x)L·r,(4.2)

where L = LL̂ is the propagation vector, L̂ the unit vector, and L the wave number.
On the basis of (4.2), solutions are sought of the form

ψ = ψ̃eiLs(x);(4.3)

substituting this expression into (4.1) and canceling the factor exp(iLs) yields

−L2{(∇s)2 − n2}ψ̃ + 2iL∇s · ∇ψ̃ + iLψ̃
s+
ψ̃ = 0.(4.4)
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For large values of L we assume an expansion in inverse powers of iLa of the form

ψ̃ =

∞∑
m=0

(iLa)−mψ̃m,(4.5)

in contrast with the expansions in (3.5). Inserting this expression into (4.4) and
equating in powers of m gives

−(La)2{(∇s)2 − n2}ψ̃m+1 + 2iLa∇s · ∇ψ̃m + iLaψ̃m
s+ a
ψ̃m−1 = 0.(4.6)

Again here we understand that ψ̃m = 0 for m = −1,−2, . . . . For m = −1 we have
{(∇s)2 − n2}ψ̃0 = 0,(4.7)

and if ψ̃0 �= 0 yields the Eiconal equation,
(∇s)2 = n2(x).(4.8)

For m = 0, in order to obtain vanishing coefficients, we have

2∇s · ∇ψ̃0 + ψ̃0
s = 0,(4.9)

and for m = 1, 2, . . . ,

2∇s · ∇ψ̃m + ψ̃m
s = −
ψ̃m−1.(4.10)

Equations (4.9)–(4.10) are called transport equations and are analogous to (3.6)
in the low frequency case. For surfaces of constant phase defined by s(x) = constant,
curves or rays orthogonal to them provide solutions to the Eiconal equation. One
may then express the equation of a ray in the form

x = (x1, x2, x3) = x(ζ),(4.11)

and the orthogonality condition is expressed by

dxj
dζ

= λsxj , j = 1, 2, 3.(4.12)

Here λ(x) is an arbitrary proportionality factor and for the choice λ = n−1 ensures
that the parameter ζ is simply the arc length along a ray. Utilizing (4.8) and (4.12),
we may write

ds(x)

dζ
= ∇s · dx

dζ
= λ(∇s)2 = λn2;(4.13)

upon integrating this expression with respect to ζ, we have the solution as

s(x(ζ)) = s(x(ζ0)) +

∫ ζ0

ζ

λ(x(t))n2(x(t))dt,(4.14)

and for the choice λ = n−1 this reduces to

s(ζ) = s(ζ0) +

∫ ζ0

ζ

n(t)dt.(4.15)
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Similarly, the transport equations (4.9)–(4.10) may be expressed in terms of the pa-
rameter ζ. The crucial aspect of this formulation is that the original partial differ-
ential equation has been confined to the solution of a system of ordinary differential
equations, and that the geometry of the problem manifests itself only in terms of
the parameter ζ. In this paper we assume our media are homogenous, in the sense
that the rays are straight lines. As a simple example to illustrate this, we consider a
spherical geometry; this has rays which are simply radial lines, and therefore

s(r) = ±r + constant.(4.16)

This furnishes us with the following forms for (4.3):

ψ = ψ̃e±iLr.(4.17)

A full treatment of the theory is given in [13]. We are now in a position to formulate
(2.8)–(2.9) together with the associated boundary conditions (2.11)–(2.14).

5. Formulation. Based on the previous sections, we now apply the following
transformations:

ϕ̃ = e−iK(r−a)ϕ,

ψ̃ = e−iL(r−a)ψ, ψ̃′ = eiL
′(r−a)ψ′.

Thus (2.8)–(2.9) become

∇2ϕ̃ = −2iK
r

∂

∂r
(rϕ̃) ,(5.1)

∇2ϕ′ +K ′2ϕ′ = 0,(5.2)

2iL∇s1 · ∇ψ̃ + iLψ̃
s1 +
ψ̃ = 0,(5.3)

2iL′∇s2 · ∇ψ̃′ + iL′ψ̃′
s2 +
ψ̃′ = 0,(5.4)

where s1(r) = r + constant and s2(r) = −r + constant. The boundary conditions of
the system now transform to the following:

iK cos θeiKa cos θ +

{
iKϕ̃+

∂ϕ̃

∂r

}
+

{
iLψ̃ +

∂ψ̃

∂r

}
=

∂ϕ′

∂r
+

{
∂ψ̃′

∂r
− iL′ψ̃′

}
,(5.5)

eiKa cos θ + ϕ̃+ ψ̃ = ρ̂{ϕ′ + ψ̃′},(5.6)

Γc{eiKa cos θ + ϕ̃}+ Γtψ̃ = Γ′cϕ′ + Γ′tψ̃′,(5.7)
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Γc

{
iK cos θeiKa cos θ + iKϕ̃+

∂ϕ̃

∂r

}
+ Γt

{
iLψ̃ +

∂ψ̃

∂r

}

= τ̂

{
Γ′c

∂ϕ′

∂r
+ Γ′t

{
∂ψ̃′

∂r
− iL′ψ̃′

}}
.(5.8)

We observe that for large La, by dividing the boundary conditions in (5.7)–(5.8) by
Γt, we have the following ratios:

Γc
Γt

� (1− γ)K2

L2 − γK2
.

Thus we define

Γc
Γt

� GcK
2

L2
,

where Gc = (1− γ), and similarly,

Γ′c
Γt

� G′
cK

′2

L2
, G′

c =
(γ′ − 1)β

β′ ,

Γ′t
Γt

� G′
t =

σβ

σ′β′ .

The boundary conditions given in (5.7)–(5.8) now may be written as

Gc
(Ka)2

(La)2
{eiKa cos θ + ϕ̃}+ ψ̃ = G′

c

(K ′a)2

(La)2
ϕ′ +G′

tψ̃
′,(5.9)

Gc
(Ka)2

(La)2

{
iK cos θeiKa cos θ + iKaϕ̃+

∂ϕ̃

∂r

}
+

{
iLaψ̃ +

∂ψ̃

∂r

}

= τ̂

{
G′
c

(K ′a)2

(La)2
∂ϕ′

∂r
+G′

t

{
∂ψ̃′

∂r
− iLa′ψ̃′

}}
.(5.10)

Recognizing this scaling proved to be particularly important in that it simplifies the
boundary conditions significantly. Essentially it decouples the thermal field from the
acoustic field to low order. One can see that the acoustic potential contributes to
the temperature perturbation only at second order in Ka. Consequently the thermal
field will be of order (Ka)2, and thus it will only affect the scattered potential at this
order.

We now introduce expansions of the following form:

ϕ̃ =
∞∑
n=0

∞∑
m=0

(iKa)n

(iLa)m
ϕ̃nm, ϕ′ =

∞∑
n=0

∞∑
m=0

(iK ′a)n

(iL′a)m
ϕ′
nm,(5.11)



ACOUSTIC PROPAGATION IN DISPERSIONS 843

ψ̃ =

∞∑
n=0

∞∑
m=0

(iKa)n

(iLa)m
ψ̃nm, ψ̃′ =

∞∑
n=0

∞∑
m=0

(iK ′a)n

(iL′a)m
ψ̃′
nm.(5.12)

Following the subsequent substitution into (5.1)–(5.4) and the associated boundary
conditions (5.5)–(5.6) and (5.9)–(5.10), we obtain the following equivalent transport
equations:

∇2ϕ̃nm = − 2

ar

∂

∂r
(rϕ̃n−1,m) in D1,(5.13)

together with

∇2ϕ′
nm =

1

a2
ϕ′
n−2,m in D2,(5.14)

2∇s1 · ∇ψ̃n0 + ψ̃n0
s1 = 0 in D1,(5.15)

and, for m = 1, 2, . . . ,

2∇s1 · ∇ψ̃nm + ψ̃nm
s1 = −a
ψ̃n,m−1 in D1,(5.16)

2∇s2 · ∇ψ̃′
n0 + ψ̃′

n0
s2 = 0 in D2,(5.17)

and, for m = 1, 2, . . . ,

2∇s2 · ∇ψ̃′
nm + ψ̃′

nm
s2 = −a
ψ̃′
n,m−1 in D2.(5.18)

Together with the accompanying sequences for the boundary conditions, the systems
of equations (5.13)–(5.18) are well posed. Of course in the above we understand that
ϕ̃−1,m = 0, ϕ′

−1,m = ϕ′
−2,m = 0 for all integer values m, and ψ̃nm = 0, ψ̃′

nm = 0 for
all integer values n and m = −1,−2, . . . .

5.1. The leading order solutions. The leading order terms in the boundary
conditions given in (5.5)–(5.6) and (5.9)–(5.10) are given by

iLψ̃n0 + iL′ψ̃′
n0 = 0,(5.19)

iLψ̃n0 + iL′τ̂G′
tψ̃

′
n0 = 0,(5.20)

and thus, provided that

τ̂G′
t �= 1, then ψ̃n0 ≡ ψ̃′

n0 ≡ 0.(5.21)

Similarly, order one terms from (5.5) and O(La−1) terms from (5.10) give

ψ̃n1 + ψ̃′
n1 = 0,(5.22)

ψ̃n1 + τ̂G′
tψ̃

′
n1 = 0,(5.23)

again provided that

τ̂G′
t �= 1, then ψ̃n1 ≡ ψ̃′

n1 ≡ 0, n = 0, 1, 2, . . . .(5.24)
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The remaining order one boundary conditions from (5.5)–(5.6) are

∂ϕ̃00

∂r
=

∂ϕ′
00

∂r
,(5.25)

1 + ϕ̃00 = ρ̂ϕ′
00,(5.26)

⇒ ϕ′
00 =

1

ρ̂
, ϕ00 = 0.

In the above we have expanded the incident field as

eiKz = {1 + iKz + · · · }
and used only the first harmonic. Here we see the decoupling effect of the scaling, as
mentioned earlier. The zero order acoustic potentials do not depend upon the thermal
potentials. The corresponding transport equations are given by

∇2ϕ̃00 = 0 in D1,(5.27)

∇2ϕ′
00 = 0 in D2,(5.28)

ϕ̃00 =
A00

0 a

r
, ϕ′

00 = C00
0 ;(5.29)

with the associated solutions, (5.25)–(5.26) then yield A00
0 = 0 and C00

0 = 1/ρ̂.
In general, from the decomposition of the incident field into spherical harmonics,

we can deduce that the associated solutions ϕ̃nm, ϕ′
nm, ψ̃nm, and ψ̃′

nm will contain the
first n spherical harmonics. Thus one could expand the incident field into spherical
harmonics, given in (2.15), and subsequently deduce that ϕ̃ and ϕ′, which have the
associated solutions

ϕ̃00 =

∞∑
n=0

A00
n an+1Pn(cos θ)

rn+1
, ϕ′

00 =

∞∑
n=0

C00
n Pn(cos θ)r

n

an
,(5.30)

yield the solution

A00
n =

−Inn

n+ (n+ 1)ρ̂
, C00

n =
In(n+ 1)

n+ (n+ 1)ρ̂
,

where In = in(2n + 1)jn(Ka) and jn is the nth spherical Bessel function. Thus we
have for n = 0, A00

0 = 0 and C00
0 = 1/ρ̂, as above. In practice, the zero order term

dominates the behavior of the solution.
At order (Ka) we have

cos θ + a
∂ϕ̃10

∂r
=

K

K ′ a
∂ϕ′

10

∂r
,(5.31)

cos θ + ϕ̃10 =
K

K ′ ρ̂ϕ
′
10,(5.32)
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together with the associated transport equations

∇2ϕ̃10 = 0 in D1,(5.33)

∇2ϕ′
10 = 0 in D2,(5.34)

and solutions

ϕ̃10 =
A10

0 a

r
+

A10
1 a2

r2
P1(cos θ), ϕ′

10 = C10
0 +

C10
1 r

a
P1(cos θ),(5.35)

where

A10
0 = C10

0 = 0, A10
1 =

ρ̂− 1
1 + 2ρ̂

, C10
1 =

3

1 + 2ρ̂
,

and Pn(cos θ) is the nth spherical Legendre polynomial.
To order ((Ka)2) from (5.14)–(5.15), we have the following transport equations:

∇2ϕ̃20 = − 2

ar

∂

∂r
(rϕ̃10) in D1,(5.36)

∇2ϕ′
20 =

1

a2
ϕ′

00 in D2,(5.37)

with solutions of

ϕ̃20 =
A20

0 a

r
+

A20
1 a2

r2
P1(cos θ) +

A20
2 a3

r3
P2(cos θ)− A10

1 a

r
P1(cos θ),

ϕ′
10 = C20

0 +
C20

1 r

a
P1(cos θ) +

C20
1 r2

a2
P2(cos θ) +

C00
0 r2

6a2
,(5.38)

where

A20
0 =

ρ̂− 1
3ρ̂

, A20
1 =

ρ̂− 1
1 + 2ρ̂

, A20
2 =

2(ρ̂− 1)
3(2 + 3ρ̂)

,

C20
0 =

(3ρ̂− 1)ĉ
6ρ̂2

− 1

6ρ̂
, C20

1 = 0, C20
2 =

(5ρ̂)

3(2 + 3ρ̂)ρ̂ĉ
,

where ĉ = K ′2/K2.
Continuing in this way, we construct the functions ϕ̃nm, ϕ′

nm, ψ̃nm, and ψ̃′
nm. At

order (Ka)2(La)−1 we observe the first interaction between the thermal and acoustic
fields with the following boundary conditions:

ϕ̃11 + a
∂ϕ̃21

∂r
+ ψ̃22 = ĉd̂

{
a
∂ϕ′

21

∂r
− ψ̃′

22

}
,(5.39)

ϕ̃21 = ρ̂ ĉ d̂ ϕ′
21,(5.40)
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ψ̃22 = −τ̂ ĉ d̂ G′
t ψ

′
22,(5.41)

where d̂ = L/L′. Similar expressions for the order (Ka)2(La)−2 terms together with
solutions, developed from the transport equations (5.15)–(5.18), allow determination
of the coefficients A21

0 and A22
0 for the functions

ϕ̃21 =
A21

0 a

r
+

A21
1 a2

r2
P1(cos θ) +

A21
2 a3

r3
P2(cos θ),(5.42)

ϕ̃22 =
A22

0 a

r
+

A22
1 a2

r2
P1(cos θ) +

A22
2 a3

r3
P2(cos θ).(5.43)

Solutions to the transport equations (5.15) and (5.18) for n = 2 and m = 0, 1, 2 are
of the form

ψ̃20 =
D20

0 a

r
+

D20
1 a

r
P1(cos θ) +

D20
2 a

r
P2(cos θ),

ψ̃21 =
D22

0 a

r
+

D22
1 a

r
P1(cos θ) +

D22
2 a

r
P2(cos θ)− D21

1 a2

r2
P1(cos θ)− 3D21

2 a2

r2
P2(cos θ),

ψ̃22 =
D22

0 a

r
+

D22
1 a

r
P1(cos θ) +

D22
2 a

r
P2(cos θ)− D21

1 a2

r2
P1(cos θ)

− 3D21
2 a2

r2
P2(cos θ) +

3D20
2 a3

r3
P2(cos θ),

with similar expressions for ψ̃′
2m, m = 0, 1, 2. However, due to (5.21)–(5.24), consid-

erable simplification is achieved, allowing us to derive the following quantities:

A21
0 =

{
(1− τ̂G′

t)

τ̂G′
t

}{
τ̂(αL2G′

c −GcL
′2ρ̂)

ρ̂L′ (L′τ̂ + L)

}
,

A22
0 =

{
(L2 − L′2τ̂)
L′(L′τ̂ + L)

− (ĉ− 1)d̂
τ̂G′

t

}{
τ̂(αL2G′

c −GcL
′2ρ̂)

ρ̂L′ (L′τ̂ + L)

}
.

6. The far field. For the far field we have the following theorem due to Atkinson
[15], Barrar and Kay [16], and Wilcox [17].

Theorem 6.1. Let u be the radiating solution to the Helmholtz equation,

�2 u+ k2 u = 0 in V1;

then the field scattered from the surface B has an asymptotic form of a spherical wave,

u(r) =
eikr

r

∞∑
n=0

fn(φ,Ω)

rn
,(6.1)

where the series converges absolutely and uniformly for r > c + ε, ε > 0. Here c is
defined as c = maxr∈B r. Furthermore, the series may be differentiated term by term
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Silicone oil-in-water emulsion

Fig. 6.1. Plot of αλ, the attenuation per wavelength, against La, the product of thermal
wave number and particle radius, for a silicone (polysiloxane) oil-in-water emulsion. Solid squares
denote experimental data for 5% volume concentration of oil, the black line shows the high frequency
formulation using the far field pattern in (6.2), and the crosses indicate the ECAH calculation. The
open squares show the calculation using only the first two terms in (6.2).

with r, φ, and Ω any number of times, and the resulting series all converge absolutely
and uniformly. The functions fn(φ, Ω) are understood to depend on the parameter k,
and the function f0(φ) is called the far field.

In the above formulation, one can see that the far field pattern for the reflected
acoustic field is given by

f0(φ) = −K2a3

{
A20

0 − iA21
0

L
− A22

0

L2

}
+O(|Ka|3) as r→ ∞,(6.2)

where ψ does not contribute due to the nonpropagational character of the thermal
wave. The term A20

0 contained in the far field pattern derives from the acoustic
scattering of the particle, depends upon only the ratio of densities of the two phases,
and is independent of the thermal properties. In contrast, the terms A21

0 and A22
0 are

dependent upon the thermal properties of the phases, the former being the dominant
term and the coefficient in (La)−1. This scaling is seen in Figure 6.1.

6.1. Comparison with experiments. We now compare the high frequency
geometric theory of diffraction solution, the ECAH solution, and experimental data.
This necessitates the use of multiple particle scattering theory. Lloyd and Berry [14]
showed that(

B

K

)2

= 1 +
3φf(0)

K2a3
+
9φ2f(0)

4K4a6

{
f2(π)− f2(0)−

∫ π

0

dθ
1

sin(θ/2)

d

dθ
f2(θ)

}
,(6.3)

where B is the wave number of the acoustic wave in the dispersion and φ = 4πa3n0/3
is the droplet volume fraction. We have used the above multiple scattering result
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Table 1
Physical data set for experimental and theoretical emulsions.

n-Hexadecane Silicone oil Aqueous phase

Sound velocity υ(m s−1) 1357.9 1004 1482

Density ρ(kg m−3) 773.0 975 998.2

Thermal expansivity β(K−1) 9.1× 10−4 9.4× 10−4 2.13× 10−4

Specific heat Cp(J kg−1K−1) 2215 1460 4182

Thermal conductivity τ(W m−1K−1) 0.143 0.15 0.591

in what follows, even though we showed in [4] that (6.3) fails to accurately describe
multiple scattering in the presence of thermal fields since it assumes that the scatterers
are points and neglects the interpenetrating character of the thermal fields. However,
we compare our theoretical result with the experimental data only at the lowest
concentrations, where the multiple scattering equation (6.3) is most accurate. Figure
6.1 compares experimental data, the theoretical calculations of ECAH, and the above
geometric theory of diffraction solution. Since the geometric theory solution is zero
order in K,K ′, one can infer the dominating effect of thermal scattering in acoustic
propagation in dispersions, indicating that a significant component of the acoustic
attenuation results purely from thermal effects. As can be seen from the figure, the
high frequency formulation gives excellent agreement with both experimental results
and ECAH for |La| � 1 and, furthermore, is easy to calculate, providing a very
practical solution. The calculations were performed using the parameter values given
in Table 1 and compared with experiments performed by Hemar et al. [19]. The data
relates to particle sizes in the range 230nm to 760nm for silicone oil-in-water over a
range of frequencies from 0.5MHz to 10MHz. For these parameter values the values
of Ka ranged from 10−4 up to 10−2, and the data satisfy |Ka| � 1. We present
comparisons for the case in which the volume concentration of oil is 5%, since for
higher concentrations it is known that multiple scattering of the thermal field makes
a significant contribution; see [4].

7. Conclusions. We have obtained an approximation to the ECAH solution for
acoustic scattering from a single particle for the acoustic long wavelength regime, when
the associated thermal field is in the short wavelength regime. This approximation is
well conditioned and well posed and can be computed to arbitrary accuracy. It may
be generalized to arbitrary particle shape using boundary-integral and finite-element
techniques. This solution for |La| � 1 complements our previous approximation for
|La| � 1 given in [4]. As noted in [11], since σω

/
v2 � 1, |La| � Ka, and so it is

the condition |La| > 1 that causes LFPST to fail at higher frequencies even though
the acoustic wavelength is still large compared to the particle radius. Together with
the LFPST approximation, we now have a set of simple and well-conditioned approx-
imations for the scattering throughout the entire range of low frequency scattering
experiments, which provides a further step towards complete understanding of ul-
trasound propagation through systems of weakly interacting particles in the acoustic
long wavelength limit. We have still to address the question raised in [11] concerning
the failure of current multiple scattering formulations to adequately deal with thermal
scattering.
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CONNECTING A DISCRETE IONIC SIMULATION TO A
CONTINUUM∗
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Abstract. An important problem in simulating ions in solution is the connection of the finite
simulation region to the surrounding continuum bath. In this paper we consider this connection for
a simulation of uncharged independent Brownian particles and discuss the relevance of the results
to a simulation of charged particles (ions). We consider a simulation region surrounded by a buffer
embedded in a continuum bath. We analyze the time course of the exchange process of particles
between the simulation region and the continuum, including re-entrances of particles that left the
simulation. We partition the particle population into (i) those that have not yet visited the simulation
and (ii) those that have. While the arrival process into the simulation of population (i) is Poissonian
with known rate, that of population (ii) is more complex. We identify the ordered set of re-entrance
times of population (ii) as a superposition of an infinite number of delayed terminating renewal
processes, where the renewal periods may be infinite with positive probability. The ordered entrance
times of populations (i) and (ii) form the pooled process of injection times of particles into the
simulation. We show that while the pooled process is stationary, it is not Poissonian but rather has
infinite memory. Yet, under some conditions on the sizes of the simulation and buffer regions, it
can be approximated by a Poisson process. This seems to be the first result on the time course of a
discrete simulation of a test volume embedded in a continuum.

Key words. stationary stochastic processes, diffusion, renewal theory, simulation of ions

AMS subject classifications. 60G10, 60G35, 60J60, 60K05

PII. S0036139901393688

1. Introduction. Computer simulations of ions in electrolytic solutions are a
widely used tool in physical chemistry and are becoming increasingly important in
molecular biophysics as well [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11], [12], [13], [14],
[15], [16]. Since it is impractical to simulate the entire continuum bath, a common
approach is to isolate a small finite region of the continuum and simulate only the
motion of ions located in this region. The requirements from such a “small” simulation
are that the averaged concentrations of the different ionic species in the simulation
volume be preserved, the electrostatic forces be correctly reproduced, and the effective
measured ionic diffusion coefficients be recovered

Of course, as simulated ions may reach the boundary of the simulation region
and nonsimulated bath ions may cross it, the simulation must be connected to the
surrounding continuum bath. This involves not only the correct computation of the
electrostatic field, including the contribution of nonsimulated bath ions, but also the
resolution of the two following issues: (i) the imposed boundary behavior on trajec-
tories of simulated ions as they reach the boundary of the simulation region and (ii)
the injection scheme (if any) of new ions into the simulation. In this paper we are
concerned with these two issues. Specifically, we study the processes of random exit,
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entrance, and re-entrance of particles between the simulation region and the contin-
uum bath. We analyze a simulation of uncharged particles and discuss the relevance of
our results to a simulation with charged particles in section 8. The computation of the
electrostatic field for a simulation of charged particles will be considered elsewhere.

The total number of simulated ions in a simulation scheme can be either fixed or
variable. In simulations with a fixed number of ions, there is no injection scheme of
new ions into the simulation, and the imposed boundary conditions on the trajectories
of simulated particles are either periodic or reflecting [15], [16]. Simulations with a
fixed number of ions, and in particular those with periodic boundary conditions, have
serious limitations which have been discussed at length in the literature [17], [18],
[19], [20], [21], [22], [23] (and references therein). In particular, density fluctuations
are absent in such simulations, and the computation of the electrostatic field is at
best problematic.

Density fluctuations are determinants of important properties of an ionic solution
[12], [13]. There have been various attempts in the literature to include density
fluctuations in simulations with a fixed number of ions. The most common method is
the introduction of a buffer region between the simulation region and the surrounding
continuum bath. The simplest approach, as described in [6], is to run a simulation with
a fixed total number of particles in the simulation and buffer region, with reflecting
boundary conditions at the outer buffer boundary. In this scheme density fluctuations
are of course present in the smaller simulation region, although it is unclear how
faithfully they reproduce the actual density fluctuations in the simulation region.
Other approaches, as reported in [2] and [8], replace the reflecting boundary conditions
at the boundary of the buffer region by “soft” boundary conditions. That is, ions are
allowed to leave the buffer region into the bath, but then they are subject to an
artificial attracting force, so that they eventually return into the buffer region. In
both references, the attracting force was designed to maintain the correct equilibrium
density in the simulation region. Once again, while the total number of particles is
kept fixed, there are fluctuations in the number of particles in the smaller simulation
region. The main problem with these approaches is that the confinement of ions to
the simulation by ad hoc artificial attracting forces (or even infinite forces, in the case
of reflecting boundaries) imposes unphysical conditions on the simulation and may
not necessarily lead to correct time dependent density fluctuations.

Simulations with a variable number of ions also use a buffer region between the
simulation and the continuum bath, but replace the reflecting or soft boundary con-
ditions at the boundary of the buffer region by stochastic boundary conditions [7],
[8], [9], [10]. These conditions introduce a random exchange mechanism of ions be-
tween the simulation and buffer regions with the aim of reproducing the equilibrium
density fluctuations. Obviously, different assumptions on the stochastic boundaries
lead to different density fluctuations in time and space inside the simulation region.
Unfortunately, the stochastic process of equilibrium density fluctuations is unknown
in the sense that the joint probability distribution of the number of particles in the
simulation volume at different times is unknown. The fluctuation theory proposed
by Smoluchowski [11] is valid only for sufficiently long time intervals between ob-
servations so that it cannot be applied to a simulation of particles in solution [29].
Yet, these fluctuations affect the physical properties of the solute [12], so proposing a
scheme that recovers the correct fluctuations is essential.

In all formulations of stochastic boundaries, the probability laws for the injection
times of new particles are assumed, rather than derived, from the laws of motion of
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ions in solution. The aim of this paper is to derive the probability laws of the entrance
and re-entrance processes of ions into a finite volume surrounded by a buffer zone as
they actually occur in the solution. To derive our results, we make standard general
assumptions of physical chemistry about the ionic motion of bath ions.

In our analysis, we consider a finite simulation region surrounded by a buffer
region embedded in a practically infinite ionic solution. We assume that all bath
ions can be described as independent uncharged Brownian particles with an effective
diffusion coefficient. This assumption is commonly used in physical chemistry, where
ionic solutions are described by an electrochemical potential [12]. This means that,
on a large enough time scale, the motions of charged interacting ions in the bath are
assumed independent noninteracting diffusion processes in a mean field, which reduce
to independent Brownian particles for a vanishing mean field.

We consider particle entrances at the boundary of the inner region and their
exits at the outer boundary of the buffer zone. In the corresponding simulation, the
motion of all particles that enter the inner region is simulated until they cross the
outer boundary of the buffer region for the first time. Their motion is simulated
once again the next time they enter the inner region, until their next exit at the
outer region, and so on. The buffer region in the simulation scheme serves as a
separator between the inner simulation region and the surrounding continuum bath,
thus avoiding instantaneous re-entrances of Brownian particles at the boundary of the
inner region,

To formulate mathematically the problem of introducing particles into the simu-
lation, we divide their entrances into two types: (i) arrivals of “new” particles, which
have not visited the simulation region so far, and (ii) arrivals of “returning” particles,
which have already visited and exited the simulation region. Obviously, the proba-
bility law of the recirculation times is different from that of the times between new
arrivals, so that particles that leave the simulation at the outer boundary of the buffer
zone cannot be returned to the bath on equal footing with particles that have not
been in the simulation so far.

In our previous paper [24], we studied the stationary arrival process (i) of new
particles. It was shown that in steady state, the interarrival times to an absorbing
boundary are exponentially distributed with rate equal to the Smoluchowski flux,
rendering the stationary arrival process Poissonian. Apart from its relevance to the
problem of connecting a simulation to the surrounding continuum, the study of the
arrival problem at an absorbing boundary has many physical applications and a long
mathematical history [25], [26].

In this paper, we study the recirculation process (ii) and its role in connecting
the simulation to the surrounding bath. We determine stationary probability laws
governing the entrance and re-entrance times of all processes (i) and (ii). At any given
time in the course of the simulation the particle to be injected next is the one whose
arrival time at the inner sphere is the shortest among all the particles not currently
in the simulation. The candidates for injection are both the new and recirculating
particles. In this paper we identify the injection process as a pooled process, that is,
a superposition of an infinite number of terminating renewal processes and determine
some of its statistical properties.

We show that the pooled process converges to a stationary steady state. However,
even though in the steady state the process is stationary, its interarrival times are not
exponential, not even independent, and have infinite memory. We calculate some of
the statistical properties of the pooled process, such as the exact pdf of the residual
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first arrival time of the pooled process in steady state, as well as the first and second
moments of the pooled process. Our main result is that under some conditions on the
size of the simulation and buffer regions, the infinite memory pooled process can be
approximated by a Poisson process. This approximation considerably simplifies the
simulation. To the best of our knowledge, this work seems to be the first result on
the time course of a discrete simulation embedded in a continuum.

The paper is organized as follows. In section 2, we formulate the simulation
scheme and identify the entrance process of particles as a pooled process. In section
3, we present a continuum model of the simulation, from which the average flux of
the pooled process is calculated. The first two moments of the pooled process are
calculated in section 4 by renewal-type considerations. In section 5, we define the
entrance times of the pooled process, and in section 6, we calculate the distribution
of the residual time till the first particle entrance and the distribution of the subse-
quent interarrival time. The main result, which asserts that short interarrival times
are exponentially distributed and the effective exponential rate is the same as that
calculated from the continuum and renewal models, is discussed in section 7. We
also present there results of a simulation of the pooled process and discuss its rate of
convergence to steady state. Section 8 contains a summary and discussion.

2. Setup of the problem. We consider the following simulation scheme: A
practically infinite ionic bath of average density ρ occupies the three dimensional
space. Inside this bath, there is a finite simulation region consisting of two concentric
spheres of radii a and r0 (a < r0), centered at the origin (see Figure 1(a)). In the
proposed simulation scheme, the motion of all particles that enter the inner sphere is
simulated until they cross the outer sphere for the first time. Their motion is simulated
once again the next time they enter the inner sphere, until their next exit at the outer
sphere, and so on (see Figure 1(b)). The region beyond the outer sphere, |r| > r0,
contains no simulated particles and is described by a continuum particle density. The
annular ring a < |r| < r0 is a buffer region that connects the inner region to the
surrounding continuum bath in |r| > r0. The buffer region is part continuum and
part discrete in the sense that the motions of only some of the particles in it are
simulated.

While we do not describe the exact electrostatic interactions between bath ions,
we follow the common practice in chemical physics [12] that describes the effective
motions of the nonsimulated bath ions as independent diffusions in a mean field.
Specifically, for a homogeneous bath with no applied potential, the mean field van-
ishes, so that exterior of the simulation region can be described as an infinite bath
of independent free Brownian particles, with average density ρ. As discussed in the
introduction, we assume that the simulation is self-consistent. This means that on a
large enough time scale the coarse grained motion of simulated ions inside the simu-
lation region can also be described as free diffusion with the same diffusion coefficient
as that assumed for the nonsimulated ions in the continuum bath. We further as-
sume that the simulation and buffer regions are large enough so that, for the purpose
of calculating the time course of the simulation, all particles, both simulated and
nonsimulated, can be described as effectively independent Brownian particles with
the above diffusion coefficient. We note that the self-consistency condition is not
trivial, and it determines important physical parameters, as discussed in [27].

We introduce the following notation. Particles that have not visited the inner
sphere so far are called blue particles, and those that have are called red particles.
The arrival process of blue particles into the simulation is process (i) and the re-
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simulation

region

buffer region

continuum bath

(a)

↑
blue particle

↓

red (simulated) particle

↑
non simulated
green particle

(b)

Fig. 1. (a) The simulation setup. (b) The simulated and nonsimulated parts of a typical particle
trajectory.

entrance of the red particles is process (ii).

As shown in [24], in steady state, blue Brownian particles arrive at an absorbing
sphere at an exponential rate. A blue particle that reaches the boundary of the inner
sphere turns red instantaneously and stays red forever. As long as it is inside the
simulation region, its dynamics change from independent Brownian motion, with its
effective diffusion coefficient in the ambient solution, to diffusive motion governed by
the Langevin equation with electrostatic interactions with the ions in the simulation
and with the far field of the ambient solution. The interactions with the nonsimulated
ions in the ambient solution outside the outer sphere are replaced by interactions with
a mean field, as mentioned above. The assumption of a self-consistent simulation
implies that for our purposes the probability distribution of the time a simulated ion
spends inside the simulation is identical to that of a free noninteracting Brownian
particle.

One way to run this simulation is as follows: Introduce blue particles at expo-
nential interarrival times. Follow the trajectory of each (now red) simulated particle
until its first exit at the boundary of the larger sphere. Now, sample a random re-
entrance time into the simulation, assuming it performs Brownian motion outside
the inner sphere, and store this re-entrance time in a table of all re-entrance times
of recirculating particles. In this scheme, the next particle to be injected into the
simulation is the one with the minimal return time between all particles registered
in the table and the next blue particle to be injected into the simulation. There are
two main difficulties with this simulation scheme. One is that the table of re-entrance
times grows indefinitely with time, because the mean recirculation time of returning
particles is infinite (see Proposition A.1 in Appendix A). The other difficulty is that
the convergence to steady state of this simulation is extremely slow, as analyzed in
section 7. This is due to the fact that as long as the table is finite, all the infinite
number of re-entrances of particles that were inside the simulation region before the
simulation actually started, and are thus not present in this table, are neglected.

This simple example shows that a mechanism to run the simulation in steady state
from its start needs to be developed. More specifically, the steady state distribution
of return times from this infinite table of recirculated particles has to be calculated.
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A key point in this calculation is the well-known feature [28] that for free Brownian
motion in three dimensions there is a positive probability that a red particle that just
exited the simulation will never return to the inner sphere, so that its recirculation
time is infinite. This observation gives rise to the following renewal-type model. The
arrivals of blue particles at the inner sphere form a Poisson process [24], [29], as
mentioned above. For each arriving particle, its subsequent re-entrance times into
the simulation form an independent renewal process. The interarrival times of this
process may be infinite with positive probability, thus rendering it a terminating
renewal process [30]. The renewal processes of different particles start of course at
different times, according to their first injection times. A renewal process that starts
at a random time with one distribution and is renewed with another is called a delayed
renewal process [30]. The superposition of all the delayed renewal processes is called
the pooled process. The steady state of the pooled process is the process of introducing
new particles into the simulation, which is the concern of this paper.

3. A continuum model of the simulation. In this section we compute the
average flux of particle entrances of the pooled process (both blue and red) into the
inner simulation region from a continuum model of the above described simulation.
To this end, we represent the Brownian particles in the simulation and in the bath
as continuum densities. Since we consider free Brownian particles, all densities are
spherically symmetric and depend only on the radial distance, r = |r|, from the center
of the simulation spheres. The densities of simulated particles are defined as averages
of many different realizations of particle locations of a running simulation.

We start from the radial density of the blue particles, denoted pB(r). It satisfies
the diffusion equation outside the inner sphere [31],

∆pB(r) =
d2pB(r)

dr2
+

2

r

dpB(r)

dr
= 0 for r > a,(3.1)

with absorbing boundary conditions at the boundary of the inner sphere, where blue
particles instantaneously turn red,

pB(a) = 0.(3.2)

In addition, far away from the simulation region the blue particle density equals the
bulk density ρ,

lim
r→∞ pB(r) = ρ.(3.3)

The solution of (3.1)–(3.3) is

pB(r) =




ρ
(
1− a

r

)
for r > a,

0 for r < a.

(3.4)

Using (3.4), the continuum flux of blue particles at the inner sphere is given by

Jblue = −4πa2D
d

dr
pB(r)

∣∣∣∣
r=a

= 4πρaD,(3.5)

where ρ is the bulk concentration at infinity, and D is the diffusion coefficient of bath
particles. Equation (3.5) for the average flux of Brownian particles at an absorbing
boundary was already calculated by Smoluchowski in 1917 [25].
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Next, we consider the red particle density. According to our assumptions, the total
particle density in the bath is uniform and at all locations equals the bulk density ρ.
Since the simulation region is an arbitrary region of the bath, the steady state density
of the red particles, denoted pR(r), complements that of the blue particles to the bulk
density ρ,

pR(r) = ρ− pB(r).(3.6)

We denote by Jtotal the total flux of particle entrances at the inner sphere. The
total flux is the sum of the blue particles flux given by (3.5), and the flux of returning
red particles, which have exited the simulation through the outer sphere. Since at
any given time, only some of the red particles are simulated while others are not,
the flux of returning red particles cannot be computed from (3.6). The contribution
of red particles to the total incoming flux at the inner sphere comes only from the
nonsimulated population of red particles. To compute their contribution to the influx,
we divide the red particle population into two: simulated red particles, denoted pink
particles, and nonsimulated red particles, denoted green particles. With this notation,
the total flux at the inner sphere is given by

Jtotal = Jblue + Jgreen.(3.7)

We denote the steady state densities of the pink and green particles by pP (r) and
pG(r), respectively. Of course,

pR(r) = pP (r) + pG(r).

We now calculate the densities of the green and pink particles. Each particle that
enters the simulation region at the inner sphere, either new or returning particle,
exits it at the outer sphere at some later time with probability one. Once such a
particle crosses the outer sphere it immediately becomes green, until its next arrival
at the inner sphere, when it becomes pink again. Thus, the green particle density
has a source at the outer sphere whose strength equals the yet undetermined total
absorption flux Jtotal of both blue and returning red particles. That is, the green
particle density satisfies the diffusion equation

∆pG(r) =
d2pG(r)

dr2
+

2

r

dpG(r)

dr
= Jtotal

δ(r − r0)

4πr2
0

, for r > a,(3.8)

with absorbing boundary conditions at the inner sphere,

pG(a) = 0,(3.9)

and with the condition that pG(r) → 0 as r → ∞. The solution for the green particle
density, in terms of the yet undetermined parameter Jtotal, is given by

pG (r) =




Jtotal
4πr0

[(
1− a

r

)
−H (r − r0)

(
1− r0

r

)]
, for r > a,

0, for r < a,

where H(x) denotes the Heaviside step function. The averaged densities of the blue,
pink, and green particle populations are shown in Figure 2.
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Fig. 2. The averaged densities of the blue, pink, and green particle population.

The average influx of green particles at the inner sphere, denoted Jgreen, is thus

Jgreen = 4πr2 d

dr
pG(r)

∣∣∣∣
r=a

=
a

r0
Jtotal.(3.10)

Note that the flux of green particles into the inner sphere is smaller than its source
strength Jtotal. This is because there is a positive probability for a green particle
that starts its motion at the boundary of the outer sphere to never reach the inner
sphere. The ratio between the two fluxes is simply the probability of a free Brownian
particle to ever reach the inner sphere from the outer sphere. As shown in section 6,
this return probability, denoted p, is given by

p =
a

r0
.(3.11)

The total mean flux of particles into the simulation, denoted Λ, can now be
obtained by combining (3.5), (3.7), and (3.10),

Λ = Jtotal = Jblue + Jgreen =
λB
1− p

.(3.12)

As expected, due to the recirculating red particles, the total flux at the inner sphere is
larger than the flux of only the blue particles. For example, in a simulation scheme that
inserts only blue particles, absorbs them at the outer sphere and “forgets” about their
possible re-entrances, the average particle flux into the simulation region is smaller
than it should be. This might have serious effects on the outcome of the simulation.

Finally, note that the flux parameter Λ does not represent a physical quantity,
but is rather only a simulation parameter, that depends on the choice of the radii
a and r0 of the simulation spheres. Therefore, all physical parameters that are an
outcome of the simulation must not depend on Λ.

4. The mean and variance of the pooled process. In the previous section
the total average influx of the steady state pooled process was computed with the
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aid of a corresponding continuum model. However, the continuum model is unable
to compute other statistical properties of the pooled process, such as the distribution
of the interarrival times, or even their variance. Obviously, a simulation scheme
should attempt to preserve at least some of these quantities. In this section, we
present a statistical renewal model of the pooled process that, in principle, enables
the computation of all moments of the pooled process.

For simplicity, we consider a simulation that starts at time t = 0 with no parti-
cles initially inside the simulation region. Since we are interested in quantities for a
simulation that has reached steady state, the results are independent of these initial
conditions. We denote by NP (t) the total number of particle entrances of the pooled
process by time t. This includes all entrances of blue particles and re-entrances of
returning red particles into the simulation region by time t. We compute the first two
moments of NP (t) and note that the method presented can be applied to compute
all higher order moments as well.

Theorem 4.1. The average steady state flux of the pooled process is Λ, and its
variance per unit time is Λ(1 + p)/(1− p).

Proof. Let NB(t) denote the number of arrivals of blue particles into the sim-

ulation during the time interval [0, t], and let {ti}NB(t)
i=1 denote these arrival times.

According to [24], the interarrival times of the blue particles are independent iden-
tically distributed (i.i.d.) random variables, exponentially distributed with rate λB
that is equal to the corresponding continuum flux Jblue calculated in (3.5). Therefore,
the total number of blue arrivals by time t, denoted NB(t), is a Poisson distributed
random variable with parameter λB t. For each blue particle we denote by ξ(t − ti)
the (random) number of its re-entrances into the simulation by time t since its first
entrance at time ti. In terms of these random variables, the total number of particle
entrances of the pooled process can be written as

NP (t) =

NB(t)∑
i=1

[
1 + ξ(t− ti)

]
.(4.1)

We denote by µ1(t) and µ2(t) the first two moments of ξ(t),

µ1(t) = E [ξ(t)] , µ2(t) = E [ξ(t)]2.(4.2)

Note that ξ(∞) is the total number of re-entrances of a red particle. Since each
particle has probability p < 1 of ever returning to the simulation (see (3.11)), the
random variable ξ(∞) follows a geometric distribution with parameter p, which gives

µ1(∞) =
p

1− p
, µ2(∞) =

p

1− p
+

2p2

(1− p)2
.(4.3)

To compute the average of the pooled process, E[NP (t)], we divide the sum in
(4.1) into the first term and the sum of the NB(t)− 1 remaining terms,

NP (t) = 1 + ξ(t− t1) +

NB(t)∑
i=2

(1 + ξ(t− ti)).(4.4)

According to our assumptions, the arrival process of blue particles is Poissonian and
thus memoryless. In addition, the recirculation processes of different particles are
independent and identical, if their starting times are all shifted to an identical initial
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time. These two properties imply that given the arrival time of the first blue particle,
t1 = s, the sum in (4.4) has the same statistical properties as that of the random
variable NP (t− s). In particular,

Pr



NB(t)∑
i=2

(1 + ξ(t− ti)) = n

∣∣∣∣∣∣ t1 = s


 = Pr



NB(t)∑
i=2

[1 + ξ
(
(t− s)− (ti − s)

)
] = n




= Pr
{
NP (t− s) = n

}
.(4.5)

Thus, taking expectations in (4.4) and using the exponential distribution of t1 gives

E
[
NP (t)

]
=

∫ t

0

E
[
NP (t)

∣∣ t1 = s
]
λBe

−λBs ds

=

∫ t

0


1 + µ1(t− s) + E

NB(t)∑
i=2

[1 + ξ((t− s)− (ti − s))]


λBe

−λBs ds,

which, according to (4.5), can equivalently be written as a renewal-type integral equa-
tion,

E
[
NP (t)

]
=

∫ t

0

λBe
−λBs

{
1 + µ1(t− s) + E

[
NP (t− s)

]}
ds,(4.6)

along with the initial condition NP (0) = 0. The solution of (4.6) is given by

E[NP (t)] =

∫ t

0

λB [1 + µ1(s)] ds.(4.7)

Therefore, by l′Hôpital′s rule and using (4.3),

lim
t→∞

E
[
NP (t)

]
t

= lim
t→∞λB

[
1 + µ1(t)

]
= λB

[
1 + µ1(∞)

]
= Λ.

As expected, we recover the same total average flux of the pooled process as that
computed from the continuum model, (3.12).

Next, we consider the second moment, E[NP (t)
2
]. Before computing the expec-

tation, we write [NP (t)]2 as

[NP (t)]2 =

NB(t)∑
i=1

[1 + 2ξ(t− ti) + ξ2(t− ti)] + 2

NB(t)∑
i=1

[1 + ξ(t− ti)]

NB(t)∑
j=i+1

[1 + ξ(t− tj)]

= H(t) + 2G(t),

where

H(t) =

NB(t)∑
i=1

[1 + 2ξ(t− ti) + ξ2(t− ti)],

G(t) =

NB(t)∑
i=1

[1 + ξ(t− ti)]

NB(t)∑
j=i+1

[1 + ξ(t− tj)].
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The expectations of H(t) and G(t) also satisfy integral equations,

E [H(t)] =

∫ t

0

λBe
−λBs

{
1 + 2µ1(t− s) + µ2(t− s) + E [H(t− s)]

}
ds,

E [G(t)] =

∫ t

0

λBe
−λBs

{(
1 + µ1(t− s)

)
E
[
NP (t− s)

]
+ E [G(t− s)]

}
ds.

The solutions of these equations are

E
[
H(t)

]
=

∫ t

0

λB

[
1 + 2µ1(s) + µ2(s)

]
ds,

E
[
G(t)

]
=

∫ t

0

λB

[
1 + µ1(s)

]
E

[
NP (s)

]
ds.

The long time behavior of the variance of NP (t) is found from the identity

lim
t→∞

Var[NP (t)]

t
= lim
t→∞

E
{
[NP (t)]2

}− {
ENP (t)

}2

t

= lim
t→∞

E[H(t)] + 2E[G(t)]− {
E[NP (t)]

}2

t
.

Inserting the expressions for all quantities, and applying l′Hôpital′s rule, gives

lim
t→∞

Var[NP (t)]

t
= Λ

[
1 + 2

(
p

1− p

)]
= Λ

1 + p

1− p
.(4.8)

Note that all moments of the pooled process are independent of the exact distri-
bution of the recirculation time. Rather, they depend only on the return probability
p.

Equation (4.8) clearly shows that the pooled process NP (t) is not Poissonian,
since the variance per unit time of a Poisson process equals its average rate Λ. The
variance of NP (t) is larger by a factor (1 + p)/(1 − p), a phenomenon due to the
possible re-entrances of exiting particles. In approximating the pooled process by a
Poisson process with the same rate, this factor is lost.

5. The entrance times of the pooled process. In the previous section we
calculated the first two moments of the pooled process. We now study the actual
distribution of the interarrival times of the pooled process, that is, the PDF of the time
between the consecutive introductions of particles into the simulation. As discussed
above, these entrance times are the ordered union of both entrance times of new blue
particles and re-entrance times of red recirculating particles.

Recall that the consecutive arrival times of blue particles were denoted tj . We
denote their interarrival times by τ j = tj − tj−1 with the convention that t0 = 0. As
shown in [24], the arrival process of blue particles is Poissonian with rate λB given by
(3.5). Therefore, τ j are i.i.d. exponential random variables with a common PDF

Pr{τ j ≤ t} = FB(t) = 1− exp(−λBt).(5.1)

Next, we consider the recirculation process of red particles. We introduce the
following notation for the successive exit and re-entrance times of a red particle. The
first entrance time to the inner sphere is denoted by tj1 ≡ tj . Its first exit time from
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the simulation at the outer sphere is denoted θj1, its next re-entrance time tj2, and so

on. Thus tj1 < θj1 < tj2 < θj2 < . . . .
The times tjn are the consecutive re-entrance times of the jth particle into the

simulation. We denote T j1 = tj1 and set T jn = tjn − tjn−1 for n > 1. The times T jn
for n > 1 are called the recirculation times of the jth particle. According to our
assumptions, these times are i.i.d. random variables with a positive probability to be
infinite. We denote their PDF by

FT (t) = Pr{T jn ≤ t}.
Their pdf is given by

fT (t) = fτin ∗ fτout
(t),

where τin is the time a simulated (pink) particle spends in the simulation and τout is
the time a nonsimulated (green) particle spends outside the simulation.

The assumption that the green particles have a positive probability 1−p of never
returning from the outer sphere to the inner sphere is expressed as

lim
t→∞FT (t) = p < 1,(5.2)

or, equivalently,

Pr
{
T jn = ∞}

= 1− p > 0 (n > 1),(5.3)

where p is given by (3.11).
Recall that ξ(t − tj) denoted the number of re-entrances of the jth red particle

into the simulation by time t. We denote by N j(t) its total number of entrances into
the simulation by time t, including the first entrance at time tj ,

N j(t) = 1 + ξ(t− tj).

Note that (5.3) implies that N j(t) is a terminating renewal process [30], that is, a
renewal process that terminates when an infinite recirculation time occurs.

We now consider the entrance times of the pooled process. By definition, the
total number of particle entrances into the simulation by time t, denoted NP (t), is
given by

NP (t) =

NB(t)∑
j=1

N j(t).(5.4)

The actual entrance times of the pooled process into the simulation, {SP� }N
P (t)

�=1 , are
the elements of the set

{SP� }N
P (t)

�=1 = {tjk | 1 ≤ j ≤ NB(t), 1 ≤ k ≤ N j(t)}
arranged in ascending order.

The times between successive arrivals of the pooled process at the inner sphere,
denoted TP� , are defined by

TP� = SP�+1 − SP� .

With this notation the mathematical problem of simulating the arrivals of ions at the
inner sphere is to determine the joint PDF of the times TP� (for all #). These times
are the interarrival times for introducing new particles into the simulation.
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6. The first arrival time of the pooled process. In this section, we calculate
the exact PDF of the first arrival time of the pooled process in the steady state. First,
we compute the distribution of the residual time since start of observation of the
simulation till the introduction of the first new particle into the inner sphere. Then,
we compute the PDF of the time between consecutive arrivals of the pooled process.

We introduce the following notation. We denote by ϕ(t) the renewal function of
the recirculation process of a single particle. It is given by

ϕ(t) =
∞∑
k=0

f ∗k
T (t),(6.1)

where f ∗k
T (t) is the k-convolution of the pdf fT (t) of a single recirculation time, and

f∗0
T (t) = δ(t). For future uses, we note that the Laplace transform of ϕ is

ϕ̂(s) =

∞∑
k=0

f̂∗k
T (s) =

∞∑
k=0

[
f̂T (s)

]k
=

1

1− f̂T (s)
,(6.2)

and at s = 0 we obtain from (5.2)

ϕ̂(0) =

∫ ∞

0

ϕ(t) dt =
1

1− p
.(6.3)

Consider a simulation that has been running for an infinite time and is already
in steady state. We start to observe the simulation at time t = 0, and denote by γP

the first arrival time of a particle into the simulation after t = 0. The first particle
to arrive into the simulation may be either a blue particle that has not yet been in
the simulation, or a red particle that has visited the simulation in the past and may
re-enter the simulation region at the inner sphere after start of observation. Before
we compute the exact PDF of γP , it is useful to compute the probability that a red
particle that initially entered the simulation region at time −s in the past will re-enter
the simulation region at time x after start of observation.

Lemma 6.1. Let γRs denote the first re-entrance time after t = 0 of a red particle
that initially entered the simulation at time −s. Then

Pr
{
γRs = x

}
=

∫ s

0

ϕ(s− u)fT (x+ u) du.(6.4)

Proof. Consider a blue particle that entered the simulation at time t1 = −s. In
the time interval [−s, 0] this particle may have re-entered the simulation an arbitrary
number of times. For a particle that recursed k−1 times before time t = 0, we denote
by tk its last re-entrance time before t = 0 and by tk+1 its next re-entrance time after
t = 0. The event

{
γRs = x

}
can thus be decomposed into the disjoint union

{γRs = x} =

∞⋃
k=1

{tk < 0 ∩ tk+1 = x | t1 = −s}

so that

Pr
{
γRs = x

}
=

∞∑
k=1

Pr{tk < 0 ∩ tk+1 = x | t1 = −s}.(6.5)
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The first summand is the probability that the first re-entrance time of the particle
occurred at time x. Therefore,

Pr{t1 < 0 ∩ t2 = x | t1 = −s} = fT (s+ x).(6.6)

The next summand (k = 2) is the probability of exactly one recirculation before time
t = 0 and next re-entrance at time x. To compute this probability, we integrate over
all possible times −u for the recirculation time t2,

Pr{t2 < 0 ∩ t3 = x | t1 = −s} =

∫ s

0

Pr{t2 = −u ∩ t3 = x | t1 = −s} du

=

∫ s

0

fT (s− u)fT (u+ x) du.(6.7)

We now consider the kth term in the sum (6.5). It represents the probability of exactly
k − 1 recirculations before time t = 0 and next re-entrance at time x. Let −u denote
the last recirculation time prior to time t = 0. By assumption, all recirculation times
of a particle are i.i.d. random variables with pdf fT (t). Therefore,

Pr{tk = −u | t1 = −s} = f
∗(k−1)
T (s− u),

where f∗k
T denotes the kth convolution of the pdf fT (t). Thus,

Pr{tk < 0 ∩ tk+1 = x | t1 = −s} =

∫ s

0

f
∗(k−1)
T (s− u)fT (u+ x) du.(6.8)

Combining (6.5) with (6.6) and (6.8) and using the definition f∗0
T (t) = δ(t), we obtain

that

Pr{γRs = x} =

∫ s

0

∞∑
k=0

f∗k
T (s− u)fT (u+ x) du

=

∫ s

0

ϕ(s− u)fT (u+ x) du,

which concludes the proof of the lemma.
We are now ready to prove the following theorem concerning the PDF of the first

arrival time of the pooled process.
Theorem 6.2. The stationary PDF of the first arrival time of a steady state

pooled process is given by

Pr
{
γP > x

}
= exp {−Λx} exp

{
Λ

∫ x

0

FT (t) dt

}
.(6.9)

Proof. Consider a simulation that has been running for an infinite time which we
start to observe at time t = 0. The event {x < γP < x+∆x} means that no particles
arrived into the simulation in the time interval [0, x] and exactly one particle arrived
in the short time interval [x, x +∆x]. This means, of course, that all the remaining
particles arrived after time x. The identity of the arriving particle can be either blue
or red. Therefore,

Pr{γP = x} = Pr
{
γP > x

}
× [Pr{blue arrival at x}+ Pr{red re-entrance at x}].(6.10)
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Since the arrivals of blue particles is a memoryless Poisson process with rate λB , the
probability of the first blue particle to arrive during the time interval [x, x + ∆x] is
approximately λB∆x. To compute the re-entrance probability of a red particle at
time x, we write

Pr{red re-entrance at time x}

=

∫ ∞

0

Pr{red re-entrance at time x | the first entrance time of a red particle=−s}

× Pr{a red particle first entered the simulation at time −s} ds.
We consider each term factor in the integral separately. First, we recall that the
conditional re-entrance time of this red particle was denoted γRs and its pdf was
calculated in the previous lemma. Therefore we write

Pr{red re-entrance at time x | the first entrance time of a red particle=−s}

= Pr{γRs = x | t1 = −s}.
Second, by definition,

Pr{a red particle first entered the simulation at time −s} ds

= Pr{a blue particle entered the simulation at time −s} ds = λB ds.

Thus, (6.10) can be rewritten as

Pr
{
γP = x

}
= Pr

{
γP > x

}× λB

[
1 +

∫ ∞

0

Pr{γRs = x | t1 = −s} ds
]
.(6.11)

Inserting (6.4) into (6.11), changing the order of integration in the resulting double
integral, and using (6.3) and (5.2) gives

Pr{γP = x} = λB Pr{γP > x}
[
1 +

∫ ∞

0

fT (x+ u)du

∫ ∞

u

ϕ(s− u) ds

]

= λB Pr{γP > x}
[
1 +

FT (∞)− FT (x)

1− p

]

= λB Pr{γP > x} 1− FT (x)

1− p
.(6.12)

Finally, integrating (6.12) with respect to x, we obtain (6.9).
Comment. The fact that the limiting PDF (6.9) is not exponential is yet another

manifestation of the non-Poissonian character of the pooled process. The fact that the
pooled process is not Poissonian sets this result apart from the known cases of finite
mean recurrence times, as analyzed in [33], where the resulting process is Poissonian.

We now show, as mentioned in the introduction, that the pooled process is not
a renewal process and has an infinite memory. Therefore its interarrival times are
dependent, not identically distributed random variables. Thus, for example, the PDF
of the time between the first and the second arrivals after observation begins is not
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the same as that of the time between the second and the third arrivals, and so on. The
PDF of the interarrival time between the kth and k + 1th arrivals after observation
begins can be calculated as the marginal distribution of the joint distribution of the
k + 1 consecutive interarrival times.

First, we compute the PDF of the time between the first and the second ar-
rivals of the pooled process. Applying considerations similar to the ones in the above
computation of the residual first entrance time, it can be shown that

Pr{γP = x ∩ TP1 > t} = ΛF cT (x)F
c
T (t) Pr{γP > t+ x}.

Thus, integrating with respect to x, we obtain

Pr{TP1 > t} =

∫ ∞

0

ΛF cT (x)F
c
T (t) Pr{γP > t+ x} dx.(6.13)

Also, the conditional probability is given by

Pr{TP1 > t | γP = x} =
ΛF cT (x)F

c
T (t) Pr{γP > t+ x}

ΛF cT (x) Pr{γP > x} .(6.14)

A comparison of (6.13) and (6.14) shows that the conditional PDF of TP1 , given the
value of the residual first entrance time γP , is different than the unconditional PDF
of TP1 . Therefore, the pooled process is not Poissonian, not even a renewal process,
but rather has memory. Using similar methods, it is possible to show that the PDF of
the kth interarrival time of the pooled process depends on all previous arrival times,
which means that the pooled process has infinite memory.

7. Simulation of the pooled process. In this section we present a preliminary
statistical analysis of the pooled process and some computer simulation results. First,
we estimate the time for convergence of a simulation of the pooled process to steady
state. Then, we show both mathematically and numerically that the interarrival times
of the pooled process are approximately exponentially distributed. We stress that we
study only the pdf of a single interarrival time and not the joint pdf of two or more
consecutive interarrival times, nor do we study the time correlations of the pooled
process. These issues will be studied in a separate publication.

Consider a computer simulation of the pooled process. As analyzed in section
2, the pooled process is the superposition of many delayed terminating renewal pro-
cesses. The delayed process is the arrival process of blue particles which is Poissonian
with rate λB . Thus, the arrival times of the blue particles are easily constructed
by sampling their interarrival times from an exponential distribution with rate λB .
For each blue particle we construct its re-entrance times into the simulation by sam-
pling from the defective distribution FT . Note that for each blue particle, the total
number of its re-entrances follows a geometric distribution with parameter p. Thus,
for each blue particle, this sampling procedure results in a finite sequence of random
re-entrance times. The arrival times of the blue particles are formed by sorting all
these entrance and re-entrance times of all particles in increasing order.

7.1. Convergence to steady state. We can estimate the rate of convergence
of the pooled process to steady state, starting with no simulated particles inside the
inner sphere. Specifically, we determine the minimal time tS at which

E[NP (tS)]

tS
= Λ(1− ε).(7.1)
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This is a criterion for wide sense convergence to steady state [32]. An explicit expres-
sion for E[NP (t)] was calculated in (4.7) in terms of µ1(s), the average number of
re-entrances by time s. Since µ1(s) is a monotone increasing function, it can be easily
seen that E[NP (t)]/t is also a monotone increasing function. To find a lower bound
for tS , we use the fact that µ1(s) satisfies the integral equation [30]

µ1(s) =

∫ s

0

fT (u)[1 + µ1(s− u)]du.(7.2)

According to (4.3), for all times s,

µ1(s) < µ1(∞) =
p

1− p
.

Inserting this inequality into (7.2), we obtain a more refined inequality for µ1(s),

µ1(s) <
1

1− p
FT (s) <

1

1− p
Pr

{
τout < t

}
.(7.3)

Combining (A.4) and the inequality

2√
π

∫ ∞

x

e−u
2

du ≤ 1− 2√
π
x for x <

1√
2
,

we obtain that

Pr{τout < t} ≤




p

(
1− 2√

π

√
Tb
t

)
, t > 2Tb,

p, t < 2Tb,

(7.4)

where Tb is defined in (A.5). Inserting (7.4) and (7.3) into (4.7) gives

E[NP (t)]

t
≤ Λ

(
1− p

4√
π

√
Tb
t

+ p
4
√
2√
π

Tb
t

)
.(7.5)

We are now ready to apply the wide sense criteria (7.1). For ε 
 1, tS � Tb, so we
can neglect the last term. This gives

tS ≥ 16p2

π

Tb
ε2

.(7.6)

To evaluate whether this time is long or short, consider just the average number of
blue particle entrances during this time (neglecting their re-entrances). This number
is given by the product λBtS . Using (3.5) and (7.6) for λB and tS , respectively, gives

E[NB(tS)] ≥ 12(1− p)2

π

Na

ε2
,(7.7)

where Na = 4/3πa3ρ � 1 denotes the average number of simulated particles in
the inner sphere. Therefore, to obtain wide sense convergence up to one percent for a
simulation with an average of Na = 400 particles in the inner sphere, the total number
of blue particle entrances during this time is of the order of at leastNa/ε

2 = 4, 000, 000
particles. Note that in a realistic simulation, the time steps of ionic motion are much
smaller than the times between consecutive entrances of particles into the simulation.
Therefore, (7.7) implies that a simulation that has not started in steady state must
be run a prohibitively large number of time steps until convergence to steady state is
achieved. Therefore, as discussed in section 2, an algorithm to run the simulation in
steady state from the beginning is needed.
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7.2. Short interarrival times are approximately exponential. Inserting
(6.9) into (6.13) gives the following expression for the distribution of TP1 :

Pr{TP1 > t} = F cT (t)

∫ ∞

0

ΛF cT (x)e
−Λ(x+t)e

Λ
∫ t+x

0
FT (s)ds

dx.(7.8)

We now analyze the short time and long time behavior of this distribution. First we
consider short times, t 
 Tb. In this case we make a change of variables x = Tbu and
s = Tbw in the integrals in (7.8). This gives

Pr{TP1 > t} = F cT (t)e
−Λt

∫ ∞

0

ΛTbF
c
T (Tbu)e

−ΛTb(u−
∫ t/Tb+u

0
FT (Tbw)dw)

du.(7.9)

According to our assumptions,

ΛTb =
3

4

1− p

p2
Na � 1.

Therefore, applying Laplace’s method for the approximation of the integral in (7.9)
gives

Pr{TP1 > t} ≈ F cT (t)e
−Λte

Λ
∫ t

0
FT (s) ds

.

For short times, t 
 Tb, FT (t) 
 1, so that we have the approximation

Pr{TP1 > t} = e−Λt(1 + o(1)) for t 
 Tb.

Next, we consider the long time behavior of Pr{TP1 > t}. For times t � Tb, we
have FT (s) ≈ p, and therefore∫ x+t

0

FT (s) ds =

∫ x

0

FT (s) ds+

∫ x+t

x

FT (s) ds

≈
∫ x

0

FT (s) ds+ tp.(7.10)

Inserting (7.10) into (7.8) gives

Pr{TP1 > t} ≈ (1− p) exp(−λBt) for t � Tb.

To conclude, the interarrival time TP1 is approximately exponential with rate Λ for
short times, but due to possible particle recirculations its distribution has a different
exponential tail with rate λB < Λ. Note, however, that since interarrival times are
of the order of 1/Λ, and 1/Λ 
 Tb, all interarrival times of the pooled process are
approximately exponentially distributed with rate Λ.

7.3. Simulation results. A simulation of the pooled process for uncharged
particles has been run, according to the principles presented at the beginning of
this section, with the typical values a = 50Å, r0 = 80Å, D = 10−9m2/sec, and
ρ = 0.1M. These parameters give a value p = 0.625, for the return probability, and a
value Na = 31, for the average number of simulated particles inside the inner sphere.
The average interarrival time of the pooled process is 1/Λ = 10−10sec, compared to
Tb = 22.5× 10−10sec, so that indeed 1/Λ 
 Tb.
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Fig. 3. The pdfs of TP1 (left) and TP2 (right), as computed from the simulation, superimposed
on the exponential density with rate Λ.

In Figure 3 the graphs of the pdfs of TP1 and TP2 are superimposed on the exponen-
tial pdf with rate Λ. The pdfs of TP1 and TP2 are the result of about 250,000 samples
of interarrival times of the pooled process. It is apparent that for times shorter than
Tb both TP1 and TP2 are exponentially distributed with rate Λ. In all of the samples,
not even once did an interarrival time longer than Tb occur in the simulation. There-
fore, the theoretically predicted exponential tail with rate λB cannot be observed in
these graphs. Finally, we note that TP1 and TP2 are dependent, with a correlation
coefficient r = cov(TP1 , TP2 )/σ1σ2 ≈ −0.001. The fact that the correlation coefficient
is negative is not surprising. It reflects the higher probability of recirculation in TP2
when TP1 is large. This means that when TP1 is long there is a higher probability that
TP2 is short. The small correlation coefficient between TP1 and TP2 is a consequence of
the short interarrival times of the pooled process, 1/Λ, relative to the characteristic
time for recirculation, Tb. A detailed analytical and numerical study of the statistical
properties of the pooled process will be done elsewhere.

8. Summary and discussion. The time course of the exchange of ions between
a test volume embedded in a continuum with a buffer region has been studied. The
study of this time course is the basis for a simulation of uncharged and charged
particles in a solution. The process of injecting new particles into the simulation
has been identified as a stationary pooled process composed of an infinite number
of delayed terminating independent renewal processes. While the pooled process
converges to a stationary steady state, it is neither a renewal nor a Markov process.
We have calculated the first two moments of this process, as well as the probability
distribution of its residual time, and the joint distribution of the residual and the
next arrival. From these calculations, it is apparent that the pooled process has an
infinite memory. Therefore, to run the exact time course of this process in steady
state, an infinite record of all past entrances and exits needs to be kept. To avoid this
complexity, we have found that under some conditions on the size of the simulation
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and buffer regions the pooled process can be approximated by a memoryless Poisson
process. This approximation retains the average influx of the pooled process, but
underestimates its variance. Our analysis shows how the parameters a and r0 control
the size of the simulation and the accuracy of our proposed approximation.

A closely related mathematical problem is considered in [30, chap. 5, sect. 9],
where the renewal periods are assumed to have finite moments, in contrast with the
case at hand in which the renewal periods may be infinite with positive probability.
In [30], the case of infinitely many uniform sparse renewal processes is considered,
and it is shown that under certain conditions on the sparseness, the pooled process
becomes Poissonian as the number of processes increases to infinity. As we have seen,
in our case the resulting process in not Poissonian.

The application of our results to an actual simulation is different for charged or
uncharged particles. The approximations that we derived are not necessary for a sim-
ulation of uncharged Brownian particles, though they are necessary for a simulation of
charged particles, as discussed below. For uncharged particles the stationary pooled
process can be constructed offline to provide the random injection times of particles
into the simulation. Such a pooled process has to be constructed for each choice of
the parameters λB and p, that is, for each set of values for the parameters D, ρ, a,
and r0. With the correct choice of injection times, such a simulation reaches steady
state immediately. If a wrong injection time course is adopted, there is a depletion or
overcrowding of particles in the simulation region, which renders the simulation not
self-consistent.

The simulation of charged particles is completely different from that of uncharged
particles. In the uncharged case the mean field is always zero and thus the densities
of all species in the bath remain constant throughout the time course of the simu-
lation. In contrast, charged particles cause fluctuations in the net charge inside the
simulation volume. The nonzero net charge creates a nonvanishing time dependent
electrostatic field outside the simulation region that affects the continuum densities in
the bath near the simulation region. Thus, if the net charge in the simulation region is
positive, the bath density of positive charges decreases and the density of the negative
charges increases in the neighborhood around the simulation region. These changes,
in turn, affect the effective entrance rates of the different species into the simulation.
Therefore, for charged particles, each configuration of net charge in the simulation
region requires the construction of a new table of the pooled process suitable for it.
Specifically, each entrance or exit changes the net charge inside the simulation region,
which, in turn, changes the entrance rates into the simulation region.

Under the assumption of a fast bath,1 the entrance law of a new ion into the
simulation is that of the residual of the pooled process (6.9) that corresponds to the
instantaneous concentrations due to the momentary net charge inside the simulation.
These conditions change every time an ion enters or exits the simulation. Our analyti-
cal expression for the PDF of the residual time eliminates the need to run a simulation
of the pooled process (as described in section 7) every time conditions change. In this
way, a small portion of the bulk solution can be studied without the need to resort to
ad hoc assumptions, such as artificial periodic boundary conditions.

In our model and analysis of a simulation of interacting ions (e.g., charged ions
or ions with finite volume), we have used implicitly the concept of a self-consistent
simulation. This notion is concerned with the detailed laws of ionic motion in the

1This means that the time to equilibrate the densities in the bath is shorter than the time between
changes in the net charge inside the simulation region.
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simulation region and the effective motion of ions in the surrounding continuum. The
effective diffusive motion of ions is the result of their thermal interaction with the
surrounding solvent and their interactions with each other. Thus, the motion inside
the simulation volume is governed by both an unknown diffusion coefficient of ions in
infinitely dilute solution and the interionic forces (computed by the simulation). On
a sufficiently coarse time scale, the resulting motion of a simulated ion can be viewed
as an effective diffusion with an effective diffusion coefficient that can be calculated
from statistics of simulated trajectories. This calculated effective diffusion coefficient
must be equal to the assumed (experimentally measured) diffusion coefficient in the
bulk solution. This is a self-consistency requirement from the simulation. In addition,
the average concentrations of the ionic species inside the simulation volume must be
the same as those assumed in the bulk solution, as mentioned above. This is another
self-consistency requirement. Still another self-consistency requirement is concerned
with the notion of chemical activity. The concentrations of ions in the presence of
an electrostatic field is different than that in the absence of a field, as can be readily
seen from the Poisson–Boltzmann theory [12]. To compensate for the replacement
of charged particles with independent uncharged particles the notion of activity has
been introduced in physical chemistry [12]. More precisely, the change in the chemical
potential as a function of particle density is assumed to take a simple form derived from
the theory of gases, which replaces the physical density with a larger effective density.
The ratio of the two densities is the activity factor. It is a directly measurable physical
parameter. In a self-consistent simulation of charged particles, the unknown activity
and diffusion coefficients in an infinitely dilute solution have to be chosen in such a way
that all the above-mentioned self-consistency conditions are met. Finally, in addition
to these self-consistency conditions, the electrostatic field has to be calculated in a
self-consistent way at each time step of the simulation. A detailed description of a
self-consistent simulation of charged particles will be presented in a separate paper.
If the correct time course of the simulation is not followed it may be difficult to meet
some of these self-consistency requirements.

Simulations of ions in solution have a wide range of applications. An important
one is the theoretical study of permeation of uncharged molecules and ions through
protein channels of biological membranes [34], [35]. Protein channels are small natural
nano-devices of length in the range of 20–100Å, and 5–20Å diameter. A computer
simulation of a channel involves the simulation of the mobile ions both inside the
channel and around it, in a volume comparable to the channel size. In the spirit of the
theory discussed in this paper, such a simulation must be connected to its surrounding
continuum. This leads to a small simulation with large time dependent density and
potential fluctuations. The results of this paper are directly applicable to a simulation
of permeation of uncharged molecules through protein channels, such as maltoporins
that conduct sugar. Although the motion of the sugar molecules inside the maltoporin
channel cannot be assumed a diffusion process and has to be simulated by molecular
dynamics, the connection of the simulation to the continuum is described by the
present work. For channels that conduct ions or other charged molecules, there are
additional new elements in their simulation, namely, the presence of an impermeable
membrane and a permanent charge profile of the channel itself, inside the simulation
volume. The injection process of new particles into the simulation region on both
sides of the membrane is similar to that described above. There are many differences,
though, between a simulation with and without a channel, that are a subject for a
separate study.
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Appendix A. The time distribution outside the simulation. We now
compute the distribution of τout, the time a nonsimulated (green) particle spends
outside the simulation until its next re-entrance into the simulation. To this end,
we denote by p(r, t | r0) the (radial) conditional probability density of the particle’s
location at time t, given that it has exited the simulation at the outer sphere at
time t = 0 and has not yet returned to the inner sphere. Obviously, in terms of this
distribution,

Pr{τout > t} =

∫ ∞

a

4πr2pout(r, t | r0)dr.(A.1)

According to our assumptions, nonsimulated green particles perform independent free
Brownian motion with diffusion coefficient D. Thus, the pdf pout(r, t | r0) is the solu-
tion of the Fokker–Planck equation [31]

∂

∂t
pout(r, t | r0) = D∆p(r, t | r0), a < r < ∞,

pout(a, t | r0) = 0, t > 0,(A.2)

pout(r, 0 | r0) = δ(r − r0)

4πr2
0

, a < r < ∞.

The solution of (A.2) is given by

pout (r, t | r0) = 1

(4πDt)1/2
1

4πr0

1

r

{
e−(r−r0)2/4D t − e−(r+r0−2a)2/4D t

}
.(A.3)

Inserting (A.3) into (A.1) gives

Pr {τout ≤ t | r0 } = p
2√
π

∫ ∞
√
Tb/t

e−u
2

du,(A.4)

where

Tb =
(r0 − a)2

4D
(A.5)

is a characteristic time for the motion of a particle from the outer sphere to reach the
inner sphere.

Equation (A.4) shows that τout can be infinite with probability 1 − p > 0, that
is, it has a defective probability distribution. It follows that it has an infinite mean
value. The pdf of its defective distribution, given by

fτout(t) =
d

dt
Pr {τout ≤ t | r0 } = p

1√
π

√
Tb

t3/2
exp

{
−Tb

t

}
,

gives ∫ ∞

0

tfτout(t) dt = ∞.(A.6)

Moreover, we have the following proposition.
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Proposition A.1. The first moment of τout, conditioned on {τout < ∞}, is
infinite.

Proof. Since

Pr {τout < t | τout < ∞} =
Pr {τout < t, τout < ∞}

Pr {τout < ∞} =
Pr {τout < t}

p
,

we obtain, in view of (A.6), that

∫ ∞

0

tdPr {τout < t | τout < ∞} =
1√
π

∫ ∞

0

√
Tb

t1/2
exp

{
−Tb

t

}
dt = ∞.
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Abstract. In this paper we develop a linear eigenvalue decomposition for N -soliton solutions of
the Korteweg–de Vries equation and use it to obtain a new mathematical explanation of two-soliton
interaction in terms of particle decay. We discover that the two-soliton “particles” or pulses which
appear in each solution exchange identities upon collision and emit a dual “ghost” particle pair in
order to conserve mass and momentum.
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1. Introduction. It is well known that the Korteweg–de Vries (KdV) equation,

ut − 6uux + uxxx = 0,

is a model for many wave related phenomena and admits a special family of localized
solutions called N -solitons corresponding to reflectionless potentials (cf. [M]). Here,
N denotes the number of solitons, i.e., the number of pulses or potential wells, that
appear in each solution. One-solitons or solitary waves were first observed by J. Scott
Russell along the Union Canal at Edinburgh in 1834 (cf. [M]). Then in 1895, Ko-
rteweg and de Vries [KV] published their (KdV) equation as a model for these waves.
However, it would require another seventy years before two-soliton interaction was
observed by Zabusky and Kruskal [ZK] through numerical calculation; they reported
that “solitons ‘pass through’ one another without losing their identity.” The exact
interaction of two solitons was then determined numerically by Zabusky [Z] and soon
thereafter Lax [La] gave a mathematical proof.

The idea that perhaps solitons actually bounce off each other upon collision dates
back to Bowtell and Stuart [BS]. The exchange of mass that occurs then between the
two colliding soliton particles allows them to exchange identities. More recent work
advocating this viewpoint can be found in [Le] and [MC]. Now, to mathematically
investigate such behavior, it is desirable to isolate each particle in any given N -soliton
solution. This can be achieved, say, by decomposing the solution into a linear sum,
even though the KdV equation itself is nonlinear, so that the superposition principle
fails to hold. To this end, various such decompositions can be found in the literature
(cf. [GGKM], [HM], [S], [MC]). We shall discuss some of these decompositions in
relation to ours at the end of this paper.

In this paper, we develop a linear eigenvalue decomposition of N -soliton solu-
tions for the Korteweg–de Vries equation and use it to obtain a new mathematical
explanation of two-soliton interaction in terms of particle decay. This decomposition
is obtained through a diagonalization procedure that is applied to the corresponding
soliton matrix and has the effect of isolating the decay of each soliton “particle.” For
two-solitons, the interaction described by Theorem 3.3 suggests a decay phenomenon
that occurs frequently in elementary particle physics: the two-soliton particles split
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2002; published electronically January 23, 2003.
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upon collision, resulting in an exchange of identities and the emission of a dual “ghost”
particle pair (cf. Figure 1). Theorem 3.4 then shows that each decay process con-
serves mass and momentum and supports our particle decay interpretation of soliton
interaction. Interesting properties of our dual ghost particles are then described in
Theorem 3.6. In fact, we like to view each ghost particle as a nonlinear “difference”
between two given soliton particles. Lastly, an explicit example is given in section 4
to illustrate our results (cf. Figures 2–4).

2. Soliton particles. Let N be a positive integer and assume that the initial
scattering data for u(x, 0), obtained through the time-independent Schrodinger equa-
tion

ψxx − [λ− u(x, 0)]ψ = 0,(1)

has only a discrete energy spectrum. This means that λ takes on a discrete set
of N negative energy eigenvalues {λ1 < λ2 < · · · < λN < 0} with corresponding
eigenfunctions {ψ1, ψ2, . . . , ψN}. It is standard that we normalize these eigenfunctions
and compute their normalized factors cn, commonly referred to as “phase shifts”:∫ ∞

−∞
ψ2
ndx = 1, cn = lim

x→−∞ e
knxψn.(2)

The initial scattering data is then used to produce the N -soliton solution of the KdV
equation through the determinant formula

u(x, t) = −2 ∂
2

∂x2
log det(I +A).(3)

Here, the N ×N soliton matrix A has entries defined by

A = (amn), amn =
cmcn
km + kn

e(km+kn)x−4(k3
m+k3

n)t,(4)

where the spectral parameter kn > 0 is defined via the relation λn = −k2
n. This

solution was obtained independently in the early 1970s by Gardner et al. [GGKM]
and Wadati and Toda [WT], both groups by means of the inverse scattering method,
and by Hirota [H] through his direct method.

We now turn to developing our working definition of a soliton particle. It is well
known that A is symmetric and positive definite (cf. [KM], [GGKM], [WT]). This
allows us to diagonalize it so that

B−1AB = D =



µ1(x, t) 0 . . . 0

0 . . .
. . .
0 µN (x, t)


 .(5)

Here, {µ1 > · · · > µN} is the (ordered) set of real positive eigenvalues of A and B
is the orthogonal matrix consisting of an orthonormal basis of eigenvectors of A. It
follows that we can write u(x, t) in terms of {µn}, which we shall refer to as decay
eigenvalues:

u(x, t) = −2 ∂
2

∂x2
log det(I +A)(6)
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= −2 ∂
2

∂x2
log det[B−1(I +A)B](7)

= −2 ∂
2

∂x2
log det(I +D)(8)

= −2 ∂
2

∂x2
log

N∏
n=1

[1 + µn(x, t)](9)

=

N∑
n=1

−2 ∂
2

∂x2
log[1 + µn(x, t)].(10)

Definition 2.1. Define

sn(νn) ≡ −2k2
nsech

2(knνn), n = 1, . . . , N,(11)

to be the nth soliton particle of u, where νn = x−4k2
nt is the nth moving frame. Then

we shall refer to

un(x, t) ≡ −2 ∂
2

∂x2
log[1 + µn(x, t)](12)

as the decay function of sn and to the sum u =
∑N
n=1 un as derived in (10) as the

decay decomposition of u. The results of the next section will justify our use of
terminology.

3. Decay of two-solitons. In this section we assume N = 2 and investigate the
asymptotic behavior of the decay functions u1 and u2 as a means of understanding
soliton interaction. We begin by writing the matrix A explicitly in terms of the two
moving frames ν1 and ν2:

A =


 c21

2k1
e2k1ν1 c1c2

k1+k2
ek1ν1+k2ν2

c1c2
k1+k2

ek1ν1+k2ν2
c22
2k2
e2k2ν2


 .(13)

Denoting by p = Tr(A) and q = det(A), it follows that the two eigenvalues of A are
given by

µ1 =
1

2

(
p+

√
p2 − 4q

)
,(14)

µ2 =
1

2

(
p−

√
p2 − 4q

)
.(15)

Definition 3.1. We define

Ag =


 c21

2k1
e2k1νg c1c2

k1+k2
e(k1+k2)νg

c1c2
k1+k2

e(k1+k2)νg
c22
2k2
e2k2νg


(16)

to be the ghost matrix of A where νg = x − 4k2
gt and kg = (k2

1 + k1k2 + k
2
2)

1/2.
In addition, if γ1 and γ2 denote the eigenvalues of Ag corresponding to µ1 and µ2,
respectively, then we shall refer to

g(νg) ≡ −2 ∂
2

∂ν2
g

log[γ1(νg)](17)
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as the ghost particle and

ḡ(νg) ≡ −2 ∂
2

∂ν2
g

log[γ2(νg)](18)

as the antighost particle corresponding to the pair {u1, u2}.
Note that νg represents the moving frame of both g and ḡ and that 4k

2
g represents

their velocity and exceeds that of the two-soliton particles. The following lemma as-
sures us that the above-mentioned correspondence between the two sets of eigenvalues
is well defined.

Lemma 3.2. Denote by k̂2 = k2
1k2 + k1k

2
2. Then

A = e8k̂
2tAg.

Moreover, µn = e
8k̂2tγn for n = 1, 2.

Proof. It suffices to prove that every coefficient of A has e8k̂
2t as a common factor

when rewritten in terms of νg. This quickly follows from the relation

ekn(x−4k2
nt) = ekn(νg+4k2

gt−4k2
nt)

= eknνg+4(k2
1k2+k1k

2
2)t

= e4k̂
2teknνg .

The fact that µn = e8k̂
2tγn also follows from this relation and can be easily checked

by the reader.
We are now ready to present our theorem describing particle decay of two-solitons.

This will justify our use of the terms “particle” and “decay” in referring to sn and
un, respectively.

Theorem 3.3. The following asymptotic relations hold for u1 and u2:
(i)

u1 ∼ s1(ν1 + δ1), as t→ −∞,
u1 ∼ s2(ν2 + δ2) + g(νg), as t→ ∞,

in the sense that

lim
ν1 fixed

t→−∞
u1 = s1(ν1 + δ1), lim

ν2 fixed

t→∞
u1 = s2(ν2 + δ2), lim

νg fixed

t→∞
u1 = g(νg).

Here, the relative phase shifts δ1 and δ2 are defined by

e2k1δ1 =
c21
2k1

, e2k2δ2 =
c22
2k2

.

(ii)

u2 ∼ s2(ν2 + δ2 +∆), as t→ −∞,
u2 ∼ s1(ν1 + δ1 +∆) + ḡ(νg), as t→ ∞.

Here, ∆ is defined by

e2k2∆ =
(k1 − k2)2
(k1 + k2)2

.
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s1
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✁
✁
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s2

✟✟
✟✟

✟✟
✟✟✯

g

(a) Diagram of u1

s2
✁
✁
✁✕
�

�
�✒

s1

✟✟✙
✟✟

✟✟
✟✟

ḡ

(b) Diagram of u2

s1 s2
�

�
�✒

✁
✁
✁✕
�

�
�✒

✁
✁
✁✕

s1s2

(c) Diagram of u

Fig. 1. Space-time plots of two-soliton decay.

Following the physics literature we shall summarize the decay described by u1

and u2 as follows:

u1 : s1 → s2 + g,
u2 : s2 → s1 + ḡ.

The corresponding space-time plots are drawn in Figure 1. Notice that they describe
the exchange of identities between s1 and s2 and the fact that the emitted ghost
particles (represented by the dashed lines) have velocities greater than both soliton
particles.

Proof of Theorem 3.3. (i) Our approach is to analyze u1 from the perspective of
the three moving frames corresponding to the velocities ν1, ν2, and νg and to treat
each as a separate case.

Case I. Assume ν1 is fixed. We rewrite the trace and determinant of A as

p = Tr(A)

=
c21
2k1
e2k1ν1 +

c22
2k2
e2k2ν2

= e2k1ν1
(
c21
2k1

+
c22
2k2
e2k2ν2−2k1ν1

)
= e2k1ν1

(
c21
2k1

+
c22
2k2
e2(k2−k1)ν1+8k2(k

2
1−k2

2)t
)

and

q = det(A)

=
(
k1−k2
k1+k2

)2
c21c

2
2

4k1k2
e2(k1ν1+k2ν2)

= e2k1ν1
(
k1−k2
k1+k2

)2
c21c

2
2

4k1k2
e2k2ν1+8(k2

1−k2
2)t

so that

lim
ν1 fixed

t→−∞
p =

c21
2k1

e2k1ν1 , lim
ν1 fixed

t→−∞
q = 0.
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This forces

lim
ν1 fixed

t→−∞
(1 + µ1) = lim

ν1 fixed

t→−∞

[
1 +

1

2

(
p+

√
p2 − 4q

)]
= 1 +

c21
2k1
e2k1ν1

and implies

lim
ν1 fixed

t→−∞
u1 = lim

ν1 fixed

t→−∞

{
−2 ∂

2

∂x2
log(1 + µ1)

}

= −2 ∂2

∂x2 log(1 +
c21
2k1
e2k1ν1)

=
−8k1c

2
1e

2k1ν1(
1+

c2
1

2k1
e2k1ν1

)2

= s1(ν1 + δ1),

where δ1 is defined by e2k1δ1 =
c21
2k1

. Note that we have implicitly used the fact
∂
∂x = ∂

∂ν1
.

Case II. Assume that ν2 is fixed. We proceed in the same manner as Case I but
factor e2k2ν2 instead of e2k1ν1 from p and q. It is then a straightforward exercise to
show that

lim
ν2 fixed

t→∞
u1 = s2(ν2 + δ2),

where this time δ2 is defined by e2k2δ2 =
c22
2k2

.
Case III. Assume νg is fixed. Applying Lemma 3.2, we obtain, for t→ −∞,

lim
νg fixed

t→−∞
u1 = lim

νg fixed

t→−∞

{
−2 ∂

2

∂x2
log(1 + µ1)

}

= lim
νg fixed

t→−∞

{
−2 ∂

2

∂x2
log(1 + e4k̂

2tγ1)

}
= 0.

On the other hand, for t→ ∞,

lim
νg fixed

t→∞
u1 = lim

νg fixed

t→∞

{
−2 ∂

2

∂x2
log(1 + e4k̂

2tγ1)

}

= lim
νg fixed

t→∞

{
−2 ∂

2

∂x2
log e4k̂

2t + log(e−4k̂2t + γ1)

}

= lim
νg fixed

t→∞

{
−2 ∂

2

∂x2
log(e−4k̂2t + γ1)

}
= −2 ∂2

∂ν2
g
log γ1

= g.

This completes the proof of part (i).
(ii) We apply a similar analysis to u2 by again considering three separate cases.
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Case I. Assume ν2 is fixed. We rewrite p and q as

p = e8k1(k
2
2−k2

1)t
(
c21
2k1
e2k1ν2 +

c22
2k2
e2k2ν2−8k1(k

2
2−k2

1)t
)
,

q = e8k1(k
2
2−k2

1)t (k1−k2)2
(k1+k2)2

c21c
2
2

4k1k2
e2(k1+k2)ν2 .

The relations

lim
ν2 fixed

t→−∞

q

p
=

(k1 − k2)2
(k1 + k2)2

c22
2k2

e2k2ν2 , lim
ν2 fixed

t→−∞

q

p2
= 0

now tell us how µ2 behaves in the limit once we rationalize it:

lim
ν2 fixed

t→−∞
µ2 = lim

ν2 fixed

t→−∞

{
1

2

(
p−

√
p2 − 4q

) p+√
p2 − 4q

p−
√
p2 − 4q

}

= lim
ν2 fixed

t→−∞




2q
p

1 +
√
1− 4q

p2




= (k1−k2)2
(k1+k2)2

c22
2k2
e2k2ν2 .

Hence,

lim
ν2 fixed

t→−∞
u2 = lim

ν2 fixed

t→−∞

{
−2 ∂

2

∂x2
log(1 + µ2)

}

= lim
ν2 fixed

t→−∞

{
−2 ∂

2

∂x2
log

[
1 +

(k1 − k2)2
(k1 + k2)2

c22
2k2

e2k2ν2
]}

= s2(ν2 + δ2 +∆),

where ∆ is defined by e2k2∆ = (k1−k2)2
(k1+k2)2

.

Case II. Assume that ν1 is fixed. As the line of argument here is the same as that
for Case I with ν2 fixed, we leave it for the reader to verify that

lim
ν1 fixed

t→∞
u2 = s1(ν1 + δ1 +∆).

Case III. Assume that νg is fixed. The argument establishing

lim
νg fixed

t→∞
u2 = ḡ

is exactly the same as that for Case III in (i) and will be left for the reader. This
completes the proof of our theorem.

The following result provides evidence to support our theory of soliton decay.
Theorem 3.4. (i) Conservation of mass.∫ ∞

−∞
un(x, t)dx = −4kn, n = 1, 2.

(ii) Conservation of momentum.

d

dt

∫ ∞

−∞
xun(x, t)dx = −16k3

n, n = 1, 2.
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Proof. (i) For u1, we have∫∞
−∞ u1(x, t)dx =

∫∞
−∞

[
−2 ∂2

∂x2 log(1 + µ1)
]
dx

=
[−2 ∂

∂x log(1 + µ1)
]∞
−∞

= −2
[

µ′1
1+µ1

]∞
−∞

= −4k1.

A similar argument applied to u2 (after first rationalizing µ2) shows that∫ ∞

−∞
u2(x, t)dx = −4k2.

(ii) Integration by parts yields

∫ L
−∞ xun(x, t)dx =

[−2x ∂
∂x log(1 + µn)

]L
−∞ − ∫ L

−∞
[−2 ∂

∂x log(1 + µn)
]
dx

= −2L µ′n(L)
(1+µn(L) + 2 log(1 + µn(L))

∼ −4knL+ 4kn(L− 4k2
nt+ δn)

as L→ ∞. It follows that

d

dt

∫ ∞

−∞
xun(x, t)dx = −16k3

n, n = 1, 2.

This completes the proof.
For n = 1, 2, we define the center of mass of un to be

xn(t) ≡
∫∞
−∞ xun(x, t)dx∫∞
−∞ un(x, t)dx

.(19)

The next corollary follows immediately from Theorem 3.4.
Corollary 3.5. The center of mass xn(t) as defined by (19) moves with constant

velocity 4k2
n, i.e.,

dxn
dt

= 4k2
n, n = 1, 2.

Let us now investigate our ghost particles a little more closely. We begin with the
following theorem which justifies our use of the terms “ghost” and “antighost” for g
and ḡ as they do not appear in u due to cancellation.

Theorem 3.6. The ghost particles g and ḡ enjoy the following properties:
(i) g + ḡ = 0.
(ii)

∫∞
−∞ g(νg)dνg = 4(k1 − k2).

(iii) g = −32k1k2(pgqg
r
3/2
g

) < 0, where pg = Tr(Ag), qg = det(A), and rg = p
2
g − 4qg.

(iv) g(νg) = O(sech
2[(k1 − k2)(νg + δg)]) as νg → ±∞, where δg is defined by the

relation e2(k1−k2)δg = c21k2
c22k1

.

(v) |g(νg)| ≤ (k1 − k2)2(k1 + k2)/
√
k1k2 with equality holding precisely when νg =

−δg.
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Proof. (i) If one recalls that

γ1γ2 = det(Ag)

= (k1−k2)2
(k1+k2)2

c21c
2
2

4k1k2
e2(k1+k2)νg ,

then it directly follows that

g + ḡ = −2 ∂2

∂ν2
g
log(γ1γ2)

= 0.

(ii) We have ∫∞
−∞ g(νg)dνg =

∫∞
−∞

[
−2 ∂2

∂ν2
g
log γ1

]
dνg

=
[
−2γ′1γ1

]∞
−∞

.
(20)

Substituting the relations

lim
νg→−∞

γ′1
γ1

= 2k2, lim
νg→∞

γ′1
γ1

= 2k1.

into (20) then yields the desired result:∫ ∞

−∞
g(νg)dνg = 4(k2 − k1).

We note that this result also follows directly from Theorem 3.4 due to conservation
of mass of u1.

(iii) First write γ1 in the form

γ1 =
1

2

(
pg +

√
rg

)
,(21)

where

pg = Tr(Ag) =
c21
2k1

e2k1νg +
c22
2k2

e2k2νg ,(22)

qg = det(Ag) =
(k1 − k2)2
(k1 + k2)2

c21c
2
2

4k1k2
e2(k1+k2)νg ,(23)

rg = p
2
g − 4qg.(24)

Then we can express γ1 in terms of an appropriate hyperbolic cosine function by
introducing the identity

pg =
c1c2√
k1k2

e(k1+k2)νg cosh[(k1 − k2)(νg + δg)],(25)

where δg is defined by the relation e2(k1−k2)δg = c21k2
c22k1

. It follows that

γ1 =
c1c2√
k1k2

e(k1+k2)νg

(
cosh [(k1 − k2)(νg + δg)](26)

+

√
cosh2 [(k1 − k2)(νg + δg)]− (k1 − k2)2

(k1 + k2)2

)

=
(k1 − k2)
(k1 + k2)

c1c2√
k1k2

e(k1+k2)νg
(
z +

√
z2 − 1

)
,(27)
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where z = (k1+k2)
(k1−k2) cosh [(k1 − k2)(νg + δg)]. Therefore,

g = −2 ∂
2

∂ν2
g

log γ1(28)

= −2 ∂
2

∂ν2
g

[
log

(
(k1k2)

(k1 + k2)

c1c2√
k1k2

e(k1+k2)νg
)
+ log(z +

√
z2 − 1)

]
(29)

= −2 ∂
2

∂ν2
g

cosh−1 z(30)

= −8k1k2 z

(z2 − 1)3/2
(31)

= −8k1k2
(k1+k2)
(k1−k2) cosh [(k1 − k2)(νg + δg)][

(k1+k2)2

(k1−k2)2 cosh
2 [(k1 − k2)(νg + δg)]− 1

]3/2
(32)

= −32k1k2 pgqg
r
3/2
g

,(33)

as desired. Moreover, g is negative because the quantities pg, qg, and rg are all
positive.

(iv) It is now easy to deduce from (32) that

g(νg) = O(sech2[(k1 − k2)(νg + δg)])

as νg → ±∞.
(v) Using (31), we find that g(νg) has the derivative

dg

dνg
= 8k1k2

2z2 + 1

(z2 − 1)3/2

(
dz

dνg

)
.(34)

Since z2 − 1 > 0, it follows that dg
dνg

is zero precisely when

dz

dνg
=

(k1 + k2)
2

(k1 − k2) sinh [(k1 − k2)(νg + δg)](35)

is zero, or equivalently, when νg = −δg. We can therefore conclude that g has an
absolute minimum of

g(−δg) = − (k1 − k2)2(k1 + k2)√
k1k2

at this critical point because of (iv). This completes the proof of Theorem 3.6.
Remark. Property (iv) of Theorem 3.6 shows that in some sense g can be viewed

as a nonlinear difference between the soliton particles s1 and s2 as defined by (11).
Moreover, g(νg) → 0 as k2 → k1 and g(νg) → −4k1δ(νg) as k2 → 0, where δ(νg) is
the Dirac delta function.

Next, we show that each decay function itself can be decomposed as a sum of a
“soliton” term and a “ghost” term:

un(x, t) = −2 ∂
2

∂x2
log(1 + µn)(36)



884 HIÊÚ D. NGUYÊÑ

= −2
[
(1 + µn)µ

′′
n − (µ′n)

2

(1 + µn)2

]
(37)

= −2 µ′′n
(1 + µn)2

− 2

[
µnµ

′′
n − (µ′n)

2

µ2
n

](
µn

1 + µn

)2

(38)

= −2 µ′′n
(1 + µn)2

− 2

(
∂2

∂x2
logµn

)(
µn

1 + µn

)2

(39)

= usn + u
g
n.(40)

Definition 3.7. We shall call

usn = −2 µ′′n
(1 + µn)2

(41)

the soliton component of un and

ugn = −2
(
∂2

∂x2
logµn

)(
µn

1 + µn

)2

(42)

the ghost component of un. Moreover, we shall refer to the decomposition given by
(40) as the splitting decomposition of un.

For two-solitons, the following lemma holds.
Lemma 3.8.

ugn(x, t) = (−1)n−1g(x− 4k2
gt)

(
µn(x, t)

1 + µn(x, t)

)2

, n = 1, 2.(43)

Remark. The decomposition described in (40) reveals the time-asymmetry of
soliton decay in that ghost particles are born at t = ∞ and is essentially due to the
identity matrix appearing in the N -soliton formula. In particular, the behavior of
µn/(1 + µn) → 0 as t → −∞ and µn/(1 + µn) → 1 as t → ∞ in (43) indicates
that the ghost component ugn represents creation of the ghost particle g(x− 4k2

gt) at
t = ∞. This implies that there is actually interaction between solitons even before
“collision” occurs; however, this interaction is insignificant until then. Lastly, it is
straightforward to verify that each soliton component usn asymptotically describes an
exchange of identities between the two-soliton particles.

4. Two-soliton example. We end our paper with a concrete example to illus-
trate our results. Let k1 = c1 = 2 and k2 = c2 = 1 be the given scattering data. Our
soliton matrix A then takes the form

A =

(
e4x−64t 2

3e
3x−36t

2
3e

3x−36t 1
2e

2x−8t

)
(44)

and has eigenvalues

µ1 =
1

12

(
3e2x−8t + 6e4x−64t + e2x−8t

√
9 + 28e2x−56t + 36e4x−112t

)
,(45)

µ2 =
1

12

(
3e2x−8t + 6e4x−64t − e2x−8t

√
9 + 28e2x−56t + 36e4x−112t

)
.(46)

The decay functions u1 and u2 can now of course be computed through the formula

un = −2 ∂
2

∂x2
log(1 + µn), n = 1, 2,
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but we shall avoid doing this here due to their complicated expressions. The ghost
matrix

Ag =

(
e4νg 2

3e
3νg

2
3e

3νg 1
2e

2νg

)
(47)

has eigenvalues

γ1 =
1

12

(
3e2νg + 6e4νg + e2νg

√
9 + 28e2νg + 36e4νg

)
,(48)

γ2 =
1

12

(
3e2νg + 6e4νg − e2νg

√
9 + 28e2νg + 36e4νg

)
.(49)

Therefore,

g = −32k1k2
(
pgqg

r
3/2
g

)
(50)

= − 384e2νg (1 + 2e2νg )

(9 + 28e2νg + 36e4νg )
3/2

(51)

= − 48 cosh(νg + log
√
2)[

9 cosh2(νg + log
√
2)− 1

]3/2(52)

and the ghost moving frame is given by νg = x − 28t. Of course, we also have
ḡ = −g. Figures 2–4 illustrate the motions of −u(x, t), −u1(x, t), and −u2(x, t),
respectively, over time through a sequence of six frames corresponding to time steps
t = −0.4,−0.2, . . . , 0.6. The soliton particles s1 and s2 have amplitudes of 8 and
2, respectively, and velocities of 16 and 4, respectively. The ghost particle g has an
amplitude of 3/

√
2 ≈ 2.12 and a velocity of 28. Splitting occurs in the fourth frame

at t = 0.2 for both u1 and u2 as seen in Figures 3 and 4, respectively.

5. Concluding remarks. Our work raises interesting questions some of which
deserve comment.

Q1. What happens during collisions of more than two-solitons? Are more ghost
particles generated? Can ghost particles from different pairs interact?

A1. It is found that each collision between any two-soliton particles produces a
ghost particle pair with the same properties as those described by Theorem 3.6. On
the other hand, each collision between two ghost particles where each comes from a
different pair will result in their fusion. Because of duality, there is an accompanying
fission process which is interpreted as the same fusion process but reversed in time.
Moreover, the final states of all ghost particles created is independent of their order
of collision (modulo phase shifts). A mathematical theory formulating the creation
and interaction of ghost particles will be described in a forthcoming paper.

Q2. Do the decay functions {un} satisfy any partial differential equations?
A2. This is not presently known as we have been unsuccessful at finding such

equations. On the other hand, it is known that the eigenvalues {µn} of the soliton
matrix A which defines {un} satisfy ordinary differential equations of the form

dµn
dx

= (ET ·Xn)2, n = 1, . . . , N.(53)

Here, Xn is a normalized eigenvector of A corresponding to µn and

ET = (c1e
k1ν1 , c2e

k2ν2 , . . . , cNe
k1ν1)T .
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Fig. 2. Plots of −u(x, t).
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Fig. 3. Plots of −u1(x, t): s1 → s2 + g.

These differential equations can be easily derived from the symmetry and positive
definiteness of A. However, their usefulness is unclear as they do not make direct use
of the KdV equation.

Q3. How is the linear eigenvalue decomposition described in this paper related to
others in the literature, e.g., Hodnett and Moloney [HM] and Miller and Christiansen
[MC]?

A3. Hodnett and Moloney’s work in [HM] involves using the Hirota formalism to
decompose each N -soliton solution into a linear sum of squares of hyperbolic secant
functions having time-dependent amplitudes and phase shifts (a Lie-theoretic gener-
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Fig. 4. Plots of −u2(x, t): s2 → s1 + ḡ.

alization of this decomposition is given by Fuchssteiner in [F]). For two-solitons, this
decomposition takes the form

u = u1 + u2,(54)

where

u1 = 2a2
1H(θ2)sech

2[θ1 +G(θ2)],(55)

u2 = 2a2
2H(θ1)sech

2[θ2 +G(θ1)].(56)

Here, ai and θi are the spectral parameters and moving frames, respectively. Exact
formulas for H(ν1) and G(ν2) can then be derived by requiring u1 and u2 to con-
serve mass for all times as in Theorem 3.4. In essence, this approach by Hodnett and
Moloney views the hyperbolic secant function as the building block for a soliton parti-
cle whereas our approach views the eigenvalues of the soliton matrix A as playing this
role. As a result, the decomposition of Hodnett and Moloney seems to asymptotically
describe only an exchange of soliton identities and not soliton decay as revealed by
our decomposition.

As for Miller and Christiansen [MC], they considered soliton solutions of the
coupled system

∂uk
∂t

+
∂

∂x


uk
2

N∑
j=1

uj +
∂2uk
∂x2


 = 0, k = 1, . . . , N.(57)

This system can be viewed as a multicomponent generalization of the KdV equation
and is derived by requiring symmetry and conservation of mass principles. For N = 2,
numerical solutions for u1 and u2 were obtained which indicated an exchange of mass
between two given soliton particles after collision. However, there is no prediction of
ghost particles, which again is in contrast to our decomposition. In short, we believe
our model of soliton interaction to be one that is most consistent with the laws of
classical mechanics.
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Abstract. The Holling–Tanner model for predator-prey systems has two Hopf bifurcation points
for certain parameters. The dependence of the environmental parameters on the underlying bifurca-
tion structure is uncovered using two-timing. Emphasis is on how the bifurcation diagram changes
as the Hopf bifurcation points separate. Two degenerate cases require a modification of conventional
two-timing. When the two Hopf bifurcation points nearly coalesce, the two stable periodic solution
branches are shown to be connected. As a ratio of linear growth rates varies, the Hopf bifurcation
points separate further and one limit cycle becomes unstable. This situation can correspond to an
outbreak in populations. The modified two-timing analysis analytically captures the unstable and
stable limit cycles of the new branch.

Key words. Holling–Tanner, predator-prey, degenerate Hopf bifurcations, limit cycles, two-
timing, outbreaks
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1. Introduction. Predator-prey dynamics continue to be of interest to both ap-
plied mathematicians and ecologists. The early Lotka–Volterra model has given way
to more sophisticated models from both a mathematical and biological point of view.
Although useful for developing some basic intuition about predator-prey systems, the
Lotka–Volterra model has the ecologically offensive property of a neutrally stable equi-
librium point giving rise to a family of periodic solutions in which initial conditions,
rather than environmental parameters, determine long term behavior [1], [2], [3]. As
far back as Kolmogorov [4] in 1936, it was suggested that a stable equilibrium or a
stable limit cycle should be the result of a wide class of single predator, single prey
mathematical models [1]. From an ecological perspective, the fairly regular oscilla-
tions seen with the snowshoe hare and lynx in Canada support the isolated periodic
solution conclusion (limit cycle) rather then the family of periodic solutions [5].

Robert May developed a model in which he incorporated Holling’s rate [6], [7]
at which predators remove prey and Leslie’s somewhat unconventional equation for
predator dynamics [1], [8]. This model, also known as the Holling–Tanner model [9],
has been studied both for its mathematical properties and its efficacy for describing
real ecological systems such as mite/spider mite, lynx/hare, sparrow/sparrow hawk,
etc. by Tanner [10] and Wollkind, Collings, and Logan [11].

The May or Holling–Tanner model for predator-prey interaction is

dx

dt
= r1x

(
1− x

k

)
− qxy

x+ a
,(1.1)

dy

dt
= r2y

(
1− y

γx

)
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[1], [9], [10], [11].
The variables x(t) and y(t) denote the prey and predator, respectively. The

parameters r1 and r2 are the intrinsic growth rates. The value k is the carrying
capacity of the prey and γx takes on the role of a prey-dependent carrying capacity
for the predator. The parameter γ is a measure of the quality of the prey as food for
the predator. The rate at which predators remove the prey, qx/(x+a), is known as a
Holling type 2 predator response [1], [6], [9], [12]. The parameter q is the maximum
number of prey that can be eaten per predator per time and the parameter a is a
saturation value; it corresponds to the number of prey necessary to achieve one half
the maximum rate q.

The dynamics of the Holling–Tanner model have proven quite interesting. Thus
far the mathematical analysis of the dynamics has generally been either qualitative
or numerical. May and Tanner used phase plane stability analysis to find criteria for
stable limit cycles [1], [2], [6]. Hsu and Huang [12] discuss global stability questions
of the equilibrium point. Sáez and Gonzáles-Olivares [9] develop curves in parameter
space that delineate regions of two limit cycles, semistable limit cycles, etc. and discuss
bifurcations from an existence viewpoint. Numerical work with AUTO [13] was used
in two papers by Collings [14] and Wollkind, Collings, and Logan [11] to illustrate the
bifurcations in mite/spider mite systems.

This body of work spurred this author to try to understand the dynamics from
a complementary perspective. The point in this paper is to bridge the results on the
existence of limit cycles and the numerical work by using techniques to analytically
construct solutions, applicable to a broad class of predator-prey problems, that de-
scribe the underlying bifurcations. A focus is to understand the bifurcation diagram
as the two Hopf bifurcation points separate. Two-timing methods will be used to
construct the periodic solutions that arise from the Hopf bifurcation points in terms
of environmental parameters. Of particular interest will be the ways the two-timing
method must be modified to handle the degenerate cases discussed by the authors
above. The two branches of periodic solutions are shown to be connected when the
Hopf bifurcation points are close. Also, the entire subcritical branch is captured ana-
lytically along with conditions for having a semistable limit cycle. The subcritical case
is important ecologically since it can correspond to large outbreaks in the populations.

2. Analysis. At the beginning of this section, linear stability results give con-
ditions on the parameters when there will be two Hopf bifurcation points. Then
the periodic solutions bifurcating from the two Hopf bifurcation points are found us-
ing two-timing. Based on the slow time amplitude equations, it will be shown that
one branch is always supercritical while the other one changes from supercritical to
subcritical as the parameters are varied.

As a first step in the bifurcation analysis, equations (1.1) are nondimensionalized
by defining new predator and prey variables as

prey U =
x

k
, predator V =

y

γk
,

along with a new time

tnew = r1told ,

and parameters

r =
r2
r1
, b =

a

k
, c =

qγ

r1
.
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Since k is the carrying capacity of the prey and the parameter a is the saturation value
of the prey, it only makes sense biologically to consider b < 1 [11]. The parameter
r > 0 is the ratio of linear growth rates of predator to prey and will be an important
parameter in the bifurcation analysis to follow. Tanner [10] has field data with esti-
mated intrinsic growth rates for various predator-prey pairs and he notes that cyclic
population dynamics only occur when r is small enough relative to other parameters.

With the nondimensional variables and parameters, equations (1.1) become

dU

dt
= U(1− U)− cUV

U + b
,(2.1)

dV

dt
= rV

(
1− V

U

)
.

There are two equilibrium solutions. One equilibrium point, given by U = 1,
V = 0, is not of interest since it corresponds to the prey being at its carrying capacity
with no predators. In the (U, V ) phase plane it is a saddle. The other equilibrium
point depends on the parameters b and c and is given implicitly by

U2 + (b+ c− 1)U − b = 0 and V = U.(2.2)

A necessary condition for a Hopf bifurcation is that the trace of system (2.1)
linearized about the steady state (2.2) be equal to zero. This condition is represented
by the equation

r = 1− 2U − bcU

(b+ U)2
.(2.3)

Of interest is the fact the Hopf bifurcation equation (2.3) depends on the growth rate
parameter r whereas the steady state equation (2.2) does not. This will be utilized
later when the bifurcations are unfolded.

When (2.2) and (2.3) are solved simultaneously, we get the values of U = u and
c where Hopf bifurcations occur:

u =
1

4

(
1− b− r ±

√
(1− b− r)

2 − 8br

)
and(2.4)

c =
1

4r

(
2 + r + r2 − b (b+ 3r)∓ (2 + r)

√
(1− b− r)

2 − 8br

)
.

The feature to focus on is that there will be two Hopf bifurcation points when
(1 − b − r)2 − 8br > 0 and none when (1 − b − r)2 − 8br < 0. These regions in the
(r, b) plane are shown in Figure 1. The degenerate case when 0 < (1−b−r)2−8br � 1
(nearly coalescing Hopf bifurcation points) will be considered in section 3.

The region of Hopf bifurcation points in Figure 1 is in accord with cyclic behavior
seen in real ecological systems. May [1] observed that stable limit cycles are likely
with weak self-limitation of the prey (large k) and r2/r1 < 1. The dynamics switch
from an attractive fixed point to a stable limit cycle as “life gets better,” meaning
r1 or k increases. This corresponds to a smaller r or b. He argues that the work of
Baltensweiler [15] on the eight year cyclic behavior of the larch bud moth in Switzer-
land, which has been observed since 1855, elegantly illustrates this. Tanner [10] and
May [1] suggested that the oscillating population of snowshoe hare in subarctic re-
gions as studied by Dolbeer [16] may be due to poor cover since more southerly
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Fig. 1. The Hopf bifurcation points coalesce for parameters r and b on the solid curve. There
are no Hopf bifurcation points in the region above this curve and two Hopf points below it. The
dashed curve shows the values of r and b for which the branch of periodic solutions from the right
Hopf bifurcation point is vertical.

populations of snowshoe hare are not cyclic but have more protective cover in the
spruce-fir forests of Colorado. Less protective environments mean a smaller value of
the parameter b = a/k since a is directly proportional to the time for the predator
to search and find the prey [10]. In the same vein, Tanner argues that laboratory
experiments by Luckinbill [17] of Paramecium aurelia and its predator Didinium na-
sutum demonstrate the dependence of population dynamics on the parameter a. He
writes, “Cultures of these two species normally exhibited increasing oscillation until
one or the other become extinct; an increase in the viscosity of the medium (higher a)
strengthened the system’s stability, possibly by increasing the predator’s searching
time.” On a different note, Tanner [10] observed that the intrinsic growth rate of
the North American mountain lion is larger than its prey, the mule deer (implying
r = r2/r1 > 1), and that these populations are generally near some equilibrium except
for natural stochastic variations.

The interrelated influence of ecological parameters on the behavior of a predator-
prey system can be complicated to discern. Two-timing will help reveal the depen-
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dence of the solutions on the parameters in a fairly explicit way.
In standard two-timing analysis, the bifurcating periodic solutions are found by

expanding the variables and bifurcation parameter about the Hopf bifurcation val-
ues (2.4). The choice of c = qγ/r1 as the primary bifurcation parameter stems from
it being a combination of three ecological parameters. Rather than use the values of
u and c in (2.4), the analysis will be algebraically simpler if we use the equivalent
expressions

ch =
(1− u)2

r + u
and bh =

u(1− r − 2u)

r + u
,(2.5)

also found by solving the steady state (2.2) and Hopf bifurcation (2.3) equations
simultaneously, and consider u and r as free parameters. An added benefit is that
the local analysis about both Hopf bifurcation points can be done simultaneously by
using (2.5) rather than separate analyses using (2.4).

To find the periodic solutions locally about the Hopf bifurcation points, we begin
by defining a small parameter ε as a measure of the deviation from the Hopf value
of c by

c = ch + P ε2(2.6)

with P = ±1 determining the direction of the bifurcation. A slow time is defined by

τ = ε2t,(2.7)

and the variables are expanded in a power series in ε as

U(t, τ) = u+ εu1(t, τ) + ε2u2(t, τ) + · · · ,(2.8)

V (t, τ) = u+ εv1(t, τ) + ε2v2(t, τ) + · · · .

When the variables in (2.8), slow time τ , and expressions (2.5) and (2.6) are sub-
stituted into the main equations (2.1), we get a sequence of equations at each order
of ε.

The O(ε) equations are[
u1t

v1t

]
=

[
r u− 1
r −r

] [
u1

v1

]
.(2.9)

The periodic solutions, in polar form, are[
u1(t, τ)
v1(t, τ)

]
= R(τ)eiθ(τ)

[
r + iλ
r

]
eiλt +R(τ)e−iθ(τ)

[
r − iλ
r

]
e−iλt.(2.10)

The fast time frequency is λ =
√
r(1− u− r). (It is assumed from here on that

1 − u − r > 0.) The amplitude is proportional to R(τ), which depends on the slow
time.

After the O(ε2) equations are solved for u2(t, τ) and v2(t, τ), the differential equa-
tions for R(τ) and θ(τ) are obtained by considering the O(ε3) equations which are of
the form [

u3t

v3t

]
−
[
r u− 1
r −r

] [
u3

v3

]
=

[
f3(u1, u2, v1, v2)− u1τ

g3(u1, u2, v1, v2)− v1τ

]
.(2.11)
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For periodic solutions to exist, the right-hand side of (2.11) must satisfy a solvability
condition: ∫ 2π/λ

0

[
f3 − u1τ

g3 − v1τ

]
·
[
x
y

]
dt = 0,(2.12)

where [xy ] is any solution of the adjoint homogeneous problem of (2.9),[
xt
yt

]
=

[ −r −r
1− u r

] [
x
y

]
.(2.13)

The resulting differential equation for R(τ) is

Rτ = α(r, u)PR+ β(r, u)R3.(2.14)

The coefficients α(r, u) and β(r, u) are given by

α(r, u) =
(r + u)(r(r − 1) + 4ru+ 2u2)

2(1− u)2(1− r − u)
,(2.15)

β(r, u) =
r(1− r − 2u)((1− r)2r + r(4r − 7)u+ (5r − 4)u2 + 2u3)

2u2(1− u)(1− r − u)
.

The algebra was quite messy so Mathematica [18] was enlisted to help out. There is
also an equation for the slow time phase θ(τ) but it is not relevant for the purposes
here.

The equation (2.14) is the typical cubic form for a Hopf bifurcation. There are
two steady states:

R = 0 and R =

√
−α(r, u)P
β(r, u)

.(2.16)

The value R = 0 corresponds to the steady state of (2.1) whereas R =
√

−α(r,u)P
β(r,u)

is the amplitude of the bifurcating periodic solutions. It is important to note that
there are two values of u from (2.4) which give the nontrivial amplitude, so (2.16)
captures the amplitude of the bifurcating periodic solutions from both Hopf bifurcation
points. The stability of the bifurcating periodic solutions is determined by the signs
of α(r, u) and β(r, u). Figure 2 delineates regions in the (r, u) plane showing the signs
of α(r, u) and β(r, u) and the consequent stability.

When there are two Hopf bifurcation points, one arises from the parameters r
and u of region A in Figure 2 and the other one comes from region B1 or B2. Since
α(r, u) > 0, β(r, u) < 0, and P = 1 in region A, the bifurcating periodic solution
is supercritical (stable). The signs of α(r, u) and β(r, u) also determine that the
other branch will be stable if it comes from B1 but that a branch from B2 will be
locally unstable (subcritical). The analysis in section 4 shows that this latter branch
becomes stable. In all cases, the branch from either B1 or B2 joins the branch from
region A. In general, the use of AUTO is required to establish this connection, but
the connection of the periodic solution branches from regions A and B1 is constructed
analytically in section 3 in the case of nearly coalescing Hopf bifurcation points. The
construction reveals more about the underlying dependence of the bifurcation diagram
on the parameters than previous work in which other authors used AUTO exclusively
[11], [14].
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B1
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α(r,u) = 0

β(r,u) = 0

α > 0, β < 0, P = 1

α < 0, β < 0, P = −1
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Fig. 2. The signs of the coefficients α(r, u) and β(r, u) of the amplitude equation (2.15) are
indicated in the three regions of the (r, u) plane. The leftmost Hopf bifurcation point comes from the
parameters in region A and the rightmost Hopf point comes from region B1 or B2. The resulting
branches of periodic solutions are stable from regions A or B1 and unstable from region B2.

In Figure 3, a sequence of pictures was created using AUTO to illustrate how the
bifurcation diagrams change as the Hopf bifurcation points separate. The separation
of the Hopf bifurcation points increases as ratio of linear growth rate parameter r
decreases. In Figure 3, the left Hopf point comes from region A of Figure 2 whereas
the right Hopf point comes from region B1 in Figure 3(a), region B2 in Figure 3(c), or
on the border curve β(r, u) = 0 in Figure 3(b). The branch of periodic solutions from
the left Hopf point is always supercritical but the branch from the right Hopf point is
supercritical in Figure 3(a), “vertical” in Figure 3(b), and subcritical in Figure 3(c).
The value of R from (2.16) accurately captures the periodic solutions locally. Similar
bifurcation diagrams have been found by using AUTO in papers by Collings [14] and
Wollkind, Collings, and Logan [11] in regards to mite/spider mite interactions with
temperature dependence.

A nice feature about the amplitude equation (2.14) is that the parameters u and r
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Fig. 3. (a)–(c) show the bifurcation diagrams (computed with AUTO) of equations (2.1) as the
Hopf bifurcation points separate. The light line is the unstable steady state and the slightly darker
line is the stable steady state. The open circles denote unstable periodic solutions and the solid
circles (often appearing as a thick solid curve) are the stable periodic solutions. The parameter b is
fixed at b = 2/7 but r = .142 in Figure 3(a), r = .125 in Figure 3(b), and r = .10 in Figure 3(c).
The coalescence value is r = 1/7.
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are not fixed so degeneracies can be readily identified by setting either coefficient
α(r, u) or β(r, u) of (2.15) equal to zero. The case α(r, u) = 0, which is equivalent
to (1 − b − r)2 − 8br = 0, corresponds to the two Hopf bifurcation points coalescing
and will be analyzed in detail in the next section. The vertical Hopf bifurcation case
occurring when β(r, u) = 0 will be considered in section 4.

3. Nearly coalescing Hopf bifurcation points. Two-timing results generally
give only local information about bifurcations. It would be nice to extend the results
to show that the periodic solution branches from the two Hopf bifurcation points
are connected. This can be done in the case of nearly coalescing Hopf points if the
two-timing analysis is appropriately modified. Golubitsky and Langford [19] give the
universal unfolding normal form for this case as well as many other degenerate Hopf
bifurcations, but that work is not directly of use here.

From (2.4) the Hopf points will coalesce if

(1− b− r)2 − 8br = 0.(3.1)

We note from (2.4) and Figure 3 that for a fixed b, as r decreases, the Hopf bifurcation
points separate further and the amplitude of the periodic solution increases. This
eventually can lead to a destabilization of the system since reductions in minimum
population densities can increase the chance of extinction as a result of demographic
or environmental stochastic influence [1].

If (3.1) holds, then the linear coefficient, α(r, u), in the amplitude equation (2.14)

is zero so the steady state amplitude, R =
√

−α(r,u)P
β(r,u) from (2.16), becomes zero,

causing the standard two-timing to break down. To rectify this situation, we begin
by splitting the Hopf bifurcation points by defining the small parameter ε in terms of
the growth rate parameter by

r = ρ− ε2(3.2)

and fixing b at the coalescence value

bcoal = 1 + 3ρ− 2
√
2ρ
√
1 + ρ(3.3)

obtained from (3.1) with ε = 0. Please note that ε = ε(r) =
√
ρ− r is a measure of

how far the growth rate parameter r is from its coalescence value ρ. It is not defined
in the conventional way as a deviation from the Hopf value of c as in (2.6). The
parameter c will be defined by

c = ccoal + εc1 with ccoal = −2− 2ρ+ (2 + 3ρ)

√
1 + ρ

2ρ
(3.4)

being the coalescence value of c found by using r = ρ and bcoal in expression (2.4).
As will be seen, the amplitude and period of the periodic solution will depend on c1,
which measures how far c is from ccoal . The parameter c1 is allowed to vary from 0
to the two Hopf bifurcation values

±2 + ρ

2ρ

√
2 + 4ρ− 3

√
2ρ(1 + ρ).(3.5)

(These values are the O(ε) terms in the expansion of c in (2.4) using r = ρ − ε2

and bcoal .) The slow time τ = ε2t is defined as before. What is not apparent at this
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stage is that a slow time frequency shift must be introduced at O(ε) to account for
the near coalescence degeneracy, so a new fast time is introduced as

T = (1 + ω1ε+ · · · )t.(3.6)

The variables U and V are expanded about their steady state values, us, found by
using c from (3.4) and bcoal and solving the steady state equation (2.2). Thus we let

U(T, τ) = us + εu1(T, τ) + ε2u2(T, τ) + · · · ,(3.7)

V (T, τ) = us + εv1(T, τ) + ε2v2(T, τ) + · · · ,

where

us =

(√
ρ(1 + ρ)

2
− ρ

)
− c1ρ

2 + ρ
ε+

2ρ(2ρ+
√
2ρ(1 + ρ) )c21

(2 + ρ)3(1− ρ)
ε2 +O(ε3).(3.8)

The analysis proceeds by substituting the expressions in the above paragraph
into the main equations (2.1) to get a sequence of equations at each order of ε. The
O(ε) equations are

[
u1T

v1T

]
=

[
ρ
√

ρ(1+ρ)
2 − ρ− 1

ρ −ρ

] [
u1

v1

]
.(3.9)

The solutions are given by

[
u1(T, τ)
v1(T, τ)

]
= R(τ)eiθ(τ)

[
ρ+ iλ
ρ

]
eiλT +R(τ)e−iθ(τ)

[
ρ− iλ
ρ

]
e−iλT

(3.10)

and the fast time frequency is λ =
√
ρ(2−√2ρ(1 + ρ) )/2.

There are secular terms in the O(ε2) equations. This impediment is removed
by using a solvability condition similar to (2.12) giving the frequency correction that
depends on c1,

ω1 =
c1ρ

λ(2 + ρ)(2−√2ρ(1 + ρ) )
.(3.11)

The solvability condition in this case requires that the right-hand side of the O(ε2)
equations be orthogonal to the homogeneous solutions of the adjoint problem of (3.9).

As in the general case in the previous section, the equations for the slow time
amplitude R(τ) and phase θ(τ) are obtained from the O(ε3) equations:

[
u3T

v3T

]
−
[
ρ
√

ρ(1+ρ)
2 − ρ− 1

ρ −ρ

] [
u3

v3

]
=

[
f3(u1, u2, v1, v2)− u1τ

g3(u1, u2, v1, v2)− v1τ

]
.

(3.12)

With the solvability condition applied to the right-hand side, we get the equation
for R(τ):

Rτ = k1R+ k3R
3(3.13)
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with coefficients

k1 =
1

2
− 2ρ2c21

(2 + ρ)2(2 + 4ρ− 3
√
2ρ(1 + ρ) )

,(3.14)

k3 = −ρ(1 + ρ+
√
2ρ(1 + ρ) )

1− ρ
.

The nontrivial steady state amplitude satisfies

R2 = −k1

k3
=

(2 + ρ)2(2 + 4ρ− 3
√
2ρ(1 + ρ) )− 4ρ2c21

2ρ(2 + ρ)2(2 + 2ρ−√2ρ(1 + ρ) )
.(3.15)

The coefficient k3 is always negative since 0 < ρ < 1. However, k1 > 0 for c1 satisfying

−2 + ρ

2ρ

√
2 + 4ρ− 3

√
2ρ(1 + ρ) < c1 <

2 + ρ

2ρ

√
2 + 4ρ− 3

√
2ρ(1 + ρ).(3.16)

The amplitude R is zero (k1 = 0) at the two outer values of c1 thus indicating these
values correspond to the Hopf bifurcation points. This is in agreement with (3.5). Due
to the signs of the coefficients, the analysis shows that the slow time steady state R
in (3.15) is stable so the bifurcating periodic solution is stable. It is important to
note that, since c1 varies from both Hopf points, the expression R of (3.15) shows
that the periodic solution branches from the two Hopf points are connected. Also,
the amplitude is a function of the deviation c1 from the coalescence value of c. A
bifurcation diagram reflecting the analysis in this section is shown in Figure 4.

4. Resolving the vertical branch—the onset of outbreaks. From an eco-
logical viewpoint, the case when the branch of periodic solutions from the right Hopf
point is subcritical, as in Figure 3(c), is important since it can correspond to a large
cyclic outbreak in the populations. Wollkind, Collings, and Logan [11], in their study
of predacious mites and spider mite pests, suggest that events such as reducing the
prey population via pesticides may effectively shift the initial conditions so that the
system moves from a stable equilibrium to a high amplitude periodic orbit, thus en-
abling the pest to reach intolerable levels. As a possible control on the populations
when the parameters are in a subcritical regime, they discuss artificially increasing
r2 (which is equivalent to increasing r) to stabilize the system. In terms of Figure 1
and (2.4), a larger r value moves the Hopf bifurcation points closer or may remove
them entirely. In the former case the system would have smaller amplitude periodic
solutions as seen in Figure 3(a) or Figure 4 and, in the latter case, there would only
be stable equilibrium populations. Either case would be ecologically preferable to
large outbreaks of the spider mite pest that are possible in the subcritical parameter
regime.

The ecological ramifications of outbreaks make studying the bifurcation structure
in the subcritical case important. In this section the subcritical branch will be ana-
lyzed when the parameters correspond to the onset of outbreaks. The amplitude of
both the stable and unstable periodic solutions of the subcritical branch are analyti-
cally determined and the size of the outbreaks is found as a function of the deviation
of the growth rate parameter r from a critical value.

When the R3 coefficient, β(r, u), is zero in the amplitude equation (2.14), the
branch of periodic solutions from the rightmost Hopf bifurcation point is “vertical”
(on the border between supercritical and subcritical) as in Figure 3(b). The curve
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ch1 ccoal ch2

c

U

Fig. 4. The bifurcation diagram in the case of nearly coalescing Hopf bifurcation points, de-
noted by ch1 and ch2, calculated with the modified two-timing results of section 3. The thick solid
curve shows the maximum amplitude of the stable branch of periodic solutions using the amplitude
expression (3.15). The dashed (solid) curve is the unstable (stable) steady state. The parameters
used were b = 2/7 and r = .13. The coalescence value is r = ρ = 1/7.

β(r, u) = 0 is seen in Figure 2 and the corresponding curve in the (r, b) plane is in
Figure 1. The two-timing analysis must be modified to address this degeneracy. The

steady state amplitude R =
√

−α(r,u)P
β(r,u) from (2.16) suggests a rescaling is necessary

in the case when 0 < |β(r, u)| � 1.
We proceed by defining the small parameter ε by

r = ρ+ r2 ε
2,(4.1)

where r2 = ±1 will determine whether the branch is supercritical or subcritical and
ρ is a free parameter. The parameter b is fixed at the value

bv = uv(1− ρ− 2uv)/(ρ+ uv)(4.2)

by using (2.5) with uv satisfying β(ρ, uv) = 0 (the subscript v signifies vertical). The
parameter c is expanded about the rightmost Hopf bifurcation point of (2.4) as

c = c+(bv, r) + ε4c4(4.3)

with c4 allowed to vary. The amplitude of the periodic solutions will be shown to
depend on c4. The “size” of the outbreaks is defined as the distance from c+(bv, r) to
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the turning point value of c of the semistable limit cycle. By (4.3) and (4.1), the size
is proportional to (r−ρ)2, the square of the difference of the growth rate parameter r
from its vertical value ρ.

The variables U and V are expanded about the rightmost Hopf point of (2.4) as

U(T, τ) = u−(bv, r) + εu1(T, τ) + ε2u2(T, τ) + · · · ,(4.4)

V (T, τ) = u−(bv, r) + εv1(T, τ) + ε2v2(T, τ) + · · · .
Note that the expansions in (4.3) and (4.4) will rescale the bifurcating branch to be
quartic rather than quadratic as found with the usual scaling (2.6) and (2.8). The
quartic branch appropriately accounts for the vertical branch since it is flatter locally.
A frequency correction is required in a new fast time, T = (1 + ε2ω2 + · · · )t and the
slow time must be defined by

τ = ε4t(4.5)

rather than τ = ε2t, found in the general case of section 2.
As before, with (4.1)–(4.5) substituted into the main equations (2.1), we get a

sequence of equations at each power of ε. Unlike the previous analysis, the slow time
amplitude equations are found by considering a solvability condition at O(ε5) rather
than O(ε3). Rather than show the general case (the algebra is unwieldy), the method
will be illustrated by using specific numerical values for the parameters. The values
ρ = 1/12 and uv = 1/12 satisfy the vertical condition β(ρ, uv) = 0 and give bv = 3/8.
With these parameters, the rightmost Hopf bifurcation point occurs at

u− =
1

12
+
11 r2
5

ε2 +
7128

125
ε4 +O(ε6) and(4.6)

c+ =
121

24
− 121 r2ε

2 +O(ε6).

The O(ε) equations are[
u1T

v1T

]
=

[
1/12 −11/12
1/12 −1/12

] [
u1

v1

]
(4.7)

and the solutions are given by

[
u1(T, τ)
v1(T, τ)

]
= R(τ)eiθ(τ)

[
1 + i

√
10

1

]
ei

√
10

12 T +R(τ)e−iθ(τ)
[
1 + i

√
10

1

]
e−i

√
10

12 T .

(4.8)

A solvability condition applied to the O(ε3) equations gives the amplitude-
dependent frequency correction, ω2 =

72
25

√
10
(17 r2 − 1270R2). Finally, the slow time

amplitude equation for R(τ) is obtained by considering the O(ε5) equations. The
solvability condition gives the fifth order equation

Rτ =
−9797760

121
R5 − 104976 r2

55
R3 − c4

242
R.(4.9)

The relevant feature is that there are either one or two nonzero steady states depending
on the parameters c4 and r2 in addition to the zero steady state. The nonzero steady
state(s) satisfy

R2 =
−33r2 ±

√
332 − 875

2187c4

2800
.(4.10)
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ch2

c

U

(a)

ch2

c

U

(b)

Fig. 5. The subcritical branch of periodic solutions as calculated using the expressions in
section 4 with ε = .02 in Figure 5(a) and ε = .04 in Figure 5(b). The thick solid (thick dashed)
curve shows the maximum amplitude of the stable (unstable) branch of periodic solutions. The
parameters used were b = 3/8 and ρ = 1/12.
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There are different cases to consider. If r2 = 1, then (4.10) gives one real R
when c4 < 0 and the branch is supercritical (stable), but there are no real R if
r2 = 1 and c4 > 0. If r2 = −1, the branch is subcritical and (4.10) gives two real R
when 0 < c4 < 332(2187)/875. The lesser R value is unstable whereas the greater
R value is stable. The branch has a turning point at c∗4 = 332(2187)/875. This value
of c4 corresponds to the coalescence of the stable and unstable limit cycles forming a
semistable limit cycle. For r2 = −1 and c4 ≤ 0 the single value of R from (4.10) is
stable and represents a continuation of the subcritical branch.

Figure 5 shows the bifurcation diagram with the subcritical branch of periodic
solutions using the results of this section. The upper branch of stable periodic solu-
tions corresponds to onset of outbreaks since the populations can achieve a relatively
high amplitude oscillation. For the parameters of this example, the outbreak size is
ε4c∗4 = (ρ−r)2c∗4 = (1/12−r)2c∗4. The analysis in this section is valid when ε� 1 so it
can only be said to describe the onset of outbreaks. However, as is often the case, the
analysis agrees quite well with numerical results when the condition ε� 1 is relaxed
somewhat. Hence the parametric features of outbreaks (i.e., the size is proportional
to (ρ− r)2, etc.) can be extended beyond the onset case.

5. Further comments. The presence of two Hopf bifurcation points in the
Holling–Tanner model is ubiquitous. Actual ecological dynamics in the field observed
when physical parameters are varied agree qualitatively with features, such as out-
breaks, predicted by the model. The two-timing techniques give an organized way
to characterize the changes in the bifurcation diagram as the parameters are varied.
The modifications required in the degenerate cases have broad applicability to other
systems in which two Hopf bifurcations are present.
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Abstract. A long wave model is derived asymptotically from the nonlinear potential theory
equations. The flow regime of interest is incompressible, irrotational, and inviscid. Asymptotic anal-
ysis leads to a weakly nonlinear, weakly dispersive (variable coefficient) Boussinesq system valid for
a wide class of topographies. The mild slope hypothesis is not required and rapidly varying topogra-
phies are also considered. In analogy with atmospheric models we use a terrain-following coordinate
system. The novelty is that this coordinate system naturally suggests the weighted averaging of
terrain-following velocity components, as opposed to the depth-average of horizontal velocity compo-
nents found in standard shallow water formulations. Furthermore, a Schwarz–Christoffel toolbox is
used to provide additional insight on these new results. Regarding applications, the proposed model
can be used for studying solitary waves interacting with fine scale inhomogeneities, a theme of great
interest. The terrain-following model also presents potential numerical advantages for Boussinesq
solvers.
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1. Introduction. Shallow water (long wave) models have been known and stud-
ied for many years. Among several important partial differential equations that fall
into this class are weakly dispersive, weakly nonlinear models such as the KdV equa-
tion or the Boussinesq equations [7, 16]. The flow regime considered is incompressible,
irrotational, and inviscid. These long wave models can be derived asymptotically from
the nonlinear potential theory equations when the leading order terms, in the non-
linearity and dispersion parameters, are retained. Their analysis has received a great
deal of attention from both the mathematical theory and applications viewpoints.

Of great research interest are problems involving these models in the presence
of heterogeneous media, which can be of different nature depending on the applica-
tion. Shallow water models are not only of interest in ocean applications but also
very common in meteorology [5], where the shallow propagation medium is the at-
mosphere. Literature is abundant on the mathematical analysis of long wave models,
their numerical discretization and behavior, as well as the implementation of oceanic
and atmospheric simulators. Reference to some of this work will not be attempted
due to the richness of the subject. It is bound to be injudicious.

This work is concerned with the derivation of a long wave model valid in the pres-
ence of a wide class of bottom profiles, including rapidly varying topographies. Most of
the well-established long wave models are derived under the hypothesis of having mild
slope topographies. Among others, we mention three interesting recent works which
improve classical shallow water models and include topographic effects. Camassa,
Holm, and Levermore [2] derive shallow water equations that have a Hamiltonian
principle formulation and which model long-time effects of slowly varying topogra-
phies. Milewski [8] considers the propagation of long waves on the surface of a three-
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†Instituto de Matemática Pura e Aplicada, Est. D. Castorina 110, Jardim Botânico, Rio de

Janeiro, RJ 22460-320, Brazil (nachbin@impa.br).

905



906 ANDRÉ NACHBIN

dimensional fluid domain bounded below by a slowly varying topography. Weakly
nonlinear wave-topography interaction is studied in two limits giving rise to a vari-
able coefficient KdV equation or a variable coefficient KP (Kadomtsev–Petviashvili)
equation. We also mention the work of Schäffer and Madsen [15], who derive a new set
of Boussinesq equations which provide improvements for the linear dispersion relation
and shoaling characteristics. For rapidly varying topographies it is worth mentioning
the earlier work of Rosales and Papanicolaou [14], where effective KdV equations were
derived for rapidly varying periodic and (small amplitude) random topographies. But
in both cases back-scattering is negligible. Finally we point out the work of Hamilton
[6], which is the starting point for the present paper. Hamilton used a conformal
mapping technique to derive long wave models on a fluid of rapidly varying depth. In
particular, a Boussinesq system is presented [6, equations (A14)–(A15)] in the form
of a second order in time 2 × 2 system. The dependent variables considered are the
depth-averaged potential and wave elevation. We derive a first order 2 × 2 Boussi-
nesq system in terms of the wave elevation and the averaged terrain-following velocity
components. For flat channels our system reduces to the standard Boussinesq sys-
tem found in the literature [7, 16]. Hamilton’s conformal mapping technique has also
been used by the author to study the reflection-transmission problem over disordered
(random) topographies [11, 12, 13].

Moreover, our main result is the derivation of a weakly nonlinear, weakly disper-
sive (variable coefficient) Boussinesq system valid for a wide class of topographies and
multiple scattering problems. The mild slope hypothesis is not required. In analogy
with some atmospheric models [3] we use a terrain-following coordinate system for
the independent variables. This curvilinear coordinate system is obtained from the
theory of conformal mappings as suggested in Hamilton [6]. Hamilton does not use
dimensionless variables and performs the asymptotic simplification of equations argu-
ing through chosen length scales. As mentioned above, his formulation of a nonlinear
Boussinesq system is briefly outlined in Appendix A [6]. Our approach is to perform
the asymptotic simplification of the nonlinear potential theory equations in a system-
atic way (as in Whitham [16]) by using dimensionless variables and the conformal
mapping setting of Hamilton. All steps in the derivation are presented. The curvilin-
ear coordinate system naturally suggests the weighted averaging of terrain-following
velocity components, as opposed to the depth-average of horizontal components found
in standard shallow water formulations. For rapidly varying topographies the standard
depth-average strategy breaks down. As pointed out by Hamilton [6] the truncation
term in the near-bottom series expansion will dominate the leading order terms when
the bottom is rapidly varying (top of page 292 in [6]). In the dimensionless formulation
(given below in section 2) the large truncation term will be caused by the β/γ term in
the Neumann condition, when γ is small. In contrast, the asymptotic expansion, for
the free surface conditions in the curvilinear coordinates, generates truncation terms
that are negligible compared to the leading order ones. The Neumann condition is
trivial in this framework, as will be shown in section 4.

Furthermore, our use of dimensionless variables enables a better understanding
of the impact of the conformal mapping technique on the asymptotic analysis. Using
Driscoll’s [4] MATLAB Schwarz–Christoffel toolbox (SC-Toolbox), we provide addi-
tional insight on why the terrain-following Boussinesq system is a good model even
in the presence of rapidly varying topographies. Using the SC-Toolbox, we graph the
curvilinear coordinate system for both slowly and rapidly varying topographies. The
average of terrain-following velocity components is clearly seen as a weighted average
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along special curves, orthogonal to the topography and to the undisturbed free sur-
face. This weighted averaging naturally adjusts to either slowly varying or rapidly
varying topographies, as will be shown graphically with the SC-Toolbox.

Another result of interest is that the nonlinear shallow water equations can be
viewed as an O(α,

√
β) approximation of the full potential theory equations. The

standard notation is used: α is the nonlinearity parameter and β the dispersion
parameter. The nonlinear shallow water system is (of course) hyperbolic, but the
square root of the dispersion parameter plays a role only on the smoothing of sharp
features of the topography. This had been pointed out by Hamilton [6], but the rate
of smoothing was not explicitly identified, nor the nonlinear shallow water equation
presented.

The proposed model can be used for studying solitary waves over disordered
(random) topographies, a theme of great interest [9, 10]. This could not have been
done with existing Boussinesq models. We are currently investigating the numerical
advantages of working with this model. A potential advantage resides in the fact that
within this new framework, the variable (“topographic”) coefficient moves away from
the dispersive term (a third order derivative) and places itself at first order terms.
We have results that indicate the improved performance of Boussinesq solvers [10].

The paper is organized as follows. In section 2 we present the standard scaling [16]
and the (dimensionless) nonlinear potential theory equations in Cartesian coordinates.
Section 3 describes the conformal mapping theory in full detail along with the calcu-
lation of the variable free surface coefficient’s leading order term. The (dimensionless)
nonlinear potential theory equations, in curvilinear coordinates, are presented in sec-
tion 4 and the weakly nonlinear, weakly dispersive asymptotic theory in section 5.
The applications and conclusions are given in section 6. Appendix A contrasts the
terrain-following Boussinesq system with standard Boussinesq formulations.

2. Formulation and scaling. Let variables with physical dimensions be de-
noted with a tilde. We introduce the length scales σ (a typical pulse width or wave-
length), h0 (a typical depth), a (a typical wave amplitude), lb (the horizontal length
scale for bottom irregularities), and L (the total length of the rough region or the
total propagation distance). The acceleration due to gravity is denoted by g and the
reference shallow water speed is c0 =

√
gh0. Dimensionless variables are then defined

in a standard fashion [14, 16] by having

x̃ = σx, ỹ = h0 y, t̃ =

(
σ

c0

)
t,

η̃ = a η, φ̃ =

(
gσa

c0

)
φ, h̃ = h0 H

(
x̃

lb

)
.

The velocity potential φ(x, y, t) and wave elevation η(x, t) satisfy the dimensionless
equations [16]:

β φxx + φyy = 0 for −H(x/γ) < y < αη(x, t),

with the nonlinear free surface conditions

ηt + αφxηx −
1

β
φy = 0,



908 ANDRÉ NACHBIN

η + φt +
α

2

(
φ2
x +

1

β
φ2
y

)
= 0

at y = αη(x, t). The Neumann condition at the impermeable bottom is

φy +
β

γ
H ′(x/γ)φx = 0.

The bottom topography is described by y = −H(x/γ), where

H(x/γ) =

{
1 + n(x/γ) when 0 < x < L,
1 when x ≤ 0 or x ≥ L.

The bottom profile is described by the (possibly rapidly varying) function −n(x/γ).
The topography is rapidly varying when γ � 1. The undisturbed depth is given by
y = −1 and the topography can be of large amplitude provided that |n| < 1. We
do not need to assume that the fluctuations n are small, nor continuous, nor slowly
varying.

The following dimensionless parameters arise:

α = a/h0 (nonlinearity parameter)

β = h2
0/σ

2 (dispersion parameter)

γ = lb/σ (bottom irregularities compared to the wavescale).

Before proceeding with the asymptotic analysis at the level of equations, we first
change the underlying Cartesian coordinate system as follows.

3. Conformal mapping. A mapping from a uniform strip onto the fluid do-
main at rest is constructed analytically. Let the former (computational) domain be
defined in the complex w-plane and the rough undisturbed channel (physical domain)
be defined in the complex z-plane. Properties of the z(w) mapping will be calculated
below. As will be shown, working with a symmetric domain is very convenient for
the asymptotic analysis to be performed. This is the reason why we solve the (har-
monic) conformal mapping problem in such a symmetric configuration (cf. Figure 3.1).
Moreover, instead of referring to the w-plane as our computational domain, we will
(equivalently) interpret our formulation as working with orthogonal curvilinear coor-
dinates in the physical domain (the w-plane horizontal and vertical level curves). In
Figure 3.1 we superimpose the symmetric domain in the complex z-plane with the
curvilinear level curves from the w-plane coordinate system. The polygonal line at
the bottom of Figure 3.1 is a schematic representation of the topography.

Following Hamilton [6] we define a symmetric flow domain by reflecting the orig-
inal one about the undisturbed free surface (cf. Figure 3.1). We denote this domain
by Ωz, where z = x+ i

√
βy, and consider it as the conformal image of the strip Ωw,

where w = ξ + iζ̃ with |ζ̃| ≤ √
β. Then z = x(ξ, ζ̃) + i

√
βy(ξ, ζ̃) = x(ξ, ζ̃) + iỹ(ξ, ζ̃)

with x and ỹ a pair of harmonic functions on Ωw. As will become clear in the following
sections (in particular section 5), working with x and y is convenient for long wave
(shallow water) asymptotics. The depth is kept fixed in this case. On the other hand,
working with x and ỹ is convenient for computing harmonic functions because the
parameter β drops from the Laplacian. These are the reasons why we switch from
one scaling to the other.
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Fig. 3.1. The symmetric domain in the complex z-plane, where z = x(ξ, ζ̃)+iỹ(ξ, ζ̃). The lower
half (x ∈ [−5, 5], y ∈ [−3, 0]) is the physical channel with y = ζ̃ = 0 indicating the undisturbed
free surface. Superimposed in this complex z-plane domain are the (curvilinear) coordinate level
curves from the w-plane system ξζ̃. The polygonal line at the bottom of the figure is a schematic

representation of the topography (where ζ̃ = ±
√
β). This figure was generated using the SC-Toolbox

[4].

As will become clear, our main goal is to calculate ỹζ̃ along the undisturbed free

surface ζ̃ = ỹ = 0. This coefficient is calculated analytically by solving Laplace’s
equation for the imaginary part of the conformal change of variables. Once this
coefficient is obtained we proceed with the derivation of the full potential theory
equations in the curvilinear (ξ, ζ̃) coordinate system.

The imaginary part of the conformal map is the harmonic function that satisfies
[6, 11]:

∆ ỹ(ξ, ζ̃) = 0 in Ωw(3.1)

with Dirichlet boundary conditions

ỹ(ξ,±
√

β) = ± h(x(ξ)) ≡ ±
√

βH

(
x(ξ,±√

β)

γ

)
.(3.2)

Its harmonic conjugate is x(ξ, ζ̃). The Green’s function for problem (3.1)–(3.2) is
slightly different from Hamilton’s because we introduce dimensionless variables and
keep depth effects through the parameter

√
β. The Green’s function, vanishing along

the lines ζ̃ = ± √
β, is given by

G(w;w0) = Re log
(
(eπw/2

√
β − eπw0/2

√
β)/(eπw/2

√
β + eπw0/2

√
β)
)
,(3.3)

where Re stands for the real part and the overbar denotes complex conjugation. Near
a source point w0

G(w;w0) ∼ Re log(w − w0),
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meaning that it behaves like the free-space Green’s function. At the solid boundaries
ζ̃ = ±√

β,

G ≡ 0.

Additional asymptotic properties are [6]

G, Gξ → 0 as ξ → ±∞ in −
√

β ≤ ζ̃ ≤
√

β.

Using Green’s third identity, we have that

2π ỹ(ξ0, ζ̃0) =

∮
∂Ωw

ỹ(ξ, ζ̃)
dG

dn
(w;w0) ds.

By the conditions above this is the same as

2π ỹ(ξ0, ζ̃0) =

∫ ∞

−∞
h(x(ξ))

(
G+

ζ̃
+ G−

ζ̃

)
dξ,

where

G+

ζ̃
=

∂G

∂ζ̃
(ξ,+

√
β; ξ0, ζ̃0) and G−

ζ̃
=

∂G

∂ζ̃
(ξ,−

√
β; ξ0, ζ̃0).

Differentiating this identity with respect to ζ̃0 and evaluating at ζ̃0 = 0 we get our
quantity of interest. Namely we have that at the undisturbed free surface

ỹζ̃0(ξ0, 0) =
1

2π

∫ ∞

−∞
h(x(ξ))

(
G+

ζ̃ζ̃0
+ G−

ζ̃ζ̃0

)
dξ.(3.4)

The kernel comes from evaluating

Gζ̃ζ̃0
(ξ,−

√
β; ξ0, 0) + Gζ̃ζ̃0

(ξ,
√

β; ξ0, 0) =
2π2

β

e
π√
β

(ξ+ξ0)

(e
π√
β
ξ
+ e

π√
β
ξ0
)2

(3.5)

=
π2/β

2 cosh2 π

2
√
β
(ξ − ξ0)

,

and finally we obtain

ỹζ̃0(ξ0, 0) =
π

4β

∫ ∞

−∞

√
βH(x(ξ,−√

β)/γ)

cosh2 π

2
√
β
(ξ − ξ0)

dξ.(3.6)

This expression was obtained by Hamilton [6], but without the β1/2-scaling. This
intermediate β1/2-scale plays an important role indicating the degree of topography
smoothing. The rate of smoothing actually depends on β1/2/γ. Numerical examples
of the topography smoothing are presented at the end of this paper (Figures 6.1 and
6.2). We call β1/2 an intermediate scale because we will work with an integer power
expansion in β as in Whitham’s [16] derivation of Boussinesq’s equations.
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In the (ξ, ζ̃) coordinate system the varying bottom topography is straightened
out and a variable coefficient, namely ỹζ̃ , will appear in the free surface condition.

Before writing the equations in the (ξ, ζ̃) system note that∫ ∞

−∞

π

4
√
β
sech2

[
π

2
√
β
(x− y)

]
dx =

1

2
tanh

[
π

2
√
β
x

]∞
−∞

= 1.(3.7)

Hence as
√
β ↓ 0 the kernel in (3.6) goes to a delta function and the bottom is felt at

the free surface level without any smoothing. Smoothing takes place only for β1/2 > 0.
At the undisturbed level we define the variable free surface coefficient

M(ξ) ≡ ỹζ̃(ξ, 0) = 1 +m(ξ),

where

m(ξ;
√

β, γ) ≡ π

4
√
β

∫ ∞

−∞

n(x(ξ0,−
√
β)/γ)

cosh2 π

2
√
β
(ξ0 − ξ)

dξ0 = (K ∗ (n ◦ x)) (ξ).(3.8)

The (
√
β, γ) parameter dependence will be omitted for brevity. We are ready to

rewrite the potential theory equations in the (ξ, ζ̃) coordinate system. The velocity
potential φ(ξ, ζ̃, t) when represented in the curvilinear coordinate system is such that

φξ = φx xξ(ξ, ζ̃) + φỹ ỹξ(ξ, ζ̃)

and

φ
ζ̃
= φx xζ̃(ξ, ζ̃) + φỹ ỹζ̃(ξ, ζ̃).

In particular, at the undisturbed free surface or for linear problems,

φξ(ξ, 0) =M(ξ)φx

and

φ
ζ̃
(ξ, 0) =M(ξ)φỹ.

Note that we have used the Cauchy–Riemann equations. Inverting the relation given
above, we have

φx =
1

|J |
[
ỹζ̃φξ − ỹξφζ̃

]
(3.9)

and

φỹ =
1

|J |
[
−xζ̃φξ + xξφζ̃

]
,(3.10)

where

|J | = xξ ỹζ̃ − ỹξxζ̃ = ỹ2
ζ̃
+ ỹ2

ξ .

Moreover

φ2
x + φ2

ỹ =
1

|J |
(
φ2
ξ + φ2

ζ̃

)
,(3.11)
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Fig. 3.2. This is a schematic figure showing the changes of scales performed, indicated by
S1, S2, and the conformal transformation. The geometries on the left are in the shallow water
framework (with unit depth). The geometries on the right are used so that the velocity potential
solves Laplace’s equation in the corresponding variables.

which relates the speeds in the two coordinate systems.
In the new coordinate system the position of the free surface will be described by

some function, here denoted by N(ξ, t), such that

ζ̃ = α
√

βN(ξ, t).(3.12)

The new free surface profile, represented by N(ξ, t), does not necessarily resemble
η(x, t) as indicated in the schematic Figure 3.2. Nevertheless this is a material curve.
In the Cartesian coordinates (x, ỹ) the dimensionless kinematic condition was given
by √

βηt + αφx
√

βηx − φỹ = 0,

which is the same as

D

Dt

(
ỹ − α

√
βη(x, t)

)
= 0,

with the convective derivative

D

Dt
≡ ∂t + α

(
φx∂x + φỹ∂ỹ

)
.

In the curvilinear coordinates it becomes

D
Dt

≡ ∂t +
α

|J |
(
φξ∂ξ + φ

ζ̃
∂ζ̃

)
,

where we have used that ∂x = |J |−1(ỹζ̃∂ξ − ỹξ∂ζ̃) and the corresponding expression
for ∂ỹ (cf. (3.9) and (3.10)). The new kinematic condition is obtained by performing

D
Dt

(
ζ̃ − α

√
βN(ξ, t)

)
= 0

and is presented below.
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Fig. 4.1. A schematic figure showing a slowly varying topography in the xy coordinate system
together with the ξ and ζ̃ level-curves. This figure was generated using SC-Toolbox [4].

4. Nonlinear potential theory equations in terrain-following coordi-
nates. The scaled water wave equations in the fixed orthogonal curvilinear coor-
dinates (ξ, ζ̃) (cf. Figure 4.1) are

φξξ + φ
ζ̃ζ̃
= 0, −

√
β < ζ̃ < α

√
βN(ξ, t),(4.1)

with free surface conditions

|J |Nt + αφξNξ − 1√
β
φ
ζ̃
= 0(4.2)

and

φt + η +
α

2|J |
(
φ2
ξ + φ2

ζ̃

)
= 0(4.3)

at ζ̃ = α
√
βN(ξ, t). The bottom condition is

φ
ζ̃
= 0 at ζ̃ = −

√
β.(4.4)

Regarding the initial conditions note that by starting with a pulse over a region
of uniform depth, the initial data are not affected by the conformal mapping (cf.
Figure 4.1 at x ≤ −1 and x ≥ 11). We need only to replace x by ξ in the initial wave
conditions. Away from the rough region

1 +m(ξ) = ỹζ̃(ξ, 0) ≈ 1,

where this adjustment is exponentially fast. Numerical evidence of this adjustment is
presented in Figures 6.1 and 6.2. The exponential adjustment rate depends on β1/2,
the important scale we retained in the coefficient (3.8). Hence from the Cauchy–
Riemann equations, xξ(ξ, 0) ≈ 1. This was not noticed in Hamilton’s work [6] because
the analysis was not done in dimensionless variables. Scales were used only to argue
which terms could be dropped.

Moreover, it is important to point out that these equations are the same as those
obtained by Hamilton [6], using a variational principle. The difference is in our use
of dimensionless variables. The corresponding dimensionless variational principle is
given below for completeness. Hamilton [6, Appendix A] showed that the (ξ, ζ̃) change
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of variables can be used within the functional given in the books of Whitham [16] and
Mei [7]. The variational pressure principle is

I =

∫ ∫
R

Ldxdt,(4.5)

where R is a region in (x, t) space and the dimensionless Lagrangian is given by

L = −
√

β

∫ α
√
βη(x,t)

−
√
βh(x,y)

[
φt + ỹ +

α

2
(∇φ · ∇φ)

]
dỹ.(4.6)

Under the change of variables the functional becomes

I = −
√

β

∫ ∫
R

∫ α
√
βN

−
√
β

[
|J |
(
φt +

1√
β
ỹ(ξ, ζ̃)

)
+

α

2
(∇φ · ∇φ)

]
dζ̃dξdt,(4.7)

where now ∇ = (∂ξ, ∂ζ̃). Minimizing this functional, by taking variations in φ and
N , Hamilton obtained a system of equations similar to the dimensionless one derived
above.

5. Asymptotic theory. The asymptotic theory is performed at the level of
equations. We are interested in the shallow water/long wave regime, more specifically
in the weakly dispersive, weakly nonlinear regime. As mentioned in section 3 it is
convenient to normalize in the vertical direction and work with a unit depth channel
(cf. scaling S2, Figure 3.2) when performing a long wave (shallow water) asymptotic
analysis. The geometry is kept fixed and we can focus on the leading order terms of
the asymptotic expansion. Let the origin of the curvilinear coordinate system be at
the bottom and define ζ̃ =

√
β(ζ − 1). Substitute in the equations above to get

βφξξ + φζζ = 0 at 0 < ζ < 1 + αN(ξ, t),(5.1)

with free surface conditions

|J |Nt + αφξNξ − 1

β
φζ = 0,(5.2)

η + φt +
α

2|J |
(
φ2
ξ +

1

β
φ2
ζ

)
= 0(5.3)

at ζ = 1 + αN(ξ, t) and

φζ = 0 at ζ = 0.(5.4)

As in Whitham [16] consider a power series expansion near the bottom of the
channel in the form

φ(ξ, ζ, t) =

∞∑
n=0

ζn fn(ξ, t).(5.5)

This function satisfies the scaled Laplace equation when

fm+2 =
−β

(m+ 2)(m+ 1)

∂2fm
∂ξ2

.
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Moreover, the Neumann condition at the bottom is satisfied when all odd terms (i.e.,
f2m+1) are zero. Hence by denoting f0(ξ, t) = f(ξ, t) for simplicity, we have

φ(ξ, ζ, t) =
∞∑
n=0

(−β)n

(2n)!
ζ2n ∂

2nf(ξ, t)

∂ξ2n
,(5.6)

a power series expansion in β. For this reason the β1/2-scale was called an inter-
mediate scale earlier. The velocity potential, represented by the power series above,
satisfies the scaled Laplace equation and the homogeneous Neumann condition along
the bottom. Up to this point we have done exactly the same steps as in Whitham’s
book [16] for a flat channel in Cartesian coordinates.

We must now satisfy the free surface conditions. At ζ = ζFS ≡ 1 + αN(ξ, t) we
have that

φξ(ξ, ζFS , t) = fξ − β

2
(1 + αN)2fξξξ +O(β2),(5.7)

φζ(ξ, ζFS , t) = −β(1 + αN)fξξ +
β2

3!
(1 + αN)3fξξξξ +O(β3),(5.8)

and

φt(ξ, ζFS , t) = ft − β

2
(1 + αN)2fξξt +O(β2).(5.9)

Note that both (new) free surface conditions have a time dependent coefficient.
This is due to the presence of the Jacobian, of the time independent change of coor-
dinates, evaluated at the time dependent free surface. Within the weakly nonlinear,
weakly dispersive approximation considered, it is possible to eliminate this time de-
pendence as will be shown below. Time independent coefficients are better for analysis
and computations. As a first step, in this direction, it is worth noticing that at the
smooth free surface ζ̃FS = α

√
βN(ξ, t) the Jacobian is

|J |(ξ, t) = ỹ2
ξ (ξ, ζ̃FS) + ỹ2

ζ̃
(ξ, ζ̃FS)

and by the Taylor polynomial formula

|J |(ξ, t) = ỹ2
ζ̃
(ξ, 0) + α2RJ(ξ, ζ̃M ) =M(ξ)2 +O(α2), 0 < |ζ̃M | < |ζ̃FS |.(5.10)

The Jacobian can be well approximated by an O(1) time independent coefficient.
The time dependent correction term is O(α2) due to the fact that the curvilinear
coordinate system is symmetric about ỹ = ζ̃ = 0. There are no O(α) terms. For the
same reason, approximating ζ̃(x, ỹFS) in ỹ leads to

N(ξ, t) =
1

M(ξ)
η(x(ξ), t) + α2βRN (ξ, ỹM ), 0 < |ỹM | < |ỹFS |.(5.11)

Substituting expressions (5.7)–(5.11) in the free surface conditions, we get

η + ft − β

2
fξξt +

α

2M2(ξ)
f2
ξ = O(αβ, β2),
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M(ξ) ηt +

[(
1 +

α

M(ξ)
η

)
fξ

]
ξ

− β

6
fξξξξ = O(α2, αβ, β2).

The variable coefficients are time independent and depend only on ỹζ̃(ξ, 0) as men-
tioned before in the conformal mapping section.

As in Whitham [16] it is useful to work with a conveniently averaged velocity
component. From (5.7) we have that

φξ(ξ, ζFS , t) ≡ u(ξ, ζFS , t) = ũ(ξ, t)− β

2
ζ2
FS ũξξ(ξ, t) +O(β2),

where ũ ≡ fξ is the “slip-velocity” along the bottom topography. In analogy with the
σ-coordinates used in atmospheric flows [5], we call φξ the terrain-following velocity
component [3]. Its transversal average (along a ξ level-curve) is defined as

U(ξ, t) ≡ 1

ζFS

∫ ζFS

0

φξ(ξ, ζ, t)dζ.(5.12)

In physical space this integral represents a weighted average of the terrain-following
velocity components. We provide further insight about the averaging in Figure 5.1.
Therefore using the potential’s power series representation,

U(ξ, t) =

∞∑
n=0

(−β)n

(2n)!

[
1

ζFS

∫ ζFS

0

ζ2ndζ

]
∂2n+1f(ξ, t)

∂ξ2n+1
= ũ− β

6
ũξξ +O(αβ, β2).

Differentiate the first free surface condition with respect to ξ and substitute for
depth-averaged velocity through the expansion

ũ = U +
β

6
Uξξ +O(αβ, β2).

We get a terrain-following Boussinesq system


M(ξ)ηt + [(1 + αη/M(ξ))U ]ξ = 0,

Ut + ηξ +
α
2

[
U2/M2(ξ)

]
ξ
− β

3Uξξt = 0.
(5.13)

This is a weakly nonlinear, weakly dispersive system with variable coefficients, all
depending on M(ξ;

√
β, γ). The O(α2, αβ, β2) truncation terms are small and were

dropped. This was not the case when working with a Cartesian coordinate system.
The truncation terms could be large. Note that working with the terrain-following
velocity we generated (formally) a converging asymptotic expansion. This is true even
in the presence of rapidly varying topographies (γ � 1), as opposed to the original
(nonconverging) expansion in Cartesian coordinates. Our physical interpretation is
that the Boussinesq system with weighted terrain-following velocities averages is more
representative, as an asymptotic simplification of the full set of equations. Namely, the
bulk of the terrain-following velocity components do not deviate too much from their
average as opposed to the horizontal components. Figure 5.1 corroborates this inter-
pretation from a graphical perspective. The weighted velocity averages are performed
over the ξ level-curves (vertical curves in Figure 5.1; curves over which ζ varies, but
ξ is fixed). Note that even with high graphing resolution (Figure 5.1(b)) the effective
flow domain penetrates very little into the narrow valleys. The bulk of the average
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Fig. 5.1. The effective flow domain. The horizontal resolution is equal to (a) 10 ζ level-curves,
(b) 100 ζ level-curves. This figure was generated using the SC-Toolbox [4].

is performed over the smoothly varying “outer” terrain-following velocities. In other
words the contribution from the highly corrugated valleys is very small: 10% below
the lowest ζ level-curve in 5.1(a) and 1% in 5.1(b). Clearly the outer flow prevails
in the weighted average (5.12). In contrast if the topography is slowly varying the
weights for the inner valley regions will be larger as indicated in Figure 4.1.

Regarding the use of averaged velocities, we do this change of dependent variables
because standard long wave models use depth-averaged velocities. Moreover, the use
of this dependent variable improves the stability for the high wavenumber regime of
the Boussinesq system.

When the channel is flat the metric term (M(ξ) = 1+m(ξ)) reduces to one and we
recover the standard dimensionless Boussinesq system [16]. Note that system (5.13)
is different from that obtained by Hamilton (cf. equations (A14) and (A15) in [6]),
which has powers of the metric term and an ηtt term. A comparison with standard
Boussinesq systems is presented in the appendix of the present paper. When linearized
they all have the same dispersion relation.

6. Applications and conclusions. We now point out some important features
regarding applications with the terrain-following Boussinesq system:

(i) The derivatives of the topography-related coefficients are all well defined, even
in the presence of corners or steps along the bottom. The metric term M(ξ) is
an analytic function. This is not the case in the classical Boussinesq equations (cf.
Appendix A) as pointed out in Hamilton’s work [6].

(ii) Under the curvilinear coordinate formulation, the nonlinear shallow water
equations are viewed as an O(α,

√
β) approximation to the full potential theory equa-

tions. Dropping the O(β) term from system (5.13) above, we are left with a hyperbolic
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system, but we are still keeping an O(
√
β) term inside the metric term (cf. (3.8)):


M(ξ;

√
β, γ)ηt +

[(
1 + αη/M(ξ;

√
β, γ)

)
U
]
ξ
= 0,

Ut + ηξ +
α
2

[
U2/M2(ξ;

√
β, γ)

]
ξ
= 0.

(6.1)

This has a great advantage in opposition to the β → 0 limit used in the standard
shallow water derivations. In the limiting β → 0 case derivatives at corners along the
bottom are not defined. In the present formulation consistency is preserved between
the two formulations since in the vanishing β limit the kernel of the metric term goes
to a Dirac delta function (cf. (3.7)) and singularities at the bottom are recovered. But
retaining the intermediate O(

√
β) term leads to a (hyperbolic) shallow water system

having a smooth, well-defined coefficient, even if the topography has corners. The
degree of smoothing/averaging performed by the metric-kernel is controlled by

√
β

and γ (cf. (3.8)). This last point was not observed in Hamilton’s work [6] since the
metric term was not scaled in terms of depth/wavelength scales. By averaging we
mean cases where the bottom is rapidly varying (γ � 1).

A schematic example is presented in Figure 6.1. The conformal mapping was
computed numerically [12] as well as the metric term. We considered periodic moun-
tain ranges having identical triangular mountains. The height of each triangle is equal
to 0.5 and the base equal to 2.0 units. A natural question to ask is, What is the un-
derlying value of β in this example? As will be discussed below, the averaging effect
is related to the ratio between the scales

√
β and γ. This was pointed out in Nachbin

[12, p. 366] where a rule was devised in order to incorporate both scales. In order
to incorporate these two scales, the Schwarz–Christoffel mapping was performed on
mountains varying on the “modified” length scale

l̃b ≡ lb/(σ
√

β).

Note the difference of notations from [12], lp ≡ σ and (β = h0/λ)—there is the
√
β

here. In other words √
β = γ/l̃b.

Since for the triangular mountains l̃b = 2, then we have that β = 0.25γ
2. A typical γ

for rapidly varying topographies is 0.1 (10 mountain peaks per pulse width).
In the first example we contrast the metric term for a periodic mountain range

with 5 mountains with that for a mountain range (of the same period) with 7 moun-
tains. We clearly observe the exponential adjustment mentioned earlier. We also
observe the smoothing along the sharp summit of the triangular mountains and the
averaging as we put the mountains closer together (cf. Figure 6.2). In this case we
have l̃b = 1 and therefore β = γ2. As indicated above averaging (in a homogenization
sense) takes place as soon as the mountain scale parameter γ is smaller than the sup-
port of the sech2-kernel, controlled by β1/2 (see (3.7)). Note that the topography’s
derivative scales like 1/γ while the metric term’s derivative always scales like 1/

√
β.

One of the advantages of this formulation is that the latter is independent of γ. This
is a useful fact in the discussion that follows.

(iii) It is worth pointing out that first order derivatives of the metric term are
produced. These terms are O(1/

√
β) (cf. (3.8)) and are generated by the Nξ term,

in the kinematic condition, and by differentiating Bernoulli’s Law with respect to
ξ. In particular, these O(1/

√
β) terms are present in the O(αβ, β2) terms that were
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Fig. 6.1. The metric term m(ξ) = M(ξ)−1 for two periodic topographies. One was generated by
5 triangular mountains along the bottom while the other by 7 triangular mountains. The two metric
terms match very well over the first 5 mountains, confirming the exponentially fast adjustment
mentioned earlier. The β1/2-scale plays a role in this adjustment.
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Fig. 6.2. Averaging observed through the metric term m(ξ) = M(ξ) − 1. The triangular
mountains are closer together, i.e., varying on a faster scale. The base of each triangle is 1/2 of
those in Figure 6.1.

dropped from Bernoulli’s Law. Nevertheless, one should not be concerned with the
loss of validity of the asymptotics. The O(1/

√
β) term does not alter the ordering of

the terms presented in the asymptotic analysis above. It can be easily verified that
when the equation

η + ft − β

2
fξξt +

α

2M2(ξ)
f2
ξ = O(αβ, β2)

is differentiated with respect to ξ, the 1/
√
β term will only affect the O(αβ) terms.

For example, if we take O(αβ)/
√
β and compare it to the leading O(α) nonlinearity

term, we easily note that reordering takes place only if
√
β > 1, which is not the long

wave regime we started with. Hence as long as 0 < β � 1 the equations derived are
valid weakly nonlinear, weakly dispersive approximations to the nonlinear potential
theory equations. Namely they are valid as the leading order corrections in α and
in β. The question of including the next order terms (in either parameter) was not
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relevant to our application of interest [9]. Perhaps there are applications where these
terms might play a role. We have not attempted to identify these regimes. Having
set that β > 0 guarantees that the variable coefficients can be differentiated in the
standard way. Delta functions do not arise at discontinuities of the topography.

(iv) Regarding applications, these new equations enable the study of the interac-
tion of linear and nonlinear long surface waves with rapidly varying features of the
topography. To our knowledge up to the present date, only small amplitude or mild
slope topographies have been considered for Boussinesq-type models. The present
model expands the regime of applicability and is consistent with previous Cartesian
formulations in the case where γ � 1. In this regime the conformal mapping is nearly
the identity map at the free surface level.

Many new theoretical and numerical problems can now be addressed with this
new curvilinear formulation. A particular theoretical problem that we investigated
through this new model is the O’Doherty–Anstey approximation of weakly dispersive
waves. This theory characterizes the apparent diffusion of transmitted pulses due to
disordered multiple scattering. This theory, initially developed for acoustic waves [1],
was generalized to weakly dispersive waves by Muñoz Grajales and Nachbin [9]. Using
the terrain-following Boussinesq system, we obtained expressions that capture both
the attenuation of the transmitted pulse as well as the forward scattering radiation.
Numerical validation experiments include the apparent diffusion of solitary waves in
the presence of a highly disordered topography. We are currently also investigating an
interesting numerical problem regarding the use of the terrain-following formulation
[10]. The classical system (A.2) contains a term difficult to handle numerically in
the presence of a topography. This is because the topography-related coefficients
multiply the terms with higher order derivatives. In the curvilinear formulation the
higher order term has a constant coefficient. We have obtained numerical evidence [10]
that the “repositioning” of topography related terms (namely the metric terms) leads
to improvements in the performance of Boussinesq solvers. We have also obtained
results regarding the time reversed refocusing (i.e., waveform inversion) for weakly
dispersive waves [10].

The Boussinesq system (5.13) can be cast into a second order differential equation.
Take the system at the stage where we had

η + ft − β

2
fξξt +

α

2M2(ξ)
f2
ξ = O(α2, αβ, β2),

M(ξ) ηt +

[(
1 +

α

M(ξ)
η

)
fξ

]
ξ

− β

6
fξξξξ = O(α2, αβ, β2).

From these equations we have that

ηt = −ftt +O(α, β), M(ξ)ηt = −fξξ +O(α, β), and fξξ =M(ξ)ftt +O(α, β).

These approximations are used after we calculate the time derivative of the first
equation, multiply it by M(ξ), and subtract it from the second equation to get

fξξ −Mftt +
β

3
Mfξξtt − α

M

[
f2
ξ +

M

2
f2
t

]
t

+ α

(
M ′

M2

)
ftfξ = O(α2, αβ, β2).(6.2)

By dropping the O(α2, αβ, β2) term we get the second order Boussinesq equation
governing the velocity potential along the bottom topography. It is interesting to note



A TERRAIN-FOLLOWING BOUSSINESQ SYSTEM 921

that in the Boussinesq system (5.13) no new terms were generated by the curvilinear
coordinates. The only novelty is the presence of the metric term M(ξ). Nevertheless,
a new term appears when the system is reduced to a second order differential equation.
The new term contains the derivative of the metric term. Again, in the absence of a
topography, this differential equation reduces to the standard second order Boussinesq
equation [7].

Appendix A. Boussinesq models and their linearization. Consider Pere-
grine’s model (Mei [7, p. 512]):

ηt +∇ · [(h+ η)U ] = 0,(A.1)

Ut + U · ∇U + g∇η =
h

2
∇ [∇ · (hUt)]− h2

6
∇ [∇ · Ut] .

Restricting to one-dimensional flows it becomes

ηt + ∂x [(h+ η)U ] = 0,(A.2)

Ut + UUx + gηx =
h

2

[
∂2
x(hUt)

]− h2

6
Uxxt.

Linearize this system by letting η̃ = εη and Ũ = εU . Drop the ˜ to get

ηt + (hU)x = 0,(A.3)

Ut + gηx =
h

2
(hUt)xx − h2

6
Uxxt.

Moreover, if the bottom is flat (h(x) ≡ h0),

ηt + h0Ux = 0,(A.4)

Ut + gηx =
h2

0

3
Uxxt.

The dimensionless Boussinesq equation derived in Whitham (page 467 of [16], using
the dispersion relation) is

ηt + Ux = 0,(A.5)

Ut + ηx = −β

3
ηxtt.

Moreover, the linearized terrain-following Boussinesq equation is

M(ξ)ηt + Uξ = 0,(A.6)

Ut + ηξ =
β

3
Uξξt.
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All these Boussinesq systems share the same dispersion relation:

ω2 =
k2

1 + 1
3βk

2
,(A.7)

which is stable as k → ∞. In (A.4) the variables are in their original dimensions.
Thus, for the sake of comparison, we set gh0 = 1 and h2

0 = β. This means that the
characteristic wavelength is taken to be equal to one.
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Abstract. We consider the form and sensitivity to risk of the price of perpetual American
interest rate derivatives for a broad class of one-factor diffusion models of interest rates. We first
present, in terms of the infinitesimal coefficients of the underlying interest rate dynamics, a set of
usually satisfied conditions under which the value of the contingent claim is convex, at least on the set
where exercising the contract is suboptimal. In line with previous parametrized models considering
the valuation of perpetual interest rate derivatives, we find that given our general conditions, the
convexity of the exercise payoff is preserved under rational valuation. Consequently, we are able
to establish a set of typically satisfied conditions under which increased volatility unambiguously
increases the price of the claim and postpones rational exercise by expanding the region where
exercising the claim is suboptimal.
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optimal stopping
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1. Introduction. The sign of the relationship between volatility and the value
of a contingent contract depends on the form of the value as a function of the current
state of the underlying asset. Volatility, being a second-order property, affects the
price of the contingent claim through the quadratic variation process and, therefore,
increases or decreases the price depending on whether the price is convex or concave.
As was proven in [22] and [24], the convexity of the exercise payoff is preserved under
risk-neutral valuation for most path-independent claims. Consequently, these authors
found that the sign of the relationship between volatility and the arbitrage free price
of a contingent contract is positive and, therefore, that increased volatility increases
the arbitrage free price of path-independent claims. This property was shown to be
valid also for the American-type path-independent contingent claims in both [22] (in
the absence of dividends) and [1] (in the presence of dividends). In [2], this result
was subsequently shown to be valid for a broad class of path-dependent European
interest rate derivatives as well. In [27], the convexity of the price and the positivity
of the relationship between volatility and the exercise incentives of a rational investor
were established for a special case of the Cox–Ingersoll–Ross model. A similar result
was found in [15], which considered the valuation of perpetual variable loan contracts
subject to an explicit parametrized short rate model. However, before now not much
has been done in considering the robustness of the qualitative results on American
interest rate derivatives obtained by applying explicit parametrized interest rate mod-
els (cf. [15], [27], and [30]). This is somewhat surprising in light of the large extent
of the literature on term structure models of interest rates (see, for example, [7], [8,
chapters 15–20], [9], [10], [12], [13, chapter 19], [14], [15], [16], [17], [19], [21], [23], [25],
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[26], [27], [30], [31], [32], [34], [35], and [36]) and in light of the fact that this class
of valuation problems arises frequently in real option studies considering irreversible
investment in the presence of interest rate uncertainty (cf. [18, pp. 48–51] and [27])
and in the valuation of perpetual variable rate loan contracts (cf. [15]). Moreover,
as is stated in [30], “...volatility is a key variable in pricing contingent claims such as
interest rate options and bonds.” Consequently, the sign of the relationship between
volatility and the value of interest rate derivatives is an important factor characteriz-
ing the exercise incentives of a rational investor as a function of the volatility of the
underlying stochastic interest rate dynamics.

Given these arguments, we plan to consider in this study both the form and the
comparative static properties of the value of potentially infinitely lived American in-
terest rate derivatives for a broad class of one-factor models of the short rate. For
the sake of generality we model the short rate as a linear diffusion with known func-
tional infinitesimal characteristics (i.e., known drift and volatility coefficient). By
then applying the classical theory of diffusions, we first demonstrate that given a
set of usually satisfied continuity and monotonicity conditions (which are satisfied
by, among others, the Black–Karasinski, Cox–Ingersoll–Ross, Dothan, Merton, and
Vasiček models), the minimal excessive mappings for the considered one-factor short
rate diffusion model are globally convex. Since any nontrivial excessive mapping for
the diffusion can be expressed in terms of the minimal ones and the value of an Amer-
ican contingent contract is excessive, we find that the value is convex, at least on the
continuation region where waiting is optimal. Consequently, we find that increased
volatility increases or leaves unchanged the pre-exercise value of these claims and,
therefore, postpones the rational exercise of the contract by expanding or leaving un-
changed the continuation region where waiting is optimal. In other words, we are
able to demonstrate that increased volatility unambiguously increases the required
exercise premium of a rational investor. The main reason for this finding is shown
to be the fact that while increased volatility may (as it typically does) increase the
value of the underlying payoff, it simultaneously also increases the value of holding
the option alive. Since the latter effect dominates the former, we find that the net
effect of increased volatility on waiting is unambiguously positive. Moreover, since the
curvature of the minimal excessive mappings is independent of the exercise payoff, we
also observe that the sign of the relationship between volatility and rational exercise
is a process-specific property independent of the form of the underlying payoff. (See
[1] for a similar observation in the path-independent case.)

The contents of this study are as follows. In section two we present the one-factor
interest rate dynamics and the considered valuation problem (an optimal stopping
problem). In section three we then consider the impact of increased volatility on
the value of the interest rate derivative. Finally, our principal results are illustrated
explicitly in section four.

2. Valuation and optimal stopping. As is well known from the literature on
interest rate derivatives, the term structure of interest rates is entirely determined
by specifying the dynamic behavior of the short rate of interest under the equivalent
martingale measure Q [7], [8, chapters 16–17], [13, chapter 19], [20], [21]. In line with
this argument, consider now the case where the interest rate process {r(t); t ≥ 0} is
described under the risk-neutral measure Q on the state-space (a, b) = I ⊆ R by the
time homogeneous stochastic differential equation

dr(t) = µ(r(t))dt+ σ(r(t))dŴ (t), r(0) = r,(1)
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where Ŵ (t) is Q-Brownian motion and the mappings µ : I �→ R and σ : I �→ R+ are
given sufficiently smooth mappings (at least continuous) for which both the existence
and the uniqueness of a solution for (1) are guaranteed (cf. [11, pp. 46–47]). In
accordance with most applications, we assume that σ(r) > 0 for all r ∈ I and that
the upper boundary b > 0 of the state-space I is unattainable for the diffusion r
(typically, b = ∞). Thus, even while the short rate may be expected to increase, it
is never expected to attain the maximal possible state b in finite time. We will also
assume that the lower boundary a ≤ 0 is either natural (as 0 is for the Dothan and
Merton models and −∞ is for the Vasiček model), entrance, exit, or regular. It is also
worth pointing out that the boundary behavior of the short rate process r(t) typically
depends on the precise parametrization of the model. For example, depending on the
relative sizes of the parameters κ, θ, σ ∈ R+, 0 may be either regular, exit, or entrance
for the familiar Cox–Ingersoll–Ross model:

dr(t) = κ(θ − r(t))dt+ σ
√
r(t)dŴ (t), r(0) = r.

Given these assumptions, it is our purpose now to consider the optimal stopping
problem

V (r) = sup
τ
Er

[
e−

∫ τ
0
r(s)dsΦ(r(τ))

]
,(2)

where τ is an arbitrary Ft-stopping time and Φ : I �→ R+ is a continuous mapping
satisfying the intuitively clear boundedness condition

Er

[
e−

∫ t
0
r(s)dsΦ(r(t))

]
<∞(3)

for all (t, r) ∈ R+ × I. That is, we plan to consider the determination of the value
and rational exercise price of a perpetual American contingent claim with exercise
payoff Φ(r). This type of valuation problems arise frequently in studies considering
either the pricing of American-type interest rate derivatives or the impact of interest
rate uncertainty on real investment opportunities (cf. [27]). It is worth emphasizing
that the value V (r) should be viewed as the value of a derivative on a traded asset,
since interest rates themselves are not traded. Put somewhat differently, typically
V (r) constitutes the value of a compound contingent contract. For example, if Φ(r) =
(p(r, T )−c)+, where p(r, T ) is the value of a zero coupon bond maturing T periods from
exercise (a T -bond) and c ∈ (0, 1) is a known strike price of the option (cf. [27]), then
V (r) is the value of a perpetual call option on a T -bond. However, since our approach
admits more complex contracts as well, we stick to the general notation. Moreover,
since the time horizon of the valuation may be finite (as for the Cox–Ingersoll–Ross
model), we observe that (2) constitutes a valuation subject to a potentially finite
expiration date. In order to analyze the valuation problem (2), we first have to
consider the form of the fundamental solutions ψ : I �→ R+ and ϕ : I �→ R+ of the
ordinary second-order differential equation (Au)(r)− ru(r) = 0, where

A =
1

2
σ2(r)

d2

dr2
+ µ(r)

d

dr
(4)

denotes the differential operator representing the infinitesimal generator of r in the
domain of A. It is known from the classical theory of diffusions that ψ(r) is monotoni-
cally increasing and that ϕ(r) is monotonically decreasing on I; that limr→b ψ

′(r)/S′(r) =
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∞ and limr→b ϕ
′(r)/S′(r) = 0, where

S′(r) = exp

(
−
∫ r 2µ(y)

σ2(y)
dy

)

denotes the density of the scale function S of r; and that ψ′(r)ϕ(r) − ϕ′(r)ψ(r) =
BS′(r), where B denotes the constant Wronskian of the solutions. (For a thorough
characterization of the fundamental solutions, see [11, pp. 18–19]; see also [28, chapter
4 and especially section 4.6].) Moreover, ψ(r) and ϕ(r) are minimal in the sense that
any nontrivial excessive function for the interest rate process r(t) killed at the rate
r can be written in terms of these mappings (i.e., there is an integral representation
for nontrivial excessive mappings in terms of the mappings ψ(r) and ϕ(r); see [11,
p. 32]), and for all r, q ∈ I we have

Er

[
e−

∫ τ(q)
0

r(t)dt
]
= min

(
ψ(r)

ψ(q)
,
ϕ(r)

ϕ(q)

)
,

where τ(q) = inf{t ≥ 0 : r(t) = q} denotes the first hitting time of the short rate
process to the state q ∈ I. Thus, the price of a zero coupon bond expiring at a random
date τ(q) can be expressed in terms of either ψ(r) or ϕ(r), depending on whether the
current short rate is below or above the state q.

Define now the mapping η : I �→ R measuring the net percentage growth rate of
the short rate process killed at the rate r as

η(r) =
µ(r)

r
− r.

Our main results characterizing the form of the minimal excessive mappings for the
interest rate process r(t) are now summarized in our next theorem.

Theorem 1. Assume that the mapping η(r) is nonincreasing on I. Then the
decreasing fundamental solution ϕ(r) is convex on I. The increasing fundamental
solution ψ(r) is convex on I as well if either a is unattainable for r(t) or a is attainable
for r(t) and limr↓a η(r) ≤ 0.

Proof. Applying Dynkin’s theorem to the linear mapping r �→ r yields (cf. [1]
and [3])

Er

[
e−

∫ τ(â,b̂)
0

r(s)dsr(τ(â, b̂))
]
= r + Er

∫ τ(â,b̂)

0

e−
∫ s
0
r(t)dtr(s)η(r(s))ds,(5)

where τ(â, b̂) = {t ≥ 0 : r(t) �∈ (â, b̂)} denotes the first exit time of the interest rate

process from the bounded open set (â, b̂) ⊂ I. Define now the functionals u1 : I �→ R

and u2 : I �→ R as

u1(r) = Er

[
e−

∫ τ(â,b̂)
0

r(s)dsr(τ(â, b̂))
]

and u2(r) = Er

∫ τ(â,b̂)

0

e−
∫ s
0
r(t)dtr(s)η(r(s))ds.

As is shown in [29, pp. 199–224] (see also chapter 9 in [33]), the functional u1(r)

is on (â, b̂) the solution of the boundary value problem (Au1)(r) = ru1(r), u1(â) =

â, u1(b̂) = b̂, and the functional u2(r) is the solution of the boundary value problem

(Au2)(r)− ru2(r) + rη(r) = 0, u2(â) = u2(b̂) = 0. Consequently, we find that (5) can
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be rewritten as

â
ϕ̃(r)

ϕ̃(â)
+ b̂
ψ̃(r)

ψ̃(b̂)
= r + B̃−1ϕ̃(r)

∫ r

â

ψ̃(y)yη(y)m′(y)dy(6)

+ B̃−1ψ̃(r)

∫ b̂

r

ϕ̃(y)yη(y)m′(y)dy,

where m′(r) = 2/(σ2(r)S′(r)) denotes the density of the speed measure m of the
diffusion r,

ϕ̃(r) = ϕ(r)− ϕ(b̂)
ψ(b̂)

ψ(r), ψ̃(r) = ψ(r)− ψ(â)
ϕ(â)

ϕ(r),

and B̃ = (1−ψ(â)ϕ(b̂)/(ψ(b̂)ϕ(â)))B denotes the constant (with respect to the scale)
Wronskian of the functions ψ̃(r) and ϕ̃(r). Differentiating (6) with respect to r and
reordering terms then yield

1 = â
ϕ̃′(r)
ϕ̃(â)

+b̂
ψ̃′(r)

ψ̃(b̂)
−B̃−1ϕ̃′(r)

∫ r

â

ψ̃(y)yη(y)m′(y)dy−B̃−1ψ̃′(r)
∫ b̂

r

ϕ̃(y)yη(y)m′(y)dy.

Dividing this equation first with the term ψ̃′(r) and then differentiating the resulting
equation yield (after a simplification)

ψ̃′′(r) =
2rS′(r)
σ2(r)

[∫ r

â

ψ̃(y)yη(y)m′(y)dy − η(r)ψ̃
′(r)

S′(r)
− B̃â

ϕ̃(â)

]
,(7)

since ϕ̃′′(r)ψ̃′(r)− ψ̃′′(r)ϕ̃′(r) = 2rB̃S′(r)/σ2(r). Analogously, we can establish that

ϕ̃′′(r) =
2rS′(r)
σ2(r)

[
B̃b̂

ψ̃(b̂)
− η(r) ϕ̃

′(r)
S′(r)

−
∫ b̂

r

ϕ̃(y)yη(y)m′(y)dy

]
.(8)

However, since both ψ̃(r) and ϕ̃(r) satisfy the ordinary differential equation (Au)(r) =
ru(r), we find that (cf. [11, p. 18])

ϕ′(b̂)

S′(b̂)
− ϕ

′(r)
S′(r)

=

∫ b̂

r

yϕ(y)m′(y)dy,
ψ′(r)
S′(r)

− ψ
′(â)
S′(â)

=

∫ r

â

yψ(y)m′(y)dy,

implying that (7) and (8) can be rewritten as

ψ̃′′(r) =
2rS′(r)
σ2(r)

[∫ r

â

ψ̃(y)y(η(y)− η(r))m′(y)dy − η(r)ψ̃
′(â)

S′(â)
− B̃â

ϕ̃(â)

]
(9)

and

ϕ̃′′(r) =
2rS′(r)
σ2(r)

[∫ b̂

r

ϕ̃(y)y(η(r)− η(y))m′(y)dy +
B̃b̂

ψ̃(b̂)
− η(r) ϕ̃

′(b̂)

S′(b̂)

]
.(10)

The assumed monotonicity of the mapping η(r) then implies that

ψ̃′′(r) ≥ 2rS′(r)
σ2(r)

[
−η(r)ψ̃

′(â)
S′(â)

− B̃â

ϕ̃(â)

]
and ϕ̃′′(r) ≥ 2rS′(r)

σ2(r)

[
B̃b̂

ψ̃(b̂)
+ η(r)

ϕ̃′(b̂)

S′(b̂)

]
.
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Observing that ψ̃(r) ↑ ψ(r) as â ↓ a and that ϕ̃(r) ↑ ϕ(r) as b̂ ↑ b then implies that

ψ′′(r) ≥ −2rS′(r)
σ2(r)

η(r) lim
â↓a
ψ̃′(â)
S′(â)

and ϕ′′(r) ≥ 2rS′(r)
σ2(r)

η(r) lim
b̂↑b
ϕ̃′(b̂)

S′(b̂)
= 0,

since b > 0 was assumed to be unattainable for r and a ≤ 0. If a is unattainable for r,
then limr↓a ψ′(r)/S′(r) = 0, proving the convexity of ψ(r) in that case. On the other
hand, if a is attainable for r and limr↓a η(r) ≤ 0, then η(r) ≤ 0 for all r ∈ I, proving
the convexity of ψ(r) in that case as well.

Theorem 1 states a set of weak conditions under which the convexity of the min-
imal excessive mappings ψ(r) and ϕ(r) is always guaranteed. The results of Theorem
1 are very general, since the monotonicity of the mapping η(r) is satisfied by al-
most all models subject to mean reversion and all models subject to decreasing per
capita growth rates µ(r)/r. Consequently, our results are valid for, among others, the
Black–Karasinski [10], Cox–Ingersoll–Ross [15], [17], [27], Dothan [19], Merton [32],
and Vasiček models [36] of interest rates. An interesting implication of Theorem 1
generalizing the conditions under which the convexity of the decreasing fundamental
solution ϕ(r) is assured is now summarized in the following. (See [3] for an analogous
result in the constant discounting case.)

Corollary 1. Assume that there is a threshold r0 ∈ I such that µ(r) ≥ 0 on
(a, r0) and η(r) is nonincreasing on (r0, b). Then ϕ(r) is convex on I.

Proof. Since ϕ(r) is nonnegative and decreasing, we find that

1

2
σ2(r)ϕ′′(r) = rϕ(r)− µ(r)ϕ′(r) ≥ 0

whenever r ∈ (a, r0), that is, whenever µ(r) ≥ 0. The convexity of ϕ(r) on (r0, b)
then follows from (10).

Corollary 1 states a set of weak conditions under which the convexity of the
decreasing fundamental solution of the ordinary second-order differential equation
(Au)(r) = ru(r) is always guaranteed. This result is of importance since the decreas-
ing fundamental solution ϕ(r) plays a dominant role in most valuation problems of
perpetual interest rate derivatives (cf. [15] and [27]).

It is worth pointing out that the result of Theorem 1 could also be derived for one
factor models with positive rates (i.e., for which I ⊆ R+) by considering the minimal
excessive mappings for the diffusion

dr̃(t) = µ̃(r̃(t))dt+ σ̃(r̃(t))dŴ (t),(11)

where µ̃(r) = µ(r)/r and σ̃(r) = σ(r)/
√
r. Define now the random time change β(t)

with time change rate r as (cf. [33, pp. 146–151])

β(t) =

∫ t

0

r(s)ds

and the right-hand inverse process as α(t) = inf{s ∈ R+ : β(s) > t}. Our assumptions
imply that α(t) is continuous, that the random time change β(t) is continuous and
monotonically increasing, and that α(β(t)) = β(α(t)) = t. Moreover, as is demon-
strated in Theorem 8.5.1 of [33] (page 146) the process r̃(t) coincides in law with the
process r(α(t)). Consequently, we observe that

V (r) = sup
τ̄
Er
[
e−τ̄Φ(r̃(τ̄))

]
.(12)
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In other words, the valuation problem (2) can be solved in terms of the associated
stopping problem (12), at least when the lower boundary is unattainable for the
interest rate process r(t). This result is, of course, intuitively clear after noticing that
the differential operator Ã representing the infinitesimal generator of the process r̃(t)
can be written as Ã = 1

rA. Rewriting the ordinary second-order differential equation

(Au)(r) = ru(r) as (Ãu)(r) = u(r) then shows why the minimal excessive mappings
for r(t) killed at the rate r and the minimal excessive mappings for r̃(t) killed at the
constant rate 1 coincide and, consequently, why we have the representation (12). It is
also worth mentioning at this point that the random time change approach illustrated
above applies also when the lower boundary 0 is attainable for the interest rate process
r(t). However, in order to apply the time change formula presented above in that
case, we have to impose extra boundary conditions for the time-changed process r̃(t),
since the boundary behavior of r̃(t) typically differs considerably from the boundary
behavior of r(t). This is actually a delicate issue which is mostly overlooked in studies
considering problems of type (2) (see, for example, [27]). To illustrate this point
explicitly, consider problem (2) in the presence of the short rate model (a special case
of the Cox–Ingersoll–Ross model corresponding to the continuous time analogue of a
branching process; cf. [29, p. 239]):

dr(t) = −µr(t)dt+ σ
√
r(t)dŴ (t), r(0) = r,

where µ ∈ R+ and σ > 0 are exogenously determined constants. Since 0 is an exit and
∞ a natural boundary for the interest rate process r(t), we find that in this case the
fundamental solutions of the ordinary second-order differential equation (Au)(r) =
ru(r) read as ψ(r) = ear − ebr and ϕ(r) = ebr, where a = µ/σ2 +

√
µ2/σ4 + 2/σ2

and b = µ/σ2 − √µ2/σ4 + 2/σ2 denote the positive and the negative root of the
characteristic equation σ2k2/2 − µk − 1 = 0, respectively. On the other hand, since
the operator Ã coincides with the differential operator of Brownian motion with drift,
we observe, by imposing that r̃(t) should be killed at 0, that the optimal stopping
problem (2) can be rewritten as in (12) with

dr̃(t) = µdt+ σdŴ (t), r̃(0) = r,

subject to killing at 0. Our main result characterizing the form of the value V (r) is
now summarized in the following.

Theorem 2. Assume that the conditions of Theorem 1 are satisfied. Then the
value function V (r) is convex on the continuation region C = {r ∈ I : V (r) > Φ(r)}.
Moreover, if Φ(r) is convex on I, then V (r) is convex on I as well.

Proof. The excessivity of the value function V (r) implies that it is continuous
and, therefore, that C is open. Assume that (x, y) ⊂ C is an arbitrary open subset of
C with compact support on I. The harmonicity of the value V (r) on C then implies
that if r ∈ (x, y), then

V (r) = Er

[
e−

∫ τ(x,y)
0

r(s)dsV (r(τ(x, y)))
]
,

where τ(x, y) = inf{t ≥ 0 : r(t) �∈ (x, y)} denotes the first exit time from (x, y). As in
the proof of Theorem 1, we find that

V (r) =
ψ(y)V (x)− V (y)ψ(x)
ϕ(x)ψ(y)− ϕ(y)ψ(x) ϕ(r) +

ϕ(x)V (y)− ϕ(y)V (x)
ϕ(x)ψ(y)− ϕ(y)ψ(x) ψ(r).
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However, the excessivity of V (r) implies that V (x)/V (y) ≥ min(ψ(x)/ψ(y), ϕ(x)/ϕ(y))
for all x, y ∈ I and, therefore, that ψ(y)V (x) ≥ V (y)ψ(x) and ϕ(x)V (y) ≥ ϕ(y)V (x)
(cf. [11, p. 32]). Since the sum of two convex functions is convex, we find that V (r)
is convex on C. Moreover, since V (r) = Φ(r) on the stopping region, we find that if
Φ(r) is convex on I, then V (r) is convex on I as well.

Theorem 2 states a set of conditions under which the value is convex, at least in
the continuation region C where exercising the option is suboptimal. Interestingly,
Theorem 2 also shows that given its conditions, the convexity of the exercise payoff
is preserved under valuation. This result is in line with previous results obtained in
models considering path-independent American contingent claims (cf. [1] and [22])
and path-dependent European interest rate derivatives (cf. [2]). It is, however, worth
emphasizing that the sufficient conditions for the convexity of the value on the con-
tinuation region C do not depend on the payoff Φ(r) and, therefore, are essentially
determined by the infinitesimal coefficients of the diffusion modeling the interest rate
dynamics. This demonstrates that the form of the value of the interest rate derivative
on C is essentially a process-specific and not payoff-specific property (cf. [1] for similar
results in the case of path-independent claims). A set of stronger conditions under
which the convexity of the value is also assured is now presented in the following
theorem.

Theorem 3. Assume that the payoff Φ(r) is nonincreasing and convex and that
(a) µ(r) is concave,
(b) µ(r) and σ(r) are continuously differentiable with Lipschitz-continuous deriva-

tives, and σ′(r) satisfies the standard Novikov condition.
Then the value V (r) is nonincreasing and convex.

Proof. As is shown in [6], given our assumptions (a) and (b), the discount fac-

tor e−
∫ t
0
r(s)ds is decreasing and convex as a mapping of the current short rate r.

Therefore, e−
∫ t
0
r(s)dsg(r(t)), being the product of two nonnegative, nonincreasing

and convex mappings, is nonnegative, nonincreasing, and convex. Define now the
increasing sequence of nonnegative mappings {Vn(r)}n∈N as

Vn+1(r) = sup
t≥0
Er

[
e−

∫ t
0
r(s)dsVn(r(t))

]
, V0(r) = Φ(r).

Since Φ(r) is nonincreasing and convex, and the maximum of a nonincreasing and
convex mapping is nonincreasing and convex (by standard duality arguments), we
find that Vn(r) is nonincreasing and convex for all n. As is shown in Corollary 10.1.8
of [33], the sequence Vn(r) ↑ V (r) as n → ∞. Thus, if q ≤ r we find that V (q) ≥
Vn(q) ≥ Vn(r), from which the monotonicity of the value V (r) follows by monotone
convergence. Similarly, if r, q ∈ I and λ ∈ [0, 1] we find that λV (r) + (1 − λ)V (q) ≥
λVn(r) + (1 − λ)Vn(q) ≥ Vn(λr + (1 − λ)q), from which the convexity of the value
V (r) follows by monotone convergence.

Theorem 3 states in terms of the drift µ(r), the volatility coefficient σ(r), and the
exercise payoff Φ(r) a set of conditions under which the value of a perpetual American
interest rate derivative is nonincreasing and convex as a function of the current short
rate. It is worth observing that although the conditions of Theorem 3 are not identical
to (and not as general as) the conditions of Theorem 2, the monotonicity condition
required in Theorem 2 follows in some cases from the concavity of the drift µ(r). More
precisely, if R+ ⊆ I, µ(r) is concave, and limr↓0 µ(r) ≥ 0, then µ(r)/r is decreasing
and, therefore, η(r) is decreasing as well. An interesting implication of Theorem 3
valid for contracts written on T -bonds (cf. [15] and [27]) is now summarized in the
following.
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Corollary 2. Denote as p(r, T ) the price of a zero coupon bond maturing T
periods from exercise, and assume that the mapping g : R+ �→ R+ is nondecreasing
and convex and that the conditions (a) and (b) of Theorem 3 are satisfied. Then the
value

J(r) = sup
τ
Er

[
e−

∫ τ
0
r(s)dsg(p(r(τ), T ))

]
,(13)

is nonincreasing and convex.
Proof. The result is a direct implication of Theorem 3.
Corollary 2 states a set of typically satisfied conditions under which the value of

a compound contract written on a T -bond is nonincreasing and convex. Therefore,
an important implication of the findings of Corollary 2 is that, given the conditions
of Theorem 3, the value of a call option written on a T -bond is nonincreasing and
convex.

3. The impact of increased volatility. In this section, we plan to consider
the comparative static properties of the value function V (r). To accomplish this task,
we assume that the interest rate process {r̂(t); t ≥ 0} evolving on I is described under
the risk-neutral measure Q by the time homogeneous stochastic differential equation

dr̂(t) = µ(r̂(t))dt+ σ̂(r̂(t))dŴ (t), r̂(0) = r,(14)

where σ̂ : I �→ R+ is a given sufficiently smooth (at least continuous) mapping
satisfying the condition σ̂(r) ≥ σ(r) for all r ∈ I. In accordance with the notation in
the previous section, we denote the differential operator representing the infinitesimal
generator of r̂ as

Â =
1

2
σ̂2(r)

d2

dr2
+ µ(r)

d

dr
.(15)

We also denote the increasing and decreasing fundamental solutions of the ordinary
second-order differential equation (Âu)(r) = ru(r) as ψ̂(r) and ϕ̂(r), respectively.
Our first important auxiliary result is now summarized in the following lemma.

Lemma 1. Assume that the conditions of Theorem 1 are satisfied. Then

min(ψ̂(r)/ψ̂(q), ϕ̂(r)/ϕ̂(q)) ≥ min(ψ(r)/ψ(q), ϕ(r)/ϕ(q))

for all r, q ∈ I. Thus, the class of excessive mappings for the diffusion r̂(t) killed at
the rate r belongs into the class of excessive mappings for the diffusion r(t) killed at
the rate r.

Proof. Given the conditions of our lemma, we know that ψ(r) and ϕ(r) are convex
on I. Thus, we observe that for all r ∈ I we have that (Âψ)(r) − rψ(r) = ((Â −
A)ψ)(r) = 1

2 (σ̂(r)− σ(r))ψ′′(r) ≥ 0 and (Âϕ)(r)− rϕ(r) = 1
2 (σ̂(r)− σ(r))ϕ′′(r) ≥ 0;

that is, ψ(r) and ϕ(r) are subharmonic for r̂(t) on I. Consequently, we observe that
if τ̂(q) = inf{t ≥ 0 : r̂(t) = q} and r ≤ q, then

ψ(q)
ψ̂(r)

ψ̂(q)
= Er

[
e−

∫ τ̂(q)
0

r̂(s)dsψ(r̂(τ̂(q)))
]
≥ ψ(r).

Similarly,

ϕ(r)
ϕ̂(q)

ϕ̂(r)
= Eq

[
e−

∫ τ̂(r)
0

r̂(s)dsϕ(r̂(τ̂(r)))
]
≥ ϕ(q),
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where τ̂(r) = inf{t ≥ 0 : r̂(t) = r}. Combining these two inequalities then prove that

min(ψ̂(r)/ψ̂(q), ϕ̂(r)/ϕ̂(q)) ≥ min(ψ(r)/ψ(q), ϕ(r)/ϕ(q)) for all r, q ∈ I.
An arbitrary nontrivial mapping f : I �→ R+ is excessive for the diffusion r̂(t)

killed at the rate r if and only if f(r) is continuous and nonnegative and satisfies for
any (x, y) ⊂ I, a < x < y < b the inequality

u(r) = Er

[
e−

∫ τ̂(x,y)
0

r̂(s)dsf(r̂(τ̂(x, y)))
]
≤ f(r),

where τ̂(x, y) = inf{t ≥ 0 : r̂(t) �∈ (x, y)} (cf. [11, p. 32]). Since (Âu)(r) = ru(r) for all
r ∈ (x, y) and u(r) is convex on (x, y) by Theorem 2, we find that (Au)(r)− ru(r) =
((A − Â)u)(r) = 1

2 (σ
2(r) − σ̂2(r))u′′(r) ≤ 0 for all r ∈ (x, y). Applying Dynkin’s

theorem to the mapping r �→ u(r) and invoking the continuity of the mapping at x
and y then imply that

f(r) ≥ u(r) ≥ Er
[
e−

∫ τ(x,y)
0

r(s)dsu(r(τ(x, y)))
]
= Er

[
e−

∫ τ(x,y)
0

r(s)dsf(r(τ(x, y)))
]
,

which demonstrates that f(r) is excessive for the diffusion r(t) killed at the rate r as
well.

Define now the value of the contingent contract with exercise payoff Φ(r) and
defined with respect to the more volatile interest rate process r̂(t) as

V̂ (r) = sup
τ̂
Er

[
e−

∫ τ̂
0
r̂(s)dsΦ(r̂(τ̂))

]
,(16)

where τ̂ is an arbitrary stopping time. The key implication of our Lemma 1 is now
summarized in our main theorem.

Theorem 4. Assume that the conditions of Theorem 1 are satisfied. Then V̂ (r) ≥
V (r) for all r ∈ I and C = {r ∈ I : V (r) > Φ(r)} ⊆ {r ∈ I : V̂ (r) > Φ(r)} = Ĉ.

Proof. As was demonstrated in Lemma 1, the class of excessive mappings for
the diffusion r̂(t) killed at the rate r belongs to the class of excessive mappings for
the diffusion r(t) killed at the rate r. Thus, V̂ (r), being the least excessive majorant
of Φ(r) for the diffusion r̂(t) killed at the rate r, is an excessive majorant of the
payoff Φ(r) for the diffusion r(t) killed at the rate r as well. Since V (r) is the least
of such majorants, we find that V̂ (r) ≥ V (r) for all r ∈ I. Finally, if r ∈ C, then
V̂ (r) ≥ V (r) > Φ(r), proving that r ∈ Ĉ as well and, therefore, that C ⊆ Ĉ.

Theorem 4 demonstrates that given the conditions of our Theorem 1, increased
volatility increases the value of the contingent claim and postpones the rational exer-
cise of the contingent contract by expanding the continuation region where exercising
is suboptimal. Put somewhat differently, Theorem 4 demonstrates that given the
conditions of our Theorem 1, the required exercise premium is an increasing function
of the volatility of the process (i.e., an increasing mapping of risk). This result is
of interest since it demonstrates how a misspecified volatility coefficient affects the
value of the considered derivative instruments. If we overestimate the true market
volatility, then our theoretical prices will exceed the true ones, and vice versa. An
interesting implication of these findings is now summarized in our next corollary.

Corollary 3. Assume that the conditions of Corollary 2 are satisfied. Then
increased volatility increases the value of derivatives written on zero coupon bonds.
Put formally, increased volatility increases the value J(r) defined in (13).

Proof. As was shown in Corollary 2, J(r) is nonincreasing and convex as a function
of the current short rate r. Thus, the conditions of Theorem 4 are satisfied, and the
alleged result follows.
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Corollary 3 shows that given the general conditions of Corollary 2, increased
volatility increases the value of American contingent contracts written on T -bonds.
Since increased volatility increases the value of the T -bonds as well, it is not obvious
whether the impact of increased volatility on the continuation region is positive or not.
Fortunately, there is a broad class of cases for which the positivity of this relationship
can be unambiguously established. Our main result on this topic is now proven in the
following theorem.

Theorem 5. Assume that σ̂(r) = κσ(r), where κ ∈ (1,∞) is a known constant.
Assume also that the conditions of Corollary 2 are satisfied. Then an increase in the
parameter κ increases the value J(r) and postpones rational exercise by expanding the
continuation region where exercising the contract is suboptimal.

Proof. Denote now as rκ(t) the solution of the stochastic differential equation
(14) when σ̂(r) = κσ(r). Denote also as Jκ(r) the value J(r) and as pκ(r, T ) the
price of a T -bond as a function of the known parameter κ. The assumed smoothness
of the infinitesimal coefficients µ(r) and σ(r) imply that rκ(t) is continuous as a
function of κ. This, in turn, implies that both the value Jκ(r) and the price of a
T -bond are continuous as functions of the parameter κ. We have already established
that Jκ(r) ≥ J(r) and we also know from [6] that pκ(r, T ) ≥ p(r, T ). Define now
the exercise regions Γ = {r ∈ I : J(r) = g(p(r, T ))} and Γκ = {r ∈ I : Jκ(r) =
g(pκ(r, T ))} and let r ∈ Γκ. Then

Jκ(r) = g(pκ(r, T )) ≥ J(r) ≥ g(p(r, T )) ⇒ g(pκ(r, T ))−g(p(r, T )) ≥ J(r)−g(p(r, T )) ≥ 0.

The continuity of g(pκ(r, T )) as a mapping of the parameter κ then implies that there
is a sequence κn ↓ 1 for which the difference |g(pκn(r, T )) − g(p(r, T ))| < ε/n when
n > N̄ . Since ε > 0 is arbitrary, we find that J(r) = g(p(r, T )) as well and, therefore,
that Γκ ⊆ Γ. Since C = {r ∈ I : J(r) > g(p(r, T ))} = I\Γ and Cκ = {r ∈ I : Jκ(r) >
g(pκ(r, T ))} = I\Γκ, we find that C ⊆ Cκ, thus proving the alleged claim.

4. Illustration. It is our purpose in this section to illustrate the results of the
two previous sections by considering a class of problems arising frequently in the
literature on interest rate derivatives. We assume throughout this section that Φ ∈
C2(I), although this assumption may be relaxed since continuous mappings can be
approximated by a sequence of twice continuously differentiable mappings converging
uniformly on compacts towards Φ (a mollification of Φ; cf. [4] and [33, pp. 299–302]).
Define now the continuous mapping f : I �→ R as f(r) = (AΦ)(r)− rΦ(r). Our main
result is now summarized in the following.

Theorem 6. Assume that there is a threshold r̃ ∈ (a, b) for which f(r) � 0, when

r � r̃, that limr↑b Φ(r) <∞, and that

Er

∫ ∞

0

e−
∫ s
0
r(t)dt|f(r(s))|ds <∞.

(A) If a is either natural or exit for the interest rate process r(t) killed at the rate
r, then τ(r∗) = inf{t ≥ 0 : r(t) ≤ r∗} is the optimal exercise date and the value reads
as

V (r) = ϕ(r) sup
q∈(a,r]

Φ(q)

ϕ(q)
=

{
Φ(r∗) ϕ(r)

ϕ(r∗) , r ∈ (r∗, b),

Φ(r), r ∈ (a, r∗],
(17)

where r∗ = argmax{Φ(r)/ϕ(r)} ∈ (a, r̃), denoting the optimal exercise price, is the
unique root of the smooth pasting condition Φ′(r∗)ϕ(r∗) = Φ(r∗)ϕ′(r∗).
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(B) If a is either entrance or killing boundary for the interest rate process r(t)
killed at the rate r and the equation Φ′(r)ϕ(r) = Φ(r)ϕ′(r) has an interior root on
(a, r̃), then the value reads as in (17) and τ(r∗) = inf{t ≥ 0 : r(t) ≤ r∗} is the optimal
exercise date.

Proof. Denote as Vp(r) the proposed value function. It is then clear that the ex-
cessivity of the value V (r) implies that V (r) ≥ Vp(r) (cf. [11, p. 32]). To prove the op-
posite, we first observe that if an optimal threshold r∗ exists, then the proposed value
function Vp(r) is nonnegative, dominates the exercise payoff Φ(r), is twice continu-
ously differentiable outside the threshold r∗, and satisfies the variational inequalities
min{rVp(r)− (AVp)(r), Vp(r)−Φ(r)} = 0. Thus, we find that if an optimal threshold
r∗ exists, then the proposed value function Vp(r) is an excessive majorant of the ex-
ercise payoff Φ(r). However, since V (r) is the least of these majorants, we find that
Vp(r) ≥ V (r) whenever r∗ exists. Consequently, it is sufficient to demonstrate that
an optimal threshold r∗ exists. Applying Dynkin’s theorem to the mapping r �→ Φ(r)
and following the proof of our Theorem 1 yield that

Φ(â)
ϕ̃(r)

ϕ̃(â)
+ Φ(b̂)

ψ̃(r)

ψ̃(b̂)
= Φ(r) + B̃−1ϕ̃(r)

∫ r

â

ψ̃(y)f(y)m′(y)dy

+ B̃−1ψ̃(r)

∫ b̂

r

ϕ̃(y)f(y)m′(y)dy,

where a < â < b̂ < b. Dividing this equation with the mapping ϕ̃(r), differentiating
the resulting equation, and reordering terms then yield

Φ′(r)
S′(r)

ϕ̃(r)− ϕ̃
′(r)
S′(r)

Φ(r) =
Φ(y)

ψ̃(b̂)
B̃ −

∫ b̂

r

ϕ̃(y)f(y)m′(y)dy.

Letting b̂ ↑ b and invoking the assumptions of our theorem then yield

Φ′(r)
S′(r)

ϕ(r)− ϕ
′(r)
S′(r)

Φ(r) = −
∫ b

r

ϕ(y)f(y)m′(y)dy.(18)

As is shown in the proof of part B of Theorem 4 in [5], (18) has, under the assump-
tions of our theorem, a unique root whenever 0 is either natural or exit. Moreover,
Φ′(r)ϕ(r) � Φ(r)ϕ′(r) when r � r∗, demonstrating that r∗ = argmax{Φ(r)/ϕ(r)},
thus completing the proof of part (A) of our theorem. The proof of part (B) is then
analogous.

Theorem 6 states a set of typically satisfied conditions under which the optimal
stopping problem (2) can always be explicitly solved in terms of the decreasing funda-
mental solution of the ordinary second-order differential equation (Au)(r)−ru(r) = 0.
It is worth observing that the optimal exercise boundary always exists when the lower
boundary a is either natural or exit for the interest rate process r(t) killed at the rate
r. However, if a is either regular or entrance, then the equation Φ′(r)ϕ(r) = Φ(r)ϕ′(r)
may or may not have an interior root in I. If such root does not exist, then the con-
tract is never exercised before expiration. An important corollary of our theorem is
now summarized in the following corollary.

Corollary 4. Assume that the conditions of Theorems 1 and 6 are satisfied.
Then increased volatility increases the value V (r) and postpones exercise by expanding
the continuation region C = {r ∈ I : V (r) > Φ(r)} where exercising the contract is
suboptimal.
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Proof. The result is a direct consequence of Theorems 4 and 6.

In line with our theoretical findings, we observe from Theorem 6 and Corollary
4 that the value of the contingent contract is decreasing on I and convex on C.
Consequently, we find that increased volatility increases its value and expands the
continuation region where exercising the contract is suboptimal. Moreover, since in
the absence of stochasticity (i.e., when σ(r) ≡ 0) the optimal exercise threshold,
denoted now as r̄, satisfies the ordinary first-order condition µ(r̄)Φ′(r̄) = r̄Φ(r̄) and
increased volatility increases r∗, we find that increased volatility increases the required
exercise premium r∗ − r̄ as well.
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THE COUPLING OF MOTION AND CONDUCTIVE HEATING OF A
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Abstract. This paper investigates the time evolution of the near-isobaric flow field produced
in a gas after the sudden application of a constant heat flux from a localized energy source. The
problems of plane, line, and point heat sources are all investigated, with a power law for the temper-
ature dependence of the thermal conductivity, after reduction to a quasi-linear heat equation for the
temperature. In the planar and spherical cases, the constant heat flux defines scales for the length
and time, which are used to nondimensionalize the problem. Numerical integration is used to provide
the evolution of the temperature and velocity, and limiting solutions corresponding to small and large
rescaled times are obtained. In the axisymmetric case, due to the absence of characteristic length
and time scales, the solution is seen to admit a self-similar description in terms of the nondimen-
sional heat flux. Profiles of temperature and radial velocity are provided for different values of this
parameter, and the asymptotic limits of both small and large heating rates are addressed separately.
The analysis reveals, in particular, the existence of front solutions when the resulting temperatures
become much larger than the initial temperature, as occurs for sufficiently large times for the planar
source, for sufficiently small times for the point source, and for sufficiently large heating rates for the
line source.

Key words. self-similar solutions, asymptotic methods, nonlinear heat conduction, front solu-
tions
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1. Introduction. The expansion accompanying the heating of a gas after the
application of an energy source sets the fluid in motion away from the source. The
purpose of this paper is to give a description of the associated nonlinear heating
process when the induced velocities are much smaller than the velocity of sound, so
that one can neglect pressure variations in the first approximation. Furthermore, the
analysis treats the energy source as being of negligible size and neglects the effect of
gravity, two simplifications that are simultaneously valid when the size of the heated
region is much larger than that of the energy source and still sufficiently small so that
the buoyancy-induced velocity remains smaller than the thermal-expansion velocity.

We shall consider the one-dimensional transient solutions appearing with plane,
line, and point energy sources when a constant heat flux is applied. Numerical and
asymptotic techniques will be employed to describe the evolution with time of the
temperature and velocity fields. The solution will be seen to depend on the combined
effect of outward convection, due to the gas expansion, and of nonlinear heat conduc-
tion, associated with the temperature dependence of the thermal conductivity. The
results of the analysis should be useful for understanding the ignition process of a
reactive gas mixture by a localized energy source, as can be realized in practice by a

∗Received by the editors March 11, 2002; accepted for publication (in revised form) September
13, 2002; published electronically February 25, 2003. This research was supported by the Fifth
Framework program of the European Commission under the Energy, Environment, and Sustainable
Development contract EVG1-CT-2001-00042 EXPRO and by the Spanish MCYT under project 2001-
4603-E.

http://www.siam.org/journals/siap/63-3/40389.html
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laser beam or by passing an electric current through a thin wire.
A simple order-of-magnitude analysis serves to anticipate the characteristic scales

of the problem. Consider an energy source located in an infinite gas medium at rest
with initial temperature and density To and ρo, respectively. If a constant energy
flux is applied after time t = 0, the characteristic time tc required to heat a region of
characteristic size rc, so that the temperature is increased by an amount of order To,
is determined by the energy balance

qjtc ∼ ρocpTorj+1
c ,(1.1)

where cp is the specific heat at constant pressure, assumed to be constant, and the
index j takes the values j = (0, 1, 2) for planar, cylindrical, and spherical geometries.
Correspondingly, q0, q1, and q2 represent, respectively, the heating rate per unit
surface for the planar source, the heating rate per unit length for the line source, and
the heating rate of the point source. The above equation must be supplemented by
the condition

qj ∼ rj−1
c koTo,(1.2)

which states that the energy flux is conducted across the heated region, with ko
representing the value of the thermal conductivity at the initial temperature To.

For the planar and point sources, the above two balances give the characteristic
scales of length and time

rc ∼
(

qj
koTo

)1/(j−1)

and tc ∼ α−1
o

(
qj
koTo

)2/(j−1)

,(1.3)

where αo = ko/(ρocp) is the unperturbed thermal diffusivity. On the other hand, the
characteristic velocity due to thermal expansion associated with relative changes in
density of order unity, which can be anticipated from the continuity equation to be
of order vc = rc/tc, becomes in this case

vc ∼ αo
(

qj
koTo

)−1/(j−1)

.(1.4)

As shown below, use of these scales enables the problems j = 0 and j = 2 to be
written in a convenient parameter-free form. On the other hand, no characteristic
scales can be constructed for the line source, for which the radial extent of the heated
region increases with time according to

rc ∼
[

q1

(koTo)

]1/2
(αot)

1/2,(1.5)

while the characteristic velocity is given by

vc ∼
[

q1

(koTo)

]1/2
(αo/t)

1/2.(1.6)

Because of the absence of characteristic scales, the problem will be seen to admit a sim-
ilarity solution in terms of the self-similar coordinate r/(αot)

1/2, with q = q1/(2πkoTo)
entering as a governing parameter.
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The ranges of validity for the different assumptions employed in the paper can be
delineated by using the above scaling laws (1.3)–(1.6). For instance, the assumption
that the source is localized is valid only when rc is much larger than the size of
the energy source, while gravity-induced velocities, of order (grc)

1/2, can be neglected
only when vc � (grc)

1/2 for rc � (α2
o/g)

1/3. The assumption of isobaric heating holds
only when the induced velocities vc are much smaller than the velocity of sound, given
in order of magnitude by (cpTo)

1/2, thereby producing pressure variations, of order
ρov

2
c , that are much smaller than the ambient value. It should also be noted that the

above considerations provide, for a given gas mixture, the range of heating rates for
which the analyses of the planar and point sources remain accurate. On the other
hand, since the characteristic scales given in (1.5)–(1.6) change with time, the above
considerations give the time range for which the analysis of the line source holds.

Neither finite-size sources nor buoyancy and compressibility effects are addressed
in the present work. When gravity enters, the symmetric solution determined here
is expected to evolve to give a steady plume for large times, giving a flow pattern
that has been extensively studied in the past (see, e.g., [8, 9] for entries into the
literature of thermal plumes from line and point sources). When compressibility
effects are significant, a strong shock wave can be expected to form, a phenomenon also
observed following the instantaneous localized deposition of a finite amount of energy
[18, 19, 20]. This shock wave weakens as it moves away from the source, eventually
leading to an acoustic wave as the pressure settles everywhere to the ambient value
for sufficiently large times.

The structure of the paper is as follows. After formulating the problem, we
will address the similarity solution emerging in the case of a line source. The self-
similar temperature and velocity profiles will be given for different values of the heat
release rate, and the asymptotic limit of large heat release rates will be described in
detail. Next, we will present the solution corresponding to planar and point sources,
which involve integration of a parameter-free nonlinear parabolic equation for the
temperature. The analysis is extended to include the asymptotic limits of small and
large rescaled times. Finally, some concluding remarks will be given.

It should be noted that the problem of near-isobaric heat propagation in a gas
from a plane source was addressed previously by Clarke, Kassoy, and Riley in their
study of heating of a gas slot confined between infinite parallel walls [5]. In particular,
the nonlinear heat equation that governs the problem was derived. They showed that,
when the heating rate is applied for a sufficiently long time, the characteristic tem-
perature of the heated region becomes much larger than To, so that the thermal wave
becomes a front solution with an edge that clearly defines the hot region surrounding
the source. We shall see that a front solution also appears with the line source in
the limit of large heat release rates and with the point source for sufficiently small
times. As seen below, the structure of the solution includes a locally planar thin layer
of warm gas, identical for all three configurations, that separates the region of hot
gas from the outer cold gas, at temperature T = To. It is worth mentioning that
similar front solutions have been previously identified in asymptotic analyses of heat
conduction problems when the thermal conductivity depends strongly on the temper-
ature [22], e.g., in electronic conduction in plasmas [16, 23], or in the presence of large
temperature variations in gases, as occurs in supercritical droplet evaporation [15].
Front solutions are also encountered in problems of mass diffusion [7] and in flows in
porous media [2].
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2. Formulation. In the near-isobaric limit considered here, the momentum
equation becomes secondary for the computation of the one-dimensional problems
addressed, in the sense that the resulting velocity and temperature fields can be de-
termined by integrating the continuity equation

∂ρ

∂t
+

1

rj
∂

∂r
(rjρv) = 0(2.1)

and the energy equation

∂

∂t
(ρcvT) +

1

rj
∂

∂r

(
rjρvcpT − rjk

∂T

∂r

)
= 0,(2.2)

supplemented with the equation of state for the ideal gas

ρT = ρoTo,(2.3)

which is written with pressure differences neglected. These pressure differences, which
are much smaller than the ambient pressure in this near-isobaric limit, can be com-
puted a posteriori by integrating the momentum balance equation. In the formulation,
ρ, T, and v denote, respectively, the density, temperature, and velocity of the gas,
while cv represents the specific heat at constant volume. For generality, the ther-
mal conductivity k is allowed to vary in our analysis from its initial value ko, with a
temperature dependence given by

k

ko
=

(
T

To

)σ
,(2.4)

where the exponent σ is typically in the range 0 ≤ σ ≤ 1 in gases and takes the value
σ = 5/2 for electronic conduction in plasmas. The initial and boundary conditions for
(2.1) and (2.2) corresponding to an infinitesimally small heat source located at r = 0
are

t = 0, r > 0 : T = To, ρ = ρo(2.5)

and

t > 0

{
r = 0 : v = 0, −2jπδj rjk∂T/∂r = qj ,

r = ∞ : T = To,
(2.6)

where δj = 0 if j = 0 and δj = 1 otherwise.
The approximation (2.3) eliminates the time derivative in (2.2), because in this

limit of near-isobaric heating, the internal energy does not accumulate locally in the
flow field. Integrating the resulting equation, using the boundary condition at r = 0,
yields

2jπδj rj
(

vρocpTo − k∂T
∂r

)
= qj .(2.7)

As can be seen, the heat released at r = 0 is transported partly by convection and
partly by heat conduction. Introducing the dimensionless temperature T = T/To =
ρo/ρ and substituting (2.7) into (2.1) finally gives

1

T 2

∂T

∂t
− 1

rj
∂

∂r

[
αo
T

(
qj

2jπδjkoTo
+ rjT σ

∂T

∂r

)]
= 0(2.8)
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to be integrated with initial and boundary conditions


t = 0 : T = 1,

t > 0 :

{
r = 0 : rjT σ∂T/∂r = −qj/(2

jπδjkoTo),
r = ∞ : T = 1.

(2.9)

This nonlinear heat problem describes the buoyancy-free isobaric evolution of the gas
temperature, subject to a localized energy source of rate qj , which can vary with time.

3. The line source of heat. As previously mentioned, for the line source the
solution to (2.8) when the heating rate q1 is constant is of the self-similar form T =
T (η), involving the similarity variable η = r/(αot)

1/2, so that T (η) is given by the
solution of[

η−1(q + ηTσTη) − η
2

]
Tη = Tη−1(ηTσTη)η

{
η = 0 : q + ηTσTη = 0,
η = ∞ : T = 1.

(3.1)

To simplify the notation throughout the text, subscripts will be utilized to denote
differentiation with respect to a given variable, so that, for instance, Tη = dT/dη
in the above equation. Apart from the thermal-conductivity exponent σ, only the
dimensionless heating rate

q =
q1

2πkoTo
(3.2)

enters as a parameter in (3.1). As can be seen, besides the thermal-expansion velocity

u =
v

(αo/t)1/2
=

1

η
(q + ηTσTη),(3.3)

the convective term incorporates an apparent negative velocity −η/2 due to the grow-
ing length scale used in the definition of η.

Sample distributions of T (η) are shown in Figure 1 for different values of q, with
a value σ = 0.5 adopted in the calculations for the temperature dependence of the
conductivity. Integration by a shooting method was initiated near η = 0, where the
temperature profile is of the form

T σ+1 � −(σ + 1)q ln η +B,(3.4)

with B(q, σ) representing an unknown constant that was varied in the shooting pro-
cedure to satisfy the boundary condition T = 1 at η = ∞. The resulting value of B is
shown as an inset in Figure 1 for σ = (0, 0.5, 1.0). Note that the local high-temperature
description (3.4) can be of interest for the analysis of some related problems, such as
the ignition of a reactive gas mixture by hot wires or by laser beams [10].

The temperature distribution can be used to determine from (3.3) the gas velocity
induced by thermal expansion. This velocity is zero at the heat source and also at
η = ∞ and reaches a maximum at an intermediate location, a result clearly seen in
the velocity profiles exhibited in Figure 2. The effect of the heat source on the far field
is that of a volumetric source of fluid, inducing radial velocities that decay according
to u � q/η for η � 1.

The solution corresponding to small heating rates can be determined by intro-
ducing an expansion for T − 1 in increasing powers of q. Since in this case both ρ and
k change by only a small amount from their unperturbed values ρo and ko, the result-
ing solution is, in the first approximation, that corresponding to a solid with constant
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Fig. 1. The temperature profiles obtained by integration of (3.1) with σ = 0.5 (solid lines) and
from the large-q composite expansion (dot-dashed lines); the inset shows the variation with q of the
constant B, along with the large-q prediction B = q[b+ (σ + 1) ln(q)/2].

thermal conductivity (T − 1)/q = 1
2E1(η

2/4) (see [4]), where E1 is the exponential
integral function [1]. The effect of the thermal expansion emerges in the solution,
giving a small modification of order q2 to the temperature increment T − 1 and in-
ducing small radial velocities, of order q, that can be determined from (3.3) to give
u = (q/η)[1− exp(−η2/4)]. This description can be expected to fail as T −1 increases
to values of order unity for η → 0, in an exponentially small region around the axis
corresponding to η ∼ exp(−1/q). This region can be studied by employing ln(η)/q as
an appropriately stretched coordinate, an analysis that gives T σ+1 = 1− (σ+1)q ln η
as the leading-order representation for the temperature. This is in agreement with
the results shown in the inset of Figure 1, where the constant B approaches unity as
q → 0.

The analysis of the limit of large heat release rates, q � 1, is more complicated
and requires consideration of separate spatial regions. As seen in Figure 1, both the
extent of the heated domain and the characteristic value of the temperature grow
with increasing values of q. A simple order-of-magnitude analysis of (3.1) reveals that
the rescaled variables ξ = q−1/2η and θ = q−1/(σ+1)T are appropriate replacements
for η and T in this limit of large q. Use of these alternative variables enables (3.1) to
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Fig. 2. The velocity distribution (3.3) for σ = 0.5 evaluated with the temperature profiles
determined numerically (solid lines) and with the large-q composite expansion (dot-dashed lines).

be written in the form[
ξ−1(1 + ξθσθξ) − ξ

2

]
θξ = θξ−1(ξθσθξ)ξ

{
ξ = 0 : ξθσθξ = −1,
ξ = ∞ : θ = q−1/(σ+1).

(3.5)

3.1. The high-temperature region. Introducing an expansion of the form

θ = θ0 + q−µ1θ1 + · · ·(3.6)

into (3.5) produces a series of problems that can be solved sequentially, with the order
µ1 for the first-order correction to the leading-order result being determined in the
course of the analysis.

The problem emerging at leading order for the function θ0,[
ξ−1(1 + ξθσ0 θ0ξ) −

ξ

2

]
θ0ξ = θ0ξ

−1(ξθσ0 θ0ξ)ξ

{
ξ = 0 : ξθσ0 θ0ξ = −1,

ξ =
√

2 : θ0 = 0,
(3.7)

has a front solution that neatly defines the hot region. The location ξ =
√

2 of the
front is determined a priori from inspection of (3.7) by noting that heat conduction
vanishes as the temperature approaches its zero boundary value, so that convection
remains as the only transport mechanism there. Therefore, the leading edge of the
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temperature distribution must lie at ξ =
√

2, where the positive thermal-expansion
velocity U = q−1/2u = ξ−1(1 + ξθσθξ) � ξ−1 equals the negative apparent velocity
−ξ/2 associated with the growing length scale. The front nature of the solution is
clearly a result of the vanishing boundary temperature seen with the scales of this high-
temperature region, as occurs in other problems of high-temperature hydrodynamics
[13, 15, 22, 23].

The resulting function θ0 is shown in Figure 3 for four different values of the
thermal-conductivity exponent σ = (0, 0.5, 1.0, 2.5). The numerical integration was
started at ξ � 1, where θσ+1

0 � −(σ+1) ln ξ+b, with b = (0.0477, 0.1557, 0.2914, 0.7637)
for σ = (0, 0.5, 1.0, 2.5). Note that, in terms of this shooting parameter, the constant
B appearing in (3.4) can be expressed in the form B = q[b + (σ + 1) ln(q)/2], an
asymptotic prediction tested in the inset of Figure 1. The temperature profiles are
seen to approach the cold boundary ξ =

√
2 according to

θ0 =

(
1 + σ

1 − σ
)1/(1+σ)

(
√

2 − ξ)2/(1+σ)(3.8)

if σ < 1, according to

θ0 =
√

2(
√

2 − ξ)
[
ln

(
1√

2 − ξ

)]1/2
(3.9)

if σ = 1, and according to

θ0 = E(
√

2 − ξ)1/σ(3.10)

if σ > 1, where E is a constant to be determined as part of the numerical integration
(e.g., E = 2.7449 for σ = 5/2).

As previously mentioned, the order µ1 of the first-order correction to the leading-
order results must be determined as part of the solution. Although the boundary
condition at ξ = ∞ given in (3.5) suggests µ1 = 1/(σ + 1), corresponding to a
correction in temperature T of order unity, it is shown below that the necessary
correction is in fact larger when σ < 1. The cases σ = 1 and σ > 1, which give
µ1 = 1/(σ + 1), are treated separately in the appendixes.

The function θ1 satisfies the equation

(3.11)(
1 − ξ

2

2

)
θ1ξ = 2θ0(ξθ

σ−1
0 θ0ξ)ξθ1 + θ20(ξθ

σ−1
0 θ1ξ)ξ + θ20(ξ(σ − 1)θσ−2

0 θ0ξθ1)ξ

obtained from linearizing (3.5) about θ0. The corresponding boundary conditions are

ξ = 0 : ξθ1+σ0 θ1ξ − σθ1 = 0(3.12)

and

ξ =
√

2 : θ1 = 0.(3.13)

In addition to the trivial solution θ1 = 0, for each value of µ1 the above problem
admits a single nontrivial solution that can be determined aside from an arbitrary
multiplicative factor. To discriminate the value of µ1, one needs to investigate the
corner layer that appears at distances of order q−1/2 about ξ =

√
2, where the tem-

perature becomes of order unity.
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Fig. 3. The temperature profiles obtained by integration of (3.7) for σ = (0, 0.5, 1.0, 2.5).

3.2. The corner layer. Around ξ =
√

2 the temperature must evolve from the
cold boundary distribution given in (3.8) to the final asymptotic value T = 1. The
description of the resulting corner layer must make use of the translated coordinate
χ =

√
2q − η. At leading order the problem becomes

T 2(T σ−1Tχ)χ + χTχ = 0

{
χ→ −∞ : T = 1,

χ→ ∞ : T → (
1+σ
1−σ

)1/(1+σ)
χ2/(1+σ).

(3.14)

The solution to this problem, which is given in Figure 4, determines in particular
the asymptotic behavior for χ→ ∞, where the temperature is seen to approach only
slowly its boundary value according to

T −
(

1 + σ

1 − σ
)1/(1+σ)

χ2/(1+σ) = Aχ(2−σ−√
2−σ2)/(1+σ),(3.15)

with A being a constant determined as part of the integration. Sample values are
A = (3.816, 4.5080, 5.664, 9.353) for σ = (0, 0.25, 0.5, 0.75).

3.3. Uniformly valid description. Matching the solution given in (3.15) with
the outer expansion θ = θ0 + t−µ1θ1 + · · · gives

µ1 =
σ +

√
2 − σ2

2(1 + σ)
(3.16)
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Fig. 4. The temperature profile across the transition layer for different values of σ.

for the order of the correction. Furthermore, the matching procedure provides

ξ →
√

2 : θ1 = A(
√

2 − ξ)(2−σ−
√

2−σ2)/(1+σ)(3.17)

as a replacement for (3.13), thereby removing all previously noted arbitrariness; i.e.,
(3.11) subject to (3.12) and (3.17) has a unique solution that must be determined by
numerical integration.

A uniformly valid description for the temperature field can be obtained by combin-
ing the outer expansion for θ with the corner-layer profile according to the composite
expansion

T (η) = q1/(σ+1)
[
θ0(ξ) + q−µ1θ1(ξ)

]
(3.18)

+ T (χ) −H(
√

2 − ξ)
[(

1 + σ

1 − σ
)1/(1+σ)

χ2/(1+σ) −Aχ(2−σ−√
2−σ2)/(1+σ)

]
,

where H(
√

2 − ξ) is the Heaviside function with origin ξ =
√

2 and T (χ) is the
temperature profile across the corner layer, with the rescaled variables ξ = q−1/2η
and χ =

√
2q − η being those utilized above for the outer region and for the corner

layer, respectively. The resulting temperature profile and the accompanying velocity
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profile, determined by straightforward substitution of (3.18) into (3.3), are plotted in
Figures 1 and 2, showing reasonable agreement for the relatively large value of q = 25
considered.

4. Constant heat flux from a plane wall. Use of the characteristic scales
identified above in (1.3) and (1.4) provides t = αo[q0/(koTo)]

2t, r = [q0/(koTo)]r,
and v = v/[q0αo/(koTo)] as dimensionless variables to describe the planar source. As
first shown by Clarke, Kassoy, and Riley [5], the problem then reduces to that of
integrating

∂T

∂t
− T 2 ∂

∂r

[
1

T

(
1 + T σ

∂T

∂r

)]
= 0(4.1)

with initial condition

t = 0, 0 ≤ r <∞ : T = 1(4.2)

and boundary conditions

t > 0

{
r = 0 : T σ∂T/∂r = −1,
r = ∞ : T = 1,

(4.3)

while the velocity can be computed from (2.7) to give

v = 1 + T σ
∂T

∂r
.(4.4)

4.1. Temperature and velocity distributions. As can be seen, σ is the only
parameter left in the problem. An exact solution is known only for σ = 1 (see [5]),
a case for which the density-weighted coordinate dz = T−1dr, often introduced for
the analysis of variable-density boundary layers [17, 21], reduces (4.1)–(4.3) to the
constant-density problem (see [4]), thereby yielding

T = 1 + 2t1/2 i1erfc
( z

2t1/2

)
and r = z + t

[
1 − 4 i2erfc

( z

2t1/2

)]
(4.5)

as an implicit representation for the temperature profile T (r), where i1erfc and i2erfc
denote repeated integrals of the complementary error function erfc (see [1]). Corre-
spondingly, the velocity profile (4.4) reduces to v = 1 − erfc

[∫ r
0
T−1dr/(2t1/2)

]
.

For σ �= 1, the problem needs numerical integration. To handle the unbounded
value of ∂T/∂t at t = 0, the initial condition (4.2) must be replaced in the numerical
integrations with the leading-order representation of the temperature profile for t� 1,
when the temperature increase from the initial value T = 1 is small, of order t1/2,
and is seen to be confined to a thin layer of characteristic thickness t1/2 located in
the vicinity of the wall. To describe this initial period it is convenient to introduce
the self-similar variables r/t1/2 and (T − 1)/t1/2 into (4.1)–(4.3), yielding in the first
approximation the constant-density result (see [4]),

(T − 1)

t1/2
= 2 i1erfc

[
r

(2t1/2)

]
,(4.6)

while the initial velocity distribution becomes

v = 1 − erfc
( r

2t1/2

)
.(4.7)

Characteristic temperature profiles obtained for σ = 0.5 by numerical integration of
(4.1) with boundary conditions (4.3) and with the initial profile (4.6) evaluated at t�
1 are shown in Figure 5, along with the accompanying velocity profiles determined by
evaluating (4.4). The profiles at t = 0.4 are compared with the asymptotic predictions
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Fig. 5. The temperature and velocity profiles obtained by integration of (4.1)–(4.3) for σ = 0.5
(solid lines); the profiles at t = 0.4 are compared with the asymptotic predictions given in (4.6) and
(4.7) for t� 1, and the profiles at t = 22 are compared with the asymptotic predictions for t� 1.

for small times given in (4.6) and (4.7), while the profile t = 22 is compared with the
asymptotic prediction for t� 1, to be developed below.

In this planar case, the temperature remains bounded everywhere, growing with
time. The evolution of the maximum temperature Tw attained at the wall is shown
in Figure 6 for σ = 0 and σ = 0.5. The numerical solution is compared with the
asymptotic description for small t,

Tw = 1 +
2

π1/2
t1/2,(4.8)

obtained by evaluating (4.6) at r = 0, and also with the results given below for t� 1.
Note that (4.8) gives exactly the wall temperature at all times when σ = 1, as can be
seen by evaluating (4.5) at z = 0.

4.2. Solution for t � 1. The solution in this limit parallels that obtained above
for the planar case in the limit q � 1. As previously mentioned, the temperature and
the extent of the heated region continues to increase as time progresses. An order-
of-magnitude analysis of (4.1) and (4.3) suggests the use of the modified variables
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Fig. 6. The evolution with time of the wall temperature for different values of σ obtained from
numerical integration of (4.1) (solid lines), from the short-time prediction (4.8) (dotted lines), from
the leading-order long-time prediction Tw = θ0(0)t1/(σ+1) (dashed lines), and from the two-term
expansion Tw = t1/(σ+1)[θ0(0) + θ1(0)t−µ0 ] (dot-dashed lines).

θ = T/t1/(σ+1) and x = r/t, of order unity, for the analysis of the limit t� 1, so that
(4.1) and (4.3) take the form

tθt + (1 + θσθx − x)θx +
θ

σ + 1
= θ(θσθx)x(4.9)

and {
x = 0 : θσθx = −1,
x = ∞ : θ = 1/t1/(σ+1),

(4.10)

while the velocity is given by v = 1 + θσθx. As can be seen, because of the rescaled
variables employed in this limit, an additional convective term −xθx appears in (4.9),
together with a damping term θ/(σ + 1) associated with the growing temperature
scale.

Introducing the expansion θ(x, t) = θ0(x) + t−µ0θ1(x) + · · · permits us to solve
the problem in a sequential manner, with the unknown value of µ0 being determined
as part of the asymptotic development as shown below. The function θ0 is obtained
from

(1 + θσ0 θ0x − x)θ0x +
θ0
σ + 1

= θ0(θ
σ
0 θ0x)x

{
x = 0 : θσ0 θ0x = −1,
x = 1 : θ0 = 0.

(4.11)
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Fig. 7. The temperature profile θ0 obtained from (4.9) for different values of σ.

The problem (4.11) has a front solution, similar to that seen in the axisymmetric case
for q � 1. Since both the heat-conduction term, θ0(θ

σ
0 θ0x)x, and the damping term,

θ0/(σ + 1), vanish as the temperature approaches its zero boundary value, the front
of the temperature distribution must lie at x = 1, where the positive velocity due to
thermal expansion, v � 1, equals the apparent negative velocity −x.

When σ = 0, the problem given in (4.11) has the exact solution (see [5]){
θ0 = (1 − x)2/2, v = x, for 0 < x < 1,
θ0 = 0, v = 1, for 1 < x.

(4.12)

Another exact solution appears when σ = 1, as can be seen by rewriting (4.5) in terms
of the intermediate coordinate z̄ = z/(2t1/2) to give the implicit representation [5]

θ0 = 2 i1erfc(z̄) and x = 1 − 4 i2erfc(z̄).(4.13)

Numerical integration is necessary to compute profiles of θ0 when σ �= (0, 1). The
temperature profiles (4.12) and (4.13) are shown in Figure 7 along with the numerical
results corresponding to σ = (0.25, 0.5, 0.75, 2.5). A shooting technique started at x =
0 was used for the integration of (4.11), with θ(0) utilized as the shooting parameter
to be varied in the iteration procedure. This initial value, which equals θ0(0) = 0.5 for
σ = 0, θ0(0) = 2/π1/2 for σ = 1, and θ0(0) = (0.7298, 0.9063, 1.0356, 1.3212) for σ =
(0.25, 0.5, 0.75, 2.5), determines the leading-order prediction for the wall temperature
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Tw = θ0(0)t1/(σ+1). The comparisons with the results of the numerical integrations
for large times, shown in Figure 6, clearly indicate that the asymptotic description
must be carried on to the following order for increased accuracy.

This first-order correction θ1(x) must satisfy the conservation equation (4.9) lin-
earized about θ0(

1

σ + 1
− µ0

)
θ1 + (1 − x)θ1x

(4.14)

= θσ0

{[
(σ + 1)θ0xx − σ(1 − σ)θ

2
0x

θ0

]
θ1 − 2(1 − σ)θ0xθ1x + θ0θ1xx

}
,

subject to the boundary conditions

x = 0 : θ1+σ0 θ1x − σθ1 = 0(4.15)

and

x = 1 : θ1 = 0.(4.16)

As occurred before with the perturbation problem (3.11)–(3.13), for each value of µ0

the problem (4.14)–(4.16) admits a single nontrivial solution that can be determined
aside from an arbitrary multiplicative factor. The value of µ0 is determined from
matching the first two terms of the high-temperature distribution θ = θ0+t−1/(σ+1)θ1
with the leading-order temperature representation across the corner layer, located
around x = 1. It is remarkable that the first-order correction can be determined
without taking into account the initial non–self-similar growth period, thereby in-
dicating that memory effects emerge in the asymptotic development for large times
only at higher orders. The associated corrections should be computed from matching
the asymptotic results with the numerical computations for t ∼ 1, a development not
pursued further here.

As seen before for the line source, the structure of the solution for σ = 1 and σ > 1
is different from that encountered with σ < 1. The analyses of the former solutions,
which are given in the appendixes, reveal that µ0 = 1/(σ + 1), corresponding to a
correction in temperature T of order unity. The corrections are larger when σ < 1,
when the leading-order temperature profile approaches the boundary x = 1 according
to the local description

θ0 =

(
(1 + σ)

2(1 − σ)
)1/(σ+1)

(1 − x)2/(σ+1),(4.17)

as can be obtained from (4.11). The corner layer, where the temperature T is of
order unity, corresponds to distances (1−x) of order t−1. Introducing the coordinate
χ = (t/2)1/2(1−r/t) reduces the leading-order problem to that given in (3.14), whose
solution matches asymptotically with the boundary distribution (4.17). Furthermore,
inspection of (3.15) indicates that the order of the first-order correction must be

µ0 =
σ +

√
2 − σ2

2(1 + σ)
(4.18)

to complete the matching, and that

x = 1 : θ1 = A[(1 − x)/
√

2](2−σ−
√

2−σ2/(1+σ)(4.19)
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must replace (4.16) to provide uniqueness for the solution to (4.14). In general,
numerical integration is required to compute θ1, the only exception being the case
σ = 0, for which the exact solution

θ1 =

(
A

21−1/
√

2

)[
(1 − x)2−

√
2 − 2 −√

2

1 +
√

2
(1 − x)1+

√
2

]
(4.20)

is available.
The results of the asymptotic analysis can be combined to give a uniformly valid

description for the temperature. The corresponding composite expansion is that given
in (3.18), with q, ξ, and µ1 being replaced with t, x, and µ0, and with the origin
for the Heaviside function being x = 1. The resulting temperature profile and its
accompanying velocity profile are plotted in Figure 5, showing good agreement for
the value t = 22 considered. The relatively small errors observed, of order unity,
correspond to a correction at the following order in the asymptotic analysis, which is
not computed here. As seen in Figure 6, an error of order unity is also present in the
second-order asymptotic prediction for the wall temperature Tw = t1/(σ+1)(θ0(0) +
θ1(0)t−µ0), where θ1(0) = (2.359, 2.223, 1.927, 1.486) for σ = (0, 0.25, 0.5, 0.75).

5. The point source of heat. The characteristic scales for this problem, de-
fined in order of magnitude in (1.3) and (1.4), were used to define the dimensionless
variables t = αo[q2/(4πkoTo)]

−2t, r = r/[q2/(4πkoTo)], and v = v[q2/(4πkoTo)]/αo.
The temperature T is determined by integrating

∂T

∂t
− T

2

r2
∂

∂r

[
1

T

(
1 + T σr2

∂T

∂r

)]
= 0,(5.1)

with initial condition

t = 0, 0 ≤ r <∞ : T = 1(5.2)

and boundary conditions

t > 0

{
r = 0 : r2T σ∂T/∂r = −1,
r = ∞ : T = 1,

(5.3)

while the velocity can be computed from

v =
1

r2

(
1 + r2T σ

∂T

∂r

)
.(5.4)

As in the planar case, σ remains as the only parameter left in the problem. Because of
the boundary condition at r = 0, the temperature profile presents an infinite value at
the point source for t > 0. Hence, the numerical integration of the problem (5.1)–(5.3)
must account for the singular character of the solution near the origin, where

T σ+1 =
(σ + 1)

r
+ C(t).(5.5)

In particular, the initial profile T = 1 must be replaced with the leading-order repre-
sentation emerging for t� 1.
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5.1. Initial temperature growth. As previously anticipated, the structure of
the solution in this limit t� 1 is that found for q � 1 in the axisymmetric case and for
t� 1 in the planar case, that is, a neatly defined central region of high temperature
separated from the outer cold gas at temperature T = To by a thin corner layer
of warm fluid. The appropriate scales for length and temperature to describe the
hot region, t1/3 and t−1/[3(σ+1)], can be anticipated from the balance of the three
terms in (5.1). Correspondingly, the associated rescaled variables θ = t1/[3(σ+1)]T
and y = r/t1/3 reduce (5.1) and (5.3) to

tθt +
[
y−2(1 + y2θσθy) − y

3

]
θy − θ

3(σ + 1)
= θy−2(y2θσθy)y(5.6)

and {
y = 0 : y2θσθy = −1,
y = ∞ : θ = t1/[3(σ+1)].

(5.7)

Because of the growing length scale that has been introduced, besides the rescaled
thermal-expansion velocity of order unity, t2/3v = y−2(1+y2θσθy), there exists in (5.6)
a negative apparent velocity −y/3. Similarly, the decreasing scale used for the tem-
perature leads to the negative damping term −θ/[3(σ + 1)].

Introducing the expansion θ(y, t) = θ0(y) + tµ2θ1(y) + · · · yields at leading order

[
y−2(1 + y2θσ0 θ0y) −

y

3

]
θ0y − θ0

3(σ + 1)
= θ0y

−2(y2θσ0 θ0y)y(5.8)

to be integrated with boundary conditions{
y = 0 : y2θσ0 θ0y = −1,

y = 31/3 : θ0 = 0.
(5.9)

As before, the balance between the thermal-expansion velocity and the apparent ve-
locity determines the location of the front y = 31/3. A shooting method was used to
integrate (5.8). Integration was initiated near y = 0, where the temperature profile is
of the form θσ+1

0 = (σ+1)/y+c. The unknown shooting parameter c was varied in the
numerical integration to satisfy the boundary condition at y = 31/3, yielding the pro-
files shown in Figure 8. The negative constant c = −(0.8390, 1.2173, 1.5806, 2.6397)
for σ = (0, 0.5.1.0, 2.5) provides C = ct−1/3 for the initial evolution of the constant C
in (5.5).

If σ < 1, the function θ0 is seen to approach the boundary according to

θ0 =

(
7(1 + σ)

6(1 − σ)
)1/(1+σ)

(31/3 − y)2/(1+σ),(5.10)

to be matched with the temperature profile across the transition layer, which is de-
termined at leading order by (3.14), with the similarity coordinate being defined as
χ = t−1/6(6/7)1/2(31/3 − r/t1/3). Matching the first two terms in the expansion for θ
with (3.15) yields in this case

µ2 =
σ +

√
2 − σ2

6(1 + σ)
(5.11)
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Fig. 8. The temperature profiles obtained by integration of (5.8) for σ = (0, 0.5, 1.0, 2.5).

along with the asymptotic value

θ1 → A
[
(7/6)1/2(31/3 − y)

](2−σ−√
2−σ2)/(1+σ)

(5.12)

to be used as a boundary condition at y = 31/3 when computing the first-order
correction θ1. The singular case σ = 1, when

θ0 = (31/3 − y)
[
7

3
ln

(
1

31/3 − y
)]1/2

(5.13)

for 0 < 31/3−y � 1, is described separately in Appendix A, while the the case σ > 1,
when θ0 ∝ (31/3 − y)1/σ near the boundary, is described in Appendix B.

5.2. Temperature and velocity distributions. As previously mentioned, the
results of the asymptotic analysis for t � 1 were employed to enable integrations
of (5.1). The two-term expansion θ = θ0 + tµ2θ1 was combined with the solution
in the corner layer to provide the corresponding composite expansion, which is that
given in (3.18) with the exponents −1/[3(σ + 1)] and µ2 and the variables y and t
replacing 1/(σ+ 1), −µ1, ξ, and q, respectively, and with the origin for the Heaviside
function being y = 31/3. This composite expansion evaluated at t = 0.01 was used
as an initial condition in the integrations shown in Figure 9, where the temperature
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Fig. 9. The temperature profile corresponding to the final steady solution (5.14) with σ =
0.5 (dashed line), along with those obtained by integration of (5.1) (solid lines), from the short-
time composite expansion (dot-dashed line), and from the long-time quasi-steady expression (5.16)
(dotted line); the inset shows the variation of the constant C together with the short-time prediction
C = ct−1/3 (dot-dashed lines).

profiles corresponding to t = (0.1, 1.0, 8.0) are shown. As can be observed, the com-
parison with the short-time composite expansion for t = 0.1 still gives reasonably good
agreement. For completeness, the plot exhibits in an inset the variation with time of
the constant C corresponding to the near-origin temperature distribution (5.5), along
with the short-time prediction C = ct−1/3.

The temperature profiles can be used in (5.4) to provide the associated velocity
profiles, which are shown in Figure 10. The solution is seen to evolve rapidly from the
initial large velocities of order t−2/3 to the final quasi-stagnant solution corresponding
to t� 1, which is described below.

5.3. Quasi-steady long-time solution. For asymptotically large values of t,
the solution evolves to approach the profile

Ts =

(
1 +

σ + 1

r

)1/(σ+1)

.(5.14)

This steady solution (5.14) and its associated velocity field v = 0 are correct to all
algebraic orders at distances r of order unity; i.e., the investigation in the limit t� 1
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Fig. 10. The velocity profiles obtained by evaluating (5.4) with the numerical temperature
profile (solid lines) and with the short-time composite expansion (dot-dashed lines). The dotted line
represents the long-time quasi-steady solution (5.17).

of perturbations of the form T = Ts(r) + t−αTα(r) yields Tα = 0 irrespective of the
value of α.

Unsteady effects are seen to enter farther from the heat source, in a far-field region
corresponding to distances of order t1/2 where only small temperature increments
T − 1 of order t−1/2 exist. To study this far-field region, it is convenient to employ
the similarity coordinate η = r/t1/2, along with the rescaled temperature increment
T − 1 = t−1/2Θ, where an expansion of the form Θ(η, t) = Θ0(η) + t−1/2Θ1(η) + · · ·
is assumed. Introducing these new variables into (5.1) yields at leading order

(η2/2)(Θ0 + ηΘ0η) + (η2Θ0η)η

{
η → 0 : Θ0 = 1/η,
η → ∞ : Θ0 = 0,

(5.15)

where the boundary condition as η → 0 comes from matching with the steady solu-
tion (5.14). Straightforward integration gives Θ0 = η−1erfc(η/2). Now combining the
inner steady-state profile with the far-field transient solution provides the compos-
ite expansion T = Ts + t−1/2(Θ0 − 1/η), which gives the solution for the large-time
temperature evolution with errors of order t−1. At the same level of approximation,
one may write

T =

[
1 +

σ + 1

r
erfc

( r

2t1/2

)]1/(σ+1)

(5.16)
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for the temperature profile, a compact expression that can be used in (5.4) to obtain
the velocity profile

v =
1

r2

[
erf
( r

2t1/2

)
− r

(πt)1/2
exp

(−r2
4t

)]
.(5.17)

Note that, when σ = 0, (5.16) corresponds to the exact self-similar solution achieved
with constant density and constant conductivity [4]. These large-time predictions are
compared in Figures 9 and 10 with results of numerical integrations for t = 8, yielding
reasonably good agreement.

6. Conclusions. The transient, one-dimensional, near-isobaric, buoyancy-free
flow field induced by a localized energy source of constant rate has been analyzed
for planar, cylindrical, and spherical geometries. The convection induced by thermal
expansion is seen to aid the transport of heat away from the source, in a nonlin-
ear process of evolution that has been computed with account taken of the variable
thermal conductivity typical of gases. Our study shows a self-similar solution for the
line source, with the dimensionless heat release q entering as a parameter, while both
the planar source and the point source require consideration of a nonlinear parabolic
equation for the time evolution of the temperature.

The analysis reveals that front solutions emerge when the resulting temperatures
become much larger than the initial temperature, with the front location being de-
termined a priori from a convective balance. It is shown that the inner structure
of the planar thin front, which is identical for all three geometrical configurations,
determines the first-order correction in the hot region. Note that front solutions can
also be expected to emerge as limiting solutions when a variable heating rate qj(t)
is applied, a problem to be addressed in future work. In that case, unsteady effects
are likely to emerge in the hot region at leading order, while the inner structure of
the thin front is expected to evolve in a quasi-steady manner. Also of interest is the
investigation of the effect of compressibility on the heat propagation process from
point and line sources, as done for planar sources by Clarke, Kassoy, and Riley [6].
Future research should also consider the solution emerging after the heat source is
switched off. A related study is that of Meerson [12], who considered the conductive
cooling of a gas heated by a localized deposition of heat.

The quantitative information provided here can be of interest, for instance, in
analyses of ignition processes of a reactive gas mixture by localized energy sources
[10]. The corresponding energy conservation equation should incorporate a heat-
release term, and should be supplemented by conservation equations for the chemical
species. The ignition process typically involves an initial quasi-frozen period with
negligible chemical heat release, in which the description given here holds, followed
by a period of significant exothermicity. For instance, for ignition of hydrogen-oxygen
mixtures [10, 11], the initial branched-chain explosion [3, 14] produced after the heat
source is turned on could be computed with the temperature and velocity fields given
above. It can be anticipated that, since ignition often requires temperatures that are
much larger than the normal ambient value, the front solutions described above will
be particularly useful for these ignition studies.

Appendix A. The front solution for σ = 1. The structure of the front when
σ = 1 is different from that described in the text for σ in the range 0 ≤ σ < 1. We
give first the solution corresponding to the line source of heat, and describe later the
small modifications required for the planar and spherical geometries.
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To construct the solution one needs to match the leading-order solution across
the corner layer with the the two-term expansion θ = θ0 + q−1/2θ1, where we already
anticipate that the order of the correction is µ1 = 1/2. The first-order correction θ1
is determined by integrating(

1 − ξ
2

2

)
θ1ξ = 2θ0(ξθ0ξ)ξθ1 + θ20(ξθ1ξ)ξ,(A.1)

with boundary conditions{
ξ = 0 : (θ0θ1)ξ = 0,

ξ =
√

2 : θ1 = 2D ln[1/(
√

2 − ξ)],(A.2)

where D is an unknown constant to be determined as part of the matching procedure.
Near the front, the two-term expansion θ = θ0 + q−1/2θ1 can be written as

θ =
√

2(
√

2 − ξ)
[
ln

(
1√

2 − ξ

)]1/2
+ q−1/22D ln

(
1√

2 − ξ

)
,(A.3)

where use has been made of (3.9).
Observation of (A.3) reveals that the corner layer, where the temperature becomes

of order unity, is a factor (ln q)−1/2 thinner than that found with σ < 1, and is
displaced towards the cold outer gas. More precisely, the front extends over distances
of order q−1/2(ln q)−1/2 around ξ =

√
2 + Dq−1/2(ln q)1/2, where D is the unknown

constant appearing in (A.2). The appropriate inner coordinate must incorporate both
a translation and a dilatation according to ζ = q1/2(ln q)1/2[

√
2+Dq−1/2(ln q)1/2−ξ].

The problem reduces to that of integrating

T 2Tζζ −DTζ = 0

{
ζ → −∞ : T − 1 → 0,
ζ → ∞ : Tζ − 1 → 0,

(A.4)

where the boundary condition as ζ → ∞ comes from matching with (A.3). Integrating
once with use made of the boundary condition T (−∞) = 1 yields Tζ = D(1 − 1/T ),
whereas imposing the linear profile on the hot boundary finally determines D = 1.
This value can be used in (A.2) to complete the boundary conditions necessary to
uniquely determine the first-order perturbation θ1. Note that the second quadrature
for the corner-layer equation, T +ln(T −1) = ζ+ζo, contains an arbitrary translation
ζo, which could be computed from higher-order terms in the asymptotic expansion.

The solutions encountered for j = 0 and j = 2 also respond to the same structure.
Thus, for the planar heat source, the first-order perturbation θ1 in the expansion
θ = θ0 + t−1/2θ1 is determined from

(1 − x)θ1x = 2θ0θ0xxθ1 + θ20θ1xx

{
x = 0 : (θ0θ1)x = 0,
x = 1 : θ1 = 2D ln[1/(1 − x)],(A.5)

while for the point source the expansion in the hot region becomes θ = θ0 + t1/6θ1,
where θ1 satisfies (

1 − y
3

3

)
θ1y = 2θ0(y

2θ0y)yθ1 + θ20(y
2θ1y)y,(A.6)

with boundary conditions{
y = 0 : (θ0θ1)y = 0,
y = 31/3 : θ1 = 6D ln[1/(31/3 − y)].(A.7)
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On the other hand, the inner coordinates ζ = (t/2)1/2(ln t)1/2[1+D(t/2)−1/2(ln t)1/2−
x] for j = 0, and ζ = [(7/2) ln(1/t)]1/2t−1/6

{
31/3 + [(7/2) ln(1/t)]1/2t1/6(D/3) − y}

for j = 2, reduce the corner-layer problem to (A.4), indicating that D = 1 should be
used in (A.5) and (A.7).

Appendix B. The front solution for σ > 1. The structure of the thermal
wave near the edge for σ > 1 is similar to that described above for σ = 1. As explained
in the text, the asymptotic behavior of the leading-order profile θ0 near the edge is

θ0 = E[(j + 1)1/(j+1) − ξ]1/σ,(B.1)

where E is a constant to be determined from the numerical integration, and where
ξ should be replaced with x and y for j = 0 and j = 2, respectively, following the
notation used in the text.

As before, we shall first give the solution corresponding to j = 1, for which we
assume the expansion θ = θ0 + q−1/(σ+1)θ1. The first-order correction θ1 can be
calculated by integrating(

1 − ξ
2

2

)
θ1ξ = 2θ0(ξθ

σ−1
0 θ0ξ)ξθ1 + θ20(ξθ

σ−1
0 θ1ξ)ξ + (σ − 1)θ20(ξθ

σ−2
0 θ0ξθ1)ξ,(B.2)

with boundary conditions{
ξ = 0 : θ0θ1ξ + σθ1θ0ξ = 0,

ξ =
√

2 : θ1 = D(
√

2 − ξ)(1−σ)/σ,
(B.3)

where D is a constant to be determined below. Near the edge, the two-term expansion
for θ gives

θ = E(
√

2 − ξ)1/σ +D(
√

2 − ξ)(1−σ)/σ.(B.4)

As seen before for σ = 1, the corner layer that appears is thinner than that correspond-
ing to σ < 1 and is displaced towards the outer cold gas. Its inner structure can be
described by introducing the variable ζ = (σ/E)qσ/(σ+1)[

√
2 + (σ/E)Dq−1/(σ+1) − ξ]

to yield the problem

T 2(T σ−1Tζ)ζ −DTζ = 0

{
ζ → −∞ : T → 1,
ζ → ∞ : Tζ → 1/σζ(1−σ)/σ.

(B.5)

The boundary condition as ζ → −∞ can be used in a first quadrature to give us
D[(T − 1)/T σ] = Tζ , which can be evaluated as ζ → ∞ to provide D = 1/σ for the
value of the unknown constant D.

The same structure appears near the edge of the thermal wave when j = 0 and j =
2. For the planar case, the first-order correction in the expansion θ = θ0 + t−1/(σ+1)θ1
is determined from

(1 − x)θ1x = 2θ0(θ
σ−1
0 θ0x)xθ1 + θ20(θ

σ−1
0 θ1x)x + (σ − 1)θ20(θ

σ−2
0 θ0xθ1)x,(B.6)

with boundary conditions{
x = 0 : θ0θ1x + σθ1θ0x = 0,
x = 1 : θ1 = D(1 − x)(1−σ)/σ.

(B.7)
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Similarly, the expansion for j = 2 is θ = θ0 + t1/[3(σ+1)]θ1, where θ1 is computed by
integrating

(B.8)(
1 − y

3

3

)
θ1y = 2θ0(y

2θσ−1
0 θ0y)yθ1 + θ20(y

2θσ−1
0 θ1y)y + (σ − 1)θ20(y

2θσ−2
0 θ0yθ1)y,

with boundary conditions{
y = 0 : θ0θ1y + σθ1θ0y = 0,
y = 31/3 : θ1 = 3D(31/3 − y)(1−σ)/σ.

(B.9)

Use of the inner coordinates ζ = (σ/E)(t/2)σ/(σ+1)[1 + (σ/E)D(t/2)−1/(σ+1) − x] for
j = 0, and ζ = (σ/E)t−σ/[3(σ+1)][31/3 + (σ/E)(D/3)t1/[3(σ+1)] − y] for j = 2, reduces
the description of the corner layer to the problem given in (B.5), so that the value
D = 1/σ is obtained for the constant D appearing in (B.7) and (B.9).
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Abstract. Macrotransport theory governing solute transport in spatially periodic networks
is extended so as to account for first-order, irreversible chemical reactions occurring within the
network. The otherwise locally continuous interstices of the spatially periodic medium are modeled
as a discrete graphical network by the expedient of dividing the repetitive unit cell into a finite
number of subvolume elements i (i = 1, 2, . . . , n) representing the nodes of the graph. The solute is
assumed to be depleted at the uniform rate k(i) when present in node i, i.e., each node i is modeled
as a continuous stirred-tank flow reactor. The edges of the graph embody the solute transport
processes occurring between nodes, either via “piggy-back” entrainment in a flowing fluid or external
force-driven animation, or both, as well as by molecular diffusion. A Taylor–Aris-like “method-of-
moments” scheme is applied to homogenize the resulting master equation governing solute transport
within the network, thereby explicitly furnishing (i) a pair of adjoint matrix eigenvalue problems for
computing the node-based macrotransport fields P∞

0 (i) and A(i) (ultimately required to calculate
the mean solute velocity Ū∗), as well as the network-scale, effective first-order irreversible reaction
rate constant K̄∗; (ii) a matrix equation for computing the third node-based macrotransport field
B(i) (ultimately used to determine the Taylor–Aris solute dispersivity D̄∗); and (iii) edge-based
summations of the three preceding nodal fields, used to calculate the network-scale solute velocity
vector Ū∗ and dispersivity dyadic D̄∗. The computational simplicity of this graphical network
scheme, in contrast with the original interstitially continuous Taylor–Aris macrotransport paradigm,
is demonstrated in the context of an elementary geometric model of a porous medium.

Key words. Taylor dispersion, stochastic processes, asymptotics
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1. Introduction. The integration of microscale reaction protocols with down-
stream microfluidic chromatographic separation techniques has spearheaded the de-
velopment of miniaturized total analysis systems (µ-TAS) [18, 20, 23] directed towards
low-volume (point-of-use) chemical processes and biological assays in microchip envi-
ronments. Constructing such devices with precision microfabrication techniques en-
ables the creation of highly reproducible periodic microscale structures of any mode
of arrangement, whose unit cell configurations can be designed for optimal perfor-
mance. Concurrently, the relatively new field of “microreaction engineering” [19] has
employed these fabrication techniques to produce increasingly complex microscale
reactor architectures. Globally interpreting the performance of these devices necessi-
tates knowledge of the three device-scale parameters serving to quantify the effective
transport processes, namely, the mean solute depletion rate K̄∗, velocity vector Ū∗,
and dispersion dyadic D̄∗. Computing these global parameters from knowledge of
the detailed microscale (unit cell) parameters characterizing the device necessitates
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creating theoretical tools sufficient to do justice to the technological advances implicit
therein, while at the same time being sufficiently simple to render the computations
tractable. This is the goal of the scheme outlined herein.

A previous contribution [12] demonstrated that graph theoretical models of mi-
crofluidic devices could be satisfactorily employed to compute Ū∗ and D̄∗ for non-
reactive systems with a degree of rigor consistent with conventional (i.e., interstitially
continuous) spatially periodic Taylor–Aris models, the latter models requiring vastly
more detailed microscale data and computational resources. Network models of this
type prove especially useful in microfluidic contexts due to their ability to straightfor-
wardly incorporate complicated topologies into the requisite analysis. Such graphical
network modeling entails subdividing the otherwise continuous solute transport path
within the spatially periodic interstitial domain of the device into discrete volume ele-
ments. These constitute the nodes of the graph, which are treated simply as “points.”
Transport between such volume elements occurs within the channels connecting them.
These constitute the edges of the graph, regarded simply as “lines” connecting the
points, with the transport rates occurring therein quantified by experimentally mea-
surable, albeit averaged, discrete local-scale transport parameters. As such, the requi-
site internode convective and diffusive transport rates must be specified for each edge
of the graph. In addition, a “mixing rule” must be specified to govern the choice of
intersectional egress channel for those solute particles instantaneously situated within
the channel intersections and about to exit.

In the absence of the present reactive feature, application of a rigorous Taylor–
Aris-like “method-of-moments” scheme to the lumped-parameter, local-scale trans-
port processes occurring within the spatially periodic network produced a generic
paradigm [12], enabling the calculation of Ū∗ and D̄∗ from knowledge of the pre-
scribed local-scale data. In the present contribution, we extend this nonreactive net-
work scheme to include the depletion of physicochemically reactive solutes within the
network, either via chemical reaction or by irreversible adsorption onto the walls of the
medium. In the spirit of previous generalized Taylor–Aris analyses [9], we develop a
generic computational scheme for extracting the key macroscale parameters, namely,
K̄∗, Ū∗, and D̄∗, from the prescribed microscale data. Aside from their Lagrangian
definitions, the latter trio of parameters also possess Eulerian interpretations as the
transport coefficients appearing in the “macrotransport” equation [9],

∂P̄

∂t
+ Ū∗·∇̄P̄ − D̄∗:∇̄∇̄P̄ + K̄∗P̄ = A (i0) δ (RI − RI0) δ (t) ,(1.1)

quantifying the asymptotic, long-time transport processes of the reactive solute prob-
ability density. (What is meant by long-time will be established in section 4.) In
the latter, P̄ is a coarse-grained probability density, ∇̄ is a coarse-grained gradient
operator, δ is the Dirac delta function, RI is the unit cell location (c.f. (2.1)), and
i0 and RI0 , respectively, identify the local and unit cell scale initial locations of the
solute pulse. Importantly, the magnitude of the (fictitious) initial condition appear-
ing in the above macrotransport equation is not necessarily equal to that of the true
initial condition [7], with the difference quantified by the fictitious initial condition
field A(i) (this field will be determined in our asymptotic analysis). Consequently,
although the macrotransport coefficients K̄∗, Ū∗, and D̄∗ will themselves prove to be
independent of the initial condition, at least for long-times validating (1.1), the effec-
tive equation still depends upon the initial condition. This memory effect contrasts
directly with the Taylor–Aris description of conservative transport processes, wherein
the effective equation “forgets” the initial condition. Indeed, the incorporation of the
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fictitious initial condition is an essential feature of effective transport equations for
nonconservative transport processes [7].

Numerous schemes, displaying varying degrees of rigor and sophistication, have
already been proposed in the literature for formulating an effective equation and
calculating the coefficients appearing therein. With the existence of sufficient sta-
tistical data created from stochastic simulations, approximate values of these global
transport rate parameters may be extracted from unidirectional capillary transport
models [2, 3, 40], pore-effectiveness factors [17], or other algorithms for simulating
particle transport [32]. Alternatively, analytical techniques, such as effective-medium
theories [10, 11, 21, 22, 26, 29], multiple-scales analyses [27], volume-averaging [33],
center-manifold theory [5, 6], effective stream-tube ensembles [16], and general lump-
ing analyses [25], have been invoked to homogenize the unsteady convection-diffusion-
reaction transport equation governing the solute transport through the interstices of
the periodic array. These latter techniques are well adapted to characterize disor-
dered (“random”) porous media or nonlinear chemical reaction rates (or both), along
with the concomitant degree of mathematical and computational complexity accom-
panying such schemes. Indeed, variations of these schemes have been employed to
analyze transport in randomly connected reactive networks [2, 3, 4, 17, 24, 34, 40], in
particular near to the percolation limit [3, 34, 39, 40].

In what follows, only first-order, irreversible reactions occurring in the interstices
of a regular, spatially periodic “porous medium” are considered. Analogous to our
prior analysis of nonreactive media [12], we adapt the spatially periodic moment
scheme proposed originally by Dungan, Shapiro, and Brenner [14] to the network
model. Such generalized moment analyses constitute physically reasonable methods
for homogenizing linear transport equations, while sidestepping the mathematical and
computational intractabilities inherent in the aforementioned, more detailed homoge-
nization theories. As a consequence, our analysis, when brought to fruition, furnishes
a straightforward matrix equation/edge summation scheme for computing K̄∗, Ū∗,
and D̄∗. The computational simplicity of the resulting scheme renders parametric
studies of the macrotransport processes computationally feasible, even for large net-
works with complex architectures.

Apart from the explicit µ-TAS and microreaction engineering applications cited
above, the generic paradigm to be developed is of broader interest in applications ly-
ing outside of these fields. Indeed, various homogenization procedures, albeit devoid
of our rigorous Taylor–Aris network formalism, have previously been invoked to study
catalysis [3, 17, 31, 33, 34, 39, 40], reduced kinetic models [25], transport in chemical
reactors and porous media [2, 6, 14, 15, 16, 17, 27, 28, 30, 34], and irreversible ad-
sorption phenomena [4, 24, 32, 34, 38]. One particularly interesting use of the notion
of homogenization involves extracting macroscopically observable reaction rates from
molecular-scale models of coupled reaction-diffusion phenomena [10, 11, 21, 22, 26, 29].

This paper is organized as follows. Section 2 outlines the graph construction and
concomitant master equation governing the solute (probability density) transport pro-
cess. Section 3 details an adaptation of the generalized moment scheme [14] to the
graphical master equation. Asymptotic long-time moments of the probability density
are evaluated in section 4, thereby furnishing a generic paradigm for computing the
macrotransport parameters from the prescribed microscale data. This paradigm is
applied in section 5 to a relatively straightforward reactive network model, demon-
strating thereby the ready applicability of this scheme towards extracting complex,
nonlinear macroscopic behavior from otherwise nominally linear microscale systems.
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2. Microscale description. The general protocol for converting an intersti-
tially continuous spatially periodic model into a graphical network model was dis-
cussed at length in our prior contribution [12]. Consequently, the exposition which
follows is appropriately abbreviated, making adjustments to the prior discretization
technique, where necessary, to properly account for the nontrivial feature of (locally)
spatially nonuniform chemical reactions. Reference [12] should be consulted for fur-
ther details.

2.1. Continuous model. Attention is focused exclusively upon convective-
diffusive-reactive transport processes occurring in “strongly connected,” spatially pe-
riodic networks. The spatially periodic medium is characterized by the existence of
a repetitive unit cell, extending indefinitely in all directions. The use of infinitely
extended networks eliminates the need to explicitly account for “end effects.” As real
networks are finite in extent, the present analysis is expected to be strictly asymp-
totically valid only for circumstances where the number, N , of unit cells comprising
the real system is large, i.e., N � 1. While the present unbounded analysis is math-
ematically consistent, care must be taken in its direct application to bounded sys-
tems. Explicitly, it has been shown [5], in the context of center-manifold theory, that
Taylor–Aris dispersion models of this type may not be applicable to finite systems
when local-space diffusion is not the shortest time scale. Moreover, sufficiently short
residence times in bounded systems may fail to satisfy the requisite long-time criteria
(see section 4). In the latter case, the present asymptotic analysis will no longer be
valid.

The geometry of the (three-dimensional) unit cell is quantified by a trio of base
lattice vectors {l1, l2, l3}, which are subject to the restriction that the magnitude of
their scalar triple product, |l1 × l2 · l3|, is equal to the superficial volume, τ0, of the
unit cell [9]. The location of a given unit cell within the infinite array is identified
by a triad of integers I ≡ (I1, I2, I3) (Ij = 0,±1,±2, . . . ,±∞; j = 1, 2, 3) whereby the
centroid of cell I is vectorially displaced from an arbitrary origin situated at R0 =
(0, 0, 0) by an amount represented by the discrete position vector

RI= l1I1 + l2I2 + l3I3.(2.1)

The interstitial domain of the unit cell is decomposed into a finite number of
subvolume elements i (i = 1, 2, . . . , n), here represented as the nodes of the graph.1

Consequently, the instantaneous location of a solute particle on the graph is denoted
by the discrete matrix/integer pair (I, i). Each node i is characterized by its volume,
v(i), and its reaction rate constant, k(i) (k ≥ 0), the latter quantifying the irreversible,
first-order rate of solute depletion (if any) occurring therein. Consequently, the pe-
riodic network may be envisioned as composed of a strongly connected network of
homogeneous, continuous stirred-tank flow reactors (CSTFRs).

Transport between contiguous subvolume elements, say, nodes i′ and i, is repre-
sented by the edges of the graph. The edge geometry requires specifying the edge
length, l(j), corresponding to the distance between the respective centroids of the
subvolume elements i′ and i (connected by edge j), and the edge’s effective channel
cross-sectional area, A(j). In addition to molecular diffusion, solute motion within the

1In considering purely convective-diffusive transport [12], each subvolume element was defined
(for the sake of definiteness) to consist of the volume of a channel intersection plus half the volume
of those channels incident to that intersection. This restriction is relaxed in what follows, since we
will require later that the reaction rate be uniform within a given subvolume element.
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edges of the network is assumed to arise from passive “piggy-back” entrainment in a
flowing solvent and/or by the action of an externally applied force acting on the solute
molecules. As in our earlier graphical network model [12], these transport mechanisms
here are quantified by the mean solute speed, U(j), and dispersivity, D(j), prevail-
ing in edge j. Both are regarded as being scalars within that edge, their tensorial
attributes being associated with the spatial direction (orientation) of the channel cen-
terline equipollent to that edge. The edge dispersivity D(j) includes contributions
from both molecular diffusion and Taylor–Aris dispersion, the latter arising from any
local flow inhomogeneities existing within the channel. For a channel of sufficiently
large aspect ratio, the microscale parameters U(j) and D(j) are calculable, at least
in principle, from classical macrotransport theory [9]. In lieu of sufficient hydrody-
namic data for effecting their calculation, these parameters may also be measured
experimentally. Further details regarding their evaluation in such circumstances are
available elsewhere [12].

Since multiple edges j are typically associated with a single node i,2 the pref-
erence for the solute to choose a particular edge j upon exiting node i is assumed
to be governed quantitatively by a mixing parameter K(j). The numerous models
proposed for estimating this parameter are reviewed in our prior, nonreactive con-
tribution [12]. The hypotheses underlying the three most widely prevalent models
are (i) perfect mixing (K(j) = 1), where the channel intersections are simply en-
visioned as large mixing volumes; (ii) flow-rate proportionality (K(j) ∝ U(j)A(j)),
where, for convection-dominated flows, it is assumed that the intersection residence
time is insufficient for the particle to cross many streamlines within the intersection
before exiting; and (iii) thermodynamic partitioning (K(j) = a function of the solute
physicochemical properties), where, for diffusion-dominated flows, the longer intersec-
tion residence time suffices to establish thermodynamic equilibrium. With use of the
preceding geometrical data and transport parameters, the edge convection rate, c(j),
and edge diffusion (dispersion) rate, d(j), are defined as the respective volumetric flow
rates,

c(j)
def.
= K(j)U(j)A(j), d(j)

def.
= K(j)

D(j)A(j)

l(j)
.(2.2)

2.2. Graphical model. In order to clarify the preceding discussion, as well as to
facilitate construction of the requisite graphs, consider by way of example the reactive
medium depicted in Figure 1. The network repeats indefinitely in the x-direction,
whereby its unidirectional lattice geometry is characterized by the single base lattice
vector lx = x̂lx, with x̂ a unit vector in the x-direction and lx = |lx| the period of
the unit cell. The single unit cell, indicated by the box, is shaded to correspond to
its graphical decomposition into the trio of volume elements, i = {a, b, c}.

Figure 2(a) depicts the basic graph [12], Γb, constructed from the network in
Figure 1. The basic graph consists of those nodes contained within a representative
cell, say, I, as well as those nodes located in an adjacent cell, I′, possessing an edge
directed into cell I.3 The edge direction is chosen such that the convective flow

2A node possessing a single incident edge corresponds to a “dead-end” bond in the network
model. The strong connectivity of the network requires that at least one node in the unit cell possess
multiple incident edges.

3The notation I′ is invoked to generically denote a cell adjacent to I. For networks with multiple
adjacent cells, possessing a number of edges entering cell I, the respective cells would be referred to
notationally as I′, I′′, etc.
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Non-reactive
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Reactive Zone

Fig. 1. Spatially periodic, unidirectional reactive network consisting of two continuous, in-
finitely extended, nonreactive cylindrical ducts, periodically connected by thin, cylindrical tubes con-
taining a reactive catalyst packing. The periodicity of the network is reflected by the presence of the
unit cell, indicated by the highlighted box, with base lattice vector lx. The white portion of the unit
cell indicates the inaccessible volume occupied by the blocks separating adjacent reactive domains.
The unit cell is subdivided into the three discrete volumetric domains, a, b, and c, so as to facilitate
subsequent graphical analysis of the network.

R(4)=lx

2

1

3

4

R(1)=lx

Unit cell I

(I', a)

(a)

2

1

3

4

a

(b)

(I', c) (I, c) c

b(I, b)

(I, a)

Fig. 2. (a) Basic graph constructed from the continuous description of Figure 1. Vertices
i = {a, b, c} on the basic graph correspond to the volume elements depicted in Figure 1. The edges j =
{1, 2, 3, 4} connecting adjacent vertices represent intrachannel transport pathways situated between
the individual volume elements i, within each edge, in which the solute is transported at the convective
rate c(j) and diffusive rate d(j). The macroscopic jump vector R(j = {1, 4}) = lx corresponds to
a “Darcy-scale” displacement vector drawn between the adjacent cells I′ and I. (b) Local graph
constructed by contracting homologous vertices in the basic graph of Figure 2(a).

rate, c(j), is positive within that edge, i.e., the edge direction is colinear with the
net direction of the flow or the applied force within that edge. (Any edge orientation
suffices when c(j) = 0.) The basic graph includes all edges that are directed into the
unit cell, as well as those edges internal to the cell. Edges entering cell I from I′ are
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assigned the macroscopic jump vector,

R(j) = RI − RI′,(2.3)

corresponding to the discrete “Darcy-scale” vector displacement from cell I′ to cell I.
In this case, R(1) = R(4) = x̂lx, whereas R(2) = R(3) = 0.

Two additional graphs are required to complete the graphical model. The entire
infinitely extended periodic medium is captured by the global graph, Γg. This graph,
which will be used to formulate the master equation, is formed by translations of
the basic graph through its basic lattice [1, 12]. The local graph, Γl, is constructed
by contracting all homologous vertices of the basic graph and removing the edges
between them. This graph, depicted in Figure 2(b), is invariant to the choice of unit
cell [1]. It will be employed in the moment scheme pursued later.

In order to cast the subsequent Taylor–Aris paradigm into an efficient matrix
form, it is necessary to introduce several other graph theoretical entities [8] and trans-
port matrices [12]. Let m denote the number of edges and n the number of nodes on
the local graph. The graph connectivity is captured by the n × m incidence matrix
D, whose elements are defined as follows:

Dij
def.
=




1 if edge j has its terminal vertex in node i,
−1 if edge j has its initial vertex in node i,
0 otherwise.

(2.4)

This matrix can be decomposed into a pair of n×m matrices,

D = Π(+) −Π(−),(2.5)

where the nonzero entries of Π(+) are the positive entries in D, and the nonzero entries
of Π(−) constitute the absolute values of the negative entries in D.

Collect the edge transport parameters into the pair of m×m diagonal matrices,

c = c(j)δ(i, j), d = d(j)δ(i, j),(2.6)

and represent the respective nodal volumes and reaction rates by the pair of n × n
diagonal matrices,

v =v(i)δ (i, j) , k =k(i)δ(i, j).(2.7)

Finally, define R as the m×3 matrix whose m rows are composed of the macroscopic
jump vectors R (j).

2.3. Probability density on the graph. Consider the conditional reactive-
probability density, Pr (I,i, t | i0) ≥ 0, that the solute “molecule” (particle) being
tracked is instantaneously present in cell I and situated at vertex i at time t, given
that the particle was initially introduced into cell I0 = 0 and vertex i0 at time t = 0.
This probability density necessarily obeys the normalized “conservation” equation

∑
i∈Γg

Pr (I,i, t | i0) =



0, t < 0,
1, t = 0,
< 1, t > 0.

(2.8)

The last inequality arises from the attenuation of the total amount of solute present
in the system at time t > 0 caused by its disappearance via chemical reaction or
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irreversible adsorption. Indeed, after sufficient time has elapsed, the amount of solute
remaining in the system, and hence its probability density, would be expected to be
completely depleted (corresponding to Pr (I,i, t | i0) = 0 for all (I, i)), a fact which will
be subsequently confirmed.

For the case of a reactive solute traversing the network, the reactive probability
density is governed by the following convection-diffusion-reaction master equation at
each node i on the global graph Γg:

v(i)
dPr(I,i, t | i0)

dt
= δ(I)δ(i, i0)δ(t)− k(i)v(i)Pr (I, i, t | i0)

+
∑

j∈Ω+(i)
j={i′,i}

c(j)Pr(I
′,i′, t | i0) + d(j)

[
Pr(I

′,i′, t | i0)
−Pr(I,i, t | i0)

]

−
∑
j∈Ω−

j={i,i′}

c(j)Pr(I,i, t | i0) + d(j)

[
Pr(I,i, t | i0)

−Pr(I
′,i′, t | i0)

]
,(2.9)

with δ(I) and δ(i, i0) Kronecker delta functions, δ (t) the Dirac delta function, and
with j = {a, b} denoting an edge whose initial vertex is a and whose terminal vertex is
b. Proper interpretations of all but one of the terms appearing in (2.9) are as discussed
in [12]. The new term, k(i)v(i)Pr (I, i, t | i0), accounts for the CSTFR model of solute
depletion, with Pr identified with the volumetric solute concentration (i.e., solute
mass per unit volume).

In order to assure that subsequent infinite sums converge [cf. (3.3), (3.11)–(3.12)],
all moments of the reactive-probability density are required to decay faster than al-
gebraically, i.e.,

|R|m Pr (I,i, t | i0) → 0 as |I| → ∞.(2.10)

3. Moment scheme.

3.1. Local moments. In order to ultimately arrive at the desired paradigm for
computing the macrotransport parameters K̄∗, Ū∗, and D̄∗, the generalized moment
scheme proposed by Dungan, Shapiro, and Brenner [14] will be adapted to the master
equation (2.9) governing solute transport on the graph. In this context, define the
“nonreactive” solute probability density,

P (I, i, t | i0) def.
=

exp
(
K̄t
)

A(i0)
Pr (I,i, t | i0) ,(3.1)

where the time- and position-independent reaction velocity constant K̄ (defined glob-
ally on the network scale) and vertex field A (i) (defined locally on the unit cell scale)
will be determined later. Rescaling the probability density in accord with (3.1) will
shortly result in a new transport problem (3.2) which only accounts for those species
still present in the system at time t. Consequently, the rescaled problem is not ad-
versely affected by very fast reaction rates which serve to deplete much of the solute
mass before satisfying the long-time criteria. Rather, the impact of the fast reaction
on the total amount of solute still present in the system at time t will be captured
by the (reaction rate) eigenvalues K̄, whereas the spatial dependence of the reaction
will be reflected in the field A(i), whose physical significance will be discussed in the
context of (3.12).
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The master equation governing P is derived by substituting (3.1) into (2.9) to
obtain

v(i)
dP (I,i, t | i0)

dt
=

δ(I)δ(i, i0)δ(t)

A(i0)
+
[
K̄ − k(i)

]
v(i)P (I, i, t | i0)

+
∑

j∈Ω+(i)
j={i′,i}

c(j)P (I′,i′, t | i0) + d(j)

[
P (I′,i′, t | i0)
−P (I,i, t | i0)

]

−
∑
j∈Ω−

j={i,i′}

c(j)P (I,i, t | i0) + d(j)

[
P (I,i, t | i0)

−P (I′,i′, t | i0)
]
.(3.2)

Define the nonreactive local moment as the m-adic,

Pm(i, t | i0) def.
=
∑
I

Rm
I P (I, i, t | i0) ,(3.3)

where Rm
I ≡ RIRI · · ·RI (m-times); the triple sum,∑

I

def.
=

∞∑
I1=−∞

∞∑
I2=−∞

∞∑
I3=−∞

,(3.4)

is taken over all unit cells. The equation governing the local moments Pm(i) (with
time and the initial condition suppressed therein for notational simplicity) is obtained
upon multiplying (3.2) by Rm

I and summing over I, thereby obtaining

v(i)
dPm(i)

dt
=

δ(m, 0)δ(i, i0)δ(t)

A(i0)
+ L [Pm (i)] + Γm(i),(3.5)

where δ (m, 0) is a Kronecker delta function. In the latter, the vertex operator L
operating on an arbitrary field ψ(i) is defined as

L [ψ(i)]
def.
=

∑
j∈Ω+(i)
j={i′,i}

c(j)ψ (i′) + d(j) [ψ(i′)− ψ(i)]

−
∑
j∈Ω−

j={i,i′}

c(j)ψ(i) + d(j) [ψ(i)− ψ(i′)] +
[
K̄ − k(i)

]
v(i)ψ(i).(3.6)

The first few m-adics Γm(i) appearing in (3.5) possess the respective forms

Γ0(i) = 0,(3.7)

Γ1(i) =
∑

j∈Ω+(i)
j={i′,i}

[c(j) + d(j)]R (j)P0(i
′)−

∑
j∈Ω−

j={i,i′}

d(j)R(j)P0(i
′),(3.8)

Γ2(i) = 2 sym




∑
j∈Ω+(i)
j={i′,i}

[c(j) + d(j)]

[
1

2
R (j)R (j)P0(i

′) + R (j)P1(i
′)
]

+
∑
j∈Ω−

j={i,i′}

d(j)

[
1

2
R (j)R (j)P0(i

′)− R (j)P1(i
′)
]




,

(3.9)
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where, for an arbitrary dyad XY (with X and Y vectors),

sym (XY)
def.
=

1

2
(XY + YX) .(3.10)

3.2. Total moments. Define the respective unweighted and weighted nonreac-
tive total moments,

M′
m (t | i0) def.

=
∑
i∈Γl

v(i)Pm(i, t | i0),(3.11)

Mm (t | i0) def.
=
∑
i∈Γl

v(i)A(i)Pm(i, t | i0).(3.12)

In the latter, the node-based field A(i) [cf. (3.1)] arises from the necessity for intro-
ducing into macrotransport theory a fictitious initial condition [14], whose significance
and defining equation will be established shortly. It is possible to choose the constant
K̄ appearing in the definition (3.1) such that M ′

0 is conserved for sufficiently long-
times [36] (see (4.7)). However, transients arising from the initial placement, i0, of the
particle (within cell I0 = 0) persist for long times, longer than the time required for
the asymptotic theory of Taylor–Aris to constitute an accurate global representation
of the transport phenomena. By way of example, consider the classical case of solute
entrainment in a flow between parallel, reactive plates [9]. If the initial solute pulse is
near the plates, then much of the solute mass only samples the slow moving stream-
lines near the wall before being depleted. In contrast, if the pulse is placed in the
midplane, then the solute mass will have the opportunity to sample many streamlines
before being depleted. This residual transient thereby impacts nontrivially upon the
network-scale transport processes [7] and is captured by the fictitious initial condi-
tion field A(i). To properly correct for such transients, as was done in the original
derivation [14], we will derive a difference equation for the fictitious initial condition
A(i) (in place of the literal initial condition). This scheme insures that M0 too is
conserved for all times, thereby allowing a conventional Taylor–Aris moment analysis
[14], involving the use of weighted moments. It will be shown that the rates of change
of the weighted and unweighted moments differ only by exponentially small temporal
terms, at least for sufficiently long times. As a consequence, the distinction between
the two types of total moments, M′

m and Mm, defined above proves irrelevant in the
final macrotransport results.

The differential equation governing M0 is derived by forming the product of A(i)
and (3.5) (with m = 0 and (3.7)), and summing over i ∈ Γl to obtain

dM0

dt
= δ(t) +

∑
i∈Γl

[
K̄ − k(i)

]
v(i)A(i)P0(i)

+
∑
j∈EΓl

j∈Ω+

c(j)A(i)P0(i
′) + d(j)A(i) [P0 (i

′)− P0(i)]

−
∑
j∈EΓl

j∈Ω−

c(j)A(i)P0(i) + d(j)A(i) [P0(i)− P0 (i
′)] .(3.13)
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Here and hereafter, the following compact summation notation will be employed:∑
j∈EΓl

j∈Ω+

def.
=

∑
i∈V Γl

∑
j∈Ω+(i)
j={i′,i}

,
∑
j∈EΓl

j∈Ω−

def.
=

∑
i∈V Γl

∑
j∈Ω−(i)

j={i,i′}

.(3.14)

The strong connectivity of the graph furnishes the pair of identities,∑
j∈EΓl

j∈Ω+

ε(j)φ(i′) =
∑
j∈EΓl

j∈Ω−

ε(j)φ(i),(3.15)

∑
j∈EΓl

j∈Ω+

ε(j)φ1(i
′)φ2 (i) =

∑
j∈EΓl

j∈Ω−

ε(j)φ1(i)φ2 (i
′) ,(3.16)

where φk(i) and ε(j) are, respectively, node- and edge-based quantities. With use of
these identities, (3.13) may be reformulated as

dM0

dt
= δ(t) +

∑
j∈EΓl

j∈Ω+

P0(i)d(j) [A(i′)−A(i)] +
∑
i∈Γl

[
K̄ − k(i)

]
v(i)A(i)P0(i)

+
∑
j∈EΓl

j∈Ω−

P0(i) [c(j) + d(j)] [A(i′)−A(i)] .(3.17)

In order that M0 be conserved for all times, the summations appearing on the right-
hand side of (3.17) must vanish; explicitly,∑

j∈Ω+(i)
j={i′,i}

d(j) [A(i′)−A(i)] +
∑

j∈Ω−(i)

j={i,i′}

[c(j) + d(j)] [A(i′)−A(i)]

+
[
K̄ − k(i)

]
v(i)A(i) = 0.(3.18)

Equation (3.18), governing A(i), may be restated in compact form as{
k − v−1 ·

[
D · d−Π(−) · c

]
· D†

}
· A =K̄A,(3.19)

where A is an n × 1 column vector whose elements are the fictitious initial nodal
conditions embodied in A(i) (i = 1, 2, . . . , n). Equation (3.19) constitutes an eigen-
value problem for simultaneously computing the eigenvalues K̄ and eigenvectors A(i).
The scheme for identifying the one, physically relevant eigenvalue K̄, as well as the
required normalization of the corresponding physically relevant eigenvector A, will be
specified in the following section.

With use of (3.18), temporal integration of (3.17) demonstrates that

M0 =

{
0, t < 0,
1, t ≥ 0,

(3.20)

whereupon M0 is indeed seen to be conserved for all times (independently of i0). A
generic equation governing the weighted total moments may also be derived with use
of (3.18). To do so, multiply (3.5) by A(i), sum over i ∈ Γl, and use (3.15) and (3.16),
thereby obtaining the expression

dMm

dt
= δ(m, 0)δ(t) +

∑
i∈Γl

A(i)Γm(i).(3.21)
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4. Asymptotic, long-time limits. The following section furnishes the asymp-
totic, long-time limits of the first few local and total moments of the nonreactive
probability density. By “long-time” is meant that the residence time, tR, of the solute
in the network is long compared with the diffusion time scale; that is, tR � l2/Dm,
where l denotes a characteristic linear dimension of the unit cell (typically the mag-
nitude of a macroscopic jump vector, |R(j)|) and Dm is the molecular diffusivity of
the solute [9]. A further criterion imposed upon the definition of long-time behavior
will be established later [cf. (4.4)].

4.1. Zero-order moments. For sufficiently long times, the zeroth-order local
moment (3.3) assumes the asymptotic form

P0(i, t | i0) ≈ P∞
0 (i) + exp(4.1)

for all i0, where “exp” denotes temporal terms that are exponentially small for suffi-
ciently long times. The asymptotic probability density, P∞

0 (i), is independent of time
as well as of the initial local position, i0. The validity of (4.1) has been established
[35, 37] via the use of eigenfunction expansions.

Substitute (4.1) into (3.5), set m = 0, and use (3.7) to obtain the difference
equation governing P∞

0 (i), namely,

L [P∞
0 (i)] = 0.(4.2)

The latter may be recast into the compact matrix form,{
k − v−1 · D·

[
(c + d) ·

(
Π(−)

)†
− d·

(
Π(+)

)†]}
· P =K̄P,(4.3)

where P is the n×1 column vector composed of the asymptotic probability densities,
P∞

0 (i) (i = 1, 2, . . . , n). Similar to (3.19), (4.3) constitutes an eigenvalue problem
posed for P∞

0 (i) and K̄. The eigenvalue with the smallest real part (corresponding to
the slowest decaying mode of the full solution) is identified as the effective reaction
rate K̄∗ [14, 35, 37].4 For all physical circumstances, the eigenvalue possessing the
smallest real part is pure real [35, 37]. Moreover, the solution of this eigenvalue
problem furnishes a second criterion quantifying what is meant by the phrase “long-
time behavior.” Upon denoting the second smallest eigenvalue of (4.3) as K̄1, we
require the residence time to satisfy the inequality

tR � (
K̄∗)−1 − K̄−1

1 ,(4.4)

whereupon the effective transport process is dominated by the eigenvalue with the
smallest real part, K̄∗.

As shown below, the eigenvalue problems posed for P∞
0 (i) (4.2) and A (i) (3.18)

are adjoint. Thus, let K̄P and K̄A, respectively, be eigenvalues of (4.2) and (3.18).
Upon multiplying (3.18) by P∞

0 (i), (4.2) by A (i), and summing both results over
i ∈ Γl, we see that K̄P = K̄A. Consequently, the appropriate fictitious initial condition
A(i) is the eigenvector of (3.18) corresponding to the eigenvalue K̄ = K̄∗.

4By way of example, Batycky, Edwards, and Brenner [7] illustrate the dominance of the slowest
decaying mode by comparing the (asymptotic) macrotransport solution for a nonadiabatic unsteady
heat transfer process with its exact trigonometric function expansion. Moreover, their analysis clearly
illustrates the necessity for incorporating the notion of a fictitious initial condition into effective-
medium models, such as in the present macrotransport model.
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The eigenvalue problems governing P∞
0 (i) and A(i) only specify each of these two

fields to within arbitrary, constant multipliers. These multipliers may be uniquely
determined by applying the normalization conditions [14], namely,∑

i∈Γl

v(i)P∞
0 (i) = 1,(4.5)

∑
i∈Γl

v(i)A(i)P∞
0 (i) = 1.(4.6)

To verify that the weighted and unweighted zeroth-order total moments are in-
distinguishable at long times, substitute the asymptotic solution (4.1) into (3.11),
together with the normalization condition (4.5). This demonstrates that our choice
of K̄ and A(i0) conserves M ′

0 for long times, at least to within exponentially small
terms; explicitly,

M ′
0 ≈ 1 + exp(4.7)

for all i0. Moreover, the ability to formulate consistent results for M0, (3.20) and
M ′

0, (4.7) verifies the change in variables (3.1), thereby confirming our prior assertion
that the solute is eventually depleted completely at each and every node, and hence
throughout the network as a whole.

4.2. First-order moments.

4.2.1. Mean velocity. The mean velocity of the reactive tracer through the
network is determined from knowledge of the asymptotic limit of the rate of growth
of the first total moment via the generic expression [14],

Ū∗ = lim
t→∞

dM1

dt
.(4.8)

Substitute (3.8) into (3.21), set m = 1, and use (3.16) and (4.1) to obtain

Ū∗=
∑
j∈EΓl

j∈Ω+

c(j)R (j)A(i)P∞
0 (i′) + d(j)R (j) [A(i)P∞

0 (i′)−A(i′)P∞
0 (i)] .(4.9)

4.2.2. Derivation of the B-equation. Subject to a posteriori verification, as-
sume the following trial solution for the first-order local moment:

P1(i) ≈ P∞
0 (i)

[
Ū∗t+ B(i)

]
+ exp,(4.10)

where B (i) is a node-based field to be determined. Substitution of (4.10) into (3.12),
together with the choice m = 1, furnishes the weighted first-order total moment,

M1 ≈ Ū∗t+
∑
i∈Γl

v(i)A(i)P∞
0 (i)B(i) + exp.(4.11)

The difference equation governing B(i) is derived by substituting the trial solution
(4.10) into (3.5), setting m = 1, and using (3.8). Elimination of time-dependent terms
via (4.2), and reactive terms via the product of B (i) with (4.2), eventually yields∑

j∈Ω+(i)
j={i′,i}

[c(j) + d(j)]P∞
0 (i′) [B(i′)− B(i)]

−
∑

j∈Ω−(i)

j={i,i′}

d(j)P∞
0 (i′) [B(i)− B(i′)] = v(i)P∞

0 (i)Ū∗−α(i),(4.12)
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with α(i) the node-based vector,

α(i) =
∑

j∈Ω+(i)
j={i′,i}

[c(j) + d(j)]R (j)P∞
0 (i′)−

∑
j∈Ω−(i)

j={i,i′}

d(j)R(j)P∞
0 (i′).(4.13)

Equation (4.12) defines the B-field only to within an arbitrary additive constant
vector [9], whose value ultimately proves irrelevant when computing the dispersivity
[cf. (4.32)]. Consequently, the resulting degree of freedom may be utilized so as
to conveniently allow an arbitrary reference node, say i∗, to be chosen such that
B (i∗) = 0. With the latter specification, the (n− 1) equations generated by (4.12)
for i �= i∗ suffice to determine the remaining vectors B (i).5

Subsequent calculations [cf. (4.32)] necessitate introducing the edge-based vector
field,

b(j)
def.
= B(i)− B(i′),

{
j ∈ Ω+(i)

}
,(4.14)

defined such that edge j has its initial vertex at i′ and its terminal vertex at i. The m
vectors, b(j), may be computed from the solution of the (n− 1) equations generated
by (4.12), together with the m definitions from (4.14). Alternatively, a difference
equation may be derived for b (j) by substituting (4.14) into (4.12), so as to obtain

∑
j∈Ω−(i)

j={i,i′}

d(j)P∞
0 (i′)b(j)−

∑
j∈Ω+(i)
j={i′,i}

[c(j) + d(j)]P∞
0 (i′)b(j) = v(i)P∞

0 (i)Ū∗−α(i).

(4.15)

However, the n equations contained in (4.15) generally prove insufficient to solve for
all m vectors b(j), since, for all but the most trivial networks, m > n. Consequently,
it is necessary to augment the (nonsquare) coefficient matrix by noting that the sum
of the b vectors vanishes along any cycle of the graph [12],∑

j∈cycle

b(j) = 0.(4.16)

Superposition of the n equations provided by (4.15), together with the (m− n)-
independent cycles chosen from (4.16), completely specifies the b vectors.

To reformulate the B-equations in matrix form, define the pair of n × m condi-
tioned connectivity matrices,

Π̃
(+)
ij

def.
=

{
P∞

0 (i′) if edge j is directed from i′ to i,
0 otherwise;

(4.17)

Π̃
(−)
ij

def.
=

{
P∞

0 (i′) if edge j is directed from i to i′,
0 otherwise.

(4.18)

With use of the latter, the (nonsquare) equation set (4.15) governing b adopts the
form [

Π̃(−) · d − Π̃(+) · (c + d)
]
· b = v · P · Ū∗ −

[
Π̃(+) · (c + d)− Π̃(−) · d

]
· R.(4.19)

5In the nonreactive network theory [12], the cocycle space was invoked to provide a formal
mechanism for choosing the reference node i∗. While this technique remains valid for the present
reactive case, subsequent simplifications of the B-equations render the utility of such a formalism
moot.
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Conversion between b and B is accomplished via the transformation

b = D† · B,(4.20)

whereupon (4.12) adopts the matrix form,

[
Π̃(−) · d − Π̃(+) · (c + d)

]
· D† · B = v · P · Ū∗ −

[
Π̃(+) · (c + d)− Π̃(−) · d

]
· R.

(4.21)

The time-independence of (4.12) and (4.15) confirms a posteriori the assumed trial
solution (4.10) for P1 as well as the resulting expression (4.11) for M1. Consequently,
the unweighted first-order total moment may be computed from (3.11) (with m = 1)
together with (4.5) and (4.10), yielding

M′
1 ≈ Ū∗t+ B̄ + exp,(4.22)

where the time- and position-independent vector B̄ is of the form

B̄ =
∑
i∈Γl

v(i)P∞
0 (i)B(i).(4.23)

Differentiation of (4.11) and (4.22) with respect to time reveals that the temporal
rates of change of M1 and M′

1 differ only by exponentially small terms at long times.

4.3. Second-order moments. The difference equation governing the weighted
second-order total moment, M2, is derived from (3.21) with m = 2, upon making use
of (3.9), (3.16), (4.1), (4.9), and (4.10), thereby obtaining

dM2

dt
≈ 2Ū∗Ū∗t+ 2 sym



∑
j∈EΓl

j∈Ω+

[c(j) + d(j)]A(i)P∞
0 (i′)

[
1
2R(j)R(j)
+R(j)B(i′)

]


+ 2 sym



∑
j∈EΓl

j∈Ω+

{
d(j)A(i′)P∞

0 (i)

[
1
2R(j)R(j)
−R(j)B(i)

]}
+ exp.(4.24)

Subject to a posteriori verification, assume a trial solution for the second-order local
moment, P2, of the form

P2(i) ≈ P∞
0 (i)

{
Ū∗Ū∗t2 + 2 sym

[
Ū∗B(i)

]
t+ 2D̄∗t+ H(i)

}
+ exp,(4.25)

with the constant dyadic D̄∗ and dyadic field H(i) to be determined forthwith.

To compute D̄∗, form the weighted second-order total moment from (3.12), with
order m = 2, and (4.25), and differentiate the resulting expression with respect to
time, so as to obtain

dM2

dt
≈ 2Ū∗Ū∗t+ 2D̄∗ + 2 sym

∑
i∈Γl

v(i)P∞
0 (i)A(i)Ū∗B(i) + exp.(4.26)
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The summation appearing in (4.26) may be simplified by forming the product of (4.12)
with A(i)B(i), and subsequently summing the result over i ∈ Γl, thereby yielding

2 sym

[∑
i∈Γl

v(i)P∞
0 (i)A(i)Ū∗B(i)

]
= 2 sym

[∑
i∈Γl

α(i)A(i)B(i)

]
+ 2 sym (E) ,

(4.27)

where E is the constant dyadic

E =
∑
j∈EΓl

j∈Ω+

[c(j) + d(j)]P∞
0 (i′)A(i)B(i) [B (i′)− B(i)]

−
∑
j∈EΓl

j∈Ω−

d(j)P∞
0 (i′)A(i)B(i) [B(i)− B(i′)] .(4.28)

The dyadic E may itself be simplified upon multiplying (4.2) by A(i)B(i)B(i) and
(3.18) by P∞

0 (i)B(i)B(i), summing both results over i ∈ Γl with use of (3.16), and
forming their difference, so as to obtain the expression

∑
j∈EΓl

j∈Ω+

{[c(j) + d(j)]A(i)P∞
0 (i′)− d(j)A(i′)P∞

0 (i)} [B(i)B(i)− B(i′)B(i′)] = 0.

(4.29)

Upon adding the null result (4.29) to (4.28), and using the definition (4.14), the
symmetric portion of E is found to possess the form

2 sym (E)= −
∑
j∈EΓl

j∈Ω+

{[c(j) + d(j)]A(i)P∞
0 (i′) + d(j)A(i′)P∞

0 (i)}b(j)b(j).(4.30)

Equation (4.27) may be further simplified by using (4.13) jointly with the identity
(3.16) to show that∑

i∈Γl

α(i)A(i)B(i) =
∑
j∈EΓl

j∈Ω+

{
[c(j) + d(j)]R(j)A(i)P∞

0 (i′)B(i)
−d(j)R(j)A(i′)P∞

0 (i)B(i′)

}
.(4.31)

Upon comparing (4.24) with our trial solution (4.26), and making use of (4.27),
(4.30), and (4.31), as well as the identity (3.16), there results the expression

D̄∗=
1

2

∑
j∈EΓl

j∈Ω+

{c(j)A(i)P∞
0 (i′) + d(j) [A(i)P∞

0 (i′) +A(i′)P∞
0 (i)]} b̃(j)b̃(j),(4.32)

where the vector b̃(j) is defined as

b̃(j)
def.
= R(j)−b(j).(4.33)

Moreover, we see that D̄∗ represents the solute dispersivity dyadic, inasmuch as D̄∗

may also calculated from its definition [14], namely,

D̄∗ =
1

2
lim
t→∞

d

dt
(M2 − M1M1) .(4.34)
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The latter is seen to accord with the result (4.32) upon use of (4.11) and (4.26).
Equation (4.32) enforces an equality between the trial solution M2, (4.26), and its

derived formula (4.24). Consequently, a posteriori verification of (4.25) is completed
by deriving a solvable difference equation for H (i) [37]. To do so, substitute the
trial solution (4.25) into (3.5), with m = 2, and use (3.9). Removing the time-
dependent terms via (4.2) and (4.12), and subsequently substituting for the reaction
term upon multiplying (4.2) by H(i), ultimately furnishes the governing equation for
H (i), namely,

∑
j∈Ω+(i)
j={i′,i}

[c(j) + d(j)]P∞
0 (i′) [H(i′)− H(i)]−

∑
j∈Ω−(i)

j={i,i′}

d(j)P∞
0 (i′) [H(i)− H(i′)] = β(i),

(4.35)

with β(i) the symmetric forcing function

β(i) = 2 sym




v(i)P∞
0 (i)

[
Ū∗B(i) + D̄∗]

−
∑

j∈Ω+(i)
j={i′,i}

[c(j) + d(j)]P∞
0 (i)

[
1

2
R(j)R(j) + R(j)B(i′)

]

−
∑

j∈Ω−(i)

j={i,i′}

d(j)P∞
0 (i′)

[
1

2
R(j)R(j)− R(j)B(i′)

]




.(4.36)

Inasmuch as the structure of (4.35) is identical to that of (4.12), (4.35) will possess a
solution if (4.12) itself possesses a solution. As was the case in the original development
[36] of this moment technique, computing H proves unnecessary. Indeed, we have
already derived formulas for all the relevant macrotransport parameters without prior
knowledge of H. Rather, the demonstrated existence of the latter time-independent,
solvable equation (4.35) simply completes the a posteriori verification of (4.25).

The latter verification permits computing M′
2 by substituting (4.25) into (3.11),

choosing m = 2, and invoking (4.5) and (4.23). Thereby, one obtains

M′
2 ≈ Ū∗Ū∗t2 + 2 sym

(
B̄Ū

∗)
t+ 2D̄∗t+

∑
i∈Γl

v(i)P∞
0 (i)H(i) + exp.(4.37)

Differentiation of the latter with respect to time, followed by subsequent comparison
of the resulting expression with (4.26), reveals that the time rates of change of M2

and M′
2 differ only by exponentially small terms at long times.

5. Example.

5.1. Kinematics. In the following detailed example, the general paradigm de-
veloped above is applied to the network depicted in Figure 3. This medium may be
envisioned as being composed of a pair of infinitely extended parallel rows of wells,
where the wells are connected via thin capillary tubes in the manner indicated in the
figure. The centroids of the wells are separated by a distance l. When solute is present
in well a, it is assumed to be depleted by a chemical reaction at the uniform rate k.
The capillaries connecting these wells possess respective cross-sectional areas A and
lengths λl (λ < 1). Transport occurs within all channels by molecular diffusion, quan-
tified by the diffusion coefficient Dm. Application of the externally applied force F
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1

Reactive volume
element, k(i) = k

Non-reactive
volume element,

k(i) = 0

F
x

y

Unit cell

b' b

a

Fig. 3. Basic graph of a model reactive porous medium. The unit cell, indicated by the dashed
box, consists of two nodes, labeled a and b, connected by edges j = {1, 2, 3}. A reactive solute
molecule possessing molecular diffusivity Dm is assumed not to react when present in subvolume
element v(b), owing, say, to the absence of a catalyst there, and to be consumed at the rate k
when present in subvolume element v(a), owing, say, to the presence of a catalyst. Application
of an externally applied force of magnitude F in the x-direction gives rise to deterministic solute
transport exclusively through edge 3.

gives rise to solute transport in the x-direction. The solute is assumed to be point-size,
whereupon no contribution arises from capillary-scale Taylor–Aris dispersion owing
to the absence of a solvent velocity field.

The present example possesses an alternate interpretation as a model of solute
transport via bulk flow (through edge 3) with periodic sites for (potentially irre-
versible) adsorption to the walls. Transport through edge 1 corresponds to diffusive
transport from the bulk to adsorption site, while reversibly adsorbed solutes are re-
turned to the bulk flow by diffusion through edge 2. (The depletion “reaction” cor-
responds to irreversible adsorbtion.) In such a model, the volume of node a, when
scaled with the volumetric flow rate in edge 3, corresponds to the (average) residence
time of the reversible adsorption process, while the volume of node b represents the
volume of a period of the bulk channel containing one adsorption site. In essence,
this model is equipollent with our previous analysis of entropic trapping [13], where
the retention in the traps is analogous to the present irreversible adsorption process.

The periodic unit cell, indicated by the dashed box, consists of the pair of nodes,
i = {a, b}, characterized by the parameters

v = τ0

[
φa 0
0 φb

]
, k =

[
k 0
0 0

]
,(5.1)

where τ0 = v(a) + v(b) is the (accessible) volume of the unit cell, and φa and φb are
the volume fractions of nodes a and b, respectively. The nodes are connected by a trio
of edges, j = {1, 2, 3}, whose edge transport rates (2.6) and macroscopic jump vector
are, respectively, given by

c =
DmFA

kT


 0 0 0

0 0 0
0 0 1


 , d =

DmA

λl


 1 0 0

0 1 0
0 0 1


 , R =l


 x̂

0
x̂


 ,(5.2)

with kT the Boltzmann factor.
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Fig. 4. Plot of the macroscale Damköhler number, Da, as a function of the microscale
Damköhler number, Da, for several values of the volume fraction of the reactive well, φa, and
for the specified geometric attributes shown in the inset.

In what follows, it is useful to define the dimensionless parameters

φe
def.
=

Al

λτ0
, Da

def.
=

kl2

Dm
, Pe

def.
=

Fl

kT
,(5.3)

which, respectively, correspond to the volume fraction of the edges, and the microscale
Damköhler and Peclét numbers.

5.2. Macrotransport solution. With the geometrical and phenomenological
microscale transport data now specified, the eigenvalue problem (4.3) may be rendered
in dimensionless form as[

2 φe

φa
+Da −2 φe

φa

−2φe

φ̇b
2φe

φ̇b

] [
P∞

0 (a)
P∞

0 (b)

]
=

K̄l2

Dm

[
P∞

0 (a)
P∞

0 (b)

]
.(5.4)

Upon defining the macroscopic Damköhler number as

Da
def.
=

K̄∗l2

Dm
,(5.5)

the solution of the eigenvalue problem (5.4) reveals that

Da =
φe

φaφb
+

Da

2
−
[(

φe
φb

−Da

)2

+
φe
φa

Da +
φ2
e

φ2
aφb

(1 + φa)

] 1
2

.(5.6)

From inspection, we see that Da vanishes with Da; likewise, Da approaches infin-
ity linearly as Da approaches infinity. (Of course, this corresponds to the uninteresting
limit where all of the solute mass is depleted instantaneously [5].) Figure 4 displays
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numerical values of Da (as a function of Da) for several different values of φa. Da
is seen to increase with Da (the apparent asymptotes appearing at Da ≈ 10 being
artifacts of the semilog plot). Owing to the fact that molecular diffusion is the sole
mechanism for transporting solute into the reactive well, the overall reaction rate is
much slower than that prevailing in well a. By increasing the volume of the reactive
well, thereby increasing the solute residence time therein, Da will increase monotoni-
cally, all other things being equal.

With use of (4.5), the normalized (dimensionless) eigenvectors corresponding to
the smallest eigenvalue (5.6) are, respectively,

P∞
0 (a)τ0 =

φa − γ

φa (1− γ)
,(5.7)

P∞
0 (b)τ0 = (1− γ)

−1
,(5.8)

where γ denotes the following combination of dimensionless parameters:

γ ≡ φaφb
2φe

Da.(5.9)

Substitution of (5.6) into (3.19), together with explicitly incorporating the nor-
malization condition (4.6) in the first row (in lieu of the equation corresponding to
i = a), furnishes the following matrix equation for the A(i):[

φaP
∞
0 (a)τ0 φbP

∞
0 (b)τ0

2φe φbDa− 2φe

] [
A(a)
A(b)

]
=

[
1
0

]
.(5.10)

Solution of (5.10) yields the respective fictitious initial conditions,

A(a) = β (1− γ) (φa − γ) ,(5.11)

A(b) = φaβ (1− γ) ,(5.12)

where β is the following combination of dimensionless parameters:

β−1 ≡ φa − 2φaγ + γ2.(5.13)

It is readily verified that the solutions (5.11)–(5.12) satisfy (3.18) for i = a. Moreover,
A(a) = A(b) = 1 in the nonreactive limit, Da→ 0, as would be expected.

Armed with knowledge of A(i) and P∞
0 (i), the mean velocity may be calculated

from the summation (4.9), yielding

Ū∗ = x̂DmA
{
PeA(b)P∞

0 (b) + λ−1 [A(a)P∞
0 (b)−A(b)P∞

0 (a)]
}
.(5.14)

The latter result may be simplified and rendered dimensionless via use of (5.7)–(5.8)
and (5.11)–(5.12), yielding

Ū∗ = x̂

(
DmF

kT

)
Û∗,(5.15)

in which Û∗ is the dimensionless scalar coefficient (i.e., speed)

Û∗ = λβφaφe.(5.16)
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Fig. 5. Plot of the dimensionless mean solute velocity, Û∗, as a function of the microscale
Damköhler number, Da, for several values of the volume fraction of the reactive well, φa, and for
the specified geometric attributes shown in the inset.

The latter result reduces to Û∗ = λφe in the nonreactive Da→ 0 limit, in ac-
cord with the mean velocity computed from nonreactive network theory [12]. The
dimensionless mean velocity is plotted for nonzero values of Da in Figure 5. Since the
solute is able to sample the tortuous diffusion path through well a, the (dimensionless)
speed Û∗ is less than unity. The mean velocity increases with increasing reaction rate,
since the solute entering well a is then depleted at a greater rate, thereby reducing its
contribution to the overall transport rate. Similarly, increasing the residence time in
well a causes Û∗ to increase. In the limit of infinite reaction rate, one would expect
that no solute entering well a could contribute to the overall solute velocity, thereby
leading to the value Û∗ = 1. This contrasts with a näıve limit of (5.16), which would
seem to imply that Û∗ = 0. The latter incorrect limit derives from the singularity of
(5.4) at Da→ ∞. While not essential to this illustrative example, the proper limiting
behavior could be analyzed by rescaling the problem, i.e., solving for the ratio K̄∗/k.

The existence of numerous candidates ((4.12), (4.15), (4.19), and (4.21)) for com-
puting the B-field makes the choice of its solution protocol flexible. Upon noting that
the edge subsets j = {1, 2} and j = {3} are independent cycles on the local graph, it
follows from (4.16) that

b(1) = −b(2),(5.17)

b(3) = 0.(5.18)

Use of (4.15) with i = a furnishes the algebraic equation,

φeP
∞
0 (b)τ0

b(2)

l
− φeP

∞
0 (b)τ0

b (1)

l
= φaP

∞
0 (a)τ0PeŪ

∗
(

kT

DmF

)
− x̂φeP

∞
0 (b)τ0.

(5.19)
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Together with (5.7)–(5.8), (5.16), and (5.17), this furnishes the solution

b(1)

l
=

x̂

2
[1− Peλβφa (φa − γ)] .(5.20)

It is readily verified that (5.17), (5.18), and (5.20) satisfy (4.15) with i = b.
From (4.33), b̃(j) = x̂b̃(j)l, wherein the dimensionless scalar coefficients b̃(j)

possess the respective functional forms,

b̃(1) = 1/2 [1 + Peλβφa (φa − γ)] ,(5.21)

b̃(2) = 1/2 [1− Peλβφa (φa − γ)] ,(5.22)

b̃(3) = 1.(5.23)

The dispersivity is calculated from (4.32) as

D̄∗ = x̂x̂
DAl

2λ

{
[A(a)P∞

0 (b) +A(b)P∞
0 (a)]

[
b̃2 (1) + b̃2 (2)

]
+(λPe + 2)A(b)P∞

0 (b)b̃2(3)

}
,(5.24)

which, with use of (5.7)–(5.8), (5.11)–(5.12), and (5.21)–(5.23), ultimately furnishes
the dispersivity dyadic,

D̄∗ = x̂x̂DmD̂∗,(5.25)

with D̂∗ the dimensionless scalar dispersivity,

D̂∗ =
φeβ

2

[
3φa − γ + φaλPe + (φaλβ)

2 (φa − γ)
3
Pe2

]
.(5.26)

In the nonreactive limit,

lim
Da→0

D̂∗ =
φe
2

[
3 + λPe + (λφa)

2
Pe2

]
,(5.27)

which is identical to the dispersivity calculated directly from the nonreactive theory
[12].

Figure 6 portrays the dispersivity D̂∗ as a function of Da for several different
values of Pe. As is typically the case [9], the dispersivity increases with increasing
Peclét number, all other things being equal. The latter effect owes its origin to the
“mechanical” dispersion [12] arising from the “delay time” introduced by the tortuous
path through node a. The magnitude of latter effect, which measures the “spread”
between one solute particle which takes the tortuous path b′ → a → b and a second
particle which takes the path b′ → b, depends upon the rate of convection and increases
with increasing Pe.

For circumstances wherein Da < 1, the dispersivity gradually increases from its
nonreactive value, (5.27). Indeed, normalizing (5.26) for D̂∗ with the nonreactive
value (5.27) collapses the data for Da < 1 onto a relatively thin band. This increase
arises from the increase in the mean velocity over the same range of Da. Explicitly,
the dispersivity is a measure of the deviations from the mean solute motion. As Da
increases linearly, Û∗ increases dramatically (see Figure 5). Consequently, the me-
chanical dispersion caused by transport through a increases. Moreover, this increase
more than offsets the decrease in dispersion which occurs from solute depletion.
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Fig. 6. Plot of the dimensionless dispersivity, D̂∗, as a function of the microscale Damköhler
number, Da, for several values of the Peclét number, Pe, and for the specified geometric attributes
shown in the inset.

At Da = 1, the dispersion either levels off or undergoes a precipitous drop. When
D̂∗ < 1 at Da = 1, the dispersion begins approaching its asymptotic value of D̂∗ = 1.
The latter corresponds to the case where the only source of dispersion is from node b,
since all solute molecules entering node a are depleted. When D̂∗ > 1 at Da = 1, the
dispersivity decreases since the increasing reaction rate (at a fixed convection rate)
serves to diminish the mechanical dispersion arising from the tortuous path through a.
As Da → ∞, the only contributions to D̂∗ would be expected to arise from molecular
diffusion in the nonreactive channels and mechanical dispersion resulting from the
mixing process in well b. As was the case with the mean velocity, the singular nature
of this limit prevents recovery of the proper limiting behavior directly from (5.26).
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REALIZABLE (AVERAGE STRESS, AVERAGE STRAIN)
PAIRS IN A PLATE WITH HOLES∗
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Abstract. Here a complete characterization is given of the set of all possible (average stress,
average strain) pairs that can exist in a plate containing a fixed volume fraction f of holes. Specif-
ically, for a given average stress, the range of values the average strain takes as the microgeometry
is varied (while keeping f fixed) is determined. It is shown that multiple rank laminate materials
suffice to generate all possible values of the average strain. When the microgeometry is restricted to
be a periodic array of holes, with only one hole per unit cell, the average strain takes a smaller range
of values as the hole shape is varied. A certain necessary condition for optimality must be satisfied
if the hole is such that the average strain is on the boundary of this range. Numerical results are
obtained for the range in the limit where the holes are well separated and occupy a small volume
fraction. Optimal hole shapes, associated with average strains on the boundary of the range of ad-
missible values, are identified. Analytical expressions are obtained for certain optimal holes, called
critical holes, for which the tangential stress is zero along the smooth portions of their boundary.

Key words. planar elasticity, composites, bounds, optimal microstructures

AMS subject classifications. 74Q20, 74P10

PII. S0036139901395717

1. Introduction. The objective of this paper is to cast light on the realizable
(average stress, average strain) pairs that can occur in planar two phase composites,
when one phase is void and the other phase is isotropic. Specifically, for a given fixed
applied stress σ∗ we ask: What is the range R(f,σ∗) of values that the average strain
ε∗ takes as the microgeometry is varied over all possible configurations that have a
fixed volume fraction f of the void phase? Also, what microgeometries are associated
with average strains ε∗ that lie on or near the boundary of the rangeR(f,σ∗)? Putting
it another way, how should one punch out a fixed area fraction of holes in a stressed
plate to obtain an extreme average strain ε∗?

Characterizing the range R(f,σ∗) and identifying microgeometries associated
with the boundary is important for structural design problems. Consider, for ex-
ample, the following optimal design problem, analogous to one treated by Gibiansky,
Lurie, and Cherkaev (1988) for conductivity. A planar body contains a fixed total
volume fraction p of voids in an isotropic plate material. The body is subject to given
displacement boundary conditions. How should the voids be configured so that the
net force on a given segment of the boundary is maximized (or minimized)? This
is a tricky computational problem, since the answer might be that it is best to have
infinitely many voids distributed in some microstructure. A solution is to consider the
relaxed problem, where one allows for composites in the body, and not just plate or
void phase. Thus one looks for the best macroscopic stress field σ∗(x) and associated
macroscopic strain field ε∗(x) compatible with the displacement boundary conditions
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such that the relation ε∗(x) ∈ R(f(x),σ∗(x)) holds everywhere in the body for some
choice of the function f(x) whose average over the body is p, with 1 ≥ f(x) ≥ 0 for
all x. Once this problem is solved, one introduces voids into the body so that the
microstructure in the vicinity of each point y has a local volume fraction f(x) of voids
and is such that application to it of a local average stress σ∗(y) produces the local
average strain ε∗(y).

The relation between the average strain ε∗ and average stress σ∗ takes the form

ε∗ = S∗σ∗,(1.1)

where S∗ is the effective compliance tensor which is a fourth order tensor. This
relation can also be expressed in the equivalent form


ε∗11
ε∗22√
2ε∗12


 = S∗




σ∗
11

σ∗
22√
2σ∗

12


 ,(1.2)

where the ε∗ij and σ
∗
ij are the elements of the average strain ε∗ and average stress σ∗

in Cartesian coordinates. In this representation the fourth order effective compliance
tensor S∗ is represented by the symmetric 3× 3 matrix S∗.

This question of characterizing R(f,σ∗) is nontrivial because we do not know the
range of values that the effective compliance matrix S∗ can take as the microgeometry
is varied. The set of all possible compliance matrices is known as the G-closure at
constant volume fraction (see Cherkaev (2000) and references therein) and is denoted
as GfU , in which U represents the set of compliance matrices of the two component
phases. If we use the elements of the S∗ as coordinates, GfU is represented (for a fixed
volume fraction f) by a set in a six-dimensional space. However, there is one degree
of rotational invariance associated with this set, due to the fact that if we rotate the
microgeometry, then the effective compliance matrix is transformed in the obvious
manner. Due to this invariance we can represent GfU as a set in a five-dimensional
space. In contrast, it requires only four dimensions to represent (for a fixed volume
fraction f) all of the sets R(f,σ∗) that are generated as σ∗ varies. To see this we can
assume without loss of generality (by choosing the coordinate axes and normalizing
the stress appropriately) that the tensor σ∗ takes the form

σ∗ =
(
σ 0
0 1

)
with |σ| ≤ 1.(1.3)

For each value of σ the range R(f,σ∗) can be represented as a set in a three-
dimensional space with ε∗11, ε

∗
22, and ε∗12 as coordinates. Thus the entire collection

of sets R(f,σ∗) obtained as σ is varied can be represented by a single set in a four-
dimensional space with σ, ε∗11, ε

∗
22, and ε∗12 as coordinates. Due to the reduction in

dimensionality it is anticipated that the task of characterizing all the sets R(f,σ∗)
should be easier than that of characterizing the G-closure at constant volume fraction.

For linear conductivity the analogous problem has been completely solved for a d-
dimensional composite containing an arbitrary number n of anisotropic or anisotropic
conducting phases, mixed in fixed proportions by Tartar (1995), following earlier work
of Răıtum (1983) and Murat and Tartar (1985) for the case of composites containing
two isotropic phases. For a given fixed applied electric field e∗, the problem is to
find the range R(f1, . . . , fn, e∗) of values that the average current field j∗ takes as the
microstructure is varied (allowing for arbitrary spatial variations in the orientation of
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each phase), while keeping the volume fractions f1, . . . , fn of the phases fixed. For
fixed values of the volume fraction, this range turned out to be simply a sphere in the
space with the components j∗1 , j

∗
2 ,. . . ,j

∗
d of j∗ as coordinates. (It can alternatively be

represented as a set in a two-dimensional space with the invariants j∗ ·e∗/(e∗ ·e∗) and
j∗ · j∗/(e∗ · e∗) as coordinates.) Moreover, average currents on the boundary of the
range R(f1, . . . , fn, e∗) were associated with simple laminates of the n phases. The
phases are oriented so that the axes with minimum conductivity are aligned parallel
to the direction of lamination n, and so the axes with maximum conductivity are
aligned in another perpendicular direction, with the fields j∗ and e∗ both lying in the
plane spanned by these two directions. As the angle between n and e∗ is varied, the
vector j∗ ranges over the entire boundary of the sphere R(f1, . . . , fn, e∗). Laminates
appear naturally as the optimal composites since they are the best microgeometries
for guiding current in desired directions. In some sense the optimal microstructures
we seek in this paper can be regarded as the best microgeometries for guiding stress.

For nonlinear conductivity less is known. The case of composites of two isotropic
phases, with one phase occupying a fixed volume fraction f , has been investigated by
Milton and Serkov (2000). The set R(f, e∗) (of all possible average current fields j∗
associated with a given applied electric field e∗) is no longer a sphere, and there are
other microstructures besides simple laminates which are needed to generate currents
j∗ on the boundary of R(f, e∗). Curiously, to generate the maximum current in the
direction of e∗, it is sometimes necessary to use a simple laminate with its layers
oriented perpendicular (rather than parallel) to the field.

The structure of the present paper can be summarized as follows:
• Section 2 gives an essentially complete characterization of the range R(f,σ∗)
of values that ε∗ takes as the microstructure varies over all conceivable con-
figurations. Microgeometries corresponding to values of ε∗ on or near the
boundary of R(f,σ∗) are identified.

• Section 3 considers periodic arrays of holes with only one simply connected
hole per unit cell occupying a fixed volume fraction f . A condition for opti-
mality is derived which must necessarily hold if ε∗ is at the boundary of its
range of admissible values for this restricted class of microgeometry.

• Section 4 presents numerical results for the range of values of ε∗ for periodic
arrays of well separated holes occupying a fixed infinitesimal volume fraction
f . Hole shapes are identified which correspond to values of ε∗ at the boundary
of its range of admissible values for this restricted class of microgeometry.

• Section 5 gives analytical expressions for the shape of certain holes, which
we call critical holes. These have the property that the tangential stress
is zero along all smooth portions of the boundary of the hole, for at least
one loading. Such holes satisfy the optimality criterion, and the numerical
evidence suggests that they are optimal holes.

Throughout the paper we will assume that the plate is in a state of plane stress
(i.e., the plate contracts or expands in thickness so that the normal component of
the stress on the plate surface remains zero). The formulae are easily adapted to the
case of plane strain (where the thickness of the plate is constrained to be constant)
by making the standard adjustments to the moduli entering the formulae.

The characterization of R(f,σ∗) given in section 2 can be generalized to three-
dimensional porous media. The only difficult part is constructing porous “pentamode”
materials for which the effective elasticity tensor has one finite nonzero eigenvalue and
five zero eigenvalues. The structures given in Figure 5 of Milton and Cherkaev (1995)
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provide a basis for constructing such pentamode materials. However, to ensure that
one eigenvalue is nonzero, the junctions between the linkages have to be appropriately
modified. The three-dimensional case will be analyzed in detail in a forthcoming
paper.

2. The essentially complete characterization of R(f, σ∗). The characteri-
zation of R(f,σ∗) is a delicate question because strange effective behaviors can result
when one phase is void (Khruslov (1978), Briane (1998), Briane and Mazliak (1998)).
Additionally, nonlinear effects, such as the buckling of the layers in a laminate of the
matrix and void phases, cannot be ignored. To avoid these technical issues, we will
suppose that the void phase is not really void but has a nonzero isotropic elasticity
matrix CV . Then the set GfU of all possible compliance matrices is well defined,
and its associated set GfUσ∗ consisting of all strain tensors ε∗ such that ε∗ = S∗σ∗
for some S∗ ∈ GfU is also well defined. We define R(f,σ∗) as the set which GfUσ∗
approaches in the limit as CV approaches zero. (It remains to show that this set does
not depend upon the path of isotropic positive definite fourth order tensors that CV

follows as it approaches zero, but the ensuing analysis suggests that this is the case.)
The main result of this section is the following theorem.
Theorem 1. The set R(f,σ∗) includes all strain tensors ε∗ such that

ε∗ : σ∗ > lim
CV →0

[
min

S∗∈GfU
σ∗ : S∗σ∗

]
,(2.1)

in which the right-hand side (when divided by 2) can be identified with the lower
bound on the elastic energy for which an explicit expression is available (Gibiansky
and Cherkaev (1984), Allaire and Kohn (1993a, 1993b)). Hence any tensor ε∗ for
which ε∗ : σ∗ is less than the right-hand side of (2.1) is not contained in R(f,σ∗).
When det(σ∗) ≥ 0, the set R(f,σ∗) also contains those strain tensors ε∗ such that
equality holds in (2.1).

This theorem does not quite provide a complete characterization of R(f,σ∗),
because when det(σ∗) < 0 it is still uncertain as to whether tensors ε∗ such that
equality holds in (2.1) belong to R(f,σ∗).

In establishing Theorem 1, we skip many of the technical details. During much of
the proof we treat the void phase as being truly void, and then at the end we discuss
how the argument needs to be modified when one correctly takes the limit CV → 0.

Let S = S(E, ν) be the compliance matrix of the original plate, which for plane
stress is given by

S(E, ν) =


 1/E −ν/E 0

−ν/E 1/E 0
0 0 (1 + ν)/E


 ,(2.2)

where E and ν are the Young’s modulus and Poisson’s ratio of the isotropic plate
material, respectively. Rather than characterizing the set R(f,σ∗) of possible average
strains ε∗ associated with a given average stress, it is simpler to consider the equivalent
problem of characterizing the set

D(f,σ∗) =
R(f,σ∗)

f
− Sσ∗

f
(2.3)

of possible values of

εV =
[ε∗ − Sσ∗]

f
= [S∗(E, ν)− S(E, ν)]

σ∗
f
,(2.4)
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when the average stress σ∗ and the void volume fraction f are fixed. This tensor
εV can be regarded as the average strain within the void phase. To justify this
interpretation, suppose that the void phase was not really void but had elasticity
matrix CV . Let εV and σV represent the average strain and stress in this phase, and
let εP , σP represent the average strain and stress in the remaining plate. Then we
have

ε∗ = fεV + (1− f)εP = fεV + (1− f)SσP(2.5)

= fεV + S(σ∗ − fσV ) = f(I− SCV )εV + Sσ∗.

This relation implies that εV is given by (2.4) in the limit CV → 0.
The set D(f,σ∗) of possible average strains within the void phase must have a

rather trivial dependence on E and ν. It has been established (Day et al. (1992),
Cherkaev, Lurie, and Milton (1992), Zheng and Hwang (1996, 1997), Hu and Weng
(2001)) that E[S∗(E, ν)−S(E, ν)] is independent of the moduli E and ν of the plate.
It follows that EεV is independent of the moduli of the plate. Consequently the set
D(f,σ∗) must be independent of ν and must rescale in proportion to 1/E as the
Young’s modulus E of the plate is varied.

Some elementary bounds on the set D(f,σ∗) follow immediately from optimal
bounds on the elastic energy ε∗ : σ∗/2, due to Allaire and Kohn (1993a) (see also
Gibiansky and Cherkaev (1984) and Allaire and Kohn (1993b) for related energy
bounds in planar elasticity). Without loss of generality let us suppose that σ∗ takes
the form (1.3). Then their bounds imply

εV : σ∗ ≥ B(σ), where B(σ) =
(1 + |σ|)2
(1− f)E

(2.6)

for any εV ∈ D(f,σ∗). Here we will establish that any εV satisfying this bound as
an inequality can be identified with the average strains within the void phase of a
particular multiple rank laminate composite. The only open question is the minor
point of whether those εV satisfying the bound as an equality are realizable. We can
answer this affirmatively only when σ is nonnegative.

First let us consider the case when σ > 0. It is well known that second rank
laminates attain the energy bound. These second rank laminates are obtained by
laminating the void phase with the plate phase, and then laminating this structure
(on a much larger length scale, with a different direction of lamination) with the plate
phase again. In an appropriately chosen second rank laminate subject to the applied
stress σ∗, the average strain εV in the void phase is such that (2.6) holds as an equality.
Our aim is to show the stronger result that, for every εV such that (2.6) holds as an
equality, there exists a second rank laminate such that εV is the average strain in the
void phase. Geometrically the set of εV such that (2.6) holds as an equality represents
a plane in the space with ε∗11, ε

∗
22, and ε

∗
12 as coordinates, and we want to show that

every point on this plane corresponds to some second rank laminate. Second rank
laminates are special, in that their associated effective elasticity matrix C∗ = S−1

∗ has
one zero eigenvalue. Consequently two different average strains can produce the same
average stress. They are unimode materials in the sense of having one easy mode of
deformation (Milton and Cherkaev, 1995). A line of average strains (rather than a
single average strain) is associated with a given average stress σ∗. This line lies in
the plane εV : σ∗ = B(σ). The orientation of the line in this plane varies as one
changes the structure of the second rank laminate, while still attaining the bound.
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We will now prove that the structure can be adjusted so that the line passes through
any desired point in the plane εV : σ∗ = B(σ).

Explicit formulae are available for the effective elasticity or compliance tensor of
second rank laminates (Francfort and Murat (1986), Gibiansky and Cherkaev (1987)),
but we do not need these formulae in the ensuing analysis. Consider a simple laminate
of the plate phase and the void phase, mixed in proportions (1− p) and p, with the
average strain in the void phase being εV and with the interfaces being oriented

parallel to a unit vector t1. The stress σ
(1)
P and strain ε

(1)
P in the plate phase must be

σ
(1)
P = E(t1 · εV t1)t1 ⊗ t1, ε

(1)
P = Sσ

(1)
P(2.7)

to ensure compatibility of stresses and strains at each interface. (Here t1⊗ t1 denotes
the rank-1 matrix t1t

T
1 , in which the row vector tT1 is the transpose of the column

vector t1.) The resulting average stress and strain in the entire laminate are therefore

σ
(1)
∗ = pσ

(1)
P and ε

(1)
∗ = pε

(1)
P + (1 − p)εV . Next suppose that this laminate has

been layered (on a much larger length scale) with new layers of the plate phase, in
proportions (1 − q) and q, with the new interfaces being oriented parallel to a unit

vector t2. The stress σ
(2)
P and strain ε

(2)
P in the new layers of the plate phase must be

σ
(2)
P = σ

(1)
∗ + E(1− p)(t2 · εV t2)t2 ⊗ t2, ε

(2)
P = Sσ

(2)
P(2.8)

to ensure compatibility of the stresses σ
(2)
P and σ

(1)
∗ and compatibility of the associated

strains, Sσ
(2)
P and ε

(1)
∗ . The total average stress in this rank-2 laminate is therefore

σ∗ = (1− f)E[c1(t1 · εV t1)t1 ⊗ t1 + c2(t2 · εV t2)t2 ⊗ t2],(2.9)

where f = (1 − p)(1 − q) is the volume fraction of void in the second rank laminate
and c1 and c2 are the nonnegative lamination parameters

c1 =
p

1− f
=

p

p+ q − pq
, c2 =

q(1− p)

1− f
=

q(1− p)

p+ q − pq
(2.10)

introduced by Tartar (1985), satisfying c1+c2 = 1. For any fixed value of f , c1 = 1−c2
can take any value between 0 and 1. Now if εV , t1, and t2 are such that

t1 · εV t1 = t2 · εV t2 = 1 + σ

(1− f)E
,(2.11)

then σ∗ will have the desired trace 1 + σ, and

εV : σ∗ = (1− f)E[c1(t1 · εV t1)2 + c2(t1 · εV t1)2] = (1 + σ)2

(1− f)E
.(2.12)

In other words, the bound (2.6) will be satisfied as an equality. (Note that σ∗ given
by (2.9) necessarily has eigenvalues of the same sign when (2.11) holds.) To ensure
that σ∗ is diagonal we choose

c1 =
− cos θ2 sin θ2

cos θ1 sin θ1 − cos θ2 sin θ2
, c2 =

cos θ1 sin θ1
cos θ1 sin θ1 − cos θ2 sin θ2

,(2.13)

where θ1 and θ2 are the angles of the layers, in terms of which

t1 =

(
sin θ1
cos θ1

)
, t2 =

(
sin θ2
cos θ2

)
.(2.14)
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Both c1 and c2 will be positive if we take θ1 between 0 and π/2, and θ2 between π/2
and π. To ensure that the diagonal elements of σ∗ are σ and 1 we take

tan θ2 = − σ

tan θ1
.(2.15)

Next note that any εV satisfying equality in (2.6) can be represented in the form

εV =
(1 + σ)I

(1− f)E
+A with A =

(
a b
b −aσ

)
(2.16)

for some choice of the constants a and b. The condition (2.11) then requires that t1
and t2 be chosen with

t1 ·At1 = t2 ·At2 = 0.(2.17)

This will be satisfied if tan θ2 is given by (2.15), and if tan θ1 is the unique nonnegative
root of the quadratic

a(tan θ1)
2 + 2b tan θ1 − aσ = 0,(2.18)

which always has such a root. By choosing the parameters according to (2.13), (2.15),
and (2.18), we have obtained a laminate such that εV is the average strain in the void
phase and σ∗ given by (1.3) is the average stress. In the special case when a = 0 we
have θ1 = 0 and θ2 = π, and (2.13) is not sufficient to determine c1 and c2. (The
tensor σ∗ given by (2.9) is always diagonal.) In this case we choose c1 = σ/(1 + σ)
and c2 = 1/(1+σ) to ensure that the diagonal elements of σ∗ are σ and 1. In another
special case when b = 0 the equations are solved with tan θ1 = − tan θ2 =

√
σ and

c1 = c2 = 1/2.
When σ = 0 a simple laminate of the void and plate phases with its layers parallel

to the x2-axis suffices to generate all values of εV on the boundary of D(f,σ∗). The
effective elasticity matrix C∗ = S−1

∗ of such a laminate has two zero eigenvalues. It is
a bimode material in the sense of having two easy modes of deformation. A plane of
average strains (rather than a single average strain) is associated with a given average
stress σ∗. It is easy to check that the associated plane of values of εV is

εV : σ∗ =
1

(1− f)E
,(2.19)

which, according to (2.6), is the boundary of D(f,σ∗).
When σ < 0 it is known that the energy bound is attained by rank-2 laminates

with θ1 = 0 and θ2 = π. Indeed, by choosing these values of θ1 and θ2 and

t1 · εV t1 = −t2 · εV t2 = − 1− σ

(1− f)E
, c1 =

−σ
1− σ

, c2 =
1

1− σ
,(2.20)

we see that σ∗ given by (2.9) is diagonal with elements σ and 1, and that the bound
(2.6) is achieved. In contrast to the case when σ > 0, these are the only rank-2
laminates which attain the bound. The constraint (2.20) on εV forces it to have the
form

εV =

(−k c
c k

)
, where k =

1− σ

(1− f)E
,(2.21)
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which generates only one line on the boundary of D(f,σ∗) as c is varied. What saves
us is the fact that there are many other laminate structures which come close to
attaining the bound.

Suppose we want to find a multiple rank laminate for which the average stress
εV within the void phase is close to boundary of D(f,σ∗). We can express εV in the
form

εV =

(
a− k − δ b

b k + δ − aσ

)
,(2.22)

where δ is a small positive parameter, and a and b can have any real values.
Now it was established by Milton and Cherkaev (1995) (see also section 30.7 in

Milton (2002)) that for any given tensor σ∗ with negative determinant there exists a
rank-4 laminate which is bimode and supports the stress σ∗. The associated plane of
values of εV necessarily takes the form

εV : σ∗ = (1− σ)h,(2.23)

where h is a fixed constant with h > k. This plane is parallel to the boundary of
D(f,σ∗). Let us assume that δ is small enough so that h > k+ δ. Our aim is to show
that, by laminating together (on a very large length scale) this bimode material with
the second rank laminate achieving the energy bound, we can attain the desired value
(2.22) of εV .

In general the set R(f,σ∗) has the property that

εC∗ = pεA∗ + (1− p)εB∗ ∈ R(f,σ∗)(2.24)

for all p ∈ (0, 1), whenever εA∗ and εB∗ are such that

εA∗ ∈ R(f,σ∗), εB∗ ∈ R(f,σ∗), and t · εA∗ t = t · εB∗ t(2.25)

for some choice of t �= 0. The condition that εA∗ and εB∗ lie in R(f,σ∗) implies that
there exist composites A and B of the two phases, with the void phase occupying the
volume fraction f in each composite, such that if an average stress σ∗ is applied to
these composites, then the resulting average strains will be εA∗ and εB∗ , respectively.
The last condition in (2.25) ensures compatibility of the average strains. The asso-
ciated composite C is a laminate of the two composites A and B, laminated (on a
length scale much larger than the microstructure of composites A and B) in propor-
tions p and 1 − p, respectively, with its layers being parallel to t. When an average
stress σC∗ is applied to this laminate, the elasticity equations are solved with the stress
field within composites A and B having the same average value of σ∗ resulting in an
average strain of εC∗ in composite C.

When mapped to the set D(f,σ∗) (which is just R(f,σ∗) shifted and rescaled)
this property implies

εCV = pεAV + (1− p)εBV ∈ D(f,σ∗)(2.26)

for all p ∈ (0, 1), whenever εAV and εBV are such that

εAV ∈ D(f,σ∗), εBV ∈ D(f,σ∗), and t · εAV t = t · εBV t(2.27)

for some choice of t �= 0. We want to find εV = εAV of the form (2.21) and εV = εBV
satisfying (2.23), such that εCV matches εV in (2.22). First note that if the last
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condition in (2.27) holds, then necessarily

0 = t · (εCV − εAV )t = t ·
(
δ − a c− b
c− b aσ − δ

)
t.(2.28)

Letting θ denote the angle of the layers in the final lamination, so that t = (sin θ, cos θ),
this last condition becomes

(δ − a)(tan θ)2 + 2(c− b) tan θ + aσ − δ = 0.(2.29)

We are free to select any value of θ such that tan θ is nonzero and finite, and we set

c = b+
(a− δ)(tan θ)2 + δ − aσ

2 tan θ
(2.30)

so that (2.29) is satisfied. Having found c and t, we choose

εBV =
(εCV − pεAV )

(1− p)
with p =

h− k − δ

h− k
(2.31)

so that (2.26) holds, so that εV = εBV satisfies (2.23), and so that the last condition
in (2.27) holds. The average strain in the void phase in the resulting composite then
matches (2.22).

So far, for each positive, zero, or negative value of σ, we have found composites
realizing values of εV such that (2.6) is satisfied, or almost satisfied, as an equality.
It remains to find composites realizing the remaining values of εV satisfying the in-
equality (2.6). These composites have average strain in the void phase matching any
εV in the interior of D(f,σ∗). Given any α between 1 and 1/f , consider the set
of composites we have found that have values of εV on or close to the boundary of
D(αf,σ∗). These have a volume fraction αf of the void phase, and are such that

εV : σ∗ ≈ (1 + |σ|)2
(1− αf)E

.(2.32)

Now we can reduce the volume fraction of the void phase down to f in each of these
composites by inserting islands of the plate phase into the void spaces. Inside these
islands both the stress and the strain will be zero. The stress field and hence the
average stress field σ∗ will remain unchanged. The displacement field u(x) in the
original part of the plate phase (excluding the new islands) will also remain invariant.
Since u(x)/‖x‖ approaches ε∗x/‖x‖ as ‖x‖ → ∞, it follows that the average strain
will remain unchanged when we insert the islands. The average strain εV in the void
phase, given by (2.4), will be multiplied by the factor α because the volume fraction
of void is reduced by the factor α. In this way we obtain composites, with the void
phase occupying the volume fraction f , which realize or come close to realizing any
εV satisfying

εV : σ∗ = α
(1 + |σ|)2
(1− αf)E

.(2.33)

As α is varied from 1 to 1/f , this plane of values of εV sweeps across the entire range
allowed by (2.6).

There is one technical point which remains. That is, the results seem very sensitive
to perturbations. In particular, a small change in the structure of a bimode material
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may cause the zero eigenvalues of its effective elasticity matrix to become nonzero,
and the associated set of values of εV , for a given applied stress σ∗, changes from
a plane of values to just a single value. Also, to rigorously justify our analysis, we
should really take the void phase to have a nonzero Young’s modulus EV (so that it
is not void) and then take the limit as EV → 0. But for any EV > 0 the effective
elasticity matrix will have nonzero eigenvalues, and so there will be just a single value
of εV for a given σ∗ in any unimode or bimode material. It looks like our analysis
falls apart.

However, the key observation to make is that while these perturbations make
large changes to the effective compliance matrix S∗, they make small changes to the
effective elasticity matrix C∗. For a given fixed applied strain ε∗ let us consider the
range S(f, ε∗) of values that the average stress σ∗ takes as the microgeometry is varied
over all possible configurations that have a fixed volume fraction f of the void phase.
When the structure of a material is slightly perturbed, the value of σ∗ will not change
by much. Characterizing all the sets S(f, ε∗) and characterizing all the sets R(f,σ∗)
are clearly equivalent problems. The energy bounds imply

ε∗ : σ∗ ≥ σ∗ : Sσ∗ +
f(|λ1|+ |λ2|)2

(1− f)E
,(2.34)

where λ1 and λ2 are the eigenvalues of σ∗ and S is the fourth order compliance tensor
of the plate (represented by the matrix S given by (2.2)). The set of σ∗ consistent with
these bounds for a given value of ε∗ does not have a simple geometrical interpretation
in the space with σ∗

11, σ
∗
22, and σ∗

12 as coordinates, although its intersection of its
boundary with the region detσ∗ ≥ 0 is an ellipsoidal surface. To find a microstructure
associated with a given σ∗ in this set, we use the same construction as before, that
is, we look for the microstructure associated with ε∗ when the average stress σ∗
is applied. Now, however, σ∗ will be only slightly perturbed if we make EV very
small and positive. Since the structure of the material associated with a given σ∗
changes continuously as σ∗ is varied in the regions detσ∗ > 0 and detσ∗ < 0, we
can realize any σ∗ satisfying the strict inequality (2.34) for sufficiently small values
of EV , provided that detσ∗ �= 0. If detσ∗ = 0 and EV is fixed but very small, then
we consider the microstructures A and B associated with σA∗ and σB∗ , where

σA∗ = σ∗ + δt⊗ t, σB∗ = σ∗ − δt⊗ t,(2.35)

where δ is small and the unit vector t is chosen so that detσA∗ �= 0. Then detσB∗ =
−detσA∗ is also nonzero. By laminating together the microstructures A and B in
equal proportions with the layer interfaces being oriented parallel to t, we obtain a
composite having the average stress σ∗.

3. A necessary condition for optimality for a periodic array of holes.
Although we have completely characterized the range R(f,σ∗) and identified optimal
(or almost optimal) microgeometries, the solution is unsatisfactory from a practical
viewpoint. Multiple rank laminates are difficult to construct, and when one phase
is void we expect that buckling of the layers and contact between adjacent layers
could be a serious problem. Instead of allowing all possible microgeometries, it makes
sense to consider a restricted class of more realistic microgeometries, such as periodic
composites comprised of a regular array of holes with one simply connected hole per
unit cell. We focus on this problem since a periodic composite with only one hole
per unit cell should be much easier to manufacture than a composite with multiple
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(or perhaps infinitely many) holes per unit cell. The holes occupy a (possibly large)

volume fraction f in the plate. We let R̃(f,σ∗) denote the range of values that the
average strain ε∗ takes as the boundary Γ of the hole in the unit cell is varied, while
keeping f fixed. (The range R̃(f,σ∗) will depend on our choice of primitive vectors
of the unit cell.)

A first step towards determining R̃(f,σ∗) is to find its convex hull. This is
obtained from its Legendre transform

g(f,σ0
∗,σ∗) = min

ε∗∈R̃(f,σ∗)
σ0

∗ : ε∗.(3.1)

Knowing g(f,σ0
∗,σ∗) for given values of f , σ0

∗, and σ∗ allows one to compute a tangent

plane to the set R̃(f,σ∗) (with the tangent plane having normal σ0
∗). By varying σ0

∗
and taking the envelope of the resulting family of tangent lines, one recovers the
convex hull of R̃(f,σ∗). When σ0

∗ = σ∗, the quantity σ0
∗ : ε∗/2 is simply the elastic

energy stored in the composite when it is subject to the average stress σ∗, and so
g(f,σ∗,σ∗)/2 represents a sharp bound on the elastic energy of a periodic array of
holes, with the void phase occupying the volume fraction f . The bound (2.34) clearly
implies

g(f,σ∗,σ∗) ≥ σ∗ : Sσ∗ +
f(|λ1|+ |λ2|)2

(1− f)E
,(3.2)

where λ1 and λ2 are the eigenvalues of σ∗. This inequality becomes an equality only
when detσ∗ ≥ 0, and the hole shapes attaining the minimum value of the elastic
energy are those found by Vigdergauz (1986, 1994, 1996, 1999) (see also Grabovsky
and Kohn (1995)). These holes approach ellipses as the volume fraction f approaches
zero. When detσ∗ is negative, Allaire and Aubry (1999) have proved that there is
a definite gap between the left- and right-hand sides of the above equation. The
assumption of only one hole per unit cell represents a significant restriction on the
set of microstructures being considered. Cherkaev et al. (1998), following preliminary
work of Cherkaev and Vigdergauz (1986), have shown that in the limit as f → 0 the
hole minimizing the elastic energy is almost rectangular in shape when detσ∗ < 0.

Here we consider what happens when the boundary Γ of the hole is varied, while
keeping f fixed, so as to minimize the bilinear form

σ0
∗ : S∗σ∗,(3.3)

where σ0
∗ and σ∗ are fixed tensors. The value of the minimum is of course g(f,σ0

∗,σ∗),
the function we seek to find. It is conceivable that the minimum value is never
achieved. The boundary of the hole could become increasingly convoluted as the
minimum is approached. Alternatively, the boundary of the optimal shaped hole
could touch itself along certain intervals, corresponding to slits or infinitesimally thin
bridges. For the moment let us ignore these possibilities and assume that the minimum
is achieved by a simply connected hole, with a boundary that does not touch itself
and that additionally does not touch the boundary of the unit cell.

We will show that if the shape of hole is such that this bilinear form is minimized,
then the following necessary condition for optimality holds:

σ0tt(x)σtt(x) = constant on all smooth portions of Γ.(3.4)
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Here, σ0tt(x) and σtt(x) are the tangential components of the periodic stress tensor
fields σ0(x) and σ(x) that are generated when average stresses σ0

∗ and σ∗, respec-
tively, are applied to the composite. Thus the stress tensor field σ0(x), defined to be
zero within each hole, has average value

〈σ0〉 = σ0
∗(3.5)

and satisfies the equilibrium equation

∇ · σ0(x) = 0(3.6)

and the boundary condition

σ0(x) · n(x) = 0, x ∈ Γ,(3.7)

where n(x) is the outward normal to the surface Γ at the point x. Additionally, this
stress is related to the associated strain tensor field

ε0(x) =
1

2
(∇u0(x) + (∇u0(x))T )(3.8)

through the constitutive law

ε0(x) = Sσ0(x).(3.9)

By deleting the superscript 0 in these formulae, one obtains the equations satisfied by
the stress tensor field σ(x). By definition, the effective compliance tensor S∗ governs
the relations

ε0∗ = S∗σ0
∗, ε∗ = S∗σ∗(3.10)

between the average strain, ε0∗ or ε∗, and the average stress, σ0
∗ or σ∗. Since the local

strains ε0(x) and ε(x) are undefined within each hole, the statement that the average
strains are ε0∗ and ε∗ holds in the sense that

u0(x)− ε0∗x and u(x)− ε∗x are periodic in x.(3.11)

Now let Ω denote the region occupied by the plate within the unit cell, excluding the
hole. Then from (3.10) we have the useful identity∫

Ω

σ0(x) : Sσ(x)dx =

∫
Ω

σ0(x) : ε(x)dx

=

∫
boundary of the cell

n · σ0(x)u(x)dl +

∫
Γ

n · σ0(x)u(x)dl

=

∫
boundary of the cell

n · σ0(x)[ε∗x]dl

=

∫
Ω

σ0(x) : ε∗dx

= σ0
∗ : S∗σ∗,(3.12)

where we have used the fact that n · σ0(x) vanishes on the boundary Γ and the fact
that on opposite sides of the unit cell n ·σ0(x) takes opposite values, while u(x)−ε∗x
takes the same value, implying that their scalar product integrates to zero.
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To establish (3.4) we introduce a Lagrange multiplier c and look for the stationary
points of

σ0
∗ : S∗σ∗ + cf(3.13)

as the boundary of the hole is varied. For simplicity, let us assume that the unit cell
is square with sides of unit length.

Let λγ(x) be the perturbation of the interface in the normal direction; that is,
the new boundary Γ(λ) consists of points

y = x+ λγ(x)n(x), x ∈ Γ,(3.14)

where n(x) is the outward normal to the original surface Γ at the point x.
Our aim is to evaluate

d

dλ
(σ0

∗ : S∗(λ)σ∗ + cf(λ))

∣∣∣∣
λ=0

.(3.15)

The derivative of f(λ) is simply

d

dλ
f(λ)

∣∣∣∣
λ=0

=

∫
Γ

γ(x)dl.(3.16)

Also from (3.12) we see that the remaining derivative in (3.15) splits into the sum of
three terms:

d

dλ
(σ0

∗ : S∗(λ)σ∗)
∣∣∣∣
λ=0

=

∫
Ω

dσ0(x)

dλ

∣∣∣∣
λ=0

: Sσ(x)dx+

∫
Ω

σ0(x) : S dσ(x)
dλ

∣∣∣∣
λ=0

dx

+

∫
Γ

σ0(x) : Sσ(x)γ(x)dl,(3.17)

where the last term arises because the domain of integration Ω(λ) depends on λ. The
first term can be equated with the derivative that we seek to find through a calculation
similar to that given in (3.12):∫
Ω

dσ0(x)

dλ

∣∣∣∣
λ=0

: Sσ(x)dx =

∫
Ω

dε0(x)

dλ

∣∣∣∣
λ=0

: σ(x)dx

=

∫
boundary of the cell

n · σ(x)du
0(x)

dλ
dl +

∫
Γ

n · σ(x)du
0(x)

dλ
dl

=

∫
boundary of the cell

n · σ(x)
[
dε0∗
dλ

x

]
dl

=

∫
Ω

σ(x)
dε0∗
dλ

dx

=
d

dλ
(σ0

∗ : S∗(λ)σ∗)
∣∣∣∣
λ=0

.(3.18)

Similarly, the second term can also be equated with this derivative, and so we deduce
that

d

dλ
(σ0

∗ : S∗(λ)σ∗ + cf(λ))

∣∣∣∣
λ=0

=

∫
Γ

(−σ0(x) : Sσ(x) + c)γ(x)dl.(3.19)
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For this to be zero for all choices of γ(x) we must have

σ0(x) : Sσ(x) = c on all smooth portions of Γ.(3.20)

But the only nonzero components of σ0(x) and σ(x) on the boundary of the hole are
the tangential components σ0tt and σtt. It follows that

σ0(x) : Sσ(x) = σ0tt[(t⊗ t) : S(t⊗ t)]σtt,(3.21)

where t is the unit vector tangential to the hole boundary. Finally, since S is rota-
tionally invariant, (t⊗ t) : S(t⊗ t) is a constant independent of the direction of t. In
conclusion, we arrive at (3.4).

4. Possible stress-strain pairs for a dilute array of holes. Here we consider
a periodic array of holes in a plate having isotropic compliance matrix S(E, ν). It is
assumed there is only one hole per unit cell, occupying a very small volume fraction f
of the unit cell. Additionally the hole is assumed to be well separated from the holes
in adjoining cells, so that interaction effects can be neglected. Let D̃(σ∗) denote the
range of values that εV takes as the hole shape is varied, in the limit f → 0. Our aim
is to find D̃(σ∗) and to identify the optimal hole shapes that correspond to values of

εV on the boundary of D̃(σ∗). In some sense these optimal holes have the greatest
effect on the average strain when a given (small) volume fraction of them is inserted
into a plate which is subject to the applied loading σ∗.

To the first order in f the effective compliance matrix is given by

S∗ = S+ fE+O(f2),(4.1)

where the compliance polarizability matrix E is obtained by solving the planar elastic-
ity equations for a single hole in an infinite plane, subject to uniform applied stresses.
Associated with the matrix E is a fourth order compliance polarizability tensor E.
(The tensor fE has been called the hole compliance tensor or H-tensor by Kachanov
(1993) and Shafiro and Kachanov (1999), and the inverse of E has been called the
Pólya–Szegö matrix by Movchan and Serkov (1997).)

To a first approximation, the average strain εV in the void phase, as defined by
(2.4), is given by

εV ≈ Eσ∗.(4.2)

Thus the problem of determining the set D̃(σ∗) reduces to finding the range of values
that Eσ∗ takes as the hole shape is varied.

Now in the periodic array, S∗ −S ≈ fE should remain virtually unchanged when
we insert into each hole an island of plate material that is connected to the surrounding
plate by a very thin bridge of plate material (to ensure that the hole in the unit cell
remains simply connected). This reduces the volume fraction of void f by some factor,
and E must accordingly increase by the same factor. We deduce that

λεV ∈ D̃(σ∗) for all λ ≥ 1, provided εV ∈ D̃(σ∗).(4.3)

This obviously implies that the set D̃(σ∗) is unbounded in some directions.
Our goal is to numerically compute this set and to identify the hole shapes which

correspond to values of εV on the boundary of D̃(σ∗). The approach we take is
similar to one successfully used by Cherkaev et al. (1998) to find hole shapes which
minimize the elastic energy under a given loading σ∗. For values of σ∗ with posi-
tive determinant they recovered the known result that the optimal hole is an ellipse,



STRESS-STRAIN PAIRS IN A MEDIUM WITH HOLES 1001

while for values of σ∗ with negative determinant they found that the optimal hole is
almost rectangular in shape. The first step in these computations is to determine the
compliance polarizability matrix E for a given shaped hole.

4.1. Compliance polarizability matrices for a dilute array of holes. For
an arbitrary shaped hole Movchan and Serkov (1997) (see also Serkov (1998)) show
how the calculation of E can be reduced to solving a system of linear equations. In
this section we briefly summarize the main points of their analysis and also show how
it can be used to obtain the elastic fields in the vicinity of each hole.

Let the shape of the hole be specified by the image of the exterior of the unit
circle under the conformal map

z = ω(ξ),(4.4)

where z = x1 + ix2, and the complex variable ξ is associated with the unit circle.
Without loss of generality we can assume that ω(ξ) ≈ ξ when |ξ| is very large. The
complex valued function ω can be expanded in a Laurent series, and, after truncation,
one has

z = ω(ξ) = ξ +

N∑
n=1

c−nξ−n,(4.5)

with the ci being complex coefficients that determine the shape of the hole. We
consider the response to an applied stress (representing the stress at a large distance
from the hole)

σ∗ =
(
σ∗
11 σ∗

12

σ∗
12 σ∗

22

)
(4.6)

as the loading coefficients σ∗
11, σ

∗
22, and σ∗

12 are varied. The solution to this planar
elasticity problem is naturally expressed in terms of the Kolosov–Muskhelishvili com-
plex potentials φ and ψ (Muskhelishvili (1953)). For plane stress they determine the
two-dimensional displacement field u(x) through the relation

u1 + iu2 =
[(3− ν)φ(z)/(1 + ν)− zφ′(z)− ψ(z)]

(2µ)
,(4.7)

in which ν is Poisson’s ratio, µ is the shear modulus, and the overline denotes complex
conjugation. The associated stress field σ(x) has components σ11, σ22, and σ12 given
by

σ11 + σ22 = 4Re[φ′(z)], σ22 − σ11 + 2iσ12 = 2[zφ′′(z) + ψ′(z)].(4.8)

The potential φ(ξ) can be shown (see the formulae between (3.11) and (3.13) in
Movchan and Serkov (1997)) to satisfy the integral equation

φ(ξ)− 1

2πi

∫
|t|=1

ω(t)φ′(t)

ω′(t)(t− ξ)
dt = αξ − γξ−1,(4.9)

where the real coefficient α and the complex coefficient γ are determined from the
loading coefficients:

α =
(σ∗

11 + σ∗
22)

4
, γ =

(σ∗
22 − σ∗

11 + 2iσ∗
12)

2
.(4.10)
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Now the complex potential φ(ξ) can be expanded in a Laurent series in powers of ξ,
and the coefficients of this series must depend linearly on the applied stress, that is,
linearly on α and linearly on the real and imaginary parts of γ. Also when ξ is large,
φ(ξ) approaches αξ. Accordingly, the potential φ(ξ) has the representation

φ(ξ) = αξ − γξ−1 − α

∞∑
n=1

aαnξ
−n − Re(γ)

∞∑
n=1

aγnξ
−n − Im(γ)

∞∑
n=1

aτnξ
−n,(4.11)

where the minus signs and the additional term −γξ−1 are introduced to simplify
subsequent equations. This serves to define the three sets of coefficients ajn, j = α, γ, τ ,
each set being associated with a different loading. By substituting (4.11) back into
(4.9) and using the residue theorem to evaluate the contour integrals, one finds that

aαn = aγn = aτn = 0 for all n > N,(4.12)

and that the remaining coefficients satisfy the system of linear equations

aαm −
N−m−1∑
k=1

ρN−m−k−1ka
α
k = ρN−m, aαm ∈ C,

aγm −
N−m−1∑
k=1

ρN−m−k−1ka
γ
k = ρN−m−2, aγm ∈ C,

aτm −
N−m−1∑
k=1

ρN−m−k−1ka
τ
k = ρN−m−2i, aτm ∈ C,(4.13)

for m = 1, 2, 3, . . . , N , where ρk = 0 for k < 0, ρ0 = c−N , and

ρk =
1

k!

dk

dξk

[
ξN+1 +

∑N
n=1 c−nξ

N−n

1−∑N
n=1 nc−nξn+1

]∣∣∣∣
ξ=0

(4.14)

for k > 0.
This system can be written in the matrix form

X(i) −AX(i) = B(i), i = α, γ, τ,(4.15)

where

X(α) =




aα1
aα2
...

aαN−2

aαN−1

aαN


 , X(γ) =




aγ1
aγ2
...

aγN−2

aγN−1

aγN


 , X(τ) =




aτ1
aτ2
...

aτN−2

aτN−1

aτN


 ,

B(α) =




ρN−1

ρN−2

...
ρ2
ρ1
ρ0


 , B(γ) =




ρN−3

ρN−4

...
ρ0
0
0


 , B(τ) = iB(γ)(4.16)
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are N -dimensional vectors and

A =




ρN−3 2ρN−4 · · · (N − 2)ρ0 0 0
ρN−4 2ρN−5 · · · 0 0 0
...

...
. . .

...
...

...
ρ1 2ρ0 · · · 0 0 0
ρ0 0 · · · 0 0 0
0 0 · · · 0 0 0
0 0 · · · 0 0 0




(4.17)

is an N ×N matrix. It helps to rewrite (4.15) in the equivalent form

(I−AA)X(i) = B(i) +AB(i), i = α, γ, τ,(4.18)

which may be solved directly for the unknown vectors X(i).
From the solution for the coefficients ajn, j = α, γ, τ , we can find the potential

φ(z) for an arbitrary applied stress and hence determine the tangential stresses on
the boundary of the hole:

σtt = Trace(σ) = 4Re[Φ(x)] on Γ, where Φ(x) =
φ′(ξ)
ω′(ξ)

.(4.19)

This is useful because in order to check if the optimality condition (3.4) is satisfied
(or approximately satisfied) we need to determine stress fields at the boundary of the
hole.

Also, once the potential φ(ξ) has been determined, the potential ψ(ξ) can be
found from the relation

ψ(ξ) = γξ − αξ−1 +
1

2πi

∫
|t|=1

ω(t)φ′(t)
ω′(t)(t− ξ)

dt,(4.20)

which directly follows from the formulae between (3.11) and (3.13) in Movchan and
Serkov (1997). By substituting the series expansion (4.11) for φ(ξ) in (4.9) and using
the residue theorem to evaluate the contour integrals, one finds that ψ(ξ) is given by
the series expansion

ψ(ξ) = γξ − αξ−1 − α

∞∑
n=1

aα−nξ
−n − Re(γ)

∞∑
n=1

aγ−nξ
−n − Im(γ)

∞∑
n=1

aτ−nξ
−n,(4.21)

where the coefficients aα−n, a
γ
−n, and a

τ
−n are obtained by setting m = −n in the for-

mulae (4.13). It is curious that the series expansion for the potential φ(ξ) terminates
at n = N , whereas the series expansion for ψ(ξ) has an infinite number of terms.
Having obtained the potentials φ(ξ) and ψ(ξ), the displacement field u(x) around the
hole can be computed using (4.7).

The compliance polarizability matrix E is determined by the area of the hole
and by the far field behavior of the potentials φ and ψ in the z-plane. This far field
behavior in the z-plane is in turn determined first by the far field behavior of φ and
ψ in the ξ plane, which to leading order is governed by the six coefficients aj1 and a

j
−1

with j = α, γ, τ , and second by the dependence of z on ξ when |ξ| is large, which to
leading order is governed by the coefficient c−1. Explicit calculation shows that the
compliance polarizability matrix is given by the formula

E =
−1

E(1−∑∞
n=1 n|c−n|2)


−2Ω + Σ− 1

2Ξ 2Ω− 1
2Ξ Λ− 2Θ

2Ω− 1
2Ξ −2Ω− Σ− 1

2Ξ Λ + 2Θ
Λ− 2Θ Λ + 2Θ 2Υ


 ,(4.22)
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where E is the Young’s modulus and

Ω = 1 + Re(aγ1), Σ = 2Re(c−1) + Re(aα1 ) + Re(aγ−1),

Ξ = 1 + Re(aα−1), Υ = −2 + 2 Im(aτ1),

Θ =
√
2 Im(aγ1), Λ =

√
2 Im(c−1) +

√
2 Im(aα1 ).(4.23)

The expression (4.22) for the compliance polarizability matrix E differs from the one
given in formula (4.8) of Movchan and Serkov (1997) by the prefactor of

V = π

(
1−

∞∑
n=1

n|c−n|2
)
,(4.24)

which represents the area of a hole which is the image of the unit circle |ξ| = 1 under
the conformal map (4.5). This additional factor is needed to normalize with respect to
the area of the hole so that (4.1) gives the correct estimate for the effective compliance
tensor of a dilute periodic array of these holes.

4.2. Explicit formulae for elliptical holes. For elliptical holes the formulae
(4.22) and the whole algorithm can be simplified. An ellipse of arbitrary eccentricity
and arbitrary orientation can be generated by a conformal map of the form

z = ω(ξ) = ξ + c−1ξ
−1, c−1 ∈ C, |c−1| < 1.(4.25)

By selecting

c−1 =
1− r

1 + r
e2iβ , β ∈ [0, π], r > 0,(4.26)

the boundary of the unit disc |ξ| = 1 is mapped onto the boundary of an ellipse with
semiaxis lengths a and b = 2−a having a desired ratio r = b/a, and with axes oriented
at desired angles of β and β + π/2.

The formulae for coefficients Ω, Σ, Ξ, Υ, Θ, and Λ can be reduced to the form

Ω = 1, Ξ = 2

(
1 +

(
1− r

1 + r

)2)
, Υ = −2,

Σ = 4
1− r

1 + r
cos 2β, Λ = 2

√
2
1− r

1 + r
sin 2β, Θ = 0,(4.27)

and consequently the compliance polarizability matrix is

(4.28)

E =
−1
Er


−(1 + r + r2) + (1− r2) cos 2β r 1√

2
(1− r2) sin 2β

r −(1 + r + r2)− (1− r2) cos 2β 1√
2
(1− r2) sin 2β

1√
2
(1− r2) sin 2β 1√

2
(1− r2) sin 2β − 1

2
(1 + r)2


 .

Without loss of generality we can assume that σ∗ has the form (1.3). Then straight-
forward calculations give the following analytical formulae for εV = (εV11, ε

V
22,

√
2εV12)

when the applied stress σ∗ is given by (1.3):

εV11 =
1

Er

{
σ(r + 1)2 + σ(r2 − 1) cos 2β − r(σ + 1)

}
,

εV22 =
1

Er

{
(r + 1)2 + (1− r2) cos 2β − r(σ + 1)

}
,

εV12 =
1

2Er
(σ + 1)(r2 − 1) sin 2β.(4.29)
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The formulae (4.28) and (4.29) were obtained by Kachanov (1993) as a limiting case
of Eshelby’s results for an ellipsoidal cavity.

In particular, when σ = −1 (which corresponds to a pure shear applied stress)
we see that εV12 is necessarily zero for all orientations and eccentricities of the ellipse.
However, as shown in Figure 10 (see section 5 below), εV12 is nonzero for other inclusion
shapes. Thus, when σ = −1, the maximum value that |εV12| attains as an inclusion is
rotated can be taken as a measure of its nonellipticity.

Also when σ = 0 (which corresponds to an applied uniaxial stress), we see that
εV11 = −1/E for all orientations and eccentricities of the ellipse.

4.3. Numerical results for arbitrary shaped holes. Without loss of gener-
ality we can take E = 1 and assume that σ∗ has the form (1.3). The convex hull of

the set D̃(σ∗) can be computed from its Legendre transform, which is the minimum
value (in the limit N → ∞) of

σ0
∗ : εV = σ011ε

V
11 + σ022ε

V
22 + 2σ012ε

V
12 =


 σ011

σ022√
2σ012


E(c−1, c−2, . . . , c−N )


σ

1
0


(4.30)

as the complex coefficients c−1, c−2, . . . , c−N , representing the hole shape, are varied
over their admissible range. One has to avoid those sets of coefficients such that the
mapping w(ξ) from the exterior of the unit circle onto its image is not one-to-one.

Under the 180◦ rotation x → −x, the tensors σ0
∗ and σ∗ remain invariant. Since

the bilinear form σ0
∗ : Eσ∗ remains invariant under this rotation, we expect (un-

less there is symmetry breaking) that the hole shape minimizing this bilinear form
should also be invariant under this rotation. Consequently we restrict our attention
to conformal maps satisfying

ω(ξ) = −ω(−ξ),(4.31)

or equivalently to complex sets of coefficients c−n which are zero for all even values
of n.

By varying σ0
∗ we could in principle recover the convex hull of the set D̃(σ∗).

However, we decided to first focus on finding the convex hull of the projection of
the set D̃(σ∗) onto the (εV11, ε

V
22) plane. This projection, which we denote by D̃1,

represents the set of possible values of (εV11, ε
V
22). Its convex hull is obtained by taking,

say,

σ0
∗ =

(
σ0 0
0 1

)
(4.32)

and computing the minimum value of the bilinear form (4.30) for varying values of
σ0. Our numerical results suggest that we can associate hole shapes with every point
on the boundary of the convex hull. This indicates that D̃1 is itself convex, in which
case it would coincide with its convex hull. In any case, the convex hull of D̃1 is
itself important: it represents the set of possible values of εV in a plate containing
well-separated holes having a mixture of different shapes and sizes, with the holes
occupying an infinitesimal average volume fraction f .

The downhill simplex method (see, for example, Press et al. (1986)) was initially
used for the minimization, giving quite satisfactory results. Then to obtain more
refined results we used the gradient flow method for the minimization as this was
faster than the downhill simplex method. The question of uniqueness of the hole shape
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Fig. 1. Evolution of the optimal hole shapes minimizing the bilinear form with σ0 = 1/σ. The
numerical method for finding the hole shapes breaks down in the last plot.

minimizing the bilinear form and the question of whether the numerically obtained
hole shape is a global (and not just local) minimizer of the bilinear form was not
studied. Attention was paid to the constraint that the coefficients c−n be admissible
only at the end of the calculation. If the hole boundary turned out to self-intersect,
we redid the calculation with a smaller step size, which sometimes (but not always)
corrected the problem. In the numerical experiments described below, we tookN = 21
and did the minimization over the 11 complex coefficients c−1, c−3,. . . , c−21. As a
check, we also took N = 23 in a few test cases and found little change in the shape of
the optimal hole. Since the tensors σ0

∗ and σ∗ remain invariant under the reflections
x1 → −x1 and x2 → −x2, we expected that the optimal holes would also have this
symmetry, i.e., that the minimizing coefficients c−n would turn out to be real. This
was found to be the case. After finding an optimal hole (for given values of σ0

∗ and

σ∗), we calculated the associated value of εV = Eσ∗ lying on the boundary of D̃(σ∗)
and the associated tangent plane to this set having normal σ0

∗.
An additional simplification occurs in the special case when σ0 = 1/σ. Then

under a 90◦ rotation the tensor σ0
∗ is transformed to σ∗/σ, while σ0

∗ is transformed
to σσ0

∗. Thus the bilinear form σ0
∗ : Eσ∗ remains invariant if we rotate the hole

by 90◦ or if we reflect it about the axes. Unless there is symmetry breaking we
expect that the hole shape minimizing this bilinear form should also be invariant
under these transformations, that is, it should have square symmetry. Consequently
we expect that the minimizing coefficients c−n should all be real and zero unless n+1
is a multiple of 4. Figure 1 shows our numerical results for the evolution of optimal
shapes as σ is increased. The case σ = 1 corresponds to a circular hole, which is
known to minimize the elastic energy under hydrostatic loading. Figure 2 shows plots
of the product σ0tt(x)σtt(x) of the tangential components of the stress field around
the boundary of the inclusion. One can see that the optimality criterion (3.4) is
approximately satisfied, at least for values of σ which are not too small. The results
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Fig. 2. Product of the tangential stresses σ0tt(θ) and σtt(θ) along the hole boundary for the
holes of Figure 1 as a function of the angle θ, where ξ = eiθ.

indicate that the optimal shaped hole becomes nonconvex for sufficiently small σ and
that its boundary develops cusps when σ ≈ 0.2. In the next subsection we will provide
an analytical formula for what we believe is the optimal hole shape when σ = 0.2.
Below this critical value of σ the method fails; the algorithm produces a nonsensical
self-intersecting boundary, as illustrated in the last plot of Figure 1.

In Figures 3–9 (parts (a)), the solid curves are numerical results representing a

portion of the boundary of D̃1 for various values of σ. The dots represent values of
(εV11, ε

V
22) associated with elliptical holes of varying eccentricity and orientation. They

are calculated using the analytical formulae (4.29). Parts (b) of Figures 3–9 display
the shapes of the optimal holes corresponding to marked points on the solid curves.

For a hydrostatic load, with σ = 1, Figure 3(a) shows that elliptical shaped holes

cover almost the entire set D̃1. However, among the ellipses, only the circular hole
is optimal for this loading, and it minimizes the elastic energy. One can check that
the optimality condition (3.4) is not satisfied for an elliptical hole unless it is a circle.
Indeed the optimal shaped holes shown in diagrams A–D and F–L of Figure 3(b) are

not exactly ellipses. For this particular loading, the set D̃1 is sufficient to allow us
to determine the entire set D̃(σ∗). This is because when σ∗ = I, we can choose our

coordinates so that εV is diagonal. Thus the set D̃1 also represents the set of possible
eigenvalue pairs (λ1, λ2) of the matrix εV .

When σ and σ0 are both close to 1, the optimal hole is close to being circular in
shape. Suppose that the boundary of the hole is the curve traced by x1+ix2 = r(θ)eiθ

as θ is varied. This serves to define r(θ), which parameterizes the hole shape. A
straightforward but tedious perturbation analysis shows that when

σ = 1 + cε, σ0 = 1 + c0ε(4.33)

(in which ε is a small parameter and c and c0 are constants), the optimality condition
(3.4) is satisfied when

r(θ) = 1 + ε

(
c+ c0
4

)
cos 2θ + ε2

(
c− c0
4

)2 [
cos 4θ

6
− cos 2θ

]
+O(ε3).(4.34)
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Fig. 3. (a) The range of values of (εV11, ε
V
22) for a periodic array of well separated holes under

hydrostatic loading with σ = 1. The dots represent results for elliptical holes, while the solid line is
the envelope of numerical results for the optimal shaped holes. (b) The shapes of the optimal holes
associated with the various points A–L on the solid line.
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Fig. 4. As for Figure 3, but for biaxial loading with σ = 0.5. The square in (a) corresponds to
the critical hole of Figure 12, with σtt(x) being zero on all smooth portions of the boundary. The
adjoining straight solid line (whose extension, denoted by the dashed line, passes through the origin)
is generated by inserting an island of plate material inside the critical hole.
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Fig. 5. As for Figure 4, but with σ = 0.2. Both σtt(x) and σ0tt(x) are zero along the smooth
portions of the boundary of the critical hole.
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Fig. 6. As for Figure 3, but for biaxial loading with σ = 0.01. The circle in (a) corresponds to
the critical hole with σ0tt(x) being zero on all smooth portions of the boundary. The adjoining straight
solid line (whose extension, denoted by the dashed line, passes through the origin) is generated by
inserting an island of plate material inside the critical hole. The numerically generated optimal
holes corresponding to points K and L are questionable because they have self-intersections close to
the corner points.
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Fig. 7. As for Figure 3, but for biaxial loading with σ = −0.01. The numerically generated
optimal holes corresponding to points K and L are questionable because they have self-intersections
close to the corner points.
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Fig. 8. As for Figure 3, but for biaxial loading with σ = −0.5.



1014 G. W. MILTON, S. K. SERKOV, AND A. B. MOVCHAN
   

   

Fig. 9. As for Figure 3, but for pure shear loading with σ = −1.
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This perturbation analysis and the numerical results suggest that the optimal hole
is smooth when ε is sufficiently small, and that it is elliptical or circular to the first
order in ε but nonelliptical to the second order in ε (unless c0 = c, in which case
the bilinear form is the energy and is minimized by elliptical holes for all ε > −1/c).
When c0 = −c + c2ε, which corresponds to σ0 ≈ 1/σ, the terms involving cos 2θ
cancel, and the resulting hole has fourfold symmetry, in agreement with Figure 1.

When σ is less than 1, there are values of ε∗ associated with elliptical holes such
that λε∗ is not associated with any elliptical hole for some λ > 1 (but is associated
with an elliptical hole with an island in it). In particular, as illustrated in Figures 4,
5, 6, for σ = 0.5, σ = 0.2, and σ = 0.01, respectively, εV11 can be negative for
elliptical holes but cannot be arbitrarily large and negative. It follows from (4.29)
that εV11 ≥ σ − 1 for all elliptical holes in a plate with E = 1, with the bound being
achieved with β = π/2 in the limit r → ∞. Thus the values of (εV11, ε

V
22) associated

with elliptical holes no longer adequately cover D̃1. Accordingly, as illustrated in the
diagrams A–L of Figures 5(b) and 6(b), the optimal shaped holes are sometimes quite
different from elliptical in shape.

For σ = 0 the algorithm did not produce any reliable results. This case may
be rather singular. When σ is infinitesimal and positive, it is possible to find an
elliptical hole with an island in it (connected to the surrounding plate by a thin
bridge) matching any given value of (εV11, ε

V
22) with ε

V
11 + εV22 > 0 and εV22 > 1. Unless

εV11 ≈ −1, the required hole will be very elongated in shape and aligned at a slight
angle to the x2 axis. When σ is infinitesimal and negative, it is possible to find an
elliptical hole matching any given value of (εV11, ε

V
22) with ε

V
11 < −1 and εV22 > 1. Again

unless εV11 ≈ −1, the required ellipse will be very elongated in shape and aligned at a
slight angle to the x2 axis. When σ = 0, the bound on the elastic energy implies that
εV22 ≥ 1 for any shaped hole.

For negative values of σ the optimal shaped holes change to being almost rectan-
gular in shape. This is illustrated in Figures 7, 8, and 9, for σ = −0.01, σ = −0.5,
and σ = −1, respectively.

We also obtained some results for the projection of the set D̃(σ∗) onto the (σεV11+
εV22, ε

V
12) plane. (The prefactor of σ is added to εV11 so that nontrivial projections are

obtained for both positive and negative values of σ.) This projection, which we denote

as D̃2, represents the set of possible values of (σε
V
11+ ε

V
22, ε

V
12). The convex hull of this

projection is obtained by taking

σ0
∗ =

(
σ δ
δ 1

)
(4.35)

and varying δ. For the hydrostatic load σ = 1 the results for D̃1 in Figure 3(a)
(representing the set of possible eigenvalue pairs of the matrix ε∗) can be used to

determine D̃2. The optimal holes associated with the boundary of D̃2 are obtained
by rotating the optimal holes associated with the boundary of D̃1. For the loading
with σ = −1 the tensors σ∗ and σ0

∗ are transformed under a 90◦ rotation to −σ∗
and −σ0

∗, respectively, leaving the bilinear form σ0
∗ : Eσ∗ invariant. Unless there

is symmetry, breaking the optimal hole should also have this symmetry; that is, the
minimizing complex coefficients c−n should be zero unless n + 1 is a multiple of 4.

Numerical results for D̃2 are presented in Figure 10(a). As discussed in section 4.2,
elliptical holes necessarily have εV12 = 0 when σ = −1. The optimal shaped holes
are roughly rotated squares, as illustrated in the diagrams A–L of Figure 10(b). The
shape changes slightly from one diagram to the next, and is not just a rotation of the
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Fig. 10. (a) The range of values of (εV11 − εV22, ε
V
12) for a periodic array of well separated holes

under pure shear loading with σ = −1. Elliptical holes, represented by the dots, necessarily have
εV12 = 0. The solid line is the envelope of numerical results for the optimal shaped holes. (b) The
shapes of the optimal holes associated with the various points A–L on the solid line.
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Fig. 11. Plots of the tangential stress σtt(θ) along the hole boundary for the holes of Figure 1,
with the loading σ as a function of the angle θ, where ξ = eiθ. Notice how the tangential stress
concentrates at θ = 0 and θ = π as σ approaches 0.2. The plots of the tangential stress σ0tt(θ) are
similar but shifted horizontally by an angle of π/2.

same hole. Indeed a hole which satisfies the optimality condition (3.4) is generally
not going to satisfy the condition for any choice of σ0

∗ when σ∗ is rotated.
The calculations described above are based on numerical experiments where we

have minimized over a finite set of conformal mapping coefficients cn, treating them
as controls. It is possible that we have not adequately explored the set of admissible
shapes, and it is possible that the shapes found are only local minimizers and not
global minimizers. These are difficult questions that one always faces when trying
to approximate an infinite-dimensional minimization problem by a finite-dimensional
one. Since relatively large perturbations to the boundary sometimes produce small
changes in εV , we believe our sets of admissible values of εV to be generally more
reliable than our results for the shapes of the optimal holes.

5. Critical holes. Consider the graphs in Figure 2 of the tangential stress prod-
uct σ0ttσtt around the boundary of the hole. As σ approaches its critical value σ ≈ 0.2,
the product approaches zero. Further numerical investigations (see Figure 11) showed
that both σtt and σ

0
tt approach zero on all smooth portions on the boundary, and that

σtt blows up to infinity at two opposing corner points, while σ0tt blows up to infinity at
the remaining two opposing corner points. Certainly the optimality criterion (3.4) will
be satisfied if σtt (or alternatively σ

0
tt) is zero on all smooth portions of the boundary
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Γ. Let us try to find holes having this property, which we will call critical holes. It
was a surprise to us to discover that such holes exist, with the stress field σ(x) (or
σ0(x)) being zero along the boundary except at the corner points. To our knowledge
they have not been previously studied.

Without loss of generality let us suppose that the two corner points where σtt
blows up correspond to ξ = 1 and ξ = −1. (We no longer assume that σ∗ has the
diagonal form (1.3).) The analytic function Φ(ξ), which determines σtt through (4.19),
must have zero real part on the unit circle |ξ| = 1, except at the points ξ = 1 and
ξ = −1, where it must have a delta function singularity. Also it must approach α in
the limit ζ → ∞ because φ′(ξ)/ω′(ξ) approaches 1 in this limit. These considerations
imply that Φ(ξ) is given by the expression

Φ(ξ) = lim
ε→0

[
α+

α

ξ + ε− 1
− α

ξ + 1− ε

]
=
α(ξ − 1)

2(ξ + 1)
+
α(ξ + 1)

2(ξ − 1)
.(5.1)

In the ensuing calculations one should think of ε as being infinitesimal and strictly
positive, so that the singularities of Φ(ξ) lie inside the unit circle, even though we
will be looking at what happens in the limit ε → 0. (The only place one has to be
careful in making the distinction between zero ε and infinitesimal ε is in evaluating
the integral (5.4).)

To obtain ω(ξ) from Φ(ξ) we follow the approach of Cherkaev et al. (1998), who
solve this type of problem with a different Φ(ξ). By differentiating (4.9) and using
the relation Φ(t) = −Φ(t) + 2ReΦ(t), we see that

ω′(ξ)Φ(ξ) +
1

2πi

∫
|t|=1

ω(t)Φ(t)

(t− ξ)2
dt− 1

πi

∫
|t|=1

ω(t)ReΦ(t)

(t− ξ)2
dt = α+ γξ−2.(5.2)

The first integral can be evaluated using the Cauchy integral theorem,

1

2πi

∫
|t|=1

ω(t)Φ(t)

(t− ξ)2
dt = α− d

dξ
[ω(ξ)Φ(ξ)] = α− ω′(ξ)Φ(ξ) +

4αξω(ξ)

(ξ2 − 1)2
(5.3)

in which the leading constant α comes from the integral around a circle of very large
radius. The second integral can be making the substitution (5.1), keeping ε finite,
and taking the limit ε→ 0, giving

1

πi

∫
|t|=1

ω(t)ReΦ(t)

(t− ξ)2
dt =

ω(1)α

(ξ − 1)2
− ω(−1)α

(ξ + 1)2
.(5.4)

Assuming ω(−1) = −ω(1) and substituting (5.3) and (5.4) back into (5.2) results in a
simple expression for ω(ξ) involving ω(1). The constant ω(1) can then be determined
from the constraint that ω(ξ)/ξ approaches 1 as ξ → ∞. In this way we see that
necessarily

ω(ξ) = ξ + (1− 3k)ξ−1 + kξ−3, where k =
γ

4α
.(5.5)

This is an exact formula, not an approximation. The requirement that the mapping
from the exterior of the unit disk onto its image be one-to-one will be satisfied if and
only if k lies inside the intersection of the disk of radius 1/3 with the region Q whose
boundary is the curve traced out by

k =
eiη(1− eiη)

1 + 3eiη
(5.6)
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Fig. 12. Critical holes associated with various values of σ between 0.2 and 1. The tangential
stress σtt(θ), and hence all components of the stress field œ (x), are zero along the smooth portions
of the boundary.

as η varies between 0 and 2π. The constraint that |k| ≤ 1/3 ensures that ω′(ξ) is
nonzero when |ξ| > 1, while the constraint that k ∈ Q ensures that the image of
the circle |ξ| = 1 does not intersect itself and that ω(eiθ) moves anticlockwise around
the boundary as θ is increased from 0 to 2π. When k is real, these restrictions
force k to lie between 0 and 1/3. Figure 12 shows examples of the hole shapes for
k = γ/(4α) = (1 − σ)/[2(1 + σ)] (corresponding to the loading (1.3)) as σ varies
between 0.2 and 1. Notice that the hole shape for σ = 0.2 matches the hole shape
found numerically in the next to last plot in Figure 1. Figure 13 shows examples
of the hole shapes for complex values of k ranging over the boundary of admissible
values. These unusual hole shapes might have been seen in our numerical simulations,
had we explored the full range D̃(σ∗) of values of εV , and not just the range D̃1 of
values of the pair (εV11, ε

V
22).

By integrating φ′(ξ) = ω′(ξ)Φ(ξ), using (4.20) and the fact that t = 1/t when
|t| = 1, one finds that the potentials φ and ψ are given by the expressions

φ = α[ξ − (1 + 3k)ξ−1 − kξ−3] = αz +Az−1 +O(z−3),

ψ = 4αkξ +
4α(k − 1)ξ

(ξ2 − 1)
= 4αkz +Bz−1 +O(z−3),(5.7)

in which the coefficients

A = −2α, B = 4α(3|k|2 − 1)(5.8)

govern the leading corrections to the far field behavior in the z-plane. The average
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Fig. 13. Critical holes associated with values of k at the boundary of its range of admissible
values.

strain in the void phase is determined by these coefficients and by the area V of the
hole, given by (4.24). A straightforward computation (similar to the one given by
Movchan and Serkov (1997) for determining E) shows that

εV =
π

V

(
2Re(2A−B) 4 Im(A)

4 Im(A) −2Re(2A+B)

)
,(5.9)

giving

εV =
4α

3Re(k)− 6|k|2
(−3|k|2 0

0 2− 3|k|2
)
.(5.10)

For the loading (1.3), which corresponds to α = (1 + σ)/4 and k = (1 − σ)/
[2(1 + σ)], the formula (5.10) implies

εV11 = − (1− σ2)

4σ
, εV22 =

(1 + σ)(5 + 22σ + 5σ2)

12σ(1− σ)
,(5.11)

and the restrictions on k force σ to lie between 0.2 and 1. This average stress within
the void phase is represented by the small square in Figures 4 and 5.

Suppose that the hole generated by (5.5) for a fixed value of k is subject to a
different loading σ0

∗ having loading coefficients

α0 =
(σ∗0

11 + σ∗0
22)

4
, γ0 =

(σ∗0
22 − σ∗0

11 + 2iσ∗0
12)

2
.(5.12)
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The integral equation (4.9) (with α and γ being replaced by the new loading coeffi-
cients) can be solved for φ(ξ), giving

φ(ξ) = α0ζ − γ0 + α0(1− k)

ξ
+

(4α0k − γ0)k − (4α0k − γ0)|k|2
(1− |k|2)ξ − α0

ξ3
,(5.13)

which agrees with (5.7) when α0 = α and γ0 = 4αk.
Now the optimality criterion (3.4) seems to say nothing about σ0tt when σtt is

zero on all smooth portions of the boundary of Γ. However, here we will present a
plausibility argument to suggest that σ0tt should be finite at ξ = 1 and ξ = −1. Assume
otherwise, and suppose that there exist small perturbations of the loadings σ∗ and
σ0

∗ that result in the optimal hole minimizing the bilinear form σ0
∗ : Eσ∗ having a

completely smooth boundary. The functions σtt and σ
0
tt should remain approximately

the same with sharp peaks at ξ = 1 and ξ = −1. But then the product σ0ttσtt cannot
be constant around the boundary, and we have a contradiction. On the other hand,
assume that σ0tt was originally finite, taking the value s0 at ξ = 1 and at ξ = −1. The
product σ0ttσtt will equal some small constant ε, and therefore σ0tt = ε/σtt will have a
sharp dip (with a minimum close to zero) after the perturbation. If σtt is of the order
of ε away from its peak, then we can see that σ0tt could remain approximately equal
to s0 in the vicinity of ξ = 1 and ξ = −1, but away from the dip at these points.
The dip can be regarded as being due to a small multiple of σtt being subtracted
from the unperturbed potential σ0tt because of the slightly different loading. In the
special case when s0 = 0 the argument has to be modified, but everything works out
if, for example, σtt is of the order of

√
ε away from its peak. This is only a plausibility

argument because it breaks down if all small perturbations of loading result in optimal
holes having nonsmooth boundaries. However, the results we obtain by assuming that
σ0tt is finite at ξ = 1 and ξ = −1 justify this assumption.

The potential Φ(ξ) = φ′(ξ)/ω′(ξ) will have a finite real part at ξ = 1 and at
ξ = −1 if φ′(ξ) is zero at these points. This cancels the effect of ω′(ξ) being zero
at these points. Thus the tangential stress component σ0tt will be finite at the cusp
points when

γ0 = 2α0(3|k|2 − 1),(5.14)

in which case σ0
∗ takes the form

σ0
∗ = 2α0

(
2− 3|k|2 0

0 3|k|2
)
.(5.15)

Consequently we have

σ0
∗ : Eσ∗ = σ0

∗ : εV = 0,(5.16)

and if this represents the minimum value of the bilinear form σ0
∗ : Eσ∗, then we can

place an island of plate material inside the inclusion (connected to the surrounding
plate by a very thin bridge of plate material) without disturbing the minimum. Thus
there would be a whole family of optimal holes minimizing the bilinear form, with
values of εV that are λ times the εV given by (5.10), with λ ≥ 1. Certainly the
optimality criterion (3.4) is satisfied for such holes, since the product σ0ttσtt is zero
around the boundary of the hole including at the shore of the island (where both σ0tt
and σtt are zero).
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By substituting (5.14) back into (5.13), using (4.20) and the fact that t = 1/t
when |t| = 1, one obtains the potentials φ and ψ associated with the loading σ0

∗:

φ = α0ζ + α0(1 + 3k)ξ−1 − α0ξ−3 = α0z +A0z−1 +O(z−3),

ψ = 2α0(3|k|2 − 1)ξ − 2α0[9|k|2(k + 1)− 3k + 1]ξ

ξ2 + 3k

= 2α0(3|k|2 − 1)z +B0z−1 +O(z−3),(5.17)

in which

A0 = 6kα0, B0 = −24|k|2α0.(5.18)

The associated average stress within the void phase by direct analogy with (5.9) is

ε0V =
1

6Re(k)− 12|k|2
(
2Re(2A0 −B0) 4 Im(A0)

4 Im(A0) −2Re(2A0 +B0)

)
.(5.19)

One can check that σ∗ : ε0V = 0, which agrees with (5.16).
In the special case in which the loadings σ∗ and σ0

∗ take the forms (1.3) and
(4.32), corresponding to α0 = 1/(6|k|2) and k = (1− σ)/[2(1 + σ)], we have

σ0 = 2α0(2− 3|k|2) = 5 + 22σ + 5σ2

3(1− σ)2
,(5.20)

and the constraint that σ lies between 0.2 and 1 forces σ0 to lie between 5 and infinity.
According to the formula (5.18) and (5.19) the matrix ε0V has elements

ε0V11 =
1 + σ0

σ
=

(1 + σ0)(3σ0 − 5)

3σ0 + 11− 4
√
6(σ0 + 1)

,

ε0V22 = −(1 + σ0), ε0V12 = 0,(5.21)

where we have used (5.20) to express these elements entirely in terms of the constant
σ0 associated with the applied loading. Now let us rotate the hole by 90◦, rotate σ0

∗
and ε0V by 90◦, and divide both matrices by σ0. Then, by relabelling 1/σ0 as σ, we
see that the applied loading (1.3) with σ between 0 and 0.2 can produce an average
stress εV within the void phase having elements

εV11 = −(1 + σ), εV12 = 0, εV22 =
(1 + σ)(3− 5σ)

3 + 11σ − 4
√
6σ(1 + σ)

.(5.22)

This average stress within the void phase is represented by the small circle in Figure 6.
For negative values of σ, Figures 7, 8, and 9 suggest that the optimal holes are

somewhat rectangular in shape. Accordingly, it makes sense to study critical holes
for which the tangential stress (and hence the real part of Φ(ξ)) vanishes except at
four points on the boundary of the unit circle |ξ| = 1, which we take to be the points
p, −p, p = 1/p, and −p = −1/p, where p = eiβ . Assuming that the applied loading
is diagonal (i.e., γ is real), that σtt around the hole boundary has delta function
singularities at the four points, and that the hole shape and potentials have inversion
and reflection symmetry, which implies

ω(−ξ) = −ω(ξ), φ(−ξ) = −φ(ξ), Φ(−ξ) = Φ(ξ),

ω(ξ) = ω(ξ), φ(ξ) = φ(ξ), Φ(ξ) = Φ(ξ),(5.23)
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the function Φ(ξ) = φ′(ξ)/ω′(ξ) is easily deduced to be

Φ(ξ) = lim
ε→0

[
α+

αp

ξ + ε− p
− αp

ξ + p− ε
+

αp

ξ + ε− p
− αp

ξ + p− ε

]

=
α(ξ − p)

4(ξ + p)
+
α(ξ + p)

4(ξ − p)
+
α(ξ − p)

4(ξ + p)
+
α(ξ + p)

4(ξ − p)
.(5.24)

In the appendix we calculate the final form of ω(ξ), the area of the hole, and the strain
in the void. It turns out that the loading can produce zero tangential stress along the
smooth portions of the boundary only when |γ/α| ≤ C1, where C1 ≈ 1.5, i.e., when
1/C2 > σ ≥ C2, where C2 = (2 − C1)/(2 + C1) ≈ 1/7. Thus such holes are unlikely
to be optimal when σ is negative. These calculations are presented in the appendix.

One reason why this analysis failed may be our assumption that σtt has simple
delta function singularities at the four points, p, −p, p, and −p. When σ is negative,
the tangential stress around the boundary of an optimal hole can take both positive
and negative values. This is most easy to see when one minimizes the compliance
energy σ∗ : S∗σ∗. Cherkaev et al. (1998) have shown that the tangential stress
changes sign at the four corner points but keeps constant magnitude around the
boundary. Accordingly, the assumption that σtt is a positive valued measure around
the boundary is probably too strong. Relaxing this constraint permits other forms of
Φ(ξ), such as

Φ(ξ) =
α(ξ − p)

4(ξ + p)
+
α(ξ + p)

4(ξ − p)
+
α(ξ − p)

4(ξ + p)
+
α(ξ + p)

4(ξ − p)

+
iβ(ξ − p)2

(ξ + p)2
+
iβ(ξ + p)2

(ξ − p)2
− iβ(ξ − p)2

(ξ + p)2
− iβ(ξ + p)2

(ξ − p)2
,(5.25)

where β is an arbitrary real constant. This satisfies the symmetry constraints (5.23)
and has zero real part except at the corner points. It would be interesting to see the
hole shapes associated with this form of Φ(ξ). We did not do this, as the preliminary
analysis was more involved than for the case β = 0 (treated in the appendix), which
was already quite difficult.

Appendix. Here we calculate the final form of ω(ξ), the area of the hole, and the
strain in the void when Φ(ξ) takes the form (5.24) and p = eiβ . These calculations are
quite complicated and are best done with the aid of an algebraic manipulator, such
as Maple. We follow the same procedure as used in section 5. We easily find that

1

πi

∫
|t|=1

ω(t)ReΦ(t)

(t− ξ)2
dt =

αg

2(ξ − p)2
+

αg

2(ξ + p)2
+

αg

2(ξ − p)2
+

αg

2(ξ + p)2
,(A.1)

where g = pω(p). This leads to

(A.2)

ω(ξ)

=
−g(iξ2 + 1/q)2(iξ2 + q)ξ2 − g(iξ2 − q)2(iξ2 − 1/q)ξ2 + i(γ/α)(iξ2 − q)2(iξ2 + 1/q)2

2ξ3[(q − 1/q)(ξ4 + 1)− 4iξ2]
,

in which q = ip2 = eiτ and τ = 2β+π/2 have been introduced to simplify subsequent
formulae. The denominator of ω(ξ) is zero when ξ = 0 and additionally when

ξ2 = r1 ≡ i(q + 1)

q − 1
=

1 + cos(τ)

sin(τ)
or ξ2 = r2 ≡ 1

r1
=

1− cos(τ)

sin(τ)
.(A.3)
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Without loss of generality we can assume that p = eiβ lies in the first quadrant with
π/2 ≥ β ≥ 0, so that 3π/2 ≥ τ ≥ π/2. Then r1 will lie inside the unit circle, while r2
will lie outside it. In order for ω(ξ) to be analytic outside the unit disk, we require
that the numerator of (A.2) be zero when ξ2 = r2. This imposes the constraint that

g(1− q)(q − q + 2) + g(1− q)(q − q + 2) +
(γ
α

)
(q2 + q2 + 2) = 0,(A.4)

in which q = 1/q is the complex conjugate of q. Additionally we have the constraint
that

1 = lim
ξ→∞

ω(ξ)

ξ
=
g + g + γ/α

2i(q − q)
.(A.5)

These two real valued constraints can be used to solve for the complex constant g,
giving

g =
−2i(q − 1)2(q2 − 2q − 1) + (γ/α)(3q2 − 2q + 1)

(q − 1)(q2 − 4q + 1)
,(A.6)

which, when substituted back into the expression (A.2), gives

ω(ξ) =
2iξ2(q − 1)2(a1ξ

4 + a2ξ
2 + a3) + i(γ/α)q(b1ξ

4 + b2ξ
2 + b3)

2ξ3q(q − 1)(q2 − 4q + 1)[iξ2(q − 1) + q + 1]
(A.7)

with coefficients

a1 = q(q2 − 4q + 1), a2 = −i(q4 − 1), a3 = q(q2 + 4q + 1),

b1 = 3q(3q2 − 4q + 3), b2 = i(q2 − 1)(3q2 − 8q + 3), b3 = q(q2 − 4q + 1).(A.8)

Thus for a given loading, i.e., for given real values of α and γ, there is a one-parameter
family of holes (parameterized by τ , with q = eiτ ) such that the tangential stress is
zero along the smooth portions of the boundary of each hole in the family. When
p = 1, that is, q = i, the above expression for ω(ξ) reduces to (5.5), as it should. Also
when γ/α = −4 sin(τ)/3, the expression for ω(ξ) reduces to

ω(ξ) = ξ + 2 sin(τ)ξ−1 − ξ−3

3
,(A.9)

which corresponds to the inclusion generated from (5.5) with k = −e2iβ/3, rotated by
an angle of −β/2. (One makes this substitution for k, multiplies the entire expression
by e−iβ/2, and replaces ξ with eiβ/2ξ to recover (A.9).) Another special case is for
q = −1, and the expression for ω(ξ) reduces to

ω(ξ) = ξ − ξ−3

3
−
(γ
α

) (5ξ−1 + ξ−5)

8
.(A.10)

Of course there are restrictions on β which are necessary to ensure that the map-
ping ω(ξ) from the exterior of the unit disk onto its image is one-to-one. Differentiating
(A.7) with respect to ξ gives

ω′(ξ) =
i(iξ2q + 1)(iξ2 − q)(aξ4 + bξ2 + c)q3/2

ξ4(q − 1)(q2 − 4q + 1)[iξ2(q − 1) + q + 1]2
,(A.11)
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where a, b, and c are the real valued coefficients

a = −i(q − 1)3(q2 − 4q + 1)q−5/2 = 2[sin(5τ/2)− 7 sin(3τ/2) + 16 sin(τ/2)],

b = (q + 1)(q − 1)2(q2 + 4q + 1)q−5/2 + 3i(γ/α)(q − 1)(3q2 − 4q + 3)]q−3/2/2

= 2[cos(5τ/2) + 3 cos(3τ/2)− 4 cos(τ/2)]− 3(γ/α)[3 sin(3τ/2)− 7 sin(τ/2)],

c = 3(γ/α)(q + 1)(q2 − 4q + 1)q−3/2/2

= 3(γ/α)[cos(3τ/2)− 3 cos(τ/2)].(A.12)

The conformality constraint that ω′(ξ) be nonzero outside the unit disk is satisfied if
and only if the quadratic aξ4 + bξ2 + c has no root lying outside the unit disk, which
holds if and only if

1 ≥ c

a
≥
∣∣∣∣ ba
∣∣∣∣− 1.(A.13)

Another restriction on the values that β can take arises from the constraints that ω(1)
must lie on the positive real axis, and that ω(i) must lie on the positive imaginary
axis, implying that

0 ≤ 16[sin(τ/2)]2[sin(τ/2) + cos(τ/2)]3

+(γ/α)[3 sin(3τ/2)− 3 cos(3τ/2)− 15 sin(τ/2) + cos(τ/2)],

0 ≤ 16[sin(τ/2)]2[sin(τ/2)− cos(τ/2)]3

+(γ/α)[−3 sin(3τ/2)− 3 cos(3τ/2) + 15 sin(τ/2) + cos(τ/2)].(A.14)

The constraints (A.13) and (A.14) confine the pair (γ/α, τ) to lie within the region
shown in Figure 14. One can see that this forces |γ/α| to be less than C1 ≈ 1.5. If
|γ/α| is greater than this value, then the constraints cannot be satisfied for any choice
of τ .

The potential ψ is obtained by substituting φ′(t) = ω′(t)Φ(t) into (4.20), using
(5.24) and (A.7) and the fact that ω(t) = ω(t) = ω(1/t), and calculating the contour
integral using the method of residues, giving

ψ =
2iξα(q − 1)2s1 + iξ3γqs2

(q − 1)(q2 − 4q + 1)(iξ2q + 1)(iξ2 − q)
,(A.15)

where

s1 = −iξ2(q − 1)(q2 + 4q + 1) + (q + 1)(q2 − 4q + 1),

s2 = iξ2(q − 1)(q2 − 4q + 1) + (q + 1)(3q2 − 4q + 3).(A.16)

The coefficients A and B appearing in the series expansions,

φ = αz +Az−1 +O(z−3), ψ = γz +Bz−1 +O(z−3),(A.17)

of the potentials in powers of 1/z are found to be

(A.18)

A = − lim
ξ→∞

ξ2[ω(ξ)Φ(ξ)− α]− αc−1 = iα

(
q − 1

q

)
,

B = lim
ξ→∞

ξ[φ(ξ)− γξ]− γc−1 =
−4α2(q − 1)4(q2 + 4q + 1)− 3γ2q2(3q2 − 4q + 3)

2αq(q − 1)2(q2 − 4q + 1)
,
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Fig. 14. According to the constraints (A.13) and (A.14), the pair (γ/α, τ) must lie within the
region between these curves.

where c−1 is the value of ξ[ω(ξ) − ξ] in the limit as ξ → ∞. Substituting these
expressions into (5.9) gives

εV11 =
4α(1 + i)(q − 1)3(q − i)3 + 3(γ2/α)q2(3q2 − 4q + 3)

(V/π)q(q − 1)2(q2 − 4q + 1)

=
8α[1− cos(τ)− sin(τ)]3 + 3(γ2/α)(3 cos(τ)− 2)

(V/π)[5− 6 cos(τ) + cos(2τ)]
,

εV22 =
4α(1− i)(q − 1)3(q + i)3 + 3(γ2/α)q2(3q2 − 4q + 3)

(V/π)q(q − 1)2(q2 − 4q + 1)

=
8α[1− cos(τ) + sin(τ)]3 + 3(γ2/α)(3 cos(τ)− 2)

(V/π)[5− 6 cos(τ) + cos(2τ)]
,(A.19)

in which V is the area of the inclusion. The area of the inclusion (assuming ω(ξ) =
ω(ξ)) is given by the contour integral

V =
1

2i

∫
|ξ|=1

ω(ξ)ω′(ξ)dξ =
1

2i

∫
|ξ|=1

ω(1/ξ)ω′(ξ)dξ.(A.20)

Substituting (A.7) and (A.11) into this formula and using the method of residues to
evaluate the integral gives(

V

π

)
= v1 + v2

(γ
α

)
+ v3

(γ
α

)2
,(A.21)
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where

v1 =
−3(q2 + 1)3

q(q2 − 4q + 1)2
=

−6[cos(τ)]3
[2− cos(τ)]2

,

v2 =
−3i(q + 1)(q8 − 5q7 + 17q6 − 39q5 + 48q4 − 39q3 + 17q2 − 5q + 1)

q(q − 1)3(q2 − 4q + 1)2

=
3 cos(τ/2)[cos(4τ)− 5 cos(3τ) + 17 cos(2τ)− 39 cos(τ) + 24]

8[sin(τ/2)]3[2− cos(τ)]2
,

v3 =
3(3q8 − 3q7 − 32q6 + 87q5 − 134q4 + 87q3 − 32q2 − 3q + 3)

4(q − 1)4(q2 − 4q + 1)2

=
3[3 cos(4τ)− 3 cos(3τ)− 32 cos(2τ) + 87 cos(τ)− 67]

128[sin(τ/2)]4[2− cos(τ)]2
.(A.22)
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Abstract. We study a mathematical model of the differentially heated rotating fluid annulus
experiment. In particular, we analyze the double Hopf bifurcations that occur along the transition
between axisymmetric steady solutions and nonaxisymmetric rotating waves. The model uses the
Navier–Stokes equations in the Boussinesq approximation. At the bifurcation points, center manifold
reduction and normal form theory are used to deduce the local behavior of the full system of partial
differential equations from a low-dimensional system of ordinary differential equations.

It is not possible to compute the relevant eigenvalues and eigenfunctions analytically. Therefore,
the linear part of the equations is discretized, and the eigenvalues and eigenfunctions are approx-
imated from the resulting matrix eigenvalue problem. However, the projection onto the center
manifold and reduction to normal form can be done analytically. Thus, a combination of analytical
and numerical methods is used to obtain numerical approximations of the normal form coefficients,
from which the dynamics are deduced.

The results indicate that, close to the transition, there are regions in parameter space where
there are multiple stable waves. Hysteresis of these waves is predicted. The validity of the results is
shown by their consistency with experimental observations.

Key words. differentially heated rotating fluid experiment, axisymmetric to nonaxisymmetric
transition, hysteresis of rotating waves, center manifold reduction, numerical approximation of normal
form coefficients
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1. Introduction. Laboratory experiments that isolate the effects of differential
heating and rotation have long been regarded as useful tools for studying the behavior
of large scale geophysical fluids, such as the atmosphere. The dynamic similarity of
the various experiments to actual geophysical flows indicates that the form of the
differential heating, the geometry of the system, the properties of the fluid, and the
boundary conditions play a secondary role [13]. This is evidence that the character of
large scale geophysical fluid flows is determined, to a large extent, by the differential
heating and rotation. Consequently, the investigation of a mathematical model of a
laboratory experiment itself can provide insight into the dynamical properties of large
scale geophysical fluids. Furthermore, models of the experiments can be tractable, and
the model and the method of analysis can be quantitatively validated via comparison
with experimental observations. In contrast, a quantitative validation is not possible
when studying direct, simplified models of large scale flows.

We study a model of a particular laboratory experiment in which the changes
in the flow patterns in a differentially heated rotating annulus are observed as the
imposed temperature gradient and rate of rotation are varied. We use an accurate
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mathematical model that is able to quantitatively reproduce some of the experimental
observations [18], [19]. In the laboratory experiments, for small differential heating
and rotation, a steady axisymmetric pattern is observed, i.e., the pattern is invariant
under rotation. As the parameter values are increased, this relatively simple pattern
becomes unstable and a wave motion appears. It is this transition from axisymmetric
to nonaxisymmetric flow that is of interest here.

We study the transition by directly analyzing the partial differential equations
(PDEs) that describe the fluid flow in the rotating annulus. In particular, we study
the double Hopf bifurcations that are found at isolated points along the transition.
These double Hopf bifurcation points occur when the linearization about the steady
axisymmetric solution has two pairs of complex conjugate eigenvalues that simul-
taneously cross the imaginary axis as the parameters are varied. Center manifold
reduction is used to find the dynamics of the PDEs close to the bifurcation point.
This is a method of simplifying the equations in a way that takes into account all
of the nonlinear interactions. The results are valid for parameter values close to the
bifurcation point and when the bifurcating solutions are, in some sense, small. This
method is sometimes referred to as weakly nonlinear analysis, because the nonlinear
terms in the equations are assumed to be small but not negligible. Essentially, the
technique is able to show the existence and stability of the bifurcating solutions and
to give a first-order estimate of the solution itself, but it is not able to determine
whether the solution persists for values of the parameters far from the bifurcation
point.

This type of bifurcation analysis has been successful in other applications to fluid
flow. One of the best known is the onset of motion in a layer of fluid heated from
below, Rayleigh–Bénard convection (see, e.g., [24]). Another application of note is the
Couette–Taylor problem (see [1] and the references contained therein), which is a fluid
annulus experiment (without differential heating) where the inner and outer cylinders
rotate at different rates, generating a shear flow in the fluid. A rich variety of behavior
has been found by experiment, some of which can be explained with bifurcation
theory. In addition, bifurcation analysis has made several predictions of flow patterns
that were subsequently confirmed by experimental results. In the geophysical fluid
dynamics literature, an asymptotic method, formally equivalent to center manifold
reduction, was used to analyze “weakly nonlinear” wave-wave interactions (double
Hopf bifurcations) in the two layer quasi-geostrophic potential vorticity equations
in [20], [21], and [25] (see also [2] and [10]). The results indicated bistability and
hysteresis of the wave solutions. For all of these models, it is possible to find the
results analytically.

In the field of geophysical fluid dynamics, few models exist that can be studied
purely analytically. Since the model we study does not fall into this category, we use
an analytical-numerical hybrid analysis technique. Using center manifold reduction,
it is possible to analytically reduce the time-dependent nonlinear PDEs to a series of
steady linear PDE problems. These linear systems are then solved numerically, which
results in numerical approximations for the coefficients of the normal form equations,
from which the local dynamics can be deduced. Not only are the linear problems less
difficult to numerically approximate, but also the validity of the approximations is
more easily verified. Thus, although numerical approximations must be made, this
method of analysis gives evidence that the predicted dynamics corresponds to those
of the PDEs. Essentially equivalent methods are used in the Couette–Taylor problem
[1] and in [7], where a double Hopf bifurcation was analyzed in a barotropic quasi-
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Fig. 1. The differentially heated rotating annulus experiment, where the annulus is rotated at
rate Ω and the inner wall is held at the fixed temperature Ta and the outer wall at temperature Tb,
creating a differential heating ∆T = Tb − Ta. Here ra and rb are the radii of the inner and outer
cylinders, R = rb − ra, and D is the height of the annulus.

geostrophic model. It should be noted that although similar methods were used in
these problems, the numerics are substantially less intensive than those presented
here. In fact, until recently, the numerics of this work would not have been possible
on a personal computer.

In the next section, we describe the experiments in more detail. We discuss some
general experimental results, and in so doing, introduce some of the flow features that
our model reproduces. In section 3, the dynamical equations are written explicitly.
The methods of analysis are discussed in the following two sections, where the analyt-
ical methods are presented in section 4 and the numerical methods are presented in
section 5. In section 6, the results are described and discussed. A conclusion follows.

2. Experimental observations. Many different experiments have been per-
formed in an attempt to develop an understanding of differentially heated rotating
fluid systems (see, e.g., [13], [15], and [5]). The experiments often take the form
of studying fluid flow in a rotating cylindrical annulus, where differential heating is
obtained by maintaining the inner and outer walls of the annulus at different tem-
peratures; see Figure 1. The experiments consist of finding the various stable flow
patterns that occur at different values of the rotation rate and differential heating.
The results are typically given in a diagram where the transitions between the differ-
ent flow types are plotted in parameter space in terms of the Taylor number T and
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Fig. 2. A schematic diagram depicting general experimental results; see, e.g., [13]. To the left of
all the curves is the axisymmetric regime, which is separated into three (dynamically similar) regions:
lower symmetric, knee, and upper symmetric. To the right of the curve is the nonaxisymmetric
regime, which is separated into three dynamically distinct regimes: steady waves, vacillation, and
irregular flow.

the thermal Rossby number R (see [4], [13]). The Taylor number

T =
4Ω2R4

ν2

is a dimensionless parameter measuring the relative importance of rotation to viscos-
ity, where Ω is the rate of rotation, R is the gap width of the annulus, and ν is the
kinematic viscosity of the fluid. The thermal Rossby number

R =
αgD∆T

Ω2R2

is another dimensionless parameter measuring the relative importance of rotation to
the differential heating, where ∆T is the difference in temperature between the inner
and outer walls of the annulus, α is the coefficient of thermal expansion of the fluid, D
is the depth, and g is the gravitational acceleration. If all other parameters are held
fixed, there is a one-to-one relationship between these two dimensionless parameters
and the two physical parameters that are varied during experiments: the differential
heating ∆T and rate of rotation Ω.

Most of the experiments find four main flow regimes in different regions of pa-
rameter space (see Figure 2). (1) Axisymmetric flow : this flow is characterized by its
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azimuthal invariance. (2) Steady waves: the flow in this region is nonaxisymmetric
and resembles a rotating wave with constant amplitude and phase. Different wave-
lengths are seen in different subregions, with the possibility of observing stable waves
of different wavelengths within the same subregion. The transitions between the sub-
regions exhibit hysteresis. (3) Vacillation: in this region, the amplitude or structure
of the observed wave varies apparently periodically in time. (4) Irregular flow : this
region is characterized by its irregular nature in both space and time.

All of the observed flows have their counterparts in the Earth’s atmosphere [6],
[13]. The axisymmetric flow resembles the Hadley cell, which is observed in the
atmosphere near the equator where the “local” rotation rate and differential heating
are relatively small. In midlatitude regions of the Earth, the flow sometimes has wave
characteristics that resemble the steady waves and vacillations seen in the experiments.
Here, in both the atmosphere and experiments, the flow trajectories are curved, and
vertical motion is inhibited.

Of particular interest to us are the transition from the axisymmetric to wave
regime and the hysteresis of the waves which is observed in the steady wave regime.
The hysteresis occurs between waves whose wave numbers differ by the integer one.
By quantifying the double Hopf bifurcations that occur along the transition, we give
evidence of the mechanism by which the hysteresis occurs.

3. Model equations. The dynamical equations of the fluid are taken to be the
Navier–Stokes equations in the Boussinesq approximation. In particular, we consider
the variations of all fluid properties to be negligible, and the equation of state of the
fluid is assumed to be

ρ = ρ0[1 − α (T − T0)],(1)

where ρ is the density of the fluid, T is the temperature, α is the (constant) coef-
ficient of thermal expansion, ρ0 is the density at the reference temperature T0, and
α (T − T0) is assumed to be small. A significant simplification due to the Boussinesq
approximation is that the fluid can be considered incompressible. For the tempera-
ture evolution, we take the heat equation, with an advection term that couples the
fluid velocity to the temperature. The boundaries are the inner wall of the cylindrical
annulus with radius ra, the outer wall with radius rb, as well as a rigid flat bottom
and top. At the boundaries, the no-slip condition is imposed on the fluid, and the
temperature is Ta and Tb at the inner and outer walls, respectively, while the bottom
and top are thermally insulating. The equations are written in circular cylindrical
coordinates in a frame of reference corotating with the annulus at rate Ω. The radial,
azimuthal, and vertical (or axial) coordinates are denoted r, ϕ, and z, respectively,
with unit vectors er, eϕ, and ez (see Figure 1).

We make a change of variables

r = Rr′, z = Dz′,(2)

where R = rb− ra is the gap width and D is the height of the annulus; write the fluid
temperature as

T = T ′(r′, ϕ, z′, t) + ∆T
(
r′ − ra

R

)
+ Ta,(3)

where ∆T = Tb−Ta is the imposed temperature difference; and write the fluid pressure
as

p = p′(r′, ϕ, z′, t) + ρ0gD(1 − z′) +
ρ0Ω2R2(r′)2

2
.(4)
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Then we drop the primes to obtain equations describing the evolution of the fluid
velocity u = u(r, ϕ, z, t)er + v(r, ϕ, z, t)eϕ + w(r, ϕ, z, t)ez, pressure deviation p =
p(r, ϕ, z, t), and temperature deviation T = T (r, ϕ, z, t):

∂u

∂t
= νs∇2

su− 1

Rρ0
∇sp − 2Ωez × u(5)

+
(
gez − Ω2Rrer

)
α
[
T + ∆T

(
r − ra

R

)
+ Ta − T0

]
− 1

R
(u · ∇s)u,

∂T

∂t
= κs∇2

sT + κs
∆T

r
− ∆T

R
u − 1

R
(u · ∇s) T,(6)

∇s · u =
∂u

∂r
+

u

r
+

∂v

∂ϕ
+

1

δ

∂w

∂z
= 0,(7)

where δ = D/R, νs = ν/R2, ν is the kinematic viscosity, κs = κ/R2, κ is the
coefficient of thermal diffusivity, g is the gravitational acceleration,

∇2
s =

∂2

∂r2
+

1

r

∂

∂r
+

1

r2

∂2

∂ϕ2
+

1

δ2

∂2

∂z2
,

∇s = er
∂

∂r
+ eϕ

1

r

∂

∂ϕ
+ ez

1

δ

∂

∂z
,

(u1 · ∇s)u2 =

(
u1

∂u2

∂r
+

v1

r

∂u2

∂ϕ
+

1

δ
w1

∂u2

∂z
− v1v2

r

)
er

+

(
u1

∂v2

∂r
+

v1

r

∂v2

∂ϕ
+

1

δ
w1

∂v2

∂z
+

u1v2

r

)
eϕ

+

(
u1

∂w2

∂r
+

v1

r

∂w2

∂ϕ
+

1

δ
w1

∂w2

∂z

)
ez

for velocity fields uj = uj(r, ϕ, z, t)er + vj(r, ϕ, z, t)eϕ + wj(r, ϕ, z, t)ez, j = 1, 2, and

(u · ∇s) T = u
∂T

∂r
+

v

r

∂T

∂ϕ
+

1

δ
w

∂T

∂z
.

The domain is ra/R < r < rb/R, 0 ≤ ϕ < 2π, 0 < z < 1, and the boundary conditions
are

u = 0 on r =
ra
R

,
rb
R

and z = 0, 1,(8)

T = 0 on r =
ra
R

,
rb
R

,

∂T

∂z
= 0 on z = 0, 1,

with 2π-periodicity in ϕ for u, T , and p.
The solutions will not depend explicitly on the value of the reference temperature

T0. However, there is implicit dependence because the values of ν, κ, and ρ0 are
chosen to be those of the fluid at T0. It is assumed that the difference between the
temperature of the fluid and T0 is everywhere small enough so that ν and κ can be
considered as constants.
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4. Analytical methods. We choose as the parameters of interest the rotation
rate Ω and the temperature difference ∆T between the inner and outer annulus walls.
These are the physical quantities (external variables) that are easily varied in an ex-
periment. The other parameters describe the geometry of the annulus or properties of
the fluid. Another choice is to use the dimensionless parameters, the Taylor number
T and the thermal Rossby number R (see section 2), which have a one-to-one corre-
spondence with Ω and ∆T . Our results are quoted in terms of these dimensionless
parameters because experimental results are usually presented on a log-log plot of T
versus R. However, the analysis was carried out using the parameters Ω and ∆T ,
because nondimensionalization did not significantly simplify the equations (see [18]).
The choice of parameters will not change the procedure or the results.

A summary of the main steps of the analysis is as follows:
1. Plot the neutral stability curves, by

(a) calculating the steady axisymmetric solution at a particular location in
parameter space,

(b) solving the eigenvalue problem for this solution to find its linear stability,
(c) repeating steps (a) and (b) at various locations in parameter space to

find the parameter values at which the solution is neutrally stable.
2. Localize the point in parameter space where the double Hopf bifurcation

occurs (find the intersections of the neutral stability curves; see below).
3. Calculate the eigenvalues and eigenfunctions at the bifurcation point.
4. Compute the appropriate normal form coefficients, which involves

(a) calculating the adjoint eigenfunctions,
(b) calculating the center manifold coefficients.

An analytical form for the steady axisymmetric solution is not known, and, there-
fore, numerical approximations must be made. This is also the case for the eigenvalues
and eigenfunctions. In the analysis, this is dealt with by leaving the unknown func-
tions unresolved when deriving the formulae for the normal form coefficients. That
is, we write the normal form coefficients in terms of the unresolved functions. Then,
for the numerical approximation of the normal form coefficients, the values of the
unknown functions are needed only at specific locations (the grid points), and nu-
merical approximations are used. We postpone discussion of the numerical methods
until the next section, and for the remainder of this section we discuss the analytical
methods. In particular, we discuss the equations necessary for the computation of
the axisymmetric solution and the eigenfunctions, and we discuss briefly how center
manifold reduction is used to derive the formulae for the normal form coefficients of
interest. For a more detailed explanation of the center manifold reduction and normal
form equations in the context of this model, see [18], and for a general context, see,
e.g., [11].

4.1. The steady axisymmetric solution. The analysis begins with the com-
putation of a steady axisymmetric solution. That is, we look for a solution of (5)–(7),
with the boundary conditions (8), in the form

u = u(0)(r, z) = u(0)(r, z)er + v(0)(r, z)eϕ + w(0)(r, z)ez,

p = p(0)(r, z), T = T (0)(r, z),

independent of ϕ and t. The solution also depends on the parameters, but we do not
indicate this dependence explicitly. We assume that such a solution exists, is unique
and regular, and depends smoothly on the parameters, at least for the parameter
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values of interest. We have not attempted to prove this, but we believe that, using
standard techniques, it would be a feasible if lengthy digression to do so (see, for
example [3]).

A stream function ξ(0) is introduced, so that the incompressibility condition (7)
is automatically satisfied. The pressure terms can then be eliminated, and we obtain
three equations in the three unknown functions ξ(0), v(0), and T (0). The resulting
equations, computed using the Maple symbolic computation package, are sufficiently
complicated that no insight is gained by explicitly writing them here. For more details,
see [18]. In section 5, we describe how ξ(0), v(0), and T (0) are computed numerically.

4.2. The perturbation equations. Next, perturbation equations are required.
It is on this system that the center manifold reduction is performed. We write

u = u(0) + û, p = p(0) + p̂, T = T (0) + T̂ ,(9)

where (u(0), p(0), T (0)) is the steady axisymmetric solution, substitute (9) into (5)–(7),
and drop the hats, to obtain the perturbation equations

∂u

∂t
= νs∇2

su− 1

Rρ0
∇sp − 2Ωez × u +

(
gez − Ω2Rrer

)
αT(10)

− 1

R

(
u(0) · ∇s

)
u− 1

R
(u · ∇s)u

(0) − 1

R
(u · ∇s)u,

∂T

∂t
= κs∇2

sT − ∆T

R
u − 1

R

(
u(0) · ∇s

)
T − 1

R
(u · ∇s) T (0) − 1

R
(u · ∇s) T,(11)

∇s · u = 0,(12)

with the boundary conditions (8). The trivial solution u = 0, p = 0, T = 0 now sat-
isfies these equations and corresponds to the steady axisymmetric solution of (5)–(7).

The perturbation equations (10)–(12) can be put into a suitable abstract form for
which some important theoretical properties have been established. Following Henry
[12, pp. 79–81], we can define a space X of vector functions U = [u, T ] so that the
incompressibility condition (12) and boundary conditions (8) are satisfied as part of
the definition of the space. Then there is an abstract projection operator onto the
space X that eliminates the pressure terms, and the system (10)–(12) together with
boundary conditions (8) can be written as an abstract evolution equation in the space
X ,

U̇ = LU + N(U),(13)

where LU is the linear part of the equation (observe that L depends on the param-
eters, through the steady axisymmetric solution), and N(U) is the nonlinear part (it
has the form N(U) = M(U,U), where M is bilinear). If we assume that the steady
axisymmetric solution of (5)–(8) exists, is unique, is regular, and depends smoothly
on the parameters, then at least locally near U = 0 the initial-value problem for (13)
in X has a unique solution U(t), t ≥ 0, that depends smoothly on initial conditions
and parameters [12, Chapter 3]. Moreover, the principle of linearized stability holds,
and the stability of the trivial solution U = 0 of (13) can be determined from the
spectrum of the linearization L [12, Chapter 5].
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4.3. The eigenvalue problem. The linearized stability of the steady axisym-
metric solution is determined by the spectrum of the linearization of (10)–(12) about
the trivial solution. Since L is the sum of a self-adjoint operator and a bounded
linear operator, it is sectorial. The spatial domain is bounded, so the spectrum con-
sists entirely of isolated eigenvalues of finite multiplicity. The eigenvalue problem
is formally obtained by assuming that the unknown functions may be written as
u = u(r, ϕ, z, t) = eλtũm(r, z)eimϕ, with m an integer, and likewise for T and p, and
then linearizing (10)–(12). A linear eigenvalue problem for the eigenvalues λ and the
eigenfunctions [ũm(r, z), T̃m(r, z)]eimϕ is obtained for each azimuthal wave number m.
By the principle of linearized stability, if all eigenvalues λ have negative real parts,
then the steady axisymmetric solution is asymptotically stable, while if any eigenvalue
λ has a positive real part, then the steady axisymmetric solution is unstable. We are
especially interested in locating critical parameter values, where a finite number of
eigenvalues have zero real parts and the rest have negative real parts. The solution is
then neutrally stable, and we expect a bifurcation of solutions of the nonlinear equa-
tions as parameters are varied near the critical values. The azimuthal wave numbers
m of the eigenfunctions corresponding to the eigenvalues that have zero real part at
the critical parameter values are defined as the critical wave numbers.

If m 
= 0, it is possible to eliminate the pressure and azimuthal velocity terms.
The resulting three equations in the three remaining unknowns ũm(r, z), w̃m(r, z),
and T̃m(r, z) may be written in the form of a generalized linear eigenvalue problem

λAmŨm = LmŨm,(14)

where

Ũm =


 ũm

w̃m
T̃m




and Am and Lm are 3 × 3 matrices of linear operators. If m = 0, a stream function
method can be used in exactly the same manner as in the calculation of the axisym-
metric solution. Again the equations were calculated using Maple and are too lengthy
to write here.

Finally, the adjoint eigenvalue problem is necessary to calculate the adjoint eigen-
functions. The adjoint operators are calculated using the inner product, which for
two vector functions U1 = [u1, T1] and U2 = [u2, T2] is taken to be

〈U1, U2〉 =

∫ 1

0

∫ 2π

0

∫ rb
R

ra
R

(
u1 · u2 + T1T 2

)
r dr dϕ dz,(15)

where the overbar denotes complex conjugation. The adjoint eigenfunctions have the
form [ũ∗

m(r, z), T̃ ∗
m(r, z)]eimϕ.

4.4. Normal form coefficients. The numerical results, presented in section 6,
predict that there are critical parameter values at which the linear eigenvalue problem
has two complex conjugate pairs of eigenvalues with zero real parts, while the other
eigenvalues have negative real parts. Therefore, suppose that the critical parameter
values occur at Ω = Ω0 and ∆T = ∆T0, so that for Ω near Ω0 and ∆T near ∆T0 the
eigenvalue problem has eigenvalues

λ1 = µ1 + iω1, λ1, λ2 = µ2 + iω2, λ2,(16)
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and when Ω = Ω0 and ∆T = ∆T0, we have µ1 = µ2 = 0. Also, assume that all
the other eigenvalues have negative real parts, with the real parts uniformly bounded
below zero.

The eigenfunctions corresponding to the above eigenvalues are

Φ1, Φ1, Φ2, Φ2,

where they have the form

Φj = [ũmj (r, z), T̃mj (r, z)]eimjϕ,

with mj (j = 1, 2, m1 
= m2) being the azimuthal wave number corresponding to
Φj . The center eigenspace Ec is the span of the eigenfunctions corresponding to the
eigenvalues with zero real parts when Ω = Ω0 and ∆T = ∆T0,

Ec = span{Φ1, Φ1, Φ2, Φ2}.
The stable eigenspace Es is the span of all the other eigenfunctions, which are the
eigenfunctions that correspond to eigenvalues with negative real parts. The adjoint
eigenfunctions corresponding to the Φj are denoted by Φ∗

j , where the Φ∗
j are found

from the adjoint eigenvalue problem. The eigenfunctions and their adjoints are nor-
malized so that their inner products satisfy

〈Φj , Φ∗
j 〉 = 1(17)

for j = 1, 2. Due to a rescaling (see below), the results do not depend on the way in
which the second normalization constant is determined.

The projection of U onto the center eigenspace Ec is given by

PU = 〈U, Φ∗
1〉Φ1 + 〈U, Φ

∗
1〉Φ1 + 〈U, Φ∗

2〉Φ2 + 〈U, Φ
∗
2〉Φ2.(18)

Using this projection, we may then decompose U as follows:

U = z1Φ1 + z1Φ1 + z2Φ2 + z2Φ2 + Ψ,(19)

where PU = z1Φ1 + z1Φ1 + z2Φ2 + z2Φ2 ∈ Ec, (I − P )U = Ψ ∈ Es, and I is the iden-
tity operator. This implies that the complex amplitudes z1 and z2 are given by the
inner products z1 = z1(t) = 〈U, Φ∗

1〉 and z2 = z2(t) = 〈U, Φ∗
2〉.

Taking the projection of (13), we get

ż1 = λ1z1 + 〈N(U), Φ∗
1〉,(20)

ż2 = λ2z2 + 〈N(U), Φ∗
2〉,

where U is given by (19). The complex conjugate equations contain redundant infor-
mation, and so are omitted. For (20), we use center manifold theory to write U solely
in terms of the center eigenspace variables z1 and z2, and in so doing we decouple the
system.

Given that the assumptions stated above for (13) and the eigenvalues for the
linearization are valid, then, for (Ω, ∆T ) in a neighborhood of (Ω0, ∆T0), the center
manifold theorem [12, p. 168] implies that there exists a differentiable center manifold
for (13):

W c
loc =

{
U = z1Φ1 + z1Φ1 + z2Φ2 + z2Φ2 + H(z1Φ1, z1Φ1, z2Φ2, z2Φ2)

}
,(21)



DOUBLE HOPF BIFURCATIONS 1039

where H : Ec → Es is defined for ‖z1Φ1 + z1Φ1 + z2Φ2 + z2Φ2‖ small and ‖ · ‖ is the
norm that corresponds to the inner product (15). The local center manifold W c

loc is
locally invariant, is tangent to the center eigenspace Ec at U = 0 when Ω = Ω0 and
∆T = ∆T0, and is locally exponentially attracting.

Therefore, on the center manifold, we can write

Ψ = H(z1, z1, z2, z2) = O(|z1, z1, z2, z2|2)(22)

and then expand the center manifold function H in a Taylor series as

H(z1, z1, z2, z2) = H2000z
2
1 + H1100z1z1 + H0020z

2
2 + H0011z2z2(23)

+ H1010z1z2 + H1001z1z2 + c.c. + O(3),

where Hijkl are the Taylor series coefficients of H, O(n) = O(|z1, z1, z2, z2|n), and c.c.
denotes the complex conjugates of the previous terms that are written explicitly. We
also write

N(z1, z1, z2, z2) = N2000z
2
1 + N1100z1z1 + N0020z

2
2 + N0011z2z2(24)

+ N1010z1z2 + N1001z1z2 + c.c. + O(3),

where N(z1, z1, z2, z2) is the nonlinear term of (13) written in terms of z1, z1, z2, and
z2, using the decomposition of U given in (19), and with Ψ written using (22) and (23).
With the nonlinear part written as (24), the system is decoupled, and (20) reduces to a
four-dimensional ODE that describes the dynamics on the center manifold. Because
the center manifold is locally exponentially attracting, the behavior of the original
PDEs, close to the bifurcation point, can be deduced from the reduced system.

The normal form for the nonresonant case is

ż1 = λ1z1 + G11z
2
1z1 + G12z1z2z2 + O(4),(25)

ż2 = λ2z2 + G21z1z1z2 + G22z
2
2z2 + O(4),

where λj=λj(Ω, ∆T ), and the normal form coefficients Gkl are given by

G11 = 〈N2100, Φ∗
1〉,(26)

G12 = 〈N1011, Φ∗
1〉,

G21 = 〈N1110, Φ∗
2〉,

G22 = 〈N0021, Φ∗
2〉.

The normal form (25) is obtained from (20) by using a series of near-identity coordi-
nate transformations (see, e.g., [26]). This normal form requires the nonresonance con-
dition that the imaginary parts of the eigenvalues, ω1 and ω2, satisfy n1ω1 +n2ω2 
= 0
for all integers n1 and n2 with |n1|+ |n2| ≤ 4 at the critical parameter values Ω = Ω0

and ∆T = ∆T0.
In general, the formulae (26) for the normal form coefficients also depend on the

coefficients of the terms that are quadratic in z1 and z2 (e.g., N2000). However, in our
case these terms vanish in the projection (20) because, due to their ϕ-dependence, they
are orthogonal to the adjoint eigenfunctions. In the same manner it can be shown

that to find the normal form coefficient G11 = 〈N2100, Φ∗
1〉, only Ñ

(m1)
2100 is needed,

where Ñ
(m1)
ijkl is defined as the coefficient of eim1ϕ in the expansion Nijkl(r, ϕ, z) =∑

m Ñ
(m)
ijkl (r, z) eimϕ. That is, all terms with a factor eimϕ, m 
= m1, vanish in the
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inner product because they are orthogonal to Φ∗
1. Furthermore, due to the form of

the nonlinear part, only the eigenfunctions Φ1, Φ1 and the particular coefficients of

the center manifold function, H̃
(0)
1100 and H̃

(2m1)
2000 , appear in the formula for Ñ

(m1)
2100 ,

where the H̃
(m)
ijkl are defined in a manner similar to the Ñ

(m)
ijkl , i.e., Hijkl(r, ϕ, z) =∑

m H̃
(m)
ijkl (r, z) eimϕ.

Thus, in addition to the eigenfunctions, the normal form coefficient

• G11 can be written as a function of only the coefficients H̃
(0)
1100 and H̃

(2m1)
2000 .

Similarly, in addition to the eigenfunctions, the normal form coefficients

• G12 can be written as a function of only the coefficients, H̃
(0)
0011, H̃

(m1−m2)
1001 ,

and H̃
(m1+m2)
1010 ;

• G21 can be written as a function of only the coefficients H̃
(0)
1100, H̃

(m2−m1)
0110 ,

and H̃
(m1+m2)
1010 ;

• G22 can be written as a function of only the coefficients H̃
(0)
0011 and H̃

(2m2)
0020 .

The equations satisfied by the Hijkl(r, ϕ, z) are derived using the local invariance
of the center manifold (see [11]). From these equations, it follows that the relevant

H̃
(m)
ijkl (r, z) satisfy [

2λ1I− L̃(2m1)
]
H̃

(2m1)
2000 = Ñ

(2m1)
2000 ,(27)

L̃(0)H̃
(0)
1100 = −Ñ

(0)
1100,[

2λ2I− L̃(2m2)
]
H̃

(2m2)
0020 = Ñ

(2m2)
0020 ,

L̃(0)H̃
(0)
0011 = −Ñ

(0)
0011,[

(λ1 + λ2) I− L̃(m1+m2)
]
H̃

(m1+m2)
1010 = Ñ

(m1+m2)
1010 ,[(

λ1 + λ2

)
I− L̃(m1−m2)

]
H̃

(m1−m2)
1001 = Ñ

(m1−m2)
1001 ,

where the L̃(m) are defined by L[Ũ(r, z)eimϕ] = eimϕ[L̃(m)Ũ(r, z)] and I is the identity
operator. For m 
= 0, the same solution method that is used for the eigenvalue problem
can be used here (i.e., elimination of the pressure term and one velocity component).
For m = 0, the stream function method (as for the axisymmetric solution) can be
used.

We write z1 = ρ1e
iθ1/

√|Gr
11| and z2 = ρ2e

iθ2/
√|Gr

22|, where Gr
ij is the real part

of the normal form coefficients Gij , and substitute these expressions into (25). In
these scaled polar coordinates, the truncated normal form equations are

ρ̇1 = ρ1

(
µ1 + aρ2

1 + bρ2
2

)
,(28)

ρ̇2 = ρ2

(
µ2 + cρ2

1 + dρ2
2

)
,

θ̇1 = ω1,

θ̇2 = ω2,

where

a =
Gr

11

|Gr
11|

= ±1,(29)

b =
Gr

12

|Gr
22|

,

c =
Gr

21

|Gr
11|

,
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d =
Gr

22

|Gr
22|

= ±1,

and λj = µj + iωj . The O(|ρ1, ρ2|4) terms are ignored in the ρ̇j equations, and the

O(|ρ1, ρ2|2) terms are ignored in the θ̇j equations. Ignoring these terms does not affect
the local dynamics, except for fine details of the dynamics on invariant tori.

In summary, given m1 and m2, the coefficients of the scaled normal form equations
a, b, c, d can be written in terms of the following functions, which are all functions only
of the two spatial variables r and z:

• the eigenfunctions and adjoint eigenfunctions

Φ̃m1
, Φ̃∗

m1
, Φ̃m2

, Φ̃∗
m2

,

where Φj(r, ϕ, z) = Φ̃mj (r, z)eimjϕ, j = 1, 2;
• certain Taylor series coefficients of the center manifold function

H̃
(0)
1100, H̃

(2m1)
2000 , H̃

(m1−m2)
1001 , H̃

(m1+m2)
1010 , H̃

(0)
0011, and H̃

(2m2)
0020 ,

where Hijkl(r, ϕ, z) =
∑
m H̃

(m)
ijkl (r, z)eimϕ. The eigenfunctions are found from the

eigenvalue problem (14), and the coefficients of the center manifold function are found
from (27).

5. Numerical methods. In order to find values of the normal form coefficients,
the axisymmetric solution, the eigenfunctions, and the Taylor series coefficients of the
center manifold function must be known. Because analytic solutions of these are not
known, they are approximated numerically. Upon discretization, the axisymmetric
solution is approximated from a system of nonlinear algebraic equations, while the
partial differential eigenvalue problems become matrix eigenvalue problems and the
partial differential boundary value problems for finding the coefficients of the center
manifold function become systems of linear equations. In all cases, the discretization
leads to large sparse systems, and thus we seek appropriate solution techniques.

In this section, we discuss some of the details of the numerical approximations,
including the discretization and solution techniques. Also included is a brief discussion
of convergence for the approximation.

5.1. The mesh: Nonuniform spacing. We employ centered finite differencing
to discretize the spatial derivatives. The values of the unknown functions in the
interior of the domain are approximated at N × N grid points, labeled by (r, z) =
(rk, zl), with 1 ≤ k ≤ N and 1 ≤ l ≤ N , where N , k, l are positive integers. We
define r0 = ra/R, rN+1 = rb/R, z0 = 0, and zN+1 = 1. This leads to a discretized
solution vector of size 3N2 +2N (because T (rk, z0) and T (rk, zN+1) are also unknown
for 1 ≤ k ≤ N).

With the no-slip boundary conditions and the small parameter ν multiplying a
second derivative term, boundary layers form in the fluid flow. For this reason, a
scaling method is used to choose the locations of the grid points. This consists of
making a change of coordinates and calculating the solutions on a uniform grid in the
new coordinates. The transformation is chosen such that its inverse takes a uniform
grid to a grid with many points near the boundary. The transformation that takes
the new coordinates (x, y) to the original coordinates (r, z) is given by

r =
tan−1 (ηx)

2 tan−1
(
η
2

) +
1

2
+

ra
R

, z =
tan−1 (ηy)

2 tan−1
(
η
2

) +
1

2
,(30)
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Fig. 3. The transformation of the grid points. (a) A uniform grid (equally spaced grid points)
of N = 20, (b) the grid obtained by applying the change of coordinates (30) with η = 6.

where η is a scaling factor that determines the magnitude of compression near the
boundary; see Figure 3. The domain ra ≤ r ≤ rb/R, 0 ≤ z ≤ 1 is mapped to
−1/2 ≤ x ≤ 1/2, −1/2 ≤ y ≤ 1/2, and the solutions are approximated on a uniform
grid in the (x, y) coordinates.

The boundary layers observed in the eigenfunctions are not as severe as those in
the axisymmetric solutions. In fact, significant errors are introduced in the eigenvalues
and eigenfunctions if the points in the interior are too sparse. This occurs even if the
axisymmetric solutions appear to be well resolved. This suggests that different scaling
factors should be used for the axisymmetric and eigenvalue problems. However, errors
introduced in interpolation seem to negate the potential benefit of using different
scaling factors. In the calculations presented, the scaling factor η = 6 is used. This
is the smallest value that leads to qualitatively good results for the axisymmetric
problem when N = 20; for smaller values of η, the boundary layer is not resolved well
enough. Also, for larger values of η (for N = 20), there is an insufficient number of
interior points to adequately describe the eigenfunctions. However, for larger values
of N , the results are consistent and not as sensitive to the choice of η.

5.2. Solution techniques. For the computation of the axisymmetric solution
we use Newton’s method. This method can be combined with a predictor-corrector
continuation technique to find the axisymmetric solution for a wide range of parameter
values. If Ω = 0 and ∆T = 0, then the trivial solution satisfies the axisymmetric
equations. Thus for Ω and ∆T small, the trivial solution is a reasonable prediction of
the solution, and Newton’s method is used for the correction. For small increments
in the parameter values, the previous solution is a reasonable prediction. To make
larger increments in the parameter values, a secant line approximation can be used
for the prediction.

Each point on a neutral stability curve is found using an iterative secant method,
where the real part of the eigenvalue with largest real part is considered as a function
of the parameters. The iterative procedure for the localization of the double Hopf
points uses the fact that the points occur at intersections of two neutral stability
curves. In both procedures, iteration continues until the magnitudes of the real parts
of the relevant eigenvalues are less than a specified tolerance (10−8 for the results
presented below).

The discretized transformed equations and the entries of the coefficient matrices
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are computed symbolically using Maple. The generalized matrix eigenvalue problem,
which results from the discretization of (14), is solved in Matlab using the implicitly
restarted Arnoldi method [17], which is a memory-efficient iterative method for finding
a specified number of eigenvalues with the largest magnitudes. A generalized Cayley
transformation is made so that the Arnoldi iteration finds the eigenvalues with largest
real parts [8]. The parameters of the transformation can also be chosen to improve
convergence properties. In particular, the generalized Cayley transformation

C(L,A) = (L− α1A)
−1

(L− α2A)(31)

maps eigenvalues λ of the generalized matrix eigenvalue problem λAv = Lv to
eigenvalues σ of the transformed matrix C(L,A), such that the eigenvalues λ with
Real(λ) > (α1 + α2) /2 are mapped to the eigenvalues σ with |σ| > 1, where α1 and
α2 are the real parameters of the Cayley transformation. The matrix C(L,A) does
not have to be formed explicitly, because the Arnoldi iteration only requires matrix-
vector products involving C(L,A); see [17]. Thus, the sparseness properties of L and
A can be exploited, and computer memory requirements can be reduced.

5.3. Convergence. For the centered differencing that was used, the local trun-
cation error is O(h2) (i.e., approximately a constant times h2, as h → 0), where h
is the mesh size. Given this and a few standard assumptions, the accuracy of the
approximations for the boundary value problems will be O(h2). In addition, if the
approximate solution and the differencing scheme for the derivative are both O(h2),
then the approximations of derivatives of the solutions are also O(h2). However, for
the present application, although the approximation of the partial differential eigen-
value problem by the matrix eigenvalue problem can be assumed to converge, the
order of this convergence is unknown. Considering this, it is reasonable to assume
that the approximations of the normal form coefficients converge, even though we
could not say to what order.

An additional comment should be made concerning the eigenfunction approxima-
tion. It is obvious that a finite-dimensional approximation is not able to approximate
all the solutions of the infinite-dimensional continuous eigenvalue problem. We expect
that it is the highly oscillatory high wave number eigenfunctions that the matrix prob-
lem is unable to resolve. Because the critical eigenfunctions of interest have relatively
low wave numbers and are not highly oscillatory, we expect that these functions are
resolved and that the errors in the differencing are relatively small.

Our results, which are presented in the next section, indicate that the approxi-
mation of the normal form coefficients seems to be convergent. However, the mesh
size h could not be taken small enough to obtain an accurate estimate of the order of
convergence.

6. Results. The results of our study are presented in this section. The param-
eter values specifying the geometry of the annulus and fluid properties are listed in
Table 1. These values correspond to the experiments performed by Fein [4]. Our
results are compared with those obtained in that study.

6.1. The axisymmetric solution. An example of the axisymmetric solution
is plotted in Figure 4. Qualitatively, the form of the solution is the same for all
values of the parameters. The figure shows that the fluid velocity in the interior of
the fluid is predominantly in the azimuthal direction. The radial velocity is almost
zero everywhere except near the upper and lower boundaries, where it is negative and
positive, respectively. The vertical velocity is largest at the inner and outer walls,
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Table 1
The annulus geometry and fluid properties used in the analysis, after [4]. See section 3 for

definitions of symbols.

ra 3.48 cm

rb 6.02 cm

R 2.54 cm

D 5 cm

ν 1.01e−2 cm2/sec

κ 1.41e−3 cm2/sec

α 2.06e−4 1/◦ C

ρ0 0.998 gm cm3

T0 20.0 ◦ C

g 980 gm/cm3
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T

Fig. 4. The axisymmetric solution: (a) u, the fluid velocity in the radial direction, (b) v, the
fluid velocity in the azimuthal direction, (c) w, the fluid velocity in the vertical direction, and (d)
T, the deviation of the temperature of the fluid from ∆T (r − ra/R) + Ta. This solution is for the
N = 25 case and is observed at the (m1,m2) = (6, 7) double Hopf point, where Ω = 0.5927 and
∆T = 0.6950.

where there is rising at the warmer outer wall and sinking at the cooler inner wall.
The interior azimuthal velocity exhibits an almost linear shear in the vertical, with a
positive velocity in the upper half of the annulus and negative velocity in the lower half.
The resulting circulation is a convection cell that is tilted from the radial plane such
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Fig. 5. Neutral stability curves are plotted for the wave numbers m = 3 to m = 8. The
curves are calculated by finding the parameter values where for each m the eigenvalues of (14) all
have negative real part except one with zero real part. The curves are plotted on a log-log graph of
thermal Rossby number versus Taylor number.

that, at the upper and lower boundaries, the inward and outward motion is deflected
to the right. Although quantitative information of the experimental axisymmetric flow
was not available, the computed flow profile qualitatively reproduces all the features
of the experimental flow.

6.2. Neutral stability and transition curves. The neutral stability curves
are presented in Figure 5. There is a separate curve for each azimuthal wave number.
The curves consist of points in the parameter space where, for the given wave number,
there is one pair of complex conjugate eigenvalues with zero real part while all other
eigenvalues associated to that wave number have negative real part. Wave numbers
from m = 2 to 10 were calculated, and it was found that m = 3 to 8 were the only
critical wave numbers. Therefore, only these values are shown in Figure 5. It is not
possible to calculate the neutral stability curves of all wave numbers, but it can be
argued that the higher wave numbers will not be critical in the parameter range of
interest. We refer the interested reader to [18] and here justify investigation of only a
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Fig. 6. Transition curves for theory and experiment delineating the axisymmetric from the
nonaxisymmetric regimes. The critical wave number transitions (double Hopf bifurcation points),
labeled as (m1, m2), are also plotted along the curve.

finite number of wave numbers by comparison with the experimental results. A 25 ×
25 grid was used for the calculations of all curves shown.

In Figure 6, the curve that separates the axisymmetric regime from the nonax-
isymmetric regime is plotted. To the left of this curve, the axisymmetric solution is
linearly stable (to perturbations of all wave numbers), while to the right, it is unsta-
ble. Along this curve it can be seen that there are transitions of the critical wave
number. These transitions occur at intersections of the neutral stability curves and
correspond to the double Hopf bifurcation points; i.e., at these points there are two
complex conjugate pairs of eigenvalues with zero real parts. Also plotted in Figure 6
is the experimentally observed transition curve taken from Fein [4], with critical wave
number transitions. This is the curve along which a transition from the axisymmetric
to steady wave flow was observed. All curves are plotted on a log-log graph of the
Taylor number T versus the thermal Rossby number R (see section 2).

Linear analysis reproduces many of the experimental observations. By inspection
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Table 2
Numerical results for double Hopf bifurcation points; a = −1 and d = −1 for all N . Here, m1

and m2 are the critical wave numbers, N is the number of grid points on one side, (Ω0,∆T0) is the
location in parameter space where the bifurcation occurs, ω1 and ω2 are the imaginary parts of the
eigenvalues at (Ω0,∆T0), and a,b,c, and d are the normal form coefficients.

N m1, m2 Ω0 ∆T0 −ω1 −ω2 b c

30 3, 4 1.025 12.76 2.320 · 10−2 3.305 · 10−2 -1.0051 -2.362

40 3, 4 1.030 12.93 2.514 · 10−2 3.632 · 10−2 -0.9720 -2.651

50 3, 4 1.034 13.04 2.560 · 10−2 3.712 · 10−2 -0.9813 -2.723

30 4, 5 0.7313 3.772 1.450 · 10−2 1.936 · 10−2 -1.332 -2.273

40 4, 5 0.7271 3.795 1.508 · 10−2 2.018 · 10−2 -1.327 -2.367

50 4, 5 0.7276 3.840 1.533 · 10−2 2.053 · 10−2 -1.324 -2.414

20 5, 6 0.6354 1.543 7.946 · 10−3 1.039 · 10−2 -1.360 -2.134

30 5, 6 0.6102 1.490 8.462 · 10−3 1.091 · 10−2 -1.470 -2.187

40 5, 6 0.6048 1.502 8.721 · 10−3 1.124 · 10−2 -1.483 -2.237

50 5, 6 0.6036 1.517 8.867 · 10−3 1.141 · 10−2 -1.488 -2.265

20 6, 7 0.6117 0.6972 3.711 · 10−3 4.960 · 10−3 -1.473 -2.253

30 6, 7 0.5838 0.6944 4.046 · 10−3 5.398 · 10−3 -1.532 -2.256

40 6, 7 0.5757 0.7008 4.217 · 10−3 5.611 · 10−3 -1.556 -2.269

50 6, 7 0.5727 0.7071 4.317 · 10−3 5.735 · 10−3 -1.568 -2.277

20 7, 8 0.8699 0.3959 8.582 · 10−4 1.161 · 10−3 -1.628 -2.433

30 7, 8 0.7925 0.3758 9.294 · 10−4 1.283 · 10−3 -1.616 -2.408

40 7, 8 0.7652 0.3713 9.750 · 10−4 1.356 · 10−3 -1.625 -2.404

50 7, 8 0.7505 0.3704 10.09 · 10−4 1.410 · 10−3 -1.631 -2.399

20 8, 7 1.603 0.4692 4.010 · 10−4 3.493 · 10−4 -2.309 -1.748

30 8, 7 1.635 0.4581 3.748 · 10−4 3.284 · 10−4 -2.274 -1.723

40 8, 7 1.655 0.4559 3.602 · 10−4 3.156 · 10−4 -2.270 -1.722

50 8, 7 1.670 0.4556 3.501 · 10−4 3.064 · 10−4 -2.268 -1.722

20 7, 6 2.226 0.4625 1.553 · 10−4 1.361 · 10−4 -2.311 -1.734

30 7, 6 2.231 0.4457 1.441 · 10−4 1.229 · 10−4 -2.309 -1.719

40 7, 6 2.250 0.4391 1.323 · 10−4 1.109 · 10−4 -2.310 -1.718

50 7, 6 2.269 0.4356 1.232 · 10−4 1.018 · 10−4 -2.310 -1.717

20 6, 5 3.843 0.2559 2.064 · 10−5 2.083 · 10−5 -2.376 -1.746

30 6, 5 4.696 0.1718 2.278 · 10−5 2.198 · 10−5 -2.350 -1.733

40 6, 5 5.886 0.1148 2.257 · 10−5 2.165 · 10−5 -2.336 -1.729

50 6, 5 7.449 0.0764 2.315 · 10−5 2.220 · 10−5 -2.330 -1.730

of Figure 6, it can be seen that there is a good correspondence between the numerical
and experimental transition curves. It has also been shown, via comparison with
experimentally measured wave speeds at the transition, that the imaginary parts of
the eigenvalues are also in agreement. See [19] for further discussion.

6.3. Double Hopf normal form coefficients: Hysteresis. The numerical
results are presented in Table 2. Included are the locations of the double Hopf bifur-
cation points and the values of the normal form coefficients, as well as the values of
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the imaginary parts of the critical eigenvalues at the bifurcation point. The double
Hopf points are labeled in terms of the associated critical wave numbers m1 and m2.
For all double Hopf points, the critical wave numbers m1 and m2 differ by the integer
one, and the normal form coefficients satisfy a = −1, b < 0, c < 0, and d = −1, as
well as the condition A = ad − bc < 0.

The dynamics are found from an investigation of the fixed points of the equations
obtained by ignoring the θj in the normal form equations (28). To lowest order, the

θ̇j equations add a constant rotation for each corresponding dimension. See [9] for
a complete analysis of the normal form equations (28). Here, there are fixed points
when

(i) ρ1 = ρ2 = 0,

(ii) ρ2 = 0 and ρ1 = ρp =
√

µ1/ − a,

(iii) ρ1 = 0 and ρ2 = ρq =
√

µ2/ − d,

(iv) ρ1 = ρ
(T )
1 =

√
(−dµ1 + bµ2)/A and ρ2 = ρ

(T )
2 =

√
(cµ1 − aµ2)/A,

where A = ad − bc, and with the condition that the quantities inside the square root
signs must be positive.

Fixed point (i) is a fixed point of the normal form equations for all values of
the parameters. By inspection of the normal form equations (28), it is fairly easy
to see that, regardless of the values of the coefficients, for small ρ1 and ρ2, ρ̇1 and
ρ̇2 will have the same sign as µ1 and µ2, respectively. This means that solution (i)
will be stable if both µ1 and µ2 are negative, and unstable if either one is greater
than zero. In the fluid annulus, this solution corresponds to the steady axisymmetric
flow. Fixed points (ii) and (iii) correspond to periodic solutions of the normal form
equations and exist when µ1 > 0 and µ2 > 0, respectively (because we have a = −1
and d = −1). In the fluid, these solutions correspond to nonaxisymmetric steadily
rotating waves. The fixed point (iv) corresponds to a 2-torus for the normal form
equations and exists when (−dµ1 + bµ2) /A > 0 and (cµ1 − aµ2) /A > 0. Because
we have A < 0, a = −1, b < 0, c < 0, and d = −1, the 2-torus exists in the wedge
in (µ1, µ2) parameter space given by dµ1/b < µ2 < cµ1/a, µ1 > 0, µ2 > 0. These
solutions correspond to modulated wavy flow in the fluid.

A linear stability analysis of fixed points (ii), (iii), and (iv) gives the local behavior
near the bifurcation points; see Figure 7 for the bifurcation diagram. The results
indicate that both of the bifurcating waves, corresponding to the fixed points (ii) and
(iii), are stable in the wedge where the 2-torus exists. Thus, the boundaries of the
wedge µ2 = dµ1/b and µ2 = cµ1/a give the boundaries of the region of bistability
of the wave solutions. Furthermore, because only one of the bifurcating waves loses
stability on each of the boundaries of the wedge, there is hysteresis. The results also
indicate that the 2-torus is always unstable. In Figure 9, the approximate boundaries
of the region of bistability are drawn. The bifurcation diagram in Figure 8 shows
the hysteresis that occurs when a one-parameter path through the parameter space
crosses the region of bistability. The parameter s could be either Ω or ∆T or a
function of both, depending on the particular circumstances. An example of such a
path is indicated on Figure 7.

Quantitative verification of the predicted hysteresis is not currently possible due
to the lack of experimental data for the specific annulus studied here. Furthermore,
although the extent of hysteresis has been mapped for other transitions in other
regions of parameter space (see, e.g., [5], [14], [16], and [4]), there is relatively little
data concerning the hysteresis that occurs in the transitions between steady waves
near the axisymmetric regime. Also, many experimental results in the steady wave
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Fig. 7. The two-dimensional bifurcation diagram. The diagram is displayed using the real parts
of the critical eigenvalues µ1, µ2 as the bifurcation parameters. The regions of different character
are separated by solid lines. In each region, the corresponding phase portrait is drawn, where the
phase portraits are presented in ρ1, ρ2 coordinates. The θ1 and θ2 equations in (28) add a constant
rotation to each coordinate. The dotted line indicates a possible one-parameter path which will lead
to hysteresis. The bifurcation points along this path are indicated by s0, s1, s2, and s3 (see Figure 8).

regime are quoted in terms of the wave number that is most likely to occur. Our
analysis cannot predict this.

It can be seen in Table 2 that the numerical differences between the normal form
coefficients at the different levels of discretization decrease with increasing discretiza-
tion level. This is an indication of the convergence of the numerical approximations.
However, it appears that N is not large enough for us to make an estimation of the or-
der of convergence. Yet, the differences in the normal form coefficients at different N
are quite small, which is evidence that these results are at least qualitatively accurate.
To say this with more certainty, the analysis must be performed using higher levels of
discretization. This was not possible with the available resources. Because the results
accurately reproduce the experimental results, we conclude that the approximations
are satisfactory.

The results for the (m1,m2) = (3, 4) and (m1,m2) = (4, 5) double Hopf points
are not complete (see Table 2). For these wave number pairs with N = 20, the
eigenfunctions are not well resolved, and the eigenvalues are inaccurate. Also, the
evidence of convergence of the normal form coefficients (see Table 2) is weaker for
the double Hopf points at higher differential heating. It seems that the increase in
numerical difficulty is not caused by the difficulty of resolving the boundary layer in
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s10s s3s2
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|| U ||
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stable periodic orbit (wave)

bifurcation point

Fig. 8. The one-dimensional bifurcation diagram depicting the bifurcation observed along the
path indicated with the dotted line in Figure 7. The bifurcation points are labeled as s0, s1, s2, and
s3. ‖U‖ is a measure of the size of the solution, and s is the bifurcation parameter.

the axisymmetric solution, but rather by the difficulty of resolving the eigenfunctions
in the interior of the domain.

6.4. The eigenfunctions: Bifurcating wave form. An example of an eigen-
function is plotted in Figure 10. This is the eigenfunction with wave number m = 6
that is observed at the (m1,m2) = (6, 7) double Hopf point (see Table 2). From (28),
the periodic orbit corresponding to the wave with wave number m1, to lowest order
in µ1, is given by

ρ1 =

√−µ1

a
+ O(µ1),(32)

θ1 = ω1t + O (µ1)

or, in terms of z1,

z1 =

√
−µ1

Gr
11

eiω1t + O (µ1),(33)

which describes a near-circular periodic orbit. The periodic orbit corresponding to
the wave with wave number m2 is given by a similar expression. In terms of the
variables of the perturbation equations (10)–(12), to lowest order, the periodic solution
corresponding to (32) is given by U = [u, T ] = z1Φ1 + z1Φ1 = Re (z1Φ1). That is,

U = Re

[√
−µ1

Gr
11

eiω1tΦ̃m1
eim1ϕ

]
+ O (µ1)(34)

=

√
−µ1

Gr
11

[
Φ̃rm1

cos (m1ϕ + ω1t) − Φ̃im1
sin (m1ϕ + ω1t)

]
+ O (µ1),



DOUBLE HOPF BIFURCATIONS 1051

10
5

10
6

10
7

10
8

10
−3

10
−2

10
−1

10
0

Taylor number

th
e
rm

a
l 
R

o
s
s
b
y
 n

u
m

b
e
r

(3,4)

(4,5)

(5,6)

(6,7)

(7,8)

(8,7)

(7,6)

(6,5)

theoretical transition curve
theoretical critical wave number transitions
boundaries of region of bistability

Fig. 9. Theoretical transition curve between the axisymmetric and the nonaxisymmetric regimes
including the boundaries of the region of bistability. The boundaries are the solid lines attached to
the double Hopf points. For each double Hopf point, the area between the boundaries is the region
where there is bistability of wave solutions.

i.e., a rotating wave, where Φ1 = Φ̃m1e
im1ϕ and where Φ̃rm1

and Φ̃im1
denote the real

and imaginary parts of Φ̃m1 , respectively. In terms of the variables of the original
equations (5)–(7), the solution U corresponds to deviations from the axisymmetric
solution [u(0), T (0)] of the same equations. Also, if t is fixed, then at different ϕ, the
periodic solution is a different linear combination of Φ̃rm1

and Φ̃im1
, and thus, the

form of the eigenfunction gives the form of the bifurcating wave to the lowest order
of approximation. That is, the approximation is valid for parameter values that are
close to the axisymmetric-to-wave transition curve.

The form of the bifurcating wave is consistent with previous results. Measure-
ments, from experiments with the same annulus geometry as is used for our results,
indicate that the temperature has a maximum at midradius middepth [4]. Further-
more, the coarse features of the wave form are consistent with the detailed exper-
imental and numerical results of [15], as well as the numerical results of [27], even
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Fig. 10. An example of the radial and vertical dependence of an eigenfunction with m = 6 and
N = 30 at Ω = 0.5838 and ∆T = 0.6944: (a) real part, (b) imaginary part, and (c) amplitude of the
radial component of the eigenfunction; (d) real part, (e) imaginary part, and (f) amplitude of the
azimuthal component of the eigenfunction; (g) real part, (h) imaginary part, and (i) amplitude of the
vertical component of the eigenfunction; (j) real part, (k) imaginary part, and (l) amplitude of the
temperature component of the eigenfunction. That is, the actual components of the eigenfunctions
are the plotted functions multiplied by eimϕ.

though different annulus geometries, waves with different dominant wave numbers,
and waves far from the axisymmetric-to-wave transition curve are studied. This in-
cludes (see Figures 5 and 6 of [15]) the radial dependence of the Fourier amplitude
of the dominant wave number of the radial velocity at various heights, and the radial
dependence of the Fourier amplitude of the dominant wave number of the azimuthal
velocity at middepth. In our case, the square of the Fourier amplitude is given by
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(Φ̃rmj
)2 + (Φ̃imj

)2. See also Figure 8 in [27] for the vertical dependence of the devi-
ations from the azimuthally averaged flow of both temperature and velocity for the
(numerical) wave forms in an annulus without a rigid lid. However, compared to our
bifurcating waves (34), the waves of these experimental and numerical studies show
a relative decrease in the amplitude at midradius of the azimuthal average of the
azimuthal velocity (i.e., the wave number zero Fourier component of the azimuthal
velocity). In our case, the azimuthal average to first order is given by the axisym-
metric solution [u(0), p(0), T (0)] (see Figure 4). The waves studied in [15] and [27] are
observed in regions of parameter space far from the axisymmetric-to-wave transitions,
where the higher-order terms in (34), which we have ignored, may be important. Al-
though these higher-order terms do not produce a significant qualitative change in
the deviations from the azimuthally averaged flow, they do seem to produce a small,
but noticeable, qualitative difference on the the azimuthal averaged flow itself. In
order to study this effect, the bifurcating waves (34) would have to be calculated for
parameter values far from the transition curve.

7. Conclusion. In this paper, we study the transitions from axisymmetric steady
solutions to nonaxisymmetric waves in a Navier–Stokes model of the differentially
heated rotating annulus experiment. An analytical-numerical center manifold reduc-
tion is used to analyze the double Hopf bifurcation points that occur at this transition.
The results, which are obtained by numerically approximating the coefficients of the
normal form equations, show that there are stable waves that bifurcate from the ax-
isymmetric solution via a Hopf bifurcation, and that hysteresis (and bistability) of the
bifurcating waves occurs near critical wave number transitions. Associated with the
hysteresis is the existence of an unstable torus. Approximate boundaries to the re-
gion of bistability are drawn. The results are consistent with laboratory experiments,
which supports not only the validity of the model, but also the validity of the analy-
sis. Although the convergence of the numerical approximations cannot be proven, the
evidence of convergence and the correspondence with experimental results supports
the claim that the behavior that is predicted by our results occurs in the full PDE
model.

The behavior seen in the model of the experiment is qualitatively the same as
that seen in the models of the analytical studies discussed in the first section. This is
very interesting because the models of these analytical studies are simplified models
of atmospheric circulation, and so they are of a very different scale from that of
the experiment. That is, the method of analysis is able to highlight the dynamical
similarity of two geophysical fluid models of vastly different scales. The similarity is
evidence for the usefulness of studying the models of both scales and for the statement
that both types of models incorporate the fundamental properties of differentially
heated rotating systems.

The study presented here is a beginning, and there are many possible directions
future work could take. The models of atmospheric circulation of the analytical stud-
ies mentioned above are quite simplified. The success of the numerical computations
of the present study gives confidence that analysis of this type could be applied to
more realistic atmospheric models, such as that presented in [3]. Also, in the analysis
of the annulus experiment, there is the possibility of resonant behavior close to an
experimentally observed “triple-point,” which is a point in parameter space that is
shared by three regimes (the axisymmetric, the wave, and the irregular regimes; see
Figure 2). The (m1,m2) = (6, 5) double Hopf point, which occurs in a similar region
in parameter space as does the experimentally observed triple-point, is close to being



1054 G. M. LEWIS AND W. NAGATA

resonant; i.e., the imaginary parts of the two complex conjugate pairs of eigenvalues
with largest real part are nearly equal. Thus, a strongly resonant double Hopf bifur-
cation might be found by varying a third parameter, and in this case the dynamics
found close to the resonant bifurcation may explain the existence of the triple-point.

Another interesting direction would be to attempt to follow the bifurcating so-
lutions as the parameters move away from the bifurcation point. Two interesting
flows that are observed in the annulus (both experimentally and numerically) are
amplitude vacillation and wave dispersion [14], [22]. It has been hypothesized that
the mechanism responsible for both of these flows is an interaction of two waves via
a stable torus, where amplitude vacillation results from an interaction of two waves
of the same dominant azimuthal wave number, while wave dispersion results from an
interaction of waves with different dominant azimuthal wave numbers [23], [21]; see
also [5] for experimental evidence.

The unstable torus, which we have shown to exist in the steady wave regime, is
such an interaction of two waves with different wave numbers. Thus, it is possible
that if the unstable torus could be followed further into the steady wave regime, a
bifurcation to a stable torus (and wave dispersion) might be discovered. Alternatively,
if the stable periodic orbits corresponding to the wave solutions could be followed
further into the wave regime, a bifurcation to a stable torus might occur, which might
result in the discovery of either amplitude vacillation or wave dispersion. At the
moment, such a study seems computationally prohibitive. However, if the curvature
of the annulus is neglected, a symmetry of the resulting system leads to a bifurcation
to a steady solution as opposed to a periodic orbit. In this case, the computation may
be possible.

The comparison of theoretical and experimental results that took place in the
investigation of the Taylor–Couette flow led to many more discoveries about the sys-
tem than otherwise would have occurred. The work presented here begins such a
comparison for the differentially heated rotating annulus flow. Some of our results
are confirmed by comparison with experiments, and some predictions, concerning the
boundaries of the region of bistability, have yet to be verified. For future work, we
expect that the use of such techniques will lead to further discovery of new dynam-
ics, both theoretical and experimental, which in turn will lead to a better general
understanding of differentially heated rotating fluid systems.
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Abstract. We consider spatially discrete bistable reaction-diffusion equations that admit wave
front solutions. Depending on the parameters involved, such wave fronts appear to be pinned or
to glide at a certain speed. We study the transition of traveling waves to steady solutions near
threshold and give conditions for front pinning (propagation failure). The critical parameter values
are characterized at the depinning transition, and an approximation for the front speed just beyond
threshold is given.
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1. Introduction. Spatially discrete systems describe physical reality in many
different fields: atoms adsorbed on a periodic substrate [13], motion of dislocations
in crystals [32], propagation of cracks in a brittle material [35], microscopic theories
of friction between solid bodies [18], propagation of nerve impulses along myelinated
fibers [23, 24], pulse propagation through cardiac cells [24], calcium release waves in
living cells [6], sliding of charge density waves [19], superconductor Josephson array
junctions [39], or weakly coupled semiconductor superlattices [3, 9]. No one really
knows why, but spatially discrete systems of equations often have smooth solutions
of the form un(t) = u(n − ct), which are monotone functions approaching two dif-
ferent constants as (n − ct) → ±∞. Existence of such wave front solutions has been
proved for particular discrete systems having dissipative dynamics [40]. In the case
of discrete systems with conservative dynamics, a wave front solution was explicitly
constructed by Flach, Zolotaryuk, and Kladko [16]. However, a general proof of wave
front existence for discrete conservative systems with bistable sources is lacking.

A distinctive feature of spatially discrete reaction-diffusion systems (not shared
by continuous ones) is the phenomenon of wave front pinning: for values of a control
parameter in a certain interval, wave fronts joining two different constant states fail
to propagate [24]. When the control parameter surpasses a threshold, the wave front
depins and starts moving [23, 19, 32, 9]. The existence of such thresholds is thought
to be an intrinsically discrete fact, which is lost in continuum approximations. The
characterization of propagation failure and front depinning in discrete systems is thus
an important problem, which is not yet well understood despite the numerous inroads
made in the literature [23, 6, 19, 32, 25, 26, 28, 30, 27, 36, 37, 38].
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In this paper, we study front depinning for infinite one-dimensional nonlinear
spatially discrete reaction-diffusion (RD) systems. When confronted with a spatially
discrete RD system, a possible strategy is to approximate it by a continuous RD
system. For generic nonlinearities, the width of the pinning interval is exponentially
small as the continuum limit is approached. Pinning in the continuum limit has been
analyzed by many authors using exponential asymptotics, also known as asymptotics
beyond all orders. As far as we can tell, usage of these techniques for discrete equations
goes back to two classic papers by Indenbom [22] (for the FK potential) and by
Cahn [7] (for the double-well potential). In both cases, an exponential formula for
the critical field was derived by means of the Poisson sum rule. In the context of
dislocation motion, exponential formulas for the depinning shear stress of the Peierls–
Nabarro (PN) model were found earlier by Peierls [33] and Nabarro [31]. Descriptions
of wave front pinning near the continuum limit can also be found in more recent work
[20, 25, 27].

Analyzing the continuum limit of a discrete system by means of exponential
asymptotics is a costly strategy for describing pinning for two reasons. It is not
numerically accurate as we move away from the continuum limit, and it ceases to
be useful if convective terms [11] or disorder [12] alter the structure of the discrete
system (quite common in applications). Thus other authors have tried to describe the
opposite strongly discrete limit. For discrete RD equations, Erneux and Nicolis [14]
studied a finite discrete RD equation with a cubic nonlinearity, a Dirichlet boundary
condition at one end, and a Neumann boundary condition at the other end. They
considered a particular limit in which two of the three zeroes of the cubic nonlinearity
coalesced as diffusivity went to zero. Erneux and Nicolis’s calculation is essentially a
particular case of our active point approximation that involves only one active point
and makes an additional assumption on the nonlinearity (not needed in our calcula-
tions). They found that the wave front velocity scales as the square root of (d−dc) (d
is the diffusivity and dc its critical value at which wave fronts are pinned). Essentially
the same results can be found in the appendix of [27]. Kladko, Mitkov, and Bishop
[28] introduced an approximation called the single active site theory. In this approx-
imation, the wave front is described by two linear tails (solution of the RD equation
linearized about each of the two constants joined by the front) patched at one point.
This approximation is used to estimate the critical field for wave front depinning.

By a combination of numerical and asymptotic calculations, we arrive at the
following description [10, 11]. The nature of the depinning transition depends on
the nonlinearity of the model and is best understood as propagation failure of the
traveling front. Usually, but not always, the wave front profiles become less smooth
as a parameter F (external field) decreases. They become discontinuous at a critical
value Fc. Below Fc, the front is pinned at discrete positions corresponding to a stable
steady state. As a consequence of the maximum principle for spatially discretized
parabolic equations, stationary and moving wave fronts cannot simultaneously exist
for the same value of F (see [8]). This is not the case for chains with conservative
dynamics, which are spatially discretized hyperbolic equations without a maximum
principle. For chains with conservative Hamiltonian dynamics, an inverse method due
to Flach, Zolotaryuk, and Kladko [16] explicitly shows that stationary and moving
wave fronts may coexist for the same value of the parameters.

We consider chains of diffusively coupled overdamped oscillators in a potential V ,
subject to a constant external force F :

dun
dt

= un+1 − 2un + un−1 + F −Ag(un).(1.1)
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Fig. 1.1. FK model: (a) potential 1− cos(x), (b) source term g(u) = sin(u), (c) g′(u) = cos(u),
(d) g′′(u) = − sin(u).

Here g(u) = V ′(u) is at least C1, and it presents a “cubic” nonlinearity (see Figure
1.1), such that Ag(u) − F has three zeroes, U1(F/A) < U2(F/A) < U3(F/A) in a
certain force interval (g′(Ui(F/A)) > 0 for i = 1, 3, g′(U2(F/A)) < 0). Provided
that g(u) is odd with respect to U2(0), there is a symmetric interval |F | ≤ Fc where
the discrete wave fronts joining the stable zeroes U1(F/A) and U3(F/A) are pinned
[23, 8]. For |F | > Fc, there are smooth traveling wave fronts, un(t) = u(n− ct), with
u(−∞) = U1 and u(∞) = U3, as proved in [40, 8]. The velocity c(A,F ) depends on
A and F , and it satisfies cF < 0 and c → 0 as |F | → Fc (see [8]). Examples are
the overdamped Frenkel–Kontorova (FK) model (g = sinu; see Figure 1.1) [17] and
the quartic double well potential (V = (u2 − 1)2/4). Less symmetric nonlinearities
yield a nonsymmetric pinning interval, and our analysis applies to them with trivial
modifications. Note that coexistence of fronts traveling in opposite directions can
occur in the case of conservative systems, but not for (1.1) due to the maximum
principle (which is the basis of comparison techniques) [8].

For the overdamped FK model given by (1.1) with g = sinu, Figure 1.2 shows
wave front profiles near the critical field. Individual points undergo abrupt jumps at
particular times, which gives the misleading impression that the motion of the dis-
crete fronts proceeds by successive jumps. Actually, the points remain very close to
their stationary values at F = Fc, say un(A,Fc), during a very long time interval of

order |F − Fc|− 1
2 . Then, at a specific time, all the points un(t) jump to a vicinity of

un+1(A,Fc). The method of matched asymptotic expansions can be used to describe
this two-stage motion of the points un(t). Then the wave front profile can be recon-
structed by using the definition un(t) = u(n− ct). The slow stage of front motion is
described by the normal form of a saddle-node bifurcation, and it yields an approxi-
mation to the wave front velocity, which scales with the field as |F−Fc| 12 . This scaling
has been mentioned by other authors: it was found numerically in [1], and by means
of exponential asymptotics in the limit A small in [27]. It is also conjectured in [26] on
the correct basis that the depinning transition consists of a saddle-node bifurcation
(a similar claim was stated in [30] for continuous reaction diffusion equations with
localized sources). However, the derivation of the local saddle-node normal form and
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Fig. 1.2. Wave front profiles for the overdamped FK model when A = 1 near Fc.

the correct description of the global saddle-node bifurcation involving matching with
a fast stage during which the front jumps abruptly one lattice period were apparently
omitted by the authors of [26], who used energy arguments. Our picture of the wave
front depinning transition has essentially been corroborated in the continuum limit (as
an appropriate dimensionless lattice length goes to zero) by King and Chapman, who
used asymptotics beyond all orders [27]. An independent confirmation follows from
Fáth’s calculations for a spatially discrete reaction-diffusion equation with a piecewise
linear source term [15] (except that the velocity should scale differently with |F −Fc|
in this case).

For exceptional nonlinearities, the wave front does not lose continuity as the
field decreases. In this case, there is a continuous transition between wave fronts
moving to the left for F > 0 and moving to the right for F < 0; as for continuous
systems, front pinning occurs at only a single field value F = 0 (see [27, 16, 36,
37, 38]). Wave front velocity then scales linearly with the field. We discuss the
characterization of the critical field (including analytical formulas in the strongly
discrete limit), describe depinning anomalies (discrete systems having zero critical
field [36, 37, 38, 16]), and give a precise characterization of stationary and moving
fronts near depinning (including front velocity) by singular perturbation methods.
Our approximations show excellent agreement with numerical simulations.

The rest of the paper is organized as follows. In section 2, we characterize wave
front depinning. We also explain that pinning of wave fronts normally occurs at force
values belonging to an interval with nonzero length. However, there are nonlinearities
for which pinning occurs only at F = Fc = 0. In section 3, we present a theory of
wave front depinning for the strongly discrete case (A large). This theory enables us
to predict the critical field and the speed and shape of the wave fronts near threshold.
The main ideas of our theory are very simple. First, a wave front profile un(t) =
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u(n−ct) can be reconstructed if we follow the motion of one point during a sufficiently
long time interval. Secondly, the analysis of (1.1) is complicated by the presence of the
discrete diffusion term un+1−2un+un−1. Previous authors have tried to approximate
this term by its continuum limit (corresponding to A → 0), which leads to using
exponential asymptotics [27]. (See also [25] on using exponential asymptotics for the
Hamiltonian version of our model.) However, we are only interested in constructing
solutions of (1.1) joining constant values. For sufficiently large A (say, A = 0.1 for the
FK model), ui is approximately either U1(F/A) or U3(F/A) except for a finite number
of points (the active points). Then we can approximate the infinite system (1.1) by
a closed system of ordinary differential equations (only one equation for A ≥ 10 in
the FK model). The depinning transition is a global bifurcation of this system, as
explained in section 3. Some auxiliary technical results are collected in the appendix.

2. Front pinning as propagation failure. To describe monotone stationary
solutions of (1.1) joining U1(F/A) and U3(F/A) for |F | ≤ Fc, it is better to start by
considering traveling wave fronts for |F | > Fc. It has been proved (and corroborated
by numerical calculations) that traveling wave fronts and stationary profiles cannot
coexist at the same value of F (see [9]). Furthermore, numerical computations of
wave fronts near the critical fields Fc for the FK and other usual potentials show
staircase-like wave front profiles, which sharpen as F approaches Fc. At F = Fc, a
series of gaps open up, and one is left with a discontinuous stationary profile s(x)
solving

s(x+ 1)− 2s(x) + s(x− 1) = Ag(s(x))− Fc, x ∈ R,

s(−∞) = U1

(
Fc
A

)
, s(∞) = U3

(
Fc
A

)
.(2.1)

The profile s(x) is increasing and piecewise constant. The sequence of constant values
attained by s(x) defines a steady solution un of (1.1) with F = Fc. A stationary
solution can thus be understood as a wave front that fails to propagate and is pinned
at discrete values. Figure 1.2 illustrates the pinning transition for the FK model with
A = 1. As F decreases from 0.02 to 0.0127, a series of steps are formed. Figure 1.2(c)
depicts the paths described by three consecutive points. All profiles look identical and
are obtained by shifting any one of them some multiple of a certain constant length.
This implies that the length of all steps in the profile is the same and that all the
points un(t) in (1.1) proceed to climb the next step in the staircase at the same time.
This behavior indicates that the wave front is a traveling wave, un(t) = u(n − ct).
Proofs of this fact for some sources can be found in [40].

2.1. Limiting front profile at the critical field. Let us start by showing that
the limit of the traveling waves as F → Fc is singular if Fc > 0. This fact can be
guessed from the differential-difference equations satisfied by the wave profiles. The
traveling waves for |F | > Fc have the form un(t) = u(n − ct), where the profile u(z)
solves (see [8])

−cuz = u(z + 1)− 2u(z) + u(z − 1)−Ag(u(z)) + F, z ∈ R,

u(−∞) = U1

(
F

A

)
, u(∞) = U3

(
F

A

)
.(2.2)

The solution u is as smooth as allowed by g(u). (u is Ck+1 if g(u) is Ck, with k ≥ 1.)
Then multiplying (2.2) by uz and integrating it, we get

−c
∫ ∞

−∞
u2
zdz = F

[
U3

(
F

A

)
− U1

(
F

A

)]
.(2.3)
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A first obvious conclusion is that the sign of c is opposite to the sign of F . Let
Fc be positive. As F → Fc, c → 0 and F [U3(F/A) − U1(F/A)] → Fc [U3(Fc/A) −
U1(Fc/A)] 	= 0. Therefore the integrals

∫
u2
zdz → ∞ as F → Fc. Thus the limiting

profile must be discontinuous if Fc > 0.
If Fc = 0, the relation (2.3) can be used to show that (2.1) has a smooth solution.

In fact, provided that c ∼ −K F (K > 0) as F → 0, we can use (2.3) to uniformly
bound the derivatives of the solutions u in (2.2) for F 	= 0. Then we obtain a smooth
solution of (2.1) in the limit as F → 0. We will come back to this question later on in
subsection 2.3. Note that the stationary equation s(x+1)−2s(x)+s(x−1) = Ag(s)−F
has no continuous solutions joining U1(F/A) to U3(F/A) unless F = 0. To see this
[8], we multiply the equation by sx (in the sense of distributions if necessary) and
integrate to get F = 0.

2.2. Characterization of the critical field. Some results are available in the
continuum limit A→ 0. For g = sinu, it is well known that Fc vanishes exponentially
fast as A goes to zero. An exponential formula for Fc was first found by Indenbom [22]
using the Poisson sum rule (following the calculations of the PN energy barrier for the
PN model by Peierls [33] and Nabarro [31]) and numerically checked by Hobart [21] in
the context of the Peierls stress and energy for dislocations. For the discrete bistable
RD equation, Cahn [7] derived an exponential dependence of Fc by a similar technique.
Related ideas can be found in Kladko, Mitkov, and Bishop [28]. These arguments can

be used for other potentials and suggest that Fc ∼ C e−η/
√
A as A→ 0+ (with positive

C and η independent of A) holds for a large class of nonlinearities. Using exponential
asymptotics, King and Chapman [27] have obtained precise formulas for the critical
field and the wave front velocity of a discrete RD equation. Particularized to the
FK potential, their formulas for the critical field and for the wave front velocity after

depinning are Fc ∼ Λ e−π
2/[2 sinh−1(

√
A/2)], Λ ≈ 356.1, and c ∼ D

√
(F 2 − F 2

c )/A,

respectively. This latter result agrees with the scaling law c ∼ |F − Fc| 12 , found in a
large class of discrete RD equations [9, 10, 11, 26] and in continuous equations with
localized sources [30]. However, exponential asymptotics [27] does not work for A
large. We shall therefore follow a different approach. We shall begin by considering
stationary increasing discrete front profiles and study under which conditions they
start moving. Since stationary fronts are pinned wave fronts, we can call the transition
from stationary to moving fronts the depinning transition.

Two facts distinguish the depinning transition: (i) the smallest eigenvalue of
(1.1) linearized about a stable stationary profile becomes zero (see below), and (ii)
stationary and moving wave fronts cannot coexist for the same values of the field.
First, the following comparison principle [23] for (1.1) can be used to show that
stationary and traveling wave fronts cannot coexist for the same value of F (see [8]).

Comparison principle. Assume that we have two configurations wn(t) and
ln(t). If initially wn(0) ≥ ln(0) for all n, and at any later time t > 0

dwn
dt

≥ wn+1 − 2wn + wn−1 −Ag(wn) + F,(2.4)

dln
dt

≤ ln+1 − 2ln + ln−1 −Ag(ln) + F(2.5)

for all n ∈ Z, then necessarily wn(t) ≥ ln(t) for all n and t. Here wn satisfying (2.4)
is said to be a supersolution, and ln satisfying (2.5) is said to be a subsolution.

Front pinning can be proved using stationary sub- and supersolutions, which
can be constructed, provided that the stationary solution is linearly stable. The
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Fig. 2.1. (a) Critical field, Fc(A), for A ∈ ( 1
2
, 10
)
. We have compared the result of approxi-

mately solving λ1(A,F ) = 0 for F as a function of A (see the appendix) to the asymptotic result

Fc ∼ 356.1 e−π
2/[2 sinh−1(

√
A/2)] of [27]. (b) Relative error of the exponential asymptotics approxi-

mation.

smallest eigenvalue of the linearization of (1.1) about a stationary profile un(A,F ),
un(t) = un(A,F ) + vne

−λt, is given by

λ1(A,F ) = min

∑
[(vn+1 − vn)2 +Ag′(un(A,F ))v2n]∑

v2n
,(2.6)

over a set of functions vn, which decay exponentially as n → ±∞. We show in the
appendix that the minimum is attained at a positive eigenfunction.

The critical field can be uniquely characterized by λ1(A,Fc) = 0 and λ1(A,F ) > 0
for |F | < Fc. The details are given in the appendix. Notice that λ1(A,F ) > 0
implies that (2.1) does not have smooth solutions s(x); otherwise, vn = s′(n) is an
eigenfunction corresponding to λ1 = 0 as it happens in the continuum limit. The
previous characterization is the basis of a procedure for calculating Fc(A). In section
3, we shall show that wave fronts near the depinning transition are described by a
reduced system of equations for a finite number of points un(t) which “jump” from
about a discrete value corresponding to the stationary solution, un(A,Fc), to the next
one, un+1(A,Fc), during front motion. The smallest eigenvalue for the linearization
of the reduced system of equations about a stationary solution approximates λ1 well.
The critical field obtained by this procedure has been depicted in Figure 2.1 for the
FK potential and compared to King and Chapman’s asymptotic result (obtained by
keeping two terms in their formulas). Notice that the asymptotic result loses accuracy
as A increases.

Equation (2.6) shows that the critical field is positive for large A and typical
nonlinearities. In fact, consider the FK potential. For F = 0 there are two one-
parameter families of stationary solutions which are symmetric with respect to U2

(see Figure 2.2), one taking on the value U2 (unstable dislocation), and the other
one having un 	= U2 (stable dislocation) [21, 8]. The centers of two stable (or two
unstable) dislocations differ in an integer number of lattice periods. Except for a
possible rigid shift, the stable dislocation, un(A, 0), is a dynamically stable stationary
solution towards which step-like initial conditions evolve. Figures 2.3(a) and (b) show
two initial conditions that evolve (exponentially fast) towards the stable dislocation.
Half the initial points un(0) have been selected to be below U2, and the other half are
above this value. In Figure 2.3(a), un(0) − un(A, 0) = εn, where εn are real random
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Fig. 2.2. Stable and unstable dislocations for the FK model when F = 0 and A = 0.1.

-10 0 10

-2
0
2
4
6
8

n

u n 

(b) F=0

-10 0 10
0

2

4

6

n

u n 

(a) F=0

-10 0 10

0

2

4

6

8

n

u n   
  

(d) F=6.1

-10 0 10

2

4

6

n

u n   
  

(c) F=6.1

Fig. 2.3. Initial condition un(0) (asterisks) and its large time limit, the stable dislocation
(circles), for the FK model with A = 10; F = 0 for (a) and (b), and F = 6.1 < Fc for (c) and (d).
The initial points are selected as indicated in the text.

numbers with |εn| < 0.5. In Figure 2.3(b), un(0)−U1,3 = δnB, 0 < B = U2−U1−0.2,
and δn randomly takes on the values 1 or −1. By using comparison methods, it is
possible to prove that a small disturbance of the stable dislocation evolves towards it.
The same results hold for the stable stationary solution un(A,F ) for 0 < |F | < Fc. As
|F | increases, a disturbance of the stable stationary solution typically evolves towards
the same stationary solution displaced an integer number of lattice periods unless the
disturbance is sufficiently small. See Figure 2.3(d) for an example of this phenomenon
for F slightly smaller than Fc. Carefully selecting the initial condition avoids this, as
in Figure 2.3(c).

For large A, the stable dislocation has g′(un) > 0 for all n, and (2.6) gives
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λ1(A, 0) > 0. Since λ1(A,Fc) = 0, this implies that the critical field is nonzero.
(Different proofs are given in [23, 9].) As A > 0 decreases, several un may enter the
region of negative slope g′(u): the number of points with g′(un) < 0 increases as A
decreases; see Figures 2.2 and 2.4. It should then be possible to have λ1(A, 0) = 0,
i.e., Fc = 0, for a discrete system! Examples of this pinning anomaly will be given
next.

2.3. Pinning failure. Despite widespread belief, it is not true that the critical
field is positive for all discrete systems. This point was already raised by Hobart [21],
who proposed the following numerical criterion to check whether for a given source g
the critical field for (1.1) is zero.

Let us assume for the sake of simplicity that g is odd about 0. Then U2(0) = 0
and U1(0) = −U3(0). For any x ∈ (U1(0), U3(0)), we can compute numerically a
unique value y(x) such that the sequence un defined by u0 = x, u1 = y(x), and
un = 2un−1 − un−2 + g(un−1), n > 1, tends to U3(0) as n→ ∞. Hobart conjectured
that Fc = 0 for a given nonlinearity g, provided that the function y(x) satisfies

y−1(x) = −y(−x), y(x)− y(−x) = 2x+ g(x)(2.7)

for x ∈ (U1(0), U3(0)). It is fairly easy to construct examples of nonlinearities g(x)
for which (2.7) holds. It suffices to choose some smooth odd increasing function
u(x) such that u(x) → ±a as x → ±∞ for some a > 0. We define g(u(x)) =
u(x + 1) − 2u(x) + u(x − 1) so that g(z) = u(u−1(z) + 1) − 2z + u(u−1(z) − 1) and
y(z) = u(u−1(z) + 1). Choosing u(x) = tanh(x) (see [34, 5, 16]), we get an explicit
formula for g: g(z) = −2γz(1− z2)/(1− γz2) with γ = tanh2(1). Notice that one or
two points of the stationary solutions, un = tanh(n+p) (p is any constant), enter the
region where g′ < 0; see Figure 2.5(a).

By following this procedure, we find examples of bistable source terms for which
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Fig. 2.5. (a) Stationary solution un = tanh(n), (b) wave front for F small, (c) numerically
calculated versus predicted speed for g(u) = −2γu(1− u2)/(1− γu2), with γ = tanh2(1).

(1.1) has a uniparametric family of continuous stationary solutions, un = u(n + p),
0 ≤ p < a, satisfying un+1 − 2un + un−1 = g(un) and u−∞ = −a, u∞ = a. In this
case, (1.1) does not have stationary solutions joining U1(F/A) and U3(F/A) unless
F = 0 (see [8]). The existence of continuous steady solutions for F = 0 implies that
there is a continuous transition from wave fronts traveling to the left (c < 0) for F > 0
to wave fronts traveling to the right (c > 0) for F < 0. Only at F = 0 are wave fronts
stationary (pinned). This pinning anomaly is stated more precisely as follows.

Theorem 2.1. Let g ∈ C2 be as in the Introduction with g(0) = 0, and let L(F )
be the operator

L(F ) vn = Ag′(un)vn + 2vn − vn+1 − vn−1,(2.8)

corresponding to the evolution equation (1.1) linearized about the stationary solution
un = un(A,F ) at field F . Let us assume that for F = 0 there exists a differentiable
increasing stationary solution u(x) such that u(x)→ ±U3(0) as x→ ±∞. Then,

1. zero is the smallest eigenvalue of the operator L0 = L(0), corresponding to the
evolution equation (1.1) linearized about the stationary solution un(A, 0) = u(n);

2. Fc(A) = 0 for (1.1);
3. traveling wave fronts exist for all F 	= 0. Furthermore, their speed increases

linearly with the force for small F . We have

c ∼ −F U3(0)− U1(0)∫∞
−∞

(
du
dx

)2
dx

(2.9)

as F → 0.
Moreover, statement 3 implies the existence of steady differentiable solutions u(x)

of (1.1) such that u(x)→ ±U3(0) as x→ ±∞ for F = 0.



1066 A. CARPIO AND L. L. BONILLA

It is not our goal here to give a rigorous proof of this result, but to sketch the main
ideas. First of all, note that the derivative vn = ux(n) > 0 is a positive eigenfunc-
tion of the elliptic operator L0 corresponding to the eigenvalue λ = 0 and decaying
exponentially at infinity. Statement 1 immediately follows. This fact can be used to
construct propagating sub- and supersolutions for (1.1) which forbid pinning for any
F 	= 0. Thus, Fc = 0, which is statement 2. For F = ε > 0 sufficiently small, the
propagating subsolutions are ln(t) = l(n+εc0t), with c0 > 0 and l(x) = u(x)+εux(x).
For F = −ε, the propagating supersolutions are wn(t) = w(n− εc0t), with c0 > 0 and
w(x) = u(x)− εux(x). In both cases, we have to choose c0 < 1/max (ux). A subsolu-
tion traveling to the left “pushes” the fronts to the left. Similarly, the supersolutions
traveling to the right “push” the fronts to the right.

Let us now obtain statement 3. If |F | > 0, we have traveling wave front solu-
tions un(t) = U(n− ct) of (1.1), whose profile U(z) satisfies the differential-difference
equation

−c dU
dz
(z) = U(z + 1)− 2U(z) + U(z − 1)− g(U(z)) + F,(2.10)

and U(±∞) = ±U3(0); see [8]. Let F = F0ε with 0 < ε � 1. The traveling wave
solution can be written as U(n− ct) = u(n− ct)+ εw(n− ct)+ o(ε), where u(x) is the
smooth stationary profile. Let z = n− ct and c = c0ε+ o(ε). Then w obeys

w(z + 1)− 2w(z) + w(z − 1)−Ag′(u(z))w(z) = −c0 du
dz
(z)− F0,

w(−∞) = w(∞) = 1

g′(U1)
=

1

g′(U3)
.

By the Fredholm alternative, this linear nonhomogeneous equation has a solution if
the left-hand side −c0du/dz − F0 is orthogonal to the eigenfunction du/dz, which
yields (2.9).

In section 3, we show that the wave front speed c scales as |F−Fc| 12 if Fc > 0. Our
linear scaling (2.9) of the velocity in statement 3 therefore implies that Fc = 0. The
linear scaling (2.9) with Fc = 0 implies the existence of smooth stationary solutions
at F = 0 as discussed in the first subsection.

Remark 1. We conjecture that the three statements in Theorem 2.1 are equivalent.
To prove this, it would be enough to show that Fc = 0 implies the linear scaling of
the speed of the waves (statement 3). Then, existence of differentiable stationary
solutions follows. This implies statement 1 (λ1(A, 0) = 0), which implies statement 2
(Fc = 0), as we showed above.

Remark 2. When stationary wave front solutions have smooth profiles, pinning
failure occurs for discrete RD equations and for discrete equations with conservative
dynamics. In the latter case, translation-invariant smooth profiles have the same
energy, and therefore the PN energy barrier (defined as the smallest energy barrier
that must be overcome for a kink or wave front to move [4]) vanishes. Pinning of a wave
front usually results if the energy difference between the stable and the unstable front
solutions (see Figure 2.2) is not zero. This energy difference provides an estimation
of the PN energy barrier. Discussions of the PN potential and the PN barrier can
be found in section 2.3 of [4] and in section III.B of [16]. The mathematical meaning
and usefulness of the PN barrier for an infinite system with conservative dynamics
are worth studying.

Remark 3. Speight and Ward [36] and Speight [37, 38] have developed a technique
to discretize some continuum conservative models in such a way that kink-like initial
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profiles may propagate without getting trapped. Their idea is to seek a discrete
version of the potential energy which admits minimals satisfying a first order difference
equation called the Bogomol’nyi equation so that there is no PN barrier. On the
other hand, the difference operators in Speight and Ward [36] discretized equations
of motion have a structure different from discrete diffusion and are hard to justify
physically.

Remark 4. In discrete RD equations, moving and pinned fronts cannot coexist
for the same value of the applied field. For chains with conservative Hamiltonian
dynamics, the situation is less clear. In fact, it is possible to have two stationary
front solutions with a positive energy difference between them (which would imply
a nonzero critical field and therefore wave front pinning according to general belief),
and yet a moving wave front may coexist with the stationary fronts for the same
parameter values. An explicit example of this situation has been constructed by
Flach, Zolotaryuk, and Kladko using an inverse method [16].

3. Asymptotic theory of wave front depinning. In this section we introduce
a systematic procedure for deriving analytic expressions for the critical field Fc > 0
as a function of A, and for the front profiles and their velocity as functions of F −Fc
and A. Our methods work best in the strongly discrete case for large A. Our ideas
are quite general and may be applied successfully to more complex discrete models
[11]. We shall assume that g ∈ C2 throughout this section.

3.1. Theory with a single active point. We choose A large enough for the
stable dislocation in Figure 2.2 not to enter the region where g′ < 0; see Figure 2.4.
When F > 0, this solution is no longer symmetric with respect to U2. If F is not
too large, all un(A,F ) avoid the region of negative slope g

′(u) < 0. For larger F and
generic potentials (FK, double-well, . . . ), we have observed numerically that g′ < 0
for a single point, labelled u0(A,F ). This property persists until Fc is reached; see
Figure 3.1.

-20 0 20
0

1

2

3

4

5

6

7

(a)

A=10,F=4

n

u n

-20 0 20
0

1

2

3

4

5

6

7

(b)

A=10,F=6.102

n

u n

Fig. 3.1. Stationary solutions for the FK model with A = 10: (a) No points are found in the
region g′ < 0 for sufficiently small F ; (b) one point enters the region g′ < 0 for sufficiently large
F < Fc.

First, consider the symmetric stationary profile with un 	= U2 for F = 0. The front
profile consists of two tails with points very close to U1 and U3, plus two symmetric
points u0, u1 in the gap region between U1 and U3. As F > 0 increases, this profile
changes slightly: the two tails are still very close to U1(F/A) and U3(F/A). As for
the two middle points, u1 gets closer and closer to U3, whereas u0 moves away from
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Fig. 3.2. Approximation of (1.1) by the equation with one active point for the FK potential and

A > 2: (a) critical force versus A, (b) error in the approximation of Fc(A).

U1. This structure is preserved by the traveling fronts above the critical field: there is
only one active point most of the time, which we can adopt as our u0. Then the wave
front profile (2.2) can be calculated as u(−ct) = u0(t). In (1.1), we can approximate
u−1 ∼ U1, u1 ∼ U3, thereby obtaining

du0

dt
≈ U1

(
F

A

)
+ U3

(
F

A

)
− 2u0 −Ag(u0) + F.(3.1)

This equation has three stationary solutions for F < Fc, two stable and one unstable,
and only one stable stationary solution for F > Fc. Let us consider F < Fc. Only
two out of the three solutions of (3.1) approximate stationary fronts for the exact
system: those having smaller values of u0. The one having smallest u0 approximates
the stable stationary front; the other one approximates the unstable stationary front.
Recall that the unstable front had a value u0 = [U1(0) + U3(0)]/2 at the middle of
the gap for F = 0. As F > 0 increases, u0 decreases towards U1(F/A). Thus one
active point will also approximate the profile of the unstable stationary front. The
stationary solution of (3.1) having the largest value of u0 (slightly below U3(F/A)) is
not consistent with the assumptions we made to derive (3.1), and therefore it does
not approximate a physically existing stationary front. If F > Fc, the only stationary
solution of (3.1) is the unphysical one. The critical field Fc is such that the expansion
of the right-hand side of (3.1) about the two coalescing stationary solutions has zero
linear term, 2 +Ag′(u0) = 0, and

2u0 +Ag(u0) ∼ U1

(
Fc
A

)
+ U3

(
Fc
A

)
+ Fc.(3.2)

These equations for Fc and u0(A,Fc) have been solved for the FK potential, for which
u0 = cos−1(−2/A) and U1 + U3 = 2 sin−1(Fc/A) + 2π. The results are depicted in
Figure 3.2 and show excellent agreement with those of direct numerical simulations
for A > 10. Our approximation performs less well for smaller A, and it breaks down
at A = 2 with the wrong prediction Fc = 0. Notice that Fc(A)/A ∼ 1 as A increases.
In practice, only steady solutions are observed for very large A.

Let us now construct the profile of the traveling wave fronts after depinning for
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F slightly above Fc. Then u0(t) = u0(A,Fc) + v0(t) obeys the following equations:

dv0
dt

= α (F − Fc) + β v20 ,(3.3)

α = 1 +
1

Ag′(U1(Fc/A))
+

1

Ag′(U3(Fc/A))
,(3.4)

β = −A
2
g′′(u0),(3.5)

where we have used 2+Ag′(u0) = 0 and (3.2) and ignored terms of order (F −Fc) v0
and higher. These terms are negligible after rescaling v0 = (F − Fc)

1
2ϕ and τ =

(F − Fc) 1
2 t. The coefficients α and β are positive because g′(Ui) > 0 for i = 1, 3 and

g′′(u0) < 0 since u0 ∈ (U1(0), U2(0)). For the FK potential, α = 1+2/
√
A2 − F 2

c and

β =
√
A2 − F 2

c /2. Equation (3.3) has the (outer) solution

v0(t) ∼
√
α(F − Fc)

β
tan

(√
αβ (F − Fc) (t− t0)

)
,(3.6)

which is very small most of the time, but it blows up when the argument of the
tangent function approaches ±π/2. Thus the outer approximation holds over a time
interval (t − t0) ∼ π/

√
αβ (F − Fc), which equals π

√
2/α(A2 − 4)− 1

4 (F − Fc)− 1
2 for

the FK potential. The reciprocal of this time interval yields an approximation for the
wave front velocity,

c(A,F ) ∼ −
√
αβ (F − Fc)

π
,(3.7)

or c ∼ −(A2 − 4)
1
4 (1 + 2/

√
A2 − F 2

c )
1
2 (F − Fc) 1

2 /(π
√
2) for an FK potential. The

minus sign reminds us that wave fronts move towards the left for F > Fc. In Figures
3.3(a) and (b) we compare this approximation with the numerically computed velocity
for A = 100 and A = 10.

When the solution begins to blow up, the outer solution (3.6) is no longer a good
approximation, for u0(t) departs from the stationary value u0(A,Fc). We must go
back to (3.1) and obtain an inner approximation to this equation. As F is close to
Fc and u0(t)− u0(A,Fc) is of order 1, we numerically solve (3.1) at F = Fc with the
matching condition that u0(t) − u0(A,Fc) ∼ 2/[π

√
β/[α (F − Fc)] − 2β (t − t0)] as

(t− t0)→ −∞. This inner solution describes the jump of u0 from u0(A,Fc) to values
on the largest stationary solution of (3.1), which is close to U3. During this jump, the
motion of u0 forces the other points to move. Thus, u−1(t) can be calculated by using
the inner solution in (1.1) for u0, with F = Fc and u−2 ≈ U1. A composite expansion
[2] constructed with these inner and outer solutions is compared to the result of direct
numerical simulations in Figure 3.4.

Notice that (3.3) is the normal form associated with a saddle-node bifurcation
in a one-dimensional phase space. The wave front depinning transition is a global
bifurcation with generic features: each individual point un(t) spends a long time,

which scales as |F − Fc|− 1
2 , near discrete values un(A,Fc), and then jumps to the

next discrete value on a time scale of order 1. The traveling wave ceases to exist for
F ≤ Fc.

3.2. Theory with several active points. The approximations to Fc(A) and
the wave front speed provided by the previous asymptotic theory break down for small
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Fig. 3.3. Comparison of theoretically predicted and numerically calculated wave front velocities
near Fc for the FK model with N active points and the following values of the parameter A: (a)
A = 100, (b) A = 10, (c) A = 2, (d) A = 1.
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Fig. 3.4. Comparison of asymptotic and numerically calculated wave front profiles near Fc:
(a) Complete wave front profile as indicated by the trajectory u0(t). (b) Zoom near the largest jump
in the profile. (c) Zoom near the jump preceding the largest one after translating the asymptotic
profile. This last has been calculated by inserting the approximate u0(t) in the equation for u−1(t).

A. In particular, for the FK potential and A < 2, no double zeroes of 2x+A sin(x)−
(F + U1 + U3) are found for F = Fc. What happens is that we need more than one
point to approximate wave front motion. Depinning is then described by a reduced
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system of more than one degree of freedom corresponding to active points. There is
a saddle-node bifurcation in this reduced system whose normal form is of the same
type as (3.3). The jump of the active points after blow up is found by solving the
reduced system with a matching condition [10].

We explain our procedure for a finite number of active points. The front is
formed by two tails, very close to U1(F/A) and U3(F/A), respectively, and several
intermediate points u−L, . . ., uM . The reduced system describing the dynamics of the
front for F > Fc is

dui
dt

= ui+1 − 2ui + ui−1 −Ag(ui) + F, i = −L, . . .,M,
u−L−1 = U1(F/A), uM+1 = U3(F/A).(3.8)

At F = Fc this system has a stationary solution u−L, . . ., uM . Writing ui(t) = ui +
vi(t), we obtain for vi

dvi
dt

= vi+1 − 2vi + vi−1 −Ag′(ui)vi − A

2
g′′(ui)v2i + F − Fc, i = −L, . . .,M,

v−L−1 ∼ F − Fc
Ag′(U1(Fc/A))

, vM+1 ∼ F − Fc
Ag′(U3(Fc/A))

.(3.9)

The tridiagonal matrix M defined as


2 +Ag′(u−L) −1
−1 2 +Ag′(u1−L) −1

. . .
. . .

. . .
−1 2 +Ag′(uM−1) −1

−1 2 +Ag′(uM )




(3.10)

has L + M strictly positive eigenvalues plus a smallest eigenvalue λ ∼ 0 with an
associate positive eigenfunction V . We choose V such that

∑M
i=−L V

2
i = 1 and write

an eigenfunction expansion for v as follows:

v(t) = ϕV +

M∑
i=−L,i �=0

Wiϕi exp(−λit).(3.11)

Thus v(t) ∼ V ϕ(t) as time increases. Let D = −A
2 diag (g′′(u−L), . . ., g′′(uM )),

V 2 = (V 2
−L, . . ., V

2
M ), and

w = (F − Fc)
(
1 +

1

Ag′(U1(Fc/A))
, 1, . . ., 1, 1 +

1

Ag′(U3(Fc/A))

)
.

Then system (3.9) becomes

dϕ

dt
V ∼ ϕMV + ϕ2DV 2 + w ∼ ϕ2DV 2 + w(3.12)

as time increases. Multiplying by the transpose of V , we get an evolution equation
for the amplitude ϕ(t):

dϕ

dt
= α (F − Fc) + β ϕ2,(3.13)
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where now α and β are

α =

M∑
i=−L

Vi +
V−L

Ag′(U1(Fc/A))
+

VM
Ag′(U3(Fc/A))

> 0,

β = −A
2

M∑
i=−L

g′′(ui)V 3
i > 0.

The coefficient α is positive because g′(Ui) > 0 for i = 1, 3. We have checked numeri-
cally that β > 0 for different nonlinearities and values of A. An intuitive explanation
follows. First, notice that g′′(u) > 0 for u ∈ (U2(0), U3(0)), and g

′′(u) < 0 for
u ∈ (U1(0), U2(0)). For large A, the largest component is V0, the others are negligi-
ble, and we have one active point as in the previous subsection; see Figure 3.4. Then
β ∼ −g′′(u0(A,Fc))V

3
0 > 0 because u0 < U2(0), which implies g

′′(u0) < 0. As A
decreases, V0 is still the largest component and g

′′(u0(A,Fc)) < 0. Now there may be
other terms with g′′(ui(A,Fc)) > 0, and we have only numerical evidence that β > 0,
not a proof.

Notice that (3.13) is the normal form of a saddle-node bifurcation. Its solution is
again (3.6), which blows up at times (t− t0) = ±1/(2c), where

c(A,F ) ∼ − 1
π

√
αβ(F − Fc),(3.14)

as discussed before. c is the wave front speed near Fc, approximately given by the
reciprocal of the time during which the outer solution holds.

Figures 2.1, 3.3, and 3.5 show the critical field, wave front velocities, and profiles
for different values of A ∈ (1, 10) corresponding to the FK model. We have compared
results of direct numerical simulations to those of our theory for N = L+M+1 active
points. Provided that N = L +M + 1 active points have been selected, we find the
smallest eigenvalue of the matrixM and move F until λ(F,A;N) = 0, N = L+M+1,
which yields an approximation for Fc(A); see Figure 2.1. The wave front velocities
can be calculated by means of (3.14) and have been depicted in Figure 3.3.

The wave front profiles near Fc can be determined as follows. We start with an
initial condition, un(0) ≈ un(A,Fc) or ϕ(0) = 0 in (3.11). The active points blow up
at t ∼ ±(2c)−1, for example as

un(t) ∼ un(A,Fc) + 1

β(± 1
2c − t)

V,(3.15)

provided t→ ±1/(2c). At these times, we should insert a fast stage during which the
un(t) are no longer close to un(A,Fc), as an inner layer. The inner layer variables un(t)
obey (1.1) with F = Fc and the boundary conditions un(t) → un(A,Fc) (according
to (3.15)) as t → −∞, and un(t) → un+1(A,Fc) as t → ∞. To get a uniform
approximation, we notice that the blow up times are tm = (2c)−1 +m/c, m ∈ Z. Let

us denote by u
(m)
n (τ), τ = (t−tm), the solution of (1.1) with F = Fc and the boundary

conditions u
(m)
n (τ)→ un+m(A,Fc) as τ → −∞, and u(m)

n (τ)→ un+m+1(A,Fc) as τ →
∞. During the time interval (t−L−n−1, tM−n) = (−(2c)−1 − (L+n)/c, (2c)−1+(M −
n)/c) that un(t) needs to go from U1(Fc/A) to U3(Fc/A), the uniform approximation
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Fig. 3.5. Comparison of theoretically predicted and numerically calculated wave fronts near Fc
for A = 2 using N = 8 active points: (a) trajectory of one point, (b) wave front profile, u(z) =
u0(z/|c|).

to the wave front is

un(t) ∼
M−n∑

m=−n−L−1

{
u(m)
n (t− tm) + u(m−1)

n (t− tm−1)− un+m(A,Fc)

+

[
ϕ
(
t− m

c

)
− 1

β (tm − t) +
1

β (t− tm−1)

]
V

}
χ(tm−1,tm).(3.16)

Then un(t−L−n−1) ∼ U1(Fc/A) and un(tM−n) ∼ U3(Fc/A). In (3.16), the indicator
function χ(tm−1,tm) is 1 if tm−1 < t < tm and 0 otherwise. Therefore, χ(tm−1,tm) =
θ(tm − t) − θ(tm−1 − t), where θ(x) = 1 if x > 0 and 0 otherwise. Written in terms
of the variable z = n − ct such that un(t) = u(z), u(z) = un((n − z)/c) = u0(−z/c).
Then (3.16) becomes

u(z) ∼
M∑

m=−L−1

{
u

(m)
0

(
−z +m+ 1

2

c

)
+ u

(m−1)
0

(
−z +m− 1

2

c

)
− um(A,Fc)

+

[
ϕ

(
−z +m

c

)
− c

β (z +m+ 1
2 )

− c

β (z +m− 1
2 )

]
V

}

×
[
θ

(
z +m+

1

2

)
− θ

(
z +m− 1

2

)]
(3.17)

for −M − 1/2 < z < L + 1/2. We have u(L + 1/2 + 0) ∼ U1(Fc/A) and u(−M −
1/2 − 0) ∼ U3(Fc/A), and therefore (3.17) approximates the wave front profile. In
Figure 3.5, we have depicted the wave front profile in two ways, by drawing u0(t) and
u(z) = u0(−z/c). Notice that the largest source of discrepancy between numerical
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calculations and our asymptotic approximation is the error in determining the wave
speed. The discrepancies are more evident for u0(t) because of the different horizontal
scale used to depict u(z).

How do we determine the optimal number of active points? For large enough
N = L + M + 1 and a given A, the eigenvector V corresponding to the smallest
eigenvalue of the matrix M in (3.10) has a certain number of components that are of
order one, whereas all others are very small. The number of components of normal
size determines the optimal number of active points: only one point if A is larger
than 10, five if A = 2, etc. Keeping less active points than the optimal number
results in larger errors, whereas keeping more active points than optimal does not
result in a significantly better approximation. The eigenvector of the reduced system
of equations for the active points is a good approximation to the large components of
the eigenvector corresponding to the complete system. As we approach the continuum
limit, more and more points enter the reduced system of equations, and exponential
asymptotic methods become a viable alternative to our methods.

3.3. Depinning transition as a global bifurcation. We have shown that
the depinning transition is a global bifurcation in a reduced system of equations
corresponding to the active points. Starting from a stable stationary solution, the
smallest eigenvalue of the system linearized about the stationary solution becomes
zero at the (approximate) critical field, and its associated eigenfunction is positive.
The stationary solution disappears as the critical field is surpassed. Beyond it, the
active points un(t) spend a long time, of order (F −Fc)− 1

2 , near the stationary values
un(A,Fc), and then jump to un+1(A,Fc) on an order 1 time scale. Near the critical
field, the depinning transition is described locally by the normal form of a saddle-node
bifurcation. For F > Fc (or F < −Fc), the bifurcation amplitude blows up in finite
time, on a time scale of order | |F |−Fc|− 1

2 . The construction of the wave front profile
is completed, matching the outer solution given by the saddle-node normal form to a
solution of the reduced system of active points at F = Fc. (A mathematically related
phenomenon occurs in a mean-field model of sliding charge-density waves [2].)

We conjecture that the depinning transition in the infinite system (1.1) is a global
bifurcation of the same type as for the reduced system of active points. At the critical
field, two stationary solutions of (1.1) (one stable, the other unstable) coalesce and
disappear. For F > Fc (or F < −Fc), the wave front profile is constructed as
indicated above for the reduced system. To prove this conjecture, we could repeat our
construction in section 3.2 for an infinite number of points. This is possible because we
know that the infinite system, linearized about the “stable” steady solution ui(A,Fc)
at F = Fc, has a zero eigenvalue and an associated positive exponentially decaying
eigenfunction V . Using V , we obtain the normal form equation (3.13), where now

α =
∞∑

i=−∞
Vi > 0, β = −A

2

∞∑
i=−∞

g′′(ui)V 3
i .(3.18)

We should now prove that the coefficient β is positive and that the infinite system has
solutions connecting un(A,Fc) to un+1(A,Fc) and satisfying the matching condition.
We justified that β > 0 for the finite system in subsection 3.2, and we show in
Proposition A.4 (in the appendix) that the eigenfunction for the infinite system can
be approximated by the corresponding eigenfunction of the reduced system with a
finite number of active points. The existence of traveling wave solutions for F > Fc
ensures that the infinite system has solutions connecting un(A,Fc) to un+1(A,Fc).
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The velocity of a wave front in the infinite system is again given by (3.14) with the
coefficients (3.18).

Remark 5. By using comparison techniques, it is possible to prove that solutions
of discrete RD equations with finitely many points and Dirichlet boundary conditions
approximate solutions of the same equations with infinitely many points. In the
continuum limit, the wave fronts approach constant values exponentially fast as i→
±∞. This exponential decay justifies the active point approximation in two ways.
First, the number of active points needed to approximate well the wave fronts of the
infinite system decreases as A increases. It is usually better to add another active
point to the approximate system than to patch rigid tails to the last active points of
a wave front by generalizing Kladko, Mitkov, and Bishop’s active site approximation
[28]. Secondly, exponential decay at the ends of a wave front causes the operator of
the linearized problem about the wave front to be compact and therefore to have a
discrete spectrum (see the appendix). This fact justifies that the normal form we
calculate by using active points approximates the correct local normal form of the
depinning global bifurcation.

4. Conclusions. In this paper, we have studied depinning of wave fronts in dis-
crete RD equations. Pinned (stationary) and traveling wave fronts cannot coexist for
the same value of the forcing term. There are two different depinning transitions, i.e.,
two different ways in which a pinned front may start moving. The normal depinning
transition can be viewed as a loss of continuity of traveling front profiles as the critical
field is approached: below the critical field, the fronts become pinned stationary pro-
files with discontinuous jumps at discrete values un. The wave front velocity scales as
|F − Fc| 12 near the critical field Fc. For sufficiently large A (far from the continuum
limit), the critical field and these fronts can be approximated by singular perturbation
methods which show excellent agreement with numerical simulations. These methods
are based upon the fact that the wave front motion can be described by a reduced
system of equations corresponding to the dynamics of only a finite number of points,
the active points.

Besides the normal depinning transition, certain nonlinearities present anomalous
pinning (pinning failure): the velocity of the wave fronts is not zero except at zero
forcing, just as for continuous RD equations. These nonlinearities are characterized
by smooth profiles of stationary and moving wave fronts, by having zero critical field,
and by a linear scaling of wave front velocity with field.

Appendix. Characterization of the depinning threshold. In this section
we establish the “depinning criterion,” which provides a characterization of Fc(A) as
follows.

Theorem A.1. Set F = 0 and A > 0. Assume that the nonlinearity g ∈ C3 has
three zeroes Ui, U1 < U2 < U3, is odd about U2, and satisfies g′(U1) = g′(U3) > 0.
Let un be a stationary increasing solution of (1.1), symmetric about U2 and such that
u−∞ = U1 and u∞ = U3. Let λ1(A, 0) be the smallest eigenvalue of the zero field
operator L0 of (2.8) at F = 0:

−(vn+1 − 2vn + vn−1) +Ag
′(un)vn = λ1(A, 0)vn,

v±n → 0 exponentially as n→ ∞.(A.1)

If λ1(A, 0) > 0, then Fc(A) > 0, and for |F | ≤ Fc(A) there exist increasing stationary
solutions un(A,F ) of (1.1) with u−∞ = U1(F/A) and u∞ = U3(F/A). Moreover, the
smallest eigenvalues of the operator L(F ), corresponding to the linearization of (1.1)
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about un(A,F ),

−(vn+1 − 2vn + vn−1) +Ag
′(un(A,F ))vn = λ1(A,F )vn,

v±n → 0 exponentially as n→ ∞,(A.2)

are strictly positive for |F | < Fc(A). We can characterize Fc(A) as the zero of the
smallest eigenvalue, λ1(A,Fc(A)) = 0.

This theorem will be proved in subsection A.2. To calculate λ1(A,F ) and Fc(A),
we approximate the infinite tridiagonal matrix in (A.2) by an N ×N matrix, where
N is the number of active points. Similar truncation approximations were used in
[29] to calculate the lowest eigenvalue of an infinite tridiagonal matrix. For values of
A which are not too small, numerical simulations show that the matricesM in (3.10)
have positive eigenvalues. The eigenvector V (A,F,N) (chosen to have norm 1), cor-
responding to the smallest eigenvalue λ(A,F,N), is positive, and it is “concentrated”
in the central components V−m(A), . . ., Vm(A). All other components are very small.
The number of significant components m(A) does not change as N increases, but it
increases as A decreases. For large A, m(A) = 0, and only V0 is significant. Pro-
vided N is large enough, the eigenvalues λ(A,F,N) and the eigenvectors V (A,F,N)
approximate well the smallest eigenvalue and associated eigenfunction of the infinite
problem, as we indicate in the next subsection. For a fixed value of N , the eigenvalues
λ(A,F,N) decrease as A decreases. For fixed N and A, they decrease as F increases
from F = 0 to values close to Fc(A). In the next subsection, we collect several results
on eigenvalues for this type of problem.

A.1. Eigenvalue problems. Before proving Theorem A.1, we should make sure
that our linear operators do have eigenfunctions and eigenvalues. We consider the real
valued and symmetric operators L(F ) vn = Ag′(un)vn− (vn+1−2vn+vn−1) in spaces
of sequences decaying exponentially at infinity. Their spectra are discrete and real
(these operators are compact), and we would like to make sure that they are not
empty. Since we are interested mainly in the smallest eigenvalue, we shall use its
variational characterization, prove that this eigenvalue exists, and characterize its
dependence on the parameters A and F . We shall also describe finite-dimensional
approximations of eigenvalues and eigenfunctions.

Let us first look for necessary conditions for λ(A,F ) to exist. Let λ ∈ R be an
eigenvalue of L(F ) with eigenfunction Vn. Multiplying L(F )Vn − λVn by Vn and
summing over n, we obtain

0 =
∑
n

(Vn+1 − Vn)2 + [Ag′(un)− λ]V 2
n

≥
∑
n

(Vn+1 − Vn)2 + ([Aminng′(un)]− λ)
∑
n

V 2
n .(A.3)

Thus, λ =
∑
n[(Vn+1 − Vn)2 + Ag′(un)V 2

n ]/
∑
V 2
n > Aminng

′(un). This inequality
implies that λ is positive if un does not take on values in the region where g

′ is
negative, which occurs for large enough A > 0. In general, we can say only that
λ > Ag′(U2) for g

′ attains its minimum value in [U1, U3] at U2. Similarly,

0 =
∑
n

(Vn+1 − Vn)2 + [Ag′(un)− λ]V 2
n

≤ [4 +Amaxn(g
′(un))− λ]

∑
n

V 2
n .(A.4)
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Therefore, λ < Ag′(U1) + 4 = Ag′(U3) + 4 for g
′(u) attains its maximum value in

[U1, U3] at the end points, u = U1 and u = U3.
The smallest eigenvalue λ is given by the Rayleigh formula

λ = min

∑
n(wn+1 − wn)2 +Ag′(un)w2

n∑
n w

2
n

,(A.5)

where the infimum is taken over our space of exponentially decaying functions. That
minimum is attained at an eigenfunction Vn solving (A.1). Now, (A.1) may have
solutions decaying at ±∞ only if the difference equation

Vn+1 + (−2−Ag′(U1) + λ)Vn + Vn−1 = 0(A.6)

has solutions of the form rn with r < 1. This happens when (−2−Ag′(U1)+λ)
2 > 4.

Thus either λ > 4 + Ag′(U1) > 0 (excluded above) or λ < Ag′(U1). We conclude
that λ < Ag′(U1) is a necessary condition to attain the minimum (A.5) at a positive
eigenfunction decaying exponentially at infinity.

We now establish sufficient conditions for the minimum (A.5) to exist.
Lemma A.2 (Conditions for the existence of positive decaying eigenfunctions).

Let F = 0, A > 0, and let the nonlinearity g satisfy the hypotheses in Theorem
A.1. Let un be a stationary increasing solution of (1.1) such that u−∞ = U1(0) and
u∞ = U3(0). Given an exponentially decaying sequence w = wn, we define

J(w) =

∑
n[(wn+1 − wn)2 +Ag′(un)w2

n]∑
n w

2
n

.

Let us suppose that there is a sequence wn such that J(wn) < Ag′(U1). Then the
infimum

λ = Inf∑
n r
−2|n|
0 v2n<∞

∑
n[(vn+1 − vn)2 +Ag′(un)v2n]∑

n v
2
n

(A.7)

is attained at a positive function Vn which decays as r(A, λ)|n| at infinity, with 0 <
r(A, λ) = [2 + Ag′(U1) − λ − √(−2−Ag′(U1) + λ)2 − 4]/2 < r0 < 1. Now λ =
λ1(A, 0), and vn solves (A.1).

Remark 6. The value 0 < r0 < 1 is determined in the proof. Note that r(A, λ) is
a decreasing function of A but an increasing function of λ.

Remark 7. We have shown above that Ag′(U2) < λ < Ag
′(U1). Thus the smallest

eigenvalue shrinks to zero as A → 0, although we do not have proof that it does so
monotonically.

Proof. Clearly J(w) is bounded from below by Aminn(g
′(un)). We choose r0 =

r(A, J(wn)) ∈ (0, 1) and define ‖w‖0 =
∑
r
−2|n|
0 |wn|2. Let wm = wmn , m > 0, be

a sequence minimizing J(w): ‖wm‖0 < ∞ and let J(wm) → λ when m → ∞. We
replace wm with vm = vmn = wmn /‖wm‖0. Then, ‖vm‖0 = 1 and J(v

m) = J(wm)→ λ.

‖vm‖0 = 1 implies that, uniformly in m, |vmn | ≤ r
|n|
0 and

∑
n>n(ε) |vmn |2 < ε for

n(ε) large enough. Thus, a subsequence vm tends to some limit V = Vn such that

|Vn| ≤ r
|n|
0 and

∑
n |vmn − Vn|2 tends to zero as m tends to infinity. Therefore,

J(vm) −→ J(V ) = λ and the infimum is attained at the sequence V = Vn. Moreover,
V = Vn satisfies the Euler equation (A.1) for the minimization problem, which then
implies that Vn decays as stated in the lemma.
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On the other hand, J(|Vn|) ≤ J(Vn), and we can choose nonnegative Vn. But
then λ has to be the smallest eigenvalue λ1(A, 0).

Lemma A.3 (Choice of the sequence wn with J(wn) < Ag′(U1)). Let F = 0,
A > 0, and un be as in Lemma A.2. Let u(x) be the solution of the boundary value
problem d2u/dx2 = g(u), with u(−∞) = U1, u(∞) = U3 such that u(0) = U2.

• For sufficiently small A < 1, we have

|un+1 − un| max
[un,un+1]

|g′′| < 2g′(U1) ∀n,(A.8)

and wn = un+1 − un satisfies J(wn) < Ag
′(U1). An estimation of the appro-

priate values of A indicates that they should be smaller than

A <

(
2g′(U1)

max[U1,U3]|g′′|maxR|du/dx|
)2

.

• For A > 2 g′′′(U1), we can choose wn = 0 for |n| > M ≥ 0, wn = rn for
n ≥ 0, and wn = r

n+1 for n < 0.
Proof. The function wn = un+1 − un is a solution of

wn+1 − 2wn + wn−1 = A
g(un+1)− g(un)
un+1 − un wn

that decays at infinity as r(A, 0)|n|. Multiplying this equation by wn and adding over
n, we obtain

∑
n

(
(wn+1 − wn)2 +Ag(un+1)− g(un)

un+1 − un w2
n

)
= 0.(A.9)

This result can be used to calculate J(wn):

J(wn) = A

∑(
g′(un)− g(un+1)−g(un)

un+1−un

)
w2
n∑

w2
n

= −A
2

∑
g′′(ξn)w3

n∑
w2
n

,(A.10)

by the mean value theorem. Thus, J(wn) ≤ (A/2) maxn (|un+1−un|max[un,un+1]|g′′|).
For sufficiently small A, |un+1 − un| ≤ C

√
A, so that J(wn) < CA

3
2 max|g′′|/2 <

Ag′(U1). More precisely, for small A, wn = un+1 − un � u((n+ 1)
√
A)− u(n√A) �√

Au′(ξ). Then |wn| ≤ max |du/dx|√A.
To prove the other case, we observe that J(wn) = (r− 1)2 +A

∑∞
i=0 g

′(un)r2n is
smaller than Ag′(u1), provided that (1− r)/(1 + r) < Ag′′′(U1)/[2 (1− (r(A, 0)r)2)],
with r(A, λ) defined as in Lemma A.2. The last inequality holds if A > 2 g′′′(U1).

Remark 8. For the FK nonlinearity, the first condition of the lemma holds for
A < 0.9, and the second condition for A > 2. For intermediate values, numerical
simulations show that wn = un+1 − un satisfies J(wn) < Ag′(U1).

Proposition A.4 (Finite-dimensional approximations). Let un(A,F ) be a sta-
tionary solution of (1.1) under the hypotheses in Theorem A.1 for |F | ≤ Fc(A). Let
λ1(A,F ) be the smallest eigenvalue of the operator L(F ) (linearized about un(A,F ))
and λ(A,F,N) be the smallest eigenvalues of the matrices (3.10). Then, λ(A,F,N)→
λ1(A,F ) as N → ∞. As a consequence, if V > 0 is an eigenfunction associated to
λ1(A,F ) with

∑
n V

2
n = 1 and if V (N) > 0 are eigenvectors associated to λ(A,F,N)

such that
∑
n Vn(N)

2 = 1, then V (N)→ V as N → ∞.
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Proof. It follows from the Rayleigh characterizations for the smallest eigenvalues:

λ1(A,F ) = min∑
r−2|n|w2

n

∑∞
−∞ [(wn+1 − wn)2 +Ag′(un(A,F ))w2

n]∑∞
−∞ w2

n

,(A.11)

λ(A,F,N) = min

∑M
−L[(vn+1 − vn)2 +Ag′(un(A,F ))v2n]∑M

−L v2n
.(A.12)

Letting wn = vn for n = −L, . . .,M and wn = 0 otherwise, we see that λ1(A,F ) ≤
λ(A,F,N), N = L+M + 1. Now let wn be an eigenfunction for λ1(A,F ) such that∑∞

−∞ w
2
n = 1. Then,

λ(A,F,N) ≤ λ1(A,F )−
∑
n<−L, n>M [(wn+1 − wn)2 +Ag′(un(A,F ))w2

n]∑M
−L w2

n

.

We conclude that λ(A,F,N)→ λ1(A,F ) as N → ∞. This and the exponential decay
of V prove the convergence of the eigenvectors.

A.2. Proof of Theorem A.1. The theorem will be proved in two steps and,
for simplicity, in the particular case of periodic g. In this case, U3(F/A) − U3(0) =
U1(F/A) − U1(0), which allows us to use symmetric sub- and supersolutions. Small
modifications are required in the general case.

Step 1: Fc(A) > 0. We use the existence of a positive eigenfunction vn associated
with a positive eigenvalue λ1(A, 0) to construct stationary supersolutions for (1.1)
when F > 0 is small. The known solution un provides a stationary subsolution.

We look for a supersolution of the form

wn = un + (1 + δ)

(
U1

(
F

A

)
− U1(0)

)
+ εvn,(A.13)

with δ > 0 to be chosen and ε, F small to be determined. Let us check that

wn+1 − 2wn + wn−1 ≤ g(wn)− F, w∞ > U3(F/A), w−∞ > U1(F/A)(A.14)

holds. The conditions at infinity are satisfied for any δ > 0. Provided∣∣∣∣(1 + δ)
(
U1

(
F

A

)
− U1(0)

)∣∣∣∣ ≤ kε,(A.15)

inequality (A.14) holds if

ε (vn+1 − 2vn + vn−1) < Ag
′(un)

[
εvn + (1 + δ)

(
U1

(
F

A

)
− U1(0)

)]
− F +O(Aε2).

Using (A.1), we are left with

F < ελ1(A, 0)vn +A(1 + δ)g
′(un)

(
U1

(
F

A

)
− U1(0)

)
.

Now, U1(F/A) = g−1(F/A), the inverse being taken near U1(0), in the region with
g′ > 0. Using g−1(x) ∼ g−1(x0) + (g

−1)′(x0)(x− x0), we obtain

U1

(
F

A

)
= g−1

(
F

A

)
∼ U1(A, 0) +

F

Ag′(U1(0))
.(A.16)
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Thus, the condition for wn to be a supersolution is

F < ελ1(A, 0)vn + g
′(un)

1 + δ

g′(U1(0))
F.

Let M be sufficiently large. We distinguish two different ranges of indices n:
• For |n| > M , g′(un) > 0 and vn � 1. Then the right-hand side of the previous
inequality is dominated by the second term. We choose δ large enough to
ensure F < g′(un)(1 + δ)F/g′(U1(0)), that is, 1 + δ > g

′(U1(0))/g
′(uM ).

• For small |n|, g′(un) < 0. The previous inequality is satisfied, provided we
choose F so small that(

1 + |g′(un)| 1 + δ

g′(U1(0))

)
F < ελ1(A, 0)vn

for a fixed value of δ.
With these choices, wn satisfies (A.14). Note that these choices are compatible with
condition (A.15). Using (A.16), (A.15) becomes (1 + δ)F/[Ag′(U1(0))] < k ε. This
holds for small enough F .

Let F > 0 be small enough for a wn defined in (A.13) to be a supersolution with
δ, ε adequately selected. Now, let hn(t) be a solution to (1.1) for such F > 0 with
initial datum hn(0) satisfying un < hn(0) < wn. Then, un < hn(t) < wn for all t > 0.
Therefore, propagation is excluded and the solutions are pinned.

Stationary solutions un(A,F ) for such F > 0 can be obtained as long time limits
of solutions hn(t) to (1.1) when hn(0) is increasing, tends exponentially to U1(A,F )
(resp., U3(A,F )) at −∞ (resp., ∞), and un < hn(0) < wn. We conclude that
Fc(A) > 0.

Step 2: λ1(A,F ) > 0 for |F | < Fc(A) and λ1(A,Fc(A)) = 0. To fix ideas, we
take F > 0. The case F < 0 follows by symmetry. From Step 1, we know that
Fc(A) > 0, and there are stationary solutions un(A,F ) of (1.1) existing for F > 0
small that are increasing from U1(F/A) to U3(F/A).

In an analogous way as we did for F = 0, we get

λ1(A,F ) = min∑
r
−2|n|
0 w2

n<∞

∑
n[(wn+1 − wn)2 +Ag′(un(A,F ))w2

n]∑
w2
n

.(A.17)

This formula defines λ1(A,F ) as a continuous function of F . That λ1(A, 0) > 0 implies
λ1(A,F ) > 0 up to some Fc at which λ1(A,Fc) = 0. As long as λ1(A,F1) > 0, we can
obtain stationary solutions for F > F1 (close to F1), as done in Step 1. This procedure
cannot continue forever since such stationary solutions do not exist for F close to A:
eventually g(U) = F/A ceases to have three solutions, and the stationary wave fronts
cannot be constructed. Thus, we must reach a value Fc at which λ1(A,Fc) = 0.
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Abstract. A formal asymptotic model is derived for a nonadiabatic catalytic flame in stagnation-
point flow. In the present context, the premixed reaction in the bulk gas is augmented by a surface
catalytic reaction on the stagnation plane, where conductive heat losses are allowed to occur. In
addition, the thermal effects of a finite-volume combustor are accounted for by allowing for volumetric
heat losses from the bulk gas. The analysis exploits the near-equidiffusional limit corresponding
to near-unity Lewis numbers, and yields a general nonsteady nonplanar model for the reactionless
outer flow subject to boundary conditions that reflect both surface catalysis and distributed chemical
reaction in a thin boundary layer. For the case of steady planar combustion, the surface-temperature
response indicates the possibility of multiple solution branches, which are shown to be linearly stable,
and a corresponding extension of the extinction limit that demonstrates how the presence of a surface
catalyst can counterbalance the extinguishing effects of heat loss and stretch in nonadiabatic strained
flames. The present model is particularly relevant for small-volume combustors, where the increased
surface-to-volume ratio can lead to extinction of the nonadiabatic flame in the absence of a catalyst.

Key words. combustion, catalysis, catalytic flames, nonadiabaticity, extinction limits, stability,
asymptotic analysis, matched asymptotic expansions
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1. Introduction. The effects of catalysis in combustion problems have long been
of interest because of a catalyst’s ability to enhance what would otherwise be slow
and/or incomplete chemical reactions. Combustion applications include the use of
catalysts to increase fuel efficiency, accelerate the conversion of intermediate pollutant
species, increase the rate of production of desirable products, and allow flames to be
sustained in nonadiabatic environments. The last of these is of particular concern in
the present work, which is motivated by a growing interest in the use of catalysts to
extend extinction limits in small-volume reactors, or microcombustors. Because such
a combustor is characterized by relatively large surface-to-volume ratios, the degree of
nonadiabaticity associated with conductive and/or radiative heat losses through the
walls of the device is a limiting factor in determining its minimum size. Depending
on the geometry, coating one or more surfaces with a catalyst can allow combustion
to proceed at lower temperatures than would otherwise be possible.

The geometry of the model problem considered here corresponds to a nonadiabatic
stretched flame in stagnation-point flow against a catalytic surface. This is illustrated
in Figure 1, where the nonadiabatic effects associated with the finite volume of an
actual microcombustor are modeled by a volumetric heat-loss term in the energy
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z
r
→

Catalytic Surface

Fig. 1. Model geometry for a nonadiabatic premixed flame in stagnation-point flow. Heat loss is
modeled both volumetrically and by conduction at the catalytic surface. Near extinction, the reaction
region is assumed to lie adjacent to the catalytic surface.

equation and a conductive loss at the catalytic surface. In the absence of heat losses,
the semi-infinite geometry depicted in Figure 1 is similar to that considered by others
(cf. Law and Sivashinsky [1], Giovangigli and Candel [2], Warnatz et al. [3]), who have
analyzed the corresponding adiabatic problem both analytically and numerically. In
addition to previous experimental investigations (cf. Law, Ishizuka, and Mizomoto
[4], Ikeda, Sato, and Williams [5]), this geometry is also suggested by more recent
experiments (Mowery et al. [6]) on small-volume combustors. In the latter application,
such a combustor (nominally 2500µ × 2500µ × 400µ) is fed by an inlet tube that
blows against a catalytic surface (platinum mounted on a titanium/silicon wafer) and
is vented by one or more outlet ports on either the opposite (2500µ × 2500µ) face
or sides. In those experiments, it was demonstrated, following ignition by the heated
catalytic surface, that a nearly flat flame could be sustained under the inlet port, close
to the catalytic surface, without further heat addition. In the absence of the catalyst,
the level of heat loss was apparently sufficient to extinguish the flame.

The above experimental result was supported by our recent study (Margolis and
Gardner [7]) that analyzed the steady-state response of the nonadiabatic semi-infinite
problem. In that work, which was restricted to volumetric heat losses, it was shown
that a sufficiently strong catalytic effect produced an extension of the extinction limit,
allowing a degree of nonadiabaticity that would otherwise extinguish the flame. The
present work extends these results by deriving a formal asymptotic model valid for
a general nonsteady nonplanar flame. In addition, nonadiabaticity in the present
model arises not only from a volumetric heat-loss term in the conservation equation
for temperature, but also from a conductive loss term in the boundary condition at
the catalytic surface. An analysis of the solution response corresponding to steady
planar burning again predicts the possibility of multiple solutions, which are now
shown to be linearly stable, and an extension of the extinction limit for sufficiently
strong catalytic influences. In the current model, this extinction limit is shown to
depend on two parameters associated with the effects of catalysis and on one other
parameter that incorporates the combined effects of volumetric heat losses, conductive
heat losses at the catalytic surface, and thermal/diffusive effects associated with the
deviation in the Lewis number from unity.

2. Model formulation. Based on the above overall description of the model
problem, the flame is assumed to be stabilized in a cylindrically symmetric stagnation-
point flow field that occupies the domain 0 < z̃ < ∞, 0 < r̃ < ∞, where z̃ and r̃ are
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the axial and radial coordinates, respectively, and the tildes denote dimensional quan-
tities. The catalytic surface, across which conductive heat transfer is allowed, thus
corresponds to the plane z̃ = 0, and the effects of heat loss arising from the remaining
finite dimensions of the actual combustor are represented in a volumetric fashion.
Although one may consider the portion of the flow field of interest to be governed
by a boundary-layer formulation (cf. [1]), it turns out that qualitatively identical re-
sults are obtained if potential flow and weak thermal expansion are assumed [7]. We
thus make these assumptions for simplicity, resulting in the specified classical flow
field (ũ, w̃) = ∇̃φ̃, where ũ and w̃ are the radial and axial velocities, respectively,
φ̃ = −ã(z̃2 − r̃2/2) is the velocity potential, and ã is the strain rate. Equivalently,
ũ(r̃, z̃) = −r̃−1∂ψ̃/∂z̃ = ãr̃ and w̃(r̃, z̃) = r̃−1∂ψ̃/∂r̃ = −2ãz̃, where ψ̃(r̃, z̃) = −ãr̃2z̃
is the stream function.

Given this flow field, a closed problem for the temperature T̃ and mass fraction
Y of the deficient component of the mixture (i.e., the mass fraction of fuel if the
initial composition is lean, and the mass fraction of oxidizer if it is rich) in the region
0 < z̃ < ∞ can be specified. This is conveniently written in dimensionless form by
first introducing a characteristic flame temperature T̃f (to be determined) and the
nondimensional quantities

z =

√
ã

λ̃
z̃, t = ãt̃, y =

Y

Yu
, Θ =

T̃ − T̃u
T̃f − T̃u

, σ =
T̃sub − T̃u
T̃f − T̃u

,

Tf =
T̃f

T̃u
, Le =

λ̃

λ̃m
, q =

YuQ̃

T̃f − T̃u
, H =

H̃

ã
, K =

K̃√
ãλ̃
,

β =
Ẽg

R̃◦T̃f

(
1− T̃u/T̃f

)
, ν =

Ẽs

Ẽg
,

(1)

where ϑ is the angular coordinate, T̃u and Yu are the unburned (ambient) temper-
ature and mass fraction of the fresh mixture, λ̃ and λ̃m are the thermal and mass
diffusivities, respectively, Q̃ is the heat release (in units of temperature), Ẽg is the

activation energy of the gas-phase reaction, Ãg and n are the rate coefficient and

reaction order, respectively, R̃◦ is the gas constant, and H̃ is a volumetric heat-loss
rate coefficient. The last of these, which is represented in the last term of (3) below,
reflects a phenomenological volumetric representation of heat losses across the non-
catalytic surfaces of an actual finite-volume combustor. An approximation for H̃ may
be obtained from a knowledge of the corresponding surface heat-transfer coefficients
and the surface-to-volume ratio of the combustor. Other quantities that arise in the
specification of the boundary conditions include Ys and T̃s, which represent values at
z̃ = 0 that are to be determined. (It is assumed that the catalytic surface is highly
conductive in the transverse direction, so that T̃s and Ys are independent of r̃ and ϑ.)
The temperature T̃sub, on the other hand, is the temperature of the catalyst-coated
substrate and is allowed to differ from the ambient temperature T̃u. The boundary
conditions given below also model the catalyst as an exothermic reaction at the sur-
face z̃ = 0, distinguished from the reaction rate in the bulk gas by a surface rate
coefficient Ãs and a different activation energy Ẽs. In this work, the catalytic surface
is explicitly allowed to be nonadiabatic (K̃ is the corresponding surface heat-transfer
coefficient), with T̃s > (<) T̃sub corresponding to a thermal loss (gain). The latter
scenario can occur if, for example, the substrate is heated, but aside from this loss
(gain), heat produced by the catalytic surface reaction is conducted normal to the
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surface into the bulk gas. (There is no convective contribution since w̃ = 0 at the sur-
face.) The catalytic effect itself is modeled by assuming that Ẽs < Ẽg, thus allowing
the surface reaction to take place at lower temperatures and consequently raising the
temperature of the surrounding region such that the gas-phase reaction, if relatively
weak in the absence of catalysis, is further encouraged. Finally, it is also useful to
define the reaction-rate parameters Λs, Λg and their ratio τ as

Λs =
ÃsY

n−1
u√
ãλ̃

e−Ẽs/R̃
◦T̃f , Λg =

ÃgY
n−1
u

ã
e−Ẽg/R̃

◦T̃f ,

τ =
Λs
Λg

=

√
ã

λ̃

Ãs

Ãg
e(Ẽg−Ẽs)/R̃

◦T̃f .

(2)

With these definitions, the nondimensional forms of the energy and species con-
servation equations are given by

∂Θ

∂t
+ r

∂Θ

∂r
− 2z

∂Θ

∂z
= ∇2Θ+ qΛgy

n eβ(Θ−1)/[T−1
f

+(1−T−1
f

)Θ] −HΘ, 0 < z <∞,(3)

∂y

∂t
+ r

∂y

∂r
− 2z

∂y

∂z
= Le−1∇2y − Λgy

n eβ(Θ−1)/[T−1
f

+(1−T−1
f

)Θ], 0 < z <∞,(4)

subject to the boundary conditions

Θ → 0, y → 1 as z → ∞,(5)

∂Θ

∂z

∣∣∣∣
z=0

= −qτΛgyns eνβ(Θs−1)/[T−1
f

+(1−T−1
f

)Θs] +K(Θs − σ),

Le−1 ∂y

∂z

∣∣∣∣
z=0

= τΛgy
n
s e

νβ(Θs−1)/[T−1
f

+(1−T−1
f

)Θs],

(6)

where Θs and ys denote the values of Θ and y at z = 0 and ∇2 = ∂2/∂r2+r−1∂/∂r+
r−2∂2/∂ϑ2 + ∂2/∂z2. Thus, in addition to the distributed chemical reaction and
volumetric heat losses represented by the nondiffusive terms on the right-hand sides
of (3) and (4), surface combustion and conductive thermal losses across the catalytic
surface are also specifically accounted for in the present model by the terms on the
right-hand sides of the boundary conditions (6).

3. Asymptotic analysis of the model. It is assumed in the present work that
the Zel’dovich number β � 1 and that ν ∼ O(1). Thus, the activation energies of
both the bulk-gas and catalytic reactions are taken to be large, although it is logically
expected that ν < 1, implying that the catalytic surface reaction can be sustained at
lower temperatures than the distributed gas-phase reaction. In this realistic asymp-
totic limit, there are two possible burning regimes, corresponding to a thin gaseous
reaction zone that is either adjacent to the catalytic surface or an O(1) distance away.
Both regimes have been discussed in the context of the adiabatic problem (cf. [1],
[2]), where it has been heuristically argued, based on the strained nature of the flow
field, that as the strain rate increases toward extinction, the gas flame will tend to
either intrude onto the catalytic surface for Le < 1 or remain at an O(1) standoff
distance for Le > 1 [1]. This conclusion is based on the physical argument that a
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planar flame gains chemical energy and loses thermal energy by diffusion in the nor-
mal direction with respect to the flame, whereas convection, which is nonnormal to
the flame, supplies chemical energy but removes thermal energy. Consequently, if en-
ergy losses from the flame to the diverging flow via thermal diffusion outweigh energy
gains to the flame from mass diffusion (Le > 1), the flame temperature Tf would be
expected to decrease and the flame would tend to extinguish prior to being pushed
against the catalytic surface. On the other hand, if Le < 1, Tf would tend to increase
and extinction would only tend to occur (due to sufficiently reduced residence time)
after the flame had intruded against the surface. However, a detailed analysis [2] sug-
gests more generally that the flame will lie adjacent to the stagnation surface prior to
extinction either when the Lewis number is less than a critical value that is somewhat
greater than unity or when the activation-energy ratio ν < 1/2, corresponding to a
sufficiently low surface activation energy and hence a more active catalytic reaction.
It is only in this regime that catalysis can play a significant role because, if the bulk-
gas reaction goes to completion at a finite standoff distance, reactants are depleted
before reaching the surface and the catalyst then plays no role.

As in our previous study [7], the present work seeks in part to investigate the
role of catalysis in counterbalancing the extinguishing effects of heat loss. We thus
restrict our analysis to the intrusive regime in which the thin distributed reaction
zone lies adjacent to the catalytic surface. Based on previous asymptotic studies of
nonadiabatic combustion problems (cf. Matkowsky and Olagunju [8], Booty, Margo-
lis, and Matkowsky [9], Kaper et al. [10], Margolis and Johnston [11]), it is clear
that extinction then occurs for O(β−1) values of the heat-loss parameters H and K.
Accordingly, we define the corresponding scaled parameters h and k as

H =
h

β
, K =

k

β
,(7)

where extinction is expected to occur for sufficiently large values of h and k. In
addition, it will prove useful, for the purpose of deriving a closed asymptotic model
(cf. Matkowsky and Sivashinsky [12]), to realistically restrict consideration to the
near-equidiffusional regime

Le = 1 +
l

β
,(8)

where l is the scaled departure of the Lewis number from unity.
Based on the preceding discussion, there are now two regions to consider in the

asymptotic limit β � 1; namely, an outer reactionless region z > 0, in which temper-
atures are sufficiently low that the reaction terms in (3) and (4) become exponentially
small, and a thin distributed reaction zone adjacent to the surface z = 0, on which
the catalytic reaction occurs. Considering first the outer region, where z and 1 − Θ
are both O(1), we seek solutions in the expanded form

Θ(o) ∼ Θ0 + β
−1Θ1 + · · · , y(o) ∼ y0 + β−1y1 + · · · .(9)

Substituting these scalings and expansions into the reactionless version of (8)–(10),
we obtain, at the zeroth order, the equations

∂Θ0

∂t
+ r

∂Θ0

∂r
− 2z

∂Θ0

∂z
= ∇2Θ0,

∂y0
∂t

+ r
∂y0
∂r

− 2z
∂y0
∂z

= ∇2y0, 0 < z <∞,
(10)
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subject to

Θ0 → 0, y0 → 1 as z → ∞, Θ0 → 1, y0 → 0 as z → 0,(11)

where the boundary conditions at z = 0 are immediately deduced from the form of
the inner expansions given below. Defining the enthalpy variable S0 = Θ0 + y0 and
summing (10) and (11) thus determines a closed problem for S0 as

∂S0

∂t
+ r

∂S0

∂r
− 2z

∂S0

∂z
= ∇2S0, 0 < z <∞,(12)

S0 → 1 as z → 0, ∞.(13)

Assuming compatible initial conditions (those that are consistent with the result (14)
below), the solution to (12) and (13) is simply S0 = 1, and thus

S0 = y0 +Θ0 = 1.(14)

At the first order, the equations for Θ1 and y1 are given by

∂Θ1

∂t
+ r

∂Θ1

∂r
− 2z

∂Θ1

∂z
= ∇2Θ1 − hΘ0,

∂y1
∂t

+ r
∂y1
∂r

− 2z
∂y1
∂z

= ∇2y1 − l∇2y0, 0 < z <∞,
(15)

subject to

Θ1 → 0, y1 → 0 as z → ∞,(16)

and appropriate matching conditions, given below, as z → 0. Defining the second-
order enthalpy variable S1 = Θ1 + y1, the equation for S1, obtained from summing
the equations of (15) and the use of (14), is given by

∂S1

∂t
+ r

∂S1

∂r
− 2z

∂S1

∂z
= ∇2S1 + l∇2Θ0 − hΘ0, 0 < z <∞,(17)

where

S1 → 0, Θ0 → 0 as z → ∞.(18)

In the inner region adjacent to the surface z = 0, we introduce the stretched
coordinate η and the scaled rate coefficients λ̂ and τ̂ according to

η = βz, Λg = β
n+1λ̂, τ = β−1τ̂ ,(19)

and seek solutions in the expanded form

Θ(i) ∼ 1 + β−1θ1 + β
−2θ2 + · · · , y(i) ∼ β−1ζ1 + β

−2ζ2 + · · · .(20)

Substituting these expansions and scalings into (3), (4), and (6), we obtain the first-
order inner problem as

∂2θ1
∂η2

+ qλ̂ζn1 e
θ1 = 0,

∂2ζ1
∂η2

− λ̂ζn1 eθ1 = 0,(21)
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subject to the inner boundary and matching conditions

∂θ1
∂η

∣∣∣∣
η=0

= −qτ̂ λ̂ζns eνθs ,
∂ζ1
∂η

∣∣∣∣
η=0

= τ̂ λ̂ζns e
νθs ,(22)

θ1 ∼ Θ1

∣∣
z=0

+ η
∂Θ0

∂z

∣∣∣∣
z=0

, ζ1 ∼ y1
∣∣
z=0

+ η
∂y0
∂z

∣∣∣∣
z=0

,(23)

where θs and ζs, respectively, denote θ1 and ζ1 evaluated at η = 0. Combining the
equations of (21) so as to eliminate the reaction term and integrating the result, we
thus obtain

∂θ1
∂η

+ q
∂ζ1
∂η

= 0,(24)

where the boundary conditions (22) have been used to evaluate the constant of inte-
gration. Applying the matching conditions (23) and using the result (14) then gives
the requirement

∂Θ0

∂z

∣∣∣∣
z=0

+ q
∂y0
∂z

∣∣∣∣
z=0

= (q − 1)
dy0
dz

∣∣∣∣
z=0

= 0.(25)

Since y0 must satisfy the problem given by (10) and (11), the last equality can only
be satisfied in general if q = 1, which, based on the definition of q in (1), determines
the characteristic flame temperature T̃f as the adiabatic flame temperature T̃f =

T̃u + YuQ̃. Using this result and integrating (24) then gives, upon applying the
matching conditions (23), the relation

θ1 + ζ1 = S1

∣∣
z=0
.(26)

Returning to the first equation in (21), we substitute (26) for ζ1 into the reaction-
rate expression to obtain a scalar equation for θ1 as

∂2θ1
∂η2

+ λ̂
(
S1

∣∣
z=0

− θ1
)n
eθ1 .(27)

Multiplying this result by ∂θ1/∂η and integrating, we obtain, upon use of the matching
condition for θ1, the first integral(

∂θ1
∂η

)2

+ 2λ̂

∫ θ1

−∞

(
S1

∣∣
z=0

− θ̄1
)n
eθ̄1dθ̄1 =

(
∂Θ0

∂z

∣∣∣∣
z=0

)2

.(28)

Thus, evaluating (28) at η = 0 according to the first boundary condition in (22) yields
an implicit relation for θs given by

τ̂2λ̂2
(
S1

∣∣
z=0

− θs
)2n
e2νθs + 2λ̂Gn

(
θs;S1

∣∣
z=0

)
=

(
∂Θ0

∂z

∣∣∣∣
z=0

)2

,(29)

where (26) implies (since the surface mass fraction ζ1 ≥ 0) the physical restriction
θs ≤ S1

∣∣
z=0

and

Gn
(
θs;S1

∣∣
z=0

)
=

∫ θs

−∞

(
S1

∣∣
z=0

− θ̄1
)n
eθ̄1dθ̄1 =

∫ ∞

−θs

(
χ+ S1

∣∣
z=0

)n
e−χ dχ.(30)
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An additional relation that will be needed is obtained from a consideration of the
second-order inner problem, which, since q = 1, is given by

∂2θ2
∂η2

+ λ̂f(ζ1, ζ2, θ1, θ2;n)e
θ1 = 0,

∂2ζ2
∂η2

− l ∂
2ζ1
∂η2

− λ̂f(ζ1, ζ2, θ1, θ2;n)eθ1 = 0,

(31)

∂θ2
∂η

∣∣∣∣
η=0

= −τ̂ λ̂g(ζs, ζ̂s, θs, θ̂s;n)eνθs + k(1− σ),

∂ζ2
∂η

∣∣∣∣
η=0

− l ∂ζ1
∂η

∣∣∣∣
η=0

= τ̂ λ̂g(ζs, ζ̂s, θs, θ̂s;n)e
νθs ,

(32)

θ2 ∼ Θ2

∣∣
z=0

+ η
∂Θ1

∂z

∣∣∣∣
z=0

+
1

2
η2 ∂

2Θ0

∂z2

∣∣∣∣
z=0

,

ζ2 ∼ y2
∣∣
z=0

+ η
∂y1
∂z

∣∣∣∣
z=0

+
1

2
η2 ∂

2y0
∂z2

∣∣∣∣
z=0

,

(33)

where θ̂s and ζ̂s, respectively, denote θ2 and ζ2 evaluated at η = 0, f(ζ1, ζ2, θ1, θ2;n) =

nζ2ζ
n−1
1 + ζn1

[
θ2 − (1 − T−1

f )θ21
]
, and g(ζs, ζ̂s, θs, θ̂s;n) = nζ̂sζ

n−1
s + νζns

[
θ̂s − (1 −

T−1
f )θ2s

]
. Integrating the sum of (31) and applying the boundary conditions (32), we

obtain

∂θ2
∂η

+
∂ζ2
∂η

+ l
∂θ1
∂η

= k(1− σ),(34)

where we have used the result (24) with q = 1. Applying the matching conditions
(33) thus yields the condition

∂S1

∂z

∣∣∣∣
z=0

= −l ∂Θ0

∂z

∣∣∣∣
z=0

+ k(1− σ).(35)

Collecting the preceding results, we have thus succeeded in deriving a closed
asymptotic model for the outer temperature- and enthalpy-perturbation variables Θ0

and S1, and the surface-temperature coefficient θs. In particular, solutions for these
variables are determined from the first equality of (10) and from (17) in the half-space
0 < z < ∞, the corresponding boundary conditions (11) and (18) at z = 0 and as
z → ∞, and the derived conditions (29) and (35) at z = 0. In what follows, we apply
this model to obtain multiple basic solutions corresponding to steady planar flames,
as well as corresponding extinction limits beyond which no solutions of this type
exist.

4. Steady plane-flame solutions. The basic solution Θ̄ = Θ0(z), S̄ = S1(z),
and θ̄s = θs = const., corresponding to steady planar combustion, is governed by
the time-independent, one-dimensional version of (17) and the first equality of (10),
subject to (11), (18), (29), and (35). In particular,

−2z dΘ̄
∂z

=
d2Θ̄

dz2
, −2z dS̄

dz
=
d2S̄

dz2
+ l
d2Θ̄

dz2
− hΘ̄, 0 < z <∞,(36)
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S̄ → 0, Θ̄ → 0 as z → ∞.(37)

Θ̄(0) = 1,
dS̄

dz

∣∣∣∣
z=0

= −l dΘ̄
dz

∣∣∣∣
z=0

+ k(1− σ),(38)

τ̂2λ̂2
[
S̄(0)− θ̄s

]2n
e2νθ̄s + 2λ̂Gn

(
θ̄s; S̄(0)

)
=

(
dΘ̄

dz

∣∣∣∣
z=0

)2

, θ̄s ≤ S̄(0).(39)

We remark that while (36)–(38) are sufficient to determine Θ̄ and S̄, the requirement
that (39) produce physical solutions for the surface-temperature coefficient θ̄s will
yield parameter limits associated with extinction.

The solution for Θ̄ satisfying the first equation of (36) and the boundary conditions
in (37) and (38) is easily obtained as

Θ̄(z) = erfc(z) = 1− 2√
π

∫ z

0

e−z̄
2

dz̄.(40)

Substituting this result into the second equation of (36) then gives an inhomogeneous
equation for S̄ as

d2S̄

dz2
+ 2z

dS̄

dz
= h erfc(z)− 4l√

π
z e−z

2

.(41)

Homogeneous solutions of (41) are 1 and erfc (z), and thus a particular solution of
(41) is obtained, using the variation-of-parameters formula, as

S̄p =

√
π

2


 −

∞∫
z

erfc(z̄)

[
h erfc(z̄)− 4l√

π
z̄ e−z̄

2

]
ez̄

2

dz̄

− erfc(z)

z∫
0

[
h erfc(z̄)− 4l√

π
z̄ e−z̄

2

]
ez̄

2

dz̄


 .

(42)

Hence, using the fact that 4
∫∞
z
z̄ erfc(z̄) dz̄ = (1 − 2z2)erfc(z) + (2/

√
π )z exp(−z2),

the complete solution of (41) can be written as

S̄(z) = c1 + c2 erfc(z)−
√
π

2
h

[∫ ∞

z

ez̄
2

erfc2(z̄) dz̄ + erfc(z)

∫ z

0

ez̄
2

erfc(z̄) dz̄

]

+
l

2

[
erfc(z) +

2√
π
z e−z

2

]
,

(43)

where application of the boundary conditions (37) and (38) for S̄ determines c1 and
c2 as

c1 = 0, c2 = −l −
√
π

2
k(1− σ).(44)

The solutions Θ̄ and S̄ are displayed in Figure 2.
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Fig. 2. Outer solution profiles Θ̄(z) and S̄(z;h, l, k, σ). The several curves for S̄ were drawn
for σ = 0 and various values of the parameters h, l, and k as indicated.

From (40), (43), and (44), we note that S̄(0) is given by

S̄(0) = − l
2
−

√
π

2

[
k(1− σ) + γh], γ =

∫ ∞

0

ez̄
2

erfc2(z̄) dz̄
.
= 0.391066.(45)

Substituting this result and dΘ̄/dz|z=0 = −2/√π into (39) then gives the condition
for θ̄s as

2

πλ̂
=

[
Gn(θ̄s;−Ψ) + 1

2
τ̂2λ̂(−θ̄s −Ψ)2ne2νθ̄s

]
, −θ̄s ≥ Ψ,(46)

where

Ψ ≡ l

2
+

√
π

2

[
k(1− σ) + γh] = −S̄(0)(47)

and the restriction −θ̄s ≥ Ψ follows from (26) evaluated at z = 0 and the fact
that the leading-order mass-fraction coefficient ζ1 ≥ 0. The parameter group Ψ
represents a sum of parametric influences arising from conductive losses (k > 0) at
the catalytic surface, volumetric heat losses (h > 0) associated with the finite size of
the combustor, and unequal rates of thermal and mass diffusion (l �= 0). We note
that Ψ is generally positive for sufficiently large values of the heat-loss coefficients,
which, given our present focus on nonadiabaticity, is the main regime of interest here.
However, for sufficiently small values of these parameters and a Lewis number less
than unity (l < 0), Ψ can take on negative values as well. In that case, the minimum
value −θ̄s = Ψ corresponds to a surface temperature that exceeds the adiabatic flame
temperature for freely-propagating flames, consistent with the known dependence of
the flame temperature on Lewis number in the present strained geometry (cf. [1], [7]).

Equation (46) provides a relationship for the surface-temperature coefficient θ̄s,
which, according to (20), reflects the scaled leading-order temperature perturbation
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at the nonadiabatic catalytic surface from the normalized flame temperature of unity.
As discussed in detail in the following section, (46) also admits a physical solution for
θ̄s only for parameter values that do not exceed a critical condition, and thus (46) also
defines an extinction criterion for steady planar burning, beyond which the present
solution does not exist. As will also be shown below, the result (46) is consistent with
our previous analysis [7], which was restricted to a steady, planar flame at the outset,
with k = 0 and Le ∼ O(1).

5. Extinction limits for steady planar combustion. The integral repre-
sented by Gn(θ̄s;−Ψ), which can also be expressed in terms of the incomplete gamma
function Γ(b, x) =

∫∞
x
tb−1e−t dt as Gn(θ̄s;−Ψ) = e−ΨΓ(n + 1,−θ̄s − Ψ), can be

evaluated explicitly for integer values of the reaction order n. In particular, we have

G0(θ̄s; Ψ) = e
θ̄s , G1(θ̄s;−Ψ) =

(
1− θ̄s −Ψ

)
eθ̄s ,

G2(θ̄s;−Ψ) =
[
1 +

(
1− θ̄s −Ψ

)2]
eθ̄s , . . . .

(48)

Hence, restricting further consideration to the case n = 1, (46) may be written as

α1 = (1− θ̄s −Ψ)eθ̄s + α2(−θ̄s −Ψ)2e2νθ̄s , −θ̄s ≥ Ψ,(49)

where we have defined the parameters α1 and α2 as

α1 =
2

πλ̂
, α2 =

1

2
τ̂2λ̂.(50)

Here, α1, which is inversely proportional to λ̂ and hence Λg, may be regarded, ac-
cording to the definition of Λg in (2), as a measure of either the strain rate ã or
the reciprocal of the gas-phase reaction rate. On the other hand, α2, which is pro-
portional to τ̂2λ̂ or to (Λs/Λg)

2Λg, is independent of ã but does represent a relative
scaled measure of the surface reaction-rate coefficient with respect to that of the bulk
gas (in units of the gas-phase rate). Equation (49) is thus an implicit relation for θ̄s
as a function of the four parameter groups α1, α2, ν, and Ψ.

Before proceeding, we note that (49) is similar in form to that derived previously
in the absence of heat losses (cf. [1]) and in the presence of volumetric heat losses only
[7]. In the latter case, the results are equivalent, provided we set k = 0 in the definition
of Ψ and restrict Le, which was regarded as O(1) in [7], to be an O(1/β) perturbation
of unity, as in the present study. Indeed, setting k = 0 and defining θ∗s = θ̄s + l/2,
α̂1 = α1e

l/2, and α̂2 = α2e
l/2−νl, we recover, to O(1), the corresponding expression

obtained in [7]. In deriving this result, we note that because Tf = 1 + Q/
√
Le (cf.

[1], [7]), where Q = ỸuQ̃/T̃u, the Lewis number enters into the definition of both Λg
and Λs (or τ) such that, to O(1), α̂1 and α̂2 are equivalent to the α1 and α2 defined
in [7].

The surface-temperature response predicted by (49) is briefly summarized as fol-
lows. In particular, rather than consider the implicit solution of (49) for θ̄s, it is
convenient to instead analyze the explicit algebraic behavior of α1(θ̄s;α2,Ψ, ν).Thus,
in the absence of catalysis (α2 = 0), equation (49) is reduced to

α1 = (1− θ̄s −Ψ)eθ̄s ,(51)

where we again note that physical solutions are always restricted to −θ̄s ≥ Ψ, where
the lower limit corresponds, according to (26), to complete consumption of reactants
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Fig. 3. Solution response in the absence of catalysis (α2 = 0) for reaction order n = 1.
Physical solutions (solid curve) are restricted to −θ̄s ≥ Ψ. A steady planar solution does not exist
for α1 > αe1, where α

e
1 is the extinction limit.

by the gas-phase reaction (i.e., ζs = 0). The solution curve α1(−θ̄s), plotted as θ̄s(α1),
is shown in Figure 3. Since no steady planar solution exists for α1 > e

−Ψ, we interpret
this critical value of the strain-rate parameter α1 as an extinction limit. According
to the definition (47) of Ψ, this limit decreases exponentially with increasing values
of the heat-loss parameters h and k, and with increasing values of the Lewis-number
perturbation from unity. As indicated above, the latter reflects the decrease in flame
temperature associated with increased thermal losses via diffusion to the strained flow
field. In terms of Ψ, the critical condition for extinction is thus Ψ > − lnα1, so that
smaller values of the strain rate allow the flame to tolerate larger thermal losses.

For the more general response in the presence of catalysis (α2 > 0), we first
calculate dα1/d(−θ̄s) from (49) as

dα1

d(−θ̄s)
= (−θ̄s −Ψ)e−(−θ̄s)

{
−1 + 2α2

[
1− ν(−θ̄s −Ψ)

]
e(1−2ν)(−θ̄s)

}
.(52)
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Fig. 4(a). Solution response for activation-energy ratio ν = 1/2 and α2 > 1/2. For α2 > 1/2,
corresponding to a relatively strong surface reaction, an extension of the extinction limit to the
higher value αe1 = (1 + δ + α2δ2) e−Ψ−δ is realized. The curves were drawn for α2 = 1 and the
indicated values of Ψ.

From (52) we thus conclude that dα1/d(−θ̄s) = 0 at −θ̄s = Ψ, corresponding to
α1 = e

−Ψ, and may also be zero at value(s) of −θ̄s that satisfy the condition

2α2

[
1− ν(−θ̄s −Ψ)

]
= e(2ν−1)(−θ̄s).(53)

For example, if ν = 1/2, corresponding to the case in which the activation energy of
the catalytic surface reaction is half that of the distributed reaction in the bulk gas,
(53) is satisfied when −θ̄s = Ψ+ δ, where δ = (2α2 − 1)/α2. Thus, for α2 > 1/2 (i.e.,
for δ > 0), there exists a second physical solution of (49), corresponding to α1 = α

e
1 =

(1 + δ + α2δ
2)e−Ψ−δ, for which dα1/d(−θ̄s) = 0. On the other hand, for α2 < 1/2

(i.e., for δ < 0), this additional solution is unphysical since it occurs for −θ̄s < Ψ.
The consequences of a physical root of (53) are evident from Figures 4(a) and 4(b),
which are drawn for the case ν = 1/2 just described. For α2 > 1/2, corresponding
to a sufficiently vigorous surface reaction, the extinction limit is increased (since
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Fig. 4(b). Solution response for activation-energy ratio ν = 1/2 and 2α2 < 1. For α2 < 1/2,
corresponding to a relatively weak catalytic influence, the solution response is modified accordingly,
but the extinction limit is the same as that obtained in the absence of catalysis. The curves were
drawn for α2 = 7/16 and the indicated values of Ψ.

d2α1/d(−θ̄s)2|−θ̄s=Ψ > 0) to the value α1 = α
e
1 given above (Figure 4(a)). In addition,

the solution becomes multivalued for e−Ψ < α1 < α
e
1, implying both a high- and low-

temperature solution (corresponding to a small and large value of −θ̄s, respectively)
for α1 within this range. On the other hand, for α2 < 1/2 (Figure 4(b)), which
corresponds to a relatively weak surface reaction, the extinction limit α1 = e−Ψ

remains the same as that in the complete absence of a catalytic reaction. That is,
even though a weak catalytic reaction does modify the solution response relative to
the noncatalytic case, the maximum possible value of α1 is unchanged.

The preceding discussion for the case ν = 1/2 implies that the effects of a suffi-
ciently active surface reaction at a reduced activation energy allows for a lower flame
temperature (i.e., a larger value of −θ̄s), thereby extending the extinction limit. That
is, reactants that pass through the gas-phase reaction region due to higher rates of
strain and/or lower gas-phase reactivity are still able to undergo at least partial con-
version at the catalytic surface and thus contribute to the overall heat release. If the
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catalytic reaction is weak or absent altogether, this additional opportunity for con-
version is reduced or eliminated, and consequently, the gas flame cannot sustain itself
at values of the strain-rate parameter α1 that are larger than the critical value corre-
sponding to extinction in the noncatalytic case. In terms of the parameter group Ψ,
the critical value corresponding to extinction is raised from Ψ = − lnα1 for α2 < 1/2
to Ψ = Ψe = − lnα1+ln(1+ δ+α2δ

2)− δ. As δ decreases to zero from above (i.e., as
α2 approaches 1/2), the maximum rate of heat loss that can be tolerated for a given
value of α1 is reduced to the same limit as for the noncatalytic problem.

These results are readily extended beyond the special case ν = 1/2 as follows.
First, it is useful to differentiate (52) to obtain

d2α1

d(−θ̄s)2
∣∣∣∣∣
−θ̄s=Ψ

= e−Ψ
[
2α2 e

(1−2ν)Ψ − 1
]
.(54)

Thus, at the minimum value −θ̄s = −θ̄0s = Ψ, it is seen that d2α1/d(−θ̄s)2 is either
positive or negative, depending on whether 2α2 is greater or less than e

(2ν−1)Ψ. In the
first case, since dα1/d(−θ̄s) is zero at −θ̄s = −θ̄0s , α1 will increase with increasing −θ̄s
until it reaches a maximum at the value of −θ̄s that corresponds to the single root
of (53). This argument holds for all values of ν since, at −θ̄s = −θ̄0s , the left-hand
side of (53) exceeds the value of the right-hand side, leading to a single intersection
when the linear left-hand and exponential right-hand sides of (53) are plotted against
−θ̄s. Consequently, for 2α2 > e

(2ν−1)Ψ, the qualitative behavior will be identical to
Figure 4(a), indicating an extension of the extinction limit relative to the noncat-
alytic case. On the other hand, for 2α2 < e(2ν−1)Ψ, we have that d2α1/d(−θ̄s)2 is
negative at −θ1 = −θ̄0s and hence α1 decreases as −θ̄s increases from that value.
The qualitative nature of the solution response then depends on whether ν ≥ 1/2 or
ν < 1/2.

If, for the case 2α2 < e
(2ν−1)Ψ, we have ν ≥ 1/2, the right-hand side of (53) is

either exponentially increasing or constant, whereas the left-hand side is a linearly
decreasing function of −θ̄s. In this instance, the left-hand side of (53) is less than the
value of the right-hand side at −θ̄s = −θ̄0s and there are no physical roots of (53). The
solution response is then qualitatively similar to Figure 4(b) and there is no catalytic
extension of the extinction limit. This situation persists as ν decreases below the
value 1/2 (at which point the right-hand side of (53) transitions from a growing to a
decaying exponential) until at some point the linearly decreasing left-hand side of (53)
intersects the exponentially-decaying right-hand side tangentially in at first one, and
then two, places. The first of these roots, if it occurs for −θ̄s > −θ̄0s , then corresponds
to a relative minimum in the α1(−θ̄s) response, while the second corresponds to a
relative maximum and hence an extension of the extinction limit, provided that this
root occurs in the physical range −θ̄s > −θ̄0s and the relative maximum value of α1

exceeds the value at −θ̄0s . In the two-root case just described, the solution response
is triple-valued for a range of α1 values, corresponding to low-, intermediate- and
high-temperature solution branches.

The various scenarios just described for ν < 1/2, which illustrate how different
effects can counterbalance one another, are illustrated in Figures 5(a)–(c). In partic-
ular, the Ψ = 0 curve in Figure 5(a) demonstrates both the aforementioned relative
minimum and maximum for 2α2 < e(2ν−1)Ψ, while the other two curves for Ψ > 0
exhibit only the relative maximum in the physical range −θ̄s > −θ̄0s as the increase
in Ψ eventually leads to the parameter regime 2α2 > e

(2ν−1)Ψ. In Figure 5(b), which
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Fig. 5(a). Solution response for ν < 1/2 and several values of Ψ: ν = 0.2 and α2 = 0.35.
Larger values of α2 and smaller values of ν have a tendency to extend the extinction limit and can
thus compensate for the extinguishing effects of larger heat losses.

is qualitatively similar to Figure 5(a), the surface activation-energy parameter ν has
been decreased further with respect to its previous value, leading to a greater catalytic
effect and a consequently greater extension of the extinction limit. This same effect
is achieved by increasing the surface reaction-rate parameter α2 to the value used in
Figure 5(c), where there is now no relative minimum in any of the solution responses
since the value of α2 is now sufficiently large that 2α2 > e

(2ν−1)Ψ. Hence, decreasing
ν and increasing α2 have the same qualitative effect on the extension of the extinction
limit. With respect to the heat-loss parameters h and k, we note from the definition
(47) that the extinction limit corresponds to larger values of these parameters for
smaller Lewis numbers. Thus, for example, flames whose Lewis numbers are less than
unity (l < 0) can tolerate larger thermal losses than those whose Lewis numbers are
greater then unity (l > 0).
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Fig. 5(b). Solution response for ν < 1/2 and several values of Ψ: ν = 0.15 and α2 = 0.35.
Larger values of α2 and smaller values of ν have a tendency to extend the extinction limit and can
thus compensate for the extinguishing effects of larger heat losses.

6. Stability of the basic solution. The possibility of multiple steady plane-
flame solutions, as illustrated in Figures 4(a) and 5(a)–(c), suggests the need for a
stability analysis to determine which portions of the solution response correspond to
stable combustion states, as well as to indicate the possible existence of additional
nonsteady and/or nonplanar solutions. Accordingly, we introduce perturbations u, v,
and τ about the basic state Θ̄, S̄, and θ̄s according to

Θ0 = Θ̄(z) + u(r, ϑ, z, t), S1 = S̄(z) + v(r, ϑ, z, t), θs = θ̄s + τ(r, ϑ, t),(55)

where Θ̄ and S̄ are given by (40), (43), and (44), and θ̄s is determined from (46) and
(47). Substituting these definitions into the closed problem given by (17) and the
first equation of (10), subject to (11), (18), (29), and (35), we obtain, after linearizing



1100 STEPHEN B. MARGOLIS AND TIMOTHY J. GARDNER

0.5 1 1.5 2
�1

0

5

10

15

20

−�s

Ψ= 0

Ψ= 0.7

Ψ= 2.1 Ψ= −0.2

n = 1

� = 0.2, �2 = 0.6

..
.

..
..

oo o.(e−Ψ,Ψ)

Fig. 5(c). Solution response for ν < 1/2 and several values of Ψ: ν = 0.2 and α2 = 0.6. Larger
values of α2 and smaller values of ν have a tendency to extend the extinction limit and can thus
compensate for the extinguishing effects of larger heat losses.

about the basic solution, the linear stability problem

∂u

∂t
+ r

∂u

∂r
− 2z

∂u

∂z
= ∇2u,

∂v

∂t
+ r

∂v

∂r
− 2z

∂v

∂z
= ∇2v + l∇2u− hu, 0 < z <∞,

(56)

u
∣∣
z=0

= 0,
∂v

∂z

∣∣∣∣
z=0

= −l ∂u
∂z

∣∣∣∣
z=0

, u, v → 0 as z → ∞,(57)

−√
π α1

∂u

∂z

∣∣∣∣
z=0

=
[
v
∣∣
z=0

+ τ(−Ψ− θ̄s)
]
eθ̄s + 2α2(−Ψ− θ̄s)

× [
v
∣∣
z=0

+ ντ(−Ψ− θ̄s − ν−1)
]
e2νθ̄s .

(58)



ASYMPTOTIC MODEL OF NONADIABATIC CATALYTIC FLAMES 1101

In obtaining (58), the reaction order n has been taken to be unity, and the preceding
results were used to evaluate S̄(0) = −Ψ, dΘ̄/dz∣∣

z=0
= −2/√π and, from (30), to

calculate

G1

(
θs;S1

∣∣
z=0

)
=
(
1 + S1

∣∣
z=0

− θs
)
eθs

=
(
1−Ψ+ v

∣∣
z=0

− θ̄s − τ
)
eθ̄s+τ

∼ (
1−Ψ− θ̄s

)
eθ̄s +

(
1−Ψ− θ̄s

)
eθ̄sτ

+
(
v
∣∣
z=0

− τ) eθ̄s + · · · .

(59)

An investigation of the linear stability of the basic solution may now proceed by
seeking solutions of (56)–(58) proportional to ei(ωt±mθ) times appropriate functions
of kr and z, where iω is the complex growth rate and m and k are the angular and
radial wavenumbers, respectively. However, because it is reasonable to assume a high
conductivity for the catalytic surface relative to the gas, which would consequently
not support a nonuniform temperature distribution at z = 0, we may, in that case,
set the radial and angular wavenumbers to zero. That is, only planar perturbations
of the basic state are admissible, and harmonic solutions are thus restricted to the
form

u = f(z) eiωt, v = g(z) eiωt, τ = c1e
iωt.(60)

Here, choosing the preexponential coefficient to be unity in the last expression would
normalize any nontrivial solution to the linear stability problem, with stability of
the basic state determined by the sign of the real part of iω. Substituting (60) into
(56)–(58) thus gives a closed problem for the complex unknowns f(z), g(z), and iω
as

iωf − 2z
df

dz
=
d2f

dz2
, iωg − 2z

dg

dz
=
d2g

dz2
+ l
d2f

dz2
− hf, 0 < z <∞,(61)

f(0) = 0,
dg

dz

∣∣∣∣
z=0

= −l df
dz

∣∣∣∣
z=0

, f, g → 0 as z → ∞,(62)

−√
π α1

df

dz

∣∣∣∣
z=0

=
[
g(0) + c1(−Ψ− θ̄s)

]
eθ̄s + 2α2(−Ψ− θ̄s)

× [
g(0) + νc1(−Ψ− θ̄s − ν−1)

]
e2νθ̄s .

(63)

We proceed with an analysis of (61)–(63) by noting that the subproblems for f and g
may be solved sequentially in terms of iω. We also consider only solutions for which
�(iω) ≥ 0, since solutions with �(iω) < 0 correspond to decaying perturbations and
hence stability of the basic solution.

It is readily verified that the transformation x = −z2 converts the first of (61)
into the standard form of the confluent hypergeometric equation x d2f/dx2+
(b − x) df/dx − af = 0 with b = 1/2 and a = −iω/4. For noninteger values of b,
two independent solutions for f are therefore 1F1(a; b;x) and x

1−b
1F1(1 + a− b; 2−

b;x), where 1F1(a; b;x) =
∑∞
n=0[(a)n/(b)n]x

n/n! =
{
Γ(b)

/
[Γ(b−a)Γ(a)]} ∫ 1

0
extta−1×

(1 − t)b−a−1dt is the confluent hypergeometric (Kummer) function (cf. Slater [13]).
Thus, in terms of z, the general solution of the first equality in (61) may be written
as

f(z) = C1 · 1F1

(
− iω

4
;
1

2
;−z2

)
+ C2 z · 1F1

(
1

2
− iω

4
;
3

2
;−z2

)
,(64)
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where C1 and C2 are constants of integration. Requiring that f(0) = 0 thus implies
C1 = 0, while the boundary condition f → 0 as z → ∞ requires, when �(iω) ≥
0, that C2 = 0 as well, where the latter is deduced from the asymptotic behavior

1F1(a; b;x) ∼ [Γ(b)/Γ(b− a)](−x)−a[1 + O(|x|−1)] as |x| → ∞ for �(x) < 0 (cf. [13]).
Hence, f(z) ≡ 0 so that no nontrivial solution for f corresponding to neutral or
growing perturbations is admissible.

A similar argument can be applied to the determination of g(z). In particular,
because f = 0, the second equation of (61) for g is identical to the equation for f , and
thus the general solution for g(z) is also given by the right-hand side of (64). In this
case, the boundary condition ∂g/∂z = l∂f/∂z = 0 at z = 0 implies that C2 = 0 in
the corresponding general solution for g, while the condition that g vanish as z → ∞
requires, based on the above asymptotic behavior of 1F1, that C1 = 0 as well. Thus,
for �(iω) ≥ 0, both f(z) and g(z) are identically zero. Equation (63) then reduces to

c1(−Ψ− θ̄s)
[
1 + 2α2ν(−Ψ− θ̄s − ν−1) e(1−2ν)(−θ̄s)

]
= 0,(65)

which is generally satisfied only if c1 = 0. An exception occurs at values of −θ̄s for
which dα1/d(−θ̄s) = 0 (i.e., at the relative extrema in Figures 3–5), in which case,
based on (52) and (53), c1 is indeterminate. However, all other points on the basic
solution response correspond to either decaying harmonic perturbations or to the ab-
sence of a nontrivial solution to the linear stability problem. We thus conclude that,
at least in the classical sense, all branches of the basic solution are linearly stable.
Consequently, in parameter regimes where multiple solutions exist, the observed so-
lution is likely to depend on the initial conditions, which appears to be the case in
actual experiments [6]. We remark, however, that relaxing the assumption of high
surface conductivity so as to allow for transverse perturbations might, as in the case
of strictly gaseous flames in stagnation-point flow, permit instability for sufficiently
small values of the strain-rate parameter (cf. Sivashinsky, Law, and Joulin [14]).

7. Conclusion. The present work has presented a formal asymptotic model of
a nonadiabatic catalytic flame in stagnation-point flow. The thermal/diffusive model,
which was derived under the assumptions of large activation energies and near-unity
Lewis numbers, considers both surface and volumetric heat losses, where the former
occurs at the catalytic surface and the latter approximates conductive and/or ra-
diative losses across the remaining surfaces. Assuming combustion to occur in the
near-surface region where catalytic effects are felt, it was shown that the presence
of a catalytic surface has the potential to significantly extend the extinction limits
arising from the effects of flame stretch and heat loss. In particular, reactants that
leak through the distributed portion of the gas flame, due to larger strain rates and/or
larger rates of heat loss that lower the reaction rate, have an additional opportunity
to react under the influence of a catalyst at the surface. Such an influence is particu-
larly desirable from the standpoint of building small combustors that have relatively
large surface-to-volume ratios, and the present work has therefore focused on further
extending earlier studies to the nonadiabatic regime. Indeed, recent experiments in-
dicate that microcombustors on the order of a cubic millimeter or less are feasible
when the stagnation surface is coated with a catalyst.

The solution response of the model problem is parameterized by the nondimen-
sional strain rate, the ratios of the surface reaction rate and activation energy to
those of the distributed reaction in the bulk gas, and a parameter that represents a
linear combination of the effects of surface and volumetric heat losses and those asso-
ciated with nonunity Lewis numbers. The main results demonstrate how, in certain
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parameter regimes associated with a strongly catalytic effect, the solution response is
modified from that of the noncatalytic problem to allow for larger values of the strain
rate, rate of heat loss, and/or Lewis number than would be the case in the absence of
catalysis. In such regimes, the solution response exhibits an extinction limit at a value
of the strain rate (or heat-loss coefficient) that is larger than the corresponding value
in the absence of catalysis, resulting in a catalytic extension of the extinction limit.
In addition, multiple solution branches appear, corresponding to high, low, and, in
some cases, intermediate surface temperatures. A linear stability analysis suggests,
consistent with recent experiments, that in the limit of high surface conductivity each
branch is locally stable so that it should be possible to observe different solutions
depending on the initial conditions.
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RADIAL STRUCTURE OF TRAVELING WAVES
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Abstract. We develop a hybrid approach for modeling the cochlea, in which we let the WKB
method determine the axial propagation of waves and restrict the numerics to transverse planes,
where we solve a fluid-solid interaction eigenvalue problem. The cochlear fluid is treated as viscous
and incompressible. Viscous effects are confined to oscillatory boundary layers and the thin gap
between the reticular lamina (RL) and the lower surface of the tectorial membrane (TM). Our model
includes axial fluid coupling and also axial elastic coupling via a basilar membrane (BM) modeled
as an orthotropic clamped plate. Three-dimensional (3D) flow is solved in two-dimensional (2D)
domains, with interactions with 2D elastic domains representing the organ of Corti (OC) and the TM.
The OC contains inhomogeneities representing discrete cellular structures. We have computed the
interaction between the BM, TM, OC, and the cochlear fluid to find the complex-valued wavenumber-
frequency relation and vibrational modes. The details of the cochlear fluid flow and pressure fields
are calculated, along with displacements of the elastic structures. Simulation of passive radial modes
in the apical region of a guinea pig cochlea for frequencies less than 1 kHz indicates monophasic
vibration of the BM and a synchronous rotation of three rows of outer hair cell stereocilia induced
by a shearing motion between the RL and TM.

Key words. cochlear mechanics, traveling wave, fluid-solid interaction, radial modes

AMS subject classifications. 74F10, 92C10, 92C35

PII. S0036139901388957

1. Introduction. Modeling the radial structure of traveling waves in the inner
ear is timely because of new experimental observations that require interpretation.
Experimental observations can now resolve the vibratory patterns across the width
of the organ of Corti (OC). Both monophasic and multiphasic radial modal patterns
have been reported, depending on the method of stimulation, axial location, and
frequency [11, 16, 25, 26, 29]. These patterns, representing the radial structure of
the traveling wave, are critical to understanding the stimulation of inner and outer
hair cells (IHCs and OHCs). An excellent recent review of experimental cochlear
mechanics can be found in Robles and Ruggero [31]. A reliable computational model
would be very useful in sorting out the variety of reported responses. Here we begin
by developing a passive model.

The detailed cochlear fluid flow and micromechanical movements of the tectorial
membrane (TM) and cellular structures relative to one another within the OC have
interested many auditory researchers [1, 3, 4, 12, 22, 24, 39, 40]. Most models in
the literature use simple lumped elements (lever, spring, damper, transformer, etc.).
While these lumped-parameter models have been very useful, they oversimplify the
dynamics by neglecting fluid mass coupling in the micromechanics. They also make
assumptions concerning the kinematics that can now be computed rather than as-
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sumed. Toward this end we develop a physically realistic OC geometry and model the
OC as an elastic body whose inhomogeneities are due to discrete cellular elements in-
cluding IHCs, OHCs, Deiter’s cells (DCs), pillar cells (PCs), and the reticular lamina
(RL). Accordingly, the OC has a material property map with each subdomain having
the Young’s modulus (E) and Poisson’s ratio (ϑ) of the corresponding cell structures
(see Appendix B).

The excessive computational cost of incorporating radial structure and fluid-solid
interaction into models of traveling waves complicates the study of cochlear mechan-
ics. Straightened models with three-dimensional (3D) flow including radial variation
of the traveling wave have been studied using the WKB method [8, 17, 33, 34] and
by fully numerical methods [19, 28]. Manoussaki and Chadwick [23] developed a hy-
brid approach to study the effects of cochlear curvature. But these types of models
considered the basilar membrane (BM) only and did not attempt to consider the com-
plications of other true degrees of freedom in the cochlear partition (CP). Actually
there are very few calculations for which the radial variation of BM transverse deflec-
tion is computed and not assumed. Other modeling efforts [7, 20, 38] used full 3D
finite elements or finite differences, with some critique offered by Steele [32]. In his
hybrid 3D model of the cochlea, which includes structural details of the OC modeled
as orthotropic shell elements and discrete fluid domains modeled as equivalent rect-
angles, Steele reported different propagation modes in different fluid domains. Here
we develop a hybrid approach that provides a single propagating mode with a single
wavenumber applicable to the entire cross section. Like Steele [32], we let the WKB
method deal with the axial propagation of the wave, and we restrict the numerics
to the transverse plane. We use finite elements for both fluid and solid components,
and we compute fluid-solid interaction in a physically realistic complex geometry of
the cochlear cross section. Modes and displacements of the OC are analyzed, and the
details of the cochlear fluid flow are calculated. This approach avoids a full 3D com-
putation and allows for greater resolution in a cochlear cross section. In our cochlear
model, we carry out only the first step in the reduction of the 3D hydroelastic prob-
lem to a sequence of eigenvalue problems in transverse planes. The WKB-numerical
hybrid approach allows this reduction and provides the formalism for connecting the
solution in different transverse planes via an energy transport equation. That part of
the solution is beyond the scope of the present work.

2. Model description. The coordinates (X,Y, Z) respectively denote the “ra-
dial,” “transverse,” and “axial” (along the duct length) directions. The transverse
plane of the cochlea is divided into fluid and elastic domains (Figure 2.1). Discrete
structural elements are embedded in the two-dimensional (2D) continuum of the OC.
The TM and OC solid domains are coupled by cochlear fluid and OHC stereocilia.
The OC rests on an orthotropic clamped plate that represents the BM, whose axial
coupling is considered via the plate Green’s function (see section 3 for details). The
axial fluid flow and coupling are also retained by WKB expansion on all fluid domains:
scala tympani (ST) and the combined scala media and scala vestibuli (SM+SV). The
cross section of the cochlea is bounded by rigid walls, represented by circular arcs and
straight segments in Figure 2.1.

2.1. Fluid domains. The fluid velocity Ṽ = (ṼX , ṼY , ṼZ) and pressure P̃ sat-
isfy the linearized Navier–Stokes and mass conservation equations (see [5])

ρ
∂Ṽ

∂t
= −∇P̃ + µ∇2Ṽ,(2.1)
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Fig. 2.1. Model representation of a cochlear cross section. Tectorial membrane (TM) and organ
of Corti (OC) are represented by 2D elastic domains. The former is homogeneous, while the latter
contains different subdomains representing discrete cellular structures. The OC has the reticular
lamina (RL, not labeled) as its top boundary and rests on the basilar membrane (BM), which is
represented by an orthotropic clamped plate. A narrow fluid-filled gap exists between the RL and
the lower surface of the TM. Stereocilia elastically couple the RL and TM. The scala tympani (ST)
is the fluid compartment on the lower side, while the upper fluid region is the combined scala media
and scala vestibuli (SM+SV). (For the present calculation without the Reissner’s membrane, the
scala media and scala vestibuli contain the same fluid.) Scale is in cm.

∇ · Ṽ = 0,(2.2)

where ∇ is the gradient operator, ∇2 is the Laplacian operator, and ρ and µ are the
density and viscosity of the cochlear fluid. From (2.1) and (2.2), it follows that the
pressure is harmonic:

∇2P̃ = 0.(2.3)

Boundary conditions for pressure can be obtained for a viscous fluid following
Holmes and Cole [17]. For thin oscillatory boundary layers the dominant boundary
conditions are those for an inviscid fluid,

n · ∇P̃ = 0(2.4)

on rigid walls, where n is the outward unit normal. Since Ṽ = ∂Ũ/∂t,

n · ∇P̃ = −ρ∂Ṽn

∂t
= −ρ∂

2Ũn

∂t2
(2.5)

on deformable boundaries, where Ũ = (ŨX , ŨY , 0) is the displacement vector of a
deformable boundary.



1108 HONGXUE CAI AND RICHARD CHADWICK

2.2. Solid domains. We solved a structural mechanics plane strain problem for
the TM and OC solid domains. The stress-strain relation can be written, assuming
isotropic and isothermal conditions (see [35]), as

 σ̃X
σ̃Y
τ̃XY


 =

E

(1 + ϑ)(1 − 2ϑ)


 1 − ϑ ϑ 0

ϑ 1 − ϑ 0
0 0 (1 − 2ϑ)/2




 ε̃X
ε̃Y
γ̃XY


 ,(2.6)

where σ̃X and σ̃Y are the stresses in theX and Y directions and τ̃XY is the shear stress.
The material properties are expressed as a combination of E (Young’s modulus) and
ϑ (Poisson’s ratio). The strains are defined as

ε̃X =
∂ŨX
∂X

, ε̃Y =
∂ŨY
∂Y

, γ̃XY =
∂ŨX
∂Y

+
∂ŨY
∂X

.(2.7)

For the vibratory 2D elastic domains, the equation of motion, neglecting gravity,
is given by

−∇ · σ̃ + ρs
∂2Ũ

∂t2
= 0,(2.8)

where ρs is the density of the solid domains. Combining (2.6), (2.7), and (2.8), we
can arrive at a PDE system involving the displacements. The Young’s modulus and
Poisson’s ratio are incorporated into the PDE coefficient matrices; thus we can handle
the inhomogeneities of the OC by discretizing its mechanical properties (E and ϑ) on
corresponding subdomains (see Appendix B).

There are four types of boundary conditions on the 2D solid domains. Boundary
segments contiguous with rigid domains are subject to a homogeneous Dirichlet con-
dition with zero displacements: ŨX = ŨY = 0. The OC boundary segment contiguous
with the BM is an inhomogeneous Dirichlet condition: ŨX = 0 and ŨY = Ỹb, where
Ỹb is the BM displacement. Ỹb can be calculated via a plate Green’s function integral
(see section 3). Deformable boundary segments in contact with fluid are subject to
the stress vector σ̃n:

σ̃n = σ̃ · n = −P̃n + τ̃s,(2.9)

where s is the unit tangential vector in the transverse plane and τ̃ is the tangential
surface traction due to an oscillatory boundary layer. The stress vector σ̃n can be
expressed in terms of solid displacements via (2.6) and (2.7), so that (2.9) is an inho-
mogeneous Neumann condition; this will be discussed further in section 2.3. Finally,
the thin gap region bounded by the lower surface of the TM and the upper surface of
the RL is given special treatment in the present model. Here we adopt the analysis
of Chadwick, Dimitriadis, and Iwasa [9], who showed using lubrication theory that
there is no squeezing of the gap, but only a relative tangential motion between the
TM and RL, as was originally proposed by Allen [1, 3]. In the present context this
leads to the inhomogeneous Dirichlet condition ŨTM,n = ŨRL,n.

2.3. WKB expansion. The axial coordinate is normalized by the cochlear
length L (z = Z/L), and the other two coordinates are normalized by a charac-
teristic cross-sectional radius R0 (x = X/R0, y = Y/R0). We express all dependent
variables in the form Φ̃(x, y, z, t) = Φ(x, y, z)exp[i(ωt− ε−1

∫
k(z)dz)], where k is the

dimensionless complex-valued wavenumber normalized by R0 (i.e., k = k̃R0, where
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Fig. 2.2. RL-TM gap tangential stresses. τp is the Poiseuille flow-induced tangential stress,
τc is the Couette flow-induced tangential stress, and τs is the tangential stress contributed by hair
bundle stiffness.

k̃ is the dimensional wavenumber), ε = R0/Lc � 1, and ω is the radian frequency.
The slowly varying wave approximation requires the expansion of the amplitude Φ of
each dependent variable: Φ = Φ0 + εΦ1 + · · ·. The dominant equation of the WKB
expansion of (2.3) gives us

∇2
TP0 = k2P0,(2.10)

where the Laplacian operator is defined in the normalized transverse plane: ∇2
T =

∂2/∂x2+∂2/∂y2. The WKB expansion of (2.4) and (2.5) gives the following dominant
boundary condition for the fluid domains:

∂P0

∂nT
= ρω2R0UnT 0,(2.11)

where the fluid-solid interface normal displacement UnT 0 = U0 ·nT. After solving the
inviscid problem, the pressure acting on a deformable boundary can be corrected for
viscous effects in an oscillatory boundary layer [5] by adding a small correction term
to the boundary pressure [9]: Pc = ρω2UnT 0

√−iν/ω, where ν = µ/ρ is the kinematic
viscosity.

The dominant WKB expansion of (2.8) is

∇T · σ0 +R0ρsω
2U0 = 0,(2.12)

with boundary condition at a deformable surface

σnT 0 = σ0 · nT = −P0nT + τs.(2.13)

Solid damping is included in the model by assuming a Voigt solid and replacing
E by E+ iωE′, where E′ is a damping parameter [19]. For the TM-RL gap boundary
segments, τ = τp + τc + τs (see Figure 2.2), where τp = 1

2∆P0Hgap/Lgap is the
Poiseuille flow-induced tangential stress due to the pressure difference ∆P0 between
the two ends of the gap of length Lgap and thickness Hgap, τc = iµω∆Us0/Hgap is
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the Couette flow-induced tangential stress due to the difference between the TM and
RL tangential displacements ∆Us0, and τs is the tangential stress contributed by the
hair bundle stiffness (Ks). We model τs as a rectangular wave over the normalized
OHC diameter with amplitude Ks∆Us0/As, where As is the effective area of stress
(15×15µm2) of the hair bundle. Couette and Poiseuille flow in the gap was proposed
by Allen [1, 3]. For the nongap boundary segments, τ =

√
iων( 1

iωR0

∂P0

∂s + iρωUs0),
where Us0 is either the TM or OC segment tangential displacement (see Appendix A).
All boundary conditions are linearized and applied on their undeformed locations.

3. Computation. We fix ω and solve the above eigenvalue problem for the
wavenumber, fluid pressure, and solid displacement fields using the MATLAB PDE
Toolbox on an SGI workstation with an R12000 processor. We define the geometry
and the boundary conditions by directly editing MATLAB geometry and boundary
condition matrices. Each boundary segment (straight line or arc) corresponds to
a column in the geometry matrix, and each column in the geometry matrix must
correspond to a column in the boundary condition matrix. A boundary condition
must be expressed in a special MATLAB string representation, which contains the
2D coordinates x and y, the outward normal vector components nx and ny, and a
normalized arc length parameter s. Since the boundary string expressions must be
continuous functions, we define the boundaries using polynomial curve-fits. Meshes
of the 2D domains are generated and refined by MATLAB. For clarity, the meshes
shown in Figure 2.1 are coarser than those we used in our actual calculations. Our
algorithm iterates between elliptic, 2D plane strain, and eigenvalue solvers in the PDE
Toolbox (see Appendix B). First we guess values of the wavenumber k and of the
displacements of the TM, OC, and BM, and we solve the elliptic problems in the
upper and lower fluid chambers (see Figure 2.1) for the fluid pressure field P0. Then
we solve the 2D plane strain problems sequentially for the OC and TM. We calculate
the updated deflection of the BM via the plate Green’s function G:

Yb(x) = R0

∫ b2

b1

G(x, x′)∆σn(x′)dx′,(3.1)

where b1 and b2 are the radial coordinates of the BM endpoints and ∆σn is the
difference between the pressure at the lower surface of the BM and the negative of
the normal stress at the lower surface of the OC. Considering the axial coupling of
the BM [2, 18, 21, 36], the orthotropic plate Green’s function G(x, x′) satisfies

Dx
∂4G

∂x4
− 2(DxDz)

1/2k2 ∂
2G

∂x2
+ (−R4

0ρbHbω
2 +Dzk

4)G = δ(x− x′)R4
0,(3.2)

with the following boundary conditions for an orthotropic clamped plate: GL(b1) =
GR(b2) = 0, G′

L(b1) = G′
R(b2) = 0, GL(x′) = GR(x′), G′

L(x′) = G′
R(x′), G′′

L(x′) =
G′′
R(x′), and G′′′

L (x′) − G′′′
R (x′) = R3

0/Dx, where GL(x) and GR(x) are defined as
GL(x) = G(x, x′) for x < x′ and GR(x) = G(x, x′) for x > x′. Note that Dx =
(Eb + iωE

′
b)Ib is the complex radial rigidity of the BM, Dz is the axial rigidity of

the BM, and ρbHb is the mass per unit area of the BM. The plate Green’s func-
tion is determined analytically in Mathematica and imported into MATLAB. More
specifically, GR(x) and GL(x) are each the sum of four exponential functions with
multiplicative constants. The boundary conditions lead to an 8 × 8 linear system,
which is solved analytically.

The impedances of deformable surfaces are defined to be Zn = −P0/Un0. The
impedances are also determined as continuous functions using polynomial fits. This
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Fig. 3.1. Convergence of the algorithm. Plots versus iteration number of the absolute values
of the dimensional wavenumber k̃ [cm−1] (solid circle) and point impedances Z: middle of BM
lower surface (open triangle), middle of RL (open square), and middle of TM lower surface (solid
diamond). Impedances [dyn/cm3] are multiplied by the factor 1 × 107 for plotting convenience.
Frequency is 200 Hz.

provides the eigenvalue solver with the mixed homogeneous boundary condition:
∂P0/∂n + ρω2R0ZnP0 = 0. The eigenvalue solver gives the updated wavenumber
keig = ξ + iη. This value of keig is used in the elliptic solver for the next iter-
ation of pressure, and so on. The algorithm selects the keig that corresponds to
a propagating mode, and rejects eigenvalues that correspond to evanescent waves
with η large and negative. Iteration is stopped when both the real part and imag-
inary part of keig given by the eigenvalue solver satisfy the convergence conditions:
(ξm − ξm−1)/ξm < tolerance and (ηm − ηm−1)/ηm < tolerance, where m is the iter-
ation cycle number. For the present calculation, we use tolerance = 0.01. Figure 3.1
shows that the algorithm is convergent. We also note that keig in the upper and lower
chambers agree within a few percent.

4. Results and discussion. In this paper we concentrate on developing an
algorithm to determine the wavenumber and relative motions in fluid and elastic
domains as a function of frequency in a single transverse plane. This problem is
not without interest in itself, since experiments measuring the motions of the BM
and other structures are typically made in a single plane, with the frequency of the
stimulus being varied. Thus in our calculation, the cross-sectional geometry is chosen
to model the apex of guinea pig cochlea (see Figure 2.1). Parameters used in the
computation are listed in Table 4.1. An elasticity map for the model is depicted in
Figure 4.1.

Figure 4.2 shows the real part and the imaginary part of the complex-valued
dimensional wavenumber k̃ of the propagating wave as a function of frequency f .
The real part of k̃ is related to phase or wavelength of the traveling wave, while the
imaginary part of k̃ is related to the damping of the traveling wave: as the real part of
k̃ increases, the axial wavelength (λ) decreases (λ = 2π/Re[k̃]), and as the imaginary
part of k̃ becomes more negative, the axial damping of the wave increases. A traveling
wave with a positive real part and a negative imaginary part of k̃ represents a damped
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Table 4.1
Parameters used for the apical turn of the guinea pig cochlea.

Symbol Value and unit Meaning

ρ 1 g/cm3 Fluid density

ρb 1 g/cm3 BM density

ρt 1 g/cm3 TM density

ρc 1 g/cm3 OC density

µ 0.01 g/(cm · s) Fluid viscosity

Eb
′ 6e4 dyn · s/cm2 BM damping

Et′ 0.3 dyn · s/cm2 TM damping

Ec′ 0.01 dyn · s/cm2 OC damping

Hb 0.00015 cm BM thickness

Eb 2e9 dyn/cm2 BM Young’s modulus

Et 1e4 dyn/cm2 TM Young’s modulus

Ec 4e2 dyn/cm2 OC Young’s modulus

Ei 4e4 dyn/cm2 IHCs Young’s modulus

Eo 6e4 dyn/cm2 OHCs Young’s modulus

Ed 1e5 dyn/cm2 DCs Young’s modulus

Ep 4e5 dyn/cm2 PCs Young’s modulus

Er 3e5 dyn/cm2 RL Young’s modulus

ϑt 0.49 TM Poisson’s ratio

ϑc 0.49 OC Poisson’s ratio

b2 − b1 0.025 cm BM width

Hgap 0.00058 cm Gap thickness

Lgap 0.015 cm Gap length

Ks 1 dyn/cm Hair bundle stiffness

Dz/Dx 0.1 BM axial coupling parameter

Fig. 4.1. Elasticity map of the model. Scale is log10E, where E (dyn/cm2) has the values listed
in Table 4.1.
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Fig. 4.2. Dimensional wavenumber k̃. Real (solid circle) and imaginary (open circle) parts.

right-running wave. von Békésy [6] shows 200 Hz waveforms on the cochlear partition
inferred from measurements of amplitude and phase at the apex of human cadaver
cochlea. Those waveforms have λ ∼ 0.6cm. From Figure 4.2 we also find λ ∼ 2π/10 ∼
0.6cm. At 700 Hz we find λ ∼ 2π/43 ∼ 0.15cm, which can be compared with the
0.155cm measurement made near the apex of the guinea pig cochlea at 1 kHz by
Cooper and Rhode [10].

Modal pressure fields and CP displacements at 200 Hz and 700 Hz are shown
in Figures 4.3 and 4.4, respectively. The spatial distribution of the fluid pressure is
much more uniform at lower frequency (200 Hz) than at higher frequency (700 Hz).
Our calculated pressure distribution in the ST at 700 Hz exhibits a pressure gradient
similar to that measured by Olson [27]. In either case, the axial fluid velocity and

pressure satisfy ρ∂ṼZ

∂t = −∂P̃
∂Z when the viscous boundary layer effect is neglected.

The WKB approximation of this relation gives ρiωV0Z = ik̃P0. Thus axial velocity
is proportional to the product of wavenumber and fluid pressure at fixed frequency
(VZ = k̃P0/(ρω)). Because a single wavenumber k̃ exists in both the upper and
lower chambers, the mass conservation condition for axial flow is 〈P0u〉Au+ 〈P0l〉Al =
0, where 〈〉 denotes the area average. The pressure fields shown in Figures 4.3 and 4.4
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satisfy this relation. We can also estimate the axial flow in the spiral sulcus (SS)
and the radial flow in the gap. A radial flow in the gap is induced by the pressure
gradient existing along the gap. This flow would be important for the stimulation of
the IHCs whose stereocilia (not shown) are not in contact with the TM. Note that
this Poiseuille flow, estimated as QR 
 H3

gapλ∆P0/(48µLgap), is much smaller than

the axial fluid flow in SS (QZ 
 k̃P0ssAss/(ρω)). Note also that ∆P0 is the pressure
difference across the gap length, and P0ss and Ass are spiral sulcus pressure and
area. Using ν = 0.01cm2/s,Ass = 0.0092cm2, f = 700 Hz, k̃ = 43cm−1 (Figure 4.2),
Hgap = 6 × 10−4cm, Lgap = 0.015cm, and P0ss/∆P0 
 2 in Figure 4.4, we get
QZ/QR 
 360.

von Békésy [6] observed the passive BM radial vibrational mode of the guinea pig
cochlea near the helicotrema. He found that no vibrational subdivision of the BM
by the pillar cells occurred at low frequencies. Our calculated CP vibrational modes
agree with his findings (see Figures 4.3 and 4.4). When we increase the Young’s
modulus of the pillar cells by an order of magnitude, the BM retains its monophasic
mode shape.

Figure 4.5 shows the detailed movements within the OC and TM at 700 Hz. We
have found similar patterns at lower frequencies. An upward transverse movement
of the BM develops into a leftward radial component at the RL. We find that the
TM essentially rotates like a rigid body about its attachment to the bone, with little
radial motion. This leads to a shear movement between TM and RL which causes a
clockwise rotation of the stereocilia, as is commonly believed. This pattern of mo-
tion agrees with the experimental findings of Ulfendahl, Khanna, and Heneghan [37]
and Hemmert, Zenner, and Gummer [14] at the apex of the guinea pig cochlea, and
with the observation of Richter et al. [30] in the hemicochlear preparation. Gum-
mer, Hemmert, and Zenner [13] and Hemmert, Zenner, and Gummer [15] measured
a resonant TM radial motion that was rather sharply tuned to a frequency ∼ 1/2
octave below the BM characteristic frequency. This radial TM resonance was not
found by Ulfendahl, Khanna, and Heneghan [37], so there is some experimental dis-
agreement concerning this finding. Lumped-parameter micromechanical models by
Allen [3], which involved TM radial stiffness, and by Zwislocki [39], which involved
OHC stereocilia stiffness, introduced the idea of a radial TM resonance or “second
filter” to reconcile neural and mechanical tuning curves. The present calculations do
not show a significant radial TM motion. It would be premature, however, to rule
out the possibility that such a motion might be found.

Allen and Sondhi [2] showed that a small amount of axial rigidity reduces the
high-frequency slope of the tuning curve. We have included axial elastic coupling in
the model via an orthotropic plate model of the BM (see (3.2)). However, it turns
out that small elastic coupling (Dz/Dx = 0.1) has a negligible effect on the radial
mode shape and only slightly decreases the wavenumber. This decrease was previously
found by Holmes and Cole [17]. Increasing stereocilia stiffness slightly reduced the
real part of the wavenumber, while increasing fluid viscosity slightly increased the
imaginary part of the wavenumber. Neither stereocilia stiffness nor viscosity changes
seemed to affect the radial mode shapes.

Figure 4.6 shows the shear stresses along the lower surface of the TM in the gap
at 700 Hz. The shear stresses due to Couette flow (τc) and Poiseuille flow (τp) are
small relative to the pressure along the gap surface, but the shear stress induced by
stereocilia (τs) is of the same order as the gap pressure.

In the future we would like to extend the model to include fluid domains in the OC.
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Fig. 4.5. Detailed movements within the OC and TM. The direction and size of the arrows
denote the velocity direction and amplitude of OC and TM movements. A shear movement is present
between the TM and RL.
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Fig. 4.6. Shear stresses along the lower surface of the TM in the gap at 700 Hz. τp: Poiseuille
flow-induced shear stress, τc: Couette flow-induced shear stress, τs: shear stress due to stereocilia
stiffness.

A preliminary effort in that direction has been made by Steele [32], who concluded
that leakages between OC fluid domains must be important to mitigating the very
high pressures that would otherwise develop inside the OC. A preliminary study of
the effect of including the inner tunnel of Corti in our model corroborates that finding.
Modeling the basal turn at high frequencies would obviously be desirable, but that
presents difficulties in meshing the smaller OC and TM domains with the large fluid
domains (ST, SM+SV).

Our results show that the hybrid WKB-numerical approach is a good choice for
modeling the cochlea. It avoids a full 3D computation, and the number of transverse
sections required for good axial resolution in our hybrid method is far less than the
number of axial nodes required in full 3D numerics. This enables us to treat wave
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propagation in the complex cochlear geometry with cellular resolution (10 microns)
using a desktop workstation. Typical runtimes for a convergent solution at fixed
frequency in a single cross section are in the range of 5–20 minutes, depending on
initial guesses, while hours of computing time on a high-end computer are needed for
a full 3D numerical model [28].

Appendix A. Tangential fluid stress on a deformable boundary seg-
ment. Within a thin fluid layer near a deformable boundary other than the TM-RL
gap (Figure A.1), the tangential fluid velocity (q0) and pressure (P0) satisfy the lin-
earized oscillatory boundary layer equation

ρiωq0 = −R−1
0

∂P0

∂s
+ µR−2

0

∂2q0
∂n2

,(A.1)

where ρ and µ are the density and viscosity of the cochlear fluid, and n and s represent
the outward normal and tangential direction of the deformable boundary, respectively.
Let q∗0 = Vs0 − q0, where Vs0 is the local inviscid tangential fluid velocity. Then

µR−2
0

∂2q∗0
∂n2

− ρiωq∗0 = −∂P0

∂s
R−1

0 − ρiωVs0 = 0,(A.2)

where ω is the radian frequency and i =
√−1. Therefore,

R−2
0

∂2q∗0
∂n2

− iω
ν
q∗0 = 0,(A.3)

with q∗0 → 0 as n → ∞, and q∗0 = Vs0 − iωUs0 on n = 0, where Us0 is the boundary
segment tangential displacement and ν = µ/ρ is kinematic viscosity. Thus

q∗0 = (Vs0 − iωUs0)e−nR0

√
iω/ν ,(A.4)

Solid domain

Fluid domain

Thin boundary layer

iωUs0

qs0

s

n

ν/ω

Vs0

Fig. A.1. Dominant WKB expansion of the tangential fluid velocity profile in a fluid domain
with a deformable boundary segment. Vs0 = − 1

ρiωR0

∂P0
∂s

is the local inviscid tangential fluid velocity;

q0 is the tangential fluid velocity within the thin layer near the deforming boundary; Us0 is the
boundary segment tangential displacement, and iωUs0 is the tangential velocity.
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and the shear stress may be calculated from

τ = µR−1
0

∂q∗0
∂n

∣∣∣∣n=0 =
√
iων

(
1

iωR0

∂P0

∂s
+ iρωUs0

)
.(A.5)

Appendix B. MATLAB numerical solvers. The MATLAB PDE Toolbox
can solve elliptic and eigenvalue problems of the forms

−∇ · (c∇P0) + aP0 = f(B.1)

and

−∇ · (c∇P0) + aP0 = λdP0(B.2)

in bounded domain Ω, where c, a, f , d, and the unknown P0 are scalar, complex-
valued functions on Ω, and λ is an unknown eigenvalue. The following boundary
conditions are defined for scalar P0:

(1) Dirichlet: hP0 = r on the boundary ∂Ω.
(2) Generalized Neumann: n · (∇P0) + qP0 = g on ∂Ω,

where n is the outward unit normal. Here g, q, h, and r are complex-valued functions
defined on ∂Ω.

Note that, for solving the elliptic pressure P elli0 of a fluid domain (see (2.10)), we
let c = −1, a = k2, and f = 0 in (B.1), and for solving eigenvalue k2 and eigenvalue
pressure P eigen0 (see (2.10)), we let c = −1, d = −1, and a = 0 in (B.2). We
define q = 0, and g = 0 and g = −ρω2R0UnT 0 for rigid and deformable boundaries,
respectively, to provide the elliptic solver boundary conditions (see (2.11)). For the
eigenvalue solver we let g = 0 and q = ρω2Zn, where Zn = −P0/Un0 is the impedance
of deformable surfaces.

For the OC and TM solid domains, we use the following MATLAB Plane Strain
solver:

−∇ · (c⊗∇U0) + aU0 = f ,(B.3)

where c is a rank-four tensor, which can be written as four 2-by-2 matrices c11, c12,
c21, c22:

c11 =

(
2G+ ζ 0

0 G

)
, c12 =

(
0 ζ
G 0

)
,(B.4)

c21 =

(
0 G
ζ 0

)
, c22 =

(
G 0
0 2G+ ζ

)
,

where G, the shear modulus, is defined by G = E/2(1 + ϑ), and ζ in turn is defined
by 2Gϑ/(1 − 2ϑ). f = (fx, fy)T are volume forces. By the notation ∇ · (c ⊗ ∇U0),
we mean the 2-by-1 vector with (i, 1)-component:

2∑
j=1

(
∂

∂x
cij11

∂

∂x
+
∂

∂x
cij12

∂

∂y
+
∂

∂y
cij21

∂

∂x
+
∂

∂y
cij22

∂

∂y

)
U0j .(B.5)

When constructing the geometry of the OC, we define the left and right subdo-
main numbers of each segment in the geometry matrix. Three matrices of fixed format
contain the information about mesh points, the boundary segments, and the triangles
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when a triangular mesh is built on the domain Ω by MATLAB mesh generating and
refining facilities. The MATLAB function pdesdt can provide indices of the trian-
gles inside a subdomain. Thus we can discretize the above PDE coefficients cij and
boundary conditions on Ω to obtain a linear system which will give the approximate
solution at the mesh points of the unknown displacements (U0x and U0y). Because
the PDE coefficients cij contain the Young’s modulus E and the Poisson’s ratio ϑ,
the inhomogeneities of the OC are introduced by its E-map discretized on Ω. (Note
that the Poisson’s ratio ϑ is constant on all subdomains.)

Acknowledgments. The authors thank E. K. Dimitriadis, K. Iwasa, and B.
Shoelson for their helpful comments.

REFERENCES

[1] J.B. Allen, Cochlear micromechanics—A mechanism for transforming mechanical to neural
tuning within the cochlea, J. Acoust. Soc. Amer., 62 (1977), pp. 930–939.

[2] J.B. Allen and M.M. Sondhi, Cochlear macromechanics: Time domain solutions, J. Acoust.
Soc. Amer., 66 (1979), pp. 123–132.

[3] J.B. Allen, Cochlear micromechanics: A physical model of transduction, J. Acoust. Soc.
Amer., 68 (1980), pp. 1660–1670.

[4] J.B. Allen and S.T. Neely, Micromechanical models of the cochlea, Physics Today, 45 (1992),
pp. 40–47.

[5] G.K. Batchelor, An Introduction to Fluid Mechanics, Cambridge University Press, London,
1967, pp. 353–358.
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Abstract. The weak- or wave-turbulence problem consists of finding statistical states of a large
number of interacting waves. These states are obtained by forcing and dissipating a conservative
dispersive wave equation at disparate scales to model physical forcing and dissipation, and by pre-
dicting the spectrum, often as a Kolmogorov-like power law, at intermediate scales. The mechanism
for energy transfer in such systems is usually triads or quartets of waves. Here, we first derive a
small-amplitude nonlinear dispersive equation (a finite-depth Benney–Luke-type equation), which
we validate, analytically and numerically, by showing that it correctly captures the main determinis-
tic aspects of gravity wave interactions: resonant quartets, Benjamin–Feir-type wave-packet stability,
and wave-mean flow interactions. Numerically, this equation is easier to integrate than either the
full problem or the Zakharov integral equation. Some additional features of wave interaction are
discussed such as harmonic generation in shallow water. We then perform long time computations
on the forced-dissipated model equation and compute statistical quantities of interest, which we
compare to existing predictions. The forward cascade yields a spectrum close to the prediction of
Zakharov, and the inverse cascade does not.

Key words. water waves, wave turbulence, finite depth, quartets
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1. Introduction. The weak- or wave-turbulence problem consists of finding sta-
tistical states of a large number of interacting waves. These states are obtained by
forcing and dissipating a conservative dispersive wave problem at disparate scales
and predicting the spectrum, often as a Kolmogorov-like power law, at intermediate
scales. In dispersive waves, the energy transfer between waves occurs mostly amongst
resonant sets of waves, usually triads or quartets of waves. Here we consider only
quartets since triads do not exist in surface gravity waves. Quartet resonances occur
when the product of a pair of waves has a component with the same frequency and
wavenumber as the product of two other waves. For simple waves ei(kj ·x−ω(kj)t), this
means

k1 + k2 = k3 + k4,(1.1)

ω(k1) + ω(k2) = ω(k3) + ω(k4).(1.2)

In dispersive problems, these resonant sets are sparse, in contrast to nondispersive
problems, where interactions are dense in Fourier space ((1.2) is always satisfied). The
deterministic dynamics of isolated resonant quartets are modeled by sets of coupled
nonlinear differential equations for the wave amplitudes and are well understood (see
[10]). The dynamics of quartets which are not isolated (allowed to interact with other
quartets) are poorly understood. In the limit in which all possible quartets are active,
statistical theories of wave turbulence apply.
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The initial work on wave turbulence was done by Hasselmann [14], Benney and
Saffmann [7], and Benney and Newell [5], who introduced the statistical closures based
on the resonant wave interactions. Zakharov [29], through conformal transformations,
solved the resulting kinetic equation and obtained the power law for the Kolmogorov
spectrum. The particular physical context for these initial results was the ocean
surface gravity wave spectrum.

Majda, McLaughlin, and Tabak [19] started the numerical investigation of the pre-
dictions of weak turbulence theory using a nonlinear Schrödinger-like (NLS) model
equation. Adding large-scale forcing and dissipation to their one-dimensional model,
they investigated the turbulent cascades of energy and initially showed that
Zakharov’s [29] prediction for the energy spectrum did not hold, proposing a sim-
pler, yet unrigorous quartet-based scaling to explain their results. More recent work
by Cai et al. [9] and Zakharov et al. [30] shows that several meta-stable spectra can
coexist in the system, with the Zakharov spectra being among those observed.

Classical, small-amplitude periodic gravity waves, discovered by Stokes, are un-
stable to small modulations through the Benjamin–Feir instability. This result was
derived independently by Lighthill [15], Benjamin [1], and Whitham [26], and con-
firmed experimentally by Benjamin and Feir [2]. One can obtain the result by an-
alyzing the slow modulation of gravity waves and deriving an NLS equation for the
evolution of the wave envelope (see Hasimoto and Ono [13] and Zakharov [28], among
others). A plane wave solution of the NLS equation corresponds to the Stokes wave,
and it can be shown for waves of wavelength 2π

k in water of depth H to be unstable
when kH > 1.363. (Waves in deeper water are unstable, and the NLS switches from
“defocusing” to “focusing.”) Davey and Stewartson [11] generalized this result to two
spatial dimensions, deriving a more complicated NLS-type equation. This result for
two-dimensional waves was derived independently a few years earlier, however, by
Benney and Roskes [6], albeit in a slightly different form.

Here we investigate wave interaction and turbulence numerically for an equation
describing small-amplitude gravity water waves. We perform wave interaction ex-
periments and long time wave turbulence computations using a finite-depth Benney–
Luke (fBL) equation [21]. To validate this model, we first show, analytically and
numerically, that the fBL equation correctly captures the main deterministic aspects
of resonant gravity wave interactions: resonant quartets and the Benjamin–Feir-type
wave-packet stability. Some additional features of our numerical results are discussed:
the generation of harmonics in shallow water and the long time frequency downshift
of unstable wavepackets. For the wave-turbulence experiments, we compare the com-
puted wave spectrum to predicted spectra. We note that the use of a single partial
differential equation, rather than the full water wave equations, makes computing
complex surface wave dynamics possible. All of our work is for a one-dimensional free
surface. Although the computation of the two-dimensional free surface problem is
not fundamentally different, we restrict our attention to the one-dimensional problem
because of computational time constraints.

We note that there is a fundamental difference in the wave interaction problem
between the one-dimensional and two-dimensional free surface. In two dimensions
and infinite depth, the fundamental interaction mechanism is resonant quartets. The
quartet interaction coefficients, however, vanish as the waves become parallel to each
other, and therefore, for one-dimensional infinite depth, quartets are not important.
Thus in a one-dimensional deep water system, the strongest mechanism for energy
exchange between Fourier modes is the Benjamin–Feir instability, which is local in
Fourier space, and the slower quintet interaction, which requires quartic terms in the
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equations to be modeled correctly. The Benjamin–Feir instability is also relevant for
two-dimensional free surface problems.

For a one-dimensional free surface over water of finite depth, there exist quartet
interactions (which vanish as |k| → ∞ to agree with the deep water limit). Therefore
the one-dimensional finite depth problem is a computationally accessible useful test
for the more relevant two-dimensional problem. That is why we restrict our numerical
calculations to waves that are long enough to be influenced by the bottom.

The remainder of this paper is organized as follows. In section 2, we derive
the fBL equation. Next, in section 3, we derive the nonlinear Schrödinger equation
from the one-dimensional fBL equation using a multiple-scales approach, in a manner
similar to Hasimoto and Ono, who started from the full water wave equations. This
NLS equation correctly predicts the Benjamin–Feir instability limit, which we verify
numerically using the fBL equation. In section 4 we derive a set of new partial
differential equations that describe the coupled evolution of quartets and the induced
mean flow for one-dimensional finite-depth gravity waves. We then show that solutions
to these quartet equations closely match numerical solutions of the fBL equation,
when initialized with four waves that satisfy the resonance conditions. We also study
a model of the interaction of a primary wave and its quasi-resonant second harmonic
in shallow water to explain the quartet simulation results. Finally, in the last section,
we investigate wave turbulence numerically using the fBL model.

2. The Benney–Luke equation for gravity waves in finite depth. The
Benney–Luke equation [4] describes the evolution of three-dimensional, weakly non-
linear waves in shallow water. Recently Milewski and Keller [22] derived a more gen-
eral Benney–Luke model for waves in water of finite depth, shown here in a slightly
different (and corrected) form:

utt + Lu+ εN1(u, u) + ε2N2(u, u, u) = 0(2.1)

with quadratic terms

N1 = (∇u)
2
t + (Lu)

2
t + ut∆u− utLutt(2.2)

and cubic terms

N2 =
1

6
∇ · (∇u (∇u)

2
) + (∆u− L2u)

(
utLut − 1

2
(Lu)2

)
+ 2ut∆utLu

− 2ut(∇u · ∇Lu)t + 2Lu(∇u · ∇Lu) +
1

2
L2u(∇u)2.(2.3)

In this equation, ε = a/H 	 1 is the ratio of wave amplitude a to depth H, u(x, y, t)
is the velocity potential at the undisturbed free surface z = H, and L is the opera-
tor L = (−∆)

1
2 tanh[(−∆)

1
2 ], resulting in the dispersion relation ω2 = |k| tanh(|k|).

The water surface is given by H + η(x, y, t), where, to leading order, η = −ut.
The fBL is derived as follows. Using the depth H as both the horizontal and ver-
tical length scale, a as the scale for typical free surface displacements, a

√
gH as

the velocity potential scale, and
√

H/g as the time scale, the dimensionless water
wave equations can be written in terms of the velocity potential φ(x, y, z, t) and free
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surface displacement η(x, y, t) as

∆φ+ φzz = 0, 0 < z < 1 + εη,(2.4)

φz = 0, z = 0,(2.5)

ηt + ε(∇η · ∇φ)− φz = 0, z = 1 + εη,(2.6)

φt +
ε

2
(∇φ)2 +

ε

2
φ2

z + η = 0, z = 1 + εη.(2.7)

Expanding the two surface boundary conditions about z = 1 and eliminating η leads
to a single boundary condition in φ at z = 1, correct to O(ε2):

φtt + φz + εQ1(φ, φ) + ε2Q2(φ, φ, φ) = 0,(2.8)

where the quadratic terms are

Q1(φ, φ) =

[
1

2
((∇φ)2 + φ2

z)− φtφtz

]
t

+∇ · (φt∇φ)(2.9)

and the cubic terms are

Q2(φ, φ, φ) =

[
−1

2
φt((∇φ)2 + φ2

z)z + φtφ
2
tz +

1

2
φtzzφ

2
t

]
t

+ ∇ ·
[
1

2
(∇φ)((∇φ)2 + φ2

z)− (∇φ)φtφtz − 1

2
(∇φz)φ

2
t

]
.(2.10)

Next, we solve Laplace’s equation with the bottom boundary condition, obtaining

φ(x, y, z, t) = cosh[z(−∆)
1
2 ]Φ(x, y, t),(2.11)

with

u(x, y, t) = φ(x, y, 1, t) = cosh[(−∆)
1
2 ]Φ(x, y, t)(2.12)

being the velocity potential at z = 1. With this notation, it follows that φz(x, y, 1, t) =

Lu and φzz(x, y, 1, t) = −∆u, where L is defined as L = (−∆)
1
2 tanh[(−∆)

1
2 ] and has

the symbol L̂(k) = |k| tanh(|k|). Thus if û(k, t) is the Fourier transform of u(x, t),
then

Lu =
1

2π

∫ ∞

−∞
|k| tanh(|k|)eik·xû(k, t)dk.(2.13)

Substitution into the boundary condition (2.8) yields, after some simplification, the
fBL equation (2.1).

We note that since ε is the ratio of the amplitude of the free surface displacement
to depth, the wave slope appears to be arbitrary. However, note that for |k| large the
wave slope η̂x = O(|k|3/2û) and that in (2.1), Nj = O(|k|(1+3/2j)ûj), thus implying
that solutions of the fBL are relevant only if the wave slope is also small as waves get
short compared to depth. For the shallow limit, |k| small, η̂ = O(|k|û), η̂x = O(|k|2û),
and Nj = O(|k|(2+j)ûj), requiring only that η be small.
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A similar equation applies for gravity waves in water of infinite depth, now with
ε being the wave slope (ratio of the amplitude of the surface displacement to a char-

acteristic length scale), and L̂ = |k|. Therefore, L = (−∆)
1
2 , which, in the case of one

horizontal dimension, is L = −∂xH, where H is the Hilbert transform. For the deep-
water limit, the derivation must be modified slightly. The origin of the vertical axis
is shifted to the undisturbed fluid level, and the bottom boundary condition becomes
|∇φ| → 0, z → −∞. Expanding the two surface boundary conditions about z = 0 and
eliminating η again leads to (2.8). Solving Laplace’s equation with the new bottom
boundary condition modifies the depth dependence of the velocity potential:

φ(x, y, z, t) = ez(−∆)
1
2 Φ(x, y, t).(2.14)

Correspondingly, the velocity potential at z = 0 is just

u(x, y, t) = φ(x, y, 0, t) = Φ(x, y, t),(2.15)

and L is now defined as L = (−∆)
1
2 and has the symbol L̂(k) = |k|.

In the remainder of this paper we assume that the free surface is one-dimensional.

3. Nonlinear modulation of gravity waves. We consider the slow modula-
tion of one-dimensional gravity waves in water of finite depth using the fBL equation,
obtaining an NLS equation, in agreement with earlier results. This equation pre-
dicts instability for kH > 1.363. Of critical importance in the derivation of this NLS
equation is a wave-induced mean flow, which vanishes in the deep water limit.

3.1. Derivation of an NLS equation. In what follows, we employ the method
of multiple scales, introducing the slow space and time scales X = εx, T = εt, and
τ = ε2t. The NLS equation governs the evolution of wave packets or, alternatively, of
a narrowly peaked Fourier spectrum centered at kc. Thus one expands the governing
equations with k = kc + ε∆k. The equation in physical space is then recovered with
the duality ∂X ↔ iε∆k. Thus, in (2.1) we make the substitutions ∂t → ∂t+ε∂T +ε2∂τ

and ∂x → ∂x + ε∂X and, for L,

L → L− εi
∂L̂
∂k

∂X − 1

2
ε2

∂2L̂
∂k2

∂XX ,(3.1)

where kc is denoted k. The dispersion relation is

ω2(k) = L̂ = |k| tanh(|k|),(3.2)

and

∂L̂
∂k

= 2ωcg(k),(3.3)

∂2L̂
∂k2

= 2c2g + 2ω
∂cg

∂k
,(3.4)

where cg(k) is the group velocity.
After substitution, we have the following equation for u(x, t,X, T, τ):

utt + Lu+ ε

(
2utT − i

∂L̂
∂k

uX +N1(u, u)

)

+ ε2

(
2utτ + uTT − 1

2
ε2

∂2L̂
∂k2

uXX +N2(u, u, u) +M(u, u)

)
= 0,(3.5)
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where

M(u, u) = uT (uxx − Lutt) + 2ut(uxX − LutT ) + iut
∂L̂
∂k

uttX + 2ux(uxT + uXt)

+ 2uXuxt − 2iLu
∂L̂
∂k

utX + 2LuLuT − 2i
∂L̂
∂k

uXLut.(3.6)

Next, we expand u in the small parameter ε as u = u0 + εu1 + ε2u2 + · · · and look for
a single plane wave of slowly varying amplitude and wavelength 2π

k :

u0(x, t,X, T, τ) = A(X,T, τ)eiθ + ∗+B(X,T, τ),(3.7)

where θ = kx− ωt, B is the “mean-flow” component, and the ∗ denotes the complex
conjugate of the preceding terms. We note that although the waves are O(ε), the
mean flow Bx is O(ε2). Substitution into (3.5) leads to a series of equations at various
orders of ε. The O(ε) equation is

u1tt + Lu1 = −
(
2u0tT − i

∂L̂
∂k

u0X

)
−N1(u0, u0).(3.8)

The first terms on the right of the above equation are secular and impose that A is
moving at the group velocity. Thus, with ξ = X − cgT , the right-hand side becomes
3iω|k|2(σ2 − 1)A2e2iθ + ∗, where σ = tanh(|k|), A = A(ξ, τ), and

u1 =
3i|k|2(1− σ4)

4σ2ω
A(ξ, τ)2e2iθ + ∗.(3.9)

Proceeding to O(ε2) terms, the equation is

u2tt + Lu2 =

(
2u1tT − i

∂L̂
∂k

u1X

)
−
(
2u0tτ + u0TT − 1

2

∂2L̂
∂k2

u0XX

)
− (N1(u0, u1) +N1(u1, u0) +M(u0, u0) +N2(u0, u0, u0)) .(3.10)

In this equation, eliminating the secular terms in eiθ and mean flows (ei0) leads to
the two equations

Bξξ =
γ

c2g − 1
(AA∗)ξ(3.11)

and

iAτ + αAξξ = β̄|A|2A+
γ

2ω
BξA,(3.12)

where

γ(k) = 2kω + cg|k|2(1− σ2),

α(k) =
1

2

∂cg

∂k
,

β̄(k) =
9− 12σ2 + 13σ4 − 2σ6

4ωσ2
|k|4.

Integrating (3.11) to obtain the induced horizontal mean flow Bξ = γ
c2
g−1 |A|2 (we

ignore the constant of integration, which would correspond to an imposed weak flow)
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Fig. 3.1. Evolution of a single plane wave and two small side-bands using the one-dimensional
fBL equation. Here kH = 1.344 < 1.363, and stability is expected.

and substituting into (3.12) yields a nonlinear Schrödinger equation for the complex
amplitude A(ξ, η):

iAτ + αAξξ = β|A|2A,(3.13)

with

β(k) = β̄ +
γ2

2ω(c2g − 1)
.(3.14)

The well-known fact that the mean flow vanishes in the deep water limit can be
obtained by writing the mean flow in dimensional variables and taking H → ∞.

3.2. Benjamin–Feir instability. The plane wave solution of the NLS equation
A = A0e

−iβ|A0|2τ for constant A0 corresponds to the Stokes wave train to O(ε2)
(see [13]). Moreover, linear stability analysis (see [10] and [13]) shows that a plane
wave solution to (3.13) will be unstable if the product αβ < 0. Given the finite-depth
dispersion relation, we find α(k) < 0 for all k, and β(k) changes sign at k ≈ 1.363,
becoming positive for k larger than this value. This is the well-known Benjamin–Feir
instability criterion. Note that the induced mean-flow plays an important result in
this derivation, and in the deep-water limit this flow is not present.

To verify the stability predictions of this NLS equation, we numerically solve the
fBL equation with initial condition u(x, 0) = Aeikx + a(ei(k+∆k)x + ei(k−∆k)x) + ∗
corresponding to a primary plane wave of wavenumber k and two side-bands of the
next adjacent wavenumbers. We use a relative amplitude of a = 0.01A with ∆k = 1

32 .
Dimensionally, our wavenumber k corresponds to kH, and we take two values on either
side of the kH = 1.363 limit. Figures 3.1 and 3.2 show the results for kH = 1.344
and kH = 1.438, respectively, on the long time scale τ = ε2t. Note the instability
of the primary mode and the side-bands in the second figure. The calculations do
not show cyclic modulation and demodulation (or recurrence, present for some limits
of the Benjamin–Feir instability) due to the relatively large amplitude of the carrier
wave.

The extension to two dimensions (two-dimensional instabilities of plane waves) is
straightforward, and the fBL equation is an appropriate starting point for an asymp-
totic study (such as that of Davey and Stewartson and of Benney and Roskes) or
numerical experiments.

We note that in our calculations of the unstable Benjamin–Feir regime it is the
lower Fourier side-bands that dominate the spectrum. This “frequency downshift”
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Fig. 3.2. Evolution of a single plane wave and two small side-bands using the one-dimensional
fBL equation. Here kH = 1.438 > 1.363, and growth of the side-bands is observed.

has been observed experimentally [18] and is thought to be a three-dimensional phe-
nomenon requiring a combination of nonlinear wave modulation and dissipation [25].
We do not perform here detailed calculations of this phenomenon; however, we believe
that the equations used here (at least for two-dimensional free surface waves) could
be used for this purpose.

4. Resonant interaction of gravity waves. Nonlinear resonance, an impor-
tant mechanism for the transfer of energy among periodic wave trains, was pioneered
by Phillips, Benney, Longuet-Higgins, and others in the 1960s (see below). The basic
idea is that two or more distinct wave trains can combine to produce a perturbation
with a frequency that corresponds to the natural frequency of a free wave with the
same wavenumber. When this occurs, we have resonance, and the amplitude of the
response grows linearly. Resonance with three waves, known collectively as a triad, is
only possible when the dispersion curve has an inflection point (such as in capillary-
gravity waves). For pure gravity waves, resonance is possible only among sets of four
waves, known as quartets.

The idea of resonance for dispersive waves was first suggested by Phillips [24],
who showed that three gravity surface waves could resonantly force a fourth wave,
forming a quartet. Using the method of multiple scales, Benney [3] derived a coupled
set of ordinary differential equations describing the amplitude evolution of a quartet
of deep water gravity waves. Bretherton [8] showed that these types of coupled or-
dinary differential equations could be solved exactly using Jacobi elliptic functions.
Experimental confirmation of the existence and importance of resonant water wave
interactions was provided by Longuet-Higgins and Smith [17] and McGoldrick et al.
[20]. Hammack and Henderson [12] provide a review of experimental results concern-
ing resonant interaction theory for water waves, while the book by Craik [10] gives a
comprehensive treatment of wave interactions in general, including triads and quartets
in surface waves.

Here we derive a set of equations describing the resonant interaction of four gravity
waves in water of finite depth using the fBL equation. The derivation of these “quartet
equations” will closely parallel that of the NLS equation in the previous section,
except that we will consider the amplitudes of four surface waves as well as the
induced mean flow. A similar derivation in infinite depth leads to a set of equations
whose primary interaction coefficients are zero, indicating that there is no quartet
interaction in the one-dimensional “deep water” case. This is predicted by the analysis
of Longuet-Higgins [16] and shown analytically by Zahkarov [27]. This is not true of
two-dimensional infinite-depth gravity waves, nor of the one-dimensional finite-depth
waves, which we consider here (although the quartet coefficients vanish for |k| → ∞).
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4.1. Derivation of quartet/mean-flow equations. Beginning with the one-
dimensional fBL equation (2.1), we proceed with the method of multiple scales as
before, obtaining (3.5). Again, we expand u in the small parameter ε as

u = u0 + εu1 + ε2u2 + · · ·(4.1)

but now consider a set of plane waves of slowly varying amplitude:

u0(x, t,X, T, τ) = B(X,T, τ) +

4∑
j=1

Aj(X,T, τ)ei(kjx−ωjt) + ∗.(4.2)

Furthermore, we assume that the four plane waves form a resonant quartet satisfying
(1.1)–(1.2). Using the notation θ = kx− ω(k)t, the resonance condition is θ1 + θ2 =
θ3+θ4. Substitution into (3.5) again leads to a series of equations at various orders of
ε. The O(ε) equation is (3.8), and we introduce four frames ξj = X − cg(kj)T moving
at the four group velocities cg(kj) and assume that Aj = Aj(ξj , τ).

The quadratic term N1 is the product of two sums of eight terms each (four plane
waves and their conjugates). We need to keep track of only a subset of the sixty-four
possible quadratic terms, since we are interested in only those terms that can combine
to form quartets at the next order. We will ignore the creation of the conjugate modes,
since they are derivable from the main result for the primary modes. For example, at
this order we need to account for the θ1 + θ2 term, since θ4 = θ1 + θ2 − θ3, but can
ignore the −θ1 − θ2 term, since this is used only in forming the conjugate of the eiθ4

wave. With this in mind, the O(ε) problem can be written

u1tt + Lu1 = −i
∑
a,b

G(a, b)AaAbe
i(θa+θb),(4.3)

in which

G(a, b) = ωa(k
2
b − ω2

b L̂(kb)) + 2ωb(kakb − L̂(ka)L̂(kb))(4.4)

and a, b ∈ {1,−1, 2,−2, 3,−3, 4,−4}, with the notation k−1 = −k1, ω−1 = −ω1,
A−1 = A∗

1, etc. Here the sum is over those combinations of (a, b) that are relevant to
forming quartets, and it varies for which of the four waves is being created.

A particular solution to the O(ε) equation (4.3) is

u1 = −i
∑

a+b �=0

G(a, b)

L̂(ka + kb)− (ωa + ωb)2
AaAbe

i(θa+θb),(4.5)

where, again, the details of the sum (discussed below) depend on the primary wave
being formed. The restriction on the sum (a+b �= 0) is added because both numerator
and denominator vanish (there is no mean flow generated at this order). Proceeding
to O(ε2) terms, the equation is

u2tt + Lu2 =

(
2u1tT − i

∂L̂
∂k

u1X

)
−
(
2u0tτ + u0TT − 1

2

∂2L̂
∂k2

u0XX

)

− (N1(u0, u1) +N1(u1, u0) +M(u0, u0) +N2(u0, u0, u0)) .(4.6)
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In this equation, we seek to eliminate the secular terms in eiθj , j = 1, . . . , 4, and the
zero-mode terms (ei0). Upon transforming to the moving frame ξj = X − cg(kj)T ,
the linear terms on the right-hand side reduce to(

−2iωjAjτ − ωj
∂cg

∂k
(kj)Ajξjξj

)
eiθj +BTT −BXX ,(4.7)

where j = 1, . . . , 4.
On the right-hand side, the terms N1(u0, u1) +N1(u1, u0) will yield cubic terms,

since u1 contains quadratic terms (4.5) and u0 has the original plane waves. We
are interested in only combinations that yield a member of the quartet, i.e., terms
in eiθj . No ei0 terms are created here. The relevant contributions of the terms
N1(u0, u1) +N1(u1, u0) can be written

∑
a,b,c

G(a, b) [G(a+ b, c) +G(c, a+ b)]

L̂(ka + kb)− (ωa + ωb)2
AaAbAce

i(θa+θb+θc) + ∗,(4.8)

in which we keep the notation a, b, c ∈ {1,−1, 2,−2, 3,−3, 4,−4}. Note that c always
comes from the u0 term, and a and b come from the u1 term that was solved at O(ε).
Also, we keep the restriction that a + b �= 0. The notation G(a + b, c) means to use
ka + kb and ωa + ωb for ka and ωa in the expression (4.4).

The term ei(θa+θb+θc) will be equal to eiθj for one of the original θj when a, b,
and c are chosen appropriately. For example, to form terms in eiθ1 , we are interested
in the six permutations of the set {−2, 3, 4} since θ1 = −θ2 + θ3 + θ4. Evaluating
the sum in (4.8) with these six sets of a, b, c yields the term q1A

∗
2A3A4e

iθ1 , where q1

is a coefficient. However, we must also consider permutations of the sets {1, 1,−1},
{1, 2,−2}, {1, 3,−3}, and {1, 4,−4}, since they also lead to terms in eiθ1 . (In using
these values of a, b, c, however, care must be taken to avoid duplicates and the cases
when a + b = 0.) Thus, the contribution of N1(u0, u1) + N1(u1, u0) to the quartet
equations will be (

qjA
∗
l AmAn +

4∑
k=1

pjk|Ak|2Aj

)
eiθj(4.9)

for j = 1, . . . , 4, where l, m, and n depend on j and satisfy θj + θl = θm + θn.
The contributions of the cubic terms N2(u0, u0, u0) are very similar to those of the

quadratic terms N1(u0, u1) +N1(u1, u0), except that they come from u0 directly. We
again sum over five distinct groups of six permutations and obtain the same twenty
terms as in (4.9), but with different coefficients. We add these coefficients to those
obtained from the quadratic terms. The contribution of N2(u0, u0, u0) is∑

a,b,c

H(a, b, c)AaAbAce
i(θa+θb+θc) + ∗,(4.10)

in which

H(a, b, c) = ωaωbL̂(kb)(k
2
c + L̂2(kc)) + 2ωaωbL̂(kc)(kbωb − kcωb − kcωc)

+
1

2
k2

a(3kbkc + L̂(kb)L̂(kc)) +
1

2
L̂2(ka)(L̂(kb)L̂(kc − kbkc)− 2kakcL̂(kb)L̂(kc)).

Note that, like the quadratics, the cubics do not contribute any terms in ei0.
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Finally, M(u0, u0) gives both terms in eiθj and “mean-flow” terms in ei0:

4∑
j=1

(−2kjωj − cg(kj)(k
2
j − L̂2(kj)))(AjA

∗
j )ξj

+

4∑
j=1

(2kjωjBX + (L̂2(kj)− k2
j )BT )Aje

iθj .(4.11)

Equating terms from (4.6) in like powers of eiθ leads to a coupled set of five partial
differential equations governing the evolution of the resonant quartet and the “mean-
flow” term B:

BTT −BXX =

4∑
j=1

(2kjωj + cg(kj)(k
2
j − L̂2(kj)))(AjA

∗
j )ξj ,(4.12)

iAjτ +
1

2

∂cg

∂k
(kj)Ajξjξj =

αj

2ωj
A∗

l AmAn +
1

2ωj

(
4∑

k=1

βjk|Ak|2Aj

)

+
1

2ωj
(2kjωjBX + (L̂2(kj)− k2

j )BT )Aj(4.13)

for j = 1, . . . , 4, where θj + θl = θm + θn. Note that we have intentionally glossed
over some notational inconsistency by using X,T , and ξj as independent variables in
(4.12). Furthermore, the induced mean flows on any particular member of the quartet
from the other three members are rapidly varying on the time scale of (4.13), unless
group velocities are close. However, we will not be concerned with initial conditions
for (4.12) and (4.13) that involve spatial modulation of the four primary waves and
will thus treat (4.13) as a set of ordinary differential equations (see below).

Historically, the derivation of quartet equations was done for deep water, for
which spatial modulation effects are ignored since the mean-flow is known to be zero.
Thus (4.12) would not be present, B = 0 in (4.13), and these equations become
ordinary differential equations. Of course the dispersion relation ω2 = L̂ also changes
for deep water. As noted by Bretherton [8] for the two-dimensional deep-water case,
the primary interaction coefficients αi turn out to be equal. This is also true for
finite-depth quartet equations, which we have confirmed using the fBL model. For
deep water we find αi = 0, as expected. Since the αi are primarily responsible for the
exchange of energy among the four waves (the βjk modify the period and amplitude),
there is no interaction in the one-dimensional deep-water case.

4.2. Quartet simulations. To verify that (4.12) and (4.13) correctly capture
the finite-depth quartet interactions, we compare the solutions to these equations to
a simulation using the fBL equation. Since computing with these five coupled partial
differential equations is computationally intensive, we seek a simpler special case. By
choosing an initial condition in which the amplitude of the four primary waves is not
spatially modulated, we ignore the second term in (4.13) and (4.12) altogether, leaving
a set of four coupled ordinary differential equations. Although an exact solution
involving Jacobi elliptic functions is known for a set of ordinary differential equations
of this form (see [8]), we solve them numerically using a fourth-order Runge–Kutta
method, while we evolve the fBL equation in time using a pseudospectral method. The
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initial condition for both computations is the same. We pick four plane waves among
a discrete set of wavenumbers that satisfy the resonance conditions k1 + k2 = k3 + k4

and ω1+ω2 = ω3+ω4, and give them each an initial amplitude. The quartet equations
govern the four amplitudes as a function of τ = ε2t, while the simulation of the fBL
equation computes the evolution of all the Fourier modes.

The pseudospectral method used here was developed by Milewski and Tabak [23]
and involves the factoring of the fBL equation. Equation (2.1) can be also written as

(∂tt + L2)u = G(u),(4.14)

in which L2 = L = (−∂xx)
1
2 tanh[(−∂xx)

1
2 ] and G(u) = −εN1(u, u) − ε2N2(u, u, u).

We factor the left-hand side by introducing U(x, t) = (∂t − iL)u(x, t) and recast the
equation in terms of U as

Ut + iLU = G(U).(4.15)

Thus the free surface is, to leading order, η = −ut = −Re(U). To solve (4.15),
we transform it to Fourier space, introduce an integrating factor, and numerically
integrate using a Runge–Kutta scheme. Since we compute with U directly and not u,
we choose to initially set the quartet amplitudes to have equal values in terms of U .
The conversion to the amplitudes of u is straightforward. If u(x, t) =

∑4
j=1 Aje

iθj +∗,
then U(x, t) =

∑4
j=1 −2iωjAje

iθj and η(x, t) =
∑4

j=1 iωjAje
iθj + ∗. In the figures

below, we graph the absolute value of the relevant Fourier modes of U(x, t), i.e.,
|Uj | = 2ωj |Aj |.

A slight modification to the fBL equation (2.1) must be made before using our
pseudospectral method. The problem lies with the O(ε) quadratic terms which have
the term −utLutt. Because of this term, we cannot integrate (2.1) in the form given.
With the substitution utt = −Lu− εN1(u, u) +O(ε2), the quadratic term becomes

N̄1(u, u) = 2uxuxt + 2LuLut + utuxx + utL2u,(4.16)

and there is an additional cubic term in the equation which becomes

utt + Lu+ εN̄1(u, u) + ε2
(N2(u, u, u) + utL[N̄1(u, u)]

)
= 0.(4.17)

These modifications are similar to the formal manipulations that one uses to “regular-
ize” the Korteweg–de Vries (KdV) equation and obtain the Benjamin–Bona–Mahoney
(BBM) equation. There are also corresponding changes to the details of the quartet
equations, in particular to the definitions of the functions G(a, b) and H(a, b, c) in
(4.4) and (4.11), respectively. The new cubic term adds

ωaωb(k
2
c − L̂(kc))L̂(kb + kc) + 2ωaωc(kbkc − L̂(kb)L̂(kc))L̂(kb + kc)(4.18)

to the function H.
Figure 4.1 shows the numerical solution of the four coupled quartet equa-

tions using a fourth-order Runge–Kutta scheme. We use the quartet wavenumbers
(k1, k2, k3, k4) = (81, 46, 142,−15)∆k, where ∆k = 1

64 , and the corresponding fre-
quencies ωj to precompute the twenty quartet coefficients. The initial amplitude of
each mode Uj is 0.2. For this quartet, energy is periodically exchanged between the
four waves which is inherently on the τ = ε2t time scale. The total energy, given by∑4

j=1
1

αj
|Aj |2, remains constant.

Figure 4.2 shows the pseudospectral simulation of the fBL equation initialized
with energy only in the same four wavenumbers considered above. We use a total of
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Fig. 4.1. Numerical solution of the quartet equations using a fourth-order Runge–Kutta scheme.
The wavenumbers are (k1, k2, k3, k4) = (81, 46, 142,−15)∆k, where ∆k = 1

64
. The initial amplitude

is Uj = 0.2.
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Fig. 4.2. Simulation of the fBL equation initialized with four waves of the same initial am-
plitude. The wavenumbers are (k1, k2, k3, k4) = (81, 46, 142,−15)∆k, where ∆k = 1

64
. The initial

amplitude is Uj = 0.2, ε = .05, and ∆t = 0.1. We use 1024 wavenumbers in this computation.

1024 wavenumbers with the initial amplitude of each member of the quartet being
Uj = 0.2. Note that energy is periodically exchanged between the four waves on
the long time scale τ = ε2t, as predicted (here ε = .05). On a shorter time scale,
the longest wave in the quartet k4 = −15/64 periodically exchanges energy with
its near-resonant second harmonic, the k = −30/64 mode. This accounts for the
smaller oscillations in the amplitude of this mode. In the next section, we derive the
equations governing this interaction and show that they can be combined with the
quartet equations to correctly predict the simulation results.

Quartets containing wavenumbers closer to the shallow water regime (kH < 1)
will exhibit prominent second harmonic interaction, as the dispersion curve is nearly
linear in this range. This draws energy from the primary quartet and may account
for the slight variation in period between the two quartet graphs. Quartets without
this second-harmonic interaction do not exist for this one-dimensional model because
quartets containing many larger wavenumbers (kH > 1) are very weakly coupled since
the αj → 0 as H → ∞, and other mechanisms such as nonresonant interactions and
Benjamin–Feir instability are relatively more significant.
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4.3. Derivation of second-harmonic interaction. Beginning with the one-
dimensional fBL equation (2.1), we proceed with the method of multiple scales. We
restrict our attention to the slow time scale T = εt since we expect the interaction
to occur on this scale. We also ignore slow spatial variation, consistent with our
integration of the quartet equations above. With the substitution ∂t → ∂t + ε∂T we
have the following equation for u(x, t, T ):

utt + Lu+ ε (2utT +N1(u, u)) = 0,(4.19)

where higher-order terms are unnecessary. Next, we expand u as u = u0 + εu1 + · · ·
with

u0(x, t, T ) = A1(T )e
i(kx−ωt) +A2(T )e

i(2kx−ω(2k)t) + ∗.(4.20)

With the notation ω1 = ω(k), ω2 = ω(2k), θ1 = kx − ω1t, and θ2 = 2kx − ω2t, the
balance of terms at O(ε) in (4.19)

2ω1A1T eiθ1 + 2ω2A2T eiθ2 + ∗ =
∑
a,b

G(a, b)AaAbe
i(θa+θb),(4.21)

in which the function G(a, b) is the same as that derived before for the quadratic terms
(4.4). We can only get terms in e2ik with a = b = 1, for which the right-hand side
becomes G(1, 1)A2

1e
i(2kx−2ω1t) = G(1, 1)A2

1e
iθ2e−i∆t, where the frequency mismatch

is ∆ = 2ω1 − ω2. In a similar way, we can create terms in eik with (a, b) = (−1, 2)
or (2,−1), giving a right-hand side of (G(−1, 2) + G(2,−1))A∗

1A2e
iθ1ei∆t. Thus the

wave-second-harmonic interaction equations are

dA1

dT
= δ1A

∗
1A2e

i∆t, δ1 =
G(−1, 2) +G(2,−1)

2ω1
< 0,(4.22)

dA2

dT
= δ2A

2
1e

−i∆t, δ2 =
G(1, 1)

2ω2
> 0.(4.23)

For k 	 1, ∆ = k3, δ1 = −3k2, and δ2 = (3/2)k2. The transformations A1 → A1e
i∆t,

A2 → A2e
i∆t remove the periodic coefficient (detuning term), yielding

dA1

dT
= −i∆A1 + δ1A

∗
1A2e

i∆t,
dA2

dT
= −i∆A2 + δ2A

2
1e

−i∆t.(4.24)

These equations for ε = O(∆) can be solved analytically. Writing A1 = ρ1e
iφ1 ,

A2 = ρ2e
iφ2 , the equations (4.22), (4.23) conserve

E = − 1

δ1
ρ2
1 +

1

δ2
ρ2
2,(4.25)

H = ρ2
1ρ2 sin(φ2 − 2φ1)− ∆

4

(
1

δ1
ρ2
1 +

1

δ2
ρ2
2

)
,(4.26)

where H is the Hamiltonian in appropriate coordinates. From these, one can conclude
|A1|2 = δ1I(t) + c1, |A2|2 = δ2I(t) + c2, where(

dI

dT

)2

= 4(δ1I + c1)
2(δ2I + c2)− 4

(
H +

∆

2δ2
(δ2I + c2)

)2

.(4.27)

The solution can be written in terms of elliptic functions. For the results described
below, I(0) = 0, c1 = −δ1E, c2 = 0, and H + (∆/4)E = 0.
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Fig. 4.3. Solution of the second-harmonic interaction equations with k = −15/64. The initial
amplitude is U1 = 0.2 for the primary mode and U2 = 0 for the second harmonic. (ε = .05.)
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Fig. 4.4. Numerical solution of the quartet equations with second-harmonic interaction using
a fourth-order Runge–Kutta scheme. The wavenumbers are (k1, k2, k3, k4) = (81, 46, 142,−15)∆k,
where ∆k = 1

64
. The initial amplitude is Uj = 0.2.

For the quartet of waves that we consider here, only the mode k4 = − 15
64 will

generate significant second harmonic energy. Figure 4.3 shows the solution of (4.22),
(4.23). The primary mode is k = − 15

64 with initial amplitude U1 = 0.2, as in the
quartet simulation. The 2k mode has zero initial amplitude. (Note that, for consis-
tency, we show the results in terms of our computational variable U = (∂t − iL)u, as
discussed above.)

A pseudospectral simulation of the fBL equation initialized with energy in only
the single mode k = − 15

64 yields a virtually identical result.
Finally we augment the quartet equations (4.13) with the second-harmonic inter-

action term (for the k4 = − 15
64 mode only) and the second harmonic equation (4.23).

Although these equations combine two time scales and thus are not formally correct,
they give results virtually identical (see Figure 4.4) to those of the fBL simulation of
Figure 4.2.

5. Gravity wave turbulence simulations. Since we have shown that the one-
dimensional fBL equation captures the deterministic dynamics of the water wave
problem, we turn our attention to the simulation of dispersive wave turbulence using
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this equation. Statistical dispersive wave-turbulence theory relies on a closure (see
[14], [7], [5], [29]) that, in essence, restricts the dynamics to the resonant set of waves
satisfying (1.1), (1.2). Briefly, the closure is based on writing (4.15) in Fourier space,

Ût + iωÛ =

∫
Q(k1, k2, k3, k)Û1Û2Û3δ(k1 + k2 + k3 − k)dk1dk2dk3,(5.1)

where Û1 = Û(k1, t). The expression for the “collision” kernel Q is essentially the
quartet coefficients computed previously. From (5.1) one obtains the equation for the
second-order moment nk = 〈Û(k, t)Û∗(k, t)〉:

dnk

dt
=

∫
2 Re Q〈Û1Û2Û3Û

∗〉δ(k1 + k2 + k3 − k)dk1dk2dk3,(5.2)

where 〈·〉 denotes the ensemble average. Next, one writes the equation for the evo-
lution of the fourth-order moments appearing in the integrand of (5.2) in terms of
sixth-order moments. The closure consists in reducing these sixth-order moments to
products of second-order moments (a quasi-Gaussianity assumption). This leads to a
relation of the form

〈Û1Û2Û3Û
∗〉 ∼ Q

n2n3nk + n1n3nk + n1n2nk − n1n2n3

i(ω1 + ω2 + ω3 − ωk)
.(5.3)

Now, substituting (5.3) into (5.2) and replacing the reciprocal of the sum of frequencies
by δ(ω1+ω2+ω3−ωk), one obtains a closed equation that concentrates the dynamics
on the resonant set. (The difference in the sign in front of k3 and ω3 in these delta
functions and in (1.1), (1.2) is just a matter of convention.)

The steady state (dnk

dt = 0) of this resulting equation has two types of solutions:
solutions in statistical equilibrium and solutions with finite fluxes (cascades) of energy.
The latter have been of particular interest in attempts to describe the ocean’s wave
spectrum.

Since these cascades require that the governing equation (4.15) be forced and
dissipated, we augment the equation by adding forcing and dissipation terms (which
are meant to model physical processes such as wind forcing, viscous damping, etc.) at
various ranges of wavenumbers. Then, from long time computations, we observe the
evolution of the energy spectrum until a statistical steady state is reached. Since both
energy and wave action are conserved in this system, we must dissipate at both ends
of the Fourier spectrum and force at some intermediate scale. Thus, the factored form
of the fBL equation (4.15) in Fourier space, with forcing and dissipation, becomes

Ût + iL̂Û = Ĝ(Û) + F̂ ,(5.4)

in which we define the forcing-dissipation function F̂ as

F̂ (k) =




frÛ for kfl∆k ≤ |k| ≤ kfh∆k,

dr1|k|−2Û for kdl∆k ≤ |k| ≤ kdh∆k,

dr2|k|2Û for |k| ≥ Kd∆k,
0 otherwise.

(5.5)

Here kfl, kfh, kdl, kdh, and Kd are integers which define the range of forcing and
the two dissipation ranges, the latter being |k| > Kd∆k. The forcing rate fr is pos-
itive, while the dissipation rates dr1 and dr2 should be negative. The closure theory
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described above appears insensitive on the particular form of the forcing, and this is
confirmed by the numerical simulations. Various forms of forcing (both deterministic
and random) and dissipation (“standard” viscosity and “hyper” viscosity) were ex-
perimented with, and the results did not change appreciably. Our approach is similar
to that of Majda and coworkers (see [19] and [9]), who perform computations with a
simpler NLS-like model equation.

6. Direct cascades. To generate a direct (or forward) cascade over a significant
range, we force at low wavenumbers and dissipate at both the lowest and highest
wavenumbers. We construct the experiment such that the finite-depth regime lies in
the inertial range (the range of wavenumbers that are neither forced nor dissipated) for
reasons mentioned in the introduction. Figure 6.1 compares the dispersion relations
of the shallow water (ω = k), infinite-depth (ω = |k| 12 ), and arbitrary-depth (ω =

(|k| tanh |k|) 1
2 ) problems. We will arbitrarily denote the range 0.5 < k < 2.5 as the

finite-depth regime and indicate this range in our numerical result.
We compute the correlation function

p(k) = û(k, t)û∗(k, t),(6.1)

where the overbar denotes time average (after a statistical steady state is reached).
It can be shown that

p(k) ∼ 1

2π

∫ ∞

−∞
u(x, t)u(x+ r, t)e−ikrdr,(6.2)

when correlations are spatially independent.
Figure 6.2 shows a typical weak turbulence spectrum that we obtain using the one-

dimensional fBL model. The computation uses 2048 dealiased modes with ∆k = 1
100 .

The parameters chosen are ε = 0.05, fr = 0.00001, dr1 = −0.0009, and dr2 = −0.01.
Initially, the system has significant energy only in the lower wavenumbers Û(4∆k ≤
k ≤ 12∆k) = 0.5. All other modes are initialized to Û(k) = 0.00001. We show the
average spectrum from t = 150, 000 to t = 200, 000, computed with the methods
described earlier with ∆t = 0.1.

There are six regions of the spectrum divided by five vertical dotted lines. From
left to right, these are (1) the low wavenumber dissipation range, (2) the forcing range,
(3) the “shallow” inertial range, (4) the “finite depth” inertial range, (5) the “infinite
depth” inertial range, (6) the high wavenumber dissipation range.

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

k

ω
(k

)

Fig. 6.1. Finite-depth dispersion relation ω(k) = (|k| tanh(|k|)) 12 . As indicated in the figure,
ω ∼ |k| as k → 0, and ω ∼ (|k|)1/2 for k large. The vertical lines in the figure reflect an arbitrary
choice for the transition region (0.5 < k < 2.5) between these two power laws.
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Fig. 6.2. Experiment 1. Direct cascade using the fBL model with forcing between k = 4∆k
and k = 8∆k and dissipation from k = ∆k to k = 3∆k and for k > 512∆k. Here ∆k = 1

100
and

ε = 0.05. We estimate p(k) by the time average of û(k, t)û∗(k, t) for t = 150, 000 to t = 200, 000
with data every t = 500.

We note that some features of the spectrum seem to change in correlation with
the shape of the dispersion curve. In the shallow and finite-depth regimes, there is a
good agreement with the weak turbulence theory of Zakharov [27] described above.
He predicts a direct cascade of p(k) ∼ |k|−10/3 (in the present variables), subject to
some strict conditions on the wave amplitudes (which are not strictly satisfied in the
computations). Using least-square interpolation of the data yields p(k) ∼ |k|α with
−3 > α > −3.4, depending on where the endpoints of the inertial range are chosen.
The Zakharov slope is shown in Figure 6.2 for comparison. We also note that in the
finite-depth region (region 4) the data is more spread. This is probably because in this
regime the discrete quartets are sparser, whereas in shallower water, wave interaction
is denser, and nondispersive wave steepening plays a more important role.

6.1. Inverse cascade. To obtain an inverse cascade (from high to low wavenum-
bers) we modified the forcing and dissipation parameters from the previous experi-
ment. We force near the deep water regime, between wavenumbers 2.25 and 2.50.
Again, we use 2048 dealiased modes, now with ∆k = 1

200 , ε = 0.05, fr = 0.0006,

dr1 = −0.75, and dr2 = −0.50. Initially, all modes are initialized to Û(k) = 0.
We show the average spectrum from t = 150, 000 to t = 200, 000, computed with the
methods described earlier with ∆t = 0.1.

The results are shown in Figure 6.3. The results here are less clear. In the shallow
water regime there appears to be a region with p(k) ∼ |k|α, with −2.2 > α > −2.4.
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Fig. 6.3. Inverse cascade using the fBL model with forcing between k = 450∆k and k = 500∆k
and dissipation from k = ∆k to k = 2∆k and for k > 512∆k. Here ∆k = 1

200
and ε = 0.05. We

estimate p(k) by the time average of û(k, t)û∗(k, t) for t = 250, 000 to t = 300, 000 with data every
t = 1000.

(We show a slope of α = −7/3 for reference.) Zakharov’s [27] prediction for the shallow
water inverse cascade is |k|−3.0. The reasons for this difference may be related to the
generation of coherent structures (solitons) which are excluded from the theory (by
assuming sufficiently small amplitudes compared to dispersive effects). In fact, the
more recent work on NLS [9], [30] explores the role of coherent structures in the
various spectra observed.

At finite depth, our computed spectrum drops much more steeply. The two visible
peaks in the spectrum are due to the forcing: the peak at higher wavenumbers is over
the forcing region, and the second peak is a direct subharmonic generation from the
forced modes.

7. Conclusion. We have derived a Benney–Luke model for waves in arbitrary
depth and verified its utility by demonstrating its accuracy in important deterministic
water wave phenomena: Benjamin–Feir wave packet instability, resonant quartet in-
teractions, and harmonic generation in shallow water. We have then used the model,
together with forcing and dissipation, to simulate wave turbulence. The numerical
spectra that we obtain agree with Zakharov’s prediction for the direct cascades but
not for inverse cascades. Possible reasons for the departure from Zakharov’s prediction
include the narrow range of applicability of his theory in this regime to avoid soli-
tons. The present work validates the use of the fBL equation for the more interesting
problem of two-dimensional turbulent simulations.
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Abstract. We consider a problem of eliminating the unwanted time-harmonic noise on a pre-
determined region of interest. The desired objective is achieved by active means, i.e., by introducing
additional sources of sound called control sources, which generate the appropriate annihilating acous-
tic signal (antisound). A general solution for the control sources has been obtained previously in both
continuous and discrete formulation of the problem. In the current paper, we focus on optimizing the
overall absolute acoustic source strength of the control sources. Mathematically, this amounts to the
minimization of multivariable complex-valued functions in the sense of L1 with conical constraints,
which are only “marginally” convex. The corresponding numerical optimization problem appears
very challenging even for the most sophisticated state-of-the-art methodologies, and even when the
dimension of the grid is small and the waves are long.

Our central result is that the global L1-optimal solution can, in fact, be obtained without solving
the numerical optimization problem. This solution is given by a special layer of monopole sources
on the perimeter of the protected region. We provide a rigorous proof of global L1 minimality for
both continuous and discrete optimization problems in the one-dimensional case. We also provide
numerical evidence that corroborates our result in the two-dimensional case, when the protected
domain is a cylinder. Even though we cannot fully justify it, we believe that the same result holds
in the general case, i.e., for multidimensional settings and domains of arbitrary shape. We formulate
this notion as a conjecture at the end of the paper.

Key words. noise cancellation, control sources, minimization of amplitude, volume velocity,
surface monopoles
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1. Introduction. The area of active control of sound has a rich history of de-
velopment, both as a chapter of theoretical acoustics and in the perspective of many
different applications. Any attempt to adequately overview this extensive area in the
framework of a focused research publication would obviously be deficient. Therefore,
we simply refer the reader to monographs [3, 5, 11] that, among other things, contain
a detailed survey of the literature.

The formulation of the problem that we use in the current paper has been intro-
duced and studied in our previous work [7]; here, we analyze this formulation from the
standpoint of optimization. Let Ω be a given domain, Ω ⊂ R

n, where the space di-
mension n = 2 or n = 3. (These two cases are most interesting for applications.) The
domain Ω can be either bounded or unbounded; for reasons of simplicity we will fur-
ther assume that Ω is bounded. Let Γ be the boundary of Ω: Γ = ∂Ω. Both on Ω and
on its (unbounded) complement Ω1 = R

n\Ω we consider the time-harmonic acoustic
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field u = u(x ), x ∈ R
n, governed by the nonhomogeneous Helmholtz equation:

Lu ≡ ∆u + k2u = f.(1.1)

Equation (1.1) is subject to the Sommerfeld radiation boundary conditions at infinity,
which for n = 2 are formulated as

u(x ) = O(|x |−1/2),
∂u(x )

∂|x | + iku(x ) = o(|x |−1/2) as |x| −→ ∞,(1.2a)

and for n = 3 as

u(x ) = O
(|x |−1

)
,

∂u(x )

∂|x | + iku(x ) = o
(|x |−1

)
as |x | −→ ∞.(1.2b)

The Sommerfeld boundary conditions specify the direction of wave propagation and
distinguish between the incoming and outgoing waves at infinity by prescribing the
outgoing direction only; they guarantee the unique solvability of the Helmholtz equa-
tion (1.1) for any compactly supported right-hand side f = f(x ). We define supp f =
{x |f(x ) 
= 0}.

The source terms f = f(x ) in (1.1) can be located on both Ω and its complement
Ω1 = R

n\Ω; to emphasize the distinction, we define

f = f+ + f−,(1.3)

where the sources f+ are interior, supp f+ ⊂ Ω, and the sources f− are exterior,
supp f− ⊂ Ω1, with respect to Ω. Accordingly, the overall acoustic field u = u(x ) can
be represented as the sum of two components:

u = u+ + u−,(1.4)

where

Lu+ = f+,(1.5a)

Lu− = f−.(1.5b)

Note that both u+ = u+(x ) and u− = u−(x ) are defined on the entire R
n; the

superscripts “+” and “−” refer to the sources that drive each of the field compo-
nents, rather than to the domains of these components. The setup described above is
schematically shown in Figure 1.1.

Hereafter, we will call the component u+ of (1.4), (1.5a) sound, or the “friendly”
part of the total acoustic field; the component u− of (1.4), (1.5b) will accordingly
be called noise, or the “adverse” part of the total acoustic field. In the formulation
that we are presenting, Ω will be a (predetermined) region of space to be shielded.
This means that we would like to eliminate the noise inside Ω while leaving the sound
component there unaltered. In the mathematical framework that we have adopted,
the component u− of the total acoustic field, i.e., the response to the adverse sources
f− (see (1.3), (1.4), (1.5)), will have to be cancelled on Ω, whereas the component
u+, i.e., the response to the friendly sources f+, will have to be left unaffected on
Ω. A physically more involved but conceptually easy-to-understand example can be
given to illustrate the foregoing idea of shielding: inside the passenger compartment
of an aircraft we would like to eliminate the noise coming from the propulsion system
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Ω

Γ

R

f

g

f

+

−

Ω1

Fig. 1.1. Geometric setup.

located outside the fuselage, while not interfering with the ability of the passengers
to listen to the in-flight entertainment programs or to converse.

The concept of active noise control that we will be discussing implies that the
component u− is to be suppressed on Ω by introducing additional sources of sound
g = g(x ) exterior with respect to Ω, supp g ⊂ Ω1, so that the total acoustic field
ũ = ũ(x ) can now be governed by the equation (cf. formulae (1.1), (1.3))

Lũ = f+ + f− + g(1.6)

and coincide with only the friendly component u+ on the domain Ω:

ũ|x∈Ω = u+|x∈Ω.(1.7)

The new sources g = g(x ) of (1.6)—see Figure 1.1—will hereafter be referred
to as the control sources or simply controls. An obvious solution for these control
sources is g = −f−. This solution, however, is excessively expensive. One one hand,
the excessiveness comes from the information-type considerations, as the solution
g = −f− requires explicit and detailed knowledge of the structure and location of the
sources f−. As shown in [7], this knowledge is, in fact, superfluous. On the other hand,
the implementation of the solution g = −f− may encounter most serious technical
difficulties. In the example above, it is obviously not feasible to directly counter
the actual noise sources, which are aircraft propellers or turbofan jet engines located
on, or underneath, the wings. Therefore, solutions of this noise control problem
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other than the most obvious one may be preferable from both the theoretical and
practical standpoints. The general solution for the control sources g was obtained in
our previous work [7], and we describe it in section 2.

Before proceeding, let us note only that in the current paper we focus on the
case of the standard constant-coefficient Helmholtz equation (1.1), which governs
the acoustic field and is valid throughout the entire space R

n. This allows us to
make subsequent analysis most straightforward. As a matter of fact, other, more
complex, cases that involve variable coefficients and possibly nonlinearities in the
governing equations over some regions, as well as different types of far-field behavior,
discontinuities in the material properties, etc., can be considered as well. Approaches
to obtaining solutions for active controls in these cases are outlined in our previous
paper [7] for the continuous formulation of the problem, and in the monograph by
Ryaben’kii [15, Part VIII] for the discrete formulation of the problem.

The material in the rest of the paper is organized as follows. In section 2, we
introduce the control sources for the continuous formulation of the problem. In sec-
tion 3, we obtain the control sources in the discrete formulation of the problem, i.e., on
the grid. In section 4, we discuss minimization of the overall acoustic source strength
of active controls that we have constructed, which mathematically amounts to the
optimization in the sense of L1. We present convincing two-dimensional numerical
evidence, as well as a rigorous one-dimensional proof, of the global L1-optimality of a
particular layer of monopole sources concentrated on the perimeter of the protected
region. We believe that the combination of computations in two space dimensions and
general proof in one space dimension cannot be a mere coincidence. As such, even
though we cannot fully justify it, we formulate the corresponding general result on
global L1-optimality of surface monopoles as a conjecture in the concluding section 5.
This conjecture basically implies that the aforementioned L1-optimization problem
can be solved without using any numerical optimization techniques.

2. Continuous control sources.

2.1. General solution. As demonstrated in [7], the general solution for the
control sources g = g(x ) is given by the following formula (Ω1 = R

n\Ω):

g(x ) = −Lw
∣∣∣
x∈Ω1

,(2.1)

where w = w(x ), x ∈ Ω1, is a special auxiliary function-parameter that parameterizes
the family of controls (2.1). The requirements that the function w(x ) must meet
are, in fact, relatively “loose.” At infinity, it has to satisfy the Sommerfeld boundary
conditions (1.2a) or (1.2b). At the interface Γ, the function w and its normal derivative
have to coincide with the corresponding quantities that pertain to the total acoustic
field u given by formula (1.4):1

w
∣∣∣
Γ
= u
∣∣∣
Γ
,

∂w

∂n

∣∣∣∣
Γ

=
∂u

∂n

∣∣∣∣
Γ

.(2.2)

Other than that, the function w(x ) used in (2.1) is arbitrary, and consequently formula
(2.1) defines a large family of control sources, which, as will be seen in section 4,
provides ample room for optimization. To make the discussion in the current paper

1In practice, the quantities u and ∂u
∂n

on Γ can be measured and supplied to the control system
as the input data.



OPTIMIZATION OF ACOUSTIC SOURCE STRENGTH 1145

self-contained, we briefly outline below the justification for formula (2.1) as a general
solution for controls, while referring the reader to [7] for further detail.

Introducing the fundamental solution G = G(x ) of the Helmholtz operator L of
(1.1) for n = 2,

G(x ) = − 1

4i
H

(2)
0 (k|x |),(2.3a)

where H
(2)
0 (z) = J0(z) − iY0(z) is the Hankel function of the second kind, and for

n = 3,

G(x ) = −e−ik|x |

4π|x | ,(2.3b)

we can obviously represent the sound portion u+ = u+(x ) of the overall acoustic field
that satisfies (1.5a) everywhere on R

n as follows:

u+(x ) =

∫
Ω

G(x − y)f+(y)dy =

∫
Ω

G(x − y)Lu+(y)dy , x ∈ R
n.(2.4)

Consequently, applying the classical Green’s formula (see, e.g., [18] or [24]) to the
function u+ = u+(x ) on Ω, we have∫

Γ

(
u+

∂G

∂n
− ∂u+

∂n
G

)
dsy = 0, x ∈ Ω,(2.5)

where integrals in (2.5) are, again, convolutions. Similarly, applying the same Green’s
formula on Ω to u− = u−(x ) and using (2.5), we obtain

u−(x ) =

∫
Γ

(
u− ∂G

∂n
− ∂u−

∂n
G

)
dsy =

∫
Γ

(
u
∂G

∂n
− ∂u

∂n
G

)
dsy , x ∈ Ω.(2.6)

Therefore, from (2.6) we can conclude that the desired annihilating acoustic signal
v = v(x ) that cancels out the unwanted noise on Ω can be obtained as

v(x ) = −
∫
Γ

(
u
∂G

∂n
− ∂u

∂n
G

)
dsy ,(2.7)

so that for x ∈ Ω we indeed have

[u(x ) + v(x )]x∈Ω = u+(x ).

To actually implement the annihilating signal v of (2.7), we introduce the auxiliary
function w = w(x ) on R

n that satisfies the aforementioned conditions at the interface
Γ and at infinity, and apply the Green’s formula to w, which yields

w(x ) −
∫
Ω

GLwdy =

∫
Γ

(
w
∂G

∂n
− ∂w

∂n
G

)
dsy , x ∈ Ω.(2.8)

As w(x ) satisfies the Sommerfeld conditions (1.2a) or (1.2b), we obviously have
w(x ) =

∫
R

n GLwdy , x ∈ R
n, which, along with formulae (2.2) and (2.7), allows

us to transform equality (2.8) to

v(x ) = −
∫
Ω1

GLwdy .(2.9)
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Equation (2.9) implies that for any w = w(x ) chosen as described above, formula
(2.1) describes an appropriate control function.

Conversely, assume that g = g(x), supp g ⊂ Ω1, is a control field such that the
solution ũ = ũ(x ) of (1.6) subject to the Sommerfeld conditions (1.2a) or (1.2b)
satisfies equality (1.7). Then, by choosing w = w(x ), x ∈ R

n, as the solution to the
nonhomogeneous equation

−Lw = g − f+,

subject to the corresponding Sommerfeld condition, (1.2a) or (1.2b), one can repre-
sent g in the form (2.1); see [7]. Altogether, we obtain that formula (2.1) describes
the general solution for controls. In other words, for any w(x ), formula (2.1) pro-
vides an appropriate control field g(x ), and any appropriate control field g(x ) can be
represented in the form (2.1) with some particular choice of w(x ).

Let us emphasize several important properties of controls (2.1). First of all,
from the foregoing derivation we can see that to obtain these controls one needs no
knowledge of the actual exterior sources of noise f−. In other words, neither their
location, nor structure, nor strength are required. All one needs to know is u and ∂u

∂n
on the perimeter Γ of the protected region Ω. As has been mentioned, in a practical
setting u|Γ and ∂u

∂n |Γ can be interpreted as measurable quantities that are supplied to
the control system as the input data. Moreover, these measurable quantities refer to
the overall acoustic field u, rather than only to its unwanted component u−. In other
words, the methodology can automatically distinguish between the signals coming
from the exterior and interior sources, and can tune the controls so that they cancel
only the unwanted exterior signal. This capability is extremely important, as in
many applications the overall acoustic field always contains a component that needs
to be suppressed along with the part that needs to be left intact. Alternatively,
one can say that the control sources (2.1) are insensitive to the interior sound u+(x ).
Indeed, given a function w(x ) that satisfies interface conditions (2.2) and the radiation
boundary conditions at infinity, we can take instead w̃(x ) = w(x ) − u+(x ); this new
function will satisfy the interface conditions (2.2) with u replaced by u− and the same
Sommerfeld conditions at infinity. Most important, the control sources generated by
w̃(x ) will be the exact same control sources as those generated by w(x ) because
Lw̃(x ) = L[w(x ) − u+(x )] = Lw(x ) for x ∈ Ω1.

Let us also note that in a more general framework, formula (2.9) (with (2.2) taken
into account) can be interpreted as a particular case of the generalized potential of
Calderon’s type with the vector density −(u, ∂u∂n )|Γ. This more general framework
allows us to analyze more complex formulations of the active noise control problem
(see [7]) such as those that involve variations in material properties and alternative
types of far-field behavior of the solution. We refer the reader to the original work
by Calderon [2] and Seeley [16], as well as to the monograph by Ryaben’kii [15],
for general concepts related to Calderon’s potentials and associated pseudodifferen-
tial boundary projection operators. As concerns the aforementioned more advanced
formulations of the noise control problem, the key result is basically the same as
above. The general solution for control sources is still given by formula (2.1), where
the auxiliary function w(x ) should still satisfy the interface conditions (2.2) and the
problem-specific far-field boundary conditions (in case they differ from the previously
mentioned Sommerfeld conditions). The operator L in formula (2.1) will, however,
no longer be the constant-coefficient Helmholtz operator of (1.1); it will rather be the
problem-specific variable-coefficients operator that accounts for the particular varia-
tions in material properties, etc. However, since formula (2.1) for controls does not
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change (see [7]), we immediately conclude that we, in fact, do not need to know the
operator L on Ω. In other words, for obtaining the control sources we do not need to
know the material properties of the sound-conducting medium inside the protected
region. This result (see [7]), which at first seems counterintuitive, has, in fact, a
straightforward physical explanation. We only need to realize that the noise we want
to suppress, and the output of controls that is supposed to annihilate this noise, prop-
agate across one and the same medium, and we do not need to know what this medium
is (under some relatively nonrestrictive limitations; see [7]). It is also interesting to
mention that the aforementioned Calderon boundary projection operators essentially
render the decomposition of the wave field u(x ) on the boundary Γ into its incoming
and outgoing component with respect to the domain Ω; see [7]. Subsequently, the con-
trols (2.1) can be interpreted as either sources cancelling the incoming wave field for
the domain to be shielded, i.e., Ω, or alternatively, as sources cancelling the outgoing
wave field for the domain complementary to the one to be shielded, i.e., Ω1 = R

n\Ω.
The latter interpretation is often more versatile; see [7].

Another important thing to notice is that the control sources g(x ) of (2.1) are
defined, generally speaking, on the entire complementary domain Ω1 = R

n\Ω. For the
analysis of specific problems, especially when the protected region Ω is bounded and
the complementary region Ω1 is unbounded, as in Figure 1.1, it may be convenient to
consider compactly supported control sources, i.e., the control sources concentrated
in the vicinity of the interface Γ. To obtain such controls, one needs to narrow down
the class of functions w(x ) used in formula (2.1). Namely, instead of considering
arbitrary w(x ) subject only to constraints (2.2) and Sommerfeld boundary conditions
at infinity, one needs to consider w(x ) that become a solution to the homogeneous
Helmholtz equation everywhere outside some larger domain that fully contains the
protected region Ω. In so doing, the area outside Ω that supports the controls g(x ) of
(2.1) will stretch from Γ to the outer boundary of the aforementioned larger domain,
and may basically look like a curvilinear strip adjacent to Γ from the exterior side.
This strip may, in principle, be made as narrow as desired and may eventually shrink
completely, thus reducing to only the interface Γ itself. As will be seen, the sources
g(x ) supported only on the perimeter Γ represent an important class of active controls.
Such distributions g(x ) include monopole and dipole layers as special cases, which are
idealizations of pulsating or vibrating membranes.

2.2. Artificial boundary conditions and compactly supported controls.
To actually obtain compactly supported controls g(x ) in a particular setting, it is often
convenient to use the methodology known as artificial boundary conditions (see the
review paper [19]) for the selection of the appropriate function w(x ) in formula (2.1).
Assume that w(x ) satisfies the homogeneous Helmholtz equation Lw = 0 outside
some outer artificial boundary, which is a closed surface (curve) with an interior that
fully contains Ω. In Figure 1.1, we schematically represent this outer boundary as
a sphere (circle) of radius R. It turns out that one can equivalently replace the
homogeneous equation Lw = 0 along with the Sommerfeld boundary conditions at
infinity by the special artificial boundary conditions (ABCs) at the outer boundary.
For the outer boundary of a general shape, this can be done most efficiently using
the same apparatus of Calderon’s pseudodifferential boundary projection operators
(see [15, 19]) that has been mentioned before. For the particular case of a regular
spherical or circular outer boundary (see Figure 1.1), which is convenient due to
the simplicity of the analysis, the construction of the ABCs is described below. We
emphasize that the forthcoming boundary conditions are exact. In other words, they
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are set at a finite artificial boundary and are fully equivalent to the Sommerfeld
boundary conditions set at infinity. They also appear to be nonlocal. High accuracy
(exactness) and nonlocality of the ABCs that we introduce and use hereafter present
a notable distinction compared to many approximate methods, which are typically
local but not as accurate; see, e.g., [19].

We will use spherical coordinates (ρ, θ, φ) in R
n, n = 3, and assume that Lw = 0

for |x | ≡ ρ ≥ R; see Figure 1.1. In addition, we will assume that w(x ) satisfies the
Sommerfeld boundary condition (1.2b). Expanding w(x ) with respect to spherical
functions Y ml , l = 0, 1, 2, . . . , m = 0,±1, . . . ,±l, and separating the variables in the
differential operator L, we arrive at the following collection of second-order ordinary
differential equations:

d2ŵlm
dρ2

+
2

ρ

dŵlm
dρ

+

[
k2 − l(l + 1)

ρ2

]
ŵlm = 0,

ρ ≥ R, l = 0, 1, 2, . . . , m = 0,±1, . . . ,±l,

(2.10)

for the unknown radial modes ŵlm. These modes are also supposed to satisfy boundary
conditions at infinity

ŵlm(ρ) = O
(
ρ−1
)
,

dŵlm(ρ)

dρ
+ ikŵlm(ρ) = o

(
ρ−1
)

as ρ −→ ∞,(2.11)

which immediately follow from the Sommerfeld condition (1.2b). For any given pair
(l,m) the general solution of (2.10) is given by

ŵlm =
c1√
ρ
H

(1)
l+1/2(kρ) +

c2√
ρ
H

(2)
l+1/2(kρ),(2.12)

where c1 and c2 are arbitrary constants and H
(1)
l+1/2(kρ) and H

(2)
l+1/2(kρ) are Hankel

functions of the first and second kind, respectively. Taking into account the asymp-
totic expressions for the Hankel functions for a fixed order ν and large values of ρ
(see, e.g., [24]),

H(1)
ν (ρ) =

√
2

πρ
exp
[
i
(
ρ− π

2
ν − π

4

)]
+ O
(
ρ−3/2

)
,

H(2)
ν (ρ) =

√
2

πρ
exp
[
−i
(
ρ− π

2
ν − π

4

)]
+ O
(
ρ−3/2

)
,

we conclude that only ρ−1/2H
(2)
l+1/2(kρ) satisfies boundary conditions (2.11), and con-

sequently the constant c1 (see (2.12)) in any particular solution that satisfies the
Sommerfeld conditions at infinity has to be equal to zero. As the two functions

ρ−1/2H
(1)
l+1/2(kρ) and ρ−1/2H

(2)
l+1/2(kρ) form a fundamental system of solutions for

the linear homogeneous second-order ODE (2.10), requiring that only one of them,

ρ−1/2H
(2)
l+1/2(kρ), be present in the actual solution ŵlm is equivalent to requiring that

ŵlm(ρ) be parallel to ρ−1/2H
(2)
l+1/2(kρ) for ρ ≥ R in the sense of the corresponding

Wronskian vanishing at ρ = R:

det


 ŵlm ρ−1/2H

(2)
l+1/2(kρ)

d
dρ ŵlm

d
dρ

(
ρ−1/2H

(2)
l+1/2(kρ)

)


∣∣∣∣∣∣
ρ=R

= 0.(2.13)
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Obviously, equality (2.13) enforced at ρ = R implies that it will hold for all ρ ≥ R
as well. Equality (2.13) is a linear homogeneous relation between a given Fourier
component ŵlm of the solution w(x ) and the corresponding Fourier component d

dρ ŵlm

of its normal derivative d
dρw(x ) on the spherical surface ρ = R. The entire family of

such relations for all l = 0, 1, 2, . . . and m = 0,±1, . . . ,±l set at ρ = R is equivalent
to saying that the function w = w(x ) originally defined inside the sphere, i.e., for
ρ ≤ R, can be smoothly extended to the region ρ ≥ R so that the extension will solve
the homogeneous equation Lw = 0 for ρ ≥ R and have a proper far-field behavior, i.e,
satisfy the Sommerfeld condition (1.2b). Hereafter, we will refer to relations (2.13)
for l = 0, 1, 2, . . . and m = 0,±1, . . . ,±l as the artificial boundary conditions for the
three-dimensional Helmholtz equation on the spherical surface ρ = R.

The ABCs for the two-dimensional case on the circular external artificial boundary
ρ = R can be obtained similarly. We introduce polar coordinates (ρ, θ) in R

n, n = 2,
use standard Fourier expansion in the circumferential direction with respect to the
complex exponents e−ilθ, l = 0,±1,±2, . . . , and arrive at the following collection of
second-order ordinary differential equations:

d2ŵl
dρ2

+
1

ρ

dŵl
dρ

+

[
k2 − l2

ρ2

]
ŵl = 0, ρ ≥ R, l = 0,±1,±2, . . . ,(2.14)

for the unknown radial modes ŵl. These modes are also supposed to satisfy boundary
conditions at infinity

ŵl(ρ) = O(ρ−1/2),
dŵl(ρ)

dρ
+ ikŵl(ρ) = o(ρ−1/2) as ρ −→ ∞,(2.15)

which immediately follow from the Sommerfeld condition (1.2a). For every given l,
(2.14) is the Bessel equation and has general solution

ŵl = c1H
(1)
l (kρ) + c2H

(2)
l (kρ),(2.16)

where c1 and c2 are, again, arbitrary constants. The asymptotics of the Hankel
functions for large ρ’s indicates that to satisfy (2.15) one must have c1 = 0 in any
particular solution that satisfies the radiation conditions at infinity. This requirement
leads to the following ABCs for the two-dimensional Helmholtz equation:

det


 ŵl H

(2)
l (kρ)

d
dρ ŵl

d
dρH

(2)
l (kρ)



∣∣∣∣∣∣
ρ=R

= 0,(2.17)

where relations (2.17) should be considered for all l = 0,±1,±2, . . . . We refer the
reader to the review article [19] for further detail on the construction of ABCs for
different equations in different settings. Let us also reiterate that once the ABCs
(2.13) or (2.17) are satisfied for all radial modes, then we can consider Lw = 0 for
ρ ≥ R, and as such, the resulting control sources g(x ) given by (2.1) will be compactly
supported between the interface Γ and the external artificial boundary ρ = R.

2.3. Types of control sources. Let us now analyze the continuous control
sources from the standpoint of their geometric location and the type of acoustic ex-
citation that they provide. To put this analysis into a mathematical perspective, it
will be convenient to use the apparatus of distributions; see, e.g., [24].



1150 J. LONČARIĆ AND S. V. TSYNKOV

In our original derivation of formula (2.1), we have implicitly assumed that the
function w(x ) was sufficiently smooth so that the operator L could be applied in the
classical sense everywhere on Ω1 = R

n\Ω. In this case, the function g(x ) is locally

absolutely integrable, g ∈ L
(loc)
1 (Ω1), and can be interpreted as a regular distribution.

As for any other distribution, it can be represented as a convolution of its own self
with the δ-function: g = δ ∗ g. This means that from the mathematical standpoint
the control field g(x ) can be viewed as an expansion in terms of the elementary point
monopoles g(y)δ(x − y) with regular density g:

g(x ) = δ ∗ g =

∫
R

n

g(y)δ(x − y)dy .(2.18)

Next, we recall that, by definition of the fundamental solution LG = δ(x ), the re-
sponse to every such elementary monopole g(y)δ(x−y) will be given by g(y)G(x−y),
and consequently, the overall control output

G ∗ g =

∫
R

n

g(y)G(x − y)dy(2.19)

will be interpreted as superposition of the foregoing elementary responses, i.e., so-
lutions generated by the aforementioned point monopoles. Altogether we see that
the original formula (2.1) provides the general solution for controls in the class of

regular distributions L
(loc)
1 (Ω1), which corresponds to the volumetric control sources

of monopole type on the complementary domain Ω1 = R
n\Ω. Compactly supported

controls discussed in section 2.2 obviously fall into this category. Later on we will see
that this class of functions contains, in fact, all meaningful volumetric excitations.

In many cases it may also be desirable to consider surface controls, i.e., the control
sources that are concentrated only on the interface Γ. Let us first assume that there
are no interior sources, which means that u+(x ) = 0, and the acoustic field we want
to control consists only of its adverse component, u(x ) ≡ u−(x ). After the control,
the overall acoustic field has to be equal to zero on the domain Ω. As shown in [20],
the general solution for surface controls is given by

g(surf) = −
[
∂w

∂n
− ∂u

∂n

]
Γ

δ(Γ) − ∂

∂n

(
[w − u]Γδ(Γ)

)
,(2.20)

where w = w(x ), as before, denotes the auxiliary function-parameter that in this case
has to satisfy the homogeneous Helmholtz equation on the complementary domain,
Lw = 0 for x ∈ Ω1, and the Sommerfeld boundary condition (1.2a) or (1.2b) at
infinity. Expressions in rectangular brackets in formula (2.20) denote discontinuities
of the corresponding quantities across the interface Γ. The first term on the right-
hand side of (2.20) represents the density of a single-layer potential, which is a layer
of monopoles on the interface Γ, and the second term on the right-hand side of (2.20)
represents the density of a double-layer potential, which is a layer of dipoles on the
interface Γ.

A detailed justification of formula (2.20) as general solution for surface controls
can be found in [20]. Here we mention only that it basically amounts to proving that
a given solution u(x ) of the homogeneous equation Lu = 0 on Ω can be represented
as a combination of a single-layer potential and a double-layer potential if and only
if the densities of the aforementioned potentials are defined as

[
∂w
∂n − ∂u

∂n

]
Γ
δ(Γ) and
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∂
∂n ([w − u]Γδ(Γ)), respectively (cf. formula (2.20)). The direct implication is easy to
establish by applying the operator L to the discontinuous function

v(x ) =

{
u(x ) for x ∈ Ω,

w(x ) for x ∈ Ω1,
(2.21)

in the sense of distributions (see [24]), which yields

Lv =

[
∂w

∂n
− ∂u

∂n

]
Γ

δ(Γ) +
∂

∂n

(
[w − u]Γδ(Γ)

)
,(2.22)

and subsequently reconstructing u(x )|x∈Ω = v(x )|x∈Ω as a convolution with the fun-
damental solution. The inverse implication requires explicitly obtaining w(x ) for a
given u(x ) and given surface densities, which is done in [20], again, in the form of
a special surface integral. Then, the control sources (2.20) are obtained by simply
taking (2.22) with the opposite sign, which guarantees the cancellation of u(x ) on Ω
by −v(x ).

In the family of surface controls (2.20) we identify two important particular cases.
First, the cancellation of u(x ), x ∈ Ω, can be achieved by using only the surface
monopoles, i.e., by employing only a single-layer potential as the annihilating signal.
To do that, we need to find w(x ), x ∈ Ω1, such that the overall function v(x ) of
(2.21) would have the discontinuity on Γ only in its normal derivative and not in the
function itself. This w(x ) will then be a solution of the following external Dirichlet
problem:

Lw = 0, x ∈ Ω1,

w
∣∣
Γ

= u
∣∣
Γ
,

(2.23)

subject to the appropriate Sommerfeld boundary condition (1.2a) or (1.2b). Problem
(2.23) is always uniquely solvable on Ω1 = R

n\Ω. Second, one can employ only the
double-layer potential to cancel out u(x ), x ∈ Ω, i.e., use only surface dipoles as the
control sources. In this case, the function w(x ), x ∈ Ω1, has to be such that v(x )
given by (2.21) would have discontinuity on Γ only in the function itself and not in
its normal derivative. This w(x ) should then solve the following external Neumann
problem:

Lw = 0, x ∈ Ω1,

∂w

∂n

∣∣∣
Γ

=
∂u

∂n

∣∣∣
Γ
,

(2.24)

again, subject to the appropriate Sommerfeld condition at infinity, (1.2a) or (1.2b);
the latter guarantees the solvability of (2.24).

In a more general case, when interior sources are present, the results, in fact,
do not change. Assume, as before, that the overall acoustic field is the sum of its
friendly and adverse components (see (1.4)), u(x ) = u+(x ) + u−(x ), and we want
to cancel out u−(x ) on Ω. Then, formula (2.20), where u shall now be interpreted
as in (1.4) and w is a function-parameter, will still provide the general solution for

surface controls. Indeed, since Lu+ = 0 on Ω1 and, moreover, u+(x) and ∂u+

∂n (x ) are
continuous across the interface Γ, then (2.20) simply reduces to

g(surf) = −
[
∂w̃

∂n
− ∂u−

∂n

]
Γ

δ(Γ) − ∂

∂n

(
[w̃ − u−]Γδ(Γ)

)
,(2.25)



1152 J. LONČARIĆ AND S. V. TSYNKOV

where the new function-parameter w̃ is given by w̃(x ) = w(x ) − u+(x ) and, as such,
satisfies the aforementioned general requirements of w’s. This means that the control
sources g(surf)(x ), x ∈ Γ, defined by (2.20), or equivalently (2.25), appear insensitive
to the friendly component u+(x ) of the acoustic field, and will precisely annihilate
u−(x ) on the domain Ω. Furthermore, the entire family of surface controls (2.25) is
obviously the exact same family as we would have obtained if there were no interior
sources and the overall acoustic field consisted of only u−(x ). It is also clear that the
same reasoning will apply to the particular cases of purely monopole and purely dipole
controls. Namely, if in problems (2.23) and (2.24) we interpreted the boundary data
u and ∂u

∂n (respectively) in the sense of (1.4), then the solution w of either problem
would obviously be w(x ) = w̃(x )+u+(x ), where w̃(x ) is the solution that corresponds
to u+(x ) ≡ 0. This means that both the monopole and the dipole layers constructed
using the respective solution w(x ) would be the exact same monopole or dipole layer
that suppresses u−(x ) on Ω in the case of no interior sources and no interior sound.

Altogether we conclude that, as indicated by formula (2.20), surface control
sources are combinations of monopole and dipole layers, with the two “extreme” cases
corresponding to either only monopoles (see (2.23)) or only dipoles (see (2.24)). From
the standpoint of physics, the monopole and dipole sources provide different types of
excitation to the surrounding sound-conducting medium. A point monopole source
can be interpreted as a vanishingly small pulsating sphere that radiates acoustic waves
symmetrically in all directions, whereas a point dipole source resembles a small os-
cillating membrane that has a particular directivity of radiation (see, e.g., [11] for a
more detailed discussion on the properties of different sources). This distinction ba-
sically warrants a separate consideration of the monopole- and dipole-type sources as
far as the pointwise or surface excitation may be concerned. However, in the context
of volumetric excitation, a separate consideration of dipole fields appears, in effect,
superfluous.

Indeed, a point dipole is characterized by its (complex) magnitude b and direction
m (cf. formula (2.20)):

−b
∂δ

∂m
= −b〈m ,∇δ〉 = −〈b,∇δ〉,(2.26)

where the definition of ∇δ is standard, i.e., for any test function φ ∈ D we have
(∇δ, φ) = −(δ,∇φ) = −∇φ(0), 〈·, ·〉 denotes a conventional real scalar product, and
the complex n-dimensional vector b ≡ bm is called the dipole moment.2 Let us now
consider a volumetric distribution of dipoles, i.e., a right-hand side to the Helmholtz
equation given in the following convolution form (cf. formula (2.18)):

b(x ) = −
∫

R
n

〈b(y),∇δ(x − y)〉dy = −
n∑
i=1

bi ∗ ∇iδ,(2.27)

where b is a regular vector field. Since the convolution of any distribution with the
δ-function always exists [24], we can rewrite (2.27) as

b(x ) = −
n∑
i=1

∇ibi ∗ δ = −
∫

R
n

divb(y)δ(x − y)dy = −divb ∗ δ = −divb.(2.28)

2We emphasize that b is not a most general complex vector, but rather a product of a single
complex quantity b and a real n-dimensional vector m .
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Formula (2.28) implies that if we additionally require that the vector field b(y) be

somewhat more regular than simply b ∈ L
(loc)
1 (Ω1), namely, divb ∈ L

(loc)
1 (Ω1), then

the volumetric distribution of dipoles can be reduced to an equivalent volumetric
distribution of monopoles as in (2.18).

Next, by differentiating the relation LG = δ, we obtain that the response to the
point dipole excitation (2.26) is given by −〈b,∇G〉. Accordingly, the solution that
corresponds to the distribution of sources (2.27) or (2.28) is given by (cf. formula
(2.19))

u(x ) = −
∫

R
n

〈b(y),∇G(x − y)〉dy = −
n∑
i=1

bi ∗ ∇iG

= −
n∑
i=1

∇ibi ∗G = −
∫

R
n

divb(y)G(x − y)dy .

(2.29)

Note that, for the representation via the divergence operator to hold, we need to
require that the convolutions bi ∗ G exist in D′; see [24]. A convenient sufficient
condition for that may be b having compact support, which, as we have seen in
section 2.2, does not present a significant restriction of generality from the standpoint
of active control of sound. To make sure that the function u(x ) of (2.29) does solve
the equation Lu = b, we apply the operator L of (1.1) to it:

Lu(x ) = −L

[
n∑
i=1

bi ∗ ∇iG
]

= −
n∑
i=1

L [bi ∗ ∇iG]

= −
n∑
i=1

bi ∗ L∇iG = −
n∑
i=1

bi ∗ ∇iLG = −
n∑
i=1

bi ∗ ∇iδ = b(x ).

Again, for the foregoing chain of equalities to hold, we need to require the existence
of some convolutions in D′, this time bi ∗ ∇iG, i = 1, . . . , n. This is guaranteed by
the same sufficient condition of suppb being compact.

From the previous discussion we see that mathematically we can describe vol-
umetric sources of time-harmonic sound only in terms of monopoles. In a real-life
acoustic setting, however, both the actual monopole and the dipole sources may be
present. It is instrumental to see how those sources that have different physical in-
terpretation enter the right-hand side of the Helmholtz operator. We postpone the
corresponding discussion till section 4.1, in which we provide the motivation for se-
lecting a particular optimization criterion. In the meantime, let us emphasize that in
the rest of the paper we are going to analyze only one type of the control sources,
namely, the monopoles. This class includes all of the volumetric controls (2.1), i.e.,
monopoles distributed in space, and their limiting case given by the monopole layer
on the surface Γ (cf. formula (2.20)):

g
(surf)
monopole = −

[
∂w

∂n
− ∂u

∂n

]
Γ

δ(Γ),(2.30)

where w = w(x ) in (2.30) solves the Dirichlet problem (2.23).3 In other words,
we have narrowed down the class of admissible controls by excluding the surface

3As has been mentioned (see section 4.1), volumetric monopoles considered in the mathematical
perspective may include contributions from both actual physical monopoles and dipoles.
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dipoles. Clearly, having only one and the same type of sources greatly facilitates their
description and comparison using the same quantitative characteristics, e.g., acoustic
strength (see [11] for the definition and section 4 for more detail). In particular,
it allows us to formulate (see section 4.1) and solve (see sections 4.2 and 4.3) the
optimization problem for the control sources with the overall absolute acoustic source
strength being the cost function. Moreover, the solution of this optimization problem,
i.e., the global minimum (more precisely, largest lower bound) in the class of all
volumetric controls that guarantee the exact cancellation of noise, happens to be the
uniquely defined single layer (2.30), (2.23) on the interface Γ. In this framework,
surface dipoles naturally fall out of consideration.

There are, however, optimization criteria that employ physically meaningful quan-
tities other than the total source strength, which naturally justify using combinations
of both monopole and dipole control sources. These criteria would typically compare
outputs of controls rather than the controls themselves. For example, in the forth-
coming paper [8] we employ one such criterion, which is based on the power required
by the control system. It turns out that the corresponding analysis necessarily in-
volves interaction between the sources of sound and the surrounding acoustic field.
Even though it may seem counterintuitive at a first glance, one can build a control
system (a particular combination of monopoles and dipoles) that would require no
power input for operation and would even produce a net power gain while providing
exact noise cancellation. This, of course, comes at the expense of having the original
sources of noise produce even more energy; see [8].

3. Discrete control sources. Similarly to the continuous constructions of the
previous section, one can discretize the problem on the grid and obtain the control
sources for the discrete formulation. From the standpoint of applications this is, of
course, preferred, because any practical design of a noise control system can contain
only a finite number of elements or devices (acoustic sensors and actuators) that
will be associated with the grid nodes in the discrete case. Details regarding the
discrete formulation of the noise control problem can be found in the monograph by
Ryaben’kii [15, Part VIII], as well as in the papers [22, 23]; here we provide only a brief
account of the corresponding work. The analysis hereafter will not be limited to any
specific type of the grid. In particular, no adaptation or grid fitting to either the shape
of the protected region Ω (i.e., interface Γ) or that of the external artificial boundary
will generally be required. In some cases, though, it may simply be convenient and
inexpensive to use a regular grid of an appropriate geometry. For example, as we
discuss later, having a polar or spherical grid may greatly simplify setting the ABCs
on the circle or sphere, respectively, of radius R in the discrete framework.

3.1. Grids and discretization. Let us now introduce a finite-difference grid N

that would span both Ω and Ω1. In the discrete formulation, the grid never stretches
all the way to infinity; it is always truncated by the external artificial boundary, which
implies that the discrete control sources that we obtain will always be compactly
supported. Later in section 3.3, we will discuss how to set the appropriate ABCs for
the discrete formulation. Now let u(h) be a representation of the acoustic field on the
grid, and L(h) be a finite-difference approximation of the differential operator L of
(1.1). To accurately define the approximation, we will need to introduce another grid
M along with the previously defined N. On the grid M, we will consider the residuals
of the operator L(h), and subsequently the right-hand sides to the corresponding
inhomogeneous finite-difference equation. We will use the notations n and m for the
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individual nodes of the grids N and M, respectively, and the notation Nm for the
stencil of the discrete operator L(h) centered at a given m ∈ M, so that

L(h)u(h)
∣∣
m

=
∑
n∈Nm

amnu
(h)
n ,(3.1)

where anm are the coefficients associated with particular nodes of the stencil. There
are no limitations to the type of discrete operators that one may use. We only require
that the difference operator L(h) of (3.1) approximate the differential operator L of
(1.1) with the accuracy sufficient for a particular application.

Next, we introduce the following subsets of the grids M and N, which will allow
us to accurately distinguish between the interior and exterior domains, interior and
exterior sources, and interior and exterior solutions on the discrete level:

M
+ = M ∩ Ω, M

− = M\M+ = M ∩ Ω1,

N
+ =

⋃
m∈M

+

, N
− =

⋃
m∈M

−
Nm,

γ = N
+ ∩ N

−, γ+ = N
− ∩ Ω, γ− = N

+ ∩ Ω1.

(3.2)

We emphasize that the grid M that pertains to the residuals of the finite-difference
operator L(h) is partitioned into M

+ and M
− directly, i.e., following the geometry

of Ω and Ω1. In contradistinction to that, the grid N is not partitioned directly; we
rather consider the collection of all nodes of N swept by the stencil Nm when its center
belongs to M

+, and call this subgrid N
+; see (3.2). Obviously, some of the nodes of

N
+ obtained by this approach happen to be outside Ω, i.e., in Ω1, and these nodes

are called γ−. The sets N
− and γ+ are defined similarly starting from M

−. The key
idea is that whereas the grids M

+ and M
− do not overlap, the grids N

+ and N
− do

overlap, and their overlap is denoted γ; obviously, γ = γ+ ∪ γ−. The subset of grid
nodes γ is called the grid boundary; it is a fringe of nodes that is located near the
continuous boundary Γ and in some sense straddles it. The specific structure of γ
obviously depends on the construction of the operator L(h) of (3.1) and the stencil
Nm. For example, for the conventional second-order central-difference Laplacians on
rectangular grids, γ will be a two-layer fringe of grid nodes located near Γ, as shown
schematically in Figure 3.1. Further specifics on the construction of grid boundaries
can be found in the monograph [15].

3.2. Discrete noise control problem and its general solution. Having
introduced the discretization (3.1) and grid subsets (3.2), we can formulate and solve
the noise control problem on the grid. We will reproduce below the key results of [15,
Part VIII]; see also [22, 23] for detail.

The discrete noise control problem is formulated similarly to the continuous one;

see section 1. Let f
(h)+
m , m ∈ M

+, and f
(h)−
m , m ∈ M

−, be the interior and exterior

discrete acoustic sources, respectively. Let u
(h)+
n , n ∈ N, and u

(h)−
n , n ∈ N, be

the corresponding solutions, i.e., L(h)u(h)+ = f (h)+ and L(h)u(h)− = f (h)−. Using
the same terminology as before, we will call u(h)+ the discrete sound and u(h)− the
discrete noise. The overall discrete acoustic field u(h) is the sum of its sound and
noise components, u(h) = u(h)+ + u(h)− on N, and obviously satisfies the equation
L(h)u(h) = f (h) ≡ f (h)+ + f (h)−. The goal is to obtain the discrete control sources

g(h) = g
(h)
m so that the solution ũ(h) of the equation L(h)ũ(h) = f (h)+ + f (h)− + g(h)

will be equal to only the sound component u(h)+ on the subgrid N
+.
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Ω

ΓΩ1

stencil

γ
−

+
γ

Fig. 3.1. Schematic geometry of the domains, the stencil, and the grid boundary γ = γ+ ∪ γ−:
Hollow circles denote γ+, filled circles denote γ−.

Let us now recall that, in the continuous case, the unique solvability of the gov-
erning differential equation (inhomogeneous Helmholtz’ equation) was guaranteed by
the Sommerfeld radiation conditions (1.2a) or (1.2b) at infinity. In the discrete case,
we also need to guarantee the unique solvability of the foregoing finite-difference equa-
tions, but we obviously cannot directly set the boundary conditions at infinity. There-
fore, the Sommerfeld radiation conditions have to be replaced by some other boundary
conditions set at a finite location. To preserve the physics of the model that involves
the propagation of waves toward infinity, one may choose to set the appropriate ABCs
at the external artificial boundary that truncates our domain.4 We emphasize that
previously, i.e., in the continuous case, we have introduced and used the ABCs (see
section 2.2) only for the purpose of obtaining compactly supported controls. Those
ABCs were applied to the auxiliary function-parameter w(x ) (see (2.13) or (2.17)).
In the discrete case, the ABCs should apply to the actual solutions u(h), u(h)+, u(h)−,
and ũ(h), which represent the acoustic fields on the grid. For the purpose of con-
structing the controls, however, we will never need to implement the ABCs for the
acoustic solutions on the grid explicitly. We will only need to know that these bound-
ary conditions can be obtained (a variety of different approaches can be found, e.g.,
in [19]) and that they will guarantee the solvability of the difference equations involved.

4These ABCs would guarantee that the interior solution can be extended beyond the artificial
boundary, so that the extension solves the Helmholtz equation and displays the correct far-field
behavior.
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There will, of course, be an explicit role for the ABCs in the discrete frame-
work as well. We will employ these boundary conditions in the same capacity as
we have used the original continuous ABCs (see section 2.2). Namely, when obtain-
ing compactly supported controls, the ABCs will truncate the corresponding discrete
function-parameter w(h). A specific approach to constructing the discrete ABCs that
we use in this work is based on discretization of the continuous ABCs of section 2.2,
and we discuss it in section 3.3. Altogether, both the discrete acoustic fields and the
discrete-function parameter that is used for constricting the control sources (see for-
mula (3.3) below) are going to satisfy the same ABCs. This is similar to the continuous
case, when both the solution itself (i.e., acoustic field) and the function-parameter w
satisfied the same Sommerfeld radiation conditions at infinity.

The general solution for the discrete control sources g(h) = g
(h)
m that eliminate

the unwanted noise u(h)− on N
+ is given by the following formula (cf. formula (2.1)):

g(h)m = −L(h)w(h)
∣∣
m∈M

− ,(3.3)

where w(h) = w
(h)
n , n ∈ N

−, is a special auxiliary grid function-parameter that param-
eterizes the family of controls (3.3). The requirements that this function w(h) must
satisfy are, again, rather “loose,” and can be considered natural discrete counterparts
of the corresponding requirements of the continuous function-parameter w(x ); see the
discussion around formula (2.2) in section 2.1. Namely, at the grid boundary γ the
function w(h) has to coincide with the overall acoustic field u(h) to be controlled:

w(h)
n

∣∣
n∈γ = u(h)n

∣∣
n∈γ .(3.4)

We note that since, e.g., for the second-order discretizations the grid boundary γ
contains two layers of nodes, γ+ and γ− (see Figure 3.1), then specifying the cor-
responding nodal values on γ is in some sense equivalent to specifying the function
and its normal derivative on Γ in the continuous case; see (2.2). Of course, this is
not a rigorous statement from the standpoint of approximation; we will address the
approximation-related issues later on. We also note that when creating practical de-

signs, the boundary data u
(h)
n

∣∣
n∈γ shall be interpreted as measurable quantities that

provide input for the control system. In other words, we can think of a microphone at
every node of γ; these microphones measure the characteristics of the actual acoustic

field and generate the input signal u
(h)
n

∣∣
n∈γ .

The other requirement of w(h), besides the interface boundary conditions (3.4),
has already been mentioned. The function w(h) must satisfy the appropriate discrete
ABCs at a finite external artificial boundary. The role of the discrete ABCs is the
same as that of the continuous ABCs—to provide a replacement for the Sommerfeld
radiation boundary conditions. This is done in the same approximate sense as the
operator L(h) approximates L; see section 3.3. Other than the two aforementioned
requirements, the function w(h) is arbitrary and, as such, parameterizes a substantial
variety of discrete control sources; see (3.3). The latter will provide the search space
for optimization in section 4.

The justification for formula (3.3) as the general solution for the discrete control
sources is based on the theory of difference potentials; see [15]. In the framework of

this theory one can show that the solution v(h) = v
(h)
n of the equation L(h)v(h) = g(h)

subject to the appropriate ABCs, where g(h) is defined according to (3.3) and (3.4),

will be equal to exactly −u(h)− on the interior subgrid N
+: v

(h)
n |n∈N

+ = −u(h)−|n∈N
+ .
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In other words, when the controls g(h) of (3.3) are added to the original source terms
of the governing finite-difference equation, they annihilate the unwanted noise on the
domain of interest in the discrete sense, i.e., on the grid. The aforementioned solution

v
(h)
n

∣∣
n∈N

+ is called the generalized difference potential with the density −u
(h)
n

∣∣
n∈γ

defined on the grid boundary γ. It is shown in the theory of difference potentials

(see [15]) that the potential depends only on its density −u
(h)
n |n∈γ and not on the

values of the function-parameter outside γ: w
(h)
n |n∈N

−\γ . Consequently, all possible

controls g(h) obtained according to (3.3), with different w(h)’s subject only to (3.4)
and the corresponding ABCs (see section 3.3), will produce identical output on N

+

that will cancel out the unwanted noise u
(h)−
n |n∈N

+ . This provides room for optimiza-
tion of the discrete control sources; see section 4. It can also be shown that every

discrete control source g
(h)
m |m∈M

− that cancels out u
(h)−
n |n∈N

+ can be represented in

the form (3.3) with some function w(h) = w
(h)
n , n ∈ N

−, that satisfies (3.4) and the
external boundary conditions (ABCs). Similarly to the continuous case, this is done

by explicitly constructing the appropriate w(h) for a given g(h) and u
(h)
n |n∈γ ; we refer

the reader to [15, Part VIII] and [22, 23] for detail.
As has been mentioned, the cancellation of noise in the discrete framework is

obtained on the grid N
+. It is important to understand in what sense this discrete

cancellation models the continuous cancellation described in section 2. This is basi-
cally the question of approximation of the continuous generalized potentials by the
discrete ones. To that effect, the theory of difference potentials (see [15]) says that,

under certain natural conditions, the difference potential v(h) = v
(h)
n , n ∈ N

+, i.e.,
the solution to L(h)v(h) = g(h) with g(h) given by (3.3), approximates the continuous
Calderon’s potential v = v(x ), x ∈ Ω (see (2.9)), i.e., the solution to Lv = g with g
given by (2.1). The aforementioned natural conditions include first the consistency
and stability of the finite-difference scheme for the Helmholtz equation. Consistency
and stability will guarantee convergence as the grid size vanishes. In addition, the

discrete boundary data u
(h)
n |n∈γ of (3.4) have to approximate the continuous bound-

ary data (u, ∂u∂n )|Γ of (2.2) in the following sense. Once the continuous function u and

its first-order normal derivative ∂u
∂n are known at the boundary Γ, normal derivatives

of higher orders can be obtained via the differential equation itself, and the near-

boundary values u
(h)
n |n∈γ can be calculated using Taylor’s expansion; the order of

accuracy of the latter calculation with respect to the grid size h has to be at least
as high as the order of accuracy of the interior scheme. In this case, the quality of
approximation, i.e., the rate of convergence of the discrete potential to the continuous
one with respect to h, will be the same as prescribed by the finite-difference scheme
itself. For the second-order central-difference schemes discussed in sections 3.3 and 4,
this rate is O(h2). In other words, when designing an active control system following
the finite-difference approach, one can expect to have the actual noise cancellation in
the same approximate sense as the solution of the finite-difference equation approx-
imates the corresponding solution of the original differential equation. Note that in
any particular practical setting we will need to require sufficient wave resolution on
the grid, i.e., the waves of length λ = 2π/k, where k is the wavenumber in (1.1), will
have to be well resolved by the specific discretization.

3.3. Specific discretization and discrete artificial boundary conditions.
As has been mentioned, one can use different approaches to construct discrete ABCs
(see, e.g., [19]) that are needed to obtain compactly supported controls. The most
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Ω

Γ

Rstencil

γ
γ

Ω1

−

+

Fig. 3.2. Schematic geometry of the domains, the stencil, and the grid boundary γ = γ+ ∪ γ−
in polar coordinates: Hollow circles denote γ+, filled circles denote γ−.

straightforward technique, which is adopted in the current study, although it is appar-
ently not the most general one, is to directly approximate the continuous boundary
conditions (2.13) or (2.17) with sufficient order of accuracy. For that, we will need a
grid that would be fitted to the shape of the external artificial boundary, i.e., a polar
or spherical grid. An example of the corresponding grid subsets γ+ and γ− for polar
coordinates is schematically shown in Figure 3.2.

In all numerical experiments that follow in section 4, we use a two-dimensional
setup. Accordingly, we introduce a polar grid that has J cells in the radial direction
with the nodes ρj = j∆ρ, j = 0, . . . , J , so that ρ0 = 0 and ρJ = R, and L cells in
the circumferential direction with the nodes θs = s∆θ, s = 0, . . . , L, so that θ0 = 0
and θL = 2π. For simplicity, it is convenient to assume that the grid sizes ∆ρ = R/J
and ∆θ = 2π/L are constant; in applications, the grid in the radial direction may be
stretched; see section 4.2.

The Helmholtz equation is discretized on this grid with second-order accuracy by
central differences:

L(h)w(h)
∣∣
s,j

≡ 1

ρj

1

∆ρ

(
ρj+ 1

2

w
(h)
s,j+1 − w

(h)
s,j

∆ρ
− ρj− 1

2

w
(h)
s,j − w

(h)
s,j−1

∆ρ

)

+
1

ρ2j

w
(h)
s+1,j − 2w

(h)
s,j + w

(h)
s−1,j

∆θ2
+ k2w

(h)
s,j = 0.

(3.5)
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The left-hand side of (3.5) is a particular realization of the operator (3.1) that employs
the five-node stencil shown in Figure 3.2. This operator will be used in section 4 for
obtaining optimal discrete control sources.

To construct the finite-difference ABCs at ρ = R, we will also consider a semi-
discrete form of the homogeneous equation in the far field:

1

ρ

d

dρ

(
ρ
dws
dρ

)
+

1

ρ2
ws+1 − 2ws + ws−1

∆θ2
+ k2ws = 0, s = 0, . . . , L− 1.(3.6)

Introducing the direct and inverse discrete Fourier transforms, l = −L/2+1, . . . , L/2,
s = 0, . . . , L− 1,

ŵl =
1

L

L−1∑
s=0

wse
−ils∆θ, ws =

L/2∑
l=−L/2+1

ŵle
ils∆θ,(3.7)

we reduce (3.6) to the following system of ordinary differential equations with respect
to ŵl = ŵl(ρ):

1

ρ

d

dρ

(
ρ
dŵl
dρ

)
− α2

l

ρ2
ŵl + k2ŵl = 0, α2

l =
4

∆θ2
sin2

l∆θ

2
, ρ ≥ R,(3.8)

where again l = −L/2 + 1, . . . , L/2. Equations (3.8) are the same as (2.14), except
that in the discrete case the range for l is finite, and l2 in (2.14) has been replaced
by α2

l in (3.8). Therefore, we can use the same boundary conditions (2.17) for l =
−L/2 + 1, . . . , L/2,

d

dρ
ŵl

∣∣∣∣
ρ=R

= ŵl(R)

d
dρH

(2)
αl (kR)

H
(2)
αl (kR)

,(3.9)

only with the Hankel functions of order l replaced by the Hankel functions of the order
αl. For implementation in the foregoing discrete framework, boundary conditions (3.9)
for all l = −L/2 + 1, . . . , L/2 have to be approximated with second-order accuracy,
which can be easily done as follows:

ŵl,J − ŵl,J−1

∆ρ
− βl

ŵl,J + ŵl,J−1

2
= 0, βl =

d
dρH

(2)
αl (kR)

H
(2)
αl (kR)

.(3.10)

Finally, relations in (3.10) for all l = −L/2+1, . . . , L/2 can be rewritten in the matrix
form:

w·,J = F−1diag

{
−
(

1

∆ρ
+ βl

)(
1

∆ρ
− βl

)−1
}

F w·,J−1 ≡ T w·,J−1,(3.11)

where F and F−1 are matrices of the direct and inverse discrete Fourier transforms of
(3.7), and w·,J and w·,J−1 are L-dimensional vectors of components w

(h)
s,J and w

(h)
s,J−1,

respectively, s = 0, 1, . . . , L− 1.
In the three-dimensional case, instead of the discrete Fourier transforms (3.7) one

can use expansions with respect to the so-called finite-difference spherical functions
(see [15, Part IV, Chapter 4]) that form a full orthogonal system of eigenvectors for
the spherical part of the discrete Laplacian. Other than that, the construction of the
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discrete three-dimensional ABCs will be similar to the foregoing two-dimensional con-
struction. We do not expand on it here because we do not conduct three-dimensional
computations in this paper. Let us also mention that for small l the difference between
l2 and the corresponding α2

l (see (3.8)) will obviously be small as well. Therefore,
for smooth functions w, for which the short-wave part of the spectrum (large l’s) is
insignificant, one may not even have to replace l in (2.17) by αl in (3.9). We have
observed this type of behavior in the previous paper [14], in which we studied similar
questions for the Poisson equation.

3.4. Types of discrete control sources. Similarly to the continuous case (see
section 2.3) let us now identify some particular types of discrete control sources. First,
we define another subset of the grid M (more precisely, of M

−):

M
−
int =

{
m ∈ M

−∣∣Nm ∩ γ+ = ∅} .
Basically, M

−
int is the interior subset of M

− such that, when the center of the stencil
sweeps this subset, the stencil itself does not touch γ+; see Figures 3.1 and 3.2. In
other words, we can say that M

−
int is a subset of M

− such that⋃
m∈M

−
int

Nm = N
−\γ+.

Having defined this new subset M
−
int, we now introduce the auxiliary function w(h) =

w
(h)
n , n ∈ N

−, for (3.3) as follows:

w(h)
n

∣∣
n∈γ+ = u(h)n

∣∣
n∈γ+ ,(3.12a)

and

w(h)
n

∣∣
n∈γ− = u(h)n

∣∣
n∈γ− ,

L(h)w(h) = 0 on M
−
int.

(3.12b)

As before, we also assume that w(h) satisfies the appropriate discrete ABCs; see,
e.g., (3.11). Definition (3.12a) means that on the interior part of the grid boundary

γ+ we simply set w(h) equal to the given u(h): w
(h)
n |n∈γ+ = u

(h)
n |n∈γ+ . Definition

(3.12b) is actually a discrete exterior boundary-value problem of the Dirichlet type.
Indeed, everywhere on and “outside” the exterior part of the grid boundary γ−, i.e., on
N

−\γ+, the grid function w(h) is obtained as a solution of the homogeneous equation
L(h)w(h) = 0 (enforced at the nodes M

−
int) supplemented by the boundary data on

γ−: w
(h)
n

∣∣
n∈γ− = u

(h)
n

∣∣
n∈γ− , which is specified for the unknown function w(h) itself.

Note, relation (3.12a) and the first relation (3.12b) together are obviously equivalent
to (3.4). Therefore, the function w(h) defined via (3.12a), (3.12b) falls into the general
class of w(h)’s used for obtaining the discrete control sources; see section 3.2.

Problem (3.12b) can clearly be considered a finite-difference counterpart to the
continuous Dirichlet problem (2.23). Therefore, it is natural to call the control sources

g(h) ≡ g
(h,surf)
monopole obtained by formulae (3.3), (3.12a), (3.12b) the discrete surface

monopoles. Indeed, because of the definition of w(h) given by (3.12a) and (3.12b),

these g
(h,surf)
monopole may, generally speaking, differ from zero only on the grid set M

−\M−
int,

which is a single “curvilinear” layer of nodes of grid M that follows the geometry
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of Γ. Accordingly, the output of these controls can be called the discrete single-
layer potential; it was first introduced and analyzed in our recent paper [20]. Let
us emphasize that unlike the continuous surface monopoles (2.30), which belong to a
different class of functions rather than the volumetric sources (2.1) and (2.2) (singular
δ-type distributions vs. regular locally integrable functions), the foregoing discrete
surface monopoles belong to the same original class of discrete control sources (3.3)
and (3.4). They can be considered as the ultimate reduction of the volumetric discrete
controls (3.3) and (3.4) to the surface. In section 4, the discrete surface monopoles
will play a fundamental role for the analysis of the optimization problems.

Besides the discrete surface monopoles and the corresponding single-layer poten-
tial, one can also define the discrete surface dipoles and, accordingly, the double-layer
potential; see [20]. Grid dipoles are introduced for the pairs of neighboring nodes so
that the nodes in the pair are assigned values equal in magnitude and opposite in sign.
The control sources in the form of discrete surface dipoles can be obtained by solving
a special Neumann-type discrete exterior boundary-value problem for the auxiliary
function w(h), which would be analogous to the continuous problem (2.24). The con-
struction of surface dipoles, however, is somewhat more elaborate than the foregoing
definition of surface monopoles. And because in this paper we basically focus on the
monopole-type sources only, we are not going to further elaborate here on the issue
of discrete surface dipoles, but will rather refer the reader to our paper [20] for detail.

4. Optimization of control sources. Once the general solution for controls is
available, in either continuous (2.1) or discrete (3.3) formulation, the next step is to
decide what particular element of this large family of functions will be optimal for a
specific setting. There is a multitude of possible criteria for optimality that one can
use; we discuss some of them in the forthcoming papers [8, 9]. We should also empha-
size that in many practical problems the cancellation of noise is only approximate,
and, as such, the key criterion for optimization (or sometimes, the key constraint) is
the quality of this cancellation, i.e., the extent of noise reduction. In contradistinction
to that, in this paper we are considering ideal, or exact, cancellation; i.e., every partic-
ular control field from either the continuous (2.1) or discrete (3.3) family completely
eliminates the unwanted noise on the domain of interest. Consequently, the criteria
for optimality of the controls that we can employ will not include the level of the resid-
ual noise as a part of the corresponding function of merit, and should rather depend
only on the control sources themselves. We realize, of course, that at a later stage of
the work we will also need to look into the issues of approximate, rather than exact,
noise cancellation, for the reason of further reducing the costs. In this case, optimal
solutions found in the framework of the exact cancellation are likely to provide good
initial guesses for subsequent optimization in the approximate framework. Moreover,
it will probably be possible to use some results from the approximation theory to deal
with the issues of approximate noise cancellation once we have solutions for the exact
cancellation. We expect that this approach will be much faster than any algorithm of
combinatorial type. A similar reduction in computational complexity of optimization
was outlined in our earlier work [6] on the optimal distributed control of the exterior
Stokes flow.

4.1. Optimization in the sense of L1. To derive a meaningful criterion for
optimization of the control sources, let us first discuss the physical meaning of the
quantities involved in the formulation of the problem. The most natural way to

interpret the field variable u = u(x ) (as well as its discrete counterpart u
(h)
n ) is to call it

acoustic pressure. Indeed, acoustic pressure is the quantity which is directly measured
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by the sensing devices (microphones), and as such can be immediately supplied as the
required boundary input data for the control system; see formulae (2.2) and (3.4). We
now recall that in the current paper we only analyze a single-frequency formulation
of the noise control problem. To better understand the nature of the source terms
in the Helmholtz equation that governs the time-harmonic pressure u = u(x ), we
will now examine the original unsteady acoustic formulation. Let p = p(x , t) be the
actual acoustic pressure, and v = v(x , t) be the velocity of fluid particles. Then, the
acoustics system can be written as

∂ρ(x , t)

∂t
+ ρ0divv(x , t) = ρ0qvol(x , t),

ρ0
∂v(x , t)

∂t
+ grad p(x , t) = bvol(x , t),

(4.1)

where ρ0 is the density of the ambient fluid. The quantity qvol on the right-hand side of
the continuity equation in (4.1) is known as the volume velocity per unit volume; see,
e.g., [10, 11]. It is defined through the actual volume velocity q =

∫
S
vndσ, which is

the integral of the normal component of the fluid particles’ velocity vn evaluated over
a closed surface S; then qvol = limV→+0

1
V

∫
S
vndσ, where V is the volume enclosed

by S. The physical meaning of the sources ρ0qvol is that they excite the medium by
altering the balance of mass in the system, i.e., by injecting/draining certain amounts
of fluid. Clearly, in the time-harmonic context the process of injecting/draining the
fluid has to be periodic.

Similarly, the quantity bvol on the right-hand side of the second equation of (4.1)
shall be interpreted as the force per unit volume. Obviously, it excites the medium
by altering the balance of momentum in the system; and again, in the time-harmonic
context the net force applied to the fluid particles has to be periodic. Altogether,
we see that two types of sources can be introduced in unsteady acoustics that are
distinctly different from the standpoint of physics. Next, we will see that they can be
interpreted as monopoles and dipoles, respectively, as introduced in section 2.3.

We apply the adiabatic law p = c2ρ, where c is the speed of sound (constant),
differentiate the first equation of (4.1) with respect to time, take the divergence of
the second equation of (4.1), and substitute into the first one, which yields the inho-
mogeneous wave equation for the acoustic pressure:

− 1

c2
∂2p(x , t)

∂t2
+ ∆p(x , t) = divbvol(x , t) − ρ0

∂qvol(x , t)

∂t
.(4.2)

The second term on the right-hand side of (4.2) is the volume acceleration per unit
volume multiplied by the ambient fluid density. The Helmholtz equation for the time-
harmonic pressure is obtained by Fourier transforming (4.2) in time, which formally
amounts to replacing the temporal derivatives ∂

∂t ( · ) by −iω( · ). For simplicity we
will keep all the notations the same except that the time-harmonic problem quantities
will depend only on x and not on t, and we will also use the previous notation u(x )
for the Fourier transformed pressure p(x , t):

∆u(x ) + k2u(x ) = divbvol(x ) + iωρ0qvol(x ).(4.3)

The wavenumber k in the Helmholtz equation (4.3) is given by k = ω/c, where ω is
the frequency of the original temporal oscillations.

Clearly, (4.3) is basically the same as (1.1), except that in (4.3) we provide a de-
tailed description of the source terms based on their physical origin. Namely, we see
that the scalar sources qvol that alter the acoustic balance of mass (see (4.1)) enter the
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right-hand side of the Helmholtz equation directly (up to a multiplicative constant),
whereas the sources bvol that alter the acoustic balance of momentum (see (4.1))
enter the right-hand side of the Helmholtz equation through a divergence operator.
Therefore, the analysis of section 2.3 allows us to interpret qvol(x ) as genuine volu-
metric monopoles and bvol(x ) as volumetric dipoles that are rewritten as equivalent
monopoles divbvol(x ) for mathematical convenience.

The latter operation, namely, recasting the physical dipoles into the monopole
form, allows us to qualitatively study and optimize both types of sources in a uniform
manner. In acoustics (see [10]), the overall right-hand side f(x ) = divbvol(x ) +
iωρ0qvol(x ) of (4.3) is often referred to as the acoustic source density. As we have
seen, the meaning of this right-hand side is excitation per unit volume. Accordingly,
the integral of this quantity over a given region,

∫
V
fdx , is referred to as the acoustic

source strength that pertains to the sources in this region, and the integral of its
magnitude,

∫
V
|f |dx , is known as the absolute acoustic source strength. If the actual

sources involved in the consideration were only monopoles, then the acoustic source
strength would obviously coincide with the overall volume velocity q, and the acoustic
source density would coincide with the volume velocity per unit volume qvol.

For distributed sources, the acoustic source density is assumed to be finite; in
particular, for distributed genuine monopoles the associated volume velocity per unit
volume is assumed to be finite. In the case of an isolated point monopole, i.e., a δ-type
source (see section 2.3), which can be represented as a vanishingly small oscillating
sphere of radius ε with surface velocity vε, the volume velocity can be introduced
as q = limε→+0 vε4πε

2. When the strength q of this isolated monopole is finite, the
associated source density is formally infinite (which is natural to expect for a δ-type
source). In the case of a continuous distribution of sources, the relationship between
the source density and source strength is standard (like that between the mass density
and total mass, electric charge density and total charge, etc.) and basically says that
the integral of the source density over a given region is equal to the overall source
strength associated with this region. In other words, the acoustic source density is
equal to the acoustic source strength per unit volume.

Obviously, the physical meaning of the quantity g = g(x ) of (2.1) that describes
the control sources is the same as that of the original right-hand side f = f(x )
of (1.1) that we have recently specified according to (4.3). Namely, g(x ) shall be
interpreted as the acoustic source strength per unit volume (up to a multiplicative
constant) of the control sources. It is important to mention that as we are studying
the time-harmonic traveling waves, all the quantities involved in the formulation of
the problem are complex-valued. This is essential, as otherwise it would not have
been possible to account for the key phenomenon of the variation of phase between
different spatial locations.

Having identified the physical meaning of the variables involved in the noise con-
trol model that we have adopted, we would argue in the current paper for selecting
the optimal control sources based on minimization of their overall absolute acoustic
source strength. Mathematically, this translates into the minimization of the L1 norm
of the control sources:

‖g‖1 ≡
∫
supp g

|g(x )|dx −→ min,(4.4)

where the search space for minimization in (4.4) includes all the appropriate auxiliary
functions w(x ), by means of which the controls g(x ) are defined (see formulae (2.1),
(2.2), and the discussion in the beginning of section 2.1). The advantage of using
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this criterion for optimization is that it has a clear physical interpretation, and the
quantities involved, the volume velocity as well as the force applied to fluid particles,
actually characterize the corresponding engineering devices (actuators in the active
noise control system). For comparison, we note that the criterion based on the L2

norm,

‖g‖2 ≡
√∫

supp g

|g(x )|2dx −→ min,

does not have a similar clear physical interpretation, although as indicated below (see
also our forthcoming paper [9]), the corresponding numerical optimization problem
is much easier to solve. Another advantage of using the L1 norm, or in other words,
the overall absolute acoustic source strength, as the cost function for optimization
(minimization) is that it characterizes only the control sources themselves. This is
a convenient distinction compared, e.g., to the power-based criteria, which, as has
been mentioned, would always involve interaction between the sources and the field
they operate in. This interaction is often referred to as the “load” on the sources by
the field (see [11]), and may lead to certain types of degeneration when solving the
optimization problem; see [8].

In the discrete framework, the L1 minimization problem that corresponds to (4.4)
is formulated as follows:

‖g(h)‖1 ≡
∑

m∈M
−∩{ρ<R}

Vm|g(h)m | −→ min,(4.5)

where Vm accounts for the volume in three dimensions or area in two dimensions of a
particular grid cell, and again, the search space includes all the appropriate auxiliary
grid functions w(h) through which g(h) is defined; see formula (3.3). The function w(h)

is supposed to satisfy boundary conditions (3.4) on the interface, and the selected
ABCs at the external artificial boundary; for the two-dimensional examples analyzed
in the following section 4.2 the latter will be boundary conditions (3.11).

Let us now return to the definition (3.3) of the discrete control sources g(h) and
adopt the polar framework of section 3.3. The finite-difference operator L(h) can
obviously be interpreted as a matrix with N columns and M rows, where N is the
number of nodes n ≡ (s, j) of the grid N

− such that the corresponding radial coordi-
nate ρj ≤ R, i.e., j ≤ J , and M is the number of nodes m ≡ (s, j) of the grid M

− such
that the corresponding radial coordinate ρj < R, i.e., j ≤ J − 1. Denote by w the

vector of N components w
(h)
n ≡ w

(h)
s,j such that n ∈ N

− and j ≤ J . The components
of w can obviously be arranged in a particular way so that this vector can then be
decomposed into four subvectors:

w = [wγ ,w0,w·,J−1,w·,J ]T ,(4.6)

where wγ contains all those and only those w
(h)
n for which n ∈ γ, w·,J , and w·,J−1 cor-

respond to the outermost and second-to-last circles of the polar grid, respectively, as
in formula (3.11), and w0 contains all the remaining components of w . In accordance
with (4.6), the matrix L(h) can be decomposed into four submatrices:

L(h) = [A,B ,C ,D ],(4.7)
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where the number of rows in all four is the same and equal to M , A has as many
columns as there are nodes in γ (we denote this number |γ|), C and D each have L
columns (see section 3.3), and the number of columns in B is obviously N − |γ| − 2L.

Using representations (4.6) and (4.7), one can rewrite the optimization problem
(4.5) as follows:

‖V (Awγ + Bw0 + Cw·,J−1 + Dw·,J)‖1 −→ min,(4.8)

where the norm in (4.8) is a conventional L1 norm on complex M -dimensional vectors,
and V is an M ×M diagonal matrix with the entries given by the corresponding cell
areas Vm. Next, we recall that the search space for optimization (4.5) is composed of
all the appropriate grid functions w(h), which means that the vector w in the opti-
mization formulation (4.8) is, in fact, subject to a number of equality-type constraints
that come from the interface conditions (3.4) and ABCs (3.11). More precisely, the
first subvector wγ in (4.6) is known and fixed because of (3.4), and we can rewrite
(3.4) as wγ = uγ , where uγ is given. The last subvector w·,J in (4.6) is a function of
w·,J−1 according to (3.11). Therefore, we can conclude that only w0 and w·,J−1 con-
tain free variables that provide the search space for optimization, and as such rewrite
(4.8) as

min
w0,w·,J−1

‖V (Bw0 + (C + DT )w·,J−1 + Awγ)‖1 ≡ min
z

‖Ez − f ‖1,(4.9)

where E = V [B ,C + DT ] is an M × (N − |γ| − L) given matrix, z = [w0,w·,J−1]T

is an (N − |γ| − L)-dimensional vector of unknowns, and f = −VAwγ is an M -
dimensional known vector of the right-hand side. Minimization problem (4.9) is, in
fact, a problem of finding a weak solution in the sense of L1 of an overdetermined
complex linear system Ez = f .

Let us first note that the most conventional weak formulation for an overdeter-
mined system Ez = f would be that in the sense of L2, rather than (4.9). The
L2 minimization problem ‖Ez − f ‖2 −→ min has proven easy to solve numerically
even for rather complex geometries. It does not require the Moore–Penrose-type ar-
guments and can be conveniently solved by a standard QR algorithm; we report the
corresponding results in our forthcoming paper [9]. As has been mentioned, though,
this formulation lacks a convincing physical interpretation and therefore, hereafter we
concentrate on solving the L1 optimization problem (4.9).

By introducing M additional real variables ti ∈ R, i = 1, . . . ,M , one can reduce
problem (4.9) to the following optimization problem with equality-type constraints,

min
∑
i

ti,∣∣∣∣∣∣
∑
j

eijzj − fi

∣∣∣∣∣∣− ti = 0, i = 1, . . . ,M,

(4.10)

which is equivalent to the problem with inequality-type constraints:

min
∑
i

ti,∣∣∣∣∣∣
∑
j

eijzj − fi

∣∣∣∣∣∣− ti ≤ 0, i = 1, . . . ,M.

(4.11)
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If all the quantities involved in the formulation (4.9) were real, then problem (4.11)
would, in turn, be equivalent to the linear programming problem (see [21, Chapter 12,
section 4]):

min
∑
i

ti,

−ti ≤
∑
j

eijzj − fi ≤ ti, i = 1, . . . ,M,

(4.12)

which nowadays can be solved efficiently even for large dimensions. However, complex
entries in E , z , and f (see (4.9)) are essential in order to account for traveling waves,
so we will actually need to solve a nonlinear problem (4.11) rather than a linear
problem (4.12).

The most obvious disadvantage of optimizing in the sense of L1 is that the fore-
going problem (4.11) appears very difficult to solve numerically. Besides being non-
linear, the constraints are obviously nonsmooth. Moreover, strictly speaking, those
constraints are not convex either. Indeed, for every i = 1, . . . ,M , the inequality
|∑j eijzj − fi| − ti ≤ 0 defines a cone in the space of variables ti, �(

∑
j eijzj − fi),

and �(
∑
j eijzj − fi). As we are only considering the upper half of the cone, this set

is geometrically convex. However, algebraically the function |∑j eijzj − fi|2 − t2i of
variables zj , ti obviously cannot be convex. And the algebraic convexity (i.e., positive
semidefiniteness of the Hessian) is exactly what distinguishes between the convex and
nonconvex programming problems, with the latter being substantially more difficult
to treat in a numerical setting; see [21, Chapter 24]. Of course, problem (4.11) can
be reformulated so that the constraints will become truly convex:

min
∑
i

√
ti,

∣∣∣∣∣∣
∑
j

eijzj − fi

∣∣∣∣∣∣
2

− ti ≤ 0, i = 1, . . . ,M.

(4.13)

However, in the formulation (4.13) the most “harmless” cost function that one can
think of, i.e., the linear function

∑
i ti, has been replaced by the function

∑
i

√
ti that

has singular derivatives at the optimum. Experimentally, we have observed that this
presents even more severe problems for a numerical optimizer.

Altogether, the combination of nonlinearity, nonsmoothness, and only “marginal”
convexity (optimization over cones) makes problem (4.11) a serious challenge even
for the most sophisticated state-of-the-art approaches to numerical optimization—the
approaches that are typically based on interior point methods [12, 21]. The difficulties
are further exacerbated by the large dimension of the grid on which the problem
is formulated. Even for the aforementioned state-of-the art methods the maximum
number of constraints that they can handle is typically on the order of hundreds. And
in problem (4.11), the number of constraints is the same as the number of grid nodes
M . As such, one can easily encounter an orders of magnitude difference between the
number of constraints that the numerical optimizer will handle and the number of grid
nodes that will make the formulation of an active noise control problem practically
interesting. This is especially true for three-dimensional problems.
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In spite of all difficulties, we have still managed to obtain numerical solutions in
two space dimensions for some simple test cases. All numerical experiments that we
have conducted indicate a very consistent behavior of the L1-optimal solution for con-

trol sources; it happens to be the discrete layer of monopoles on the surface g
(h, surf)
monopole

described in section 3.4. Recall, this solution is obtained by applying formula (3.3) to
the auxiliary function w(h) defined by (3.12a), (3.12b). In the following section 4.2, we
report the corresponding computational results, and in the subsequent section 4.3, we
provide a general proof of the global L1-optimality of this surface monopole solution
in the case of one space dimension. Overall, the combination of the two-dimensional
numerical evidence and the one-dimensional general proof prompts us to put for-
ward a conjecture (see section 5) that the foregoing uniquely defined layer of surface
monopoles always provides the control sources with minimal total absolute strength.
This conjecture implies that the difficult procedure of numerical optimization in the
sense of L1 can actually be bypassed when building the L1-optimal control sources;
the latter can be obtained by simply solving the boundary-value problem (3.12b),
which is an easy task. In other words, assuming that our arguments toward global
minimality of surface monopoles are sufficiently convincing (see sections 4.2 and 4.3),
we can claim that finding the L1-optimal controls will now take only a most straight-
forward computation, apparently even easier than optimization in the sense of L2;
see [9]. Of course, comparison of the different optimization strategies in the frame-
work of an approximate, rather than exact, noise cancellation will require a through
future study.

4.2. Numerical solution of the L1-optimization problem. For our numer-
ical simulations, we have considered the simplest possible two-dimensional geometric
setup, with the protected domain Ω in the form of a disk of radius r = 1 centered
at the origin. The external artificial boundary was a circle of radius R > r, as in
section 3.3. As such, the resulting discrete control sources were concentrated within
the annular region r ≤ ρ ≤ R.

In contradistinction to section 3.3, here we have used a polar grid, which was
stretched in the radial direction. This allowed us to keep the cell aspect ratio con-
stant. The grid is first built in the coordinates (ln ρ, θ); it has equal square cells
2π
L × 2π

L and is constructed on the rectangle [− 2π
L , lnR]× [0, 2π]. Then, the conformal

mapping eln ρ+iθ maps it onto a polar grid with uniform angular spacing θs = s∆θ,
where ∆θ = 2π

L and s = 0, . . . , L, so that θ0 = 0 and θL = 2π, and nonuni-
form radial spacing ρj = exp

(
2π
L · j), j = −1, 0, . . . , J , so that ρ−1 = exp

(− 2π
L

)
,

ρ0 = 1 = r, and ρJ = R. It is convenient to define the grid sizes in the ra-
dial direction as ∆ρj ≡ ρj − ρj−1 = exp

(
2π
L · j) − exp

(
2π
L · (j − 1)

)
, j = 0, . . . , J .

The Helmholtz operator can be easily approximated on this new nonuniform grid
with the second order of accuracy using the same five-node stencil as shown in Fig-
ure 3.2. This involves little change compared to the approximation (3.5), which works
for uniform grids, and we refer the reader to our paper [14] for detail. The dis-
crete ABCs (3.10) or (3.11) do not change, except that ∆ρJ needs to be substituted
instead of ∆ρ.

As we are building our control sources outside of the protected region Ω =
{(ρ, θ) | ρ < r = 1}, i.e., on Ω1 = R

2\Ω, we do not need to be concerned with
the structure of the grid inside Ω. For our constructions, we will only need to use
one grid circle inside Ω. This will be the innermost circle j = −1. The second to
innermost circle j = 0 already represents the interface Γ = ∂Ω = {(ρ, θ) | ρ = r = 1}.
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Adopting the definition (3.2) of the grid subsets introduced in section 3.1, we obtain

M
+ = {(ρj , θs) | j = −1}, M

− = {(ρj , θs) | 0 ≤ j ≤ J − 1},
N
+ = {(ρj , θs) | j = −1, 0}, N

− = {(ρj , θs) | − 1 ≤ j ≤ J},
γ = {(ρj , θs) | j = −1, 0}, γ+ = {(ρj , θs) | j = −1}, γ− = {(ρj , θs) | j = 0}.

(4.14)

For all definitions in (4.14), we assume s = 0, . . . , L− 1.
In the computational experiments, we have used grids with four times the number

of cells in the circumferential direction compared to the radial direction. Specific grid
dimensions were: L = 32 and L = 48, and accordingly, J = 7 and J = 11. (Note, as
j = −1, 0, . . . , J , the number of cells in the radial direction is J+1.) The wavenumber
k in the Helmholtz equation (1.1) was chosen as k = 0.5. The excitation, i.e., the
acoustic field u(h) that drives the control system, was taken in the analytic form of
a shifted fundamental solution (see formula (2.3a)), as if it were generated by the
point source δ(x − x1), where x1 = (ρ cos θ, ρ sin θ) = (5, 0). We reemphasize that
our approach does not require an explicit knowledge of the exterior sources of noise.
We only need this function u(h) as a sample field to be used as given data in formula
(3.4).

We have also considered another case: L = 48, J = 9; for this case, we have
selected k = 0.9. The excitation was produced by two point sources, δ(x − x1) +
δ(x − x2), where x1 = (5, 0) and x2 = (1, 2). Note, as for the wavenumber we
have k = ω/c, where ω is the temporal frequency and c is the speed of sound (see
section 4.1). We also obtain the following relation between the wavelength λ and the
wavenumber: λ = 2π/k. This means that in both cases, k = 0.5 and k = 0.9, we
consider long waves relative to the diameter of the protected region Ω, which has been
found advantageous from the standpoint of convergence of the numerical optimization
algorithm.

The matrices and vectors involved in the formulation of the optimization problem
(4.9) were constructed in accordance with the chosen geometric setup. Namely, the
dimension of L(h) (see (4.7)) was M ×N ≡ (L ·J)× (L · (J + 2)); the dimension of A,
which corresponds to the variables on γ, was M ×2 ·L ≡ (L ·J)×2 ·L; the dimension
of B was M × (N − 4L) ≡ (L · J) × (L · (J − 2)); and the dimension of either C or
D was M × L ≡ (L · J) × L.

We have tried several numerical approaches for solving the corresponding min-
imization problems (4.11), starting with the algorithms available as a part of the
standard optimization toolbox in MATLAB. However, our best numerical results were
obtained with the software package SeDuMi by J. F. Sturm.5 This is a numerical algo-
rithm for optimization over cones [17]; it employs the ideas of interior point methods
and the self-dual embedding technique of [25]; see also [13]. The algorithm allows
for complex-valued entries, which is very important in our framework, and also for
quasi-convex quadratic and positive semidefinite constraints. Of course, all the cases
that we have been able to compute using SeDuMi (see above) can still be treated only
as simple model examples on the scale of potential applications for noise control (see
section 4.1). However, the optimal solutions that we have obtained all demonstrate a
very coherent behavior that we discuss below. On Figures 4.1(a), 4.2(a), and 4.3(a)
we plot magnitudes of the L1 optimal solutions computed with SeDuMi [17]. Let us
also note that SeDuMi is, in fact, a rather general procedure, and one may expect

5http://fewcal.kub.nl/sturm/software/sedumi.html
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(a) L1 optimal solution (b) Surface monopoles g
(h,surf)
monopole

Fig. 4.1. Control sources for L = 32, J = 7, k = 0.5, excitation δ(x − x1), x1 = (5, 0).

(a) L1 optimal solution (b) Surface monopoles g
(h,surf)
monopole

Fig. 4.2. Control sources for L = 48, J = 11, k = 0.5, excitation δ(x − x1), x1 = (5, 0).

better numerical performance from more focused algorithms, such as the one proposed
by Andersen et al. in [1]. In the future, we may try the algorithm of [1] for solving
the foregoing L1 minimization problem.

Apparently, the most obvious observation that one can make by looking at Fig-
ures 4.1(a), 4.2(a), and 4.3(a) is that in all cases the optimal solution (i.e., the L1

minimum) is concentrated on a single circumferential layer of grid nodes. This is the
second to innermost circle of the grid N

− (see (4.14)), i.e., the grid line j = 0. It
corresponds to the outer portion of the grid boundary γ− (see (4.14)), and, in the
continuous case, to the interface Γ itself, Γ = ∂Ω = {(ρ, θ) | ρ = r = 1}. In other
words, the L1-optimal solutions for control sources that we have computed can all be
interpreted as layers of monopole sources on the perimeter of the protected region Ω.
This clearly calls for comparing these optimal solutions with the densities of discrete
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(a) L1 optimal solution (b) Surface monopoles g
(h,surf)
monopole

Fig. 4.3. Control sources for L = 48, J = 9, k = 0.9, excitation δ(x − x1) + δ(x − x2),
x1 = (5, 0), x2 = (1, 2).

single-layer potentials introduced in section 3.4.
To conform the general definitions of section 3.4 to the specific geometric setup

analyzed here, we need to construct on N
−\γ+ the solution w(h) of the discrete exterior

Dirichlet problem (3.12b) for the case when γ− is the grid circle j = 0. (In this case,
M

−
int corresponds to j > 0.) Then, the operator L(h) of (3.5) needs to be applied to the

overall resulting function w(h), including its definition (3.12a) on the inner part γ+

of the grid boundary: w
(h)
n |n∈γ+ = u

(h)
n |n∈γ+ . Since we know ahead of time that the

resulting controls will differ from zero only on γ− (which is an equivalent of M
−\M−

int

in this case), we need not consider w(h) anywhere beyond j = 1. Consequently, for
the purpose of constructing surface monopoles, we may simply set J = 1 and consider
w(h) on three grid circles only: j = −1, j = 0 ≡ J − 1, and j = 1 ≡ J . In so
doing, we obviously have to specify the ABCs (3.11) right on the interface; in other
words, the input for the ABCs will be on γ−, i.e., at j = 0, and the output will be
on the outermost circle j = J = 1. Clearly, specifying the ABCs on γ− allows us to

reconstruct w
(h)
s,j for j = J directly by formula (3.11), i.e., without actually solving

the aforementioned exterior Dirichlet problem. And once we know w(h) for j = −1, 0,
and 1, we can easily obtain the discrete surface monopole controls on γ−, i.e., for

j = 0. As in section 3.4, we will denote these control sources g
(h,surf)
monopole.

In Figures 4.1(b), 4.2(b), and 4.3(b), we plot magnitudes of the discrete surface

controls g
(h,surf)
monopole for the exact same cases, for which we have explicitly computed

the L1 minimal solutions using SeDuMi. Visually comparing Figures 4.1(a), 4.2(a),
and 4.3(a) with respective Figures 4.1(b), 4.2(b), and 4.3(b), we conclude that there
is virtually no difference between them. In other words, the L1-optimal solutions

coincide with the surface monopole control sources g
(h,surf)
monopole. To further corroborate

this conclusion, we evaluate the L1 norm of the difference on the grid M
− between

each L1-optimal solution and the corresponding surface monopole layer g
(h,surf)
monopole,

assuming that g
(h,surf)
monopole = 0 everywhere except on γ−. The results are presented in

Table 4.1.
The data in Table 4.1, which take into account both magnitude and phase, do
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Table 4.1
Comparison of the computed L1-optimal solutions with surface monopoles.

Case minw(h)

∥∥g(h)∥∥
1,M−

∥∥g(h,surf)monopole

∥∥
1,M−

∥∥g(h)min − g
(h,surf)
monopole

∥∥
1,M− Relative diff.

Figure 4.1 0.5764 0.5761 0.0067 0.0117
Figure 4.2 0.5769 0.5761 0.0036 0.0063
Figure 4.3 0.9760 0.9750 0.0083 0.0085

corroborate that the respective solutions are close to one another. Moreover, by
comparing the second and third rows in Table 4.1, we can apparently observe the
phenomenon of grid convergence. Indeed, the case of Figure 4.2 is computed on a grid
which is 1.5 times finer in each direction than the grid of Figure 4.1. For a second-
order scheme, we can consequently expect a drop in the error by a factor of ∼ 2.25,
which we indeed see in Table 4.1 for both the absolute and relative difference between
the L1 minimum g

(h)
min and surface monopoles g

(h,surf)
monopole. Even though the solutions

that we are computing are obviously not smooth, and thus the grid convergence may
be difficult to justify analytically, the foregoing experimental observation certainly

makes our point about the coincidence of g
(h)
min and g

(h,surf)
monopole even more convincing.

Summarizing the foregoing numerical results, we can see that in all the cases
analyzed the minimum for the L1 norms of the control sources g(h) on M

− (see (4.5))

is actually given by the L1 norm of g
(h,surf)
monopole:

min
w(h)

∥∥g(h)∥∥
1,M− =

∥∥g(h,surf)monopole

∥∥
1,M− .

The right-hand side of the previous equality can be recast into a more natural form

by noticing that surface controls g
(h,surf)
monopole are defined only on γ−. Then we can

replace the L1 norm over the two-dimensional grid domain M
− by the L1 norm over

the “one-dimensional” grid subset γ−. This will bring about a factor of ∆ρ1 because
obviously the cell areas Vm (see (4.5)) that correspond to nodes j = 0 are all equal
and proportional to ∆ρ1. As such, we obtain

min
w(h)

∥∥g(h)∥∥
1,M− =

∥∥g(h,surf)monopole

∥∥
1,γ−∆ρ1.(4.15)

Equality (4.15) basically conjectures global minimality of the surface monopole solu-
tion for active controls in the sense of L1.

As of yet, of course, we can only claim that equality (4.15) holds because it has
been corroborated by a particular collection of numerical experiments that we have
conducted. However, motivated by the consistency of our experimental observations
that all suggest (4.15) (see Figures 4.1, 4.2, and 4.3 and Table 4.1), we have been able
to prove a general result on the global L1-optimality of the surface monopole solu-
tion for controls in both continuous and discrete formulation in the one-dimensional
case. As has already been mentioned, we interpret the combination of the foregoing
numerical results and the forthcoming analytic one-dimensional proof as an indica-
tion that surface monopoles may provide a universal global optimum in the sense
of L1. This, in particular, means that no numerical optimization will be needed for
constructing the L1-optimal control sources; they can simply be obtained by solving
the boundary-value problem (3.12b) for the generating function w(h).

4.3. One-dimensional proof of global L1-optimality. It will be convenient
to consider simultaneously both the continuous and discrete formulations of the one-
dimensional noise control problem. Let’s denote the independent variable x ∈ R and
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introduce the one-dimensional Helmholtz equation for the field variable u = u(x) (cf.
(1.1)):

Lu ≡ d2u

dx2
+ k2u = f(x).(4.16)

Then we introduce a uniform grid xn = n · h, n = 0,±1,±2, . . . , of variable x, and
approximate (4.16) with the second-order central-difference scheme

L(h)u(h) =
u
(h)
n+1 − 2u

(h)
n + u

(h)
n−1

h2
+ k2u(h)n = f (h)n .(4.17)

Note that here we are using the same subscript “n” for both the discrete unknown
function u(h) and the discrete right-hand side f (h), because for the particular scheme
(4.17) they are defined on the same grid. We will still need to distinguish, however,
between the grids M and N when constructing the necessary grid subsets.

Let us assume that our protected region Ω corresponds to x < 0 and accordingly,
the complementary region Ω1 corresponds to x ≥ 0. Then, the continuous control
sources will be given by (cf. formula (2.1))

g(x) = −d2w

dx2
− k2w

∣∣∣∣
x≥0

,(4.18)

where the auxiliary function w(x), x ≥ 0, is supposed to satisfy the interface conditions
(cf. formula (2.2))

w(0) = u(0),
dw

dx

∣∣∣∣
x=0

=
du

dx

∣∣∣∣
x=0

(4.19)

and the appropriate ABC, i.e., the radiation boundary condition, as x −→ +∞. The
quantities u(0) and du

dx

∣∣
x=0

in (4.19) are assumed to be given.
Next, applying the definitions of section 3.1 to a particular stencil given by (4.17),

we will have M
+ = {m |m ≡ n = −1,−2, . . . }, M

− = {m |m ≡ n = 0, 1, 2, . . . },
N
+ = {n |n = 0,−1,−2, . . . }, N

− = {n |n = −1, 0, 1, 2, . . . }, and γ = {n |n = −1, 0}.
Accordingly, the discrete one-dimensional control sources will be given by (cf. formula
(3.3))

g(h)n = −w
(h)
n+1 − 2w

(h)
n + w

(h)
n−1

h2
− k2w(h)

n

∣∣∣∣
n≥0

,(4.20)

where the auxiliary grid function w
(h)
n is supposed to satisfy the interface conditions

on γ = {n |n = −1, 0} (cf. formula (3.4))

w
(h)
−1 = u

(h)
−1 , w

(h)
0 = u

(h)
0 ,(4.21)

and the appropriate ABC at infinity, or in other words, for large n’s. Again, the

quantities u
(h)
−1 and u

(h)
0 in (4.21) are considered as given.

To obtain the continuous ABC, we assume that the auxiliary function w(x) sat-
isfies the homogeneous version of (4.16): Lw = 0 for x ≥ X > 0. This equation
has two linearly independent solutions: e−ikx is a right-traveling wave, and eikx is
a left-traveling wave. In the one-dimensional framework, we obviously need to treat
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the right-traveling wave as outgoing for the artificial outer boundary x = X. There-
fore, employing the same mode selection principle as in section 2.2, we arrive at the
following ABC (cf. formulae (2.13) and (2.17)):

dw

dx

∣∣∣∣
x=X

= −ikw(X),(4.22)

which guarantees that only one of the two aforementioned linearly independent modes,
namely e−ikx, will remain in the composition of w(x) for x ≥ X. Note that boundary
condition (4.22) can, in fact, be interpreted as the Sommerfeld radiation condition. In
the one-dimensional case, it can be specified at a finite location, in contradistinction
to the multidimensional case when these boundary conditions can only be specified
at infinity; see formulae (1.2a), (1.2b). Altogether, the continuous auxiliary function
w = w(x) that defines the control sources g(x) by formula (4.18) is specified on the
interval [0, X] and satisfies boundary conditions (4.19) and (4.22).

To obtain the discrete one-dimensional ABC, we will not approximate (4.22) with
finite differences, as we did in section 3.3 for the polar case, when it was basically the
only option. We will rather use a genuine finite-difference approach, which has shown
efficient in many cases (see the review [19]), and which was studied in our recent
paper [4] for a more complex formulation that involves a high-order approximation to
the Helmholtz equation. Let’s assume that the auxiliary grid function w(h) satisfies
the homogeneous version of (4.17): L(h)w(h)

∣∣
n

= 0 for n ≥ N > 0 (one may think
that X = (N − 1) · h). This homogeneous finite-difference equation has two linearly
independent solutions: qn and q−n, where q and q−1 are roots of the corresponding
algebraic characteristic equation

q2 − (2 − k2h2)q + 1 = 0.(4.23)

These roots are given by the formulae:

q = 1 − 1

2
k2h2 − ikh

√
1 − 1

4
k2h2, q−1 = 1 − 1

2
k2h2 + ikh

√
1 − 1

4
k2h2.(4.24)

It is easy to see from (4.24) that for small h the discrete wave qn approximates the
continuous right-traveling wave e−ikx, and the discrete wave q−n approximates the
continuous left-traveling wave eikx. Therefore, the solution qn shall be interpreted as
a discrete outgoing wave, and q−n shall be interpreted as a discrete incoming wave,
for the external artificial boundary n = N . To guarantee the radiation of waves, we

need to select qn and prohibit q−n, or in other words, require that w
(h)
n = c · qn for

n ≥ N , where c = const. Accordingly, we arrive at the following discrete ABC:

w
(h)
N = q · w(h)

N−1,(4.25)

which guarantees that only one of the two aforementioned linearly independent solu-

tions, namely qn, will remain in the composition of w
(h)
n for n ≥ N . Altogether, the

auxiliary grid function w(h) = w
(h)
n that defines the control sources g(h) by formula

(4.20) is specified on the grid subset {n |n = −1, 0, 1, . . . , N} and satisfies boundary
conditions (4.21) and (4.25).

From now on, we will be considering only the situation with no interior sources. In
other words, the only field present in the model before control will be the incoming field
with respect to the protected region Ω = {x ∈ R |x < 0}. In the continuous case it

can be expressed as u(x) ≡ u−(x) = Aeikx, and in the discrete case as u
(h)
n ≡ u

(h)−
n =

Aq−n, where A = const. This restriction, in fact, presents no loss of generality.
Indeed, if we had both components, u(x) = u−(x) + u+(x) = Aeikx + Be−ikx, and
had chosen w(x) according to (4.19) and (4.22), then we could have replaced this
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w(x) by w̃(x) = w(x) − Be−ikx ≡ w(x) − u+(x). The function w̃(x) would satisfy

the new interface conditions w̃(0) = u−(0), dw̃dx
∣∣
x=0

= du−
dx

∣∣
x=0

instead of (4.19), and
the same original ABC (4.22). Most important, the control sources generated by
this new auxiliary function according to (4.18) will be the exact same control sources
as those generated by w(x): Lw = L[w̃ + Be−ikx] = Lw̃, x ≥ 0. Similarly in the

discrete case, if we had u
(h)
n = u

(h)−
n + u

(h)+
n = Aq−n + Bqn, then the auxiliary

functions w
(h)
n and w̃

(h)
n = w

(h)
n −Bqn ≡ w

(h)
n − u

(h)+
n would generate the exact same

discrete control sources according to (4.20). Of course, the foregoing argument is in
complete agreement with the general discussion of section 2 on insensitivity of the
control sources to the interior sound.

In the continuous one-dimensional case, the interface between the protected region
Ω = {x ∈ R |x < 0} and its complement Ω1 = {x ∈ R |x ≥ 0} is obviously one point,
x = 0. To construct the corresponding “surface” monopole controls, we consider
a special form of the auxiliary function w(x). Namely, if the original field to be
controlled is the left-traveling wave that propagates into Ω, u(x) = u−(x) = Aeikx,
x < 0, then we take w(x) in the form of the right-traveling wave: w(x) = Ae−ikx,
x ≥ 0. Obviously, this function w(x) solves the homogeneous equation on Ω1, Lw = 0,
x ≥ 0, and satisfies the ABC (4.18). It also satisfies the Dirichlet boundary condition
at the interface x = 0: w(0) = u(0). Altogether, we see that w(x) selected this way
solves the one-dimensional counterpart of the exterior Dirichlet problem (2.23) that
we used in section 2.3 to obtain the control sources in the form of surface monopoles.
According to the analysis of section 2.3, surface monopoles are obtained by applying
the operator −L to the function v of (2.21), which has discontinuous first derivative
across the interface. In the specific one-dimensional case that we are studying here,
this function is given by

v(x) =

{
Aeikx for x < 0,

Ae−ikx for x ≥ 0.
(4.26)

Applying the operator −L (see (4.16)) to the function v(x) of (4.26) in the sense of
distributions (see [24]), we obtain the following “surface” (in fact, point) monopole
control source (cf. formula (2.30)):

g
(surf)
monopole = 2Aikδ(x).(4.27)

To obtain the discrete “surface” monopoles in the one-dimensional case, we need

to consider u
(h)
n = Aq−n for n ≤ 0, and w

(h)
n = Aqn for n ≥ 0; we also set w

(h)
−1 = u

(h)
−1 .

The aforementioned w
(h)
n solves the discrete homogeneous equation L(h)w(h) = 0 for

n > 0, satisfies the discrete ABC (4.25), and the interface conditions w
(h)
γ = u

(h)
γ , or

equivalently (4.21). In other words, the selected w(h) solves the one-dimensional ver-
sion of the exterior Dirichlet-type problem (3.12b), (3.12a) that we used in section 3.4
to derive surface monopole controls in the discrete framework. Applying the opera-
tor −L(h) (see (4.17)) to the foregoing function w(h), we obtain the discrete surface
control source

g
(h, surf)
monopole =

{
−A
(
2 q−1
h2 + k2

)
for n = 0,

0 for n > 0.
(4.28)

We are now prepared to formulate our central result on the global L1-optimality
of surface monopoles in the one-dimensional discrete framework. For any function

w(h) = w
(h)
n that satisfies the ABC (4.25) and the interface conditions (4.21), where

u
(h)
n = Aq−n, n ≤ 0, the L1 norm of the corresponding control sources (4.20) will
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always be greater than or equal to the magnitude of the surface monopole (4.28)

times the grid size h: ‖g(h)‖1 ≥ |g(h, surf)monopole|h. In the case w
(h)
n = Aqn the equality

is achieved, and thus minw(h) ‖g(h)‖1 = |g(h, surf)monopole|h. In other words, the following
theorem holds.

Theorem 4.1. Let a complex-valued function w(h) = w
(h)
n be defined on the grid

n = −1, 0, 1, . . . , N , where N > 0 can be arbitrary. Let w
(h)
0 = A, where A ∈ C is a

given constant, and w
(h)
−1 = qw

(h)
0 and w

(h)
N = qw

(h)
N−1, where q is defined by formula

(4.24). Then,

min
w

(h)
n

N−1∑
n=0

∣∣∣∣∣w
(h)
n+1 − 2w

(h)
n + w

(h)
n−1

h2
+ k2w(h)

n

∣∣∣∣∣ = |A|
∣∣∣∣2q − 1

h2
+ k2
∣∣∣∣ .(4.29)

Proof. Let us introduce new quantities p0, p1, . . . , pN−2 so that w
(h)
1 = p0w

(h)
0 ,

w
(h)
2 = p1w

(h)
1 , . . . , w

(h)
N−1 = pN−2w

(h)
N−2. Then the sum on the left-hand side of (4.29)

can be recast in the following form (taking into account that w
(h)
−1 = qw

(h)
0 and w

(h)
N =

qw
(h)
N−1):

N−1∑
n=0

∣∣∣∣∣w
(h)
n+1 − 2w

(h)
n + w

(h)
n−1

h2
+ k2w(h)

n

∣∣∣∣∣
= |A|

∣∣∣∣p0 + q − 2

h2
+ k2
∣∣∣∣+ |A|

∣∣∣∣p0p1 − 2p0 + 1

h2
+ k2p0

∣∣∣∣
+ |A||p0|

∣∣∣∣p1p2 − 2p1 + 1

h2
+ k2p1

∣∣∣∣+ |A||p0||p1|
∣∣∣∣p2p3 − 2p2 + 1

h2
+ k2p2

∣∣∣∣+ · · ·

+ |A||p0||p1| · · · |pN−3|
∣∣∣∣pN−2q − 2pN−2 + 1

h2
+ k2pN−2

∣∣∣∣ .
Next, we introduce new notations: p0 = q + z0, p1 = q + z1, . . . , pN−2 = q + zN−2,
where q is defined by (4.24) and all the quantities are generally assumed to be complex.
Using these new notations, we can rewrite the generic term on the right-hand side of
the previous equality as follows:

|A||p0||p1| · · · |pn|
∣∣∣∣pn+1pn+2 − 2pn+1 + 1

h2
+ k2pn+1

∣∣∣∣
= |A||q + z0||q + z1| · · · |q + zn|

∣∣∣∣ (q + zn+1)(q + zn+2) − 2(q + zn+1) + 1

h2

+ k2(q + zn+1)

∣∣∣∣
= |A||q + z0||q + z1| · · · |q

+ zn|
∣∣∣∣ q2 − 2q + 1

h2
+ k2q︸ ︷︷ ︸

0

+
zn+1zn+2 + q(zn+1 + zn+2) − 2zn+1

h2
+ k2zn+1

∣∣∣∣
= |A||q + z0||q + z1| · · · |q + zn|

∣∣∣∣zn+2(q + zn+1)

h2
+ zn+1

(
q − 2

h2
+ k2
)∣∣∣∣

= |A||q + z0||q + z1| · · · |q + zn|
∣∣∣∣zn+2(q + zn+1)

h2
+

zn+1

h2
µ

∣∣∣∣ .
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In the last chain of equalities, expression q2−2q+1
h2 + k2q turns into zero by virtue of

the characteristic equation (4.23), and µ = q − 2 + k2h2. Using the definition of q
from (4.24), we can obtain

|µ|2 =

∣∣∣∣∣−1 − 1

2
k2h2 − ikh

√
1 − 1

4
k2h2 + k2h2

∣∣∣∣∣ =
∣∣∣∣∣−1 +

1

2
k2h2 − ikh

√
1 − 1

4
k2h2

∣∣∣∣∣
=

(
−1 +

1

2
k2h2
)2

+ k2h2
(

1 − 1

4
k2h2
)

= 1 − k2h2 +
1

4
k4h4 + k2h2 − 1

4
k4h4 = 1.

Finally, collecting all terms, we can now have

N−1∑
n=0

∣∣∣∣∣w
(h)
n+1 − 2w

(h)
n + w

(h)
n−1

h2
+ k2w(h)

n

∣∣∣∣∣
= |A|

∣∣∣∣ z0h2 + 2
q − 1

h2
+ k2
∣∣∣∣+ |A|

∣∣∣∣z1(q + z0)

h2
+

z0
h2

µ

∣∣∣∣
+ |A||q + z0|

∣∣∣∣z2(q + z1)

h2
+

z1
h2

µ

∣∣∣∣+ |A||q + z0||q + z1|
∣∣∣∣z3(q + z2)

h2
+

z2
h2

µ

∣∣∣∣+ · · ·

+ |A||q + z0||q + z1| . . . |q + zN−3|
∣∣∣zN−2

h2
µ
∣∣∣

≥ |A|
∣∣∣∣2q − 1

h2
+ k2
∣∣∣∣− |A|

∣∣∣ z0
h2

∣∣∣+ |A|
∣∣∣ z0
h2

∣∣∣ |µ| − |A||q + z0| |z1|
h2

+ |A||q + z0| |z1|
h2

|µ|

− |A||q + z0||q + z1| |z2|
h2

+ |A||q + z0||q + z1| |z2|
h2

|µ| − · · ·

+ |A||q + z0||q + z1| . . . |q + zN−3| |zN−2|
h2

|µ|

= |A|
∣∣∣∣2q − 1

h2
+ k2
∣∣∣∣ .

In other words, we have obtained the inequality

N−1∑
n=0

∣∣∣∣∣w
(h)
n+1 − 2w

(h)
n + w

(h)
n−1

h2
+ k2w(h)

n

∣∣∣∣∣ ≥ |A|
∣∣∣∣2q − 1

h2
+ k2
∣∣∣∣ .(4.30)

To establish the result of the theorem, i.e., formula (4.29), it remains to show only

that there will be a particular w(h) = w
(h)
n for which inequality (4.30) transforms into

the equality. Clearly, the equality in formula (4.30) is achieved for w
(h)
n = Aqn, n ≥ 0,

because in this case z0 = z1 = · · · = zN−2 = 0. This completes the proof.
Let us also recall that if we multiply the sum on the left-hand side of either

formula (4.29) or formula (4.30) by the grid size h, we obtain the discrete L1 norm of
the control sources g(h). Therefore, inequality (4.30) transforms into∥∥g(h)∥∥

1
≥
∣∣∣g(h, surf)monopole

∣∣∣h,(4.31)

and consequently, we have, in effect, demonstrated the global L1 minimality of the
surface control sources:

min
w(h)

∥∥g(h)∥∥
1

=
∣∣∣g(h, surf)monopole

∣∣∣h.(4.32)
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Equality (4.32) is a one-dimensional counterpart of (4.15), but unlike the experimen-
tally established formula (4.15), equality (4.32) has been proven rigorously.

The foregoing proof of Theorem 4.1 also reveals the mechanism of discrepancy

between the optimal control g
(h, surf)
monopole and all other suboptimal controls. Namely,

every time the auxiliary function w
(h)
n “departs” from the pure right-traveling wave

Aqn, which is equivalent to having zn 
= 0, we may pick up additional value of ‖g(h)‖1
in case the actual estimate based on the triangle inequality that we use,

|A||q + z0||q + z1| · · · |q + zn|
∣∣∣∣zn+2(q + zn+1)

h2
+

zn+1

h2
µ

∣∣∣∣
≥ |A||q + z0||q + z1| · · · |q + zn| |zn+1|

h2
|µ|

− |A||q + z0||q + z1| · · · |q + zn||q + zn+1| |zn+2|
h2

,

happens to be “strictly greater” rather than “greater or equal” for this given term. It
is also interesting to look into the role of the ABC (4.25). This boundary condition
“swallows” the last term in the sum so that all the previous terms can cancel one

another in pairs, and only the first term |g(h, surf)monopole| will remain.
Next, we will analyze the continuous case. Assume that w(x) is a regular smooth

function, which is defined on the interval [0, X] and satisfies boundary conditions

(4.19) and (4.22). Let us also assume that the grid function w(h) = w
(h)
n , n =

0, 1, . . . , N − 1, is the trace of w(x) on the aforementioned uniform grid with size

h: w
(h)
n = w(xn) ≡ w(n · h). Note that we need to require sufficient smooth-

ness of w(x) in order to guarantee the consistency of the finite-difference scheme:

L(h)w(h) = Lw+O(h2) (see (4.16) and (4.17)). Let us additionally define w
(h)
−1 = qw

(h)
0

and w
(h)
N = qw

(h)
N−1, in accordance with the boundary conditions (4.21) and (4.25),

respectively, like in the formulation of Theorem 4.1. Then for small h we can disregard
the quadratic terms in the definition of q (see (4.24)) and have for the right endpoint

w
(h)
N − w

(h)
N−1

h
= −ikw

(h)
N−1,

which is obviously an approximation of the continuous ABC (4.22) with the accuracy
O(h). Similarly, for the left endpoint we obtain

w
(h)
0 − w

(h)
−1

h
= ikw

(h)
0 ,

which is an O(h) accurate approximation of the second boundary condition (4.19)
under the assumption that the field to be controlled is u(x) = u−(x) = Aeikx, x < 0,
and consequently, dudx

∣∣
x=0

= iku(0). Altogether, we have constructed a grid function

w(h) = w
(h)
n , n = −1, 0, . . . , N , that satisfies the conditions of Theorem 4.1 and also

approximates on the grid all the continuous requirements of the function w = w(x).
Let us now again multiply both sides of inequality (4.30) by the positive quantity

h and consider independently the limit on its right-hand side and the limit on its
left-hand side as h −→ +0. First, we obtain

|A|
∣∣∣∣2q − 1

h2
+ k2
∣∣∣∣h = |A|

∣∣∣∣∣−k2 − 2ik

h

√
1 − 1

4
k2h2 + k2

∣∣∣∣∣h −→ 2|A|k as h −→ +0.
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Note that the limit is equal to the magnitude of the surface monopole in the continuous
formulation (see (4.27)). Next, on the left-hand side we have

N−1∑
n=0

∣∣∣∣∣w
(h)
n+1 − 2w

(h)
n + w

(h)
n−1

h2
+ k2w(h)

n

∣∣∣∣∣h =
N−1∑
n=0

∣∣∣∣d2wdx2
(xn) + k2w(xn)

∣∣∣∣h + O(h2)

−→
∫ X
0

∣∣∣∣d2wdx2
(x) + k2w(x)

∣∣∣∣ dx as h −→ +0.

Note that the limit is equal to the L1 norm ‖g‖1 of the continuous control sources
g(x) defined by formula (4.18). As inequality (4.30) holds for any given value of h,
we can claim that it will also hold in the limit h −→ +0. Therefore, we have arrived
at the following result.

Corollary 4.2. Let a complex-valued function w = w(x) be defined on [0, X].
Let w(0) = A, where A ∈ C is a given constant, and w′(0) = ikw(0) and w′(X) =
−ikw(X). Then, ∫ X

0

∣∣∣∣d2wdx2
(x) + k2w(x)

∣∣∣∣ dx ≥ 2|A|k.(4.33)

It is easy to see that the requirements of w(x) formulated in Corollary 4.2 are
equivalent to the conditions that guarantee the appropriateness of w(x) for construct-
ing the control sources g(x) using (4.18); see formulae (4.19) and (4.22). Therefore,
the result of Corollary 4.2, i.e., inequality (4.33), can be recast as

‖g‖1 ≥ 2|A|k.(4.34)

On the right-hand side of inequality (4.34) we have the magnitude of the “surface”

monopole g
(surf)
monopole defined by formula (4.27). Note that, unlike in the previously

considered discrete case, when the minimal solution g
(h, surf)
monopole of (4.28) was an ele-

ment of the same class of control sources g(h) defined by (4.20), here the minimum

g
(surf)
monopole(x) defined by (4.27) belongs to a different class of functions, namely, singular

(i.e., δ-type) distributions, as opposed to regular (i.e., L
(loc)
1 ) distributions. In other

words, g
(surf)
monopole(x) 
∈ L1(R), and not even L

(loc)
1 (R). As such, we cannot introduce

the L1 norm of g
(surf)
monopole(x). Therefore, inequality (4.34) formally has to stay the way

it is. However, symbolically we can, of course, write∫
R

∣∣g(surf)monopole(x)
∣∣dx =

∫
R

|2Aikδ(x)| dx = 2|A|k,(4.35)

which allows us to “informally” interpret inequality (4.34) as if g
(surf)
monopole(x) of (4.27)

provided a lower bound in L1 for all the control sources g(x) defined by (4.18). Let
us also note that “integration” with respect to x in (4.35), which “removes” the
δ-function itself and leaves only its magnitude 2k|A|, is a continuous analogue of
multiplication by h on the right-hand side of formulae (4.31) or (4.32). Therefore, we
conclude that the continuous inequality (4.34) is a direct counterpart of the discrete
inequality (4.31).

Even though g
(surf)
monopole(x) 
∈ L

(loc)
1 (R), we will still show that there are regular

control sources g(x) ∈ L
(loc)
1 (R) that are arbitrarily close to g

(surf)
monopole(x) in the weak
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sense. More precisely, we will construct a sequence of regular auxiliary functions
wε(x) such that the corresponding gε(x) obtained according to (4.18) will converge

to g
(surf)
monopole(x) of (4.27) in the sense of distributions. This will allow us to claim

that although the minimal solution g
(surf)
monopole(x) is singular, it is, in fact, “on the

borderline” of the class of regular solutions. In other words, it is a limiting point, in
the sense of weak convergence, of the space of all g(x) defined by formula (4.27). In
addition, we will also show that the L1 norms ‖gε‖ converge to the magnitude 2k|A|
of the “surface” monopole g

(surf)
monopole(x) of (4.27). This will allow us to formulate in

the continuous case the result similar to the minimality (4.32) but in the sense of
“infimum” rather than “minimum.”

Consider a regular function wε = wε(x) that is defined on [0, X] and satisfies
boundary conditions (4.19) and (4.22) with u(x) = Aeikx for x < 0. In addition, let
us assume that not only for x > X, but also in between some (small) ε < X and X, the
function wε(x) already coincides with a right-traveling wave: wε(x) = wε(ε)e

−ik(x−ε),
ε ≤ x ≤ X. In other words, we require that wε(0) = A, w′

ε(0) = ikA, and w′
ε(ε) =

−ikwε(ε). For the purpose of obtaining the aforementioned convergent sequence, we
will subsequently let ε −→ +0. The control sources gε(x) are defined according to
formula (4.18): gε(x) = −w′′

ε (x) − k2wε(x), 0 ≤ x ≤ ε, and for x > ε we have
gε(x) = 0. If ϕ = ϕ(x) is a test function on R, i.e., a compactly supported infinitely
smooth function (see [24]), then the corresponding functional, i.e., the distribution gε
itself, can be represented as follows:

(gε, ϕ) =

∫
R

gε(x)ϕ(x)dx =

∫ ε
0

[−w′′(x) − k2w(x)]ϕ(x)dx

= w(ε)ϕ′(ε) − w(0)ϕ(0) − [ϕ(ε)w′(ε) − ϕ(0)w′(0)] +

∫ ε
0

[−w(x)ϕ′′(x) + k2w(x)ϕ(x)]dx.

As w(x) ∈ L
(loc)
1 (R) and ϕ(x) is a test function, the integral on the right-hand side

of the previous equality vanishes as ε −→ +0. Let us now additionally assume that
the functions wε = wε(x) are constructed so that wε(ε) −→ wε(0) when ε −→ +0. In
other words, we assume continuity at x = 0. Then, because of the boundary condition
(4.22) at x = ε, we have w′

ε(ε) −→ −ikA as ε −→ +0. Altogether, we obtain

(gε, ϕ) −→ 2ikAϕ(0) as ε −→ +0.(4.36)

The limit (4.36) implies that in the sense of distributions

gε(x) −→ g
(surf)
monopole(x) ≡ 2ikAδ(x) as ε −→ +0.(4.37)

Let now specify a particular form of wε(x):

wε(x) =
−ikA

ε
x2 + ikAx + A, x ∈ [0, ε].(4.38)

For this function, we have wε(0) = wε(ε) = A, w′
ε(0) = ikA, and w′

ε(ε) = −ikA, and
consequently, wε(x) of (4.38) meets all the previous conditions. For the L1 norm of
the corresponding control gε(x), we obtain

‖gε‖1 =

∫ ε
0

|w′′
ε (x) + k2wε(x)|dx =

∫ ε
0

|A|
[
k2 +

(
−k3

ε
x2 + k3x− 2k

ε

)2]1/2
dx.
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As we always have 0 ≤ x ≤ ε, the dominant term in the last integral for small ε is 2k
ε ,

and therefore

‖gε‖1 −→ 2k|A| as ε −→ +0.(4.39)

Putting together the result of Corollary 4.2 with the limits (4.37) and (4.39), we
arrive at the following result.

Theorem 4.3. Let a complex-valued function w = w(x) be defined on [0, X].
Let w(0) = A, where A ∈ C is a given constant, and w′(0) = ikw(0) and w′(X) =
−ikw(X). Then, in the class of regular control sources g(x) defined by formula (4.18)
for all such w(x), one can identify a sequence gε(x) that would converge in the sense

of distributions to the point monopole g
(surf)
monopole(x) defined by formula (4.27):

gε(x) −→ g
(surf)
monopole(x) ≡ 2ikAδ(x) as ε −→ +0.

Besides, the magnitude of the point monopole g
(surf)
monopole(x) of (4.27) provides the great-

est lower bound for L1 norms of all the control sources g(x) of (4.18):

inf
w(x)

‖g‖1 = 2k|A|.(4.40)

Clearly, estimate (4.40) can be interpreted as global L1 minimality of the “surface”
control (4.27) among the continuous one-dimensional control sources (4.18). It is a
continuous version of the previously established discrete result (4.32).

5. Discussion. For the problem of active control of sound, we have systema-
tically described time-harmonic general solutions for the volume and surface control
sources in the continuous and discrete formulation of the problem. These control
sources guarantee the identical cancellation of unwanted noise on a predetermined
region of interest. We have also proposed a criterion for optimization of the resulting
control sources. This criterion chooses the overall absolute acoustic source strength as
the cost function for minimization, and as such admits a clear physical interpretation.
Mathematically, it translates into minimization of complex-valued functions in the
sense of L1, which is a very challenging problem from the standpoint of numerical
implementation. We have still managed, though, to compute several two-dimensional
numerical solutions using the algorithm SeDuMi. All these solutions demonstrate a
coherent behavior—the minimum is achieved on the surface of the protected region.
In other words, the minimum is delivered by the appropriate surface monopole con-
trols. Therefore, the numerical evidence that we have received indicates that surface
monopoles may provide a global L1 minimum for the control sources in the general
setting. We have been able to rigorously prove this result in the one-dimensional case
for both continuous and discrete formulation of the problem. Even though we have
not yet been able to prove a similar result for a general multi-dimensional frame-
work, we still believe that it is true, because a combination of the two-dimensional
numerical evidence and a one-dimensional accurate proof cannot, in our opinion, be
a mere coincidence. Therefore, we put forward the minimization result in the form of
a conjecture. Let us recall that according to (2.30) the surface monopole controls are
given by

g
(surf)
monopole(x ) = −

[
∂w

∂n
− ∂u

∂n

]
Γ

δ(Γ) = −
[
∂w̃

∂n
− ∂u−

∂n

]
Γ

δ(Γ) ≡ ν(x )|x∈Γ · δ(Γ),

(5.1)



1182 J. LONČARIĆ AND S. V. TSYNKOV

where w̃(x) = w(x )−u+(x ), as before, and w(x ) is a solution to the exterior Dirichlet
problem (2.23). Then, we can formulate the following.

Conjecture 5.1. Let a complex-valued function w = w(x ) be defined on Ω1 =
R
n\Ω, and let it be sufficiently smooth so that the operator L of (1.1) can be applied
to w(x ) on its entire domain in the classical sense, and the result Lw can be locally
absolutely integrable. Let, in addition, w(x ) satisfy the interface conditions (2.2),
where u = u(x ) is a given field to be controlled, and the appropriate Sommerfeld
radiation boundary conditions at infinity, (1.2a) or (1.2b). Then the greatest lower
bound for the L1 norms of all the control sources g(x ) obtained with such auxiliary
functions w(x ) using formula (2.1) is given by the L1 norm on Γ of the magnitude of
surface monopoles (5.1):

inf
w(x)

∫
Ω1

|g(x )|dx =

∫
Γ

|ν(x )|ds.(5.2)

Alternatively, we can rewrite (5.2) as

inf
w(x)

‖g(x )‖1,Ω1 = ‖ν‖1,Γ.(5.3)

Equality (5.3) is a multidimensional generalization of (4.40). Let us also notice that
equality (4.15), which was obtained on the basis of experimental observations in two
space dimensions, can be considered a discrete two-dimensional prototype of (5.3).

In the formulation of Conjecture 5.1, we did not include the results on the conver-
gence of a sequence of volumetric controls to the surface layer νδ(Γ) (see (5.1)) and
on the convergence of the corresponding L1 norms, as we did in Theorem 4.3 for the
one-dimensional case. We believe, though, that these results can be easily formulated
and justified in the multidimensional framework using an approach similar to the one
that we have used in the one-dimensional case. The key missing part, however, that
does not yet allow us to transform Conjecture 5.1 into a theorem, is proving that
surface monopoles provide a lower bound for the volumetric controls in the sense of
L1, whereas showing that this is the greatest lower bound is more straightforward.
The analysis of this problem will be a subject of our future research. In this connec-
tion we can mention only that, at least in the two-dimensional case, the geometry of
the protected region Ω should not be a limitation when constructing a general proof.
If one can prove the result for a constant-width linear strip with periodic boundary
conditions on its sides, and with the interface Γ being a segment of the straight line
normal to the sides of the strip, then for any other shape the same result can likely
be obtained with the help of a conformal mapping.
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INTERMITTENCY IN THE TRANSITION TO TURBULENCE∗
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Abstract. It is commonly known that the intermittent transition from laminar to turbulent
flow in pipes occurs because, at intermediate values of a prescribed pressure drop, a purely laminar
flow offers too little resistance, but a fully turbulent one offers too much. We propose a phenomeno-
logical model of the flow, which is able to explain this in a quantitative way through a hysteretic
transition between laminar and turbulent “states,” characterized by a disturbance amplitude vari-
able that satisfies a natural type of evolution equation. The form of this equation is motivated by
physical observations and derived by an averaging procedure, and we show that it naturally predicts
disturbances having the characteristics of slugs and puffs. The model predicts oscillations similar to
those which occur in intermittency in pipe flow, but it also predicts that stationary “biphasic” states
can occur in sufficiently short pipes.

Key words. intermittency, transition, turbulence, slugs, puffs
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1. Introduction. Ever since Reynolds’s (1883) seminal paper on the transition
to turbulence in pipe flow, it has been known that the transition occurs in an intermit-
tent fashion. As the Reynolds number increases beyond a value of around 2000 (al-
though the precise value depends on the pipe used and on the experimental conditions
at the inlet), intermittent flashes of turbulence can be seen in the pipe. Furthermore,
the reason for this intermittency is well known, at least in a crude way (Prandtl and
Tietjens (1934, pp. 36f.)). Turbulent flow at a given flow rate has a higher drag than
laminar flow, and so, as the pressure drop driving the flow is increased, there arises a
critical interval of flow rate within which laminar flow offers too low a resistance to the
pressure drop but turbulent flow provides too high a resistance. In this intermediate
case, the flow cycles between the two types of flow, and this is manifested in the pipe
through the regular occurrence of turbulent “flashes”; this is Reynolds’s term, but it
has now become more customary to call the flashes “slugs” or “puffs” (Wygnanski
and Champagne (1973)), depending on their provenance. The resultant flow then
oscillates, producing an oscillatory (and indeed, periodic) outlet flow (Prandtl and
Tietjens (1934, p. 37)).

It is perhaps unsurprising that there have been few attempts to recover these
observations theoretically. Of necessity, any putative model must be semiempirical,
and those that have been put forward (Bohr and Rand (1991), Deissler (1987a,b),
Sakaguchi and Brand (1996)) serve as qualitative analogues rather than quantitative
ones, and their aim has been to explain qualitatively the existence of turbulent slugs,
rather than to draw a quantitative comparison; in addition, the resulting periodic
solutions have not been found, although Deissler (1987b) hints at a mechanism similar
to that suggested here.

Our aim in this paper is to provide a simple model which avoids the detailed com-
plexities of three-dimensional turbulent flow, but which is nevertheless built solidly on
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observed features of turbulence, and in particular, on the experimentally determined
drag law. Although our motivating aim is to provide a predictive mechanism for in-
termittency and flow oscillations, we also find that we can make detailed comparisons
with slug and puff dynamics. Wygnanski and Champagne (1973) distinguished these
on the basis that slugs occurred at higher Reynolds number (above about 2700), were
caused by low amplitude disturbances, and spread longitudinally as they propagated,
the front and rear travelling at speeds respectively greater and less than the mean flow
speed u, at least for large enough Reynolds number. In a very careful study, Lindgren
(1957) showed that the front and rear wave speeds of slugs appeared to approach a
value of about 0.9u as the Reynolds number decreased towards a value Rk (equal to
about 2400 in his experiments), although in fact distinct slug measurements could be
made only down to Reynolds number 2700.

At lower Reynolds number (below 2700 in Wygnanski and Champagne’s experi-
ments, presumably below 2400 in Lindgren’s), puffs are seen. In contrast to slugs, puffs
are generated by large amplitude disturbances at the inlet, and unlike slugs, which
have relatively sharp leading and trailing edges, puffs have only a sharp trailing edge
and a diffuse front. The trailing edge migrates backwards relative to the mean flow,
with the difference between their two speeds tending to zero as the Reynolds num-
ber decreases towards a value R (about 2050 in Lindgren’s experiments). Lindgren
identifies a further Reynolds number Rk, above which slugs grow as they propagate;
presumably this is the Reynolds number at which stable slugs become viable. A fi-
nal critical value is R, above which fully developed turbulence can be maintained
throughout the pipe.

2. A model for intermittency in turbulent flow.

2.1. Behavior of the wall friction. The Reynolds number for flow in a pipe
of diameter d is

Re =
ρud

µ
,(2.1)

where u is the mean flow velocity, ρ is the density, and µ is the viscosity. In a pipe of
length l, the pressure drop along its length in conditions of steady flow is given by

F =
∆p

l
=
λρu2

2d
,(2.2)

where the drag coefficient λ is a function of the Reynolds number (Schlichting (1979)).
In conditions of fully developed laminar flow, which pertain for Re <∼ 2300,

λL =
64

Re
,(2.3)

whereas Blasius’s (1913) empirical relation for fully developed turbulent flow is

λT =
0.3164

Re1/4
(2.4)

and is approximately valid for 3300 < Re < 105. At higher Reynolds number, a more
sophisticated result based on Prandtl’s mixing length theory can be used to define
λ implicitly, but (2.4) will suffice for the present purpose, where such high Reynolds
numbers are not relevant.
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L

Fig. 1. Schematic drag law for laminar and turbulent flow. The experimentally determined
laminar and turbulent values are the solid curves, and we hypothesize that an unstable (dashed)
branch separates the two, as shown.

Between the onset of transition at Re = 2300 and the attainment of fully devel-
oped turbulence (throughout the pipe) at Re ≈ 3300,1 there is a region in which λ
increases with Re. This odd behavior is associated with the phenomenon of intermit-
tency. At Reynolds numbers above 2300, fluid can exist locally in a turbulent state,
but for Re < 3300, turbulent slugs of fluid are interspersed with laminar plugs. The
intermittency factor γ (the fraction of time at a fixed location for which the flow is
turbulent) grows with distance downstream, and also with Reynolds number (Rotta
(1956), Wygnanski and Champagne (1973)).

We wish to place a specific interpretation on this observed behavior. The local
cross-sectionally averaged wall friction in a tube of diameter d is given from (2.2) by

FL =
32µu

d2
(2.5)

for laminar flow (using (2.3)) and

FT ≈ 0.16ρ3/4µ1/4u7/4

d5/4
(2.6)

for turbulent flow.
As shown in Figure 1, the turbulent friction FT (u) exists as a local description

down to Reynolds numbers of 2300, while the laminar expression FL(u) exists as a
solution for all values of u. In particular, at values of Re above 2300, both behaviors
are possible as locally stable solutions of the Navier–Stokes equation.

1This numerical value and that of the “onset” at 2300 depend on the level of the inlet disturbance,
as well as the particular experimental set-up; these values are adopted from inspection of experimental
drag measurements—see Schlichting (1979, Figure 20.1)—and will be used as typical values. In due
course, we will relate them to the critical values discussed by Lindgren (1957).
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Although it is not in fact essential to our argument, the existence of a jump in F
between the two accessible solution branches suggests strongly that there is a third
intermediate branch which joins the laminar and turbulent branches, as shown in
Figure 1, and this is supported by other experimental work also (Huang and Huang
(1989), Wygnanski and Champagne (1973), Darbyshire and Mullin (1995)). Moreover,
the existence of an unstable intermediate branch is analogous to the existence of
unstable equilibria in the transition to turbulence of plane and pipe Poiseuille flow
(Orszag and Patera (1980), (1983)), and this lends support to the concept embodied
in Figure 1.

We take the form of the dashed part of the F (u) curve in Figure 1 as a hypothesis.
It is then convenient to think of the local friction F as a state variable (rather like
enthalpy), and to suppose that it is a measure of the laminar or turbulent “phase” of
the fluid. And, rather like a phase change, the intermediate state is not accessible. In
a fluid, boiling leads to dispersed phases at intermediate enthalpies, and transition to
turbulence leads to intermittency at intermediate flow rates.

From the point of view of dynamical systems theory, the existence of a state vari-
able F demarcating laminar and turbulent phases with a multiple valued equilibrium
suggests that the simplest model beyond the mixing length theory which can describe
transitions between laminar and turbulent states is one which embodies an evolution
equation for F . In order to see how such an equation might be proposed, we need
to study the way in which the basic mixing length theory produces the equilibrium
structure of Figure 1.

2.2. Averaging. We start with the Navier–Stokes equations

∂ui
∂xi

= 0,

ρ

[
∂ui
∂t

+
∂

∂xj
(uiuj)

]
= − ∂p

∂xi
+ µ∇2ui.(2.7)

Following common procedure (Mathieu and Scott (2000)), we define

ui = ūi + u′i,(2.8)

where ūi is a local time average of ui, and u′i represents the fluctuating part. More
specifically,

ūi =
1

2T

∫ t+T

t−T
ui dt,(2.9)

and we suppose formally that u′i varies on a time scale � T , while we allow ūi to
vary on times � T . (The necessity for this assumption can be removed by taking
ensemble averages instead.)

Averaging of (2.7) thus leads to

∂ūi
∂xi

= 0,

ρ

[
∂ūi
∂t

+
∂

∂xj
(ūiūj)

]
= − ∂p̄

∂xi
+ µ∇2ūi +

∂

∂xj
(−ρu′iu′j).(2.10)

Next we define the cross-sectional average over the pipe as

ĥ =
1

S

∫
S

h dS,(2.11)
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where S denotes the cross-sectional area. If we let x (= x1) denote distance down the
pipe axis, then also

∂̂fj
∂xj

=
∂f̂1
∂x

− 1

R
〈fn〉w,(2.12)

where R = S/P is the hydraulic radius, P is the pipe perimeter, fn = f .n denotes the
inwards normal component of f (n is the unit inward normal) and 〈 〉w denotes the
circumferential average,

〈g〉w =
1

P

∫
∂S

g ds.(2.13)

We take a cross-sectional average of (2.10). We must have 〈ūn〉w = 0, thence
∂ ˆ̄u1/∂x = 0; i.e., the mean flow is

ˆ̄u1 = u(t),(2.14)

say, and thus, considering the x component only,

ρu̇ = −∂p
∂x

− F +
∂

∂x
(−ρû′21 ),(2.15)

where we write ˆ̄p = p, and

F =
µ

R

〈
∂ū1

∂n

〉
w

+
1

R
〈−ρu′1u′n〉w.(2.16)

Strictly, the second term on the right-hand side of (2.16) can be neglected, since
u′i = 0 at the wall. However, it is more common to define the “wall” in (2.13) to lie
just outside the laminar sublayer, so that although ū ≈ 0 there, we allow the Reynolds
stresses (−ρu′1u′j) to be nonzero at the wall. (In particular, this allows us to deal with
rough walls.) We follow this practice here.

In conditions of steady uniform flow, (2.16) defines the wall drag, and Figure 1
represents the observed variation of F with u. In laminar flow,〈

∂ū1

∂n

〉
w

=
8u

d
,(2.17)

while Prandtl’s mixing length theory for turbulent flow also leads to 〈∂ū1/∂n〉w ∝ u/d,
although with a different coefficient. We will suppose that (2.17) applies in both cases,
partly for simplicity, and partly because the laminar contribution is small in turbulent
flow, so that the inaccuracy of (2.17) in that case is inconsequential. (A more realistic
prescription for 〈∂ū1/∂n〉w would be L(A)u/d, but we will persevere with (2.17).)

Given our constitutive prescription (2.17) for 〈∂ū1/∂n〉w, we now define a fluctu-
ation velocity

A =
d

8µ
〈−ρu′1u′n〉w.(2.18)

It follows from (2.16) and (2.17) that (since the hydraulic radius of a pipe is d/4)

F =
8µ

dR
[u+A].(2.19)
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A

ulaminar

turbulent

Fig. 2. Diagram equivalent to Figure 1 for the postulated equilibrium, showing “amplitude” A
versus flow rate u (or equivalently, Reynolds number).

u(A)
_

A

Fig. 3. The function ū(A) defined by reversing the axes in Figure 2.

In terms of A, the equilibrium friction diagram Figure 1 now takes the form shown
in Figure 2, and thus defines a single valued function ū(A), such that in Figure 2,
u = ū(A) for A 
= 0, as shown in Figure 3.

The closure problem of turbulence is that of determining the Reynolds stresses
(−ρu′iu′j). The idea of an eddy viscosity µT involves the closure assumption

−ρu′iu′j = µT

(
∂ūi
∂xj

+
∂ūj
∂xi

)
− 2

3
ρkδij ,(2.20)
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where

k =
1

2
u′iu

′
i(2.21)

is the turbulent kinetic energy per unit mass. In unidirectional flows, Prandtl’s mixing
length hypothesis takes the form

µT ∝ ρn2

∣∣∣∣∂ū1

∂n

∣∣∣∣ ,(2.22)

n representing distance from the wall. In a circular pipe, Schlichting (1979) shows
that this empirical assumption actually leads to virtually perfect agreement with
experimental measurements of wall drag. That is to say, in a steady uniform flow,
F given by (2.16) together with an empirical assumption of eddy viscosity type for
turbulent flow (and the equivalent exact molecular viscosity rule for laminar flow) is
able to match the upper and lower branches in Figure 1 very well.

Prescription of (2.20) with (2.22) is an example of a zero-dimensional model clo-
sure. Such a closure is not good for three-dimensional flows, and this led to the
development of more complicated “one-equation” or “two-equation” models. A typ-
ical example is the famous “k-ε” model (Mathieu and Scott (2000)), in which (2.20)
is still used; one assumes (for example) that

µT =
Ck2

εD
,(2.23)

where

εD =
µ

2ρ

(
∂u′i
∂xj

+
∂u′j
∂xi

)(
∂u′i
∂xj

+
∂u′j
∂xi

)
(2.24)

is the rate of dissipation of turbulent kinetic energy, and the model is closed by posing
two evolution equations for k and εD (hence the term, two-equation model). In view
of its similarity to the model we propose below, we give an example of a typical closure
for k:

∂k

∂t
+ ūk

∂k

∂xk
= Π − εD +

∂

∂xk

(
µT
σρ

∂k

∂xk

)
;(2.25)

Π is prescribed in terms of ū, σ is a constant. Note the basic type of advection-diffusion
equation with source and sink terms.

In an analogous way, our purpose now is to consider how one might model slow
time and space evolution of the fluctuation amplitude A. Derivation of an equation
for A is not easy, nor is it our main purpose, and we will confine ourselves to providing
a motivation for the form such an equation might take. We begin with the equations
for the fluctuations u′i,

∂u′i
∂xi

= 0,

ρ

[
∂u′i
∂t

+
∂

∂xk
{ūiu′k + u′iūk + u′iu

′
k − u′iu′k}

]
= − ∂p

′

∂xi
+ µ∇2u′i.(2.26)
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Multiplying the second equation by u′j and its u′j equivalent by u′i, adding the two,
and time averaging leads to the evolution equation for the Reynolds stress tensor

Rij = −ρu′iu′j(2.27)

in the form (see Launder, Reece, and Rodi (1975))

∂Rij
∂t

+
∂

∂xk
[ūkRij ] = −

[
Rjk

∂ūi
∂xk

+Rik
∂ūj
∂xk

]
+ 2µ∇u′i.∇u′j − p′

(
∂u′i
∂xj

+
∂u′j
∂xi

)

+
∂

∂xk
(ρu′iu

′
ju

′
k) +

∂

∂xk
[p′(u′iδjk + u′jδik)] +

µ

ρ
∇2Rij .(2.28)

Launder, Reece, and Rodi (1975) characterize the terms in this equation in the
following way. Of the six terms on the right-hand side of (2.28), the first represents
generation and the second, dissipation; the last three represent transport, while the
fourth (pressure strain) term is characterized by a spatial integral of the fluctuating
velocity field. To see this, we take the divergence of the Navier–Stokes equation to
find

∇2p = −ρ∂
2(uiuj)

∂xi∂xj
,(2.29)

whence the fluctuating pressure field p′ satisfies

∇2p′ = −ρ ∂2

∂xi∂xj
[ūiu

′
j + u′iūj + u′iu

′
j − u′iu′j ],(2.30)

and p′ can be written as a spatial integral convolving a suitable Green’s function with
the right-hand side of (2.30).

From (2.18), A = (d/8µ)〈R1n〉w, and in the absence of swirling motion, 〈g〉w = g
for any of the terms g in (2.28). Also, on the wall ūi = 0, and ∂ū1/∂n is the only
nonvanishing velocity derivative term (∂ūn/∂n = −∂ū1/∂x = 0). Setting i = 1,
j = n, a wall average leads to

∂

∂t
〈−ρu′1u′n〉w +

∂

∂x
〈−ρu′21 u′n〉w

= 〈ρu′2n 〉w
〈
∂ū1

∂n

〉
w

+ 2µ〈∇u′1.∇u′n〉w

−
〈
∂

∂n
(−ρu′1u′2n ) − u′1

∂p′

∂n
+ p′

∂u′1
∂n

+
µ

ρ

∂2

∂n2
(−ρu′1u′n)

〉
w

+
∂

∂x

〈
p′u′n

〉
w

+
µ

ρ

∂2

∂x2
〈−ρu′1u′n〉w.(2.31)

It is not so easy to characterize the nature of the terms in (2.31) as we did for
(2.28), because some of the transport terms in (2.28) involving normal derivatives can
no longer be so categorized. Such terms, together with the pressure strain terms, form
the third term on the right-hand side of (2.31). The other terms have direct analogy
with those in (2.28). The second term on the left-hand side of (2.31) is a transport
term and arises from the fourth term on the right-hand side of (2.28). The first and
second terms on the right-hand side of (2.31) are source and sink terms, arising from
the corresponding generation and dissipation terms in (2.28). The final two terms in
(2.31) are transport terms.
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2.3. Closure assumptions. We now face the daunting task of choosing consti-
tutive laws for the various terms in (2.31). In choosing an eddy viscosity model, we
specifically supposed (cf. (2.20))

〈−ρu′1u′n〉w = µT

(
∂ū1

∂n
+
∂ūn
∂x

)∣∣∣∣
w

,(2.32)

where µT itself depends on ū1. In uniform flow (∂/∂t = ∂/∂x = 0), this subsequently
leads via Prandtl’s mixing length theory to a functional relation between u and A.
Given that we suppose u and A to be defined via (2.17) and (2.18), that is,

u =
d

8

〈
∂ū1

∂n

〉
w

, A =
d

8µ
〈−ρu′1u′n〉w,(2.33)

it is natural to relate fluctuating terms in (2.31) to A, and terms in ū1 to u. Fur-
thermore, if we neglect ∂/∂t and ∂/∂x, we should regain the equilibrium curve (with
A > 0) of Figure 2, which we will suppose is written in the form u = ū(A). At
this point, we specifically ignore the problem of constituting the pressure fluctuation
terms. As discussed above, we expect such terms to give rise to convolution integrals,
but their omission will clarify the subsequent discussion without compromising the
results. The above comments suggest (given (2.33)) that we choose

〈ρu′2n 〉w
〈
∂ū1

∂n

〉
w

−
〈
∂

∂n
(−ρu′1u′2n ) − 2µ∇u′1.∇u′n +

µ

ρ

∂2

∂n2
(−ρu′1u′n)

〉
w

=
8µ

d
r(A)[u− ū(A)],(2.34)

where

r(A) =
1

µ
〈ρu′2n 〉w(2.35)

is a positive function, with dr/dA > 0 and r = 0 when A = 0. The last term in (2.31)
is a laminar diffusion term,

µ

ρ

∂2

∂x2
〈−ρu′1u′n〉w =

µ

ρ
.
8µ

d

∂2A

∂x2
,(2.36)

and it is plausible to expect an equivalent turbulent diffusive term to exist also.
There are two ingredients that we might expect to find in 〈−ρu′21 u′n〉w. If we

follow the (apparently arbitrary) recipe (2.32), which relates 〈u′1u′n〉w to ∂ū1/∂n and
∂ūn/∂x, we would equivalently write

〈(−ρu′1u′n)u′1〉w = −µT
ρ

∂

∂x
〈−ρu′1u′n〉w + · · · ,(2.37)

but also

〈−ρu′21 u′n〉w = µT
∂

∂n
〈u′21 〉w + · · · .(2.38)

The simplest choice is then

〈−ρu′21 u′n〉w =
µT
ρ

∂

∂x
〈−ρu′1u′n〉w + µT

∂

∂n
〈u′21 〉w.(2.39)
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Finally, it seems reasonable to propose

µT
∂

∂n
〈u′21 〉w =

8µ

d
W (A, u),(2.40)

with W ≥ 0 as we expect ∂u′2/∂n to be positive at the wall: as for r(A), we expect
W = 0 when A = 0 and ∂W/∂A > 0.

Multiplying (2.31) by d/8µ, we have (ignoring the pressure fluctuation terms)

∂A

∂t
+

∂

∂x

[
−µT
ρ

∂A

∂x
+W (A, u)

]

= r(A)[u− ū(A)] +
µ

ρ

∂2A

∂x2
.(2.41)

The functions W (A, u) and r(A) in (2.41) are matters of conjecture. To be specific,
we now define

U =
∂W

∂A
=
∂
[
µT

∂
∂n 〈u′21 〉w

]
∂〈−ρu′1u′n〉w

,(2.42)

so that U > 0 is an advection velocity. If we define

D =
(µ+ µT )

ρ
(2.43)

in (2.41), then our simple model for A is

At + UAx = r[u− ū(A)] + (DAx)x,(2.44)

where ū(A) indicates the single valued equilibrium curve with A 
= 0 in Figure 2.
This equation represents the idea that A evolves with time while the fluid is advected,
seeking the equilibria in Figure 2. The principal difference that a more detailed pre-
scription might make would be the inclusion of integral terms in (2.44) corresponding
to the pressure fluctuation terms which we have ignored.

We now discuss suitable choices for U , r, and D. It is generally thought that pipe
Poiseuille flow is linearly stable at all Reynolds numbers (Drazin and Reid (1981)),
although the smallest disturbance decay rates tend to zero as Re → ∞. This will
be the case here if rū ∝ A and r = o(A) as A → 0. Experimental measurements
(Wygnanski and Champagne (1973), Darbyshire and Mullin (1995)) are suggestive of
an asymptotic relationship ū ∼ A−2 as ū→ ∞ (see Figure 4), and we will make this
assumption here. It then follows that an appropriate choice for r is

r = kA3.(2.45)

Then (2.44) allows A = 0 to be linearly stable. An issue here concerns the measure-
ment of experimental disturbance amplitudes. Darbyshire and Mullin (1995) indicate
absolute amplitudes, whereas Wygnanski and Champagne’s (1973) data (in Figure 4)
apparently measures amplitude ratios. There are two points of observation to make.
The first is that the data points at higher Re in Figure 4 will place the entire pipe
flow in the inlet region, which jeopardizes the interpretation of the amplitude as a
perturbation to fully developed flow. The other is that if the amplitude ratio did in-
deed decrease as weakly as suggested by Figure 4, then the absolute amplitude would



1194 A. C. FOWLER AND P. D. HOWELL

0

0.05

0.1

0.15

0.2
Wygnanski and Champagne data

(10/(Re-3300))

Re

A

104 105

0.5

Fig. 4. Data taken by hand from the lower threshold of the slug transition curve of Wygnanski
and Champagne (1973) indicating threshold values of A (percent), together with the fitted curve
A = {10/(Re− 3300)}1/2.

eventually increase with Re. This does not seem to be suggested by experiment, and
is inconsistent with linear theory. We therefore hold to our interpretation of A in
(2.44) as an absolute amplitude.

The constant k should represent the idea that the laminar-turbulent transition is
associated with a rapid inviscid three-dimensional instability of slowly decaying two-
dimensional disturbances (Orszag and Patera (1980)). This suggests that t ∼ d/u ∼
1/kA2u, and it is thus suitable to choose (for example)

k =
1

[A]2d
,(2.46)

where [A] is a representative value of A near transition.
The amplitude equation (2.44) is then in fact, when A � u, exactly that which

can be derived using multiple scale methods (Davey and Nguyen (1971)), although
the correctness of such equations is in doubt (Itoh (1977), Davey (1978)). However,
it does seem likely that some such unstable solution branch bifurcates from infinity,
as is suggested by the work of Rosenblat and Davis (1979) and Smith and Bodonyi
(1982). We do not claim that (2.44) represents the last word in modelling slowly
varying fluctuations, but its form is consistent with what is known about pipe flow.
As a model, it serves the same purpose as Burgers’s (1948) model, and indeed it bears
some resemblance, although Burgers’s model was more concerned with cross-stream
transport of energy. The model (2.44) is also analogous (and serves a similar purpose)
to the Swift–Hohenberg-type amplitude model, which has been used by some authors
with a purpose similar to that of the present paper (Sakaguchi and Brand (1996),
Deissler (1987a)).

The diffusion coefficient D in (2.43) has two parts representative of a laminar
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and a (larger) turbulent diffusivity, and so we take D ∼ ud to represent the latter
quantity. However, we should also allow D to depend on A, since when A is small, D
is represented by molecular viscosity. We will find that the diffusive term allows for
the existence of convectively growing slugs (Bohr and Rand (1991), Deissler (1987b)),
with front and rear ends which travel respectively faster and slower than the mean
flow, as is observed in practice.

The choice of a suitable advection velocity U is less clear. Most simply, we would
take U = u, the mean flow. However, for marginally stable modes at high Re, the
relevant linear stability advection velocity (Drazin and Reid (1981)) is less than u,
and we therefore allow U to be less than u and to depend on A.

2.4. A model for intermittency. We can then provide a putative model for
intermittent turbulent flow as follows. For an incompressible (thus u = u(t)) fluid
flow subject to a mean pressure gradient Fm in a pipe 0 < x < l, we solve

At + UAx = kA3[u− ū(A)] + (DAx)x.(2.47)

In (2.15) we neglect the term ∂
∂x (−ρû′21 ), partly because we expect it to be small and

partly because the natural constitution of u′21 ∝ u2 leads to its absence, since u = u(t).
Then u and p satisfy

ρu̇ = −px − F,∫ l

0

−px dx = Fml,(2.48)

which together imply (using the definition of F in (2.19))

ρu̇ = Fm − 32µ

d2

[
u+

1

l

∫ l

0

Adx

]
.(2.49)

Deissler (1987b) has suggested that if Fm is prescribed, then the pressure drop feed-
back (i.e., (2.49)) may cause intermittency; we will seek to establish this suggestion
here.

The pair of equations (2.47) and (2.49) require two boundary conditions for A (as
well as initial conditions for A and u). A primary observation of transition in pipe flow
ever since the experiments of Reynolds (1883) is that the level of inlet disturbance is
instrumental in determining the nature of the flow. Therefore we prescribe

A = A0 at x = 0,(2.50)

and we expect that the value of A0 will be important in determining the dynamics of
the flow.

The outlet condition is required only if the diffusion term is included, and, in
order to exclude physically inappropriate boundary layers at the channel outlet, we
prescribe the passive condition

Ax = 0 at x = l(2.51)

there.
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2.5. Nondimensionalization. We choose scales [F ], [A], [u], [t], [x] as follows:
[F ] is chosen as the critical value Fc = 32µuc/d

2 in Figure 1, where the laminar flow
can become unstable to turbulent bursts, and [u] = uc is the corresponding mean
flow. Then we choose [A] = [u], [t] = ρ[u]/[F ], and [x] = [u][t]; the advection velocity
U is scaled with [u]. We then find that

[x] =
d

ε
,(2.52)

where

ε =
32

[Re]
,(2.53)

and the Reynolds number scale is

[Re] =
ρ[u]d

µ
;(2.54)

since ε � 1 (ε ≈ 0.015 for [Re] = 2300), we see that [x] � d. The scale [x], in fact,
describes the inlet region of the pipe (Goldstein (1938, pp. 299f.)). The dimensionless
model becomes (using the same notation for the dimensionless variables)

ε[At + UAx] = A3[u− ū(A)] + ε2(κAx)x,

u̇ = F ∗ − u− 1

L

∫ L

0

Adx,(2.55)

where the dimensionless parameters are

L =
εl

d
, κ =

D

d[u]
, F ∗ =

Fm
Fc
,(2.56)

and, in keeping with (2.46), we have defined

k =
1

u2
cd
.(2.57)

The dimensionless drag F is given for laminar flow by F = u, and Blasius’s law
for turbulent flow (2.6) is

F ≈ [Re]3/4

200
u7/4 ≈ 1.66u7/4(2.58)

for u >∼ 1, where the Reynolds number scale is taken to be 2300, by choice of [u]. This
yields

A ≈ 1.66u7/4 − u for u >∼ 1(2.59)

for the upper part of the curve in Figure 2. Over the range 1 <∼ u <∼ 4, corresponding

to Reynolds numbers up to 104, (2.59) is well approximated by A ≈ u2 − 1
4u, i.e.,

u ≈ 1
8 + (A + 1

64 )1/2 for 0.75 <∼ A <∼ 15, and this in turn is well approximated by

u ≈ 0.7 + 0.6A0.64. Our choice for ū(A) is thus motivated by this expression, with an
extra term ∝ 1/A2 added (in order to provide the unstable branch in Figure 2, and to
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ensure linear decay at small A), with a coefficient δ chosen so that ū has a minimum
at ū = 1. Thus, we choose

ū(A) = a+ bAs +
δ

A2
,(2.60)

and the values of the parameters motivated by the above discussion are

a = 0.7, b = 0.6, s = 0.64, δ = 0.0035.(2.61)

It is a happy fact that the resulting decay rate of small disturbances A � 1 is
Ȧ/A ≈ −δ, which corresponds to the slow viscous decay rate (δ ∼ ε ≈ 0.014), as
is appropriate. Figure 16.3 of Schlichting (1979) indicates that a natural pipe length
scale over which the intermittency factor γ grows is l/d ∼ 300. For such pipe lengths
(in a 1 cm diameter pipe this is l = 3 m), L ≈ 4.5, so that values of L >∼ 1 are
appropriate.

The choice of the advection velocity U and the diffusivity κ are as follows. For
turbulent flow, we expect µT ∼ ρ[u]d; hence (2.43) implies κ ∼ 1, but for small A
it should be O(ε), corresponding to the laminar viscosity term. The simplest choice
compatible with these criteria is

κ = A+ ε,(2.62)

although in our numerical illustrations we will be content with the choice κ = 1. For
the advection velocity, the choice U = u corresponds to the mean flow. We define

U = u− V (A)(2.63)

and will find that the corrective term to the mean flow allows us to include a realistic
description of puffs within this simple theory, providing V > 0, as we expect.

3. Analysis.

3.1. Constant velocity. We begin our analysis of (2.55) by supposing that the
inlet velocity u is constant. We write the amplitude equation in the form

ε(At + UAx) = f(A;u) + ε2(κAx)x,(3.1)

where U = u− V (A), κ = A+ ε, and

f(A;u) = (u− a)A3 − bA3+s − δA.(3.2)

The form of slugs. Clearly, A evolves locally over a rapid time scale of O(ε) to
a steady state of (3.1), i.e., to A = 0 (laminar) or to the stable (turbulent) branch of
u = ū(A) (see Figure 2). As shown in Figure 5, f is pseudocubic, and for u > 1 (the
minimum value of ū(A), corresponding here to Re = 2300) there are three roots of f :
A = 0 and the stable and unstable branches, which are defined to be A = Am(u) and
AM (u), respectively.

We change coordinates to the local moving frame coordinates (X,T ) given by

x = ut+ εX, t = εT,(3.3)

whence (3.1) becomes

AT − V (A)AX = f(A) + {κ(A)AX}X .(3.4)
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It is well known from reaction-diffusion theory (Murray 1993) that a local perturbation
A > Am will evolve to a slug within which A = AM , and the front and rear move
outward at speeds v+ and v−, respectively, given by

v± =

∫ AM

0
κ(A)f(A)dA∓ ∫∞

−∞ κ(A)V (A)A′2dz∫∞
−∞ κ(A)A′2dz

,(3.5)

where A(z) is the wave front solution of

−v±A′ ∓ V (A)A′ = f(A) + {κ(A)A′}′,(3.6)

together with

A→ AM as z → −∞,
A→ 0 as z → +∞.(3.7)

Note that the two wave front profiles are different if V 
= 0 (and then v+ 
= v−). The
coordinate z = ±X−v±T is the wave front variable. From (2.30), we define the front
and rear slug boundary speeds uf and ur as

uf = u+ v+,
ur = u− v−.(3.8)

If V = 0, so that the wave profiles are symmetric, then v+ = v− and the mean slug
speed is that of the mean flow; however, this is not observed.

The data in Figure 7 of Wygnanski and Champagne (1973), and in Figure 4.15
of Lindgren (1957), can be used to constrain, to some extent, our choices for κ(A)
and, particularly, V (A). First, note that if v+ + v− < 0, then slugs contract and

are not viable. If V is small, then this occurs if
∫ AM

0
κ(A)f(A)dA < 0. We can

see from the form of Figure 5 that there will be a critical value of u = u∗ > 1

where
∫ AM (u∗)
0

κ(A)f(A;u∗) dA = 0, so that slugs are only viable if u > u∗. For
V 
= 0, we can expect u∗ to depend on V . In Wygnanski and Champagne’s data,
the corresponding Reynolds number is 2700, whence u∗ ≈ 1.17 (based on a Reynolds
number scale of 2300). This is also the minimum value for which Lindgren provides
identifiable slug data. For u > u∗, the data indicate that uf/u and ur/u are functions
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of Wygnanski and Champagne (1973) and Lindgren (1957). On the right is a close-up of (some of)
Lindgren’s data.
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Fig. 7. Front and rear relative wave speeds uf/u and ur/u, as a function of u. The parameter
values used are b = 0.6, s = 0.64, and δ = 0.1, with the drift velocity V (A) being taken as V = 0.4A
and the diffusivity κ = 1. The critical value at which the two speeds coalesce is approximately 1.04
in this case, and the critical relative speed is about 0.8. With [Re] = 2300, this corresponds to a
value of Rk (in Lindgren’s (1957) notation) of 2392.

of u, as shown in Figure 6; they appear to coalesce when Re = Rk ≈ 2400, at a value of
about 0.9. We have solved the travelling wave equation numerically, to reproduce data
equivalent to that shown in Figure 6. Figure 7 shows the results of these calculations;
they are in good qualitative agreement with Lindgren’s (1957) results.

A feature of a slug is its sharp interface. In the travelling wave solutions of (3.6),
this sharpness is represented both by the short wavelength ε (corresponding to a tube
diameter) and also by the fact that (approximately) κ→ 0 as A→ 0; the diffusivity
is degenerate and this causes A to reach (approximately) zero in a finite distance.

It is straightforward to compute the value of u∗ (if V = 0) explicitly from the
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expression (3.2) for f . We suppose κ = A, so that AM and u∗ are determined from

(u− a)A3 − bA3+s − δA = 0,

(u− a)
5

A5 − b

5 + s
A5+s − δA3

3
= 0;

(3.9)

from these we find

AM =

[
2δ(5 + s)

3sb

] 1
2+s

,

u∗ = a+ 5(2 + s)

(
δ

3s

) s
2+s
(

b

2(5 + s)

) 2
2+s

,

(3.10)

and for the numerical values given in (2.61), we find u∗ ≈ 1.01, AM ≈ 0.28.
In this theory, u∗ is the critical velocity required for slug propagation. Because

δ � 1, we see that, for u > u∗, the unstable zero Am of f is approximately given by

Am ≈
(

δ

u− a
)1/2

.(3.11)

Note the similarity to the fitted curve in Figure 4. Thus small amplitude disturbances
of O(δ1/2) spontaneously generate slugs, which grow as they propagate.

The form of puffs. When u < u∗, slugs cannot be maintained. In this case, large
disturbances will cause puffs to propagate. These migrate slowly backwards relative
to the mean flow, with a sharp trailing edge and a diffuse advancing boundary. In
order to explain their characteristics, we observe first that when u < u∗, then f is
small and AM is as well (see Figure 5). In fact, (3.10) suggests that we write

A = δ
1

2+sα, u− a = δ
s

2+sw(3.12)

in this case, and then

f(A, u) = δ
3+s
2+sF (α,w),

F = wα3 − bα3+s − α,(3.13)

and (3.4) is

αT − V [δ
1

2+sα]αX = δF (α,w) + {κ[δ
1

2+sα]αX}X .(3.14)

Now let us suppose, for example, that V (A) = cA (as in Figure 7), κ(A) ≈ A. If we
define the slow time scale τ by

T =
τ

δ
1

2+s

,(3.15)

then α satisfies the approximate equation

ατ − cααX = (ααX)X + δ
1+s
2+sF (α;w),(3.16)

which is, to leading order, a degenerate nonlinear diffusion equation of Burgers type.



INTERMITTENCY IN THE TRANSITION TO TURBULENCE 1201

F

u

turbulent

laminar

u+

u-

u
0

Amax

A0

F+

F-

Fig. 8. Diagrammatic representation of intermittency. The inlet disturbance amplitude A0

determines a threshold velocity u0 on the unstable branch, such that the turbulent branch is stable
for u > u0 and the laminar branch is stable for u < u0, as indicated by the arrows. If the prescribed
pressure drop F ∗ lies between the corresponding intersection values F± of u = u0 with the turbulent
and laminar branches, then an intermittent flow will ensue.

Solutions behave as follows. Let αm = O(1) denote the lower positive zero of F

in (3.13). For prolonged perturbations to A in excess of δ
1

2+sαm, a puff will form.
The turbulent flow within the puff will be locally stable, but will eventually disappear
by wastage of the profile. However, before this happens, the disturbance amplitude

α will evolve over a time scale τ ∼ 1, i.e., T ∼ 1/δ
1

2+s , according to

ατ − cααX = (ααX)X ,(3.17)

and thus into a profile with a sharp upstream (shock) profile and a diffuse downstream
profile. The speed of the upstream front, relative to the mean velocity, is negative and

of order dX/dT ∼ δ
1

2+s . All of these features are consistent with puffs. In particular,

note that the necessary disturbance amplitude is O(δ
1

2+s ), as opposed to the smaller
threshold O(δ1/2) for slugs. The formation of a backward propagating puff relative to
the mean flow relies on the sign of V being positive. If this is the case, then the simple
theory based on (3.4) is sufficient to explain many of the pertinent facts concerning
slugs and puffs.

3.2. A mechanism for intermittency. The above discussion indicates that
the amplitude evolution equation (3.1) can explain both artificially generated slugs
and puffs if the flow rate is constant. In order to explain how intermittency can arise
spontaneously, we must return to the pressure driven flow model given by (2.55).

Suppose that the inlet disturbance level is A = A0. Since f is an increasing
function of u, there is a unique value u = u0 for which Am(u0) = A0. Suppose that
u < u0. Then A → 0 in x > 0 (see Figure 8), and (eventually) u → F ∗ from (2.55).
However, if F ∗ > u0, then at some point u reaches u0, and for u > u0, A → AM (u)
near the inlet: a slug is generated. Again (eventually) u tends to the positive root
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Fig. 9. Mean velocity fluctuations in the solution of (2.55). The parameter values used are
L = 4, A0 = 0.3, ε = 0.05, κ(A) = 1, U(A, u) = u, a = 0.7, b = 0.6, s = 0.64, δ = 0.1, F ∗ = 3,
u(0) = 3.1. The space step was 0.01, and the time step was 0.001.

of F ∗ = u + AM (u). (Note that this is simply the upper branch of the F (u) curve
in Figure 1.) But if the corresponding value of u < u0, then again A decreases
towards zero (a slug is terminated). It is fairly clear that this sequence will continue
to oscillate, and also that the dependence of u on the spatial integral of A will cause
a finite sequence of slugs to propagate downstream. The intermittency factor γ of
Rotta (1956) will increase with x due to the spreading of the slugs.

Figure 8 illustrates this description graphically. Observe that the preceding para-
graph indicates that u → u−(F ∗) if u < u0(A0) and u → u+(F ∗) if u > u0(A0),
where u±(F ∗) are the turbulent and laminar branches of Figure 8. Thus, intermit-
tency should occur, given F ∗ and A0, if

u+(F ∗) < u0(A0) < u−(F ∗)(3.18)

in Figure 8. This depends on both the prescribed pressure drop F ∗ and the inlet
disturbance amplitude A0. The level curves of A (= F − u) are simply lines parallel
to the laminar branch u−. Furthermore, u0(A0) is simply the unstable branch of the
ū(A) curve. Thus, given A0, we determine u0 as the value of u at which the line
F = u + A0 intersects the unstable branch in Figure 8. So long as A0 < Amax (the
value of F −u at the nose of the curve), the value u0 defines two values F+ and F− on
the stable turbulent and laminar branches, respectively. Intermittency then occurs if

F− < F ∗ < F+,(3.19)

which is equivalent to (3.18).

Numerical results. We have solved the system (2.55) numerically, taking U = u
and κ = 1. Figure 9 shows the resulting periodic variations in the mean velocity. This
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figure can be favorably compared with Figure 19 of Prandtl and Tietjens (1934). We
have not had to tune the model, and so we believe this behavior to be robust. The
choice of functions U and κ is immaterial to the phenomenon of intermittency; the
advection U affects the specific form of puffs, while we avoid the degenerate κ = A
in order to avoid numerical awkwardness at slug boundaries. Similarly we choose a
relatively high value of ε (0.05) (and hence also δ) in order to avoid the demands of
excessively small space steps.

Figure 10 shows the space-time evolution of A(x, t) for the same parameter values
as used in Figure 9. After an initial transient, a periodic sequence of slugs is generated
at some distance from the inlet and propagates downstream towards the outlet.

4. Discussion. Our primary purpose in this paper was to develop a simple model
which could predict the intermittent transition to turbulence which is seen in pipe
flow, and we have shown that this can be done using the observed fact that there
is a sudden increase in friction at the onset of turbulent flow. We associate this
with a hysteretic transition between laminar and turbulent states, characterized by a
turbulent fluctuation amplitude A. We have then used the observed drag law to build
the simplest evolution equation for A that is consistent with both the drag law and
an inferred linear stability at small amplitudes. We have also shown that this form
of amplitude equation is consistent with a one-equation closure of the time-averaged
Navier–Stokes equations resembling those of Rij-ε type (Launder, Reece, and Rodi
(1975), Mathieu and Scott (2000)).

The inclusion of realistic diffusive and advective terms then allows us to describe,
within the confines of this evolution equation model, phenomena which can be char-
acterized as slugs or puffs, and we have shown that many of their peculiar features
arise naturally from the simple ingredients of the model.

In this discussion, we wish to focus further on two particular experimental obser-
vations of the parameter ranges in which laminar, intermittent, or turbulent behavior
occurs.

Lindgren (1957) identified four particular transition values of the Reynolds num-
ber, which he denoted as R, Rk, Rk, and R. The value of R occurs when the first
self-maintaining puffs are seen (i.e., with an identifiable tail velocity). In Lindgren’s
experiments, this value is about 2050. The value of Rk (about 2400) occurs when
slugs are first seen (with identifiable fronts), and the value of Rk (about 2700) is
where these become coherent, that is, they do not split as they propagate. Finally,
R (about 3300?) denotes the onset of fully developed turbulence. The first three of
these values correspond in Figure 6 to values u ≈ 0.9, u ≈ 1.04, and u ≈ 1.17. In our
model (cf. Figure 5) we can identify two critical values of u (and hence Re). Denoting
the smaller and larger positive roots of (3.2) by Am(u) and AM (u), respectively, there
is a critical value u1 at which Am = AM , and a larger value u2 for which the wave
speeds v+ and v− given by (3.6) and (3.7) sum to zero. When V is small, u2 ≈ u∗,
as discussed following (3.8), and explicit formulae for these critical values are

u1 = a+ (2 + s)

(
δ

s

) s
2+s
(
b

2

) 2
2+s

,

u2 ≈ u∗ = a+ 5(2 + s)

(
δ

3s

) s
2+s
(

b

2(5 + s)

) 2
2+s

.(4.1)

We identify the values of u1 with R, and u2 with Rk. There is no mechanism in
our model for slug splitting, and we cannot produce any equivalent for Rk. Finally,
the onset of fully developed turbulence at R necessarily must depend on the inlet
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slugs is generated midway down the pipe, each of which grows rapidly and then propagates down the
pipe.
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disturbance amplitude level A0 (since if this is zero, then the flow may be maintained
as laminar indefinitely). In our model, this defines a third transition value u4 (the
missing u3 would correspond to Rk), such that Am(u4) = A0, and thus

u4 = a+
δ

A2
0

+ bAs0.(4.2)

This u4 is a monotonically decreasing function of A0 in the admissible range 0 <
A < Amax, which is where Am = AM and u4 = u1. Lindgren’s apparent value of
3300 corresponds to u4 = 1.43, and when A0 is small, (3.11) applies, so that the
inferred corresponding inlet disturbance amplitude is ≈ 0.02. It is also evident that,
by adjusting the parameters b, a, s, and particularly δ, we could find reasonably
accurate values for the predicted u1 and u2; such an exercise is rather alien to our
present purpose, however.

The second comparison we want to make is to the amplitude-velocity transition
curve in Figure 2 of Wygnanski and Champagne (1973). This figure plots inlet dis-
turbance amplitude versus Reynolds number and delineates a laminar region from a
fully turbulent region. The demarcation boundary essentially consists of two separate
curves, between which the flow is intermittent. At high Re (and low A0), slugs occur
in the intermittent region, while at low Re (and high A0), puffs occur. The slug and
puff regions become “uncertain” around Re = 2700, corresponding in our model to
the value u = u2.

In our model, the critical inlet amplitude, which separates flows that can be fully
laminar from those that can be fully turbulent, isA0 = Am(u). However, whether fully
developed turbulent or laminar flow can be obtained throughout the pipe depends on
the applied pressure drop F ∗, and it is appropriate to use this as the control variable.
Denote the turbulent and laminar branches of the pressure drop curve as FT (u) and
FL(u), these being given by (2.60) and FL = u, respectively. Our predictions for the
upper and lower transition curves in A0-F

∗ space are then, for the upper curve,

F ∗ = FT (u),

A0 = Am(u),(4.3)

and for the lower,

F ∗ = FL(u),

A0 = Am(u).(4.4)

These curves are portrayed in Figure 11, and they show qualitative agreement with
Wygnanski and Champagne’s (1973) figure (bearing in mind that theirs is a log-linear
plot). Indeed we have already seen (compare Figure 4 and (3.11)) that there is some
quantitative resemblance also.

The fact that the very simple model used here compares so well with experimental
observations is encouraging, but it must be pointed out that the guts of the process
are entirely missing, that is to say, the generation of the turbulent chaotic eddies
themselves. What we have shown is that some macroscopic features of the transition
to turbulence in pipe flow can be understood more or less entirely through the well-
founded postulate of a hysteretic transition between laminar and turbulent “states”
of the fluid. Precisely what the turbulent state consists of is not addressed in this
theory.
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Abstract. We present an asymptotic analysis of two coupled linear-nonlinear systems. Through
measuring first and second input-output statistics of the systems in response to white noise input,
one can completely characterize the systems and their coupling. The proposed model is similar to a
widely used phenomenological model of neurons in response to sensory stimulation and may be used
to help characterize neural circuitry in sensory brain regions.
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1. Introduction. Most electrophysiology data from intact mammalian brains is
recorded using an extracellular electrode which remains outside the neurons. When
the electrode is positioned near a neuron, it can record the neuron’s output events,
called spikes, because spike magnitudes are sufficiently large. The internal state of a
neuron, including small fluctuations in response to its inputs, cannot be measured.

When only output spikes are measurable, one cannot directly measure the effect
of a connection from one neuron to another. If neuron 1 is connected to neuron 2, then
an output spike of neuron 1 will perturb the internal state of neuron 2. If the internal
state cannot be measured, this perturbation can be inferred only via its effect on the
spike times of neuron 2. In general, the spike times of a neuron will be a function
of many inputs coming from many other neurons. This complexity makes reliable
inferences on the structure of neuronal circuits from spike time data a formidable
challenge.

Explicit mathematical models may lead to tools that can address this challenge.
Through model analysis, one may develop methods to infer aspects of network struc-
ture from spike times, subject to the validity of the underlying model. In this paper,
we derive a method for reconstructing the connectivity between two isolated neurons
based on a simple linear-nonlinear model (see below) of neural response to white noise.
Although this model greatly simplifies the reality of the brain’s neural networks, the
results from this analysis can be used to analyze neurophysiology data, provided that
they are interpreted within the limitations of the model [12].

Numerous researchers have used white noise analysis to describe the response of
neurons to a stimulus. The most common use of white noise analysis has been to
analyze the response properties of single neurons [11, 4, 5, 8, 9, 2, 3, 16, 18, 7, 6].
Recently, researchers have begun to apply the techniques of white noise analysis to
simultaneous measurements of multiple neurons [15, 1, 19], although without explicitly
modeling neural connectivity. In [12], we showed how, in white noise experiments,
interpretation of spike time data is especially difficult because standard correlation
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measures confound stimulus and connectivity effects. We demonstrated correlation
measures that remove the stimulus effects based on the linear-nonlinear model.

In this paper, we present the asymptotic analysis of the linear-nonlinear model
that underlies the correlation measures of [12]. Subject to a first order approximation
in the coupling magnitude, we derive a method to completely reconstruct the coupled
system from first and second input-output statistics. As a consequence of this recon-
struction, we obtain a correlation measure, which we call W, that approximates the
neuronal coupling.

Although the analysis below can be used for any pair of coupled linear-nonlinear
systems, we refer to the systems as neurons since neuroscience was the motivation for
this analysis and because this choice simplifies the description.

In section 2, we describe the linear-nonlinear model. In section 3, we derive ex-
pressions for the input-output statistics for the case when the neurons are uncoupled.
We derive the corresponding expressions for the cases of unidirectional coupling in
section 4 and generalize the results to mutual coupling in section 5. We demonstrate
the method with simulations in section 6 and discuss the results in section 7.

2. The model. The standard model underlying most white noise analyses of
neural function is the linear-nonlinear model of neural response to an input X,

Pr
(
Ri = 1

∣∣X = x
)
= g(hi · x),(2.1)

where the response Ri at discrete time point i is one if the neuron spiked, and zero
otherwise. The neural response depends on the convolution of the kernel h with the
stimulus. The stimulusX is a vector whose components represent the spatio-temporal
sequence of stimulus values, such as the sequence of pixel values for each refresh of a
computer monitor.

The neural response depends on the convolution of a stimulus with a kernel h,
normalized so that |h| = 1. The kernel can be viewed as sliding along the stimulus
with time; it represents the spatio-temporal stimulus features to which the neuron
responds. We let hi denote the kernel shifted for time point i and write the convo-
lution of the kernel with the stimulus as the dot product hi · X (implicitly viewing
the temporal index of the stimulus as going backward in time). The function g(·)
is the neuron’s output nonlinearity (representing, for example, its spike generating
mechanism). Although the linear-nonlinear system is only a phenomenological ap-
proximation of complex biology, it can be simply characterized by standard white
noise analysis [13]. The ease of an explicit mathematical analysis is a prime motiva-
tion for choosing the linear-nonlinear model and white noise input.

We propose a model that augments the linear-nonlinear framework to include
the effects of neural connections between two neurons. After neuron q spikes, the
probability that neuron p spikes j time steps later is modified by the connectivity fac-
tor W̄ j

qp. In a caricature of synaptic input acting at subthreshold levels (of the voltage,

or internal state, of a neuron), the term W̄ j
qp is added underneath the nonlinearity so

that

Pr
(
Rip = 1

∣∣X = x,Rq = rq
)
= gp

(
hip · x+

∑
j≥0

W̄ j
qpr

i−j
q

)
,(2.2)

where p, q ∈ {1, 2} represent the index of the neurons, q �= p, and Rip ∈ {0, 1} is the
response of neuron p at time i.1

1With the exceptions of W and T , we will use capital variables to denote random quantities. In
addition, we will use subscripts to denote neuron index, and superscripts to denote temporal indices.
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We assume that the output nonlinearity can be approximated as an error function

gp(s) =
r̂p
2

[
1 + erf

(
s− T̄p

εp
√
2

)]
,(2.3)

where r̂p is the maximum firing rate, T̄p is the threshold, εp defines the steepness

of the nonlinearity, and erf(x) = 2√
π

∫ x
0
e−t

2

dt. Note that limx→∞ gp(x) = r̂p and

limx→−∞ gp(x) = 0. The error function nonlinearity is assumed so that we can derive
analytic results. As demonstrated in section 6, the results apply to more general
nonlinearities.

So that the input X is a discrete approximation of temporal or spatio-temporal
white noise, we let each of its n components be standard normal random variables. We
do not explicitly distinguish spatial versus temporal components of the input in our
notation because they are treated identically in the analysis. To keep the notation
simple, time is represented only by the temporal index of the kernels hip and the

spikes Rip. With this convention, the probability density function of X is simply

ρX(x) =
1

(2π)n/2
e−|x|2/2.(2.4)

In the next sections, we consider special cases of the coupling W̄ . For each case, we
calculate the expected values of the responses E{Rip}, the “correlation”2 between the

stimulus and the spikes of each neuron E{XRip}, and the “correlation” between the

spikes of the two neurons E{Ri1Ri−k2 }. Since these statistics can be estimated when
one can obtain only the spike times from the neurons, they are readily measurable
in neurophysiology experiments. We base our reconstruction of the linear-nonlinear
system of (2.2) on these input-output statistics. Most importantly, we will reconstruct
the coupling terms W̄ j

pq.

3. Uncoupled neurons. In this section, we assume that the neurons are un-
coupled so that the responses of neurons are independent conditioned on the input.3

In this case, the response probabilities obey (2.2) and (2.3) with W̄ j
pq = 0.

The analysis of the single neuron statistics reduces to the case of individual neu-
rons. As detailed in [13], the first two input-output statistics are given by

E{Rip} =
r̂p
2
erfc

(
δpT̄p√
2

)
(3.1)

and

E{XRip} =
δp√
2π

e−
δ2pT̄2

p
2 hip,(3.2)

where

δp =
1√

1 + ε2p
(3.3)

2We recognize that the statistics E{XRip} and E{Ri1Ri−k2 } are not actually correlations. We
use the term since these statistics are consistently called correlations in the neuroscience literature.
We hope the reader will forgive our loose use of the term. The stimulus-spike correlation E{XRip}
can be thought of as the average stimulus that precedes each spike of neuron p.

3Meaning Pr
(
Ri1 = 1 &Rj2 = 1

∣
∣X

)
= Pr

(
Ri1 = 1

∣
∣X

)
Pr

(
Rj2 = 1

∣
∣X

)
.
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and erfc(x) = 1−erf(x). Note that, since both the input and the system are stationary,
the results are independent of time index i (except for the temporal index of the linear
kernel). Assuming that one knew r̂p, the nonlinearities gp(·) could be computed
by estimating εp and T̄p from these statistics [13]. One could also obtain the unit
vectors hip from E{XRip}/|E{XRip}|. In this simple case, one does not even need to

measure E{Ri1Ri−k2 } to reconstruct the system.
Before we calculate an expression for E{Ri1Ri−k2 }, we define the angles between

the linear kernels, which turn out to be the only important geometry of the kernels for
white noise input. Let θ̄kpq be the angle between kernel q and kernel p shifted k units
in time

cos θ̄kpq = hi−kp · hiq.(3.4)

This angle is of course independent of time index i. (The inner product can be
represented as a cosine because kernels were normalized to be unit vectors.) Note
that θ̄−kqp = θ̄kpq. We always define the corresponding sine by sin θ =

√
1− cos2 θ so

that sin θ ≥ 0.
For a given time shift k, without loss of generality, assume that hi1 is the first

unit vector e1 (in stimulus space) and hi−k2 is a linear combination of the first two
unit vectors:4

hi1 = e1,

hi−k2 = e1 cos θ̄
k
21 + e2 sin θ̄

k
21.

Assuming that the nonlinearities satisfy

lim
x→−∞ gp(x) = 0,(3.5)

we compute the correlation between the spikes of neuron 1 and the spikes of neuron 2
by changing variables and integrating by parts twice. In each integration by parts, one
boundary term disappears due to (3.5), and the other boundary term is incorporated
into the complementary error functions:

E{Ri1Ri−k2 } = 1

2π

∫
g1(x1)g2(x1 cos θ̄

k
21 + x2 sin θ̄

k
21)e

− x2
1+x2

2
2 dx1dx2

=
1

2π

∫
g1(u)g2(v) exp

(
−u2

2
− (v − u cos θ̄k21)

2

2 sin2 θ̄k21

)
du dv

sin θ̄k21

=
1

4

∫
g′1(u)g

′
2(v) derfc

(
u√
2
,

v√
2
, cos θ̄k21

)
du dv,(3.6)

where we have defined a double complementary error function

derfc(a, b, c) =
4

π

∫ ∞

a

dy e−y
2

∫ ∞

b−cy√
1−c2

dz e−z
2

.(3.7)

The function derfc is a two dimensional analogue of the complementary error func-
tion. The integral is taken over the intersection of the two half-planes x · u > a

4Since the stimulus is rotationally invariant, we can rotate the axis so that hi1 is parallel to the

first axis and hi−k2 lies in the span of the first two axes. Recall that |hip| = 1.
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and x · v > b, where u and v are two unit vectors with inner product u · v = c.
(Here, x represents a generic vector.) Note that derfc(a, b, 0) = erfc(a) erfc(b) and
derfc(a, b, c) = derfc(b, a, c).

When the nonlinearity is an error function (i.e., (2.3)), we substitute into (3.6)
and use formula (B.8) to obtain

E{Ri1Ri−k2 } = r̂1r̂2
4

derfc

(
δ1T̄1√
2
,
δ2T̄2√
2
, δ1δ2 cos θ̄

k
21

)
.(3.8)

Equations (3.1), (3.2), and (3.8) are the expressions for the input-output statistics
for the simple case of uncoupled neurons.

4. Unidirectional coupling. Let the coupling from neuron 2 to neuron 1 (W̄ j
21)

be nonzero, but keep W̄ j
12 = 0. Then the probability of a spike of neuron 1 at time k

is dependent not only on the input but also on the spikes of neuron 2 for times
before k, as given by (2.2). The probability of neuron 2’s spiking remains the same as
in section 3, and thus the input-output statistics E{Ri2} and E{XRi2} are unchanged.

In what follows, we calculate expressions for the remaining input-output statis-
tics. We first show that effective parameters of the system can be calculated from
E{Rip} and E{XRip}. We next show how the coupling W̄ j

21 can be calculated from

E{Ri1Ri−k2 }.
We assume that W̄ j

21 is small and compute a first order approximation by dropping

terms that are second order or higher in W̄ j
21. Since from now on all equalities will

be within O(W̄ 2), we will, for simplicity, use = to mean equal within O(W̄ 2).

4.1. Mean rate of neuron 1. In this section, we show that the mean rate of
neuron 1 is nearly identical to the uncoupled case of (3.1), only with the original
threshold T̄1 replaced with an effective threshold T1 to be defined below.

The general expression for the mean rate of neuron 1, calculated in Appendix A.3,
is

(4.1) E{Ri1} =
1√
2π

∫
g1(u)e

−u2

2 du

+
∑
j≥0

W̄ j
21

2
√
2π

∫
g′1(u)g

′
2(v)e

−u2

2 erfc

(
v − u cos θ̄k21√

2 sin θ̄k21

)
du dv.

Note that the mean rate E{Ri1} is independent of i (as it must be).
When the nonlinearities are error functions (e.g., (2.3)), the first term is the

uncoupled mean rate (i.e., (3.1)). We use formula (B.5) to simplify the W̄ j
21 term so

that the mean rate of neuron 1 is

E{Ri1} =
r̂1
2
erfc

(
δ1T̄1√
2

)
+

r̂1r̂2δ1

2
√
2π

e−
δ21 T̄2

1
2

∑
j≥0

W̄ j
21 erfc

(
δ2T̄2 − δ2

1δ2T̄1 cos θ̄
j
21√

1(1− δ2
1δ

2
2 cos

2 θ̄j21)

)
.

Using the Taylor series for erfc( δ1T̄1+x√
2

), we pull the second term into the error

function (making only an O(W̄ 2) error), obtaining

E{Ri1} =
r̂1
2
erfc

(
δ1T1√
2

)
,(4.2)
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where we let T2 = T̄2 and have defined the effective threshold for neuron 1:

T1 = T̄1 −
∑
j≥0

r̂2W̄
j
21

2
erfc

(
δ2T2 − δ2

1δ2T̄1 cos θ̄
j
21√

2(1− δ2
1δ

2
2 cos

2 θ̄j21)

)
.(4.3)

The mean rate of neuron 1 is identical to that of an uncoupled neuron with the
effective threshold T1.

4.2. Correlation of spikes of neuron 1 with the stimulus. We calculate
the general expression for the correlation between the spikes of neuron 1 with the
stimulus in Appendix A.4, obtaining

E{XRi1} =
1√
2π

[∫
g′1(u)e

−u2

2 du

+
∑
j≥0

W̄ j
21

2

∫
g′1(u)g

′
2(v)ue

−u2

2 erfc

(
v − u cos θ̄k21√

2 sin θ̄k21

)
du dv

]
hi1

+
∑
j≥0

W̄ j
21

2π

∫
g′1(u)g

′
2(v) exp

(
− u2 − 2 cos θ̄j21uv + v2

2 sin2 θ̄j21

)
du dv h

⊥ ji

21,(4.4)

where we define h
⊥ ji

21 as the component of h
i−j
2 that is perpendicular to hi1,

h
⊥ ji

21 =
hi−j2 − cos θ̄j21h

i
1

sin θ̄j21
.(4.5)

Because of the coupling, E{XRi1} is no longer parallel to the linear kernel hi1. Each
term in the last sum of (4.4) indicates how the coupling W̄ j

21 leads to a component
of E{XRi1} that is perpendicular to hi1.

When the nonlinearities are error functions (e.g., (2.3)), we use (4.5) and formulas
(B.1), (B.6), and (B.2) to obtain the following expression for the correlation between
the stimulus and the spikes of neuron 1:

E{XRi1} = µ0
1

[
1−
∑
j≥0

r̂2W̄
j
21δ

2
1δ2 cos θ̄

j
21√

2π(1− δ2
1δ

2
2 cos

2 θ̄j21)
exp

(
− [δ2T2 − δ2

1δ2T1 cos θ̄
j
21]

2

2(1− δ2
1δ

2
2 cos

2 θ̄j21)

)]
hi1

+ µ0
1

∑
j≥0

r̂2W̄
j
21δ2√

2π(1− δ2
1δ

2
2 cos

2 θ̄j21)
exp

(
− [δ2T2 − δ2

1δ2T1 cos θ̄
j
21]

2

2(1− δ2
1δ

2
2 cos

2 θ̄j21)

)
hi−j2 ,(4.6)

where

µ0
p =

r̂pδp√
2π

e−
δ2pT2

p
2 .(4.7)

One key to obtaining (4.6) was using the exponential’s Taylor series to bring the
effective threshold T1 (4.3) into the exponential of the first term. We let T2 = T̄2 and
simply replaced T̄1 with T1 in all other terms (making an O(W̄ 2) error).

4.3. Reconstruction from the mean rate and stimulus-spike correla-
tions. Equations (4.2) and (4.6) give expressions for the first two input-output statis-
tics of the linear-nonlinear system (2.2) with unidirectional coupling. These equations
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show that the coupling has both changed the effective threshold and altered the di-
rection of E{XRi1} so that it is no longer parallel to the kernel hi1.

Because of these modifications, we can no longer recover T̄1 or hi1 (or cos θ̄j21)
from E{Ri1} and E{XRi1} as outlined in section 3. Nonetheless, subject to one
more assumption, one can recover the effective threshold T1, the original δ1, and
an effective angle between the kernels. As shown below, one simply views the neurons
as uncoupled and reconstructs the neuron parameters as in section 3. This procedure
does not use E{Ri1Ri−k2 }. We will be able use this last statistic to determine the

coupling W̄ j
21.

4.3.1. Effective angle between kernels. When the neurons were uncoupled,
the linear kernel hi1 could be determined by the normalized stimulus-spike correlation
E{XRi1}/|E{XRi1}|. Although this measurement no longer yields the kernel, we can
treat it as an effective kernel and define the effective angle between kernels by

cos θkpq =
E{XRi−kp }∣∣E{XRi−kp }∣∣ · E{XRiq}∣∣E{XRiq}

∣∣ .(4.8)

In this case of unidirectional coupling, neuron 2 is unaffected, and the effective angle
between neurons 1 and 2 is cos θk21 = hi−k2 · E{XRi1}/|E{XRi1}|.

We rewrite (4.2) and (4.6) in terms of the measurable effective angle as follows.
The magnitude of the stimulus-spike correlation, within O(W̄ 2), is

∣∣E{XRi1}
∣∣ = µ0

1

[
1 +
∑
j≥0

r̂2W̄
j
21(1− δ2

1)δ2 cos θ̄
j
21√

2π(1− δ2
1δ

2
2 cos

2 θ̄j21)
exp

(
− [δ2T2 − δ2

1δ2T1 cos θ̄
j
21]

2

2(1− δ2
1δ

2
2 cos

2 θ̄j21)

)](4.9)

so that

cos θk21 = cos θ̄k21 +
∑
j≥0

r̂2W̄
j
21δ2(cos θ

k−j
22 −cos θ̄j21 cos θ̄k21)√

2π(1−δ21δ22 cos2 θ̄j21)
exp
(
− [δ2T2−δ21δ2T1 cos θ̄j21]

2

2(1−δ21δ22 cos2 θ̄j21)

)
.

Since cos θk21 is within O(W̄ ) of cos θ̄k21, we can replace cos θ̄k21 by cos θk21 in the last
terms (making only an O(W̄ 2) error), and write cos θ̄k21 in terms of cos θk21:

cos θ̄k21 = cos θk21 −
∑
j≥0

W̄ j
21C

jk
21 ,(4.10)

where

Cjk
pq = (cos θk−jpp − cos θjpq cos θ

k
pq)µ

j
pq,(4.11)

µkpq =
r̂pδp exp

(− 1
2 [λ

k
pq]

2
)

√
2π(1− δ2

pδ
2
q cos

2 θkpq)
,(4.12)

and

λkpq =
δpTp − δpδ

2
qTq cos θ

k
pq√

1− δ2
pδ

2
q cos

2 θkpq
.(4.13)

Note that µ0
pµ

k
pq = µ0

qµ
−k
qp .
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We now make an O(W̄ 2) error by replacing cos θ̄k21 with cos θk21 in the stimulus-
spike correlation

E{XRi1} = µ0
1

[(
1−
∑
j≥0

W̄ j
21δ

2
1 cos θ

j
21µ

j
21

)
hi1 +

∑
j≥0

W̄ j
21µ

j
21h

i−j
2

]
(4.14)

and in the expression for the effective threshold (4.3),

T̄1 = T1 +
∑
j≥0

W̄ j
21η

j
21,(4.15)

where

ηkpq =
r̂p
2
erfc

(
λkpq√
2

)
.(4.16)

4.3.2. Effective nonlinearity parameters. As shown above, cos θk21, not the
original cos θ̄k21, is the measurable inner product between the kernels. We next show
that, with one additional mild assumption, the parameters T1 and δ1 are the nonlin-
earity parameters measured from E{XRi1} and E{Ri1} when treating neuron 1 as an
independent neuron as in section 3.

The magnitude of E{XRi1} is
∣∣E{XRi1}

∣∣ = µ0
1

(
1 +
∑
j≥0

W̄ j
21(1− δ2

1) cos θ
j
21µ

j
21

)
.(4.17)

This expression simplifies to µ0
1 if we assume that W̄ j

21δ1δ2(1 − δ2
1) cos θ

j
21 is small

enough to ignore. Since we have already assumed that W̄ j
21 is small, we simply need

to assume that δ2(1− δ2
1) cos θ

j
21 is small to have an expression that is second order in

a small parameter. This expression is the product of three factors that are each less
than one. It will be small if the nonlinearities are not very sharp or if the kernels of
the neurons are not nearly aligned.

With this approximation, the stimulus-spike correlation is

∣∣E{XRi1}
∣∣ ≈ µ0

1 =
r̂1δ1√
2π

e−
δ21T2

1
2 .(4.18)

Recall that the mean rate of neuron 1 (see (4.2)) is

E{Ri1} =
r̂1
2
erfc

(
δ1T1√
2

)
.

These results are the same as (3.1) and (3.2) for an uncoupled neuron with nonlinearity
parameters δ1 and T1. One can determine δ1 and T1 from these equations (assuming
that r̂1 is known).

Using only E{Rip} and E{XRip} in this manner, one can calculate effective nonlin-
earity parameters of both neuron 1 and neuron 2, as well as the effective angle between
the linear kernels. We next show how the connectivity W̄21 can be determined from
the remaining input-output statistic E{Ri1Ri−k2 }.
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4.4. Correlation between spikes of neurons 1 and 2. We calculate the
general expression for the correlation between the spikes of neurons 1 and 2 in Ap-
pendix A.5, obtaining the complicated expression

E{Ri1Ri−k2 } = 1

4

∫
g′1(u1)g

′
2(u2)derfc

(
u1√
2
,
u2√
2
, cos θ̄k21

)
du1du2

+
W̄ k

21

2
√
2π

∫
g′1(u1)g

′
2(u2)e

−u2
1
2 erfc

(
u2 − u1 cos θ̄

k
21√

2 sin θ̄k21

)
du1du2

+
∑

j≥0, j 
=k

W̄ j
21

4
√
2π

∫
du1du2du3 g

′
1(u1)g

′
2(u2)g

′
2(u3)e

−u2
1
2

× derfc

(
u2 − u1 cos θ̄

k
21√

2 sin θ̄k21
,
u3 − u1 cos θ̄

j
21√

2 sin θ̄j21
,
cos θk−j22 − cos θ̄j21 cos θ̄

k
21

sin θ̄j21 sin θ̄
k
21

)
.(4.19)

When the nonlinearities are error functions (e.g., (2.3)), we simplify this expres-
sion using three formulas ((B.8), (B.9), and (B.5)) and (4.10), (4.15), (4.7), (4.16),
and (4.11). We use the following Taylor series expansions of derfc(a, b, c),

derfc(a+ x, b, c) = derfc(a, b, c)− 2x√
π
e−a

2

erfc

(
b− ca√
1− c2

)
+O(x2),

derfc(a, b, c+ x) = derfc(a, b, c) +
2x

π
√
1− c2

e
− a2−2abc+b2

1−c2 +O(x2),

to pull terms for the effective threshold T1 and effective kernel inner product cos θj21
into the first term. All other terms are O(W̄ ), so we can simply drop the bars from
T̄1 and cos θ̄j21.

Defining

νkpq =
r̂pr̂q
4

derfc

(
δpTp√
2

,
δqTq√
2
, δpδq cos θ

k
pq

)
,(4.20)

ν̃kjpq =


ηkpq for j = k,

(r̂p)2

4 derfc
(
λk
pq√
2
,
λj
pq√
2
, ξkjpq

)
otherwise,

(4.21)

and

ξkjpq =
δ2
p cos θ

k−j
pp − δ2

pδ
2
q cos θ

j
pq cos θ

k
pq√

(1− δ2
pδ

2
q cos

2 θjpq)(1− δ2
pδ

2
q cos

2 θkpq)
,(4.22)

the correlation between the spikes of neurons 1 and 2 becomes

E{Ri1Ri−k2 } = νk21 +
∑
j≥0

Akj21W̄
j
21,(4.23)

where

Akjpq = µ0
q

[
ν̃kjpq − ηkpqη

j
pq + (cos θkpq cos θ

j
pq − cos θk−jpp )µkpqµ

j
pq

]
(4.24)

and µ0
p, µkpq, λkpq, and ηkpq are defined in (4.7), (4.12), (4.13), and (4.16), respec-

tively. The term νk21 in (4.23) is analogous to the correlation observed in the uncou-
pled case (3.8), and the sum represents additional correlations due to the coupling
terms W̄ j

21. A discussion of some properties of Akjpq is given in the next section.
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The important fact to note about (4.23) is that, with the exception of the W̄ j
21,

every factor on the right-hand side can be calculated from the mean rates E{Rip} and
stimulus-spike correlations E{XRip}. Equation (4.23) can then be solved to determine
the W̄ j

21.

5. Mutual coupling. Let both W̄ j
21 and W̄ j

12 be nonzero so that the neurons
are mutually coupled. Then the probability of a spike of neuron p at time k depends
not only on the input but also on the spikes of neuron q for times before k, as given
by (2.2).

Since we assume that W̄ j
pq is small and compute a first order approximation,

the mutual interaction results are identical to the unidirectional results of section 4
applied in both directions. The effect of neuron p on neuron q is O(W̄ ), so the effect
of neuron p on itself through neuron q is O(W̄ 2) and can be ignored. We can ignore
second (and higher) order interactions.

The mutual coupling case involves no more work beyond that for the unidirec-
tional case. The statistics for neuron 1 are unchanged, and the statistics for neuron 2
become analogous to those for neuron 1. The expression for E{Ri1Ri−k2 } simply adds
a sum in terms of the W̄ j

12 coupling.
We summarize the model and resulting equations. We are given the system

Pr
(
Rip = 1

∣∣X = x,Rq = rq
)
= gp

(
hip · x+

∑
j≥0

W̄ j
qpr

i−j
q

)
(5.1)

for p, q ∈ {1, 2}, q �= p, with

gp(x) =
r̂p
2

[
1 + erf

(
x− T̄p

εp
√
2

)]
.(5.2)

We assume we know r̂p. We can reconstruct the system from the following input-
output statistics: E{Rip}, E{XRip}, and E{Ri1Ri−k2 }.

First, we calculate δp = 1/
√
1 + ε2p and an effective threshold Tp from E{Rip} and

|E{XRip}| using the equations5

E{Rip} =
r̂p
2
erfc

(
δpTp√
2

)
(5.3)

and

∣∣E{XRip}
∣∣ ≈ µ0

p =
r̂pδp√
2π

exp

(
−δ2

pT
2
p

2

)
.(5.4)

Then, we calculate the effective angle between the kernels by

cos θkpq =
E{XRi−kp } · E{XRiq}∣∣E{XRi−kp }∣∣∣∣E{XRiq}

∣∣ .(5.5)

The last step is to calculate the coupling W̄ from the spike correlations with delays
k = −N, . . . , N ,

E{Ri1Ri−k2 } = νk21 +
∑
j≥0

Akj21W̄
j
21 +

∑
j≥0

A−kj
12 W̄ j

12,(5.6)

5The fact that Tp and E{XRip} are given by equations analogous to (4.15) and (4.14) is not
needed for the reconstruction.
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where

Akjpq = µ0
q

[
ν̃kjpq − ηkpqη

j
pq + (cos θkpq cos θ

j
pq − cos θk−jpp )µkpqµ

j
pq

]
,

νkpq =
r̂pr̂q
4

derfc

(
δpTp√
2

,
δqTq√
2
, δpδq cos θ

k
pq

)
,

ν̃kjpq =


ηkpq for j = k,

(r̂p)2

4 derfc
(
λk
pq√
2
,
λj
pq√
2
, ξkjpq

)
otherwise,

ηkpq =
r̂p
2
erfc

(
λkpq√
2

)
,

µkpq =
r̂pδp exp

(− 1
2 [λ

k
pq]

2
)√

2π(1− δ2
pδ

2
q cos

2 θkpq)
,

λkpq =
δpTp − δpδ

2
qTq cos θ

k
pq√

1− δ2
pδ

2
q cos

2 θkpq

,

and

ξkjpq =
δ2
p cos θ

k−j
pp − δ2

pδ
2
q cos θ

j
pq cos θ

k
pq√

(1− δ2
pδ

2
q cos

2 θjpq)(1− δ2
pδ

2
q cos

2 θkpq)
.

We assume that we have chosen the number of delays (given by k = −N, . . . , N)
so that W j

21 and W j
12 for j = 0, . . . , N are all the nonzero connectivity terms of

the system. Unfortunately, even though the W̄ are the only unknowns left in the
system (5.6), we still have 2N + 2 unknowns with only 2N + 1 equations.

To reduce the number of unknowns, we simply do not attempt to distinguish W̄ 0
21

from W̄ 0
12. Although there is no reason these should be identical, the best we can do

is calculate their sum. To solve the equations, we define a new W̄ j by

W̄ j =



W̄−j

12 for j < 0,

W̄ 0
12 + W̄ 0

21 for j = 0,

W̄ j
21 for j > 0.

(5.7)

Our new equation for the W̄ is then

E{Ri1Ri−k2 } = νk21 +
∑
j

ÃkjW̄ j ,(5.8)

where

Ãkj =



A−k,−j

12 for j < 0,
1
2 (A

−k0
12 +Ak021) for j = 0,

Akj21 for j > 0.

(5.9)
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If we let Sk = E{Ri1Ri−k2 } − νk21, we can write the solution of (5.8) for W̄ j in
matrix-vector notation as W̄ = Ã−1S, where Ã−1 denotes the matrix inverse of Ã.
This solution of (5.8) for W̄ j modifies the correlations in E{Ri1Ri−k2 } in two ways.
First, the subtraction of νk21 removes correlations due solely to the fact that neurons
are responding to the same stimulus. (See [12] for a detailed discussion.) Second,
inverting the matrix Ã eliminates the filtering of W̄ by the temporal structure of
hi1 and hi2.

The relevant temporal structure of the kernels is captured by cos θ̄kpq = hi−kp · hiq.
Clearly, cos θ̄0

pp = |hip|2 = 1. If, with this exception, cos θ̄kpq = 0 (so that the kernels

are orthogonal to each other and temporal shifts of themselves), then the effects of W̄
are not filtered by the kernels. Â is a diagonal matrix, and inverting Ã simply scales
the measured correlations. (Too see this fact, recall that derfc(a, b, 0) = erfc(a) erfc(b)
and that we can interchange cos θ̄kpq and cos θkpq in expressions defining A since it

appears in O(W̄ ) terms.)
As the inner products cos θ̄kpq increase, the off-diagonal elements of Ã grow. In

fact, the inner products of the kernels with themselves (cos θ̄kpp) will be close to 1 for
k near 0 if the structure of the kernels changes slowly with time. Typically, the off-
diagonal elements of Ã will still be substantially less than the diagonal elements even
with large cos θ̄kpp, and inversion of Ã will be stable. However, close examination of

equations defining Ã reveals that off-diagonals could become equal to the diagonal in
the extreme case of very sharp nonlinearities and other parameter limits. (Parameters
needed are ε1 = ε2 = 0 so that δ1 = δ2 = 1, as well as r̂1 = r̂2 = 1, cos θ̄kpp = 1 for

k �= 0, and cos θ̄jpq = 0 for p �= q.)6 In this case, the matrix Ã could become almost
singular, and its inversion would not be stable.

Outside this extreme case, the matrix Ã is well conditioned, and solving (5.8)
for W̄ removes the filtering caused by the temporal structure of the kernels. Subject
to the validity of the model (5.1), the result will faithfully reconstruct the underlying
connectivity.

6. Results. To demonstrate the reconstruction procedure, we simulate a pair
of coupled linear-nonlinear neurons (see (5.1)) responding to white noise input and
use the above method to estimate the parameters. We assume that the maximum
output rates r̂p are known using alternative methods such as those described in [13].
Then, from the responses Rip and the discrete white noise input X, one can estimate

E{Rip}, E{XRip}, and E{Ri1Ri−k2 } for p = 1, 2 and k = −N, . . . , N . The maximum

delay parameter N must be chosen large enough so that the E{Ri1Ri−k2 } capture the
effects of the W̄ j . In the examples, we set N = 30.

The calculations depend on estimating the inner products E{XRip} ·E{XRi−kq }.
We estimate each correlation by E{XRip} ≈ 〈XRip〉, where 〈·〉 represents averaging
over a data set. A naive estimate of the inner product by E{XRip} · E{XRi−kq } ≈
〈XRip〉 · 〈XRi−kq 〉 will be highly biased, especially when the dimension of the kernels

hip and hiq is large. To reduce the bias, we estimate the covariance between the factors

of each term defining 〈XRip〉 · 〈XRi−kq 〉 and subtract it from the estimate.7

For our simulations, we used kernels hip that mimic linear kernels of neurons in

6Note that limc→1 derfc(a, a, c) = 2 erfc(a).
7This bias reduction is equivalent to estimating the product of expected values of two random

variables Y and Z using the formula for covariance E{Y Z} − cov(Y, Z) = E{Y }E{Z}. For more
details on bias reduction of inner products, see Appendix B of [13].
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Fig. 1. Estimated connectivity W (thick black line) when the nonlinearities are error functions.
For comparison, the simulated connectivity W̄ is shown with a thin gray line. W agrees quantitatively
with W̄ , though the magnitudes of the large peaks differ. Delay is in units of time and is the spike
time of neuron 1 minus the spike time of neuron 2.

visual cortex [10]. We used the spatio-temporal linear kernels of the form

hp(j, t) =

{
te−t/5 exp

(
− |j|2

50

)
sin(0.5(j1 cosφp + j2 sinφp)) for t > 0,

0 otherwise,
(6.1)

where j = (j1, j2) is the spatial grid point and t is time. We set the spatial axis
parameters to be φ1 = 0 and φ2 = π/4. We sampled hp(j, t) on a 32 × 32 × 32
grid and normalized it to form the unit vector hip. All units are in grid points. The
detailed structure of the kernels is insignificant as the only relevant parameters from
the kernels are their inner products cos θ̄kpq.

In the first example, we set the parameters of the error function nonlinearity
(i.e., (5.2)) to r̂1 = r̂2 = 0.5, T̄1 = 1.5, T̄2 = 2.0, ε1 = 0.5, and ε2 = 1.0. The
precise parameter values are arbitrary; we chose them so that the neuron firing rates
would be low as observed in white noise experiments. The results are not sensitive to
these parameter choices. Just to illustrate the method, we set an artificial coupling of
W̄ 1

21 = 0.3, W̄ 8
21 = −1.0, W̄ 5

12 = −0.3, and W̄ 9
12 = 1.0. All other coupling terms were

set to zero. We simulated the system for 250,000 units of time, obtaining about 10,000
spikes from each neuron, a realistic number of spikes in white noise experiments [17].

To analyze the results, we assumed that we knew that r̂p = 0.5, and calculated
all other parameters from the input-output statistics using the proposed method. We
focus on the estimate of the simulated connectivity W̄ , denoting by W our estimate
of the connectivity. As shown in Figure 1, the estimate W captures all the qualitative
features of W̄ . For the lower magnitude coupling (with |W̄ | = 0.3), W also estimates
the magnitudes accurately. However, when |W̄ | = 1.0, the first order approximation
breaks down enough to cause W to overestimate the positive coupling by 20% and
underestimate the magnitude of the negative coupling by nearly 40%. (The asymme-
try between positive and negative coupling is most likely due to the low average firing
rates of 0.04 spikes per unit time; cf. [14].)



COUPLED LINEAR-NONLINEAR SYSTEMS 1221

−30 −20 −10 0 10 20 30
−1

−0.5

0

0.5

1

1.5

Delay

W

Fig. 2. Estimated connectivity W (thick black line) when simulated power law nonlinearities
are analyzed as error functions. W agrees with the simulated connectivity W̄ (thin gray line) just
as well as in the error function case of Figure 1.

Since the stimulus standard deviation is assumed to be one, we have effectively
scaled X, and likewise W̄ , T̄p, and εp, by the stimulus standard deviation. When
|W̄ j | = 1, it is equal in magnitude to the standard deviation of hip · X. Since in

this case the contribution of W̄ j in (5.1) is the same order of magnitude as the
contribution of hip ·X, one cannot expect the first order approximation to be valid.
Not only are estimation errors, such as those shown in Figure 1, possible when the
coupling magnitude is sufficiently large, but W can also show additional peaks due to
the second order interactions that we ignored in section 5 (not shown).

For a second example, we demonstrate the robustness of the analysis to deviations
in the form of the nonlinearities gp. We repeat the first example, but rather than using
an error function nonlinearity, we use a power law nonlinearity,

gp(y) =

{
Apy

βp if y > 0,

0 otherwise,

with A1 = 0.07, A2 = 0.04, β1 = 2.5, and β2 = 2.0 (we truncate so that gp(x) ≤ 1).
Using the same W̄ as above, we simulated the system for 250,000 units of time,
obtaining approximately 10,000 spikes from neuron 1 and 5,000 spikes from neuron 2.

We analyze the output of the system identically to the first example. We assume
that each nonlinearity was an error function nonlinearity with r̂p = 1 and calculate the
error function parameters from E{RiP } and |E{XRip}|. The resulting error function
parameters (which include the effects from the connectivity) were ε1 = 0.76, ε2 = 1.1,
T1 = 2.2, and T2 = 3.0. As shown in Figure 2, the method estimated the connectivity
just as well as when the simulated nonlinearity really was an error function. The
results were not sensitive to the selection of the maximum firing rate parameters, as
the calculated W was virtually identical if we set r̂p = 0.5 or r̂p = 2 and repeated the
analysis.

We repeated this test for simulations based on a wide variety of power law param-
eters Ap and βp. We were unable to find an example for which the calculation of W



1222 DUANE Q. NYKAMP

−30 −20 −10 0 10 20 30

0

0.2

0.4

0.6

Delay

W

Fig. 3. Estimated connectivity W (thick black line) when the two neurons receive common input
from a third neuron. The peak at a delay of 7 units of time is due to the simulated connectivity W̄
(thin gray line). However, the peak of W at a delay of −7 is due not to connectivity between the
two neurons (W̄ = 0) but rather to the common input from the third neuron.

was significantly worse than in Figure 2. Even with βp < 1 so that the derivative
of gp(y) was infinite at y = 0, the results were similar. The method simply is not
sensitive to the detailed form of the nonlinearity.

The measure W cannot distinguish between correlations caused by the connec-
tivity assumed in (5.1) and correlations caused by other mechanisms. For example,
if the two neurons received common input from a third, unmeasured, neuron, that
connectivity would appear in the calculation of W.

To demonstrate, we simulated three coupled linear-nonlinear neurons analogous
to (5.1). We used (6.1) with φ3 = π/2 for the linear kernel of the third neuron. All
three neurons had error function nonlinearities with T̄1 = 2, T̄2 = 2.5, T̄3 = 2, ε1 = 0.5,
ε2 = 1, and ε2 = 0.7. We created a connection from neuron 3 to both neurons 1 and 2,
as well as a connection from neuron 2 to neuron 1. (We set W̄ 1

31 = 1.5, W̄ 8
32 = 1.5, and

W̄ 7
21 = 0.5, leaving the other connectivity terms at zero.) We simulated the system

for 250,000 units of time, obtaining approximately 12,000–13,000 spikes per neuron,
and then analyzed the system as above by ignoring the output of neuron 3.

As shown in Figure 3, W has a peak at the delay of 7 corresponding to the
connection from neuron 2 to neuron 1 (W̄ 7

21). However, W also has a peak at a
delay of −7. This second peak does not correspond to any direct connection between
neuron 1 and neuron 2 (W̄ 7

12 = 0). Instead, the peak is created because the connection
from neuron 3 to neuron 2 is 7 units of time delayed compared to the connection from
neuron 3 to neuron 1. Since W cannot distinguish between direct connections and
common input, it must be interpreted with care. It cannot be viewed as representing
the connectivity between the two measured neurons unless one could somehow rule
out a mutual connection from any unmeasured neurons.

7. Discussion. We derived a method for analyzing a pair of coupled linear-
nonlinear systems driven by white noise. Through measuring first and second or-
der input-output statistics, one can characterize the systems. In particular, one can
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reconstruct the coupling between the systems if the coupling is assumed to be of a
particular form (see (5.1)).

We demonstrated that the method is robust to variations in the detailed form of
the nonlinearity. We believe this robustness is due to the smoothing by the white noise
input. Each input-output statistic depends on the nonlinearities gp(·) only through
expected values over the white noise. The effect of this smoothing is most clearly
seen in the initial expression for each statistic in Appendix A. The gp(·) appear in
the integrals as either gp(h

i
p · x) or g′p(h

i
p · x). Since the kernels are unit vectors, the

arguments of the nonlinearity are standard normals. Only the integrals of the gp(·)
over the probability density function of standard normals, not pointwise evaluation
of the gp(·), affect the input-output statistics. These integrals smooth out minor
differences between nonlinearity shapes.

Since the method is a first order approximation in the coupling magnitude, mea-
surements of large W (on the order of the standard deviation of an input component)
must be viewed cautiously. According to our simulation results, the breakdown of the
first order approximation typically leads only to deviations in the magnitude of the
estimated connectivity. However, in extreme cases, large connectivity could lead to
the emergence of second order effects in the form of additional peaks in W that do
not reflect the connectivity W̄ .

More importantly, the method cannot distinguish between the assumed mutual
coupling of the model and other mechanisms for creating correlations between the
responses, such as common input from outside sources. Measurements of W would
be evidence of mutual coupling only if other mechanisms for correlations could be
ruled out. Nonetheless, even if the source of W cannot be definitively determined,
measurement of W still could provide evidence about the time scale and magnitudes
of the interactions in the underlying neural network.

The proposed method was developed to analyze multielectrode recordings of neu-
rons in response to a white noise stimulus. However, the linear-nonlinear model as-
sumed by the analysis is only a crude, phenomenological approximation to the biology.
To better interpret the results of the method, one must be able to assign significance
to nonzero measurements of W. One future challenge is to develop methods for iden-
tifying cases in which nonzero measurements of W are due simply to deviations from
the linear-nonlinear model.

Appendix A. Details of derivation for unidirectional coupling.

A.1. Probability of a spike in neuron 1. Under the first order approximation
in W̄ , we can simplify (2.2) for neuron 1 to

Pr
(
Ri1 = 1

∣∣X = x,R2 = r2

)
= g1

(
hi1 · x+

∑
j≥0

W̄ j
21r

i−j
2

)

= g1(h
i
1 · x) + g′1(h

i
1 · x)

∑
j≥0

W̄ j
21r

i−j
2 .(A.1)

The probability of a spike in neuron 1 is then

Pr
(
Ri1 = 1

∣∣X = x
)
=
∑
r2

Pr
(
Ri1 = 1

∣∣X = x,R2 = r2

)∏
̃

Pr
(
Ri−̃2 = ri−̃2

∣∣X = x
)

= g1(h
i
1 · x)

∑
r2

∏
̃

Pr
(
Ri−̃2 = ri−̃2

∣∣X = x
)

+ g′1(h
i
1 · x)

∑
j≥0

W̄ j
21

∑
r2

ri−j2

∏
̃

Pr
(
Ri−̃2 = ri−̃2

∣∣X = x
)
.(A.2)
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The sum is over all values of r2, where each component r̃2 can be either one or zero;
i.e., this sum is over every possible spike combination of neuron 2. The product reflects
the assumption that, since W̄12 = 0, the responses of neuron 2, when conditioned on
the stimulus, are independent.

The total probability of any spike combination of neuron 2 must equal one,∑
r2

∏
̃

Pr
(
Ri−̃2 = ri−̃2

∣∣X = x
)
= 1.(A.3)

Moreover, since ri−j2 ∈ {0, 1}, only terms where ri−j2 = 1 make a contribution in the

coefficient of W̄ j
21:∑

r2

ri−j2

∏
̃

Pr
(
Ri−̃2 = ri−̃2

∣∣X = x
)

= Pr
(
Ri−j2 = 1

∣∣X = x
) ∑

r2 except ri−j
2

∏
̃
=j

Pr
(
Ri−̃2 = ri−̃2

∣∣X = x
)

= g2(h
i−j
2 · x).(A.4)

In the last step, we used a generalization of (A.3) excluding the i− j time interval.
Combining (A.2), (A.3), and (A.4), the probability of a spike in neuron 1 is

Pr
(
Ri1 = 1

∣∣X = x
)
= g1(h

i
1 · x) +

∑
j≥0

W̄ j
21g

′
1(h

i
1 · x)g2(h

i−j
2 · x),(A.5)

where = indicates equality within O(W̄ 2).

A.2. Probability of spike pairs. In the case of unidirectional coupling, the
probability of a spike pair is

(A.6) Pr
(
Ri1 = 1 &Ri−k2 = 1

∣∣X = x,R2 = r2

)
= g1

(
hi1 · x+

∑
j≥0

W̄ j
21r

i−j
2

)
ri−k2

= g1(h
i
1 · x)ri−k2 + g′1(h

i
1 · x)ri−k2 W̄ k

21 + g′1(h
i
1 · x)ri−k2

∑
j≥0
j 
=k

W̄ j
21r

i−j
2 .

Note that (ri−k2 )2 = ri−k2 since ri−k2 ∈ {0, 1}.
If we repeat the same procedure as in the previous section,

(A.7) Pr
(
Ri1 = 1 &Ri−k2 = 1

∣∣X = x
)

=
∑
r2

Pr
(
Ri1 = 1 &Ri−k2 = 1

∣∣X = x,R2 = r2

)∏
̃

Pr
(
Ri−̃2 = ri−̃2

∣∣X = x
)
,

the only new term will be∑
r2

ri−j2 ri−k2

∏
̃

Pr
(
Ri−̃2 = ri−̃2

∣∣X = x
)
= g2(h

i−k
2 · x)g2(h

i−j
2 · x).(A.8)

Therefore,

Pr
(
Ri1 = 1 &Ri−k2 = 1

∣∣X = x
)
= g1(h

i
1 · x)g2(h

i−k
2 · x)

+ W̄ k
21g

′
1(h

i
1 · x)g2(h

i−k
2 · x)

+
∑
j≥0
j 
=k

W̄ j
21g

′
1(h

i
1 · x)g2(h

i−k
2 · x)g2(h

i−j
2 · x).(A.9)
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A.3. Mean rate of neuron 1. The mean rate of neuron 1 (see (A.5)) is given
by

E{Ri1} =
1

(2π)n/2

∫
Pr
(
Ri1 = 1

∣∣X = x
)
e−|x|2/2dx

=
1

(2π)n/2

∫
g1(h

i
1 · x)e−|x|2/2dx

+
∑
j≥0

W̄ j
21

(2π)n/2

∫
g′1(h

i
1 · x)g2(h

i−j
2 · x)e−|x|2/2dx.(A.10)

The first term is identical to the uncoupled case. For the rest of the terms, we use
a different coordinate system for each j. The first unit vector is e1 = hi1, and the
second unit vector is the component of hi−j2 that is perpendicular to hi1, so that

hi−j2 = e1 cos θ̄
j
21 + e2 sin θ̄

j
21.

We change variables and integrate by parts (assuming (3.5)) to simplify the jth
term:

W̄ j
21

2π

∫
g′1(x1)g2(x1 cos θ̄

j
21 + x2 sin θ̄

j
21)e

− x2
1+x2

2
2 dx1dx2

=
W̄ j

21

2π

∫
g′1(u)g2(v) exp

(
−u2

2
− (v − u cos θ̄j21)

2

2 sin2 θ̄j21

)
du dv

sin θ̄j21

=
W̄ j

21

2
√
2π

∫
g′1(u)g

′
2(v)e

−u2

2 erfc

(
v − u cos θ̄j21√

2 sin θ̄j21

)
du dv.(A.11)

The mean rate of neuron 1 is thus

(A.12) E{Ri1} =
1√
2π

∫
g1(u)e

−u2

2 du

+
∑
j≥0

W̄ j
21

2
√
2π

∫
g′1(u)g

′
2(v)e

−u2

2 erfc

(
v − u cos θ̄j21√

2 sin θ̄j21

)
du dv.

A.4. Correlation of spikes of neuron 1 with the stimulus. The stimulus-
spike correlation of neuron 1 (see (A.5)) is

E{XRi1} =
1

(2π)n/2

∫
xPr

(
Ri1 = 1

∣∣X = x
)
e−|x|2/2dx

=
1

(2π)n/2

∫
xg1(h

i
1 · x)e−|x|2/2dx

+
∑
j≥0

W̄ j
21

(2π)n/2

∫
xg′1(h

i
1 · x)g2(h

i−j
2 · x)e−|x|2/2dx.(A.13)

The first term is identical to the uncoupled case, becoming

1√
2π

∫
g′1(u)e

−u2

2 duhi1

with an integration by parts. For the rest of the terms, just as in the previous section,
we will use a different coordinate system for each j, with e1 = hi1 and with e2 being
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the component of hi−j2 that is perpendicular to hi1. We will denote this second unit
vector by

h
⊥ ji

21 =
hi−j2 − cos θ̄j21h

i
1

sin θ̄j21
.(A.14)

Note that hi−j2 = hi1 cos θ̄
j
21 +h

⊥ ji

21 sin θ̄
j
21. The jth term thus has two nonzero compo-

nents,

W̄ j
21

2π

∫
(x1h

i
1 + x2h

⊥ ji

21)g
′
1(x1)g2(x1 cos θ̄

j
21 + x2 sin θ̄

j
21)e

− x2
1+x2

2
2 dx1dx2

= W̄ j
21(Ij,1h

i
1 + Ij,2h

⊥ ji

21),(A.15)

where the above defines Ij,1 and Ij,2. We change variables and integrate by parts
(assuming (3.5)) to simplify the first component:

Ij,1 =
1

2π

∫
ug′1(u)g2(v) exp

(
−u2

2
− (v − u cos θ̄j21)

2

2 sin2 θ̄j21

)
du dv

sin θ̄j21

=
1

2
√
2π

∫
g′1(u)g

′
2(v)ue

−u2

2 erfc

(
v − u cos θ̄j21√

2 sin θ̄j21

)
du dv.(A.16)

To simplify Ij,2, we first integrate by parts in the x2 variable, then change variables:

Ij,2 =
1

2π

∫
g′1(x1)g

′
2(x1 cos θ̄

j
21 + x2 sin θ̄

j
21) sin θ̄

j
21e

− x2
1+x2

2
2 dx1dx2

=
1

2π

∫
g′1(u)g

′
2(v) exp

(
−u2 − 2 cos θ̄j21uv + v2

2 sin2 θ̄j21

)
du dv.(A.17)

Combining these results, the stimulus-spike correlation of neuron 1 is

E{XRi1} =
1√
2π

[∫
g′1(u)e

−u2

2 du

+
∑
j≥0

W̄ j
21

2

∫
g′1(u)g

′
2(v)ue

−u2

2 erfc

(
v − u cos θ̄j21√

2 sin θ̄j21

)
du dv

]
hi1

+
∑
j≥0

W̄ j
21

2π

∫
g′1(u)g

′
2(v) exp

(
−u2 − 2 cos θ̄j21uv + v2

2 sin2 θ̄j21

)
du dv h

⊥ ji

21.(A.18)

A.5. Correlation between spikes of neurons 1 and 2. The correlation be-
tween spikes of neuron 1 and neuron 2 is (see (A.9))

E{Ri1Ri−k2 } = 1

(2π)n/2

∫
Pr
(
Ri1 = 1 &Ri−k2 = 1

∣∣X = x
)
e−
|x|2
2 dx

=
1

(2π)n/2

∫ [
g1(h

i
1 · x)g2(h

i−k
2 · x)

+ g′1(h
i
1 · x)g2(h

i−k
2 · x)

(
W̄ k

21 +
∑

j≥0, j 
=k
W̄ j

21g2(h
i−j
2 · x)

)]
e−
|x|2
2 dx.(A.19)
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The first term is identical to the uncoupled case (i.e., (3.6)). The W̄ k
21 term is identical

to (A.11).

For the W̄ j
21 terms with j �= k, we let e1 = hi1 and e2 = h

⊥ki

21, and let the third

unit vector be the component of hi−j2 perpendicular to both e1 and e2 so that

hi−j2 = e1 cos θ̄
j
21 + e2c

kj
21 sin θ̄

j
21 + e3 sin θ̄

j
21

√
1− (ckj21)

2,

where

ckj21 = h
⊥ki

21 · h
⊥ ji

21 =
cos θk−j22 − cos θ̄k21 cos θ̄

j
21

sin θ̄k21 sin θ̄
j
21

.

Denoting the W̄ j
21 terms in (A.19) by W̄ j

21Ikj and changing variables, we compute

Ikj =
1

(2π)3/2

∫
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k
21)
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1
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2
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k
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]2
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2]


 .

Using (3.5) and integrating by parts twice as in the derivation of (3.6), we simplify
this expression to

(A.20) Ikj =
1

4
√
2π
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The correlation between spikes of neuron 1 and neuron 2 is therefore
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.(A.21)

Appendix B. Formulas used in derivations. In all formulas, each sine is
assumed to be positive.
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The formulas

1

εp
√
2π

∫∫
exp

(
− (x− Tp)

2

2ε2p
− x2

2

)
dx = δpe

− δ2pT2
p

2(B.1)

and

(B.2)
1

2πεpεq

∫∫
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(
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,

where δq = 1/
√
1 + ε2q, follow from the application of∫

exp(−[ax2 + bx+ c]) dx =

√
π

a
exp

(
b2

4a
− c

)
for a > 0.

For the following two formulas, change variables in the double integral so that
one of the new variables is parallel to the line u = dx+ f (where u is the integration
variable of the erfc(·)). By completing the square in the resulting integrands, one can
derive both
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and ∫
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for a > 0. By applying (B.3) twice, one can show that

(B.5)
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and by applying both (B.3) and (B.4), one can show that
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For the following formula, let u be the integration variable of the erfc(·). Then
change variables in the triple integral so that the first variable is parallel to the line
y = dx + f , and a linear combination of the first and second variables is parallel to
the line u = gx+ h− ky. By repeatedly completing the square in the integrand, one
can derive that∫

dx exp(−[ax2 + bx+ c])

∫ ∞

dx+f

dy e−y
2
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=
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for a > 0. Repeated application of (B.7), combined with extensive algebra, yields

(B.8)
1

2πεpεq

∫∫
exp

(
− (x− Tp)

2

2ε2p
− (y − Tq)

2

2ε2q

)
derfc

(
x√
2
,

y√
2
, cos θ

)
dx dy

= derfc

(
δpTp√
2

,
δqTq√
2
, δpδq cos θ

)

and

1

(2π)3/2εpε2q

∫∫∫
exp

(
− (x− Tp)

2

2ε2p
− (y − Tq)

2

2ε2q
− (z − Tq)

2

2ε2q
− x2

2

)

× derfc

(
z − x cos θ√

2 sin θ
,
y − x cosφ√

2 sinφ
,
cosψ − cos θ cosφ

sin θ sinφ

)
dx dy dz

= δpe
− δ2pT2

p
2 derfc

(
δqTq−δ2pδqTp cos θ√

2(1−δ2pδ2q cos2 θ)
,
δqTq−δ2pδqTp cosφ√

2(1−δ2pδ2q cos2 φ)
,

δ2q cosψ−δ2pδ2q cos θ cosφ√
(1−δ2pδ2q cos2 θ)(1−δ2pδ2q cos2 φ)

)
,

(B.9)

where derfc(·) is defined by (3.7).
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Abstract. We formulate a general theory, based on a Lyapunov–Schmidt expansion, for aver-
aging thermal and solutal dispersion phenomena in multiphase reactors, with specific attention to
the important Taylor mechanism due to transverse intraphase and interphase capacitance-weighted
velocity gradients. We show that the classical Taylor dispersion phenomena are better described in
terms of low dimensional models that are hyperbolic and contain an effective local time or length
scale in place of the traditional Taylor dispersion coefficient. This description eliminates the use
of an artificial exit boundary condition associated with parabolic homogenized equations as well
as the classical upstream-feedback and infinite propagation speed anomalies. Our approach is also
applicable for describing steady dispersion in the presence of reaction and thermal generation or
consumption. For two-phase systems, maximum dispersion is found to exist at an optimum fraction
εf of the lower-capacitance phase. For the disparate phase capacities of most reactors, thermal or

solutal dispersion is shown to have the scaling
εfp

2

(1−εf )Γαf , where αf is the thermal diffusivity of the

low-capacitance phase, Γ is the capacitance ratio, and p is the transverse Peclet number.

Key words. solutal dispersion, thermal dispersion, averaging, Liapunov–Schmidt reduction,
multiphase reactors

AMS subject classifications. 76R05, 34C29, 34K60, 35B27

PII. S0036139901368863

1. Introduction. A major goal of the discipline of chemical engineering known
as reaction engineering is to combine the complex kinetics, flow fields, and geometries
of multiphase reacting systems (such as a packed bed) into accurate low dimensional
homogenized convection-diffusion-reaction models that contain all the pertinent trans-
port and kinetic effects of the above complications. It was realized very early that flow
turbulence, tortuosity of the interstitial streamlines, velocity gradient of the flowing
phase, adsorption onto a stationary phase (as in a chromatograph), and accumulation
near stagnation points or stagnant dead zones can give rise to anomalously high solutal
dispersion, orders of magnitude higher than molecular diffusion, that must somehow

be modeled and included in the homogenized model as a dispersion term Deff
∂2c
∂z2

with the dispersion coefficient Deff . That such a term stipulates that two boundary
conditions be provided for the parabolic homogenized model has also introduced con-
siderable confusion. The classical Danckwerts boundary conditions and many other
inconsistent ones provide one boundary condition at each end of the reactor (Danck-
werts (1953), Choi and Perlmutter (1976), Wehner and Wilhelm (1956)) and have
recently been “justified” by Roberts (1989) using center manifold theory. There are,
however, fundamental difficulties with this parabolic equation and the Danckwerts
boundary conditions. This model introduces infinitely fast diffusive spreading of a
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localized concentration perturbation and upstream diffusive propagation (Hinduja,
Sundaresan, and Jackson (1980), Sundaresan, Anderson, and Aris (1980)). Both phe-
nomena are not observed experimentally as the flow-induced dispersion mechanisms
are hyperbolic in nature (Hiby (1962), Chang (1982)). As a result, the homogenized
parabolic equation and Danckwerts boundary conditions cannot describe the observed
dispersion phenomena in finite length reactors.

Local turbulent dispersion can be estimated using classical homogeneous turbu-
lent mixing theory. Dispersion in periodic as well as random velocity fields has been
reviewed by Majda and Kramer (1999). These authors also present an excellent re-
view of homogenization methods for the convective diffusion equation with periodic
velocity fields.

In many applications such as chromatographs and reactors involving packed beds,
the flow is laminar, and the more important larger scale dispersion effects that occur
over several reactor radii are mostly due to a Taylor–Aris dispersion mechanism (Tay-
lor (1953), Aris (1959), Brenner and Edwards (1993)). This mechanism occurs when a
macroscopic transverse velocity gradient, like Poiseuille flow in a tube or macroscopic
flow nonuniformity in a packed bed, induces longitudinal dispersion as transverse
diffusion lands molecules onto streamlines or flow channels of different velocity. Ad-
sorption onto a stationary solid phase also can trigger this effect as the solid phase
has a velocity (zero) different from the flowing phase. Adsorption-induced Taylor–Aris
dispersion is responsible for the dispersion of chromatograph signals (Balakotaiah and
Chang (1995)). It is also a main problem in biochemical assays on chip-scale labora-
tories and reactors using microfluidics (Culbertson, Jacobson, and Ramsey (1998)).

Several theories have been developed to predict solutal Taylor–Aris dispersion
in packed beds. In the limit of extremely high Peclet number p in an unbounded
medium when diffusion is unimportant in the bulk of the flowing phase, Koch and
Brady used a diffusive boundary layer cutoff to show that Deff scales as p ln p (Koch
and Brady (1985)). Roberts (1989) and Balakotaiah and Chang (1995) used center
manifold theory to show that reaction can affect the dispersion coefficient in a long
reactor whose length is much longer than its transverse dimension (radius) such that
diffusion dominates in the transverse direction.

Another confusion concerning dispersion is whether a homogenized model remains
valid at steady state and whether Deff and its underlying dispersion mechanism are
still in play at steady state. While Taylor’s classical theory (Taylor, 1953), Koch
and Brady’s high-p dispersion mechanism in an unbounded medium, and Roberts’s
and Balakotaiah and Chang’s reactive dispersion theory in a long reactor are clearly
for transient dispersion, it seems physically intuitive that the same transverse gradi-
ent in longitudinal velocity can affect steady-state reactor conversion or performance
(Chang, 1982). In fact, it is common practice to use the homogenized model for both
steady and transient reactors (Westerterp, Dilman, and Kronberg (1995)). Steady
dispersion, however, lacks theoretical justification. An apparent steady dispersion
will be shown here to exist, but its description is fundamentally different from that
of the transient one.

Even more important than solutal dispersion is thermal dispersion, a subject that
is only recently being scrutinized in detail. It is well known in the reaction engineer-
ing literature (Balakotaiah (1996), Subramanian and Balakotaiah (1996)) that reactor
dynamics and steady-state multiplicity are extremely sensitive to thermal dispersion.
Empirical studies and recent analyses have shown that reactor ignition, extinction,
hot spot formation, and thermal runaways of most important (and difficult to control)
reactors for exothermic reactions are also extremely sensitive to thermal dispersion
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(Balakotaiah, Kodra, and Nyugen (1995), Leighton and Chang (1995), and Keith,
Leighton, and Chang (1999)). To compound the problem, thermal dispersion is more
sensitive to packing and flow geometries and is far more difficult to estimate than
solutal dispersion. Two major difficulties are that the thermal penetration depth into
the solid phase is deeper than the solutal one, and that the stationary and mobile
capacitances are more disparate. As a result, interphase dispersion due to discrep-
ancies in the phase-averaged thermal velocities can enhance and even dominate the
intraphase dispersion mechanism in the flowing phase due to transverse flow velocity
gradient. The addition of interphase dispersion, distinct from Taylor’s intraphase dis-
persion, renders the analysis more difficult. Vortmeyer and Schaefer (1974), Leighton
and Chang (1995), and Balakotaiah and Dommeti (1999) obtained interphase disper-
sion coefficients based on lumped models with heat transfer coefficients. Leighton and
Chang (1995) showed that the ignition location and light-off time of a catalytic con-
verter is determined mostly by this thermal dispersion mechanism. Keith, Leighton,
and Chang (1999) used metal inserts to enhance thermal dispersion of a reverse-flow
reactor to prevent thermal runaway. Without including the intraphase dispersion
mechanism due to flow nonuniformity, they found that an optimum void fraction of
intermediate value and with maximum dispersion exists when the heat capacity ratio
Γ is near unity, but none exists for realistic void fractions for disparate capacities.
In fact, for the more common case of disparate capacities, a generic scaling seems
to exist. This would be a significant general result as most reactors have disparate
capacities and complex flow fields. It would be desirable to obtain general dispersion
scalings insensitive to the flow fields. However, the omission of intraphase dispersion
will be shown here to be valid only for disparate capacities. Greatly enhanced disper-
sion still exists near unit Γ and at an optimum flowing-phase fraction, but the actual
dispersion coefficient must include intraphase dispersion and a detailed description of
the macroscopic flow fields.

A general solutal/thermal Taylor–Aris dispersion theory will be formulated here to
clearly delineate the intraphase and interphase contributions. The proper limit when
the former can be omitted and the simpler lumped-phase models can be utilized is
also defined. The theory also shows that dispersion phenomena are better described
in terms of reduced (low dimensional) models that are hyperbolic in the longitudinal
coordinate and time, and with an effective transfer or exchange time constant between
the master (slowly varying) mode and slave (local) modes, in contrast to the tradi-
tional parabolic models with an effective dispersion coefficient. The reduced models
derived based on the present theory eliminate the classical problems of upstream
diffusion and infinite propagation speed associated with the parabolic-type averaged
equations derived in the prior literature. The theory utilizes the Lyapunov–Schmidt
reduction technique of classical bifurcation theory and is based on a perturbation
expansion near zero eigenvalue(s).

2. Packed-bed heat transfer. To illustrate the concept of interphase disper-
sion (due to transfer or exchange between the phases) and some key ideas in our
approach, we first consider a very simple model of a packed bed in which the solid is
stationary and the fluid moves (Figure 1). The classical heat transfer model of this
system ignores the (transverse) gradients within each phase as well as conduction in
the axial direction in each phase. The model is described by the following pair of
hyperbolic equations for the solid and fluid temperatures:

εf (ρcp)f

[
∂Tf
∂t′

+ u0
∂Tf
∂z′

]
= hav(Ts − Tf ),(2.1a)
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Fig. 1. Schematic diagram of a packed-bed reactor in which solid and fluid phases interact.

(1 − εf )(ρcp)s
∂Ts
∂t′

= −hav(Ts − Tf ),(2.1b)

with initial and boundary conditions

Tf = f0(t
′), z′ = 0, t′ > 0,(2.1c)

Tf = T 0
f (z′), t′ = 0, z′ > 0,(2.1d)

Ts = T 0
s (z′), t′ = 0, z′ > 0.(2.1e)

Here, u0 (assumed to be a constant) is the interstitial fluid velocity, εf is the void
fraction of the bed (available for flow), (ρcp)s ((ρcp)f ) is the solid (fluid) heat capacity
per unit volume, h is the interphase heat transfer coefficient, and av is the (interphase)
transfer area per unit bed volume. Assuming that the bed has a length L, we define

z =
z′

L
, t =

u0t
′

L
, Γ =

(ρcp)s
(ρcp)f

, Pe =
(ρcp)fu0

Lhav
,(2.2)

and write (2.1a) and (2.1b) in dimensionless form as

A


 Tf

Ts


 = Pe


 ∂Tf

∂t +
∂Tf

∂z

∂Ts

∂t


 ,(2.3a)

where the matrix operator A is defined by

A =

(
− 1

εf
1
εf

1
Γ(1−εf ) − 1

Γ(1−εf )

)
.(2.3b)

(As shown later, A can be made symmetric by defining an inner product weighted
with respect to the relative capacitances of the phases.) We note that the Peclet

number Pe is the ratio of interphase transfer time (
(ρcp)f
hav

) to the convection time

( L
u0

), Γ is the ratio of solid to fluid heat capacities, and time is nondimensionalized
with respect to the convection time. It is assumed that the Peclet number is small,
or equivalently, that the interphase transfer time is much smaller compared to the
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convection time. The matrix A is singular with the following null eigenvector and
slave eigenvector (with eigenvalue − 1

εf
− 1

Γ(1−εf ) ):

φ0 =

(
1
1

)
, φ1 =

(
Γ(1 − εf )

−εf
)
.(2.4)

Writing (
Tf
Ts

)
=

(
1 Γ(1 − εf )
1 −εf

)(
Tm
Td

)
(2.5a)

or (
Tm
Td

)
=

(
εf

[εf+Γ(1−εf )]
Γ(1−εf )

[εf+Γ(1−εf )]
1

[εf+Γ(1−εf )]
−1

[εf+Γ(1−εf )]

)(
Tf
Ts

)
,(2.5b)

we observe that Tm is the capacitance-weighted (average) temperature, while Td is the
local temperature difference. In terms of these variables, the model may be written
as

[εf + Γ(1 − εf )]∂Tm
∂t

+ εf
∂Tm
∂z

= −εf (1 − εf )Γ∂Td
∂z
,(2.6a)

Td = − Peεf (1 − εf )Γ
[εf + Γ(1 − εf )]2

[
∂Tm
∂z

+ εf
∂Td
∂t

+ Γ(1 − εf )
(
∂Td
∂t

+
∂Td
∂z

)]
.(2.6b)

For Pe = 0, the solid and fluid temperatures are in equilibrium, and the average
temperature evolves according to (2.6a) with its right-hand side set to zero. For small
values of the Peclet number, we have from (2.6b)

Td = − Peεf (1 − εf )Γ
[εf + Γ(1 − εf )]2

(
∂Tm
∂z

)
+O(Pe2).(2.7)

Thus, the temperature difference Td is slaved to the average temperature. Substituting
(2.7) into (2.6a) and writing the resulting averaged equation in dimensional form, we
obtain

∂Tm
∂t′

+ 〈u〉 ∂Tm
∂z′

= αeff
∂2Tm
∂z′2

,(2.8a)

〈u〉 = u0
εf

[εf + Γ(1 − εf )] , αeff =
u2

0(ρcp)f Γ2 ε2f (1 − εf )2
hav[εf + Γ(1 − εf )]3 .(2.8b)

Here, 〈u〉 and αeff are the capacitance-weighted velocity and effective thermal diffu-
sivity of the bed, respectively. From the above derivation, it is clear that the reduced

model is valid only when t′ � (ρcp)f
hav

and z′ � u0
(ρcp)f
hav

, i.e., when there is a short
transient that escapes the effective equation. During this transient, the two phases
equilibrate, and the appropriate initial condition for Tm is simply the capacitance-
weighted average of the initial conditions of Ts and Tf ,

Tm(t′ = 0) =
εf Tf (t

′ = 0) + Γ(1 − εf )Ts(t′ = 0)

[εf + Γ(1 − εf )] .(2.8c)
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This is valid even though t′ = 0 on the two sides of (2.8c) corresponds to slightly
different instants in time. The two boundary conditions for (2.8a) are more problem-
atic, as the original equation only offers one boundary condition at z′ = 0. Thus, one
obvious one (from (2.1b) and (2.1c)) is that

Tm(z′ = 0, t′) = f0(t
′) +

(ρcp)s Γ(1 − εf )2
hav[εf + Γ(1 − εf )]

(
∂f0(t

′)
∂t′

)
.(2.8d)

In the engineering and the Taylor dispersion theory literature (Danckwerts (1953),
Vortmeyer and Schaeffer (1974), Roberts (1992)), the other boundary condition is
imposed at the exit z′ = L, and the often-used exit (Danckwerts) boundary condition
is

∂Tm
∂z′

(z′ = L, t′) = 0.(2.8e)

This is clearly not acceptable since the original problem does not possess any boundary
condition at the exit. There is also a more fundamental problem associated with the
form of the reduced model given by (2.8a). In this form, the reduced model is a
parabolic equation, and imposing an artificial exit boundary condition leads to infinite
propagation speed for inlet signals. Again, this is certainly not true for the original
equations (2.1a) and (2.1b), which may be combined to obtain a single hyperbolic
equation for Tf , Ts, or any linear combination of these. For example, without any
assumptions on the length or time scales, it is easily seen that the temperature Ti
(i = f, s, or m) satisfies the hyperbolic equation

∂Ti
∂t′

+ 〈u〉 ∂Ti
∂z′

+
(ρcp)s εf (1 − εf )
hav[εf + Γ(1 − εf )]

∂

∂t′

[
∂Ti
∂t′

+ u0
∂Ti
∂z′

]
= 0.(2.9)

For i = m, the initial and boundary conditions for (2.9) are the same as those defined
by (2.8c) and (2.8d), respectively. Thus, the parabolic form of the reduced equation
given by (2.8a) is not preferable as it leads to nonphysical phenomena such as upstream
diffusion and infinite speed of propagation. This is certainly not true for the initial
model, (2.9), which predicts finite propagation speed for all inlet and initial signals
and no upstream diffusion. (This can be seen more clearly by comparing the analytical
solutions of the exact and reduced equations for a unit step or impulse inputs. These
analytical solutions can be expressed in terms of modified Bessel functions.) The origin
of the second spatial derivative term in the reduced equation and the interpretation of
the coefficient αeff as an effective (Taylor) diffusivity can be traced back to the paper
of Taylor on shear dispersion (Taylor (1953)). We present here an alternate form of
the reduced equation (and interpretation of the local coefficients) that eliminates the
above-mentioned inconsistencies of the classical Taylor dispersion theory.

We note that, when the interphase transfer time is small, the leading order ap-
proximation

∂Tm
∂t′

= −〈u〉 ∂Tm
∂z′

+O

(
(ρcp)f
hav

)
(2.10)

may be used to write the reduced equation in three different forms: as a parabolic
equation in z′ (i.e., (2.8a)), a parabolic equation in t′, or a hyperbolic equation in z′

and t′. We also note that the local (2.7) written in terms of either ∂Tm

∂t′ or ∂Tm

∂z′ defines

a characteristic time (that is proportional to
(ρcp)f
hav

) for heat exchange between the
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slowly varying mode Tm and the slave (local) mode Td. Thus, we write the averaged
model as

∂Tm
∂t′

+ 〈u〉 ∂Tm
∂z′

+ 〈u〉 tH ∂
2Tm
∂z′∂t′

= 0,(2.11)

where tH is the characteristic local exchange time (between the two modes) defined
by

tH =
(ρcp)s (1 − εf )2Γ
hav[εf + Γ(1 − εf )] .(2.12)

We also define a local length scale as �H = 〈u〉 tH and note that the reduced model
is valid for z′ � �H and t′ � tH . In this form, the reduced model defines both the
local length and time scales (their ratio being 〈u〉), and the local effective diffusivity

is given by αeff =
�2H
tH

= 〈u〉2 tH .
This hyperbolic form of the reduced equation is favored for the following reasons:

(i) Since the initial model is hyperbolic, the reduced model should also be hyperbolic;
(ii) writing the reduced model as a parabolic equation either in z′ or t′ requires an
artificial boundary or initial condition; (iii) the hyperbolic (2.11) defines a character-
istic initial value problem for Tm and hence only Tm needs to be specified along the
characteristic curves z′ = constant and t′ = constant. (In contrast, for the general
Cauchy problem, both the function and the normal derivative should be specified
along a noncharacteristic curve.) The initial and boundary conditions for (2.11) are
the same as those defined by (2.8c) and (2.8d), respectively. Now, no artificial bound-
ary or initial conditions are required, and the reduced model does not lead to any
nonphysical phenomena. This hyperbolic form of the reduced model also replaces the
concept of an effective (Taylor) diffusivity by that of an effective local time or length
scale.

The perturbation expansion can be carried out to higher orders in Pe, and the
reduced model (with appropriate initial and boundary conditions) can be expressed
in hyperbolic form, but we do not pursue this calculation here. The conditions under
which the perturbation expansion converges may also be obtained (for this specific
example) in terms of the spatial or time scales appearing in the initial and boundary
conditions. We consider it only briefly here and refer to Balakotaiah and Dommeti
(1999) for more details.

We note that the local equation (2.6b) may be written as[
1 +

Pe εf (1 − εf )Γ
[εf + Γ(1 − εf )]

(
∂

∂t

)]
Td =

Pe (1 − εf )Γ
[εf + Γ(1 − εf )]

(
∂Tm
∂t

)
.(2.13)

Thus, if we consider the special case in which only the inlet conditions are varied, then
by taking a Laplace transform, we can reduce the local equation to a linear algebraic
equation in terms of the forcing frequency. This equation has a convergent power
series expansion in Pe, provided the dimensionless forcing frequency (ω) satisfies the
criterion

Pe εf (1 − εf )Γω
[εf + Γ(1 − εf )] < 1.(2.14)

In dimensional terms, (2.14) may be written as

ω′tH <
(1 − εf )Γ

εf
.(2.15)
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Fig. 2. Schematic diagram illustrating the classical Taylor solutal dispersion in laminar flow
in a circular tube.

This convergence criterion has a simple physical meaning for the special case in which
the volumetric heat capacities of the phases are equal (when the right-hand side of
(2.15) is equal to unity): the reduced model exists only if the forcing frequency is less
than that defined by the characteristic local exchange time (ω′ < 1

tH
).

3. Taylor’s solutal dispersion theory revisited. In this section, we consider
the classical Taylor problem that illustrates intraphase dispersion due to transverse
velocity gradients and show that the inconsistencies associated with the parabolic
form of the reduced model can be removed by expressing the reduced model in a
hyperbolic form. Our approach also shows the similarity between the inter- and
intraphase dispersion and the superiority of the hyperbolic models for describing these
phenomena.

The dispersion of a nonreactive solute in a circular tube of constant cross section
(see Figure 2 for notation) in which the flow is laminar is described by the convective-
diffusion equation

∂C

∂t′
+ 2 〈u〉

(
1 − r2

R2

)
∂C

∂z′
=
D

r

∂

∂r

(
r
∂C

∂r

)
, 0 < r < R, z′ > 0, t′ > 0,(3.1a)

∂C

∂r
= 0@r = 0, R,(3.1b)

I.C : C(z′, r, 0) = f(z′, r),(3.1c)

B.C : C(0, r, t′) = g(r, t′).(3.1d)

In writing (3.1a), it is assumed that longitudinal diffusion can be neglected (this
assumption is relaxed later on). Here, 〈u〉 is the average velocity in the pipe, R is the
radius, and D is the diffusivity of the species. Defining dimensionless variables

z =
z′

L
, t =

〈u〉 t′
L

, ξ =
r

R
, Pe =

R2 〈u〉
LD

,(3.2)

we can write (3.1a) and (3.1b) as

£C ≡ 1

ξ

∂

∂ξ

(
ξ
∂C

∂ξ

)
= Pe

[
∂C

∂t
+ 2

(
1 − ξ2) ∂C

∂z

]
,

∂C

∂ξ
= 0@ξ = 0, 1.(3.3)
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We note that the transverse operator £ is symmetric with respect to the inner product

(v, w) =

∫ 1

0

2ξv(ξ)w(ξ)dξ.

It has a zero eigenvalue with normalized eigenfunction φ0 = 1. We define the mixing-
cup (velocity weighted) and spatial average concentrations by

Cm =

∫ 1

0

4ξ(1 − ξ2)C(ξ, z, t)dξ,(3.4a)

〈C〉 =

∫ 1

0

2ξC(ξ, z, t)dξ.(3.4b)

Transverse averaging of (3.3) gives

∂ 〈C〉
∂t

+
∂Cm

∂z
= 0.(3.5)

We note that when Pe = 0, 〈C〉 = Cm, and substitution of this into (3.5) gives the
leading order evolution equation for the averaged concentration. Writing

C(ξ, z, t) = 〈C〉 (z, t) +W (ξ, z, t), W ∈ ker £,(3.6)

we can solve for the slave variable W (ξ, z, t) in terms of 〈C〉 (z, t) using a perturbation
expansion in Pe (and the Fredholm alternative):

£W − Pe
[
∂W

∂t
+ 2

(
1 − ξ2) ∂W

∂z

]
= Pe

[
∂ 〈C〉
∂t

+ 2
(
1 − ξ2) ∂ 〈C〉

∂z

]
,(3.7a)

∂W

∂ξ
= 0@ξ = 0, 1.(3.7b)

To leading order, we have

W (ξ, z, t) = Pe
∂ 〈C〉
∂t

[
1

12
− ξ2

4
+
ξ4

8

]
+O(Pe2).(3.8)

Substitution of this into (3.6) and transverse averaging (after multiplying by the
velocity profile) gives the local equation relating Cm and 〈C〉:

Cm − 〈C〉 =
Pe

48

∂ 〈C〉
∂t

+O(Pe2) =
Pe

48

∂Cm

∂t
+O(Pe2).(3.9)

As in the packed-bed problem, this local equation (when written in dimensional form)
defines a characteristic transfer time between the slowly evolving mode Cm(or 〈C〉)
and the slave mode Cm−〈C〉. Equations (3.5) and (3.9) complete the reduced model
to leading order. In this form, the reduced model for intraphase diffusion is similar
to the two-mode packed-bed model of interphase diffusion. We can combine the two
equations to obtain a single equation for either Cm or 〈C〉. Since the mixing-cup con-
centration (which is often measured in experiments) is more relevant in applications,
the reduced model in terms of Cm in dimensional form is given by

∂Cm

∂t′
+ 〈u〉 ∂Cm

∂z′
+ 〈u〉 tD ∂

2Cm

∂z′∂t′
= 0, t′ � tD, z

′ � �D,(3.10)
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where the local diffusion or mixing time is defined by

tD =
R2

48D
.(3.11)

The corresponding length scale and local diffusivity are given by �D = 〈u〉 tD, Deff =

〈u〉2 tD. As noted earlier, in the Taylor dispersion literature, (3.10) is written as a
parabolic equation with an effective dispersion coefficient Deff , which requires an
artificial boundary condition at the exit of the tube (Roberts (1992)). Below we
present a solution of (3.10) for general inlet and initial conditions and show that it
can describe dispersion for long times as well as the parabolic model. However, unlike
the classical parabolic equation over an infinite domain, (3.10) can accommodate an
inlet boundary condition. Once again, since (3.10) defines a characteristic initial value
problem, to complete the model, we need to specify Cm only along the characteristic
curves z′ = 0 and t′ = 0. Thus, the initial and boundary conditions for the reduced
model are obtained by taking the mixing-cup averages of (13.c) and (13.d):

Cm(z′, t′ = 0) =

∫ 1

0

4ξ(1 − ξ2) f(z′, Rξ)dξ ≡ fm(z′),(3.12a)

Cm(z′ = 0, t′) =

∫ 1

0

4ξ(1 − ξ2) g(Rξ, t′)dξ ≡ gm(t′).(3.12b)

Equations (3.10) and (3.12) complete the hyperbolic model to order Pe. As in the
packed-bed example, the perturbation expansion can be carried out to higher orders,
and it can be shown that it converges, provided tDω

′
t < 0.858 and �Dω

′
z < 0.288, where

ω′
t(ω

′
z) is the temporal (spatial) frequency contained in the inlet or initial conditions.

(For details, see Chakraborty and Balakotaiah (2002), Balakotaiah and Chang (1995),
and Mercer and Roberts (1990).)

The above analysis can be extended to the general case in which axial diffusion
is included in (13.a). In this case, the reduced model may be shown to be

∂ 〈C〉
∂t′

+ 〈u〉 ∂Cm

∂z′
= D

∂2 〈C〉
∂z′2

,(3.13a)

〈C〉 − Cm = − tD
∂ 〈C〉
∂t′

.(3.13b)

We can combine these equations to obtain a single hyperbolic equation for 〈C〉:

∂ 〈C〉
∂t′

+ 〈u〉 ∂ 〈C〉
∂z′

+ 〈u〉 tD ∂
2 〈C〉
∂z′∂t′

= D
∂2 〈C〉
∂z′2

.(3.14)

(We note that Cm or any other weighted average concentration also satisfies the same
equation (3.14). This is due to the fact that the original conservation equation is

linear in the concentration.) We note that when D � 〈u〉2 tD, or equivalently, the

radial Peclet number p = 〈u〉 R
D � 6.93, axial diffusion can be neglected. (Note that

the perturbation Peclet number Pe, which is equal to p times the aspect ratio
(
R
L

)
,

can be small even when p� 6.93, provided that the aspect ratio is sufficiently small.
The conditions p � 6.93 and Pe � 1 are usually satisfied for well-designed reactors
or chromatographic columns.)
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3.1. Solution of the hyperbolic model. In this section, we present the solu-
tion of the hyperbolic model defined by (3.10) and (3.12) and compare these solutions
to those of the classical parabolic model. We use the local time and length scales to
nondimensionalize the variables and write the hyperbolic model in the following form:

∂Cm

∂t
+
∂Cm

∂z
+
∂2Cm

∂z∂t
= 0, t� 1, z � 1,(3.15a)

Cm(z, t = 0) = f(z),(3.15b)

Cm(z = 0, t) = g(t).(3.15c)

(With this scaling, the reciprocal of the nondimensional time is the Peclet number.)
The substitution

Cm = W exp(−z − t)(3.16a)

reduces (3.15a) to the canonical form

∂2W

∂z∂t
−W = 0.(3.16b)

The fundamental solution (Riemann function) of (3.16b) is given by (see Garabedian
(1964))

Wg(z, t, ξ, η) = I0

(
2
√

(z − ξ)(t− η)
)
,(3.16c)

where I0 is the modified Bessel function of order zero. Using this fundamental solution,
we may express the solution of (3.15) as

Cm(z, t) = e−z−t

{
c0I0(2

√
zt) +

∫ z

0

dF (ξ)

dξ
I0

(
2
√
t(z − ξ)

)
dξ

+

∫ t

0

dG(η)

dη
I0

(
2
√
z(t− η)

)
dη)

}
,

(3.17a)

where

F (z) = ezf(z),(3.17b)

G(t) = etg(t),(3.17c)

c0 =
f(0) + g(0)

2
.(3.17d)

Below, we use this analytical solution to show that the solution of the hyperbolic
model, (3.15a)–(3.15c), remains positive for arbitrary but positive inlet and initial
conditions. We also compare the solutions of the hyperbolic model with those of the
parabolic model for some special cases.
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3.2. Positivity of the solutions to the hyperbolic model. We note that
(3.15) as well as the general solution given by (3.17) have the permutational symmetry
in z and t; i.e., they are invariant to the transformation (z, t, f) → (t, z, g). Thus,
to prove the positivity of the solution of (3.15), it is sufficient to consider the case of
g(t) = 0 and f(z) 
= 0. Now, for the special case of f(z) = δ(z− z0) and g(t) = 0, the
general solution given by (3.17) simplifies to

Cmg(z, z0, t) =

{
I1

(
2
√
t(z − z0)

)
ez0−z−t

√
t

z−z0
, z > z0,

0, z < z0.
(3.18)

Since this Green’s function is positive, the solution given by (3.17) remains positive
for all positive inlet and initial conditions. In fact, an alternate form of the analytical
solution to (3.15) makes this obvious:

Cm(z, t) =




∫ z
0
I1

(
2
√
t(z − z0)

)
ez0−z−t

√
t

z−z0
f(z0)dz0

+
∫ t
0
I1

(
2
√
z(t− t0)

)
et0−t−z

√
z

t−t0
g(t0)dt0, z > 0, t > 0,

0, z < 0 or t < 0.
(3.19)

3.3. Comparison of the dispersion curves for parabolic and hyperbolic
models. As stated earlier, it is of interest to determine how the solution of the
hyperbolic model differs from that of the parabolic models used in the literature to
describe solutal dispersion in nonreacting systems. In the engineering literature, the
solution of the averaged model to a unit impulse (Delta function) input is known as
the dispersion curve. For the parabolic model, this is the standard Gaussian curve
given by

Ep(z, t) =
1√
4πt

exp

{
− (z − t)2

4t

}
.(3.20)

Thus, the parabolic model predicts a peak in the dispersion curve at z = t and a
variance that increases linearly with time. The dispersion curve for the hyperbolic
model is obtained by taking z0 = 0 in (3.18):

Eh(z, t) =

{
e−z−t

√
t
z I1(2

√
tz), z > 0,

0, z < 0.
(3.21)

Examination of this curve shows that it has a peak at z = 0 for t ≤ 2. This is
consistent with physical observation that, for short times, transverse diffusion has not
acted on the initial delta function input and hence the peak should be at the injection
point. For t� 1, (3.21) may be written as

Eh(z, t) ≈
(
t

z

) 3
4 1√

4πt
exp

{
− (z − t)2

(
√
t+

√
z)2

}
.(3.22)

Thus, the dispersion curves predicted by the two models are close to each other near
t = z (and t � 1), but the hyperbolic model predicts an asymmetric curve with a
slightly higher peak at z = t − 3

2 . In addition, as noted earlier, the parabolic model
predicts upstream diffusion (since Ep(z, t) is not zero for z < 0) and infinite propa-
gation speed. Neither of these nonphysical phenomena is present in the hyperbolic
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Fig. 3. Comparison of the dispersion curves predicted by the parabolic and hyperbolic models
at t = 5 and 20. The symmetric curve with peak at t = z is for the parabolic model, while the
asymmetric curve with peak at z ≈ t− 3

2
is for the hyperbolic model.

model. Figure 3 compares the two solutions at two different times, t = 5 and t = 20.
While the two curves are extraordinarily close for large times, they intersect three
times (for all t > 4.84), and the dispersion curve predicted by the hyperbolic model
has a nonzero skewness at all finite times. We note that this skewness can also be
predicted by the parabolic-type models as done by Chatwin (1970), but higher order

terms (like ∂3Cm

∂z3 ) have to be included in the perturbation expansion. The hyperbolic
model captures the asymmetry at the lowest order.

4. General thermal/solutal dispersion theory. We now extend the theory
to the general case of a multiphase system in which the individual phases may be
stationary or moving and the capacitance varies with transverse coordinates; i.e.,
dispersion is due to combined inter- and intraphase mechanisms. We assume a long
reactor with weak longitudinal variation of temperature or concentration (due to
the small aspect ratio) and strong longitudinal (laminar) flow w(x, y). We retain
only transverse molecular solutal or thermal diffusion in x and y. Conversely, only
longitudinal convection is appreciable to balance transverse diffusion. The general
governing equation for the reactor temperature or concentration in dimensionless form
is then

F (θ, Pe) ≡ 1

ρcp
∇ · k∇θ − Pe

(
∂θ

∂t
+ w

∂θ

∂z

)
= 0,(4.1)
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where the ∇ operator is only for the transverse direction ∇ = ( ∂
∂x ,

∂
∂y , 0)T and both

the dimensionless conductivity k and the heat or solutal capacity ρcp are functions
of the transverse coordinates x and y within the transverse cross section Ω. The
Peclet number in (4.1) is again defined as the ratio of the transverse diffusion or local

exchange time (R
2

α0
) to the convection time ( L

u0
). (We note here that the thermal con-

ductivity, heat capacitance per unit volume, and the velocity are nondimensionalized
using some reference values k0, (ρcp)0, and u0, which can be chosen conveniently for

each application. Here, Pe = R2u0

Lα0
, where α0 = k0

(ρcp)0
.) When ρcp = 1 is uniform

throughout Ω, the transport problem (4.1) reduces to mass transport with uniform
capacitance. However, the solutal diffusivity can vary from phase to phase and is
hence a function of (x, y). Similarly, the transport coefficients w and k do not have
to be constant within each phase but can vary continuously with respect to (x, y).

Equation (4.1) must be solved in the transverse direction with continuity in θ and
k ∂θ
∂n at the phase boundaries. We shall also impose a no-flux boundary condition at

the transverse reactor boundary ∂Ω,

∂θ

∂n

∣∣∣∣
∂Ω

= 0.(4.2)

It is then clear that, at Pe = 0, a particular solution to (4.1) is θ = 〈θ〉, the
capacitance-weighted transverse average of θ, independent of the transverse coor-
dinates x and y. We then seek correction to 〈θ〉 for small Pe. To leading order, one
obtains the linear operator in Ω,

DθF (〈θ〉 , 0) · v =
1

ρcp
∇ · k∇v ≡ £v,(4.3)

with Neumann boundary conditions on the outer boundary ∂Ω, ∂v
∂n |∂Ω = 0. This

transverse diffusion operator contains a transverse-dependent conductivity k and ca-
pacitance ρcp that change from phase to phase. The operator is self-adjoint with
respect to the inner product

[u, v] =
1

Ωcp

∫
Ω

ρcp u v dΩ,(4.4a)

Ωcp =

∫
Ω

ρcp dΩ.(4.4b)

It has a zero eigenvalue with a constant null eigenfunction φ0, which can be chosen
as unity. The other eigenfunctions φn(x, y) all have zero integral (transverse average)
from a simple application of divergence theorem to £φn = −λnφn with the Neumann
boundary condition to ∂Ω:

[φn, φ0] = 〈φn〉 =
1

Ωcp

∫
Ω

ρcpφndΩ = 0.(4.5)

(We point out that (4.5) defines the capacitance-weighted transverse average of any
function. We also define 〈ρcp〉 =Ωcp/ |Ω|.)

We expand θ in terms of {φn}∞n=0,

θ = 〈θ〉 + θ′(x, y, z, t),(4.6)

where 〈θ〉 represents the null eigenfunction φ0 component without (x, y)-dependence,
while θ′ ⊥ ker£ represents the complement spanned by the other eigenfunctions.
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Since £ is self-adjoint with respect to the Hilbert inner product and θ′ ⊥ ker£, we
have

〈θ′〉 = 0.(4.7)

In the terminology of bifurcation theory, the equation satisfied by 〈θ〉 is the so-called
branching equation at a simple zero eigenvalue. (In the engineering literature, this
is often referred to as the homogenized equation, reduced model, averaged equation,
pseudohomogeneous model, etc.) This reduced equation can be obtained by applying
the implicit function theorem to eliminate θ′ from the equation EF (〈θ〉+ θ′, Pe) = 0.
(Here, E is the projection operator onto range £.) This Lyapunov–Schmidt reduction
can be done by expanding θ′ in terms of the small parameter Pe and solving a linear
equation at each order by using the Fredholm alternative. Writing

θ′ = Peθ1 + Pe2θ2 + · · · ,(4.8)

the leading order equation is given by

£θ1 −
(
∂ 〈θ〉
∂t

+ w
∂ 〈θ〉
∂z

)
= 0.(4.9)

Before we solve for θ′ in terms of 〈θ〉 to obtain the reduced model, we invoke a unique
relationship between the capacitance-weighted average 〈θ〉 and the mixing-cup average
defined by

θm =
1

Ωcp

∫
Ω

ρcp w θ dΩ =
[wθ, φ0]

[w, φ0]
=

〈wθ〉
〈w〉 ,(4.10a)

where 〈w〉 is the capacitance-weighted average dimensionless velocity, i.e.,

〈w〉 =
1

Ωcp

∫
Ω

ρcp w dΩ.(4.10b)

We note that, only in the degenerate case in which w is uniform over Ω, θm = 〈θ〉.
In all other cases, θm 
= 〈θ〉. Integrating (4.1) over the transverse cross-section Ω and
invoking the Neumann condition (4.2), one obtains

∂ 〈θ〉
∂t

+ 〈w〉 ∂θm
∂z

= 0.(4.11)

This relationship is exact and is valid for all orders in Pe. A second relation between
〈θ〉 and θm may be obtained by multiplying (4.6) by w and taking the inner product
with the null eigenfunction φ0:

θm = 〈θ〉 + Pe
[wθ1, φ0]

〈w〉 +O(Pe2).(4.12)

Thus, to leading order, the mixing-cup and capacitance-weighted average tempera-
tures are equal, and the evolution equation (4.11) for 〈θ〉 reduces to

∂ 〈θ〉
∂t

+ 〈w〉 ∂ 〈θ〉
∂z

+O(Pe) = 0.(4.13)



1246 VEMURI BALAKOTAIAH AND HSUEH-CHIA CHANG

To obtain the evolution equation to order Pe, we insert (4.13) into (4.9) and
define η as

θ1 ∼ η
∂ 〈θ〉
∂z

(4.14)

to reduce (4.9) to the following convenient form:

£η = w − 〈w〉 ,(4.15a)

with no-flux condition at ∂Ω

∂η

∂n

∣∣∣∣
∂Ω

= 0(4.15b)

and the usual continuity of η and k dηdn at the phase boundaries within Ω. Substitution
of (4.14) into (4.11) and (4.12) gives the reduced model

∂θm
∂t

+ 〈w〉 ∂θm
∂z

+ PeΛ
∂2θm
∂z∂t

= 0,(4.16)

where the numerical coefficient Λ is given by

Λ = − [wη, φ0]

〈w〉 = −〈wη〉
〈w〉 .(4.17)

In dimensional form, (4.16) becomes

∂θm
∂t′

+ 〈u〉 ∂θm
∂z

+ �H
∂2θm
∂z′∂t′

= 0,(4.18)

where 〈u〉 is the capacitance-weighted average velocity and the effective local length
scale �H is defined by

�H = Λ
R2u0

α0
.(4.19)

The corresponding time scale and the dimensional effective dispersion coefficient are

given by tH = �H
〈u〉 and αeff =

�2H
tH

= Λ R2u0〈u〉
α0

, respectively. Again, we note that

(4.18) is valid only for t′ � tH and z′ � �H . Dispersion can still occur for 0 < t′ < tH
or 0 < z′ < �H or even when w is uniform in Ω. However, in these higher order cases,
the expansion must be carried to higher orders in Pe so that the averaged model can
capture this early dispersion. Similarly, as pointed out by Mercer and Roberts (1990)
and Young and Jones (1991), early dispersion effects due to point sources or sinks
can be captured at order Pe2 and higher. We shall not discuss these higher order
special cases here as they are not very common in reactors and are also specific to
each problem.

The initial and boundary conditions for the general equation (4.18) may be derived
in the same manner as for the two specific examples illustrated earlier. We now
consider the local equation and various special cases of thermal and solutal dispersion.
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4.1. The local equation. As noted above, the local equation (4.15) must be
solved before we can determine the numerical coefficient Λ and hence the effective
local length or time scales. It is clear that the inhomogeneous term on the right-hand
side of (4.15a) satisfies the solvability condition for the singular operator. Also, since
η ⊥ ker £,

〈η〉 = 0,(4.20)

which can be used to solve for η uniquely.
Multiplying (4.15a) by η, taking the inner product with the null eigenfunction,

and using (4.20), one obtains

Λ = −[ηw, φ0]
= −[η£η, φ0]
= − 1

Ωcp

∫
Ω
η∇ · k∇η dΩ.

(4.21)

Using (4.15b) and the divergence theorem (integration by parts), (4.21) then yields

Λ =
1

Ωcp

∫
Ω

k∇η · ∇η dΩ,(4.22)

which is always positive. This quadratic form for Λ is more convenient for some of
our derivations and could possibly be used in a variational numerical scheme for η.

In the case of single-phase thermal transport or multiphase solutal transport when
ρcp is uniform throughout Ω, (4.22) simplifies to

Λ =
1

|Ω|
∫

Ω

α∇η · ∇η dΩ,(4.23)

where α is the dimensionless local diffusivity. If, in addition, α is independent of
the transverse coordinates (x, y) and is normalized to unity, then Λ depends on only
the velocity profile and the geometry of Ω. This clearly shows that, for the single-
phase limit and for uniform-capacitance solutal transport, dispersion occurs when a
transverse gradient in the longitudinal velocity exists.

The interphase dispersion seen in the packed-bed example arises from the different
thermal or capacitance-weighted velocities of each phase and hence contributes to
dispersion even if the longitudinal velocity wj is gradientless within each phase j.
This limit is particularly interesting, as the local equation has the following algebraic
form for each phase Ωj in Ω: ∑

j

Aij ηj = (wi − 〈w〉),(4.24a)

where A is the matrix defining the coupling between the phases. The numerical
coefficient Λ takes the simple and explicit form

Λ =

∑
j wjηj (ρcp)j εj∑

j (ρcp)j εj
,(4.24b)

where εi is the volume fraction of phase i. For the two-phase example of section 2,
with A defined by (2.3b) and w1 = 1, w2 = 0, we have

η =
εf (1 − εf )Γ

[εf + (1 − εf )Γ]
2

( −(1 − εf )Γ
εf

)
,

Λ =
−w1η1εf

[εf + (1 − εf )Γ]
=

ε2f (1 − εf )2Γ2

[εf + (1 − εf )Γ]
3 .(4.25)
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This interphase dispersion mechanism arises as solutal or heat “molecules” are trans-
ported to different phases through transverse thermal random walks. Once arrived,
molecules at each phase are caused to propagate longitudinally by different thermal
or capacitance-weighted velocities. The proportion of molecules in each phase is de-
termined by the local diffusivity and the size of Ωi. Hence, the capacitance-weighted
longitudinal phase thermal velocities (as defined by (4.24)) simply yield the thermal
dispersion.

4.2. Thermal/solutal dispersion with diffusion into the wall. We next
examine thermal and solutal dispersion in a cylindrical pipe of radius R with a solid
wall of thickness λR (λ > 0); see Figure 2. The diffusivity in the wall (αs) is assumed
to be distinct from that in the fluid phase. Here, we take the pipe radius (R), the
average fluid velocity (〈uf 〉), the fluid heat capacitance (ρcp)f , and fluid thermal

diffusivity (αf ) to nondimensionalize the variables. The velocity field is now

w(ξ) =




2
[
1 − ξ2] in Ωf , 0 < ξ < 1,

0 in Ωs, 1 < ξ < 1 + λ,
(4.26)

with

〈w〉 =
εf

εf + Γ(1 − εf ) ,

εf =
1

(1 + λ)2
.

The local equation is now

1

ξ

∂

∂ξ

(
ξ
∂ηf
∂ξ

)
= w − 〈w〉 in Ωf ,(4.27a)

1

µ

1

ξ

∂

∂ξ

(
ξ
∂ηs
∂ξ

)
= w − 〈w〉 in Ωs,(4.27b)

with boundary conditions

∂ηf
∂ξ

= 0, ξ = 0,(4.28a)

∂ηs
∂ξ

= 0, ξ = (1 + λ),(4.28b)

ηf = ηs, ξ = 1,(4.28c)

Γ

µ

∂ηs
∂ξ

=
∂ηf
∂ξ
, ξ = 1,(4.28d)

where µ = αf/αs is the ratio between the diffusivities.
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Some algebraic manipulation immediately yields

ηf =

{
1

2
ξ2 − 1

8
ξ4 − 〈w〉

4
ξ2 + sf

}
,(4.29a)

sf = − 5

24
εf − 3

8
(1 − εf ) − 〈w〉

{
(µ− 1)

(1 − εf )
4

− εf
8

+
µ

2
f(εf )

}
,(4.29b)

f(εf ) =
ε2f + 2εf − 3 − 2lnεf

4εf
,(4.29c)

ηs =
(µ

2

)
〈w〉

{
(1 + λ)2 ln (ξ) − 1

2
ξ2 + ss

}
,(4.29d)

ss =
1

2
+
sf + 3

8 − 1
4 〈w〉

µ
2 〈w〉 .(4.29e)

Substituting into (4.17), we obtain

Λ =
β1εf

εf + Γ(1 − εf ) +
(Γ − 1)β2ε

2
f (1 − εf )

[εf + Γ(1 − εf )]2 ,(4.30)

β1 =
11 − 8εf

48
+

(
εf

εf + Γ(1 − εf )
)(

6εf − 8

48

)

+
µ

4

(
εf

εf + Γ(1 − εf )
)

(2f(εf ) + 1 − εf ),
(4.31a)

β2 =
1

6
+

−εf (1 − εf ) + µ(4εf − ε2f − 3 − 2lnεf )

8(1 − εf )(εf + Γ(1 − εf )) .(4.31b)

Several limits are of interest. As εf → 1, we obtain Taylor’s result Λ = 1
48 for solutal

dispersion. In the limit of Γ(1− εf ) � εf , for intermediate εf values away from unity
we obtain

Λ =
αeff
p2αf

=
11

48

εf
Γ(1 − εf ) ,(4.32)

where p = 〈uf 〉R/αf is the transverse Peclet number. The coefficient 11/48 is also
consistent with Leighton and Chang (1995), using the lumped-phase approach. (Note
that 48

11 is the asymptotic Nusselt number, Nu∞, for laminar flow in a tube with a
constant flux boundary condition on the tube wall.) In Figure 4 we plot the product
of Γ and the normalized dispersion coefficient Λ given by (4.30) for Γ values of 100 and
1000, with µ varying from 10−1 to 102. It is obvious that all of them are independent of
µ and collapse nicely into the specific scaling of (4.32) except near εf = 1, where (4.32)
is singular. Thus, the high-Γ limit yields a scaling that is insensitive to geometric and



1250 VEMURI BALAKOTAIAH AND HSUEH-CHIA CHANG

Fig. 4. High-Γ dispersion for various values of diffusivity (µ) and capacitance ratio (Γ). The
curves for various µ and Γ collapse nicely into the µ-independent limit of (4.32).

flow details and is independent of αs. The dispersion is small in this limit at O(Γ−1)
and increases sharply with εf .

For εf � 1 and Γ of unit order, one can deduce from (4.30) that the flowfield-
sensitive intraphase term with the β1 coefficient dominates over the other interphase
term. A simple calculation then yields

αeff
p2αf

=
( µ

4Γ2

)
εf ln

(
1

εf

)
,(4.33)

with a different Γ scaling from (4.32).
For εf close to unity, the interphase term becomes equally important as the in-

traphase term. The high effective dispersion near Γ(1− εf ) ∼ εf is verified in Table 1,
where we have used (4.30) to determine the optimum εf for various µ and Γ values.
Figure 5 shows a plot of the maximum value of the normalized dispersion coefficient
that can be obtained for the optimum volume fraction εf of the low capacitance phase.
All these curves approach an asymptotic value for Γ > 10. This asymptote may be
found from (4.30) in the limit of Γ � 1 and δ = Γ(1 − εf ) finite. This simplification
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Table 1
Optimum fraction of the low capacitance phase at which the dispersion coefficient is maximum.

Γ εmax

µ = 0.1 µ = 1 µ = 10
1 0.45 0.31 0.16
2 0.63 0.59 0.30
5 0.81 0.81 0.74
10 0.90 0.90 0.89
20 0.95 0.95 0.94
50 0.98 0.98 0.98

Fig. 5. Maximum dispersion coefficient obtained at an optimum εf as a function of Γ for
various µ values.

gives

Λ =
1 + 6δ + 11δ2

48(1 + δ)3
.(4.34)

This is the expression derived by Golay (1958) for capillary chromatography with
a retentive layer. It follows from (4.34) that Λmax = 0.047 at δ = 1.15. As is
evident from Figure 5, the optimum normalized dispersion Λmax relative to εf becomes
independent of Γ and µ for Γ beyond 10, as is consistent with (4.30). However, this
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optimum dispersion is highest for Γ below 10, near unit order Γ. Hence, the largest
dispersion occurs near unit order Γ with a dispersion magnitude that is 3 to 4 times
the high Γ limit. Unfortunately, we cannot use the lumped model approach with heat
transfer coefficients for these high dispersion reactors. Their dispersion coefficient is
highly sensitive to flow distribution/packing, in contrast to the generic limit at high
Γ.

Finally, we consider the case of Γ = 1, which corresponds to the solutal dispersion
in a pipe and into the porous wall or particles as in a catalytic monolith or packed-bed
reactor, respectively. Here, the phases have equal capacities and, as reasoned above,
Deff should be sensitive to details in geometry and flow. For Γ = 1, (4.30) simplifies
to

Λ =
1

48
g1(εf ) +

µ

8
g2(εf ),(4.35a)

g1(εf ) = εf (6ε
2
f − 16εf + 11),(4.35b)

g2(εf ) = εf (4εf − ε2f − 3 − 2 ln(εf )).

We note that the function g1(εf ) has a maximum value of 2.26 at εf = 0.465, while
g2(εf ) has a maximum value of 0.206 at εf = 0.15. As µ increases from 0 to ∞, the
optimum εf decreases from 0.465 to 0.206. This is verified in Figure 6, where we have
plotted Λ as a function of εf for different µ values. As expected, Λ is sensitive to both
µ and εf .

5. Reactive and steady dispersion. It is clear from (4.18) that, at steady
state, the mixing-cup temperature θm remains constant along the reactor—dispersion
disappears at steady state. However, steady dispersion can exist under reactive con-
ditions. As transverse diffusion and a longitudinal velocity gradient can produce tran-
sient longitudinal dispersion, steady reactive conversion differences across streamlines
due to the transverse velocity gradient can also trigger transverse steady diffusive flux.
The latter can, in turn, alter the overall conversion and produce an apparent steady
dispersion. We shall examine this case here for the simplest scalar case—a single
step irreversible reaction for solutal transport or a zeroth order reaction (with excess
reactants) for thermal transport valid under thermal ignition conditions (Zeldovich et
al. (1985)). Equation (4.1) can then be modified to

F (θ, Pe) ≡ 1

ρcp
∇ · k∇θ − Pe

(
∂θ

∂t
+ w

∂θ

∂z

)
− PeKf(θ) = 0,(5.1)

where the Damköhler number K(x, y, z, t) reflects the different activity in different
phases (e.g., due to varying catalytic activity caused by nonuniform distribution of the
catalytic agent and catalyst decay in time), and the nonlinear function f(θ) captures
the temperature or concentration dependence of the reaction rate. (Note also that,
unlike the previous cases, F (θ, Pe) is now nonlinear in θ.) Both K(x, y, z, t) and f(θ)
are of unit order with respect to Pe. The function f(θ) can be positive or negative,
corresponding to solutal/thermal consumption or generation, respectively.

With this scaling, the transverse diffusion operator £ remains the dominant linear
operator. Moreover, the decomposition into a capacitance-weighted transverse average
〈θ〉 and a θ′ component, with 〈θ′〉 = 0, remains valid. However, the overall transverse
balance now becomes

∂ 〈θ〉
∂t

+ 〈w〉 ∂θm
∂z

+ 〈Kf(θ)〉 = 0.(5.2)
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Fig. 6. Unit order Γ dispersion as a function of εf for various µ values.

To leading order, (5.2) reduces to

∂ 〈θ〉
∂t

+ 〈w〉 ∂ 〈θ〉
∂z

+ 〈K〉 f(〈θ〉) +O(Pe) = 0.(5.3)

The equation for θ′ then becomes, to leading order in Pe,

£ θ′ = Pe(w − 〈w〉)∂ 〈θ〉
∂z

+ Pe(K − 〈K〉)f(〈θ〉).(5.4)

We then require the decomposition of θ′ into two components

θ′ = Pe

[
η
∂ 〈θ〉
∂z

+ χf(〈θ〉)
]

+O(Pe2);(5.5)

the first term containing η is the transient dispersion contribution considered earlier.
The reactive (source or sink) contribution is captured by χ as defined by

£ χ = K − 〈K〉 ,(5.6)
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where 〈χ〉 = 0 as for η. The other boundary conditions are ∂χ
∂n = 0 on ∂Ω and

continuity of χ and k ∂χ∂n across the phase boundaries ∂Ωi.
The homogenized model then becomes

∂ 〈θ〉
∂t

+ 〈w〉 ∂θm
∂z

+ 〈K〉 f(〈θ〉) + Pe f ′(〈θ〉)
(
δ
∂ 〈θ〉
∂z

+ κf(〈θ〉)
)

= 0,(5.7a)

θm = 〈θ〉 − Pe
[
Λ
∂ 〈θ〉
∂z

+ γf(〈θ〉)
]
,(5.7b)

where Λ is defined earlier by (4.17) and the new constants are

γ = −〈wχ〉
〈w〉 , δ = 〈Kη〉 , κ = 〈Kχ〉 .

We can combine (5.7a) and (5.7b) into a single equation for either 〈θ〉 or θm. How-
ever, the coefficients that appear in the resulting equation are no longer constants
but depend on the source function. As in the nonreactive case, representing the dis-
persion terms as second derivatives in z and interpretation of their coefficients as
Taylor dispersion coefficients leads to further conceptual difficulties (in addition to
the upstream diffusion, infinite propagation speed anomalies, and extra boundary or
initial condition needed). Now, the capacitance-weighted average velocity and the
dispersion coefficient are no longer constants but depend on the source function and
its derivative. (They can be negative and hence lose their physical meaning!) Our
approach based on the local length or times scales is still applicable here, the only
difference being the additional length or time scales that appear due to the source or
sink terms. Thus, in this case, it is preferable to leave the model in the two-mode form,
the two modes being the mixing-cup and capacitance-weighted average temperature
or concentration. The model is still hyperbolic as in the nonreactive case and reduces
to (4.16) when the Damköhler number K ≡ 0. The initial and boundary conditions
on (5.7) may also be derived in the same manner as in the nonreactive case.

We note that the reduced model now contains four effective local constants that
are of the same order of magnitude. It can be seen that the two terms in (5.7b) (con-
taining the constants Λ and γ) represent dispersion effects due to velocity gradients,
while the two terms in (5.7a) (containing the constants δ and κ) represent disper-
sion effects due to a nonuniform reaction rate. The three new terms with coefficients
γ, δ, and κ represent reactive dispersion effects (commonly known as mixing effects in
the engineering literature), where as the nonreactive term with coefficient Λ may be
interpreted as the traditional velocity gradient-induced dispersion. (This term may
be interpreted as the so-called micromixing effect; see Chakraborty and Balakotaiah
(2002) for more details.) We now examine various special cases.

The first case we consider is that in which f(θ) is a constant (say, f(θ) = −1). This
corresponds to the nonreactive situation, with a source term added to the classical
Taylor problem or the thermal dispersion problem. For this case, three of the source-
induced dispersion terms vanish, and (5.7) reduces to

∂θm
∂t

+ 〈w〉 ∂θm
∂z

+ ΛPe
∂2θm
∂z∂t

= 〈K〉 .(5.8)

Thus, the addition of a slowly varying source term simply adds its capacitance-
weighted transverse average to the reduced model.
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Next, we consider the case in which the Damköhler number K is constant (inde-
pendent of transverse coordinates and time). Again, the three constants γ, δ, and κ
vanish, and the model reduces to

∂θm
∂t

+ 〈w〉 ∂θm
∂z

+ ΛPe
∂2θm
∂z∂∂t

= K f

(
θm + ΛPe

∂θm
∂z

)
.(5.9)

In this case, in addition to the transient dispersion term, we also have a source cor-
rection term, and the reduced model is different from the standard models used in the
literature. These earlier literature models were obtained by just adding the source
term to the nonreactive reduced model. Such models are clearly invalid as they ex-
clude the correction term which appears in (5.9). (This was first noted by Balakotaiah
and Dommeti (1999) using lumped resistance models. This correction term is also
missing in the averaged models of Westerterp, Dilman, and Kronberg (1995) and
Westerterp et al. (1995) using a heuristic approach.)

The third case we consider is that of a two-phase system in which the low capac-
itance fluid phase is moving and the solid phase is stationary. We also assume that
K = 0 in the fluid phase and K = 1 in the solid phase. (This is a generalization
of the packed-bed model with heat generation in the solid phase.) For this case, it
may be seen that γ > 0, κ > 0, and δ < 0. If f ′(〈θ〉) > 0 (exothermic reaction),
this corresponds to a decrease in the capacitance-weighted average velocity and an
increase in the source strength in the reduced model.

The last case we consider is that of steady-state dispersion under reactive condi-
tions. Now, since K is independent of t and since the time derivative in (5.2) is zero,
we redo the Liapunov–Schmidt reduction. The reduced model is now given by the
pair of equations

〈w〉 dθm
dz

+ 〈K〉 f(〈θ〉) + Pe 〈Kχ〉 f ′(〈θ〉)f(〈θ〉) = 0,(5.10a)

θm = 〈θ〉 + Pe
〈wχ〉
〈w〉 f(〈θ〉),(5.10b)

where χ is distinct from the transient version (5.6) and is now defined by

£χ = K − w

〈w〉 〈K〉 ,(5.11a)

∂χ

∂n
= 0 on ∂Ω.(5.11b)

The boundary condition to be used on (5.10) is

θ = θm0 at z = 0.(5.12)

The reduced model is a differential-algebraic system, and there is no second deriva-
tive term. (We note that the reduced model is not an initial value problem in z!
For the case of an exothermic reaction, it is an index infinity differential-algebraic
system and can have multiple (in fact, an infinite number of) solutions whenever the
local equation (5.10b) has multiple solutions. This can happen when the kinetics
is autocatalytic. For more details, see Chakraborty and Balakotaiah (2002).) The
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steady-state reactive correction/dispersion term −〈wχ〉 is different from the transient
reactive and nonreactive dispersion coefficient −〈wη〉. For the special case of uniform
activity (K is independent of transverse coordinates) it is easily seen that

χ = − K

〈w〉η,(5.13)

where η is as defined in the nonreactive case. For this special case, the steady-state
model (5.10) simplifies to

〈w〉 dθm
dz

+K f(〈θ〉) = 0,(5.14a)

θm = 〈θ〉 − Pe
KΛ

〈w〉2 f(〈θ〉),(5.14b)

with initial/boundary condition (5.12). This reduced model is very different from
the standard pseudohomogeneous model with Danckwerts boundary conditions. We
note that while the numerical coefficient Λ that appears in the above steady-state
model is the same as that in the Taylor’s transient solutal dispersion problem, there
is also a correction to the source term containing the same coefficient (see also (5.9)).
In addition, it should be emphasized again that the reduced model is a differential-
algebraic system rather than a two-point boundary value problem as in the following
classical Danckwerts model:

Λ
d2θm
dz2

− 〈w〉 dθm
dz

−K f(θm) = 0,(5.15a)

〈w〉 θm0 = 〈w〉 θm − Λ
dθm
dz

at z = 0,(5.15b)

dθm
dz

= 0 at z = L.(5.15c)

In this model, the exit boundary condition (5.15c) is imposed rather than derived
from the original two-dimensional model.

6. Discussion. We have shown in this work that dispersion caused by transverse
gradients can be described by reduced models that are hyperbolic in the longitudinal
coordinate and time and that contain an effective local length or time scale. Our
method also overcomes the main deficiencies of the previous approaches to averaging
based on the moments method and the center manifold theorem. The former is
applicable only to linear problems, while the latter describes the asymptotic behavior
close to a fixed point (such as a trivial solution θ(x, y, z, t) = 0). In contrast, our
method is based on expansion around a state 〈θ〉 (z, t) that is only independent of
the transverse coordinates and can be applied to both steady-state and transient
problems.

We have presented here the averaged models to only the lowest order in Pe.
However, the extension to obtain higher order averaged models is straightforward.
For example, for the solutal/thermal dispersion problem, it is easily seen that the
reduced model to all orders (in Pe or tH) is of the form

∂ 〈θ〉
∂t′

+ 〈u〉 ∂θm
∂z′

= 0,(6.1a)
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〈θ〉 − θm +

∞∑
i=1

βi(tH)i
∂i 〈θ〉
∂ti

= 0,(6.1b)

where tH is the local time scale and βi are numerical constants that depend on the
velocity profile w(x, y) and the geometry of Ω. Appropriate inlet and initial conditions
may also be derived for (6.1).

The present approach may also be extended in many ways. Instead of the no-flux
outer wall, we can allow an isothermal wall or a mixed boundary condition with a
wall heat transfer coefficient. In such cases, the operator £ is no longer singular and
〈θ〉 does not strictly correspond to the null eigenfunction. However, if the transverse
gradient remains small (and £ has a discrete spectrum), the invariant manifold ap-
proach of Roberts (1989) and Balakotaiah and Chang (1995) can be used to extend
the Lyapunov–Schmidt technique presented here.

Acknowledgments. We thank two anonymous referees for many helpful com-
ments.
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Abstract. In this paper we investigate the linear stability and properties, such as speed, of the
planar travelling combustion front. The speed of the front is estimated both analytically, using the
matched asymptotic expansion, and numerically, by means of the shooting and relaxation methods.
The Evans function approach extended by the compound matrix method is employed to numerically
solve the linear stability problem for the travelling wave solution.
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1. Introduction. Problems involving combustion waves are characterized by
strong dependence of the reaction rate, which is usually modelled by the Arrhenius
law, on the temperature. This sharp dependence of the reaction rate naturally divides
the structure of the travelling front into three regions. Ahead of the combustion wave,
in a preheat zone, the temperature is low and there is almost no reaction. When the
temperature becomes sufficiently high, the reaction rate increases exponentially and
the fuel is converted into heat very quickly. This takes place in a narrow region called
the reaction zone. Finally, behind the front, in a product zone, all fuel is consumed, no
reaction occurs, and the temperature is constant. The temperature and the amount
of fuel change rapidly in the reaction zone. The above picture in some sense is close to
the boundary layer problem. Therefore similar methods of analysis, like the matched
asymptotic expansion (MAE), apply in both cases.

The analysis of steady propagating planar combustion fronts is usually based on
MAE. According to this method, in the limit of high activation energy, we seek
the travelling wave solution in the form of a series in all three regions; then on the
boundaries of these zones the expansions are matched in each order of a small pa-
rameter. The asymptotic procedure in principle allows us to find the solution with
any desired accuracy and for arbitrary Lewis number. As a rule, only the leading
order is considered [1, 2, 3, 4, 5]; however, the higher order approximations can also
be obtained [6]. The method of MAE is valid in the limit of large activation energy,
and the properties of the steady combustion front, such as speed, can be found only
numerically for general values of activation energy. Numerical analysis is mostly fo-
cused on solving the system of partial differential equations (PDE) that describe the
problem [7, 8]. However, PDE can always be reduced to a system of ordinary differ-
ential equations (ODE) for steady propagating planar waves. In this paper we take
advantage of the ODE formulation of the problem, which is usually more convenient
for numerical analysis. We use shooting and relaxation methods to investigate the
dependence of the speed of the front on the parameters of the problem. Besides the
benefits of technical implementation, an ODE formulation does not depend on the
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stability of the travelling wave and therefore allows us to continue the solution branch
over a broader parameter range.

As we vary the parameters of the problem, a steady propagating planar front
can lose stability, giving rise to either pulsating or cellular flames [5, 9]. Analytical
investigation of the stability using the MAE leads to the so-called closure problem.
In contrast to steady travelling waves, in this case the leading order equations depend
on first order corrections, first order equations include second order terms of the
asymptotic expansion, etc. In order to find the solution to the leading order problem,
an infinite number of equations have to be investigated. One of the ways of overcoming
this obstacle is just to truncate the expansion [1, 2, 3, 4, 5, 9]. This yields a closed
problem with a replacement of the Arrhenius reaction rate by a delta-function source
depending on the temperature at the reaction front. The truncated model has been
used extensively for the stability analysis of combustion waves [1, 2, 3, 4]. However,
the model with the delta-function source suffers from inconsistencies, as was noted in
[5, 9]. The inverse of the small parameter of the expansion appears explicitly in the
exponential terms describing the strength of the source. In other words, temperature
variations behind the front are considered to be small in the exponential terms and
of leading order elsewhere.

An asymptotically consistent approach was proposed in [5] for the system with the
Lewis number of the order of unity. In this case the enthalpy does not change at the
leading order. A closed problem was derived for the leading order temperature and
the first order enthalpy. However, until recently [9], there has not been a consistent
approach that treats the model with arbitrary Lewis number.

In [9] a generalization of the MAE method was introduced. The coefficients in
the expansions are allowed to depend on the expansion parameter. This enables
the correct scaling of the temperature variations ahead of and behind the reaction
zone; namely, a restriction is imposed connecting the leading order temperature in
the preheat zone and the first two terms of the asymptotic expansion in the prod-
uct zone. The constraint reflects the fact that small temperature variations behind
the front change the leading order terms in the preheat zone. The resulting model
includes equations for the leading order variables ahead of the reaction zone and for
the first order temperature variations in the product zone, together with matching
and boundary conditions. There is no restriction on the range of the Lewis number
values.

However, the models describing the propagation of the steady planar combus-
tion waves were derived only in the leading order of the expansion parameter of the
asymptotic procedure. In other words the papers mentioned above analyze the linear
stability of models which are different from the original one with the Arrhenius ki-
netics. This is fully justified by the complexity of the problem and reveals the lack of
alternative methods to MAE. Fortunately, recent advances in the application of the
Evans function [10] to stability analysis of solitary waves and fronts [11, 12, 13, 14, 15]
provide us with a powerful tool for the semianalytical investigation of travelling front
stability.

The linear stability problem can always be formulated as an eigenvalue problem
for some differential operator. The Evans function was first introduced in [10] to
study the stability of nerve pulses as an analytical function whose zeros correspond
to the isolated eigenvalues of this differential operator. In some specific cases the
Evans function can be found explicitly, and the Evans function being zero gives the
dispersion relation. In other cases, like solitary waves of a generalized Kordeweg–
deVries (KdV) equation [16] and generalized nonlinear Schrödinger equation [17], the
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asymptotic behavior of the Evans function can be found using the results obtained
in [16], where the derivative of the Evans function was connected to the Melnikov
integral [18]. The knowledge of asymptotics allowed the authors to localize zeros of
the Evans function and to solve the stability problem analytically.

The asymptotic form of the Evans function for the combustion problem was de-
rived in [15] in the limit of large activation energy and Lewis number of the order of
unity. The results of [15] agree with the predictions of the MAE analysis of [5]. Zeros
of the Evans function and therefore the stability of the combustion front can be found
only numerically for general parameter values. Previously, this problem was solved
by direct integration of the governing PDE [7, 8]. We cannot expect this method to
be accurate near the critical parameter values, where the rate of instability is weak
and a long integration time is needed to detect it. Furthermore, this method is rel-
atively difficult for computational implementation in comparison with the numerical
estimation of the Evans function proposed in [19], which is based on ODE integra-
tion. However, the latter method is applicable only for problems with a specific type
of geometry, such as the linear stability problem for the KdV equation, and fails to
work for stiff systems [12], such as in our case.

In the present paper we apply the Evans function method to the stability analysis
of the planar combustion front. The linear stability problem associated with the trav-
elling combustion wave is an example of a stiff problem. We extend the conventional
algorithm for calculating the Evans function [19] by the compound matrix method
[12, 13, 20, 21, 22], which was first employed for analysis of the hydrodynamic stabil-
ity for the Orr–Sommerfeld equation. This method eliminates the stiffness and makes
the linear stability problem numerically tractable.

In this paper we use the combination of shooting-relaxation and the Evans func-
tion method (extended by the compound matrix method) as a consistent approach
for numerical investigation of both properties and stability of the travelling planar
front, based on the ODE formulation of the combustion problem. We show that the
method is valid for a wide range of the parameter values.

The paper is organized as follows. The model and governing equations are intro-
duced in section 2. In section 3 we show how MAE can be used to derive travelling
wave solutions in the limit of large activation energy, and we compare these solutions
with the solutions obtained by shooting and relaxation methods. The linear stability
problem is formulated in section 4, whereas the relation to the Evans function is dis-
cussed in section 5. In section 6 we quote the asymptotic results of [15] for the Evans
function. Numerical stability analysis is carried out in section 7. Finally, concluding
remarks can be found in section 8.

2. Model. We consider a premixed fuel in one dimension. The heat loss is
neglected. We assume that the rate of exothermic combustion is well described by the
Arrhenius law. In nondimensional coordinates, the equations governing this process
can be found in [7] and are given as

ut = uxx + ve
−1/u, vt = τvxx − βve−1/u,(2.1)

where u and v are the nondimensional temperature and mass fraction of the fuel,
respectively; τ is the inverse Lewis number (the ratio of the diffusion rates of mass
and heat); and β is the ratio of the activation energy to heat release.

We consider the ambient temperature to be equal to zero. This approximation
simplifies the problem, decreasing the number of parameters. As is noted in [7], this is
a way to circumvent the “cold-boundary problem” and does not change the behavior of
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the system. It is not an appropriate simplification when considering ignition problems.
Parameter τ varies from zero, for solid fuel, to unity, for gaseous fuels. The parameter
β is of the order of unity or larger.

We consider system (2.1) subject to the following boundary conditions:

u(x, t) → β−1, v(x, t) → 0 as x→ −∞,
u(x, t) → 0, v(x, t) → 1 as x→ +∞.(2.2)

On the right boundary we have a cold (u = 0) and unburned (v = 1) state, whereas
the opposite limit corresponds to the hot (u = β−1) and burned (v = 0) state.

3. Travelling wave solution. Let us consider the case τ ∼ O(1). We will seek
the solution of (2.1) in a form of the front travelling with a constant speed c

u(x, t) = u(ξ), v(x, t) = v(ξ),(3.1)

where we have introduced a moving coordinate frame ξ = x − ct. After substituting
(3.1) into (2.1), it is easy to obtain two second order differential equations

uξξ + cuξ + ve
−1/u = 0, τvξξ + cvξ − βve−1/u = 0(3.2)

and boundary conditions

u = β−1, v = 0 as ξ → −∞,
u = 0, v = 1 as ξ → +∞.(3.3)

Now let us make the reaction terms in (3.1) symmetric by introducing new variables
ũ = βu, ṽ = v and scale the coordinate z = cξ. This gives us the equations

ũzz + ũz + β
2Qṽeβ(1−1/ũ) = 0, τ ṽzz + ṽz − β2Qṽeβ(1−1/ũ) = 0,(3.4)

where Q = (βc2eβ)−1 is a flame speed eigenvalue, which has to be found. Boundary
conditions are modified as follows:

ũ = 1, ṽ = 0 as z → −∞,
ũ = 0, ṽ = 1 as z → +∞.(3.5)

In the new variables the reaction zone is of the order of β−1. Outside this zone the
reaction terms of (3.4) become negligible. Hence in the outer region (3.4) can be
written as

ũzz + ũz = 0, τ ṽzz + ṽz = 0,(3.6)

subject to boundary conditions (3.5).
We seek the solution of problem (3.6) in the form of a series, with β−1 being a

small parameter, and hence we postulate

ũ = U0 + β
−1U1 + · · · ,

ṽ = V0 + β
−1V1 + · · · ,

Q = Q0 + β
−1Q1 + · · · .

(3.7)

In the zeroth order, the solution of equations (3.6) is

U0 =

{
1, z < 0,
e−z, z > 0,

and V0 =

{
0, z < 0,
1− e−z/τ , z > 0.

(3.8)
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In order to find Q0 we should match the solution (3.8) with the solution of the inner
problem.

Let us consider (3.4) in a thin boundary layer where the reaction occurs. We
introduce the stretched coordinate y = βz and seek solutions of the form

ũ = 1 + β−1u1 + β
−2u2 + · · · ,

ṽ = β−1v1 + β
−2v2 + · · · ,

Q = Q0 + β
−1Q1 + · · · .

(3.9)

After substituting (3.9) into (3.4) and leaving the leading terms of the order O(β),
we obtain the equations

ü1 +Q0v1e
u1 = 0, τ v̈1 −Q0v1e

u1 = 0,(3.10)

with the dot denoting derivative ∂/∂y. In deriving (3.10) we have assumed that
τ ∼ O(1) and Q0 ∼ O(1). On the boundaries we can require that the following
matching conditions be satisfied:

lim
y→±∞ [u1(y)− U1(0±)− U0z(0±)y] = 0,

lim
y→±∞ [v1(y)− V1(0±)− V0z(0±)y] = 0.

(3.11)

On the left boundary from (3.8) it follows that U0z(0−) = V0z(0−) = 0, and we can
rewrite (3.11) in the form

u1 = U1(0−), v1 = V1(0−)
u̇1 = 0, v̇1 = 0

as y → −∞.(3.12)

System (3.10) has the integral

u1 + τv1 = C1 +D1y.(3.13)

Applying the matching condition (3.12), it can be shown that D1 = 0 and C1 =
U1(0−) + τV1(0−). Using this integral system, (3.10) can be reduced to a single
equation

θ̈ − kθe−θ = 0,(3.14)

where θ = C1 − u1, k = Q0/τe
C1 . Equation (3.14) can be treated as the equation

of motion of a point particle with unit mass in the potential W (θ) = k(1 + θ)e−θ.
The potential W (θ) has a maximum only for θ = 0. Conditions (3.12) imply that
θ̇(−∞) = 0. This is possible only if the energy E = θ̇2/2 + W (θ) is equal to the
maximal value of the potential W (0) = k. Therefore, θ = 0 as y → −∞, and
consequently, C1 = U1(0−) and V1(0−) = 0. On the other hand, as y → +∞ the
potential W (y) decays exponentially and θ̇ → √

2k.
Returning to the original problem, the left boundary conditions can be written

as

u1 = U1(0−), v1 = 0
u̇1 = 0, v̇1 = 0

as y → −∞.(3.15)
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Fig. 1. Numerically determined speed of the travelling front as a function of β. Solid lines
correspond to the results obtained by shooting and relaxation methods for values of parameter τ =
0.1, 0.5, and 1.0 (right to left). Crosses represent the speed of the front calculated by direct PDE
integration of (2.1) for τ = 1.0.

On the right boundary, it follows from (3.11) and (3.13) that(
∂U0

∂z

)
z=0+

= −τ
(
∂V0

∂z

)
z=0+

= −
√

2Q0

τeU1(0−)
.(3.16)

For planar front solution U1(0−) = 0 and from (3.8) we have (∂U0/∂z)z=0+ = −1.
Taking into account the definition of Q, we can obtain the following estimation of the
speed:

c =
√
2τ−1β−1e−β/2,(3.17)

which agrees with the results of [7, 8] in the limit of large β. Note that a similar
expression for the front speed was first found in [6].

We also solved (3.2) numerically. As in [23], we used the shooting method to
obtain the guess solution, and then the results were corrected with a more accurate
method, namely, relaxation. Combination of these methods allowed us to numerically
obtain the dependence of the travelling front velocity on the parameters β and τ . In
Figure 1 we plot the speed of the front as a function of β for three different values of τ .
The results are compared to the predictions obtained in [7] by direct PDE integration
of (2.1). The accordance between these two approaches is excellent.

In Figure 2 we compare the prediction of the asymptotic formula (3.17) for the
speed of the front with the results obtained numerically. As can be seen, the corre-
spondence is quite good for τ = 1 and large values of β. However, when we decrease
the value of τ , the approximation of the speed (3.17), which is valid for τ ∼ O(1),
becomes unsatisfactory. For example, when τ = 0.1, the difference between the ana-
lytical and numerical results becomes significant.

The stability analysis of the steady propagating combustion front carried out in
the following sections is based on how accurately we can approximate the solution of
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Fig. 2. Logarithm of the speed of the travelling front as a function of β for values of parameter
τ = 0.1 and 1.0. Dots correspond to the numerical results, whereas dashed lines represent the
approximation of the speed according to the formula (3.17). In each case the upper line is for
τ = 0.1 and the lower line for τ = 1.0.

(3.2). Standard relaxation routine (see [23] and references therein) allows us to control
the average local correction made on each iteration step. The solution is considered
to be resolved if the correction is less than 10−15. We also tested the accuracy of the
method independently by changing the step of the grid and comparing the resulting
variations in the values of the front speed. For example, a fourfold mesh refinement
changes the value of the front speed in the ninth significant digit. Therefore we assume
that the numerical procedure outlined here works reasonably well.

4. Stability of a travelling front. As a first step in the analysis of travelling
wave stability, we linearize (2.1) around the front solution (3.1):

u(x, t) = u(ξ) + ϕ(ξ, t), v(x, t) = v(ξ) + χ(ξ, t),(4.1)

where ϕ and χ are linear perturbation terms. After substitution of (4.1) into (2.1) it
is straightforward to derive (

∂ϕ/∂t
∂χ/∂t

)
= L̂

(
ϕ
χ

)
,(4.2)

where

L̂ =

(
∂2
ξ + vu

−2e−1/u + c∂ξ e−1/u

−βvu−2e−1/u τ∂2
ξ − βe−1/u + c∂ξ

)
.(4.3)

The stability of the travelling front is then defined from the spectra of L̂. It is easy to
show that the essential spectrum of this operator always lies in the left half-plane and
therefore the discrete spectrum is solely responsible for the transition to instability
(see [24]). We will seek the solution of (4.2) of the form

ϕ(ξ, t) = ϕ(ξ)eλt, χ(ξ, t) = χ(ξ)eλt,(4.4)
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where λ is a spectral parameter (in combustion literature it is sometimes referred to
as the growth rate eigenvalue). Substituting (4.4) into (4.2) and introducing a vector
with the components z1 = ϕ, z2 = ϕξ, z3 = χ, z4 = χξ, we obtain the system of
ODE in the form

ż = Az,(4.5)

where

A(ξ, λ) =




0 1 0 0
λ− vu−2e−1/u −c −e−1/u 0

0 0 0 1
βτ−1vu−2e−1/u 0 τ−1(λ+ βe−1/u) −τ−1c


 .(4.6)

We use (4.5) to investigate the stability of the travelling front. Following [12], we
will say that the travelling front is linearly unstable if, for some fixed complex λ with
Re(λ) > 0, there exists a solution of (4.5) which decays exponentially as ξ → ±∞. We
will refer to this λ as an eigenvalue and to the corresponding solution as an eigenmode.

5. Evans function. Let us introduce the limit matrices

A±(λ) ≡ lim
ξ→±∞

A(ξ, λ).(5.1)

The explicit form of A± can be found from the boundary conditions (3.3). The limit
matrices have eigenvalues

µ−1,2(λ) =
−c∓√

c2+4λ
2 , µ+

1,2 = µ
−
1,2,

µ−3,4(λ) =
−c∓

√
c2+4τ(λ+βe−β)

2τ , µ+
3,4(λ) = µ

−
3,4(λ− βe−β),

(5.2)

with corresponding eigenvectors k±
i (for i = 1, . . . , 4). Equations (5.2) imply that

A− has two eigenvalues µ−2,4 with positive real parts and two eigenvalues µ−1,3 with

negative real parts. Similarly, for A+ we have Re(µ+
2,4) > 0 and Re(µ+

1,3) < 0.

Therefore, for any value of λ there exist two linearly independent solutions z−2,4(ξ, λ)
of (4.5) corresponding to unstable subspaces of A− satisfying the conditions

lim
ξ→−∞

exp(−µ−i ξ)z−i (ξ, λ) = k−
i , i = 2, 4,(5.3)

and two linearly independent solutions z+
1,3(ξ, λ) of (4.5) corresponding to stable sub-

spaces of A+ satisfying the conditions

lim
ξ→+∞

exp(−µ+
i ξ)z

+
i (ξ, λ) = k+

i , i = 1, 3.(5.4)

Now we can consider a space of solutions of (4.5) bounded as ξ → −∞ and a space of
solutions bounded as ξ → +∞. If these spaces intersect nontrivially for some value
λ, then λ is an eigenvalue. We will call the function which measures whether these
spaces intersect the Evans function. Geometrically this means that for some value
of λ and any value of coordinate ξ the plane defined by the vectors z−2,4 intersects

nontrivially with the plane defined by the vectors z+
1,3. We can also say that λ is

an eigenvalue if and only if the solutions z−2,4 and z+
1,3 are linearly dependent or,

equivalently, the Wronskian evaluated on these solutions (a matrix whose columns
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are z−2,4(ξ) and z
+
1,3(ξ)) is equal to zero. One of the Evans function definitions is given

in [15] via this Wronskian, which is evaluated for definiteness at ξ = 0. Let ei be
the orthonormal basis in four dimensional space C4 of system (4.5) solutions. In this
basis the vectors z±i have coordinates (z±i1, z

±
i2, z

±
i3, z

±
i4)

T , and the Evans function is
defined as

D(λ) =

∣∣∣∣∣∣∣∣∣
z−21(0, λ) z−41(0, λ) z+11(0, λ) z+31(0, λ)

z−22(0, λ) z−42(0, λ) z+12(0, λ) z+32(0, λ)

z−23(0, λ) z−43(0, λ) z+13(0, λ) z+33(0, λ)

z−24(0, λ) z−44(0, λ) z+14(0, λ) z+34(0, λ)

∣∣∣∣∣∣∣∣∣
.(5.5)

In what follows we will also require an alternative definition of the Evans function.
Returning to the geometrical picture, we can say that to find the eigenvalues we do not
have to seek the solutions z−2,4 and z

+
1,3, but it is sufficient to determine the orientation

of the planes, constructed on corresponding pairs of vectors, in space C4 of system
(4.5) solutions.

If we take two linear independent vectors in Cn, then the orientation of a plane
containing both vectors can be determined by a wedge product of them. (Two vectors
are linear dependent if and only if their wedge product is equal to zero.) If n = 3, a
wedge product coincides with a vector product, and the result of the operation is a
vector belonging to C3. However, in the general case the result of a wedge product of
two vectors is a vector lying in

∧2
(Cn), where

∧2
(Cn) is the second exterior power

of Cn. It has dimension dim[
∧2

(Cn)] = n!/2!(n− 2)!.
In our case a plane can be defined by a six component vector; for instance, we

define

V− = z−2 ∧ z−4 , V+ = z+
1 ∧ z+

3 ,(5.6)

where V± ∈ ∧2
(C4) and ∧ stands for wedge product. If λ is an eigenvalue, the planes

associated with the vectors V+ and V− intersect nontrivially. This means that V+

and V− are linear dependent and a wedge product V+ ∧V− equals zero. Now we
can make use of the Evans function definition given in [25] as

D̃(λ) = exp

[
−
∫ ξ

0

Tr(A(s, λ))

]
V+(ξ, λ) ∧V−(ξ, λ).(5.7)

For the sake of further consideration it is convenient to take ξ = 0 in the definition
(5.7). As was shown in [12], in this case we can rewrite (5.7) as

D̃(λ) = D(λ)Γ,(5.8)

where Γ = e1 ∧ e2 ∧ e3 ∧ e4 is a standard volume in C4 and

D(λ) = [V+,ΣV−].(5.9)

Here, the overline denotes the complex conjugate, [·, ·] is the complex inner product
in C6, and Σ is the operator that in a basis

v1 = e1 ∧ e2, v2 = e1 ∧ e3, v3 = e1 ∧ e4,
v4 = e2 ∧ e3, v5 = e2 ∧ e4, v6 = e3 ∧ e4,

(5.10)
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is represented by the matrix

Σ =




0 0 0 0 0 1
0 0 0 0 −1 0
0 0 0 1 0 0
0 0 1 0 0 0
0 −1 0 0 0 0
1 0 0 0 0 0


 .(5.11)

In the basis (5.10) the components of vector V− can be shown to be

V−
1 = z21z42 − z41z22, V−

4 = z22z43 − z42z23,
V−

2 = z21z43 − z41z23, V−
5 = z22z44 − z42z24,

V−
3 = z21z44 − z41z24, V−

6 = z23z44 − z43z24.
(5.12)

A similar relation holds for V+. Using these expressions for V±, we can show (by
means of direct substitution) that definitions (5.5) and (5.9) are identical.

The vectors V± can be also called the second compounds of the matrices formed
from a pair z−2,4 or z+

1,3, respectively, and were considered in [20, 21, 22] in relation
with the Orr–Sommerfeld equation. The definition (5.5) is the simpler of the two, but
the importance of the second definition (5.9) will be revealed in section 7.

6. Evans function for τ ∼ O(1) and β � 1. Let us return to the definition
(5.5) of the Evans function. In [15] it was shown that in the case of τ ∼ 1 and β � 1
the Evans function can be approximated analytically with good accuracy. In this
section we assume that τ = 1− β−1', where ' ∼ 1.

First, let us rewrite the spectral problem (4.2)–(4.3) for the operator L̂ in the
symmetric form. By introducing the variables ũ = βu, ṽ = v, ϕ̃ = βϕ, χ̃ = χ, and
the scaled coordinate z = cξ defined in section 3, we can obtain

L̂

(
ϕ̃
χ̃

)
= λ̃

(
ϕ̃
χ̃

)
,(6.1)

where λ̃ = λ/c2 and

L̂ =

(
∂2
z + ∂z + β

3Qṽũ−2eβ(1−1/ũ) β2Qeβ(1−1/ũ)

−β3Qṽũ−2eβ(1−1/ũ) τ∂2
z + ∂z − β2Qeβ(1−1/ũ)

)
.(6.2)

A similar type of equation was considered in [15]. The solutions z̃−2,4 and z̃+
1,3 of (6.1),

having the same meaning as in the previous section, were found. Using the definition
(5.5), the Evans function can be shown to be approximated in the limit β → ∞ as

D(λ̃, ') = 2Γ2(Γ− 1)− '(2λ̃− Γ + 1),(6.3)

where Γ =
√
1 + 4λ̃. As ' crosses 'c = 4(1+

√
3) ≈ 10.92, a pair of complex conjugate

eigenvalues ±iλ̃c, where λ̃c ≈ 0.6356, passes into the right half of the complex plane,
giving rise to a Hopf bifurcation. The same result was obtained in [4, 5] using the
matched asymptotic expansion. Now we can estimate the boundary of stability of the
planar front as β = 'c/(1 − τ) and the Hopf frequency λ = c2λ̃c. Unfortunately, we
cannot expect this prediction to be quantitatively accurate, because in the beginning
of the consideration it was assumed that ' ∼ O(1), whereas 'c has been found to be
much greater.



EVANS FUNCTION STABILITY OF COMBUSTION WAVES 1269

7. Numerics and the compound matrix method. The method of calculat-
ing the Evans function was proposed in [19]. The idea is based on the definition (5.5).
According to (5.5) it is necessary to determine the solutions z−2,4 or z+

1,3 at ξ = 0.
In order to numerically trace the solution, for example, growing as we integrate for-
ward, the coordinate is exponentially scaled so as to eliminate the maximal rate of
exponential growth. However, the numerical algorithm introduced in [19] allows us to
find only the solutions which correspond to maximal (minimal) rates of exponential
growth (decay) as ξ → ±∞.

In our case we need to obtain two pairs of solutions: one pair bounded as ξ tends
to +∞, another as ξ → −∞ . Let us consider for definiteness ξ < 0. From the analysis
developed in section 5 it follows that system (4.5) has two solutions z−2,4 bounded as

ξ → −∞ and two solutions z−1,3 unbounded as ξ → −∞ which are of no interest. In

order to neglect z−1,3 we have to numerically integrate the system (4.5) from ξ = −l1
to ξ = 0 (where l1 is chosen sufficiently large). Integrating forward we can find only
z−4 , because µ

−
2 < µ−4 and the solution z−2 is always ruled out due to errors of the

numerical scheme. The same obstacles remain in the limit ξ → +∞. Systems with
this kind of behavior are called stiff. The stiffness makes the direct calculation using
(5.5) impossible, and some procedure of orthogonalization is required. The compound
matrix method, which we employed in order to avoid this type of difficulty, is described
below and will be seen to be closely related to the definition (5.9) introduced in section
5.

Let z1 and z2 be two solutions of (4.5); then the vector V = z1∧z2 is the solution
of the equation

V̇ = BV,(7.1)

where B is a 6 × 6 matrix whose elements can be found from the matrix A (see
[13, 20, 21, 22] for details). It can be shown that the eigenvalues s±i of B in the limits
ξ = ±∞ are given via eigenvalues µ±i of A± as

s±1 = µ±1 + µ±2 , s±4 = µ±2 + µ±3 ,
s±2 = µ±1 + µ±3 , s±5 = µ±2 + µ±4 ,
s±3 = µ±1 + µ±4 , s±6 = µ±3 + µ±4 .

(7.2)

Therefore V−(ξ), defined by (5.6), is the solution of (7.1) corresponding to the
largest rate of exponential growth s−5 as we integrate forward from ξ = −∞ to ξ = 0.
Similarly V+(ξ), defined by (5.6), is the solution of (7.1) corresponding to the largest
rate of exponential growth s+2 as we integrate backward from ξ = +∞ to ξ = 0. These
solutions can always be found numerically by means of the method introduced in [19],
and then we use definition (5.9) to calculate the Evans function numerically.

The problem of stability of the travelling front of (2.1) then reduces to the search
for zeros of the Evans function (5.9) located in the right half-plane. Zeros of D(λ)
can be calculated using an argument principle. The number of zeros in the right
half-plane equals the number of times the image of the imaginary axis under D(it),
t ∈ R, winds (wraps) around the origin. Graphs of D(it), t ∈ R, are called Nyquist
plots [19].

Figure 3 shows Nyquist plots for τ = 0.1 and β = 6.8, 7.026, 7.2. For β = 6.8 the
curve does not encircle the origin, and hence the travelling front is stable. Transition
to instability occurs for β = 7.026, when two complex conjugate eigenvalues cross
the imaginary axes and the curve passes through the origin three times. The front
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Fig. 3. Transition to instability. The image of the imaginary axis D(it) near the origin for
τ = 0.1 and for β = 6.8 (curve 1), 7.026 (curve 2), 7.2 (curve 3). Note that curve 1 does not
encircle the origin, curve 2 is the transition, and curve 3 encircles the origin two times.

is clearly unstable for β = 7.2, when the curve encircles the origin two times, and
therefore there are two points of discrete spectra in the right half-plane.

The Nyquist plot technique allows us to obtain the criterion of transition to
instability. Using this criterion, we can conclude whether the travelling front is stable
or not for some fixed parameter values. However, it is quite difficult to calculate the
critical parameter values. More detailed information can be collected by means of the
Newton–Raphson method, which we apply to the equation D(λ) = 0. This allows us
to locate the zeros of the Evans function on the complex plane for any given values
of β and τ . In Figure 4 it is shown how two complex conjugate eigenvalues move
from the left half-plane to the right half-plane, resulting in Hopf bifurcation at the
parameter values when λ is purely imaginary. To determine the critical value βc, when
a pair of eigenvalues is located exactly on the imaginary axis, we consider the equation
Reλ = 0 together with D(λ) = 0 and solve this system using the Newton–Raphson
method. We start the iteration process with appropriate guess values for λ and β.
We repeat the process until the zero is found with an accuracy of 10−12. This gives
us βc = 7.02609... for τ = 0.1. While searching for the zeros of the Evans function, we
checked the credibility of the method by decreasing the integration step by a factor
of four. This results in the variation of the critical value of β in the ninth significant
figure.

It is clear that we can use the procedure described above to find the dependence
of the critical value βc on τ . In Figure 5 the stability boundary is plotted in the
parameter plane (β, τ). In section 6 we showed that as we increase τ towards 1,
the corresponding value βc tends to infinity. At the same time, according to (3.17)
and the results of section 6, the speed of the front and the Hopf frequency tends
to zero. As a result, the travelling front becomes flatter, and we should infinitely
increase the interval of integration. For example, when τ = 0.6, the critical values
become βc = 21.087, c = 9.509 × 10−6, λc = 6.969 × 10−11, and the interval of
integration is about 106. In addition, it is numerically difficult to trace such small
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essential spectrum lies. The value of β at which curves 1 pass through the imaginary axis gives the
critical value βc.

30

25

20

15

10

5

0
0.0 0.2 0.4 0.6

τ

β

stable

unstable

Fig. 5. Stability boundary βc(τ). Dots connected with a thin solid curve are the results of nu-
merical calculations based on the Evans function. Other lines represent the analytical predictions ob-
tained with (1) dash line—Evans function asymptotic from section 6, (2) dash-dot line—truncation
model, (3) thick solid line—generalized MAE.

values of λc. This implies that we can find the boundary of stability only on the
interval τ ∈ [0, 0.6]. As a result, it is extremely difficult to verify the asymptotic
formula for βc(τ) derived in section 6, as this is valid for τ ∼ 1. In Figure 5 we
also plot the prediction obtained with the truncation model [9]. As can be seen, the
discrepancy between the theoretical and numerical results is large for both asymptotic
models. The generalized MAE developed in [9] gives the best correspondence with
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Fig. 6. The logarithm of the Hopf frequency as a function of τ . Dots connected with a thin
solid curve correspond to numerical results. Other lines represent the analytical predictions obtained
with (1) dash line—Evans function asymptotic from section 6, (2) dash-dot line—truncation model,
(3) thick solid line—generalized MAE.

the numerical data for τ ∈ [0.1, 0.5]. In Figure 6 we plot the logarithm of the Hopf
frequency as a function of τ for β = βc. As in the previous figure, the generalized
MAE estimation best fits the numerical results.

Finally, using the compound matrix method, we can find the eigenmodes of the
system (4.2)–(4.3) by inverting the relations (5.12) for V− and similarly for V+. In
Figures 7 and 8 we show the eigenmodes obtained for τ = 0.3 for the critical value
βc = 9.7404, when two eigenvalues lie on the imaginary axis. These eigenmodes can
be used, for example, in perturbation analysis when we want to investigate properties
of the solution, bifurcating from the steady propagating front (see [24] for details).

8. Conclusion. The speed of planar combustion fronts was investigated using
the shooting and relaxation methods for different values of Lewis number and different
values of β (the ratio of the activation energy to heat release). We have compared the
numerical results with the asymptotic estimation of the speed of the combustion front.
Derivation of the speed estimation is given in section 3 and agrees with the results of
[5, 7, 8]. The correspondence between the numerical and analytical results is good for
large β and τ ∼ 1, whereas for moderate values of β the difference becomes significant.
This is expected, as the asymptotic formula for speed of the front was derived in the
leading order of the asymptotic expansion with β being a small parameter. It is also
important to note that as we decrease the value of τ up to the order of β−1 the
asymptotic prediction of the front speed becomes unsatisfactory even for sufficiently
large values of β. This reveals the fact that, in the asymptotic treatment of the
problem, τ was considered to be of the order of units, and therefore the asymptotic
approach fails to work for τ ∼ β−1. It is interesting to note that the dependence of
speed on β seems to be correct, whereas the dependence of c on τ is valid only for τ ∼ 1.
Excellent correspondence of the numerical results obtained with the integration of the
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Fig. 7. The eigenmode ϕ(ξ) of the system (4.2)–(4.3) for τ = 0.3, β = βc = 9.7404, and purely
complex eigenvalue λ = iλc. The solid line corresponds to Re ϕ, and the dashed line denotes Im ϕ.
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Fig. 8. The eigenmode χ(ξ) of the system (4.2)–(4.3) for τ = 0.3, β = βc = 9.7404, and purely
complex eigenvalue λ = iλc. The solid line corresponds to Re χ, and the dashed line denotes Im χ.

governing PDE and corresponding ODE supports the credibility of both methods (the
difference was found in the third significant digit). At the same time, we believe that
the shooting and relaxation methods are preferable, as they require fewer computer
resources, are more accurate, and do not depend on the stability of the solution.

The Evans function method was employed to examine the linear stability problem.
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In this paper we consider only pulsating instabilities. Methods used in this paper are
able to treat cellular instabilities as well (see [14]), and this is the subject of a separate
paper. It was shown in section 7 that the conventional method for calculating the
Evans function fails in our case. We demonstrated that the compound matrix method
significantly expands the applicability of the Evans function approach. The results
obtained with the compound matrix method were compared to the predictions of the
asymptotic models. It appears that classic asymptotic models derived with truncated
series are able to give only qualitative behavior for the front stability. We cannot
expect the model derived in [4, 5] to give good quantitative results for τ ∈ [0, 0.6]
considered in this paper, as it is valid for τ � 1. We would like to mention that
it is very difficult to check the results of the asymptotic analysis for τ → 1 both
numerically and experimentally, because the pulsating instability manifests itself only
for extremely large values of β in this case. To the best of our knowledge β values of
less than 30, considered in this paper while analyzing the stability of the travelling
front, cover most of the combustion reactions. It turns out that the results obtained
with the generalized matched asymptotic expansion method in [9] best correspond to
the numerical data found in the present paper.

The compound matrix method not only allowed us to obtain a simple numerical
criterion for the transition to instability for steady propagating solutions, but also
provided us with more detailed information about the eigenvalues and eigenmodes.
We located the eigenvalues, responsible for transition to instability, on the complex
plane and found corresponding eigenmodes for the linear stability problem. This
information can be useful, for example, in the analysis of the bifurcating solutions
and their stability.

Finally, we would like to say a few words regarding the ambient temperature,
which was taken to be equal to zero in this paper. The main disadvantage of this
approach is the fact that the ambient temperature is a convenient control parameter
used in experiments. This parameter is also ruled out in the asymptotic theories
mentioned earlier. Therefore it is of clear interest to investigate the effect of this
parameter on the stability of the combustion front. In the future we will be applying
the methods described in this paper to models with finite ambient temperature and
taking heat loss into consideration.
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Abstract. We introduce the notion of (generalized) anisotropic polarization tensors and prove
that they are symmetric and positive-definite. We also estimate the eigenvalues of the anisotropic
polarization tensor in terms of the volume of the given domain. We apply these properties to an
electrical impedance tomography problem to detect a single anisotropic inhomogeneity of small size.
The goal is to detect an unknown inclusion when anisotropic conductivities of the background and
the inclusion are known. Three results of computational experiments for the detection of an inclusion
are given. One experiment is to assure the validity of the algorithm, while the other two are to see
how anisotropy plays a role in the detection procedure.
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1. Introduction. LetB be a bounded Lipschitz domain in R
d, d = 2, 3. Suppose

that the conductivity of B is different from that of background, R
d\B; the polarization

tensor (PT) describes to the first order changes in the voltage potential due to the
presence of the inhomogeneity B. For cases when the conductivities are isotropic,
i.e., when they are independent of direction, the concept of PT was introduced by
Schiffer and Szegö [18] and Pólya and Szegö [17]. If the conductivity is zero, namely,
if B is insulated, the PT tensor is called the virtual mass. This concept of PT was
extensively studied by many authors [17], [13], [8], [16], [6] for various purposes. In [6],
Cedio-Fengya, Moskow, and Vogelius proved the symmetry and positive-definiteness
of PT, and these properties became essential ingredients in recent development on the
electrical impedance tomography (EIT) problem for detecting small inhomogeneities;
see, for example, Cedio-Fengya, Moskow, and Vogelius [6], Brühl, Hanke, and Vogelius
[5], and Ammari and Seo [4]. There are other works on locating inclusions from EIT
data, such as [9], [10], [19]. The concept of PT was recently generalized by Ammari
and Kang to the higher orders for the purpose of derivation of the complete asymptotic
expansion of the voltage potential, and some of the important properties of PT were
obtained [1], [2].

In this paper, we introduce the notion of (generalized) anisotropic polarization
tensor (APT) and establish the symmetry and positive-definiteness of the first order
tensor. We note that, in the anisotropic case, polarization occurs due to not only the
presence of discontinuity, but also the difference of the anisotropy. These tensors are
defined in the same way as the generalized isotropic polarization tensor in [1] and [2].
We also estimate the eigenvalues of the APT in terms of the volume of B.

We then apply these properties of APT to the EIT problem to detect an inho-
mogeneity inclusion with anisotropic conductivity. Let Ω be a bounded domain in
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R
d, d = 2, 3, with a connected Lipschitz boundary ∂Ω. Suppose that Ω contains

a single small inhomogeneity D of the form D = z + εB, where B is a bounded
Lipschitz domain in R

d containing the origin, ε is small and approximately the order
of magnitude of D, and z is a point in D. We assume that D is well separated from
the boundary of Ω, namely, there exists a constant c0 > 0 such that dist(z, ∂Ω) ≥ c0.
We also assume that the background Ω\D has homogeneous anisotropic conductivity
A, and D has homogeneous anisotropic conductivity Ã, where A and Ã are constant
d× d positive-definite symmetric matrices. Thus the conductivity profile of the body
Ω is

γ(x) = χ(Ω \D)A+ χ(D)Ã,(1.1)

where χ(D) is the characteristic function of D. We also assume that A− Ã is either
positive- or negative-definite. (For this, see the remark immediately following the
proof of Lemma 3.2.) The EIT problem we consider is to determine D from a finite
number of pairs of applied current and measured voltage on ∂Ω, when A and Ã are
known.

Let N be the unit normal to ∂Ω. For a given g ∈ L2
0(∂Ω) := {f ∈ L2(∂Ω) :∫

∂Ω
fdσ = 0}, let uε denote the steady-state voltage potential in the presence of the

conductivity inhomogeneities, i.e., the solution to


∇ · (γ(x)∇u(x)) = 0 in Ω,

〈A∇u,N〉|∂Ω = g

(∫
∂Ω

udσ = 0

)
.

(1.2)

We first consider asymptotic expansion of uε as ε → 0 in terms of the background
potential and APTs. The background potential U is the steady-state voltage potential
in the absence of the conductivity inhomogeneities, i.e., the solution to


∇ · (A∇U) = 0 in Ω,

〈A∇U,N〉|∂Ω = g

(∫
∂Ω

Udσ = 0

)
.

(1.3)

We follow the lines in [1] to derive the asymptotic formula of uε on ∂Ω (Theorem
4.1). Then using a simple formula found in [1] relating the Neumann function and
the fundamental solution, we convert this asymptotic formula to that of a function
determined by boundary measurements outside Ω to calculate the far-field relation
(Theorem 4.3). We then use this relation to derive an algorithm for finding APT, the
order of magnitude, and z. In this process, those properties of APT proved in earlier
sections will play essential roles. This method is similar to the one proposed in [3]
for detecting single isotropic inhomogeneity. We also present a different algorithm for
finding the center z based on an idea of [15] and [4].

Using the algorithm, we perform three computational experiments. The first one
is computational validation of the reconstruction formula with and without noise.
The formula or algorithm of reconstruction is derived under the assumption that
Ã− A is either positive- or negative-definite. However, there are practical situations
in which the conductivity is high in one direction and low in another. The second
experiment is to see what happens if Ã − A has eigenvalues of mixed signs. The
results of this experiment show that, even in this case, algorithms find the inclusion
fairly well. Unlike the isotropic case, there is difficulty in understanding what the
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limiting case of extreme conductivity is. The purpose of the third experiment is
to see what happens if the condition number of Ã − A is very large. The result
indicates that if the condition number of Ã − A becomes large, so does the error
of the reconstruction. During these experiments, we compare the performance of
two algorithms. Theoretically, the first algorithm gives better precision of O(εd) in
finding the center. However, computational results show that the second algorithm
works better under the presence of noise in the data.

This paper is organized as follows. In section 2, we briefly review the layer
potentials for the operator ∇ · A∇. In section 3, APTs are defined, and symmetry,
positive-definiteness, and estimation of eigenvalues are proved. In section 4, we derive
reconstruction formulas for finding APT, the order of magnitude of the inclusion, and
the center. Section 5 is for presentation of the computational experiments.

2. Layer potentials. Let D be a bounded domain in R
d, d = 2, 3. We assume

that ∂D is Lipschitz. Let A be a positive-definite symmetric matrix and A∗ be the
positive-definite symmetric matrix such that A−1 = A2

∗. Let Γ(x) be the fundamental
solution of the operator ∇ ·A∇:

Γ(x) =




1

2π
√|A| ln ‖A∗x‖, d = 2,

− 1

4π
√|A|‖A∗x‖

, d = 3,

(2.1)

where |A| is the determinant of A. The single and double layer potentials associated
with A of the density function φ on D are defined by

SDφ(x) :=

∫
∂D

Γ(x− y)φ(y)dσ(y), x ∈ R
d,(2.2)

DDφ(x) :=

∫
∂D

∂

∂νy
Γ(x− y)φ(y)dσ(y), x ∈ R

d \ ∂D,(2.3)

where ∂u
∂ν := 〈AN,∇u〉, and N is the outward unit normal to ∂D.

We now suppose that D is compactly contained in a bounded domain Ω. Suppose
that the background conductor Ω \D has anisotropic conductivity A, and D has Ã.
We always suppose that Ã−A is either positive-definite or negative-definite. S̃D and
SD denote the single layer potentials onD corresponding to Ã and A, respectively. We
also denote ∂u

∂ν̃ := 〈ÃN,∇u〉. The subscript + in the notation u|+ denotes the limit
to the boundary from the outside of a given domain, and − indicates the limit from
the inside. The following result of Escauriaza and Seo [7] is an essential ingredient of
the present paper.

Theorem 2.1. For each (F,G) ∈ L2
1(∂D)×L2(∂D), there exists a unique solution

(f, g) ∈ L2(∂D)× L2(∂D) of the integral equation


S̃Df − SDg = F

∂

∂ν̃
S̃Df

∣∣∣∣− − ∂

∂ν
SDg

∣∣∣∣
+

= G
on ∂D.(2.4)

Moreover, there exists a constant C depending on only the largest and smallest eigen-
values of Ã, A, and Ã−A, and the Lipschitz character of D such that

‖f‖L2(∂D) + ‖g‖L2(∂D) ≤ C(‖F‖L2
1(∂D) + ‖G‖L2(∂D)).(2.5)
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3. The APT. We will be using the usual notation for multiindices: for multiin-
dex α = (α1, . . . , αd), x

α := xα1
1 · · ·xαd

d , ∂α := ∂α1
1 · · · ∂αd

d , etc.

As in [1], (generalized) APTs are defined as follows.

Definition 3.1. Let B be a bounded Lipschitz domain in R
d, and Ã and A be

the anisotropic conductivities of B and R
d \ B, respectively. For a multiindex α, let

(fα, gα) ∈ L2(∂B)× L2(∂B) be the unique solution of




S̃Bfα − SBgα = xα

∂

∂ν̃
S̃Bfα

∣∣∣∣
−
− ∂

∂ν
SBgα

∣∣∣∣
+

= ∂
∂νx

α
on ∂B.(3.1)

For a pair of multiindices α, β, define the anisotropic polarization tensors (APTs)
associated with the domain B and anisotropic conductivities Ã and A by

mαβ =

∫
∂B

yβgα(y)dσ.(3.2)

The first order APT (|α| = |β| = 1) is particularly important. In this section, we
prove those properties of the first order APT which play significant roles in detection
of an inhomogeneity inclusion, such as symmetry, positive-definiteness, and estimation
of the eigenvalues. When |α| = |β| = 1, denote mαβ by mij , i, j = 1, . . . , d, i.e.,

mij =

∫
∂B

yjgi(y)dσ,(3.3)

where fi = fα and gi = gα with α = ei. Here and throughout this section we drop
the subscript B from the notation of single layer potentials. Define

φi(x) :=

{
Sgi(x), x ∈ R

d \B,
S̃fi(x), x ∈ B.

Then φi is the unique solution of the following transmission problem:




∇ · (A∇φi) = 0 in R
d \B,

∇ · (Ã∇φi) = 0 in B,

φi|− − φi|+ = xi on ∂B,

∂φi
∂ν̃

∣∣∣∣
−
− ∂φi
∂ν

∣∣∣∣
+

=
∂xi
∂ν

on ∂B,

φi(x) = O(|x|−d+1) as |x| → ∞.

By the jump relation of the single layer potential, gi = ∂(Sgi)
∂ν

∣∣
+
− ∂(Sgi)

∂ν

∣∣
−. Thus it
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follows from (3.1) that

∫
∂B

yjgidσ =

∫
∂B

yj

[
∂(Sgi)
∂ν

∣∣∣∣
+

− ∂(Sgi)
∂ν

∣∣∣∣
−

]
dσ

=

∫
∂B

yj

[
∂(S̃fi)
∂ν̃

∣∣∣∣∣
−
− ∂yi
∂ν

− ∂(Sgi)
∂ν

∣∣∣∣
−

]
dσ

=

∫
∂B

[
∂yj
∂ν̃

S̃fi − ∂yj
∂ν

(
yi + Sgi

)]
dσ

=

∫
∂B

[
∂yj
∂ν̃

− ∂yj
∂ν

]
φi|−(y)dσ.

Therefore,

mij =

〈
(Ã−A)ej ,

∫
B

∇φi(y)dy
〉
,(3.4)

or equivalently,

mij = 〈(Ã−A)ej , ei〉|B|+
∫
∂B

〈(Ã−A)N, ej〉φi|+(y)dσ.(3.5)

In particular, if Ã and A are isotropic, say Ã = µ̃I and A = µI, then one can easily
check that

mij =

(
1− µ

µ̃

)[
µ̃δij |B|+ µ̃

∫
∂B

yj
∂φi
∂ν

∣∣∣∣
+

]
,

which is the polarization tensor studied in [6].
Let M = (mij). Suppose that d = 3 for convenience. The two dimensional case

can be treated in the same way without change. Let A∗ be the unique positive-definite
symmetric matrix such that A−1 = A2

∗. Then A∗ÃA∗ is also symmetric positive-
definite. Let λj and vj , j = 1, 2, 3, be eigenvalues and corresponding eigenvectors of

A∗ÃA∗, respectively. Let wj = A∗vj , j = 1, 2, 3. Since A∗ÃA∗vj = λjvj , we have

Ãwj = λjAwj . Therefore, we get

(Ã−A)wj = (λj − 1)Awj =
λj − 1

λj
Ãwj .(3.6)

Note that λj > 1 (< 1) if Ã−A is positive (negative)-definite. Let f∗i := wi ·(f1, f2, f3)
and g∗i := wi · (g1, g2, g3), i = 1, 2, 3. Then (f∗i , g

∗
i ) is the unique solution of


S̃f∗i (x)− Sg∗i (x) = wi · x

∂

∂ν̃
S̃f∗i

∣∣∣∣
−

(x)− ∂
∂νSg∗i

∣∣
+

(x) =
∂

∂ν
(wi · x)

on ∂B.(3.7)

For a domain D and positive-definite symmetric matrix A, define a bilinear form

(f, g)AD :=

∫
D

〈A∇f,∇g〉dx,
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and let QAD denote the corresponding quadratic form.
Lemma 3.2. ∫

∂B

(wj · y)g∗i dσ =

∫
∂B

(wi · y)g∗j dσ, i, j = 1, 2, 3,(3.8)

and

λj + 1

λj − 1

∫
∂B

(wj · y)g∗i dσ = (S̃f∗j , S̃f∗i )ÃB + (Sg∗j ,Sg∗i )AR3\B(3.9)

+ (wj · y, wi · y)AB − (Sg∗j , wi · y)AB + (wj · y,Sg∗i )AB .
Proof. In the same way as before, we can show that∫

∂B

(wj · y)g∗i dσ =

∫
∂B

[
∂(wj · y)
∂ν̃

− ∂(wj · y)
∂ν

]
S̃f∗i dσ.(3.10)

Note that, by (3.6),

∂(wj · y)
∂ν̃

− ∂(wj · y)
∂ν

= 〈N, (Ã−A)wj〉 =




(λj − 1)
∂(wj · y)
∂ν

,

λj − 1

λj

∂(wj · y)
∂ν̃

.

(3.11)

It then follows from (3.7) and the first relation in (3.11) that

1

λj − 1

∫
∂B

(wj · y)g∗i dσ =

∫
∂B

∂(wj · y)
∂ν

S̃f∗i dσ

=

∫
∂B

∂(wj · y + Sg∗j )
∂ν

∣∣∣∣
−

(wi · y + Sg∗i )dσ −
∫
∂B

∂Sg∗j
∂ν

∣∣∣∣
−

(wi · y + Sg∗i )dσ

=

∫
∂B

∂(wj · y + Sg∗j )
∂ν

∣∣∣∣
−

(wi · y + Sg∗i )dσ −
∫
∂B

(Sg∗j )
∂(wi · y + Sg∗i )

∂ν

∣∣∣∣
−
dσ.

(3.12)

On the other hand, by (3.7) and the second relation in (3.11), we get

λj
λj − 1

∫
∂B

(wj · y)g∗i dσ =

∫
∂B

∂(wj · y)
∂ν̃

S̃f∗i dσ =

∫
∂B

(wj · y) ∂(S̃f
∗
i )

∂ν̃

∣∣∣∣∣
−
dσ

=

∫
∂B

S̃f∗j
∂(S̃f∗i )
∂ν̃

∣∣∣∣∣
−
−
∫
∂B

Sg∗j
∂Sg∗i
∂ν

∣∣∣∣
+

−
∫
∂B

Sg∗j
∂(wi · y)
∂ν

.

(3.13)

Subtracting (3.12) from (3.13), we get∫
∂B

(wj · y)g∗i dσ = −
∫
∂B

∂(wj · y + Sg∗j )
∂ν

∣∣∣∣
−

(wi · y + Sg∗i )

+

∫
∂B

S̃f∗j
∂(S̃f∗i )
∂ν̃

∣∣∣∣∣
−
−
∫
∂B

Sg∗j
[
∂Sg∗i
∂ν

∣∣∣∣
+

− ∂Sg∗i
∂ν

∣∣∣∣
−

]

= −(wj · y + Sg∗j , wi · y + Sg∗i )AB + (S̃f∗j , S̃f∗i )ÃB −
∫
∂B

Sg∗j g∗i dσ.



1282 H. KANG, E. J. KIM, AND K. KIM

Since
∫
B
Sg∗j g∗i dσ =

∫
B
g∗jSg∗i dσ, we have (3.8).

To prove (3.9) we write (3.12) in slightly different way: By (3.7), we get

1

λj − 1

∫
∂B

(wj · y)g∗i dσ =

∫
∂B

∂(wj · y)
∂ν

Sg∗i dσ +

∫
∂B

∂(wj · y)
∂ν

(wi · y)dσ.(3.14)

Adding (3.13) with (3.14), we get (3.9). This completes the proof.
Remark. Let M := (mij). If Ã − A is positive- or negative-semidefinite, not

definite, then some λj = 1. Suppose λj = 1. Then (3.10) and (3.6) show that

〈wi,Mwj〉 =

∫
∂B

(wj · y)g∗i dσ = 0, i = 1, 2, 3.

Since w1, w2, w3 are linearly independent, Mwj = 0. In particular, M is singular.

This is the reason why we are assuming that Ã−A is positive- or negative-definite.
Theorem 3.3. The anisotropic polarization tensorM is symmetric, and for each

a �= 0 ∈ R
d there exists ā ∈ R

d such that 〈ā,Ma〉 > 0. In fact, if a =
∑
i a

∗
iwi, then

ā =
∑
i

λi + 1

λi − 1
a∗iwi.(3.15)

Proof. Let a, b ∈ R
3, let a =

∑
i a

∗
iwi and b =

∑
i b

∗
iwi. Then

〈b,Ma〉 =

∫
∂B

(a · y)(b · g)(x)dσ =

d∑
i,j=1

a∗jb
∗
i

∫
∂B

(wj · y)(wi · g)(y)dσ,

where g = (g1, g2, g3). Thus, by (3.8), we obtain

〈b,Ma〉 =

d∑
i,j=1

a∗jb
∗
i

∫
∂B

(wj · y)(wi · g)(y)dσ

=

d∑
i,j=1

a∗jb
∗
i

∫
∂B

(wi · y)(wj · g)(y)dσ

=

∫
∂B

(b · y)(a · g)(y)dσ = 〈a,Mb〉.

For a given a, define ā as (3.15). Then

〈ā,Ma〉 =

d∑
i,j=1

λj + 1

λj − 1
a∗i a

∗
j

∫
∂B

(wj · y)(wi · g)(y)dσ.

Let fa =
∑
i a

∗
i f

∗
i = a · f and ga =

∑
i a

∗
i g

∗
i = a · g. It then follows from (3.9) that

〈ā,Ma〉 = (S̃fa, S̃fa)ÃB + (Sga,Sga)AR3\B(3.16)

+ (a · y, a · y)AB − (Sga, a · y)AB + (a · y,Sga)AB
= QÃB(S̃fa) +QA

R
d\B(Sga) + 〈a,Aa〉|B|.

Thus the proof is complete.
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Without loss of generality, let us suppose that Ã − A is positive-definite so that
λj > 1, j = 1, 2, 3. One can immediately observe from (3.16) that

C1‖a‖2|B| ≤ 〈ā,Ma〉(3.17)

for some constant C1 depending only on A.
Fix a point z ∈ B. Since

∫
∂B
gi(y)dσ = 0, we get from the definition of APT that

|mij | ≤
(∫

∂B

(yj − zj)2dσ
)1/2(∫

∂B

|gi(y)|2dσ
)1/2

≤ diam(B)|∂B|1/2‖gi‖L2(∂B).

It then follows from (2.5) that

|mij | ≤ Cdiam(B)|∂B| ≤ C|B|,

where the dependence of the constant C is the same as that in Theorem 2.1. Thus
we obtain

〈ā,Ma〉 ≤ C|B|‖a‖‖ā‖ ≤ C2|B|‖a‖2

for some C2. Therefore we get

C1‖a‖2|B| ≤ 〈ā,Ma〉 ≤ C2‖a‖2|B|.(3.18)

Define constant matrices W and Λ by

W := [w1, w2, w3]
T and Λ := diag

[
µ1, µ2, µ3], µj :=

λj + 1

λj − 1
.(3.19)

We also define

V := [v1, v2, v3]
T .(3.20)

Note that W is nonsingular, W = A∗V , and W and Λ are determined by A and Ã.
One can easily check that ā defined by (3.15) can be written as

ā =W−1ΛWa.(3.21)

Thus (3.18) reads

C1|B|‖a‖2 ≤ 〈W−1ΛWa,Ma〉 ≤ C2|B|‖a‖2.

Let b =Wa. Then we have

C1|B|‖b‖2 ≤ 〈W−1Λb,MW−1b〉 = 〈Λb, (W−1)TMW−1b〉 ≤ C2|B|‖b‖2.(3.22)

Here constants C1 and C2 are different from previous ones. However, their dependence
is the same. Let v be an eigenvector of the symmetric matrix (W−1)TMW−1 and µ
be the corresponding eigenvalue. Then µ > 0 and

〈Λv, (W−1)TMW−1v〉 = 〈Λv, µv〉 = µ‖Λ1/2v‖2.
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It then follows from (3.22) that

C1|B|‖v‖2 ≤ µ‖Λ1/2v‖2 ≤ C2|B|‖v‖2,

and hence

C1|B| ≤ µ ≤ C2|B|.(3.23)

Therefore, (W−1)TMW−1 is positive-definite and

C1|B|‖b‖2 ≤ 〈b, (W−1)TMW−1b〉 ≤ C2|B|‖b‖2 ∀b ∈ R
d.

Hence, by letting a =W−1b, we get

C1|B|‖a‖2 ≤ 〈a,Ma〉 ≤ C2|B|‖a‖2 ∀a ∈ R
d.

As a consequence, we obtain the following estimation of the eigenvalues of M .
Theorem 3.4. If Ã − A is positive(negative)-definite, so is M . If µ is an

eigenvalue of M , then

C1|B| ≤ |µ| ≤ C2|B|(3.24)

for some constants C1 and C2, whose dependence is the same as that in Theorem 2.1.

4. Detection of an inclusion. Recall that D = z + εB. Let N(x, y), x ∈
∂Ω, y ∈ Ω, be the Neumann function for ∇ · A∇ on Ω, and mαβ the APTs. Follow-
ing the same lines of derivation used in [1], one can prove the following asymptotic
expansion of the solution uε to (1.2) on ∂Ω.

Theorem 4.1. For x ∈ ∂Ω,

uε(x) = U(x)− εd
d∑

|α|=1

d−|α|+1∑
|β|=1

ε|α|+|β|−2

α!β!
∂αU(z)mαβ∂

β
zN(x, z) +O(ε2d),(4.1)

where the remainder O(ε2d) is dominated by Cε2d for some C independent of x ∈ ∂Ω
and z.

In fact, as in [1], one can represent the solution uε in terms of layer potentials and
the Neumann functions, and then obtain the expansion (4.1). We note that if there
are well-separated multiple inclusions, then an asymptotic formula can be obtained
by adding formula (4.1).

We now define a function H[g] for g ∈ L2
0(∂Ω) by

H[g](x) = −SΩ(g)(x) +DΩ(uε|∂Ω)(x), x ∈ R
d \ Ω.(4.2)

Substituting (4.1) into (4.2), one can see that

H[g](x) = −SΩ(g)(x) +DΩ(U |∂Ω)(x)

− εd
d∑

|α|=1

d−|α|+1∑
|β|=1

ε|α|+|β|−2

α!β!
∂αU(z)mαβ∂

β
zDΩ(N(·, z))(x) +O

(
ε2d

|x|d−1

)
.

We then observe two simple but important facts. First, observe that −SΩ(g)(x) +
DΩ(U |∂Ω)(x) = 0 if x ∈ R

d \ Ω. Second, in the same way as that used for the proof
of Lemma 2.3 of [1], we can show that

DΩ(N(·, z))|+(x) = Γ(x− z) modulo constants ∀x ∈ ∂Ω, ∀z ∈ Ω.(4.3)
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Thus we obtain the following asymptotic expansion of H[g] outside Ω.
Theorem 4.2. For x ∈ R

d \ Ω,

H[g](x) = −εd
d∑

|α|=1

d−|α|+1∑
|β|=1

ε|α|+|β|−2

α!β!
∂αU(z)mαβ∂

β
z Γ(x, z) +O

(
ε2d

|x|d−1

)
.(4.4)

Suppose now that g = 〈AN, a〉 for a constant vector a ∈ R
d. Then U(x) = a · x

and the formula (4.4) takes the form

H[g](x) = −εd
∑
|α|=1

d∑
|β|=1

ε|β|−1

β!
∂αU(z)mαβ∂

β
z Γ(x, z) +O

(
ε2d

|x|d−1

)
.(4.5)

Then by explicitly computing ∂βz Γ(x, z), one can show that

H[g](x) =
1

ωd

〈
a, εdMA∗

A∗(x− z)
|A∗(x− z)|d

〉
+O

(
εd

|x|d
)

+O

(
ε2d

|x|d−1

)
,(4.6)

where ωd = 2π if d = 2, and ωd = 4π if d = 3, and M = (mij) is the first order APT.
For a general Neumann datum g, we have

H[g](x) =
1

ωd

〈
∇U(z), εdMA∗

A∗(x− z)
|A∗(x− z)|d

〉
+O

(
εd

|x|d
)

+O

(
εd+1

|x|d−1

)
.(4.7)

Since A∗(x−z)
|A∗(x−z)|d = A∗x

|A∗x|d + O(|x|−d), we obtain from (4.6) and (4.7) the following

far-field relations.
Theorem 4.3. For g ∈ L2

0(∂Ω), let Ug be the solution of (1.3). Then, for
|x| = O(ε−1),

ωd|A∗x|d−1H[g](x) =

〈
∇Ug(z), εdMA∗

A∗x
|A∗x|

〉
modulo O(εd+1).(4.8)

If g = 〈AN, a〉, then for |x| = O(ε−d)

ωd|A∗x|d−1H[g](x) =

〈
a, εdMA∗

A∗x
|A∗x|

〉
modulo O(ε2d).(4.9)

We note that (4.8) is a general far-field relation, while (4.9) is a formula with
better precision.

Using (4.6), (4.8), and (4.9), we can detect APT, the order of magnitude of D,
and z.

Detection of APT. Now let a = ei, or equivalently, g = 〈AN, ei〉, and choose
bj = O(ε−d) so that

A∗
A∗bj
|A∗bj | = ej , i, j = 1, . . . , d.(4.10)

It then follows from (4.9) that

εdmij = ωd|A∗bj |d−1H[g](bj) modulo O(ε2d).(4.11)

Since ε is not known a priori, in actual computations we find unit vectors bj satisfying
(4.10) and then compute ωd|tA∗bj |d−1H[g](tbj) as t→ ∞. Since the first order APT
is invariant under translation, as one can easily check, εdM is the first order APT for
the domain D.
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Detection of order of magnitude. Having found εdM , we proceed to find the
order of magnitude ε and the center z. Using (3.24), we can determine the order
of magnitude of D. Let µ be the smallest (in absolute value) eigenvalue of εdM .
Then, by Theorem 3.4, εd|B| ≈ |µ|. Considering the ambiguity of representation of
D = z + εB, εd|B| or ε|B|1/d seems the right notion of the order of magnitude.

Detection of center—Method 1. Let vj , j = 1, . . . , d, be orthonormal eigen-
vectors of the symmetric matrix A∗(εdM)A∗ with the corresponding eigenvalue λj ,
and aj := A∗vj and gj := 〈AN, aj〉. Let x(t) := taj +O(ε−1)a⊥j , where a⊥j is a vector

perpendicular to aj . Then |x(t)| = O(ε−1), and hence, by (4.6), we get

H[gj ](x(t)) =
λj
ωd

|aj |2t− aj · z
|A∗(x(t)− z)|d modulo O(ε2d).(4.12)

Find the unique zero, call it tj , of H[gj ](x(t)) as a function of t for j = 1, . . . , d. Let
z̄ = t1a1 + · · · + tdad. This z̄ is the center. In fact, by the same argument as in [4],
we can prove that

|z̄ − z| = O(εd).

Detection of center—Method 2. Let bj , j = 1, . . . , d, be the unit vector
defined by (4.10). Then, from (4.8), we get

ωd|tA∗bj |d−1H[g](tbj) = 〈∇Ug(z), εdMej〉 modulo O(εd+1).(4.13)

Let g = ∂U
∂ν , where U is a second order homogeneous harmonic polynomial. By

computing ωd|tA∗bj |d−1H[g](tbj) as t→ ∞, we recover 〈∇U(z), εdMej〉, j = 1, . . . , d.
From this we now recover ∇Ug(z), and hence the center z modulo O(ε1).

The precision of this method is O(ε1), which is worse than Method 1. However,
numerical experiments in the next section show that this method performs better
when there is noise in the data.

5. Computational experiments. This section presents results of numerical
experiments of finding the inhomogeneity, D ⊂ Ω ⊂ R

2. In the following, Ω is assumed
to be the disk centered at (0, 0), with radius r = 2 and the background conductivity
A = I. We also assume that D = z + εB, where B is the unit disk centered at
(0, 0). We note that in the anisotropic case, D being a disk does not provide a special
advantage. Moreover, in the process of solving the inverse problem, we don’t use any
a priori knowledge of D being a disk.

Direct problem. Let u be the solution of (1.2). In order to collect the data
u|∂Ω, we solve the direct problem (1.2) as follows: In the same way as in [12], it can
be proved that u is represented by

u(x) =

{ DΩu(x)− SΩg(x) + SDφ(x) in Ω \D,
S̃Dψ(x) in D,

where u|∂Ω, φ, and ψ satisfy the following relations:

u = DΩu
∣∣
− − SΩg

∣∣
− + SDφ on ∂Ω,

DΩu− SΩg + SDφ
∣∣
+

= S̃Dϕ
∣∣
− on ∂D,

∂

∂ν
DΩu− ∂

∂ν
SΩg +

∂

∂ν
SDφ

∣∣∣∣
+

=
∂

∂ν̃
S̃Dϕ

∣∣∣∣
−

on ∂D.
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We solve this integral equation using the collocation method (see [14]) and obtain
u|∂Ω on ∂Ω for given data g. We also add some noise to the computed data. Adding
p% noise means that we have

u(1 + p · rand(1))
as the measured Dirichlet data. Here rand(1) is the random number in (−1, 1).

Reconstruction Algorithm 1.
Step 1. Obtain Dirichlet data u on ∂Ω for given Neumann data gj = 〈N, ej〉, j = 1, 2.
Step 2. For i, j = 1, 2, calculate limt→∞ ω2tH[gi](tej) to obtain the matrix ε2M .
Step 3. Find orthonormal eigenvectors v1, v2 and corresponding eigenvalues µ1, µ2

of ε2M . Let µ be the minimum of µ1, µ2. The order of magnitude of D is
ε =

√
µ|B|−1.

Step 4. Let g′j = 〈N, vj〉 and xj(t) = tvj + 1
ε v

⊥
j , j = 1, 2. Find the zero, say tj , of

H[g′j ](xj(t)) = vj · e1H[g1](xj(t)) + vj · e2H[g2](xj(t)) as a function of t. We
obtain the center z̄ = t1v1 + t2v2.

Reconstruction Algorithm 2. Step 4 in the above algorithm is replaced with

Step 4′. For g = ∂(x1x2)
∂ν , compute hj = limt→∞ ω2tH[g](tej), j = 1, 2. Then

(z1, z2) = (h1, h2)

(
ε2m12 ε2m22

ε2m11 ε2m12

)−1

.

We add the same amount of random noise in this step as well.
We now present the results of computational experiments. The first experiment

is when Ã − A is positive-definite; the second one is when Ã − A is not positive-
definite; the third one is to investigate the role of the condition number of Ã − A in
the reconstruction process.
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Fig. 1. First example.

Table 1
Numerical table for Figure 1. Here r and r̄ are the actual and computed radii, and z, z̄1, and

z̄2 are the actual radius and those computed by Algorithms 1 and 2, respectively.

z r noise(%) r̄ z̄1 |z − z̄1|
z̄2 |z − z̄2|

0 0.2204 (−0.9994,−0.9994) 8.1154e-004
(−0.9994,−0.9994) 8.4362e-004

2 0.2101 (−0.3681,−0.9038) 0.6391
(−1,−1) 0.2 (−0.9445,−1.2519) 0.2580

5 0.2463 (−0.4936,−0.7715) 0.5556
(−0.6787,−0.9790) 0.3220
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Fig. 2. Second example.

Table 2
Numerical table for Figure 2. See explanations for Table 1.

z r noise(%) r̄ z̄1 |z − z̄1|
z̄2 |z − z̄2|

0 0.1557 (−0.0000, 0.9999) 1.2316e-004
(−0.0000, 0.9998) 1.6690e-004

2 0.1417 (−0.1421, 1.1468) 0.2043
(0, 1) 0.2 (0.0288, 1.0771) 0.0823

5 0.1689 (−0.3499, 1.1841) 0.3954
(0.1036, 0.7906) 0.2336

Experiment 1. Let Ã =
(

10 2
2 5

)
and the actual inhomogeneity D = (−1,−1) +

0.2B. Note that Ã − A is positive-definite. Figure 1 shows the results when there
are 0%, 2%, and 5% random noise. Figure 2 is the result when Ã =

(
10 1
1 2

)
and

D = (0, 1) + 0.2B.
These results show that both Algorithms 1 and 2 detect the order of magnitude

of the inclusion fairly well even with the presence of noise. However, Algorithm 2
performs better than Algorithm 1 in detecting the center when there is noise. A
probable cause for this is that the zeros of functions in (4.12), which is already small,
are sensitive to the noise.

Figure 3 shows that the location of the unknown inclusions does not affect the
performance of the algorithms as long as they are away from ∂Ω.

Experiment 2. This experiment is designed to determine whether the algorithms
work in the case when Ã−A is neither positive- nor negative-definite. Let Ã =

(
2 0
2 1/2

)
and D = (1, 0)+0.2B. Figure 4 shows the result. The algorithms seem to be working
equally well for this case. It would be interesting to prove that the reconstruction
formulas in this paper hold even when Ã−A is neither positive- nor negative-definite.
In this example as well, Algorithm 2 performs better in detection of the center.

Experiment 3. This experiment is designed to determine how the condition number
of Ã − A affects the precision of the algorithm. Suppose A = I. We first take

Ã =
(
λ 0
0 2

)
and observe how the relative error |z−z̄|

ε2 changes as λ increases. We then

take Ã =
(
λ+1 0

0 λ

)
and make the same observations. Figure 5 compares changes of

relative errors of these two cases when λ = 10, 102, 104, 105, 106. It exhibits a clear
difference: In the first case, when the condition number of Ã − A increases as λ
increases, the relative error is increasing, while in the second case, when the condition
number does not change, the error is stabilized. The second case is somewhat similar
to the isotropic case, and this kind of result is expected (see [11] or [2]). It is known
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Fig. 3. Third example.

Table 3
Numerical table for Figure 3. See explanation for Table 1.

z r noise(%) r̄ z̄1 |z − z̄1|
z̄2 |z − z̄2|

0 0.1559 (−0.2000, 0.1000) 1.2081e-005
(−0.2000, 0.1000) 1.6354e-005

2 0.1798 (−0.2342,−0.0643) 0.1678
(−0.2, 0.1) 0.2 (−0.2108, 0.1830) 0.0837

5 0.1785 (−0.2120, 0.5493) 0.4495
(−0.2405, 0.2464) 0.1519
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Fig. 4. Fourth example.

Table 4
Numerical table for Figure 4. See explanation for Table 1.

z r noise(%) r̄ z̄1 |z − z̄1|
z̄2 |z − z̄2|

0 0.1739 (0.9447,−0.0000) 0.0553
(1.0002,−0.0000) 1.8443e-004

2 0.1586 (1.4031, 0.1347) 0.4250
(1, 0) 0.2 (1.0186,−0.0427) 0.0465

5 0.1436 (0.3048,−0.0702) 0.6987
(0.9891, 0.1656) 0.1660
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Fig. 5. The graphs show how the quantities
|z−z̄|
ε2

change as λ goes to ∞. (a) The condition
number of Ã − A is λ, and the relative error increases. (b) The condition number of Ã − A is 1,
and the relative error does not increase.

that long and thin inclusions, or cracklike inclusions (inclusions of high Lipschitz
character) are hard to detect; see, for example, [4]. This experiment suggests that
in addition to these geometric obstructions, in the anisotropic case there is another
obstruction of high condition number of Ã−A.

Conclusion. Numerical results show that the second reconstruction algorithm
performs better in the presence of noise. They also show that the reconstruction
procedure works well even when A− Ã is neither positive- nor negative-definite, and
that the error of reconstruction increases as the condition number of A− Ã increases.
It would be interesting to investigate these points in a mathematically rigorous way.
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THE NO RESPONSE TEST—A SAMPLING METHOD FOR
INVERSE SCATTERING PROBLEMS∗
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Abstract. We describe a novel technique, which we call the no response test, to locate the
support of a scatterer from knowledge of a far field pattern of a scattered acoustic wave. The
method uses a set of sampling surfaces and a special test response to detect the support of a scatterer
without a priori knowledge of the physical properties of the scatterer. Specifically, the method does
not depend on information about whether the scatterer is penetrable or impenetrable nor does it
depend on any knowledge of the nature of the scatterer (absorbing, reflecting, etc.). In contrast
to previous sampling algorithms, the techniques described here enable one to locate obstacles or
inhomogeneities from the far field pattern of only one incident field—the no response test is a one-
wave method. We investigate the theoretical basis for the no response test and derive a one-wave
uniqueness proof for a region containing the scatterer. We show how to find the object within this
region. We demonstrate the applicability of the method by reconstructing sound-soft, sound-hard,
impedance, and inhomogeneous medium scatterers in two dimensions from one wave with full and
limited aperture far-field data.

Key words. inverse problems, scattering theory, image processing
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1. Introduction. Inverse scattering is concerned with recovering information
about a medium and its embedded objects by exciting or illuminating the medium
with acoustic or electromagnetic fields and measuring the resulting field. One of the
fundamental problems is to determine the location and shape of scatterers that are
either buried or located in some inaccessible region of a medium. Applications range
from geoscience to medical imaging.

Over the past decade, several innovative and successful methods have been intro-
duced into the area of inverse scattering. Here, we add to the list a methodology that
we call the no response test and demonstrate its applicability. The idea of the method
is to test the hypothesis that a scatterer lies within a given test domain given the far
field data. We sample by construction the set of incident fields that are small on the
test domain and large outside. The far field patterns corresponding to these incident
fields are then calculated using the given far field data. We call the calculated far
field patterns responses. If all the responses are small, then the unknown scatterer is
shown to be a subset of the test domain, that is, the hypothesis is true. The unknown
scatterer is located within the union of all test domains for which the hypothesis is
true. Since small, rather than large, responses indicate the location of the scatterer,
the methodology is called the “no response” method.

To place this methodology relative to other reconstruction techniques, we give
a brief review of the different reconstruction approaches. The evolutionary tree of
inverse scattering algorithms is diverse enough that some taxonomy is in order. We
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separate reconstruction algorithms into three classes: iterative, decomposition, and
sampling/probe methods.

Category Methods

I Iterative techniques
Newton method
Landweber scheme
Least squares fits (depending on the setup)
Conjugate gradient method

II Decomposition techniques
Colton–Monk method / dual space method
Kirsch–Kress method
Potthast / point source method

III Probe and sampling techniques
Colton–Kirsch method / linear sampling method
Kirsch / factorization method
Potthast / singular sources method
Ikehata / probe method
Ikehata / enclosure method
Luke–Potthast / no response test

Iterative methods (category I in [16]) use the model of the full forward problem,
or an appropriate approximation thereof, for the solution of the inverse problem.
These techniques have the advantage that they use all information about the forward
problem for the solution of the inverse problem, and they usually deliver quite good
reconstructions. However, due to the need to solve the forward problem many times,
they can be computationally intensive. Also, obtaining a localized reconstruction in
a limited data setting is problematic since full data for solving the forward problem
is presumed. Indeed, at the very least it is presumed that one knows which model
the data should satisfy. Well-known examples of iterative techniques are the Newton
method, the Landweber method, and various versions of least squares fits.

Decomposition algorithms (category II in [16]) consist of methods that split the in-
verse problem into an ill-posed part to reconstruct the scattered field and a well-posed
part to find the unknown scatterer due to some boundary condition. Representatives
of this type of method are the dual space method proposed by Colton and Monk
[3, 4] and the technique of Kirsch and Kress [2], but also newer strategies like the
point source method of Potthast [14, 15, 16], which turns out to be a type of adjoint
method to the Kirsch–Kress technique.

Sampling and probe methods comprise the third and most recent class of algo-
rithms (category III in [16]). These involve testing a given region with a model map-
ping the data to a point in the test region and locating the boundary of the unknown
scatterer as the points where some unusual or characteristic behavior (usually some
resolvable type of blow-up) occurs in the model functions. Where these techniques
differ is in the construction of the model functions, which leads to fundamentally
different algorithms. These methods share the advantage that they can be applied
without knowing whether the scatterer is an impenetrable (sound-soft or sound-hard)
or an inhomogeneous medium. The no response test belongs to this class. We discuss
in more detail the different strategies within this class that have been proposed since
1995.

A scatterer is denoted by its support Ω ⊂ R
m (m = 2 or 3) where Ω is bounded.

For our purposes we need only assume that the boundary of the scatterer ∂Ω is
Lipschitz; however, this introduces mathematical technicalities that cloud the central
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ideas here. We therefore limit our discussion to twice continuously differentiable (C2)
boundaries. Readers interested in the details of boundaries with corners, or more
generally Lipschitz boundaries, are referred to [11, 12]. We denote by ν(x0) the unit
outward normal to Ω at the point x0 ∈ ∂Ω, that is, |ν(x0)| = 1 and the vector product
(y − x0, ν(x0)) ≤ 0 for every y ∈ Ω.

Let u, us : R
m → C and u∞ : S → C denote the total, scattered, and far fields,

respectively, due to excitation from an incident plane wave ui at a fixed wavenumber
κ > 0. Here S := {x ∈ R

m | |x| = 1}. We parameterize these fields by the direction
of incidence ŷ of the incident plane wave ui(x, ŷ) := eiκx·ŷ, x ∈ R

m, ŷ ∈ S, where
i =

√−1 in the exponential. Similarly we write the dependence on the direction
of incidence explicitly in the argument of the other fields as u(x, ŷ), us(x, ŷ), and
u∞(x̂, ŷ), respectively. Here and elsewhere, the hat indicates a unit vector, x̂ := x

|x| .
When the far field data is known only on an open subset Γ of S, we call the data
limited aperture data.

Assumptions
Method Amount of on the physical

far field data needed nature of the
scatterer

Colton–Kirsch /
linear sampling method u∞(x̂, ŷ) ∀x̂, ŷ ∈ Γ ⊂ S none
Kirsch / factorization method u∞(x̂, ŷ) ∀x̂, ŷ ∈ S none
Potthast /
singular sources method u∞(x̂, ŷ) ∀x̂, ŷ ∈ Γ ⊂ S none
Ikehata / probe method u∞(x̂, ŷ) ∀x̂, ŷ ∈ S none
Ikehata / enclosure method u∞(x̂, ŷ) ∀x̂ ∈ S one ŷ ∈ S none
Luke–Potthast / u∞(x̂, ŷ) ∀x̂ ∈ Γ ⊂ S

no response test one ŷ ∈ S none

The linear sampling method of Colton and Kirsch [1] characterizes the domain of
an unknown scatterer by the behavior of the solution to the integral equation of the
first kind: ∫

S

u∞(x̂, ŷ)g(ŷ)ds(ŷ) = eiκx̂·z, x̂ ∈ S.(1.1)

Here a regularized solution g is calculated for all points z on a sampling grid G. The
unknown boundary is found where ||g(z)|| becomes unbounded.

Kirsch [10] proposed a modified version of this method by constructing a spectral
decomposition of the operator

(Fg)(x̂) :=

∫
S

u∞(x̂, ŷ)g(ŷ)ds(ŷ), x̂ ∈ S,

used in (1.1). He proposed to solve the equation

(F ∗F )1/4g(x̂) = eiκx̂·z, x̂ ∈ S,

for all z ∈ G and showed that the equation is solvable if and only if z is in the interior
of the unknown scatterer. This technique of Kirsch is known as the modified linear
sampling or factorization method.

Ikehata and Potthast have independently proposed two related algorithms, the
probe method [6] and the method of singular sources [16], respectively. These tech-
niques are distinct from the (modified) linear sampling methods above in that they use
different quantities that blow up when approaching the boundary of some scatterer.
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The probe method of Ikehata uses Green’s formula to define an indicator function
that blows up when the virtual source touches the unknown obstacle. Let Λ be the
Dirichlet-to-Neumann map for the boundary value problem in a domain B with the
unknown domain Ω ⊂ B and Λ0 be the Dirichlet-to-Neumann map for B without the
existence of Ω. Ikehata proposed considering

I(z, f) :=

∫
∂B

(Λ− Λ0)f · fds

for specially constructed functions f . It can be shown that I(z, f) tends to infinity
if z tends to the boundary of the unknown domain. The Dirichlet-to-Neumann map
can be calculated from the far field patterns u∞(x̂, ŷ) for all x̂, ŷ ∈ S, i.e., from the
far field pattern for scattering of all plane waves of one fixed frequency.

The singular sources method of Potthast uses a different functional which also
blows up at the boundary of the obstacle. This functional is defined as the mag-
nitude of the scattered field Ψs(z, z) of singular sources Ψ(·, z) and is calculated by
backprojection of the form

Ψs(y, z) ≈
∫

S

∫
S

u∞(x̂, ŷ)g(x̂, y)g(−ŷ, z)ds(ŷ)ds(x̂), y, z ∈ R
m \ Ω,

for explicitly constructed kernels g(·, ·).
All of the linear sampling and probe methods share the advantage that no knowl-

edge about the boundary condition of the unknown scatterer is needed. With the
exception of the Kirsch factorization method, these methods are valid in the limited
aperture case, where the far field data is not known on the full sphere but only on
an open subset Γ ⊂ S. The principle disadvantage of sampling and probe techniques,
however, is that they all require the knowledge of far field patterns for a large number
of incident plane waves. The current challenge facing these algorithms is to reduce
the amount of data needed for reliable reconstructions.

Recent work by Ikehata has made significant progress toward the development of
reconstruction algorithms using very limited data. His enclosure method [7, 8] enables
one to find the support of convex polygons from the knowledge of one measured field.
Ikehata uses a special harmonic incident field,

v = eτx·(ω+iω⊥),

to construct the following indicator function:

Iω(τ, t) = e−τt
{〈

∂u

∂ν

∣∣∣∣
∂G

, v|∂G
〉
−
〈
∂v

∂ν

∣∣∣∣
∂G

, u|∂G
〉}

, τ > 0, t ∈ R,(1.2)

where ω ∈ S is a direction vector, u is the unknown, weak solution to the scattering
problem, and G is some domain containing the unknown scatterer, Ω ⊂ intG the
interior of G. Ikehata shows that at the corners of polygonal scatterers this indicator
function becomes unbounded. He then exploits this property to uniquely reconstruct
the scatterer. For details on implementation, see [9]. While for the purposes of
analysis the presentation of the enclosure method is limited to specific settings, it
appears that in practice the method is independent of the material properties of the
scatterer.

In this work we propose another technique for locating a scatterer from a single
incident wave that also exploits the behavior of a special indicator function in the
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neighborhood of a scatterer. Since we look, rather, for where the indicator function
does not become unbounded, we call the method the no response test. Like the
enclosure method, the no response test can be used to locate scatterers from only
one incident wave. Moreover, neither the enclosure method nor the no response test
require a priori knowledge of the material properties of the scatterer. However, the
indicator function in the no response test is a different functional on the measured
data than that of Ikehata. Also, we do not make use of, nor place any particular
constraints on, the geometric properties of the scatterer.

It is often the case that numerical algorithms precede by many years their math-
ematical justification. The absence of analytical results for a particular application
does not preclude the successful implementation and numerical study of algorithms.
At the expense of mathematical analysis limited to narrow settings, we have chosen to
highlight the robustness of the no response test in a variety of settings by focusing on
numerical results. We leave many questions unanswered; however, the demonstration
of the applicability of the techniques discussed here helps to motivate and formulate
the analysis that must follow. In section 3 we provide preliminary theoretical results
to motivate the method. A convergence proof for one-wave reconstructions would in-
clude a one-wave uniqueness result. These results are not yet available. However, we
can show that a set (depending on some test domain Ω0

t ) surrounding the unknown
scatterer, which we call its corona, is uniquely determined by the one-wave far field
pattern independent of the boundary condition.

The no response algorithm is given in section 4. In the same section we show
reconstructions for scattering from scatterers with Dirichlet, Neumann, or impedance
boundary conditions or for scattering from an inhomogeneous medium. We show
results from each of these scatterers with full and limited aperture data. Preparatory
to this, we briefly review in section 2 the fundamental scattering models for sound-soft,
sound-hard, and mixed obstacles as well as inhomogeneous media.

2. Dirichlet, Neumann, impedance, and medium scattering problems.
This section serves to review briefly the key elements of scattering by bounded objects
or media and to provide some tools for the inversion method described in section 3.
We also describe how we solved the forward problems to produce the data used for
the demonstration of the no response test.

Scattering review. Let vi be an incident field that satisfies the Helmholtz equa-
tion,

�v + κ2v = 0,

with wave number κ > 0 on R
m. The incident field produces a scattered field vs

that solves the Helmholtz equation on the exterior of the scatterer Ω and satisfies the
Sommerfeld radiation condition

r
m−1

2

( ∂
∂r

− iκ
)
v(x)→ 0, r = |x| → ∞

uniformly in all directions. For impenetrable scatterers we consider cases where the
scatterer is either sound-soft (a perfect conductor), sound-hard (a perfect reflector),
or some mixture of these. Each of these types of scatterers is modeled by a total field,

v = vi + vs,
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that satisfies either Dirichlet, Neumann, or impedance boundary conditions. These
boundary conditions are given, respectively, as

v|∂Ω = 0,
∂v

∂ν
|∂Ω = 0,

∂v

∂ν
|∂Ω + λv|∂Ω = 0,

with the impedance function λ ∈ C(∂Ω). We also treat penetrable scatterers, where
the inhomogeneity is modeled by a nonnegative refractive index n : R

m → R+ and
where n(x) := 1 for x ∈ R

m \ Ω. Then the total field v ∈ H2
loc(R

m) solves the
inhomogeneous Helmholtz equation,

�v + κ2nv = 0,

in R
m, and vs = v − vi satisfies the Sommerfeld radiation condition.
The following result enables us to calculate the scattered and far fields of any

reasonable incident field as the weighted superposition of the corresponding fields
generated by scattering from incident plane waves. This result is fundamental to the
no response test.

Theorem 2.1. Let Γ be an open subset of S, the unit sphere on R
m (m = 2, 3),

and let Ω ⊂ R
m denote the bounded support of a scattering body with C2 boundary.

Denote by us : R
m → C and u∞ : S → C the scattered and far fields, respectively,

due to excitation from an incident plane wave ui at a fixed wavenumber κ > 0 with
direction −ŷ, ui(x,−ŷ) := eiκx·(−ŷ), x ∈ R

m, ŷ ∈ S. Consider the superposition of
plane waves

vi(x) =

∫
Γ

eiκx·(−ŷ)g(−ŷ)ds(ŷ), x ∈ R
m,(2.1)

where g ∈ L2(−Γ). The corresponding solution to the scattering problem with Dirich-
let, Neumann, or impedance boundary conditions or scattering by an inhomogeneous
medium is given by v = vi + vs, where

vs(x) =

∫
Γ

us(x,−ŷ)g(−ŷ)ds(ŷ), x ∈ R
m \ Ω.

The corresponding far field pattern is given by

v∞(x̂) =
∫

Γ

u∞(x̂,−ŷ)g(−ŷ)ds(ŷ), x̂ ∈ S.(2.2)

Proof. The proof relies only on the linearity and boundedness of the particular
scattering problem. Linearity implies that the sum of two incident fields is scattered
onto the sum of the single scattered fields. By boundedness of the scattering operator
from C(Ω) into Cloc(R

m \ Ω), the limit for the integration can be performed and we
obtain the stated results.

The signs in the expressions for vi, vs, and v∞ above have been chosen so that the
backprojection mapping between the far field measurements and the scattered field,
which we derive below, has a natural interpretation in terms of a physical aperture in
the far field. Note that the function g is defined on −Γ, where −Γ is the mirror image
of the interval Γ: ŷ ∈ Γ ⇐⇒ −ŷ ∈ −Γ. Using the standard far field reciprocity
relation u∞(x̂,−ŷ) = u∞(ŷ,−x̂) (x̂, ŷ ∈ S) we see that the far field is defined on
Γ with any incident wave direction −x̂. When Γ = S this virtual aperture is not as
apparent. The incident field vi given by (2.1) is called a Herglotz wave function. Since
this function depends on the density g, we write this explicitly as vi[g](x). We denote
the scattered field for scattering of a Herglotz wave function vi[g](x) by vs[g](x).
Similarly, the corresponding far field pattern is given by v∞[g](x̂).
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Numerical considerations. As a basis both for the theoretical discussion and
the implementations (that is, the generation of the simulated data), we briefly sketch
the solution of the above scattering problems. For all proofs and a detailed discussion
we refer to [2] and [16].

For the solution of the Dirichlet problem we represent the scattered field as a
combined single- and double-layer potential

vs(x) =

∫
∂Ω

{
∂Φ(x, y)

∂ν(y)
− iΦ(x, y)

}
ϕ(y)ds(y), x ∈ R

m \ ∂Ω.

For this representation of the scattered field and the boundary condition, the density
ϕ must satisfy the integral equation

ϕ+Kϕ− iSϕ = −2vi,(2.3)

where S is the single-layer operator,

(Sϕ)(x) := 2

∫
∂Ω

Φ(x, y)ϕ(y)ds(y), x ∈ ∂Ω,

and K is the double-layer operator,

(Kϕ)(x) := 2

∫
∂Ω

∂Φ(x, y)

∂ν(y)
ϕ(y)ds(y), x ∈ ∂Ω.

The equation has a unique solution that depends continuously on the right-hand side
in C(∂Ω).

For the Neumann problem we use the modified approach due to Panich [13]:

vs(x) =

∫
∂Ω

{
Φ(x, y)ϕ(y) + i

∂Φ(x, y)

∂ν(y)
(S2

0ϕ)(y)

}
ds(y), x ∈ R

m \ ∂Ω,(2.4)

where S0 denotes the single-layer operator in the case κ = 0. For this representation
of the scattered field, the density ϕ can be shown to satisfy the boundary integral
equation

ϕ−K ′ϕ− iTS2
0ϕ = 2

∂vi

∂ν
,(2.5)

where

(K ′ϕ)(x) := 2
∫
∂Ω

∂Φ(x, y)

∂ν(x)
ϕ(y)ds(y), x ∈ ∂Ω,

and

(Tϕ)(x) := 2
∂

∂ν(x)

∫
∂Ω

∂Φ(x, y)

∂ν(y)
ϕ(y)ds(y), x ∈ ∂Ω.

Both (2.3) and (2.5) have unique solutions that depend continuously on the incident
field in C(∂Ω).

For the impedance boundary value problem we follow the same approach using
the representation (2.4). An application of the jump relations leads to the equation[

I −K ′ − iTS2
0 − λS − iλ(I +K)S2

0

]
ϕ = 2

∂vi

∂ν
+ 2λvi.(2.6)
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Under suitable assumptions on the impedance λ (basically ensuring uniqueness of the
impedance scattering problem) the integral equation (2.6) has a unique solution which
depends continuously on the incident field in C(∂Ω).

For the penetrable inhomogeneous medium we use Green’s formula applied to
the total field to recast the solution to the scattering problem as the solution to the
Lippmann–Schwinger equation

v(x) = vi − κ2

∫
R

m

Φ(x, y)m(y)v(y), x ∈ R
m,

where m(y) := 1 − n(y) for the index of refraction n : R
m → R+ . The Lippmann–

Schwinger equation has a unique solution in C(Ω) that depends continuously on the
incident field vi.

3. The inverse problem and the no response test. The inverse problem we
consider is to locate the scatterer Ω given an incident plane wave ui and the far field
data restricted to the aperture u∞|Γ, where Γ ⊂ S is some open set. The solution to
the inverse problem is often called the reconstruction of the scatterer. The no response
method is a reconstruction algorithm that uses only one incident wave and does not
use any a priori information about the physical characteristics of the scatterer.

We consider the hypothesis that a scatterer lies within a given domain. The no
response test is a way to determine whether or not this hypothesis is true. We begin
with a heuristic description of the reconstruction method based on this test. An
explicit formulation of the full algorithm is given in the next section.

The scattering test response. Let Ωt ⊂ R
m be a bounded test domain with

a C2 boundary. Sample by construction (see (2.1)) the set of incident fields that are
small on the test domain Ωt and large outside. The far field patterns corresponding
to these incident fields are then calculated via (2.2). We call the magnitude of the
calculated far field patterns responses. If the maximum of the sampled responses
is small, we show that this is an indication that the unknown scatterer is a subset
of the test domain Ωt. While general geometric properties of the test domain are
not important (e.g., convexity, symmetry, and so forth), it is critical that the test
domain be large enough that by translation the scatterer is contained in the interior.
The no response algorithm makes use of a template test domain Ω0

t that is rotated
and translated around the computational domain. The location and shape of the
scatterer is then recovered by the behavior, with respect to these test domains, of the
sampled scattering test response, that is, the supremum over all responses for a fixed
test domain. This is defined below.

Definition 3.1 (scattering test response). Given the far field pattern u∞ due
to an incident plane wave ui with direction −x̂ and a scatterer Ω as in Theorem
2.1, let vi[g] denote a Herglotz wave function defined by (2.1) and v∞[g] denote the
corresponding far field pattern given by (2.2). We define the scattering test response
for the test domain Ωt by

µε(Ωt,Ω, x̂) := sup
{|v∞[g](x̂)| : g ∈ L2(−Γ)(3.1)

such that ||vi[g]||C(Ωt) ≤ ε
}
.

We keep the direction x̂ fixed in what follows, so to reduce notational clutter we
drop the argument and use the notation µε(Ωt,Ω) whenever there is no chance for
confusion.
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To calculate µε from the far field pattern u∞|Γ for scattering of a plane wave ui
with direction −x̂, we use the reciprocity relation u∞(x̂,−ŷ) = u∞(ŷ,−x̂) (x̂, ŷ ∈ S)
and Theorem 2.1 to obtain

v∞(x̂) =
∫

Γ

u∞(x̂,−ŷ)g(−ŷ)ds(ŷ)

=

∫
Γ

u∞(ŷ,−x̂)g(−ŷ)ds(ŷ).(3.2)

Thus, from knowledge of the far field pattern u∞(ŷ,−x̂), ŷ ∈ Γ, for one wave with
direction of incidence −x̂, we can reconstruct µε(Ωt,Ω) for any domain Ωt by con-
struction of appropriate kernels g of the (limited aperture) Herglotz wave functions.
Before discussing in detail the construction of the densities g and the test domains
Ωt, we prove some basic results about the behavior of the scattering test response
that motivate our numerical methods.

The no response test is built upon two observations. First, when the scatterer
Ω is contained in the interior of the test domain Ωt, the value µε(Ωt,Ω) is small or
bounded. Second, if the scatterer is in the exterior of the test domain, then µε(Ωt,Ω)
is large or unbounded. These facts are used to locate the support Ω of the scatterer
as a region contained in the union of test domains where the scattering test response
µε is bounded. We summarize this critical behavior in the following theorem.

Theorem 3.2 (behavior of the scattering test response). If Ω ⊂ Ωt, then there
is a constant c ∈ R such that

µε(Ωt,Ω) ≤ cε.

On the other hand, if Ω ∩ Ωt = ∅, and R
m \ (Ω ∪ Ωt) is connected, then we have

µε(Ωt,Ω) =∞.

Proof. When Ω ⊂ Ωt the boundedness of the scattering map v
i �→ v∞ implies the

existence of a constant c such that for all vi satisfying

||vi||C(Ωt) ≤ ε,

we have

||v∞||C(S) ≤ cε.

This completes the proof of the first statement.
To prove the second statement, we consider two disjoint domains, Ω′

t and Ω
′,

satisfying Ωt ⊂ Ω′
t, Ω ⊂ Ω′, and Ω′

t ∩ Ω′ = ∅. We further require that the interior
homogeneous Dirichlet problems for Ω′

t and Ω
′ have only the trivial solution. Then

the Herglotz wave operator H : L2(−Γ)→ L2(∂(Ω′
t ∪ Ω′)), defined by

(Hg)(x) := vi[g](x)
∣∣∣
∂(Ω′t∪Ω′)

,

has dense range. This can be shown in a similar fashion to the proof of Lemma 3.1.2
of [16]. Choose y �∈ Ω′

t ∪ Ω′ such that the far field pattern w∞(x̂, y) for scattering
of Φ(·, y) by Ω is not zero. This is always possible since, by the mixed reciprocity
relation [16, Theorem 2.1.4], we have

w∞(x̂, y) = γus(y,−x̂)
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and us(·,−x̂) cannot vanish on an open subset of R
m. Next, construct vi[g](x) satis-

fying

||vi[g](x)||C(Ω′t) ≤ ε, ||vi[g](x)− βΦ(·, y)||C(Ω′) ≤ ε.

Then since Ωt ⊂ Ω′
t, we have

µε(Ωt,Ω) ≥ |v∞[g](x̂)|.
By definition Ω ⊂ Ω′; thus ∣∣∣v∞[g](x̂)− βw∞(x̂, y)

∣∣∣ ≤ cε,

with some constant c, which, by the triangle inequality, yields

|v∞[g](x̂)| ≥ β|w∞(x̂, y)| − cε.

Thus we have

µε(Ωt,Ω) ≥ β|w∞(x̂, y)| − cε

for all β ∈ R. This completes the proof.
Remark 3.3. In general we would like to know if the implication

Ω �⊂ Ωt =⇒ µε(Ωt,Ω) =∞
is true. It would immediately yield a convergence proof of the no response test to
find the support of unknown scatterers. This implication is strongly linked to the
uniqueness question for the inverse scattering problem under consideration, for which
to date there is no proof. Colton and Sleeman [5] have proven uniqueness for the
problem with Dirichlet boundary data given a finite number of incident fields and
a priori information about the size of the scatterer. The number of incident fields
required depends on the size of the scatterer and the wavelength of the incident field.
Alternatively, we could try to prove

Ω �⊂ Ωt =⇒ µε(Ωt,Ω) > C

for the smallest constant C = cε for which Theorem 3.2 is true. This would also lead to
a convergence proof for the no response test under the condition that the right constant
C is chosen appropriately for the judgment about a test domain. Both problems will
be part of future research.

In the following corollary to Theorem 3.2, we use (3.2) to show that the far field
pattern on a limited aperture Γ resulting from excitation by a single incident field
uniquely determines the union of all translations of a fixed test domain Ω0

t for which
µε is finite. This is stated precisely below.

Definition 3.4 (corona of Ω corresponding to Ω0
t ). Let Ω0

t denote a fixed,
bounded test domain with C2 boundary. Denote translations of Ω0

t by Ω0
t (z) := Ω

0
t +z

for z ∈ R
m. Define the corona of the scatterer Ω by

M(Ω0
t ,Ω, x̂) :=

⋃{
Ω0
t (z) : z ∈ R

m, µε(Ω
0
t (z),Ω, x̂) <∞}.(3.3)

Corollary 3.5 (uniqueness and bounds for the corona). Let Ω0
t ⊂ R

m with

R
m \ Ω0

t connected be a bounded domain large enough that there is some z ∈ R
m for

which Ω ⊂ Ω0
t (z), where Ω denotes the support of the scatterer. Then we have

M(Ω0
t ,Ω, x̂) ⊂

⋃{
Ω0
t (z) : z ∈ R

m,Ω0
t (z) ∩ Ω �= ∅

}
(3.4)
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Fig. 1. Scatterer Ω and test domain Ω0
t used in reconstruction simulations. The obstacle Ω in

(a) is used for Dirichlet, Neumann, and impedance obstacle reconstructions. The scatterer shown
in (b) is used for inhomogeneous media reconstructions.

and the scatterer Ω is a subset of its corona, M(Ω0
t ,Ω, x̂). Moreover, the corona

is uniquely determined by the far field pattern for scattering of one plane wave with
direction of incidence −x̂.

Proof. For points z with µε(Ω
0
t (z)) <∞, we apply Theorem 3.2 to conclude that

Ω0
t (z) ∩ Ω �= ∅, from which we immediately obtain the relation (3.4). For Ω ⊂ Ω0

t (z)
we have µε(Ω

0
t (z)) <∞ and thus the support of the scatterer is a subset of its corona:

Ω ⊂M .

Using (3.2) the values of µε(Ω
0
t (z),Ω, x̂) can be calculated directly from the limited

aperture far field pattern u∞(ŷ,−x̂), ŷ ∈ Γ; that is, for fixed test domain Ω0
t and

direction x̂, the scattering test response µε(Ω
0
t (z),Ω, x̂) is a scalar-valued mapping of

x̂. Since the direction of incidence of a plane wave uniquely determines the far field
pattern u∞(·,−x̂), then the corona is uniquely determined by the far field pattern
u∞.

The corona corresponding to the circular test domain of a boat-shaped scatterer
(see Figure 1) is shown in Figure 2. From the above uniqueness theorem we know
that the unknown scatterer—whatever its physical nature might be—is located in
the corona. Note that, at the very least, we can use the center of the corona for a
single incident wave as an estimate for the center of the obstacle. In our experiments
here, however, we are able to extract even more information about the scatterer from
the corona. Recall from Remark 3.3 that we cannot say anything specific about the
behavior of µε for Ω ∩ Ω0

t (z) �= ∅ when Ω �⊂ Ω0
t (z). We observe numerically that the

value of the scattering test response increases as the intersection Ω∩Ω0
t (z) �= ∅ becomes

smaller. We therefore propose a technique that allows us to detect these increases,
and thereby detect the location and shape of the scatterer within the corona. We
begin by describing the choice of the test domain and the calculation of the scattering
test response. Details for efficient implementation together with the algorithm are
given in the following section.

The test domain Ω0
t . For fixed scatterers Ω and incident wave directions x̂,

the scattering test response µε takes as input the test domains Ω
0
t (z) and returns a

scalar value as output. We would like to know which test domains Ω0
t (z) yield small

values for µε without having to work with the unwieldy domains themselves. For this,
we construct a mapping from the domain Ω0

t (z) to the point z
′ ∈ Ω0

t (z) and assign to
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(a) (b)

Fig. 2. The figure demonstrates the calculated corona and the corresponding bound for the
location of the unknown obstacle when Ω0

t is a circle with radius rt = 4 as shown in Figure 1(a). For
this bound we do not need to know the physical nature of the scatterer and only one scattered wave is
necessary. Here we used the wave number κ = 5, aperture opening θ = 0.9π, regularization parameter
α = 10−11 for an incident wave with direction (−1, 0). The far field pattern contains 1–2% errors.
The figure demonstrates the change in the corona for different choices of the approximation domain:
(a) shows the corona for an approximation domain of radius rt = 4, (b) shows the corona for an
approximation domain of radius rt = 1.3.

that point the corresponding value of µε. It is how we choose the point z
′ that allows

us to get much more information about the obstacle than we would expect.
The key property that we exploit is the observation that µε grows as the inter-

section Ω ∩ Ω0
t (z) becomes smaller. We emphasize that this observation is empirical,

since at this time we cannot prove anything about the behavior of µε in this situa-
tion. In order to detect this growth, assign the domain Ω0

t (z) to a point z
′ on the

boundary ∂Ω0
t (z). To avoid keeping track of more points than necessary, we construct

the generating domain Ω0
t such that 0 ∈ ∂Ω0

t and map the translated domain ∂Ω
0
t (z)

to the point z′ = z. When z ∈ Ω, the scatterer will not to fall entirely within the
domain Ω0

t (z). In this case we observe that the scattering test response µε is signifi-
cantly higher than when z is in the parts of the corona that do not intersect with the
scatterer, representing the situation where Ω ⊂ Ω0

t (z).
We now describe a special realization of the no response test. We assign to the

point z the value of the scattering test response

f∗(z; Ω0
t ) := µε(Ω

0
t (z),Ω).(3.5)

However, by restriction to the point z from the full set Ω0
t (z), we lose information:

we obtain small values for f∗(z; Ω0
t ) only on one side of the unknown object as shown

in Figure 3, where f∗(z; Ω0
t ) is plotted. The full information is recovered by rotating

the generating domain Ω0
t around the origin and repeating the above procedure. This

is described in detail next.
Rotations or other variations of the test domain are necessary because of our

choice of the mapping from Ω0
t (z) to the point z

′ ∈ Ω0
t (z). Had we chosen a radially

symmetric generating domain Ω0
t and mapped this domain to its center, rotations

would not be necessary. However, in this case the image does not directly reflect
the behavior of the test response that we use to reconstruct the obstacle, not just
its corona, that is, the behavior of the test response when the boundary of the test
domain intersects the scatterer. Note that the idea of monitoring the behavior at the
boundary of the test domain also appears in the enclosure method, where the test
domain is a half-space and the behavior of the indicator function (1.2) indicates which
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Fig. 3. The figure shows a plot of the function f∗(z; Ω0
t ) given by (3.5) on a grid containing

the unknown scatterer. The scatterer is indicated by the black curve. Here, we used a Dirichlet
boundary condition.

half-space the obstacle belongs to [6, 9]. Alternatively, we could use an arbitrary set
of generating domains Ω0

t with 0 ∈ ∂Ω0
t ; however, it is much more convenient to work

with a single generating domain rotated about the origin.

The value f∗(z; Ω0
t ) assigned to the point z via (3.5) at one rotation of the domain

Ω0
t does not necessarily correspond to the value of the same point at a different

rotation. To see this, suppose that the scatterer Ω is contained in a small circle of
radius 1 centered at the point (−1, 0). Suppose further that Ω0

t is a circle of radius
2 with center (−2, 0). In this case Ω ⊂ Ω0

t and f
∗(0; Ω0

t ) will therefore be small. If

we rotate Ω0
t about the origin by 180

◦ and denote the resulting domain by Ω̃t
0
, then

Ω ∩ Ω̃t
0
= {0}. In this case we observe that the corresponding value for f∗(0; Ω̃t

0
)

will be large. In each case we assign a value to the point z = 0, but clearly the values
do not correspond to the same situation. In order to prevent the large values of one
orientation from drowning out the information contained in the small values from
other rotations, we take the minimum of the values assigned to the points z over all
rotations.

Let Rθ denote the rotation operator mapping the domain Ω
0
t onto the rotated

domain RθΩ
0
t . If at a point z the value F (z; Ω

0
t ),

F (z; Ω0
t ) := inf

θ∈[0,2π]
f∗(z;RθΩ0

t ),(3.6)

is large, then we suppose that the unknown obstacle lies partly outside all rotations of
the test domain about this point. In this way, by sampling all points z in and around
the unknown scatterer Ω we are able to reconstruct aspects of the shape, location,
and size of Ω. Details about how we implement this are given next.

4. Implementation and numerical demonstrations.

Calculating the densities g. As prescribed in (3.1), we construct incident fields
that are small on the test domain Ω0

t (z). For this we approximate the fundamental
solution to the Helmholtz equation Φ(x, y) where the singularity is located at a point
y ∈ R

m sufficiently far away from Ω0
t (z). To construct the densities g corresponding
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(a) (b)

(c)

Fig. 4. (a) Original total field for scattering by a Dirichlet obstacle. (b) A plot of the function
F (z) defined by (3.6) for z ∈ G, the computational grid. (c) Thresholded version of the function
F with C = 1.4 (see Algorithm 4.1). Here we used the wave number κ = 5, aperture opening
θ = 1.8π, regularization parameter α = 10−11 for an incident wave with direction (−1, 0). The far
field pattern contains 1–2% errors.

to these incident fields, we use Tikhonov regularization to approximately solve the
ill-posed equation (

Hzg(·, y)
)
(x) = Φ(x, y) for x ∈ ∂Ω0

t (z),

where Hz : L
2(Γ) → L2(∂Ω0

t (z)) is a (limited angle) Herglotz wave operator defined
by

(Hzg)(x) :=

∫
Γ

eiκx·(−ŷ)g(−ŷ)ds(ŷ), x ∈ ∂Ω0
t (z).(4.1)

Specifically, for the regularization parameter α > 0, we define

gz,α(·, y) := (αI +H∗
zHz)

−1H∗
zΦ(·, y),(4.2)

where the argument y of the density gz,α denotes the dependence of the density on the
location of the singularity in Φ. The subscripts z and α on g denote the dependence
of the density on the regularization parameter α and the test domain Ω0

t (z). This
yields

vi[gz,α(·, y)](·) ≈ Φ(·, y) on ∂Ω0
t (z).

On Ω0
t (z), for d(y,Ω

0
t (z)) ≥ ρ we have, for all α ∈ [0, α0] for fixed α0 sufficiently small,

|vi[gz,α(x, y)]| ≤
{

c√
ρ , m = 2,

c
ρ , m = 3,

x ∈ Ω0
t (z),(4.3)
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(a) (b)

Fig. 5. (a) Original total field for scattering by an impedance obstacle with λ = i. (b) A plot of
the function F (z) defined by (3.6) for z ∈ G, the computational grid. Here we used the wave number
κ = 5, aperture opening θ = 1.8π, regularization parameter α = 10−11 for an incident wave with
direction (−1, 0). The far field pattern contains 1–2% errors.

with some constant c that is typically of size smaller than 101. Thus by knowing the
value of vi[gz,α] at the point closest to the source point we obtain upper bounds on
the size of the incident field on all of Ω0

t (z). This is used in the calculation of the
scattering test response µε. On the exterior region R

m\Ωt the magnitude of vi[gz,α]
is in the range of c/2α. For example, |vi[gz,α]| is of size 50 if c = 1 and α = 10−2.
This corresponds to a data error of one percent.

Translations of the test domain. We describe a quick method to calculate
lower estimates for the test response µε for a large number of translated test domains
Ω0
t (z) with generating domain Ω

0
t . In the moving reference frame of the test domain,

spatial translations look like translations of the incident field. We use this and the
fact that phase shifts in the far field correspond to spatial translations in the near field
in order to translate the generating domain Ω0

t around the computational domain.

Let Ω0
t be a generating test domain and define Ω

0
t (z) = Ω0

t + z to be the cor-
responding translated test domain. Translations of the Herglotz wave function vi[g]
can be easily performed by the multiplication of the density g by the complex factor
e−iκz·d. At points z ∈ Q covering the area where the unknown scatterer is supposed
to be (that is, Q is the computational domain and satisfies Ω ⊂ Q) we calculate trans-
lations Ω0

t (z) of the test domain Ω
0
t by the corresponding translation of the Herglotz

wave function vi[g]:

vi[g](x− z) = vi[e−iκz·(·)g(·)](x), x ∈ R
m.(4.4)

We define the function |v∞[g](x̂, z)| to be the far field pattern at the point x̂ ∈ S for
scattering of the shifted incident field vi[g](x− z). Then from Theorem 2.1 and (3.2)
we obtain

|v∞[g](x̂, z)| =
∣∣∣ ∫

Γ

u∞(ŷ,−x̂)eiκz·ŷg(−ŷ)ds(ŷ)
∣∣∣.(4.5)

In words, the magnitude of the far field v∞ at the point x̂ ∈ S with test domain Ω0
t (z) is

given by the magnitude of the weighted superposition of the measured far field pattern
due to a single incident plane wave excitation; the weight g(−ŷ) is determined by the
generating domain Ω0

t and the phase shift is determined by the translation of Ω
0
t .
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(a) (b)

(c) (d)

(e)

Fig. 6. We show different thresholded versions of the reconstruction to demonstrate the influ-
ence of the cut-off parameter C. The wave number is κ = 5, aperture opening θ = 1.8π, regulariza-
tion parameter α = 10−11 for an incident wave with direction (−1, 0); that is, the incident wave is
coming from the right-hand side. The far field pattern contains 1–2% errors.

Sampling the scattering test response. The scattering test response µε(Ω
0
t (z),Ω)

is the supremum over |v∞[g](x̂, z)|, where g ∈ L2(Γ) is chosen such that

||vi[g]||C(Ω0
t (z))

≤ ε.(4.6)

We choose a finite subset
{
g1, . . . , gny

}
of densities g such that (4.6) is satisfied and

calculate the maximum of the values |v∞[gj ](x̂, z)| for j = 1, . . . , ny via (4.5). To
obtain different densities g, we solve (4.2) at the points yj , j = 1, . . . , ny, in the exterior
of Ω0

t (z). In our experiments we chose ny ≈ 20. Using the efficient translations in
(4.4), we need only solve (4.2) for g with Ω0

t for each j = 1, . . . , ny, rather than solving
for g for every translated domain Ω0

t (z). Also, from the discussion following (4.3), if
we choose the points yj appropriately, there is no need to check explicitly if condition
(4.6) is satisfied.

The no response algorithm. We finish this section with a detailed prescription
for using the no response test to locate an unknown obstacle.

Algorithm 4.1 (no response test).
• Choose an appropriate test domain Ω0

t with 0 ∈ ∂Ω0
t that is large enough such

that translations of Ω0
t and its rotated versions may contain the unknown
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(a) (b)

(c) (d)

Fig. 7. (a)–(b) Original total field for scattering by an obstacle with Neumann boundary con-
dition; we show a surface and a contour plot of the field. (c) A plot of the function F (z) defined by
(3.6) for z ∈ G and (d) a thresholded version of the reconstruction with C = 2.0. Here we used the
wave number κ = 5, aperture opening θ = 1.8π, regularization parameter α = 10−11 for an incident
wave with direction (−1, 0). The far field pattern contains 1–2% errors.

scatterer (see Figure 1).
• For the angles θl := 2πl/nr with l = 1, . . . , nr, let RθlΩ

0
t be the domain that

is obtained from Ω0
t by rotation around the origin by angle θl as described in

section 3. For each l = 1, . . . , nr do the following:
– Choose points yj, j = 1, . . . , ny, in the exterior of RθlΩ

0
t and calculate

the density gl,j by

gl,j := (αI +H∗
θl
Hθl)

−1H∗
θl
Φ(·, yj),

where Hθl is the Heglotz wave operator (see (4.1)) corresponding to the
rotated domain RθlΩ

0
t .

– For each j = 1, . . . , ny calculate

fj(z;RθlΩ
0
t ) :=

∣∣∣∣
∫

Γ

u∞(ŷ,−x̂)eiκz·ŷgl,j(−ŷ)ds(ŷ)
∣∣∣∣

for all z ∈ G, the computational grid, from the one-wave far field pattern
u∞(ŷ,−x̂), ŷ ∈ Γ.

– Calculate the maximum with respect to the densities gl,j; that is, calcu-
late the sampled version of (3.5):

f∗(z;RθlΩ
0
t ) := max

j=1,...,ny

fj(z;RθlΩ
0
t ), z ∈ G.
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(a) (b)

Fig. 8. (a) Original total field for scattering by a homogeneous penetrable medium with n := 4
in Ω where the inhomogeneity is shown in Figure 1. (b) A plot of the function F (z) defined by
(3.6) for z ∈ G. Here we used the wave number κ = 5, aperture opening θ = 1.8π, regularization
parameter α = 10−11 for an incident wave with direction (−1, 0). The far field pattern contains
1–2% errors.

(a) (b)

(c) (d)

Fig. 9. (a)–(d) We show several thresholded versions of the function F for the reconstruction
of an inhomogeneous medium, where we used the thresholds C = 0.1, C = 0.06, C = 0.05, and
C = 0.045.

• Calculate the minimum with respect to the rotations θl, that is, the sampled
version of (3.6):

F (z; Ω0
t ) := min

l=1,...,nr

f∗(z;RθlΩ
0
t ), z ∈ G.

• Choose a threshold C and calculate

Ωrec :=
{
z ∈ G : F (z; Ω0

t ) ≥ C
}
.

Now, an approximation for the support Ω of the unknown scatterer is given
by the components of Ωrec that are not connected with infinity.
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(a) (b)

Fig. 10. Limited aperture reconstruction of a Dirichlet obstacle. (a) A plot of the function F (z)
defined by (3.6) for z ∈ G, the computational grid. (b) Thresholded version of the function F . Here
we used the wave number κ = 5, aperture opening θ = 0.6π, regularization parameter α = 10−11 for
an incident wave with direction (−1, 0). The far field pattern contains 1–2% errors.

(a) (b)

Fig. 11. Limited aperture reconstruction of a Neumann obstacle. (a) A plot of the function
F (z) defined by (3.6) for z ∈ G. (b) Thresholded version of the function F . Here we used the wave
number κ = 5, aperture opening θ = 0.6π, regularization parameter α = 10−11 for an incident wave
with direction (−1, 0). The far field pattern contains 1–2% errors.

For the choice of the constant C we propose dynamical thresholding on the image
F (z) that is informed by a priori knowledge about the approximate size of the object.

Numerical results. All the following numerical reconstruction procedures are
based on the same algorithm independent of the boundary condition or physical nature
of the scatterer. All reconstructions use the far field data for one wave only. We show
results for full and limited aperture data.

To compare different reconstructions for obstacles with different boundary con-
dition for all the following pictures, we used the far field pattern for one wave with
direction of incidence (−1, 0). We first show results for full aperture and demonstrate
the influence of the cut-off parameter (Figures 4–9).

In a second part, we restrict our measurements to a limited aperture. Here, we
would like to show that even with limited aperture the method yields reasonable
results. Figures 10 to 13 show limited aperture reconstructions for the Dirichlet,
Neumann, and impedance boundary condition and for the inhomogeneous medium.
We used κ = 5 and an aperture of 0.6π, or 108◦.

5. Concluding remarks. The no response test is a novel sampling technique
for reconstructing the support of unknown scatterers. The method does not require a
priori knowledge about the physical or geometric properties of the unknown scatterer.
Reconstructions can be obtained from the far field pattern for scattering of a single
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(a) (b)

Fig. 12. Limited aperture reconstruction of an impedance obstacle with λ = i. (b) A plot of
the function F (z) defined by (3.6) for z ∈ G, the computational grid. (c) Thresholded version of
the function F . Here we used the wave number κ = 5, aperture opening θ = 0.6π, regularization
parameter α = 10−11 for an incident wave with direction (−1, 0). The far field pattern contains
1–2% errors.

(a) (b)

Fig. 13. Limited aperture reconstruction of the support of an inhomogeneous medium. (a) A
plot of the function F (z) defined by (3.6) for z ∈ G. (b) Thresholded version of the function F . Here
we used the wave number κ = 5, aperture opening θ = 0.6π, regularization parameter α = 10−11 for
an incident wave with direction (−1, 0). The far field pattern contains 1–2% errors.

incident wave. The method appears to be robust and can be used in limited aperture
settings. The results and open questions discussed in this work offer a new perspective
on some old questions (for example, the uniqueness question for one wave) and provide
new directions for future research, both in numerical techniques and analysis.
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Abstract. Exploiting the fact that standard models of within-host viral infections of target
cell populations by HIV, developed by Perelson and Nelson [SIAM Rev., 41 (1999), pp. 3–44] and
Nowak and May [Virus Dynamics, Oxford University Press, New York, 2000], give rise to competitive
three dimensional dynamical systems, we provide a global analysis of their dynamics. If the basic
reproduction number R0 < 1, the virus is cleared and the disease dies out; if R0 > 1, then the virus
persists in the host, solutions approaching either a chronic disease steady state or a periodic orbit.
The latter can be ruled out in some cases but not in general.
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AMS subject classifications. 34D23, 34A34

PII. S0036139902406905

1. Introduction. Recently there has been a substantial effort in the mathemat-
ical modeling of virus dynamics, primarily motivated by the AIDS epidemic and HIV;
see, e.g., [9, 11, 15]. Perelson and Nelson [14] and Nowak and May [12] provide excel-
lent reviews and many more citations. The latter has a somewhat broader focus, also
treating SIV (the simian version of HIV) and the hepatitis B viral infections. These
models focus on the disease dynamics within an infected individual and contrast with
an earlier parallel literature on the dynamics within the human population. Simple
HIV models have played a significant role in the development of a better understand-
ing of the disease and the various drug therapy strategies used against it. For example,
they provided a quantitative understanding of the level of virus production during the
long asymptomatic stage of HIV infection; see [13, 14, 12].

We focus primarily on HIV models here but note, following [12], that the basic
model applies to many other viral infections. Moreover, similar models exist which
describe infections of marine bacteria by bacteriophages; see [1].

A brief review of the salient features of the role of HIV in the disease will be useful.
The course of an HIV infection is as follows. First, HIV enters its target, a T cell.
Inside this cell it makes a DNA copy of its viral RNA; hence it falls into the class of
so-called retroviruses. In this process it needs the enzyme reverse transcriptase (RT).
The viral DNA is then inserted into the DNA of the T cell, which will henceforth
produce viral particles that can bud off the cell to infect other uninfected T cells.
Before leaving the host cell, the virus particle is equipped with protease, an enzyme
used to cleave a long protein chain. If this feature is lost, the virus particle is not
capable of successfully infecting other T cells.

The models considered in [14, 12] have three state variables: T , the concentration
of uninfected T cells; T ∗, the concentration of productively infected T cells; and V ,
the concentration of free virus particles in the blood. In chemical reaction notation,
the model can be written

T + V → T ∗ → NV,
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because mass action reaction terms are used and each infected T cell is assumed to
produce N viral particles over its lifespan. The interaction between these cells and
virus particles is then given by the following equations:

Ṫ = f(T ) − kV T,
Ṫ ∗ = −βT ∗ + kV T,(1)

V̇ = −γV +NβT ∗,

where we have relabeled many of the parameters used in [14, 12]. The functional form
of f is defined differently by different authors:

1. Perelson and Nelson [14]: f(T ) = f1(T ) ≡ δ − αT + pT (1 − T
Tmax

).
2. Nowak and May [12]: f(T ) = f2(T ) ≡ δ − αT .

The parameters α, β, γ, δ, k, N, p, and Tmax are positive.
We briefly summarize the interpretation of the different parameters in the model.

Parameters α, β, and γ are the death rates of the uninfected T cells, the infected T
cells, and the virus particles, respectively. k is the contact rate between uninfected T
cells and virus particles. δ represents a constant production of T cells in the thymus.
In the literature this process is not assumed to be constant, but to depend on virus
loads. Usually δ is then replaced by a decreasing function of the concentration of
virus particles; see, e.g., [15]. N is the average number of virus particles produced by
an infected T cell. In the case f = f1, healthy T cells are assumed to proliferate logis-
tically, although the control mechanisms for T cell proliferation are largely unknown.
The p and Tmax are the growth rate (respectively, carrying capacity) associated with a
logistic growth of uninfected T cells in the absence of virus particles, infected T -cells,
and natural body sources such as the thymus. Note that simplification of the logistic
term pT (1 − (T + T ∗)/Tmax) to pT (1 − T/Tmax) is not always performed; see, e.g.,
[15]. From a mathematical point of view, this simplification leads to a competitive
system, which opens up a whole arsenal of tools in the subsequent analysis. We will
elaborate on this below. Another simplification, found in all models in the literature,
is that (logistic) proliferation of T ∗ cells has been neglected.

Both Perelson and Nelson and Nowak and May ignore the loss term −kV T , which
should appear in the V equation, i.e.,

V̇ = −γV +NβT ∗ − kV T,(2)

representing the loss of a free virus particle once it enters the target cell, arguing that
this small term can be absorbed into the loss term −γV . We will consider (1) with
and without this added term.

An important feature of this model is that it ignores the reaction of the immune
system, and therefore the model describes a worst-case scenario in some sense; see
[12, 11] for models which include an immune response to the virus. More realistic
models also include a compartment for latently infected T cells [14, 12, 15], which are
capable of but not actively producing virus. A related modeling approach consists
of incorporating a delay term describing the delay between the time of infection of
a T cell and the time of emission of virus particles from this cell [3]. Our model
also neglects virus mutations, which occur very frequently and on a fast time-scale.
Some of these mutations cause drug resistance, which makes effective treatment very
difficult.

System (1), with or without the −kV T term in the V equation, is competitive
with respect to the cone K := {(X, Y, Z) ∈ R3|X, Z ≥ 0, Y ≤ 0}—see p. 49 in [16]—
and thus solutions with initial states ordered according to the order of K (i.e., their
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difference is a vector in K) remain ordered for backward time. Indeed, the Jacobian
matrix of system (1) (respectively of system (1) with the V -equation replaced by (2))
at an arbitrary point of R3

+ possesses the following structures:
∗ 0 −

+ ∗ +
0 + ∗


 ,


∗ 0 −

+ ∗ +
− + ∗


 ,(3)

where some of the + and − signs can actually be zero for points on the boundary of
R3

+. Note that these matrices are sign-symmetric; i.e., for every i �= j, the product
of the (i, j)th and the (j, i)th entry of these matrices is nonnegative. The incidence
graph associated with this matrix, where edges between the nodes are furnished with
a + or a − sign, depending on the sign of one of the corresponding entries in the
above Jacobian matrix, satisfies the following property: Every closed loop in this
graph possesses an odd number of edges with − signs. This property implies that
the system is competitive. Alternatively, the change of variables T ∗ → −T ∗ results
in a system the Jacobian for which has nonpositive off-diagonal terms on the relevant
domain and hence is competitive in the usual sense. The theory of competitive (and
cooperative) systems was initiated by Hirsch in a series of six well-known papers, of
which we list [5, 6, 7, 8]. Contributions to this theory were also made by Smith, e.g.,
[17, 18, 20]; see [16] for a review. A particular consequence of the theory of competitive
systems is a generalization of the Poincaré–Bendixson theorem to dimension 3; see,
e.g., [5, 6] or Theorem 4.1 in [16]: A compact limit set of a competitive system in R3

which contains no steady states is a periodic orbit. Furthermore, a periodic orbit of
a competitive system in R3 must contain a steady state inside a certain topological
closed ball on the surface of which lies the periodic orbit; see Theorem 2.4 in [17].
These results will play a major role in our analysis.

We will also exploit the “isomorphism” between system (1) with f = f2 and the
standard SEIR model with constant population size, analyzed by Li and Muldowney
in their well-known paper [10]. Although this isomorphism breaks down when f �= f2
or when the −kV T term is included in the V equation, the method used by Li and
Muldowney to prove orbital asymptotic stability of any periodic orbit, and thereby
to derive a contradiction to their existence, extends under suitable restrictions.

We identify a basic reproduction numberR0 for the model, which gives the number
of infected T cells produced by a single infected T cell in a healthy individual. Our
main results are formulated in terms of this number and extend the existing ones in
the following five directions:

1. If R0 < 1, we show that the virus is cleared.
2. If R0 > 1, then a chronic disease steady state exists which is globally asymp-

totically stable under certain conditions. In particular, these conditions are
satisfied for the special case f = f2 using parameter values appropriate for
HIV.

3. For f = f1, orbitally asymptotically stable periodic orbits are shown to exist
and to attract almost all solutions under suitable conditions if R0 > 1. These
conditions are apparently not satisfied for HIV. We note that sustained oscil-
lations were observed from numerical simulations by Perelson, Kirschner, and
de Boer [15] in a four dimensional model including a compartment of latently
infected T cells.

4. Since the function f , which models healthy T cell dynamics, is poorly under-
stood, we start analyzing our model with only minimal assumptions on f . We
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show that particular choices for f may lead to different qualitative behavior.
For example, for f = f2 the chronic disease steady state, if it exists, is always
locally asymptotically stable, while for f = f1 this steady state may be un-
stable and sustained oscillations may occur. This sensitivity of the behavior
to f , in particular, calls for a better understanding of the mechanisms of T
cell proliferation.

5. Applications are made to drug therapy following Perelson and Nelson’s treat-
ment in [14].

2. Main results. We consider a model of a virus infecting a target cell popula-
tion. Denoting by T the target cell and using the same symbol for its concentration
in the appropriate bodily fluid, we assume that the target cell population is regulated
in a healthy individual according to some dynamics given by

Ṫ = f(T ),

where f is a smooth function. We expect homeostasis to be maintained in a healthy
individual with T cell levels at some positive steady state T̄ > 0. Therefore, assume
that f satisfies

f(T ) > 0, 0 ≤ T < T̄ , f(T̄ ) = 0, f ′(T̄ ) < 0, and f(T ) < 0, T > T̄ .(4)

Consider an individual infected with a virus V which attacks target cells, pro-
ducing productively infected cells T ∗, which, in turn, produce on average N virus
particles during their life spans. Following [14, 12], we obtain the following system
for the dynamics of T, T ∗, V :

Ṫ = f(T ) − kV T,
Ṫ ∗ = −βT ∗ + kV T,

V̇ = −γV +NβT ∗ − ikV T,(5)

where i = 0 if we choose, following [14, 12], to ignore the loss of a viral particle when
it enters a target cell, or i = 1 when we do not.

The basic reproduction number for the model is intuitively determined by consid-
ering the fate of a single productively infected cell in an otherwise healthy individual
with normal target cell level T = T̄ . This infected cell produces N virions, each with
life span γ−1, which will infect kT̄Nγ−1 healthy target cells. Thus we expect the
amplification factor to be kT̄Nγ−1. In fact, a local stability calculation, carried out
in the proof of Lemma 3.2 below, leads to

R0 =
kT̄ (N − i)

γ
,(6)

reflecting the loss of the original productively infected cell if i = 1. In any case, as N
is typically large, this is a minor point.

Our main result, proved in a series of results in the next section, shows that the
global dynamics is largely determined by R0.

Theorem 2.1.

1. For R0 < 1 the only steady state is the disease-free state E0 ≡ (T̄ , 0, 0), and
it is globally attracting; the virus is cleared.
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2. For R0 > 1, in addition to the disease-free state, which is unstable, there is a
“chronic disease” steady state Ee ≡ (Te, T

∗
e , Ve) given by

Te =
γ

k(N − i) (≡ T̄ /R0), T ∗
e =

γVe
(N − i)β , Ve =

f(Te)

kTe
,(7)

which is locally attracting if f ′(Te) ≤ 0, e.g., when f = f2.
In particular, with R0 as a bifurcation parameter, E0 exchanges its local stabil-
ity properties with Ee when R0 passes through 1, making Ee locally attracting
if R0 > 1 and R0 − 1 small.
The disease persists in the sense that there exist ε > 0 and M > 0, indepen-
dent of initial data (T0, T

∗
0 , V0) satisfying T ∗

0 + V0 > 0, such that

ε < T (t), T ∗(t), V (t) < M

for all large t.
The omega limit set of every solution with initial conditions as restricted above
either contains Ee or is a nontrivial periodic orbit.
If f ′(T ) < 0 for T ∈ [0, T̄ ], and denoting 0 < α∗ = −maxT∈[0, T̄ ] f

′(T ),
Ee is a globally asymptotically stable steady state for system (5) with respect
to initial conditions not on the T axis in case i = 0 or in case i = 1 and
kf(0) − min(α∗, β)β < 0.
In the special case f = f1, for both i = 0, 1 there exist parameter val-
ues for which Ee is unstable with a two dimensional unstable manifold (see
Lemma 3.4). In this case, there exists an orbitally asymptotically stable peri-
odic orbit; every solution except those with initial data on the one dimensional
stable manifold of Ee or on the T axis converges to a nontrivial periodic orbit.

Observe that, as f(T ) > 0 only if T < T̄ , the positivity of Ve requires that Te < T̄ ,
or equivalently, R0 > 1.

Our main result says that if a typical productively infected target cell, introduced
into an otherwise healthy individual where T = T̄ , cannot replace itself by producing
virus that infects at least one healthy target cell, then the virus is eventually cleared
and the individual returns to the disease-free state. However, if the infected cell can
replace itself, then the disease persists indefinitely into the future in the sense that
the viral load is ultimately bounded from below by an initial-condition-independent
value. Moreover, the omega limit set either contains the chronic disease state Ee,
coinciding with it in case it is locally attracting, or is a nontrivial periodic orbit. In
the latter case, the viral load and the target cell populations cycle periodically.

If f = f2 and R0 > 1, then f ′ = −α < 0 is automatically satisfied and therefore
Ee is globally asymptotically stable if i = 0 or if i = 1 and kf2(0) − min(α∗, β)β =
kδ − min(α, β)β < 0. In case of HIV, α ≤ β is expected to hold, reflecting the fact
that removal rates for healthy target cells are lower than those for infected target
cells, and thus the last condition reduces to kδ − αβ < 0, which is easily verified for
the (biologically plausible) numerical data for HIV in [15].

In the special case f = f1, Ee is asymptotically stable when R0 > 1 and R0 − 1 is
small, but this stability can be lost for certain parameter values. In Figure 1 below,
we show that periodic oscillations in the viral load and T cell populations are possible.
The parameter values are not chosen to match those for a particular viral infection;
they are chosen simply to establish the possibility for oscillations. As in [15], time is
measured in days and T, T ∗, V have units mm−3. See Lemma 3.4 for more information
about parameter ranges for which periodic solutions are expected.
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Fig. 1. Periodic solution for f = f1. Parameters: δ = 10day
−1mm−3, α = 0.02day−1, p =

3day−1, Tmax = 1500mm−3, β = 0.24day−1, γ = 2.4day−1, k = 0.0027mm3day−1, N = 10, and
i = 1.

Our results can be used to give a mathematically rigorous justification for the
plausible approximation arguments employed by Perelson and Nelson [14] to show
that combination drug therapy can be effective in clearing the virus. Currently, the
main drugs are RT inhibitors and protease inhibitors, and in practice, cocktails of
several of these drugs have been most successful. The first type inhibits the copying
of viral RNA to DNA and results in unsuccessful infection of the T cell by the virus.
The second type results in virus particles that are noninfectious. Following [14],
the short-term behavior after infection is given by the following system describing
uninfected and infected T cells, infectious virus VI , and noninfectious virus VNI :

Ṫ = f(T ) − k(1 − ηRT )VIT,

Ṫ ∗ = −βT ∗ + k(1 − ηRT )VIT,

V̇I = −γVI +Nβ(1 − ηPI)T ∗ − ikVIT,(8)

V̇NI = −γVNI +NβηPIT
∗,

where, again, i = 0 corresponds to the system treated in [14], and i = 1 takes
account of the loss of a virus particle when it enters a target cell (whether or not the
virus is able to convert its RNA to DNA and insert itself in the host genome). The
“effectiveness” coefficients ηRT for RT inhibitor and ηPI for protease inhibitor are
assumed to lie somewhere between zero, meaning totally ineffective, and one, which
represents 100% effectiveness.

Of course, the primary focus of drug therapy is on the possibility of clearing the
virus. Observing that the first three equations are decoupled from the last one and
that this subsystem is essentially similar to (5), we can calculate the basic reproduction
number Rc0 under combination therapy by linearizing about the disease-free state E0
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to obtain

Rc0 =
kT̄ [N(1 − ηRT )(1 − ηPI) − i]

γ
.(9)

Comparing this with (6), we see that, in essence, N has been reduced toN(1−ηRT )(1−
ηPI). As i is typically much smaller than N and can be neglected, we see that the
two inhibitors act in concert to reduce R0 in (6) by the factor (1 − ηRT )(1 − ηPI). If
Rc0 < 1, the virus is cleared.

Corollary 2.2. If Rc0 < 1, then the disease-free steady state E0 is globally
attracting. If Rc0 > 1, then E0 is unstable.

Assuming that current treatment does not allow for HIV eradication in an indi-
vidual, this result implies one of the following: The efficiency of drugs is never high
enough to make Rco < 1, or model (8) is not appropriate to describe HIV dynamics
in a treated individual. It is argued in the recent paper by Callaway and Perelson
that the first explanation is not viable. The second is adopted instead, and modified
models are proposed to bring reality and theory closer to each other; see [2] for details.

3. Proofs.

3.1. Boundedness and stability of the disease-free steady state. First
we show that solutions of model (5) are bounded.

Lemma 3.1. The closed positive orthant is positively invariant for (5) and there
exists M > 0 such that all solutions satisfy T (t), T ∗(t), V (t) < M for all large t.

Proof. The positive invariance of the positive orthant is trivial; we sketch the
ultimate boundedness argument. Since Ṫ < f(T ), we see that T (t) < T̄ + 1 for all
large t, say t > t0. Let S = maxT≥0 f(T ). Adding the first two equations gives

Ṫ + Ṫ ∗ = f(T )− βT ∗ ≤ S− βT ∗. Let A > 0 be such that βA > S+ 1. Then, so long
as T (t) + T ∗(t) ≥ A + T̄ + 1 and t > t0, we have Ṫ + Ṫ ∗ < −1. Clearly, there must
exist t1 > t0 such that T (t) + T ∗(t) < A+ T̄ + 1 for all t > t1.

The asymptotic bound for T ∗(t), namely, T (t)∗ ≤ A + T̄ + 1, together with the
differential inequality V̇ ≤ −γV + Nβ[A + T̄ + 1], which holds for large t, leads
immediately to the asymptotic bound V (t) ≤ γ−1Nβ[A+ T̄ + 1].

Next we consider the local stability behavior of (5) at the disease-free steady state
E0.

Lemma 3.2. If R0 < 1, then the disease-free state E0 is a locally asymptotically
stable steady state of system (5); if R0 > 1, then it is unstable.

Proof. The Jacobian matrix of the vector field corresponding to system (5),
evaluated at E0, is

J0 :=


f ′(T̄ ) 0 −kT̄

0 −β kT̄
0 Nβ −γ − ikT̄


 .(10)

Here f ′(T̄ ) < 0 is an eigenvalue, and the remaining eigenvalues derive from the two-
by-two lower right submatrix, whose trace is negative and determinant is βγ[1−R0].
The result follows immediately.

We remark that the same result holds for (8) with drug therapy, where Rc0 replaces
R0.

The following result deals with the global stability behavior of the disease-free
steady state E0.

Lemma 3.3. If R0 < 1, then all solutions approach the disease-free state E0.
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Proof. On consideration of the competitive vector field given by (5) on the three
faces of the positive orthant, we see that any nontrivial periodic orbit must lie entirely
in the interior of the positive orthant. If P denotes such a nontrivial periodic orbit,
then it follows that the smallest box B containing P whose sides are parallel to the
coordinate planes must also lie interior to the positive orthant. We can express B as
B = [p, q]K , where K denotes the cone K ≡ {(T, T ∗, V ) : T, V ≥ 0, T ∗ ≤ 0}. Indeed,
if XP (respectively, XP ) denotes the maximum (respectively, minimum) of coordinate
X = T, T ∗, V on the periodic orbit P , then p = (TP , T

∗P , VP ) and q = (TP , T ∗
P , V

P ).
By Proposition 4.3 of [16], B must contain a steady state of (5). However, E0 is the
only steady state and E0 /∈ B. We conclude that no nontrivial periodic orbit exists.
By the Poincaré–Bendixson theory for three dimensional competitive systems and the
local stability of E0, all solutions must approach E0 in the limit.

The same result holds for (8), with Rc0 in place of R0. The entirely similar
argument uses the fact that an endemic steady state exists only when the disease-free
state is unstable (Rc0 > 1).

3.2. Local stability of the disease steady state. The local stability of the
disease steady state is discussed next.

Lemma 3.4. Let R0 > 1 and f ′(Te) ≤ 0; then the nontrivial steady state Ee ∈
int(R3

+) is locally asymptotically stable for system (5), for i = 0, 1. If R0 > 1 and
f = f1, then Ee is unstable with a two dimensional unstable manifold under each of
the following conditions:

(a) i = 0 with Tmax large enough and (19) holds.
(b) i = 1 with kTmax large (see (20)) and p large enough.
Proof. A calculation shows that the Jacobian matrix of the vector field corre-

sponding to system (5), evaluated at Ee, takes the following form:

J1 :=


 −a 0 −kTe
kVe −β kTe

−ikVe Nβ −c


 ,(11)

where

a := −f ′(Te) + kVe and c := γ + ikTe.(12)

The characteristic equation associated with J1 is given by

λ3 + (a+ β + c)λ2 + [a(β + γ) − ikTef ′(Te)]λ+ kβγVe = 0,(13)

where we have used the expressions (6), (7) to simplify the coefficient of first and
zeroth order. If f ′(Te) ≤ 0, then it is easy to see that all coefficients are positive.

To finish the proof by means of the Routh–Hurwitz criterion, we need to show
that

∆ ≡ (a+ β + c)(a(β + γ) − ikTef ′(Te)) − kβγVe(14)

is positive. Using (12), it follows that

∆ = (−f ′(Te) + kVe + β + γ + ikTe)[(−f ′(Te) + kVe)(β + γ) − ikTef ′(Te)] − kβγVe
= (β + γ)2(kVe − f ′(Te)) − (β + γ)ikTef

′(Te) + (β + γ)ikTe(kVe − f ′(Te))
− (ikTe)

2f ′(Te) + (β + γ)(kVe − f ′(Te))2 − ikTef ′(Te)(kVe − f ′(Te))
− kβγVe.(15)
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If f ′(Te) ≤ 0, then all terms in (15) are nonnegative except the last. However, the
very first term (β+γ)2(kVe−f ′(Te)) can be expanded, yielding a term 2βγkVe, which
exceeds the last term −kβγVe. This implies that ∆ is positive.

Hereafter, we consider the case in which f = f1. A calculation yields

a =
δ

Te
+
pTe
Tmax

> 0,(16)

and thus the coefficients of the zero and second powers of λ in the characteristic
polynomial are positive. Together with the claim (which is proved below) that the
Jacobian matrix has a real eigenvalue which is strictly less than the real parts of any
other eigenvalue, it follows that if the Jacobian is hyperbolic and unstable, then there
can be only one eigenvalue with negative real part (in fact it is negative) and two with
positive real part. Further, hyperbolicity can only fail by a pair of pure imaginary
eigenvalues and one negative eigenvalue.

Proof of claim. We prove that the Jacobian matrix possesses a real eigenvalue
which is strictly less than the real part of the other eigenvalues. This follows from
an application of the Perron–Frobenius theorem. Recall that the Perron–Frobenius
theorem holds for nonnegative matrices and states that these matrices possess a real
eigenvalue which is nonnegative. In addition, the modulus of every eigenvalue is not
larger than this real eigenvalue. Now notice that the linear transformation (x, y, z) →
(x,−y, z) puts J1 in the following form:

J̃1 :=


 −a 0 −kTe

−kVe −β −kTe
−ikVe −Nβ −c


 .(17)

Of course, the eigenvalues of J1 and J̃1 are the same. Finally, observe that −J̃1 is a
nonnegative matrix for which the Perron–Frobenius theorem holds. The claim then
follows immediately since the eigenvalues of −J̃1 are the opposites of the eigenvalues
of J1.

If i = 0 and f = f1, then all coefficients of (13) are positive as noted above.
Inserting (16) and the values of Ve, Te into (15) leads to

∆ = (β + γ)2a+ (β + γ)a2 − kβγVe
= m

(
p

Tmax

)2

+ n
p

Tmax
+ q,(18)

where

m =
(β + γ)γ2

(Nk)2
,

n =
(β + γ)2γ

Nk
+ 2δ(β + γ) − βγTmax +

βγ2

Nk
,

q = (β + γ)2
Nkδ

γ
+ (β + γ)

(Nkδ)2

γ2
− βδNk + βγα.

Clearly, m > 0 and, less obviously, q > 0 since the first term exceeds the third in
absolute value. By choosing Tmax large, we may make n < 0 and as large in absolute
value as we desire. In particular, if n < 0 and n2 > 4om, then the quadratic (18) in
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p/Tmax is negative for an interval of values of p/Tmax centered on

p

Tmax
=

−n
2m
,(19)

ensuring that ∆ < 0. It follows that Ee is hyperbolic and unstable with a two
dimensional unstable manifold.

If i = 1 and f = f1, then a straightforward calculation shows that the coefficient
of λ in (13) is given by

a2 ≡ γp

N − 1

[
β + γ

kTmax
+

2γ

k(N − 1)Tmax
− 1

]
+

γα

N − 1
+

(β + γ)δ(N − 1)k

γ
,

which can be negative when the term in brackets is negative, provided that p is large
enough. Fixing kTmax so large that

kTmax > β + γ +
2γ

N − 1
(20)

ensures that the term in brackets is negative. Then, provided that p is large enough, it
follows that Ee is hyperbolic and unstable with a two dimensional unstable
manifold.

3.3. Disease persistence. We discuss persistence of the disease next.
Lemma 3.5. If R0 > 1, then there exists ε > 0, independent of initial conditions

satisfying T ∗(0) + V (0) > 0, such that lim inft→∞X(t) > ε for X = T, T ∗, V .
Proof. The result follows from an application of Theorem 4.6 in [19], with

X1 = int(R3
+) and X2 = bd(R3

+). This choice is in accordance with the conditions
stated in this theorem. Furthermore, note that by virtue of Lemma 3.1 there exists
a compact set B in which all solutions of system (5) initiated in R3

+ ultimately enter
and remain forever after. The compactness condition (C4.2) is easily verified for this
set B. Denoting the omega limit set of the solution x(t, x0) of system (5) starting in
x0 ∈ R3

+ by ω(x0) (which exists by Lemma 3.1), we need to determine the following
set:

Ω2 = ∪y∈Y2ω(y), where Y2 = {x0 ∈ X2|x(t, x0) ∈ X2, ∀t > 0}.(21)

From the system equations (5) it follows that all solutions starting in bd(R3
+) but

not on the T axis leave bd(R3
+) and that the T axis is an invariant set, implying

that Y2 = {(T, T ∗, V )T ∈ bd(R3
+)| T ∗ = V = 0}. Furthermore, it is easy to see

that Ω2 = {E0} as all solutions initiated on the T axis converge to E0. Then E0 is
a covering of Ω2, which is isolated (since E0 is a hyperbolic steady state under the
assumption of the theorem) and acyclic (because there is no nontrivial solution in
bd(R3

+) which links E0 to itself). Finally, if it is shown that E0 is a weak repeller for
X1, the proof will be done.

By definition, E0 is a weak repeller for X1 if for every solution starting in x0 ∈ X1

lim sup
t→+∞

d(x(t, x0), E0) > 0.(22)

We claim that (22) is satisfied if the following holds:

W s(E0) ∩ int(R3
+) = ∅,(23)
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where W s(E0) denotes the stable manifold of E0. To see this, suppose that (22) does
not hold for some solution x(t, x0) starting in x0 ∈ X1. In view of the fact that the
closed positive orthant is positively invariant for system (5) (recall Lemma 3.1), it
follows that lim inft→+∞ d(x(t, x0), E0) = lim supt→+∞ d(x(t, x0), E0) = 0 and thus
that limt→+∞ x(t, x0) = E0, which is clearly impossible if (23) holds.

What remains to be shown is that (23) holds. To that end, recall that the Jacobian
matrix of system (5) at E0, given in (10), is unstable if R0 > 1. In particular, J0

possesses one eigenvalue with positive real part, which we denote as λ+, and two
eigenvalues with negative real part, f ′(T̄ ), and an eigenvalue which we denote as λ−.
(Note that λ− may be equal to f ′(T̄ ).) We proceed by determining the location
of Es(E0), the stable eigenspace of E0. Clearly (1, 0, 0)T is an eigenvector of J0

associated to f ′(T̄ ). If λ− �= f ′(T̄ ), then the eigenvector associated to λ− has the
following structure: (0, p2, p3)T , where p2 and p3 satisfy the eigenvector equation(−β kT̄

Nβ −γ − ikT̄
)(

p2
p3

)
= λ−

(
p2
p3

)
.(24)

If λ− = f ′(T̄ ), then λ− is a repeated eigenvalue, and an associated generalized eigen-
vector will possess the following structure: (∗, p2, p3)T , where the value of ∗ is irrel-
evant for what follows and p2 and p3 also satisfy (24).

We claim that in both cases (i.e., λ− �= f ′(T̄ ) and λ− = f ′(T̄ )) the vector
(p2, p3)T /∈ R2

+. The matrix in (24) is an irreducible Metzler matrix. A Metzler
matrix is a matrix with nonnegative off-diagonal entries. For the definition of an ir-
reducible matrix, see [4]. Observe that adding a sufficiently large positive multiple of
the identity matrix to the matrix in (24) results in a nonnegative irreducible matrix
for which the Perron–Frobenius theorem [4] holds. Consequently, the matrix in (24)
possesses a simple real eigenvalue which is larger than the real part of any other eigen-
value, also called the dominant eigenvalue. Clearly, the dominant eigenvalue here is
λ+. But the Perron–Frobenius theorem also implies that every eigenvector that is not
associated with the dominant eigenvalue does not belong to the closed positive orthant.
Applied here, this means that (p2, p3) /∈ R2

+. Consequently, Es(E0) ∩ int(R3
+) = ∅,

and therefore also W s(E0) ∩ int(R3
+) = ∅, which concludes the proof.

3.4. Oscillations. Lemma 3.4 provides sufficient conditions for the Jacobian at
Ee to have two eigenvalues with positive real part and one negative eigenvalue. The
dynamical consequences of this are described in the following result.

Lemma 3.6. If R0 > 1, the omega limit set of a solution which is not initiated
on the T axis either contains Ee or is a nontrivial periodic orbit. If R0 > 1 and if the
Jacobian matrix at Ee has two eigenvalues with positive real part and one negative
eigenvalue, then there exists an orbitally asymptotically stable periodic orbit. Every
solution except those with initial data on the one dimensional stable manifold of Ee
or on the T axis approaches a nontrivial periodic orbit.

Proof. For R0 > 1 it follows from the persistence result in Lemma 3.5 that the
omega limit set of a solution which is not initiated on the T axis cannot contain a
point on the T axis. Since there is only one steady state Ee which does not belong to
the T axis, the first statement of the theorem follows from the generalized Poincaré–
Bendixson theorem for competitive systems in dimension 3.

The assertions regarding the existence of an orbitally asymptotically stable peri-
odic orbit follow from Theorem 1.2 in [20] and the fact that nonlinearities in (5) are
analytic. In order to apply that result, we take the domain for (5) to be the interior
of the positive orthant, in which the only steady state is Ee. Lemmas 3.1 and 3.5
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imply that the dissipativity hypothesis of Theorem 1.2 is satisfied. The negativity of
the Jacobian determinant, also required for Theorem 1.2, follows from our hypothe-
ses concerning the eigenvalues. The assertion that suitably restricted forward orbits
approach a periodic orbit follows from Theorem 4.2 in [16]. That result is stated for
systems which are competitive in the traditional sense and so it applies to (5) since
it can be transformed to a system which is competitive in the traditional sense. See
also the remarks following Theorem 4.2, where it is noted that the second hypothesis
of Theorem 4.2 holds if the Jacobian matrix is irreducible.

3.5. Global asymptotic stability of the disease steady state. Finally we
provide sufficient conditions preventing oscillations and leading to a globally asymp-
totically stable disease steady state.

Lemma 3.7. Suppose that R0 > 1, f ′(T ) < 0 for T ∈ [0, T̄ ], and denote 0 <
α∗ = −maxT∈[0, T̄ ] f

′(T ). If i = 0 or if i = 1 and kf(0) − min(α∗, β)β < 0, then
Ee is a globally asymptotically stable steady state for system (5) with respect to initial
conditions not on the T axis.

Proof. The proof is based on an extension of the Poincaré–Bendixson theorem
for the class of three dimensional competitive systems [16] and a powerful theory of
second compound equations to prove asymptotic orbital stability of periodic solutions;
see [10] and references cited therein. We do not wish to repeat the details of a precise
proof here, because many of the arguments are the same as in [10], where a global
stability result for a related epidemiological model is proved. Instead we provide only
a sketch of the proof and go into details only where our proof is different. Under
the assumptions of this lemma, system (5) possesses a steady state Ee ∈ int(R3

+),
which is unique in int(R3

+). Moreover, from the proof of Lemma 3.5 it follows that
the omega limit sets of solutions not initiated on the T axis are in int(R3

+). We claim
that the only possible omega limit sets of solutions of system (5) are Ee or nontrivial
periodic orbits. Indeed, if an omega limit set of a solution does not possess Ee, then
it cannot contain another steady state (Ee is the unique steady state in int(R3

+)), and
thus it must be a nontrivial periodic orbit according to the extension of the Poincaré–
Bendixson theorem for competitive systems. On the other hand, if an omega limit set
does contain Ee, it is {Ee}, because Ee is a locally asymptotically stable steady state
of system (5) according to Lemma 3.4 (notice that the condition needed to apply this
Lemma, f ′(Te) ≤ 0, is satisfied here because Te = T̄ /R0 < T̄ and f ′ < 0 in [0, T̄ ] by
assumption), which establishes the claim. Finally we will show below that if system
(5) possesses a nontrivial periodic solution, then this solution must be asymptotically
orbitally stable. This fact will imply that Ee is a globally asymptotically stable
steady state of system (5) with respect to initial conditions not on the T axis, which
concludes the proof of this theorem. A proof of this implication can be found in [10].
The argument is that if Ee would not be globally asymptotically stable, then there
would have to be a nontrivial periodic solution in int(R3

+). But it can then be shown
that the region of attraction of Ee would have nonempty intersection with the region
of attraction of the periodic solution, a contradiction. We prove the following: If
system (5) possesses a nontrivial period solution, then this solution is asymptotically
orbitally stable. Denote the periodic solution by p(t) ≡ (p1(t), p2(t), p3(t))T and
suppose that its minimal period is ω > 0. Recall that from the proof of Lemma 3.1

0 ≤ p1(t) ≤ T̄ ∀t ∈ [0, ω].(25)

To establish asymptotic orbital stability of a periodic solution, we resort to the so-
called method of the second compound equation; see [10] and references cited therein.
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The second compound equation is the following periodic linear system:

ż =
∂f [2]

∂x
(p(t))z,(26)

where z = (z1, z2, z3)T and ∂f [2]

∂x is derived from the Jacobian matrix of system (5)
and defined as follows:

∂f [2]

∂x
:=


j11 + j22 j23 −j13

j32 j11 + j33 j12
−j31 j21 j22 + j33




=


f ′(T ) − β − kV kT kT

Nβ f ′(T ) − γ − k(iT + V ) 0
ikV kV −β − γ − ikT


 ,(27)

where jkl is the (k, l)th entry of the Jacobian matrix associated with system (5). The
importance of the second compound equation is that if system (26) is asymptotically
stable, then the periodic solution p(t) is asymptotically orbitally stable for system
(5); see [10]. We will show that the function

V (z1, z2, z3; p(t)) := sup

{
|z1|, p2(t)

p3(t)
(|z2| + |z3|)

}
(28)

is a Lyapunov function for system (26). This function is positive, but not differentiable
everywhere. Fortunately, this lack of differentiability can be remedied by using the
right derivative of V , denoted as D+V (t). We have

D+(|z1(t)|) ≤ −(−f ′(p1(t)) + β + kp3(t)).|z1(t)| + k
p1(t)p3(t)

p2(t)
.
p2(t)

p3(t)
(|z2(t)| + |z3(t)|)

(29)

and

D+

(
p2(t)

p3(t)
(|z2(t)| + |z3(t)|)

)
=

(
ṗ2(t)

p2(t)
− ṗ3(t)

p3(t)

)
.
p2(t)

p3(t)
(|z2(t)| + |z3(t)|)

+
p2(t)

p3(t)
D+(|z2(t)| + |z3(t)|)

≤
(
p2(t)

p3(t)
(Nβ + ikp3(t))

)
.|z1(t)|

+

(
ṗ2(t)

p2(t)
− ṗ3(t)

p3(t)
− γ − ikp1(t)

)
.
p2(t)

p3(t)
(|z2(t)| + |z3(t)|)

− p2(t)

p3(t)
(−f ′(p1(t))|z2(t)| + β|z3(t)|)

≤
(
p2(t)

p3(t)
(Nβ + ikp3(t))

)
.|z1(t)|

+

(
ṗ2(t)

p2(t)
− ṗ3(t)

p3(t)
− γ − ikp1(t)

−min(α∗, β)

)
.
p2(t)

p3(t)
(|z2(t)| + |z3(t)|),
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where the last inequality was obtained using the definition of α∗ and (25).
Defining the following functions,

g1(t) = −(−f ′(p1(t)) + β + kp3(t)) + k
p1(t)p3(t)

p2(t)

= −(−f ′(p1(t)) + kp3(t)) +
ṗ2(t)

p2(t)
,(30)

g2(t) =
p2(t)

p3(t)
(Nβ + ikp3(t)) +

ṗ2(t)

p2(t)
− ṗ3(t)

p3(t)
− γ − ikp1(t) − min(α∗, β)

= ikp2(t) +
ṗ2(t)

p2(t)
− min(α∗, β),(31)

where the second equalities in (30) and (31) stem from the fact that p(t) satisfies the
system equations (5), we obtain that

D+V (t) ≤ sup(g1(t), g2(t))V (t).(32)

Using the definition of α∗ and (25), it follows from (30) that g1(t) ≤ −α∗+ṗ2(t)/p2(t),
and thus that g1(t) ≤ g2(t). Then (32) can be rewritten as

D+V (t) ≤ g2(t)V (t).(33)

We claim that the following holds:∫ ω

0

g2(t)dt < 0.(34)

If this is established, it will follow from (33) that V is a Lyapunov function for system
(26), and this will conclude the proof of the theorem.

(a) When i = 0, (34) is immediate from (31).
(b) When i = 1, using the fact that p(t) is a periodic solution of (5), we see that∫ ω

0

βp2(t)dt =

∫ ω

0

kp3(t)p1(t)dt =

∫ ω

0

f(p1(t))dt ≤ f(0)ω

because, by assumption, f ′(T ) < 0 for all T ∈ [0, T̄ ] and since (25) holds.
Consequently,∫ ω

0

g2(t)dt =

∫ ω

0

[kp2(t) − min(α∗, β)]dt ≤
[
k
f(0)

β
− min(α∗, β)

]
ω,(35)

and it follows, under the assumption that kf(0) − min(α∗, β)β < 0, that (34) holds
as claimed.
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Abstract. We consider the effect of random inhomogeneities on the focusing singularity of the
nonlinear Schrödinger equation in three dimensions, in the high frequency limit. After giving a phase
space formulation of the high frequency limit using the Wigner distribution, we derive a nonlinear
diffusion equation for the evolution of the wave energy density when random inhomogeneities are
present. We show that this equation is linearly stable even in the case of a focusing nonlinearity,
provided that it is not too strong. The linear stability condition is related to the variance identity
for the nonlinear Schrödinger equation in an unexpected way. We carry out extensive numerical
computations to get a better understanding of the interaction between the focusing nonlinearity and
the randomness.

Key words. focusing NLS, semiclassical limit, Wigner transformation, random media, diffusion
approximation
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1. Introduction. The nonlinear Schrödinger equation (NLS)

i
∂φ

∂t
+

1

2
∆φ− β|φ|2φ = 0,(1)

φ(0,x) = φ0(x),

with x in three dimensions, arises as the subsonic limit of the Zakharov model of
Langmuir equations in plasma physics [20] and in many other contexts. The NLS (1)
is in dimensionless form, with β a parameter that measures the strength of the non-
linearity relative to wave dispersion. When β < 0 the nonlinearity is focusing, and
when β > 0 it is defocusing. An important property of the NLS is that, in three
dimensions, the solution in the focusing case may develop a singularity at some finite
time. This result is based on the existence of two invariants with respect to time: the
mass

M =

∫
R3

|φ(t,x)|2 dx(2)

and the energy

H =

∫
R3

(
1

2
|∇φ(t,x)|2 + 1

2
β|φ(t,x)|4

)
dx,(3)
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together with the variance identity

d2

dt2

∫
R3

|x|2|φ(t,x)|2 dx = 4H + β

∫
R3

|φ(t,x)|4 dx.(4)

In the focusing case β < 0 and with a negative energy H < 0, the solution cannot
remain bounded for all time. More precisely, it follows from the variance identity and
the uncertainty inequality that the L2 norm of the gradient of the solution blows up
in finite time [6]. Many other properties of the NLS can be found in [18].

The goal of this paper is to investigate the effect of random inhomogeneities on
the focusing NLS in the high frequency regime. In the high frequency limit the di-
mensionless time and propagation distance are long compared to the scale of variation
of the potential V (x). To make this precise we introduce slow time and space vari-
ables t → t/ε, x → x/ε, with ε a small parameter, and the scaled wave function
φε(t,x) = φ(t/ε,x/ε), which satisfies the scaled Schrödinger equation

iεφεt +
ε2

2
∆φε − V (t,x)φε = 0,(5)

V (t,x) = β|φ(t,x)|2 + V0(x).

In the absence of the regularizing effect of the random inhomogeneities, the initial
value problem for the focusing NLS is, in this regime, catastrophically ill-posed, even
if the original NLS does not blow up. The random inhomogeneities are modeled
by a potential that is a zero mean, stationary random function with correlation
length comparable to the wavelength and with small variance. It takes the form
of v0(x) =

√
ε V1(

x
ε ) since the wavelength is of order ε. Here V (t,x) is the slowly

varying background, without the nonlinear part, and V1(y) is a mean zero, stationary
random function with correlation length of order one. This scaling allows the random
potential to interact fully with the waves. We shall also assume that the fluctuations
are statistically homogeneous and isotropic so that

〈V1(x)V1(y)〉 = R(|x − y|),(6)

where 〈, 〉 denotes statistical averaging and R(|x|) is the covariance of random fluctu-
ations. The power spectrum of the fluctuations is defined by

R̂(k) =

(
1

2π

)3 ∫
eik·xR(x) dx.(7)

When (6) holds, the fluctuations are isotropic and R̂ is a function only of |k|. Because
of the statistical homogeneity, the Fourier transform of the random potential V1 is a
generalized random process with orthogonal increments

〈V̂1(p)V̂1(q)〉 = R̂(p)δ(p + q).(8)

Using the Wigner phase space form of the Schrödinger equation, we derive a nonlinear
mean field transport approximation, in the high frequency and weak fluctuation limit.
When, moreover, the transport mean free path is small, this nonlinear phase space
transport equation can be further approximated by a nonlinear degenerate diffusion
equation (e.g., (76)). This is the main result of this paper, and it captures in a
precise way the interaction between the focusing nonlinearity and the random medium,
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in the high frequency limit. A linear stability analysis of this diffusion equation
reveals in a simplified but physically clear way the form of the nonlinearity-randomness
interaction. We find that the condition that the linearized diffusion equation be stable
reduces to the positivity of the right-hand side of the variance identity (4) of the NLS,
in the high frequency limit (e.g., (94)). This is a surprising result because it is precisely
the opposite of this condition, a negative right-hand side for (4), which produces a
focusing singularity in NLS (1). We see that this condition, or rather its opposite

4H + β

∫
R3

|φ(t,x)|4 dx > 0,(9)

becomes a stability condition, in a well defined high frequency regime, provided that
the focusing mechanism is regularized by random inhomogeneities.

The paper is organized as follows. In section 2 we briefly review the nonlinear
high frequency limit in its usual form, and in section 3 we reconsider that limit in its
phase space form, using the Wigner distribution. In section 4 the random initial data
is discussed. In section 5 we introduce random inhomogeneities and describe the mean
field transport approximation for the Wigner distribution. In section 6 we rewrite the
nonlinear transport equation in parity form, introducing the odd and even parts of
the Wigner distribution, and in section 7 we derive the diffusion approximation in
the small mean free path limit. The linearized stability condition for this degenerate
nonlinear diffusion equation is obtained in section 8.

In section 9 we introduce a numerical scheme for the mean field nonlinear trans-
port equation and present the results of several numerical calculations. In section 10
we do the same for the degenerate nonlinear diffusion equation for the wave energy
density. Our numerical results indicate that in the high frequency regime the random
inhomogeneities slow down the propagation of wave energy, in both the linear and
defocusing cases. In the focusing case, the randomness is able to interact fully with
the focusing nonlinearity as long as the nonlinearity is not too strong. In the diffusive
regime, the randomness interacts fully with the focusing or defocusing nonlinearity,
in a diffusive way, provided that the stability condition (94) holds. We end with
section 11, which contains a brief summary and conclusions.

2. Nonlinear high frequency limit. We briefly review the high frequency
asymptotic analysis for solutions of (1) with oscillatory initial data. The potential
has the nonlinear part from the NLS and a linear part that we may add since it does
not affect the analysis as long as it does not depend on ε. In the usual high frequency
approximation [11] we consider initial data of the form

φε(0,x) = eiS0(x)/εA0(x)(10)

with a smooth real valued initial phase function S0(x) and a smooth compactly sup-
ported complex valued initial amplitude A0(x). We then look for an asymptotic
solution of (5) in the same form as the initial data (10), with evolved phase and
amplitude

φε(t,x) ∼ eiS(t,x)/εA(t,x).(11)

Inserting this form into (5) and equating powers of ε, we get approximate evolution
equations for the phase and amplitude

St +
1

2
|∇S|2 + V (t,x) = 0, S(0,x) = S0(x)(12)
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and

(|A|2)t +∇ · (|A|2∇S) = 0, |A(0,x)|2 = |A0(x)|2.(13)

The phase equation (12) is the eiconal and the amplitude equation (13) the transport
equation. The terminology for the latter is standard in the high frequency approxi-
mation but should not be confused with the radiative transport equation that will be
derived later. These equations can be rewritten using the high frequency dispersion
relation ω of the Schrödinger equation

ω(t,x,k) =
1

2
|k|2 + V (t,x).(14)

The energy in the high frequency regime is obtained by using the ansatz (11) in the
energy (3) so that for small ε

H ≈
∫
R3

(
1

2
|∇S|2 + β

2
|A|2 + V0

)
|A|2 dx.(15)

The potential is V (t,x) = β|A(t,x)|2 + V0(x). Even when it does not depend on the
amplitude |A|, in the linear case, the eiconal equation (12) is nonlinear, and its solu-
tion exists in general only up to some time t∗ that depends on the initial phase S0(x)
and V0(x). This solution can be constructed by the method of characteristics, and sin-
gularities form when these characteristics (rays) cross. The eiconal and the transport
equations are decoupled in the linear case.

To see more clearly the form of the eiconal and transport equations in the NLS
case, we let ρ = |A|2, u = ∇S, take the gradient of (12), with only the nonlinear
potential V (t,x) = β|A(t,x)|2, and rewrite this differentiated eiconal and (13) in
conservation law form:

ρt +∇ · (ρu) = 0,(16)

(ρu)t +∇ · (ρuu) +∇p(ρ) = 0,(17)

where

p(ρ) =
β

2
ρ2.(18)

Now the eiconal and transport equations are fully coupled. When β > 0, this system
of conservation laws are the isentropic gas dynamics equations, with equation of state
given by (18) (γ-law gas with γ = 2). It is hyperbolic, and the solution may become
discontinuous at a finite time. The velocity u is irrotational since it is a gradient,
so ∇ × u = 0. The eiconal equation (12) is the Bernoulli form of the momentum
conservation law (17) for time dependent and irrotational flows. Another form of the
momentum conservation law is

ρ(ut + u · ∇u) +∇p = 0,(19)

and the conservation of energy is exactly as in (15), with V0 = 0, which we rewrite in
the fluid variables

∂

∂t
H =

∂

∂t

∫
R3

(
1

2
ρ|u|2 + p

)
dx = 0.(20)
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In the one-dimensional defocusing case, the nonlinear high frequency limit was
analyzed in detail in [9, 10]. In the higher-dimensional defocusing case, mathematical
results are available only for the more regular Schrödinger–Poisson high frequency
equations [5, 14, 7, 21]. When β < 0, the system of conservation laws (16)–(17) has
complex characteristics, and the initial value problem is catastrophically ill-posed.
This is the case even if the original NLS does not have solutions that blow up, when
the Hamiltonian H > 0, for example. The high frequency limit for the focusing NLS
has been studied only in the one-dimensional case with analytical initial data [12].

3. The Wigner distribution. An essential step in deriving phase space trans-
port equations from wave equations is the introduction of the Wigner distribution
[19, 15]. We begin with a brief review of some basic facts and then give the phase
space form of the high frequency limit.

For any smooth function φ, rapidly decaying at infinity, the Wigner distribution
is defined by

W (x,k) =

(
1

2π

)3 ∫
R3

eik·yφ
(
x − y

2

)
φ
(
x +

y

2

)
dy,(21)

where φ̄ is the complex conjugate of φ. The Wigner distribution is defined on phase
space and has many important properties. It is real, and its k-integral is the modulus
square of the function φ, ∫

R3

W (x,k) dk = |φ(x)|2,(22)

so we may think of W (x,k) as wave number–resolved mass density. This is not quite
right though, because W (x,k) is not always positive, but it does become positive in
the high frequency limit. The energy flux is expressed through W (x,k) by

F =
1

2i
(φ∇φ− φ∇φ) =

∫
R3

kW (x,k) dk,(23)

and its second moment in k is∫
|k|2W (x,k) dk = |∇φ(x)|2.(24)

The Wigner distribution possesses an important x-to-k duality given by the alterna-
tive definition

W (x,k) =

∫
eip·xφ̂

(
−k − p

2

)
φ̂
(
−k +

p

2

)
dp,(25)

where φ̂ is the Fourier transform of φ,

φ̂(k) =
1

(2π)3

∫
eik·xφ(x) dx.(26)

These properties make the Wigner distribution a good quantity for analyzing the
evolution of wave energy in phase space.

Given a wave function of the form (11), that is, an inhomogeneous wave with
phase S(t,x)/ε, its scaled Wigner distribution has the weak limit

W ε(x,k) =
1

ε3
W

(
x,

k

ε

)
→ |A(x)|2δ(k −∇S(x)),(27)
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as a generalized function, as ε→ 0. This suggests that the correct scaling for the high
frequency limit is

W ε(t,x,k) =

(
1

2π

)3 ∫
eik·yφε

(
t,x − εy

2

)
φε
(
t,x +

εy

2

)
dy,(28)

where φε satisfies (5). From (27) we conclude that, as ε → 0, the scaled Wigner
distribution of the solution φε(t,x) of (5) with initial data (10) is given by

W (t,x,k) = |A(t,x)|2δ(k −∇S(t,x)),(29)

where S(t,x) and A(t,x) are solutions of the eiconal and transport equations (12)
and (13), respectively.

We will now sketch the derivation of the high frequency approximation of the
scaled Wigner distribution directly from the Schrödinger equation. Let us assume
that the initial Wigner distribution W ε

0 (x,k) tends to a smooth function W0(x,k)
that has compact support. Note that this is not the case with the Wigner function
corresponding to φε(0,x) given by (10), but it may be the case for random initial
wave functions. We explain this briefly in the next section. The evolution equation
for W ε(t,x,k) corresponding to the Schrödinger equation (5) is the Wigner equation

W ε
t + k · ∇xW

ε + LεW ε = 0.(30)

Here the operator Lε is defined by

LεZ(x,k) = i
∫
R3

e−ip·xV̂ (p)
1

ε

[
Z
(
x,k +

εp

2

)
− Z

(
x,k − εp

2

)]
dp(31)

on any smooth function Z in phase space. The Fourier transform of V is V̂ .
From (31) we can easily find the limit of the operator Lε as ε → 0, in the linear

case where the potential V does not depend on the solution. For any smooth and
decaying function Z(x,k) we have

LεZ(x,k) → −∇xV · ∇kZ.(32)

Thus, the limit Wigner equation is the Liouville equation in phase space,

Wt + k · ∇xW −∇V · ∇kW = 0,(33)

with the initial conditionW (0,x,k) =W0(x,k). When the initial Wigner distribution
has the form

W0(x,k) = |A0(x)|2δ(k −∇S0(x)),(34)

then it is easy to see that, up to the time of singularity formation, the solution of (33)
is given by

W (t,x,k) = |A(t,x)|2δ(k −∇S(t,x)),(35)

where S(t,x) and A(t,x) are solutions of the eiconal and transport equations (12)
and (13), respectively. If the W0(x,k) and V (x) are smooth, so will be the solution
of (32), in the linear case.
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In the nonlinear case the potential depends on the solution. The Liouville, or
Liouville–Vlasov, equation is a nonlinear partial differential equation since

V = βρ(t,x) + V0(x) and ρ =

∫
R3

W dk.(36)

For the initial conditions (34) it is better to use the fluid variables

ρ(t,x) = |A(t,x)|2 and ρ(t,x)u(t,x) = ρ(t,x)∇S(t,x) =
∫
R3

kW dk,(37)

which solve the conservation laws (16)–(17). In the defocusing case, up to the time
of shock formation the solution to the Liouville–Vlasov equation is given by

W (t,x,k) = ρ(t,x)δ(k − u(t,x)).(38)

We see, therefore, that from the Wigner distribution we can recover all the information
about the high frequency approximation, when it makes sense. In addition, it provides
flexibility to deal with initial data that are not of the form (34).

4. Random initial data. Let us consider initial wave functions of the form
φ0(

x
ε ,x), where φ0(y,x) is a stationary random field in y for each x with mean zero

and covariance

〈φ0(y1,x1)φ̄0(y2,x2)〉 = R0(y1 − y2,x1,x2).(39)

Then with

W ε
0 (x,k) =

1

(2π)3

∫
eik·yφ0

(x

ε
− y

2
,x − εy

2

)
φ̄0

(x

ε
+

y

2
,x +

εy

2

)
dy(40)

we have that

〈W ε
0 (x,k)〉 → R̂0(k,x,x)(41)

pointwise in k and x. Here R̂0(k,x,x) is the diagonal part of the power spectral
density of R0, that is, its Fourier transform in y with x1 = x2 = x. We also have
that for any test function ψ(x,k)∫

W ε
0 (x,k)ψ(x,k) dx dk →

∫
R̂0(k,x,x)ψ(x,k) dx dk(42)

in probability as ε → 0. This means that W ε
0 converges to R̂0 weakly in probabil-

ity. However, it does not converge in mean square; that is, the mean fluctuation
〈||W ε

0 − R̂0||2L2〉 does not go to zero. This can be seen from the fact that 〈||W ε
0 ||2L2〉

does not tend to ||R̂0||2L2 .

From the above example we see how smooth and compactly supported initial
Wigner functions can arise. For linear waves in random media there are no additional
complications when dealing with random initial data that are statistically independent
from the medium. The situation is much more complicated in the case of nonlinear
waves and essentially unexplored mathematically.
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5. High frequency limit with random inhomogeneities. We now consider
small random perturbations of the potential V (t,x). It is well known that, in one space
dimension, linear waves in a random medium get localized even when the random
perturbations are small [16], so our analysis is restricted to three dimensions. The
two-dimensional case is difficult because the mean field approximation that we use in
three dimensions is most likely incorrect.

We consider the linear case first. We assume that the correlation length of the
random perturbation is of the same order as the wavelength, so the potential has the
form V (t,x) +

√
ε V1(

x
ε ) since the wavelength is of order ε. Here V (t,x) is the slowly

varying background, without the nonlinear part, and V1(y) is a mean zero, stationary
random function with correlation length of order one. This scaling allows the random
potential to interact fully with the waves. We shall also assume that the fluctuations
are statistically homogeneous and isotropic so that

〈V1(x)V1(y)〉 = R(|x − y|),(43)

where 〈, 〉 denotes statistical averaging and R(|x|) is the covariance of random fluctu-
ations. The power spectrum of the fluctuations is defined by

R̂(k) =

(
1

2π

)3 ∫
eik·xR(x) dx.(44)

When (43) holds, the fluctuations are isotropic and R̂ is a function only of |k|. Because
of the statistical homogeneity, the Fourier transform of the random potential V1 is a
generalized random process with orthogonal increments

〈V̂1(p)V̂1(q)〉 = R̂(p)δ(p + q).(45)

If the amplitude of these fluctuations is strong, then scattering will dominate and
waves will be localized [4], at least in the linear case. This means that we cannot
assume that the fluctuations in the random potential V1(y) are large. If the random
fluctuations are too weak, they will not affect energy transport at all. In order that
the scattering produced by the random potential and the influence of the slowly
varying background affect energy transport in comparable ways, the fluctuations in
the random potential must be of order

√
ε. This makes the transport mean free time,

the reciprocal of Σ below, of order one and independent of ε. The scaled equation (5)
becomes

iε
∂φε

∂t
+
ε2

2
∆φε −

(
V (t,x) +

√
ε V1

(x

ε

))
φε = 0,

φε(0,x) = φ0

(x

ε
,x
)
.(46)

To describe the passage from (46) to the transport equation in its simplest form,
we will set V (t,x) = 0. A smooth and ε independent potential V (t,x) that is not
zero will not change the scattering terms in the phase space transport equation. It
will affect only the Liouville part in the linear case. Now (30) for W ε has the form

∂W ε

∂t
+ k · ∇xW

ε +
1√
ε
Lx

ε
W ε = 0,(47)

where the operator Lx
ε
, a rescaled form of (31), is given by

Lx
ε
Z(x,k) = i

∫
e−ip·x/εV̂1(p)

(
Z
(
x,k +

p

2

)
− Z

(
x,k − p

2

))
dp.(48)
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The behavior of this operator as ε → 0 is very different from (32) when V1 is slowly
varying. We can find the correct results by a formal multiscale analysis (see [15]).

Let y = x/ε be a fast space variable (on the scale of the wavelength), and intro-
duce an expansion of W ε of the form

W ε(t,x,k) =W (t,x,k) + ε1/2W (1)(t,x,y,k) + εW (2)(t,x,y,k) + · · · ,(49)

with y = x/ε on the right. We assume that the leading term does not depend on
the fast scale and that the initial Wigner distribution W ε(0,x,k) tends to a smooth
function W0(x,k), which is decaying fast enough at infinity. Then the average of the
Wigner distribution, 〈W ε〉 is close to W , which satisfies the transport equation

∂W

∂t
+ k · ∇xW −∇xV · ∇kW,= LW,(50)

W (0,x,k) =W0(x,k),

where we have inserted on the left the term due to the potential V in (36). The linear
operator L is given by

LW (x,k) = 4π

∫
R3

R̂(p − k)δ(k2 − p2)[W (x,p)−W (x,k)] dp.(51)

The left-hand side of (50) has precisely the form (33) of the Liouville equation.
The right-hand side is the linear transport operator with differential scattering cross
section σ(k,k′) given by

σ(k,p) = 4πR̂(p − k)δ(k2 − p2),(52)

and total scattering cross section Σ(k) given by

Σ(k) = 4π

∫
R3

R̂(k − p)δ(k2 − p2) dp.(53)

Note also that the transport equation (50) has two important properties. First, the
total energy

E(t) =

∫∫
R3×R3

W (t,x,k) dk dx(54)

is conserved, and second, the positivity of the solution W (t,x,k) is preserved; that
is, if the initial Wigner distribution W0(x,k) is nonnegative, then W (t,x,k) ≥ 0 for
t > 0.

The physical meaning of the transport approximation for the linear Schrödinger
equation with random potential is as follows. The characteristic wavelength intro-
duced by the initial data is comparable with the scale of the inhomogeneities of the
random potential. When we observe the wave energy far from the source and after a
long time, it appears to evolve in phase space according to a radiative transport equa-
tion with a mean free path that is comparable to the distance from the source of the
waves. This kind of behavior is captured with the ε scaling that we have introduced.
The scaling of the size of the fluctuations by

√
ε is introduced so that the mean free

path between macroscopic scatterings is comparable to the propagation distance.
The mathematical analysis of the passage from waves to transport in the linear

case is considered in [2, 3, 8, 17]. The paper of Ho, Landau, and Wilkins [8] has
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extensive references, and the paper of Erdös and Yau [3] gives a result that is global
in time.

In the nonlinear case the potential V (t,x) = V ε(t,x) in (46) depends on the
solution. In terms of the Wigner function, the potential is βρε(t,x) + V0(x) with
ρε =

∫
W ε dk. We will make a mean field hypothesis here, which says that in the

transport limit ε → 0 the nonlinear potential keeps its form in the transport equa-
tion (50). This amounts to assuming that ρε → ρ in a strong sense. Some evidence for
this is provided in the appendix. However, the mean field hypothesis is very difficult
to prove. It is also difficult to test numerically, since the fact that we are in three
dimensions is expected to play an important role. There are no mathematical results
that deal with the mean field approximation.

5.1. A linear stability analysis. Let ξ be the unit vector in the direction of k,
i.e., k = kξ, where k = |k|. For simplicity, in the remainder of the paper we assume
that the power spectral density of the inhomogeneities is

R̂ =
α

2π

with α a constant. Then (50)–(51) can be written as

∂tW + k · ∇xW −∇xV · ∇kW = α

∫
|ξ′|=1

W (t,x, k, ξ′) dξ′ − 4παW,(55)

with

V = βρ and ρ =

∫
R3

W dk.(56)

The initial condition (34) is now rewritten as

W (0,x, k, ξ) =
1

4πk2
δ(k − |∇S0(x)|)δ

(
ξ − ∇S0(x)

|∇S0(x)|
)
|A0(x)|2.(57)

In order to carry out a linear stability analysis we first take the first two moments
of (55). Multiplying (55) by 1 and k, respectively, and integrating over k, we have

∂tρ+∇x · ρu = 0,(58)

∂tρu +∇x ·
∫

kkW dk −
∫

k∇xV · ∇kW dk = −4παρu.(59)

Thus the random inhomogeneity contributes a damping effect. Of course, these equa-
tions are not closed since high moments are undefined. However, they can be used in
the linear stability analysis.

First we note that

ρ0 ≡ #̄, u0 ≡ 0, W0 ≡ δ(k)#̄,

with #̄ a constant, is a solution of the moment equations (58)–(59). We look for a
solution near these constant states, in the form

ρ = ρ+ ρ(1), u = u(1),(60)
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where

ρ(1) � ρ, |u(1)| � 1.(61)

We also set

W = δ(k − u)ρ.(62)

With this ansatz, the moment equations can be closed to give

∂tρ
(1) +∇x · ρu(1) = 0,(63)

∂tρu
(1) +∇x · u(1)u(1)ρ+ βρ∇xρ = −4παρu(1).(64)

Using (61) and ignoring higher order terms, we obtain the leading order equations

∂tρ
(1) + ρ∇x · u(1) = 0,(65)

∂tu
(1) + β∇xρ

(1) = −4παu(1).(66)

This system is hyperbolic if β ≥ 0 and so is stable in the linear and defocusing cases.
However, in the focusing case β < 0, the system is elliptic. A dispersion relation
analysis for (65)–(66) shows that there are three negative eigenvalues

−1, −1, −2πα−
√
4π2α2 − βρ|η|2,

where η is the wave number, and a fourth one

−2πα+
√
4π2α2 − βρ|η|2.

This last one is always negative when β > 0, and zero when β = 0, suggesting stability
in the defocusing and linear cases. It is always negative when β < 0. The focusing
case near uniform solutions with u = 0 is, therefore, linearly unstable.

This means that the only hope for linear stability in the focusing case is to have a
nonzero u. This is consistent with the linear stability of the diffusion approximation
in the focusing case, which will be derived next.

6. The parity formulation. It is convenient to use the parity formulation of
the transport equation (50). This allows us to obtain the diffusion approximation in
a transparent way.

To get the parity form of (55), we split it into two equations, one for k and one
for −k:

∂tW (k) + k · ∇xW (k)−∇xV · ∇kW (k)

= α

∫
|ξ′|=1

W (t,x, k, ξ′) dξ′ − 4παW (k),(67)

∂tW (−k)− k · ∇xW (−k) +∇xV · ∇kW (−k)

= α

∫
|ξ′|=1

W (t,x, k, ξ′) dξ′ − 4παW (−k).(68)

Define the even and odd parities as

W+ =
1

2
[W (t,x,k) +W (t,x,−k)],

W− =
1

2
[W (t,x,k)−W (t,x,−k)].
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Adding and subtracting (67) and (68) gives the parity form of the transport equation

∂tW
+ + k · ∇xW

− −∇xV · ∇kW
− = α

∫
|ξ′|=1

W+(t,x, k, ξ′) dξ′ − 4παW+,(69)

∂tW
− + k · ∇xW

+ −∇xV · ∇kW
+ = −4παW−.(70)

The parity formulation has the advantage that the diffusion approximation can
be derived easily, as will be shown in the next section.

7. Nonlinear diffusion limit. The diffusion approximation is obtained from
the parity equations (69) and (70) in the small mean free time limit 1/α → 0, and
with the time stretched t→ αt. Then (69) implies that for α large

W+(t,x,k) =
1

4π

∫
|ξ′|=1

W+(t,x, k, ξ′) dξ′ ≡W0(t,x, k),(71)

and so the leading term of W+ is independent of ξ. From (70) we have that

W− = − 1

4πα
(k · ∇xW0 − β∇xρ0 · ∇kW0),(72)

where

ρ0(t,x) =

∫
k2W0 dk

and where the time derivative can be neglected on the long time scale. Using (72)
in (69), we get

∂tW0 − k · ∇x
1

4πα
(k · ∇xW0 − β∇xρ0 · ∇kW0)

+ β∇xρ0 · ∇k
1

4πα
(k · ∇xW0 − β∇xρ0 · ∇kW0) = 0.(73)

Taking the ξ average 1
4π

∫
|ξ|=1

· dξ in (73) yields

∂W0

∂t
− k2

4π

1

4πα

∫
|ξ|=1

ξ · ∇x(ξ · ∇xW0) dξ + β
1

4π

k

4πα

∫
|ξ|=1

ξ · ∇x(∇xρ0 · ∇kW0) dξ

+ β
1

4πα
∇xρ0 · 1

4π

∫
|ξ|=1

∇k(k · ∇xW0) dξ

− β2

4π
∇xρ0 · 1

4πα

∫
|ξ|=1

∇k(∇xρ0 · ∇kW0) dξ = 0.

(74)

By straightforward manipulations, (74) becomes

α
∂W0

∂t
− 1

12π
k2∆W0 + β

k

12π
∇x ·

(
∂W0

∂k
∇xρ0

)

+ β
1

12π
∇xρ0 ·

[
∇x

∂

∂k
(kW0) + 2∇xW0

]

− β2

12π
|∇xρ0|2

[
∂2W0

∂k2
+

2

k

∂W0

∂k

]
= 0.(75)
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This is the diffusion approximation of the transport equation (55) and can also
be written in the form

α
∂W0

∂t
− 1

12π

( ∇x
∂
∂k

)
·
(

k2I3 −βk∇xρ0
−βk (∇xρ0)

T
β2|∇xρ0|2

)( ∇xW0
∂W0

∂k

)

+ β
1

6π
∇xρ0 · ∇xW0 − β2

6πk
|∇xρ0|2 ∂W0

∂k
= 0.(76)

Here I3 is the 3× 3 identity matrix. The diffusion coefficient matrix in (76) is

D =
1

12π

(
k2I3 −βk∇xρ0

−βk(∇xρ0)
T β2|∇xρ0|2

)
,(77)

and it is symmetric and nonnegative semidefinite. However, since detD = 0, the
diffusion matrix is degenerate. This is because the scattering operator in (51) is con-
centrated on the unit sphere. The derivation of the nonlinear diffusion equation (76)
is the main result of this paper.

The diffusion equation (75) or (76) can be rewritten into a very simple form
(see [1]). Let

e =
k2

2
, ∇̃ = ∇x − β∇xρ

∂

∂e
;(78)

then (75) becomes

12πα
∂W0

∂t
− ∇̃ · (2e∇̃W0) + β∇xρ0 · ∇̃W0 = 0.(79)

We can get equations for moments of W0 which, however, are not closed. First
we multiply (75) by k2, integrate over k, and then integrate by parts to get

12πα
∂ρ0
∂t

− 3β∇x · (ρ0∇xρ0) = −∆
∫
k4W0 dk.(80)

This gives mass conservation

∂

∂t

∫
ρ0(t,x) dx = 0.

Let u0 be given by

u0 =
1

ρ0

∫
k3W0(t,x k) dk.(81)

To get an equation for the second moment, we multiply (75) by k3 and integrate
over k. After integrating by parts, we obtain

∂ρ0u0

∂t
−∆

∫
k5W0 dk − 4β∇x · (ρ0u0∇xρ0)− β∇xρ0 · ∇xρ0u0

− 2β2|∇xρ0|2
∫
kW0 dk = 0.(82)

Note that (80) and (82) are not closed since they involve higher k moments of W0.
As in the usual diffusion theory of the transport equation, an initial layer analysis

gives the initial condition for W0 as

W0(0,x, k) =
1

k2
δ(k − |∇S0(x)|) |A0(x)|2.(83)



FOCUSING NLS WITH RANDOM INHOMOGENEITIES 1341

8. Linear stability condition for the nonlinear diffusion equation. In
this section we carry out a linear stability analysis on the diffusion equation (75).
This stability analysis gives a simplified but clear picture of how the nonlinear and
random effects interact.

We use the moment equations (80) and (82) for the stability analysis. First we
note that

ρ0 ≡ #̄, u0 ≡ u, W0 ≡ 1

k2
δ(k − u)#̄,

where #̄, u are constants, is a solution of the moment equations (80) and (82). We
look for a solution near these constant states, in the form

ρ0 = ρ+ ρ
(1), u0 = u+ u

(1),(84)

where

ρ(1) � ρ, u(1) � u.

We also set

W0 =
1

k2
δ(k − u0)ρ0.(85)

With this ansatz, the moment equations can be closed to give

12πα
∂ρ0
∂t

−∆ρ0u
2
0 − 3β∇x · (ρ0∇xρ0) = 0,(86)

12πα
∂ρ0u0

∂t
−∆ρ0u

3
0 − 4β∇x · (ρ0u0∇xρ0)(87)

− β∇xρ0 · ∇xρ0u0 − 2β2|∇xρ0|2 ρ0
u0

= 0.

With the linearization (84), the last two terms in (87) are insignificant and so will be
neglected. The moment equations thus become

12πα
∂ρ0
∂t

−∆ρ0u
2
0 − 3β∇x · (ρ0∇xρ0) = 0,(88)

12πα
∂ρ0u0

∂t
−∆ρ0u

3
0 − 4β∇x · (ρ0u0∇xρ0) = 0.(89)

We now do the linearization (84) and, keeping only the leading terms, obtain the
coupled system of linear diffusion equations

12πα
∂ρ1
∂t

= (u2 + 3β#̄)∆ρ1 + 2#̄u∆u1,(90)

12πα
∂u1

∂t
= βu∆ρ1 + u

2∆u1.(91)

8.1. Linear stability from the diffusion matrix. The diffusion coefficient
matrix of (90) and (91),

A =

(
u2 + 3β#̄ 2#̄u
βu u2

)
,(92)
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has two eigenvalues:

λ± = u2 +
3

2
β#̄± 1

2

√
8β#̄u2 + 9β2u2.(93)

Clearly, Re(λ±) > 0 if and only if

u2 +
3

2
β#̄ > 0.(94)

This means that the right-hand side of the variance identity (4) in the high frequency
limit, where H has the form (15) or (20) in the ρ,u variables, must be positive for
stability. Therefore, even in the focusing case β < 0, the initial value problems for
the linear diffusion equations (90) and (91) are well posed as long as (94) is satisfied.

It is surprising that the stability condition (94) does not depend on the strength α
of the random inhomogeneities, although the diffusion rate does. It is also surprising
that the right-hand side of the variance identity comes up as a stability condition, while
in the analysis of the NLS equation it is used to get focusing solutions (instability)
when (9) is negative.

8.2. Linear stability for the energy. We now study the stability of (90)–(91)
in the energy norm. In the linear case when β = 0, it is obvious that (90)–(91) is
stable. We analyze the defocusing and focusing cases separately.

In the defocusing case, β > 0, we multiply (90) by βρ, and (91) by #̄u, and
then add the resulting equations and integrate over x. Upon integration by parts, we
obtain

12πα
∂

∂t

∫ (
β

2
ρ2 +

1

2
#̄u2

)
dx = −

∫
β(u2 + 3β#̄)|∇ρ|2 + 3β#̄u∇ρ · ∇u+ #̄u2|∇u|2 dx

= −
∫
β

(
u2 +

3

4
β#̄

)
|∇ρ|2 dx

−
∫

9

4
β2#̄|∇ρ|2 + 3β#̄u∇ρ · ∇u+ #̄u2|∇u|2 dx

= −
∫
β

(
u2 +

3

4
β#̄

)
|∇ρ|2 dx −

∫
#̄

∣∣∣∣32β∇ρ+ u∇u
∣∣∣∣2 dx

≤ 0.(95)

Thus, in the defocusing case the system (90)–(91) is always stable.
In the focusing case, β < 0, we again multiply (90) by βρ, and (91) by 2#̄u.

We then subtract the first equation from the second one. By integrating over x and
integrating by parts, we obtain

12πα
∂

∂t

∫ (
#̄u2 − β

2
ρ2
)
dx = −2#̄u2

∫
|∇u|2 dx + β

∫
(u2 + 3β#̄)|∇ρ|2 dx.(96)

Clearly, a sufficient condition for the above term to be nonpositive is

u2 + 3β#̄ ≥ 0.(97)

This means that the coefficient of ∆ρ in (90) should be nonnegative, which means
that the diagonal entries of the matrix A should be nonnegative.
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9. Numerical solution of the nonlinear transport equation. In this sec-
tion we will present some numerical results for the nonlinear transport equation
(55)–(56). In order to have good resolution, we assume spherical symmetry and
use a second order nonoscillatory upwind scheme [13]. The solution depends only on
r = |x|, k, and θ = cos−1 x·k

rk , the angle between x and k. In these variables, (55)
and (56) become

∂W

∂t
+ kcos θ

∂W

∂r
− k

r
sin θ

∂W

∂θ
− β ∂V

∂r

(
cos θ

∂W

∂k
− sin θ

k

∂W

∂θ

)
(98)

= 2πα

∫ π

0

W sin θ dθ − 4παW,

V = V (ρ), ρ =

∫ ∞

0

∫ 2π

0

Wk2 sin θ dk dθ.

In terms of the direction cosine −1 ≤ µ = cos θ ≤ 1, (98) can be rewritten in
conservation form as

∂W

∂t
+
∂

∂r
(µkW ) +

∂

∂k

(
−βµ∂V

∂r
W

)
+
∂

∂µ

[
(1− µ2)

(
k

r
− β

k

∂V

∂r

)
W

]
(99)

= 2πα

∫ 1

−1

W (t, r, k, µ′) dµ′ − 4παW,

V = V (ρ), ρ =

∫ ∞

0

∫ 1

−1

Wk2 dk dµ,

where W =W (t, r, k, µ). The initial condition for (99) is

W (0, r, k, µ) =
1

k2
δ(k − u0(r))δ(µ− a0(r))ρ0(r).(100)

9.1. The numerical method. We will use a second order upwind scheme for
spatial discretizations. This is a natural choice since (99) is a hyperbolic equation. We
use the composite midpoint rule for angular integration, and the second order explicit
Runge–Kutta method for time discretization. The overall accuracy is of second order.

Let ri+1/2 (0 ≤ i ≤ I) be the grid points in the r-direction, and likewise define
kj+1/2 (0 ≤ j ≤ J) and µl+1/2 (0 ≤ l ≤ L). Let ri, kj , µl be the midpoints (for

example, ri =
1
2 (ri+1/2 + ri−1/2)). Let ∆r = ri+1/2 − ri−1/2, ∆k = kj+1/2 − kj−1/2,

and ∆µ = µl+1/2 − µl−1/2 be the uniform grid sizes in each direction. Let Wijl be
the numerical approximation of W at (ri, kj , µl), and Wi+1/2,j,l be the approximation
of W at (ri+1/2, sj , µl). We define Wi,j+1/2,l and Wij,l+1/2 in a similar way. A second
order conservative approximation for (99) is

∂

∂t
Wijl +

µlkj
∆r

(Wi+1/2,j,l −Wi−1/2,j,l)− µl
∆k

∂Vi
∂r

(Wi,j+1/2,l −Wi,j−1/2,l)(101)

+
1− µ2

l

∆µ

(
kj
ri

− 1

kj

∂Vi
∂r

)
(Wi,j,l+1/2 −Wi,j,l−1/2)

= 2πα

∫ 1

−1

Wij(t, r, k, µ
′)− 4παWijl.

To get the flux Wi+1/2,jl from the known quantity Wijl, we use the second order
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upwind scheme due to van Leer (see [13]):

Wi+1/2,jl =Wijl +
∆r

2
σri if µl > 0,(102)

Wi+1/2,jl =Wi+1,jl − ∆r

2
σri+1 if µl < 0.(103)

Here σri is the limited slope (see [13])

σri =
1

∆r
(Wi+1,jl −Wijl)φ(θ

r),(104)

θr =
Wijl −Wi−1,jl

Wi+1,jl −Wijl
,(105)

φ(θ) =
|θ|+ θ
1 + |θ| .(106)

A limited slope scheme is necessary, especially for the defocusing case, since moments
of the nonlinear transport equation are close to the gas dynamics equations. Without
a limited slope the numerical solutions become oscillatory when shocks develop. We
define the flux in the k-direction in a similar way:

Wi,j+1/2,l =Wijl +
∆k

2
σkj if −µl ∂Vi

∂r
> 0,(107)

Wi,j+1/2,l =Wi,j+1,l − ∆k

2
σkj+1 if −µl ∂Vi

∂r
< 0,(108)

where σki is defined as in (104). The flux in the µ-direction is given by

Wi,j,l+1/2 =Wijl +
∆µ

2
σµl if

kj
ri

− 1

kj

∂V

∂r
> 0,(109)

Wi,j,l+1/2 =Wi,j,l+1 − ∆µ

2
σµl+1 if

kj
ri

− 1

kj

∂V

∂r
< 0,(110)

where σµl is defined as in (104).

To find ∂Vi

∂r , given that V ′(r) = V ′(ρ)∂ρ∂r , we need to evaluate ∂ρi
∂r . We use the

centered difference

∂ρi
∂r

≈ ρi+1/2 − ρi−1/2

∆r
(111)

=
1

∆r

(∫ ∞

0

∫ 1

−1

Wi+1/2(t, k, µ) dk dµ−
∫ ∞

0

∫ 1

−1

Wi−1/2(t, k, µ) dk dµ

)

≈ ∆k∆µ

∆r

∑
j,l

(Wi+1/2,j,l −Wi−1/2,j,l).

Here we have used the composite midpoint rule to approximate the integral. It has
second order accuracy in k and µ. We can use the flux Wi+1/2,j,l already obtained
from (103) in (111). To recover Vi+1/2, we use the integral

ρi+1/2 = ρ1/2 +

∫ ri+1/2

0

∂ρ

∂r
dr ≈ ρ1/2 +

i∑
j=0

∂ρj
∂r

∆r,(112)



FOCUSING NLS WITH RANDOM INHOMOGENEITIES 1345

where the composite midpoint rule has again been used.
Time discretization. We use the second order Runge–Kutta method.
Boundary conditions. Since the numerical flux has a five-point stencil, it is nec-

essary to have two fictitious points outside the physical boundaries. To define W on
the left of r = 0 we use the condition

W (t,−r, k, µ) =W (t, r, k,−µ).(113)

This makes sense physically because (99) remains unchanged if we simultaneously
replace r by −r and µ by −µ. To define W to the left of k = 0, we use a similar
condition

W (t, r,−k, µ) =W (t, r, k,−µ).(114)

The scattering term in (99) is small near k = 0. At outer boundaries of r and k we
use outgoing boundary conditions. For the computations the domain in k is large
enough so that at the outer boundary W is nearly zero. At µ = ±1 we simply use the
reflecting boundary condition ∂W

∂µ = 0.
More precisely, we fix the numerical boundary conditions at r = 0 as follows. If

∂V
∂r < 0, we first extrapolateW to second order for µ < 0 from the interior value ofW
to getW−1/2,jl andW−2/3,jl, where r−1/2 = −r1/2 and r−3/2 = −r3/2 are the fictitious
points. To obtain W at the fictitious points for µ > 0, we use the condition (113)
numerically, i.e., W−1/2.jl = W1/2,j,L−l+1 and W−3/2,jl = W3/2,j,L−l+1. If ∂V

∂r > 0
we reverse this process. This corresponds to extrapolation in an upwind direction,
which is necessary for a hyperbolic equation. At k = 0 we impose a similar boundary
condition. At the outer boundaries we always assume zero incoming flux, and the
outgoing flux is simply the outflow boundary condition.

9.2. Numerical results. We will now present the results of some numerical
experiments for the nonlinear transport equation (99). We want to see the effect of
randomness, which in (99) is the scattering term, on the focusing nonlinearity. We
use the potential

V (ρ) = βρ.

The initial energy density is

W (0, r, k, µ) =
1

k2
δ(k − 1)δ(µ)ρ0(r),(115)

but in the numerical computations we use the Gaussian

W (0, r, k, µ) =
λ2

π

1

k2
e−λ

2((k−1)2+µ2)ρ0(r),(116)

which gives

ρ0(r) = e
−λ2r2 + 0.5.(117)

This initial density regularizes the delta-function. The smoothing effect of the pa-
rameter λ is explored numerically below. The nonlinear transport equation with
delta-function initial data is quite singular, and there is no theoretical justification
for expecting it to correspond to the limiting behavior λ → ∞ of the regularized
solutions.
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Fig. 1. The density ρ(t, r) versus r for the linear case without randomness; (α = β = 0) and
λ = 3. Note that the energy is propagating away from the origin.

The computational domain in r, k, µ space is [0, 2] × [0, 2] × [−1, 1]. We use
120 cells in r, 120 cells in k, and 40 cells in µ. We use ∆t = 10−4 for the linear
case, ∆t = 5× 10−6 for the defocusing case, and ∆t = 10−5 for the focusing cases. In
the focusing case the solution is less diffusive, and the CFL condition allows a slightly
larger ∆t than in the defocusing case. We first use λ = 3.

1. The linear case (β = 0). If there is no randomness (α = 0), wave energy
moves away from the origin, as in Figure 1. By turning on the random terms
(α = 0.7), we see that it tends to slow down the spreading of the energy, as
shown in Figure 2.

2. The defocusing case (β = 1). The energy density without randomness (α = 0)
is shown in Figure 3. It propagates away from the origin much faster than
in the linear case, Figure 1. In Figure 4 we show the energy density in the
defocusing case with randomness (α = 0.7). The solution is more spread out
than in the linear case.

3. The focusing case. If there is no randomness (α = 0), the numerical solution
becomes highly oscillatory (one wave length per grid point; see Figure 5),
reflecting the unstable nature of the problem. By turning on the randomness,
for example, at α = 0.7, numerical results are stable, at least when |β| is not
too large. We compare the results of β = −0.2 and β = −0.5 in Figures 6
and 7, respectively. In both cases the solutions spread out more slowly than
in the linear case, and larger |β| slows down the spreading of the solution.
We also consider the smoothing effect of the initial data. In Figures 8 and 9
we compare numerical solutions with λ = 6 and λ = 9, respectively. The
solutions are quite close to each other. The larger λ slows down spreading a
bit, but the qualitative behavior of the numerical solutions remains the same.
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Fig. 2. The density ρ(t, r) versus r for the linear case with randomness α = 0.7 and λ = 3.
Wave energy spreading is slower than that of Figure 1 without randomness.
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Fig. 3. The density ρ(t, r) versus r for the defocusing case with no randomness (α = 0, β = 1)
and λ = 3. The wave energy propagates away from the origin much faster than in the linear case.
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Fig. 4. The energy density ρ(t, r) versus r in the defocusing case with randomness (α = 0.7,
β = 1) and λ = 3. The density is more spread out.
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Fig. 5. The energy density ρ(t, r) versus r for the focusing case with no randomness. Here
β = −0.2 and λ = 3.
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Fig. 6. The energy density ρ(t, r) versus r for the focusing case with randomness. Here α = 0.7,
β = −0.2, and λ = 3.
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Fig. 7. The energy density ρ(t, r) versus r for the focusing case with randomness. Here α = 0.7,
β = −0.5, and λ = 3.
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Fig. 8. The energy density ρ(t, r) versus r for the focusing case with randomness. Here α = 0.7,
β = −0.2, and λ = 6.
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Fig. 9. The energy density ρ(t, r) versus r for the focusing case with randomness. Here α = 0.7,
β = −0.2, and λ = 9.
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It still remains an important issue to investigate the quantitative relation among
α, β, and λ and how it effects the stability of the physical problem. This will be a
topic for future research.

10. Numerical solution of the nonlinear diffusion equation. We also nu-
merically solve the nonlinear diffusion equation (75). We rescale the time variable so
that α disappears. We have four independent variables, but we will assume spheri-
cal symmetry to reduce them to two. Let r = |x| and W (t,x, k) = W (t, r, k). The
diffusion equation (75) in polar coordinates is

∂W0

∂t
− 1

12π

k2

r2
∂

∂r

(
r2
∂W0

∂r

)
+

k

12π

∂W0

∂k

1

r2
∂

∂r

(
r2
∂V

∂r

)
+
k

6π

∂2W0

∂r∂k

∂V

∂r

+
1

4π

∂V

∂r

∂W0

∂r
− 1

12π

(
∂V

∂r

)2
∂2W0

∂k2
− 1

6πk

(
∂V

∂r

)2
∂W0

∂k
= 0,(118)

V (ρ) = βρ,

with the initial condition

W0(0, r, k) =
1

k2
δ(k − u0(r))ρ0(r).(119)

We use a second order centered difference scheme for spatial derivatives and a com-
posite midpoint rule to approximate ρ0(r). Let Wi,j denote the spatial discretization
of W0. The spatially discretized form of (118) is

∂Wi,j

∂t
− 1

12π

k2
j

r2i (∆r)
2
(r2i+1/2(Wi+1,j −Wi,j)− r2i−1/2(Wi,j −Wi−1,j))(120)

+
k

12πr2i

(
Wi,j+1 −Wi,j−1

2∆k

)
1

(∆r)2
[r2i+1/2(Vi+1 − Vi)− r2i−1/2(Vi − Vi−1)]

+
kj
6π

(
Vi+1 − Vi−1

2∆r

)
1

4∆r∆k
(Wi+1,j+1 −Wi+1,j−1 −Wi−1,j+1 +Wi−1,j−1)

+
1

4π

(
Vi+1 − Vi−1

2∆r

)
Wi+1,j −Wi−1,j

2∆r

− 1

12π

(
Vi+1 − Vi−1

2∆r

)2
1

∆k2
(Wi,j+1 − 2Wi,j +Wi,j−1)

− 1

6πkj

(
Vi+1 − Vi−1

2∆r

)2
Wi,j+1 −Wi,j−1

2∆k
= 0.

Here we define ri+1/2 = (ri + ri+1)/2 and kj+1/2 = (kj + kj+1)/2. To get Vi from W
we use the composite midpoint rule. For time discretization we use the second order
Runge–Kutta method. At r = 0 or k = 0 we use reflecting boundary conditions.
At the outer boundaries we use vanishing flux conditions. It is important to have a
domain in k that is large enough so that W is very small at the outer boundary of k.
We choose the initial data

W0(0, r, k) =
1

k2
e−9((k−1)2+r2).(121)

The domain of integration is [0, 1] × [0, 2]. We take 32 points in r, 64 points
in k, and ∆t = 10−4. The numerical results for linear, defocusing, and focusing (with
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Fig. 10. The energy density ρ(t, r) in the diffusion approximation in the linear case, plotted as
a function of r with ∆t = 0.0001.

β = −1 and β = −0.5) cases are shown in Figures 10, 11, 12, 13, respectively. In the
linear case there is less diffusion than in the defocusing case, while in the focusing
case diffusion is quite reduced. In fact, in the focusing case with β = −1 the stability
condition (94) is not satisfied in part of the domain, and ρ(t, r) grows locally as the
solution tends to focus. In Figure 12 we show the solution until it is about to blow
up (at t ≈ 0.51). By decreasing ∆t we may compute the solution to a slightly longer
time, but it still breaks down numerically. For a stable solution we have to take a
smaller |β|. In Figure 13 we show ρ with β = −0.5 so that the stability condition (94)
is satisfied in the whole domain. The solution is stable and diffuses, at a slower rate
than in the linear case. Our numerical results support the linear stability analysis that
leads to (94). If (94) holds at every point of the domain initially, then the nonlinear
diffusion equation is stable in time.

In Figure 14 we plot the diffusivity

σ(t) =

∫ ∞

0

∫ ∞

0

W0r
4k2 dr dk(122)

as a function of time, where the integrals are computed numerically with the composite
midpoint rule. We see more clearly what we observed in the previous figures. The
slope of σ(t), the rate of diffusion, decreases as we go from the defocusing to the linear
and to the focusing (β = −0.5) case.

11. Summary and conclusions. We have studied the interaction of nonlinear
waves, solutions of the nonlinear Schrödinger equation (NLS), and random inhomo-
geneities, which have mean zero, are stationary, and have correlation length com-
parable to the wavelength. Using the Wigner phase space form of the Schrödinger
equation, we formally derive a nonlinear mean field transport approximation in the
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Fig. 11. The energy density ρ(t, r) in the diffusion approximation in the defocusing case
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high frequency limit, and then get the diffusion approximation of this nonlinear trans-
port equation. A linear stability analysis of the nonlinear diffusion equation shows in
a simplified way how the nonlinearity and randomness interact. The focusing nonlin-
earity has an antidiffusive effect (see (94) with β < 0), but as long as it is not very
strong the diffusion equation is linearly stable. The linear stability condition (94) has
a surprising connection with the variance identity of the NLS (4): it is the right-hand
side of this identity in the high frequency limit.

We then use suitable numerical schemes for both the mean field transport equa-
tion and its nonlinear diffusion approximation, and obtain numerical solutions for
these two equations. Our results indicate that in the high frequency regime the ran-
dom inhomogeneities prevent the wave energy from propagating in the linear and
defocusing cases, but they are not strong enough to interact fully with the focusing
nonlinearity. However, in the diffusive regime, randomness and nonlinearity interact
fully, in a diffusive way, in all cases, defocusing and focusing. More precisely, we find
that the following hold:

1. In the high frequency regime, for the linear and defocusing Schrödinger equa-
tion, the presence of random inhomogeneities prevents the wave energy from
propagating and damps its amplitude. In the focusing case, the random in-
homogeneities can stabilize the focusing nonlinearity if the nonlinearity is not
too strong.

2. In the diffusive regime the defocusing nonlinearity enhances the overall diffu-
sivity. The focusing nonlinearity is antidiffusive. However, when the strength
of the nonlinearity is within a stability threshold given by (94), the random
diffusivity dominates and the overall solution is diffusive. Thus, if the original
focusing NLS does not blow up because the right-hand side of the variance
identity (4) is negative, then the random inhomogeneities can stabilize it in
the high frequency and diffusive regimes.

Appendix A. The mean field approximation and the correctors. In
this appendix, we provide some evidence supporting the mean field approximation
invoked in section 5 by analyzing the behavior of the correctors W (1),W (2), . . . in the
multiscale expansion (49).

In the linear case, Spohn [17] has proved local-in-time convergence of the solution
of the linear Schrödinger equation to that of the linear transport equation. Erdös
and Yau [3] have improved the result so that the convergence is global in time. Both
results involve detailed analysis of graphs corresponding to multiple scattering.

There are no rigorous results for the nonlinear case. The fact that the corrector
analysis predicts the same limiting scattering kernel and the dimension (d ≥ 3) re-
quired for convergence as proved by Erdös and Yau [3] is probably not a coincidence.
The extent to which the correctors tell us about the fluctuation around the mean field
in the limit ε→ 0 remains to be tested and needs further investigation.

The terms in the expansion (49) are determined by substituting into the Wigner
equation (47) and collecting terms of same orders in ε:

O

(
1

ε

)
: k · ∇yW = 0,(123)

O

(
1√
ε

)
: k · ∇yW

(1) + Lx
ε
W = 0,(124)

O(1) :
∂W

∂t
+ k · ∇xW + Lx

ε
W (1) = −k · ∇yW

(2).(125)
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Equation (123) means that W = W (t,x,k) does not depend on the fast variable y.
Equation (124) is the corrector equation for W (1), which is degenerate. With a stan-
dard regularization, (124) becomes

εW (1)
ε + k · ∇yW

(1)
ε + Lx

ε
W = 0,(126)

which has the solution

W (1)
ε = i

∫
dp V̂ (p)

e−ip·y

ε− ik · p
[
W
(
t,x,k − p

2

)
−W

(
t,x,k +

p

2

)]
.(127)

Substituting (127) into (125), taking expectation, and passing to the limit ε → 0,
we get the transport equation (50) for W . We see from (125) that the second order
corrector W (2) satisfies the equation

k · ∇yW
(2) + Lx

ε
W (1) − 〈Lx

ε
W (1)〉 = 0,

which again should be regularized as in (127). Higher order correctors can be deter-
mined similarly. We focus on the first corrector W (1).

As pointed out in section 4, the initial data for the Wigner function does not
converge strongly; thus neither the solution W ε of the Wigner equation nor the cor-

rector W
(1)
ε is expected to converge strongly. This is, indeed, the case, as stated

next.
Proposition A.1. Suppose that W (t,x,k) is such that the function

f(k,p) = R̂(p)

∫
dx
[
W
(
x,k − p

2

)
−W

(
x,k +

p

2

)]2
is continuous and its zero set does not contain the set {(k,p) : k · p = 0}. Then,

ε
∫∫ 〈|W (1)

ε |2〉 dx dk does not vanish as ε→ 0, in any dimension.
Proof. A straightforward calculation leads to

ε

∫∫
〈|W (1)

ε |2〉 dx dk

=

∫
dp R̂(p)

∫
dk

ε

ε2 + (k · p)2
∫
dx
[
W
(
x,k − p

2

)
−W

(
x,k +

p

2

)]2
≥ 1

2ε

∫
dk

∫
|k·p|≤ε

dp R̂(p)

∫
dx
[
W
(
x,k − p

2

)
−W

(
x,k +

p

2

)]2
≥ 1

2ε

∫
dk

∫
|k·p|≤ε

dp f(k,p).(128)

As the set {k ∈ Rd : |k · p| ≤ ε} ⋂ supp{f(k,p)} has a measure of order ε for
W satisfying the stated assumption, the expression (128) does not vanish in the limit
ε→ 0, as we wanted to show.

We note that “generic” functions W that are not spherically symmetric in k
satisfy the condition stated in Proposition A.1.

However,
√
εW

(1)
ε does vanish strongly (in x) if it is first integrated against a test

function of k, as stated in the next proposition. This provides some reason for using
the mean field hypothesis in the derivation of the transport equation.

Proposition A.2. For d ≥ 3 and any differentiable W (x,k) with a compact
support, we have

lim
ε→0

ε

∫
dx

〈∣∣∣∣
∫
dkW (1)

ε φ(k)

∣∣∣∣2
〉
= 0 ∀φ(k) ∈ C∞

c .(129)
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Proof. After taking the expectation, the expression on the left-hand side of (129)
becomes

ε

∫
dp
R̂(p)

|p|2
∫
dx

∣∣∣∣
∫
dk

φ(k)

ε− ik · p̂
[
W
(
x,k − p

2

)
−W

(
x,k +

p

2

)]∣∣∣∣2 ,(130)

where p̂ = p/|p|. Since φ(k)[W (x,k − p/2) −W (x,k + p/2)] is differentiable, we
have

lim
ε→0

∫
dk

φ(k)

ε− ik · p̂
[
W
(
x,k − p

2

)
−W

(
x,k +

p

2

)]
= lim
ε→0

∫
|k·p̂|>ε

dk
φ(k)

−ik · p̂
[
W
(
x,k − p

2

)
−W

(
x,k +

p

2

)]
= i

∫
dk⊥(p̂)

∫
− d(k · p̂) φ(k)

k · p̂
[
W
(
x,k − p

2

)
−W

(
x,k +

p

2

)]
,(131)

with k⊥(p̂) the orthogonal projection of k onto the plane normal to p. Here
∫
− stands

for the Cauchy principal value integral. Since |p|−2 in (130) is an integrable singularity
in three or more dimensions, the expression in (129) is O(ε) as ε → 0, as we wanted
to show.
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potential, Ann. Inst. H. Poincaré Sect. A (N.S.), 39 (1983), pp. 339–384.

[3] L. Erdös and H.T. Yau, Linear Boltzmann equation as the weak coupling limit of a random
Schrödinger equation, Comm. Pure Appl. Math., 53 (2000), pp. 667–735.

[4] J. Froelich and T. Spencer, Absence of diffusion in the Anderson tight binding model for
large disorder or low energy, Comm. Math. Phys., 88 (1983), pp. 151–184.

[5] P. Gérard, P. Markovich, N. Mauser, and F. Poupaud, Homogenization limits and Wigner
transforms, Comm. Pure Appl. Math., 50 (1997), pp. 323–380.

[6] R.T. Glassey, On the blowing-up of solutions to the Cauchy problem for the nonlinear
Schrödinger equation, J. Math. Phys., 18 (1977), pp. 1794–1797.

[7] E. Grenier, Limite semi-classique de l’equation de Schrödinger non linéaire en temps petit,
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APPROXIMATION OF THE INTEGRAL BOUNDARY LAYER
EQUATION BY THE KURAMOTO–SIVASHINSKY EQUATION∗
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Abstract. In suitable parameter regimes the integral boundary layer equation (IBLe) can be
formally derived as a long wave approximation for the flow of a viscous incompressible fluid down
an inclined plane. For very long waves with small amplitude, the IBLe can be further reduced to
the Kuramoto–Sivashinsky equation (KSe). Here we justify this reduction of the IBLe to the KSe.
Using energy estimates, we show that solutions of the KSe approximate solutions of the IBLe over
sufficiently long time scales. This is a step towards understanding the approximation properties of
the KSe for the full Navier–Stokes system describing the inclined film flow.

Key words. inclined film flow, integral boundary layer equation, Kuramoto–Sivashinsky equa-
tion, energy estimates
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1. Introduction and statement of result. For typical flow conditions the
so-called Nusselt flow of a viscous incompressible fluid down an inclined plane is
subject to long wave surface instabilities, and trains of solitary waves develop on the
free surface. Starting from the Navier–Stokes equations (NSe), a number of reduced
equations have been formally derived to describe the evolution of the free surface
and in particular to understand the formation of these wavetrains. See [3] for an
extensive review and [12] for experiments on inclined film flows, and the comprehensive
monograph [4] for a wealth of further information.

Here we study analytically the relationship between two of the approximate equa-
tions. The first one is the so-called integral boundary layer equation (IBLe), which is
derived from the NSe using a long wave expansion followed by an averaging over the
film height. In Appendix B we briefly review this derivation of the IBLe.

By a small amplitude and second long wave expansion in the IBLe, corresponding
to a small amplitude and very long wave expansion of the NSe, the IBLe can be
further reduced to the Kuramoto–Sivashinsky equation (KSe). This second reduction
is justified in this paper; we show that the Kuramoto–Sivashinsky (KS) dynamics can
be observed in the IBLe; see Theorem 1.1.

Using the time and space scales of the NSe, the IBLe we consider reads

ht =− qx,

qt =− 6

5
∂x

(
q2

h

)
+
2

R

(
h− 3q

2h2
−hxh cot θ

)
+Wε−2h

(
∂3
xh−

3

2
∂3
xhh

2
x−3h2

xxhx

)

+
1

R

(
7

2
qxx − 9qxhx

h
+

6qh2
x

h2
− 9qhxx

2h

)
,

(1.1)
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where x ∈ R and t > 0. Here we remark that, in contrast to the Shkadov model [23],
(1.1) is a parabolic system due the dissipative term 7

2R∂
2
xq on the right-hand side; see

Remarks 1.4 and Appendix B.3 for further discussion.
In (1.1), h is the film height, q describes the flow, 0 < θ ≤ π/2 is the inclination

angle, R is the Reynolds number, W is a normalized Weber number, and 0 < ε � 1
is a small parameter. In the derivation of (1.1) it is assumed that the Weber number
We = Wε−2 = O(ε−2), while R = O(1) and cot θ = O(1). The latter means that
the plane may not be close to horizontal. However, a vertical plane, i.e., cot θ = 0,
is allowed. The parameter W could be adsorbed into ε, but we think the analysis
becomes more transparent by keeping W. As noted, see Appendix B for the underlying
scalings.

In the IBLe the Nusselt solution of the inclined film problem corresponds to
(h, q) = (1, 2/3). Since we are interested in the instability of this solution, we will
assume throughout that R is larger than the critical Reynolds number (see [2]), i.e.,

R > Rc =
5

4
cot θ.(1.2)

With an abuse of notation we set h = 1 + η, q = 2/3 + q, and expand (1.1) up to
quadratic terms, since from previous work, e.g., [10], it is well known and can also
readily be seen in the analysis below that cubic and higher order terms play no role
in the justification of the long wave/small amplitude approximation for (1.1). See,
however, Remarks 1.3, 3.2, and A.5 for changes in the function spaces if cubic and
higher order terms are included.

We write the quadratic expansion as

ηt = −qx,(1.3)

qt = a0(η)η+a1(η, q)ηx+a2(η, q)ηxx+ε
−2a3(η)ηxxx − b0(η)q−b1(η, q)qx+b2qxx,(1.4)

where

a0(η) =
6−6η
R

, a1(η, q) =

(
4

5
− 2

R
cot θ−8

5
η+

8

5
q+

6

R
ηx

)
,

a2(η, q) =
1

R

(
−3 + 9

2
η − 9

2
q

)
, a3(η) = W(1+η),

b0(η) =
3

R
(1−2η), b1(η, q) =

8

5
−8

5
η+

12

5
q +

9

R
ηx, b2 =

7

2R
.

(1.5)

Splitting (1.3) and (1.4) into linear and nonlinear terms, we write

Ut = A0U + F (U),(1.6)

U =

(
η
q

)
, A0=A0(∂x)=

(
0 −∂x

a00+a10∂x+a20∂
2
x+ε

−2a30∂
3
x −b00−b10∂x+b20∂2

x

)
,

where a00 = a0(0), a10 = a1(0, 0), . . . , and where F contains the quadratic terms.
Inserting U = eµt+ikxU(k) into (1.6), we obtain the dispersion relation

µ1,2(k) = −1

2

(
7

2R
k2+

8

5
ik+

3

R

)
(1.7)

±
√

1

4

(
7

2R
k2+

8

5
ik+

3

R

)2

− 6

R
ik−

(
4

5
− 2

R
cot θ

)
k2+

3

R
ik3−Wε−2k4.
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Fig. 1.1. The dispersion relation µj = µjr + iµji, j = 1, 2, for the IBLe; ε = 0.2, W = 1,
R = 10, θ = π/2. (a) The two curves of eigenvalues µ1,2; (b) blowup of µ1r(k) near k = 0.

This spectrum of the operator A0(ik) is sketched in Figure 1.1. In particular, from µ1

we recover the instability criterion (1.2): for R > Rc we have a long wave instability
with maximum growth rate Reµ1(kc) = O(ε2), kc = O(ε). Moreover, for |k| → ∞ we
have

µ1,2(k) =


− 7

4R
±
√(

7

4R

)2

−Wε−2


 k2 +O(|k|3/2)

=

(
− 7

4R
± i(ε−1

√
W+O(ε))

)
k2 +O(|k|3/2),

(1.8)

where in the second equality we have assumed for simplicity that ( 7
4R )

2 <Wε−2. This
shows the parabolic damping (and the very fast oscillations) of the high wavenumber
modes.

In fact, A0 generates an analytic semigroup etA0 with

‖etA0U‖Y ≤ CeCε2t‖U‖Y ,(1.9)

where as phase-space Y we choose, for instance, the Hilbert space Y=H2(R)×H1(R)
equipped with the norm

‖U‖2
Y =

1

2

∫
R

{
q2+c1η

2−2c2qη−2c3ηxq+c4q2x+ε−2W(η2
x+c4η

2
xx)
}
dx.(1.10)

Here we must choose c2 = 2, and c1, c3, c4 can be chosen as

c1 = 9, c3 = −11R

5
+

2 cot θ

3
, c4 = R2;(1.11)

see section 2.1, where we also motivate the choice of ‖ · ‖Y . The strong weighting of
derivatives of η in (1.10) reflects the fact that in (1.6) the small parameter ε appears
in a rather unusual way, namely as an inverse power in front of the damping by the
surface tension. This is inherited from the fact that in the underlying Navier–Stokes
equations we consider the limit of large surface tension; see Appendix B.2.

Assuming very long waves with a small amplitude, the KSe for the film height η
can be formally derived from the NSe. Accordingly, the KSe can also be derived from
the IBLe, namely by the ansatz

η(t, x) = εη1(T,X) +O(ε3), q(t, x) = εq1(T,X) + ε2q2(T,X) +O(ε3),(1.12)
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where T = ε2t andX = x−ct are the very slow timescale and the very long space scale
in a frame moving with the speed c. These time and space scalings follow directly
from the dispersion relation (1.7) for A0. Plugging (1.12) into (1.6), we obtain the
hierarchy of equations

O(ε(1.4)) : q1 = 2η1,

O(ε2(1.3)) : −cη1X = −q1X = −2η1X ⇒ c = 2,

O(ε2(1.4)) : −cq1X = −8

5
q1X+

(
4

5
− 2

R
cot θ

)
η1X+W∂

3
Xη1−

3

R
q2+

6

R
(η1q1−η2

1),

⇒ q2 =

(
8R

15
− 2

3
cot θ

)
η1X+

1

3
RW∂3

Xη1+2η
2
1 ;(1.13)

that is, q1, q2 are given as functions of η1. At O(ε3(1.3)) we find ∂T η1 = −∂Xq2,
which gives the KSe

∂T η1 = −
(
8R

15
− 2

3
cot θ

)
∂2
Xη1 −

1

3
RW∂4

Xη1 − 4η1∂Xη1(1.14)

for η1. Note that the coefficient of ∂2
Xη1 is less than zero iff R > Rc.

Obviously (1.14) is a much simpler equation than (1.6) since it is a semilinear
scalar parabolic equation, while the IBLe is a quasilinear system. Moreover, the KSe
is a generic long wave equation; see, e.g., [13] for a basic review and, e.g., [14] for
the existence and smoothness of solutions η1 ∈ C([0, T0], H

m(R)) to initial conditions
η1(0) ∈ Hm(R).

We define the approximation

εψ(t, x) =

(
εq1(T,X) + ε2q2(T,X)

εη1(T,X)

)
,(1.15)

with q1, q2 given by (1.13), and the spaces

Hr,s((0, t0)× R) = L2((0, t0), H
r(R)) ∩Hs((0, t0), L

2(R))

and show the following result.
Theorem 1.1. Assume that η1 ∈ C([0, T0], H

9(R)) is a solution of the KSe.
Then for all C1 > 0 there exist ε0, C2 > 0 such that for all ε ∈ (0, ε0) the following
holds. If

‖U(0, ·)− εψ(0, ·)‖Y ≤ C1ε
3/2,(1.16)

then there exists a unique solution U = (η, q) of the IBLe up to large time t0 = T0/ε
2,

η ∈ H3,3/2((0, t0)× R), q ∈ H2,1((0, t0)× R).(1.17)

For t > 0 the solution is smooth, and it fulfills

sup
0≤t≤t0

‖U(t, ·)− εψ(t, ·)‖Y ≤ C2ε
3/2.(1.18)

Remark 1.2. The properties of the spaces Hr,s((0, t0)×R) are reviewed in Ap-
pendix A. Here we remark that H3,3/2((0, t0)×R)×H2,1((0, t0)×R) ⊂ C([0, t0], Y )
such that (1.18) makes sense. Note that C1, C2 in Theorem 1.1 do not depend on
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− O(ε)

O(ε3/2)
{

x︸ ︷︷ ︸
O(1) O(1/ε)

Fig. 1.2. Sketch of the initial data. For q0 we may allow small oscillations on the original scale.

ε ∈ (0, ε0). However, ε0, C1, C2 do depend on R and W in such a way that, for in-
stance, R2 ≥ R1 gives ε0(R2) ≤ ε0(R1) and similarly for C1, C2, but we do not work
this out in detail.

From (1.18) we obtain sup0≤t≤t0 ‖U(t, ·)− εψ(t, ·)‖L∞ ≤ C2ε
3/2. Thus, the error

is small compared to the size of the solution. Moreover, the error for ηx is much
smaller, i.e., sup0≤t≤t0 ‖∂xη(t, ·) − ε∂xψ1(t, ·)‖C0 ≤ C2ε

7/2. On the other hand, we
must impose the same condition on the initial condition. This means that η0 must be
a long wave in a much stricter sense than q0. For q0 we may allow small perturbations
of εψ1 on the original scale. Such “fast” oscillations in η0 would violate (1.16). This
situation is sketched in Figure 1.2.

Remark 1.3. Theorem 1.1 also holds in higher order Sobolev spaces; see Re-
mark 3.2. In fact, if cubic terms were included in (1.6), then in order to control the
nonlinearity we would have to work in H3×H2, due to the term η2

xxηx; cf. Remark
A.5.

Remark 1.4. As already said, our IBLe differs from previously derived hyperbolic
IBLe, IBLh, also called the Shkadov model [23] (see Appendix B.3), in that the
linearization of (1.1) around Nusselt’s solution is sectorial. Heuristically, this can be
seen from the dispersion relation (1.7) (cf.(1.8)): the spectrum of A0 lies in a sector
around the negative real axis; the additionally needed resolvent estimates are given
in Lemma A.3.

A parabolic IBLe has also been derived in [16] (see also [4, section 3.3]), under
the assumption of W = O(ε−2), R = O(ε−1), and small θ.

Remark 1.5. Numerical simulations of the free boundary problem for the gov-
erning NSe of IBLh and of the KSe suggest that for high but finite Weber numbers,
corresponding to finite ε > 0, IBLh is valid as an approximation for NSe up to in-
termediate Reynolds numbers. We conclude that this also holds true for our IBLe
(1.1), since (1.1) is derived as a higher order approximation of the NSe than IBLh.
On the other hand, the KSe gives good results only for smaller Reynolds numbers;
for details, see [3] and the references therein. See also [17] for comparison of solutions
of the IBLe with experimental results and extensive numerical studies of the NSe.

Remark 1.6. One major reason for the reduction of the inclined film problem
to the IBLe or to the KSe is to gain understanding of the formation of solitary and
periodic waves on the free surface of the film. For the existence and properties of
solitary waves for IBLh and the KSe, see, again [3, 4] and the references therein. In a
somewhat different scaling, a generalized KSe or KdV-KS equation with third order
dispersion can be derived from the NSe (see [25]). For this KdV-KSe there are ana-
lytical results and extensive numerical studies concerning the stability and dynamics
of solitary waves [15, 7, 5]. Our result does not contribute to the understanding of
these waves but says that the (periodic or solitary) waves of the KSe can be seen as
small amplitude waves in the IBLe over long times.

Remark 1.7. The IBLe itself is only formally derived from the NSe. Error
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estimates in the sense of Theorem 1.1 seem to be very difficult for this reduction.
Instead, we suggest studying directly the reduction of the NSe to the KSe. This will
be the subject of future work. Since the linearization around Nusselt’s solution in the
NSe is also sectorial [1, 24], we can use similar methods as in the present paper.

Finally, we remark that a result like Theorem 1.1 is not obvious. There are
counterexamples where formally derived amplitude equations make wrong predictions
about the dynamics in the original system [20, 8]. Moreover, the question of which
simplified equation, dependent on the parameter regime, still describes the inclined
film problem is not settled. Here we contribute to the answer in the sense that for O(1)
Reynolds numbers and in the limit of (very) large Weber number the KSe accurately
captures the IBLe dynamics for long small amplitude waves over the right time scale.

Similarly to our result, the validity of multiple scale approximations to the NSe
in a fixed domain, where the instability is located at a finite nonzero wavenumber,
has been shown in [18, 21]. See also, e.g., [22] for the water wave problem, and [19]
for such approximation results in simpler settings, i.e., for scalar semilinear parabolic
problems.

To explain the difficulty for the proof of Theorem 1.1 we write the IBLe (1.6) as

Ut = A0U +B(U,U),(1.19)

where B(U, V ) is a symmetric bilinear form representing the quadratic terms in (1.6).
For a β > 1 we set

U = εψ + εβR,(1.20)

and obtain the equation

∂tR = A0R+ 2εB(ψ,R) + εβB(R,R) + ε−βRes(εψ)(1.21)

for the error R, where the so-called residual

Res(εψ) = ε(−∂tψ +A0ψ + εB(ψ,ψ))(1.22)

contains the terms that do not vanish after inserting (1.12) into (1.6). We essentially
have to show (a) that solutions to (1.21) for initial conditions R0 = R|t=0 of order
O(1) exist locally, and (b) that the solutions exist and stay O(1)-bounded up to times
t = T0/ε

2. In order to show (a) for the quasilinear parabolic system (1.21), we use the
maximal regularity techniques from [11]. To achieve (b), we first define an improved
approximation εψ̃ such that the residual is sufficiently small and then derive an energy
estimate similar to (1.9). Note that a priori we would expect a growth rate like eCεt

for solutions of (1.21) due to the term 2εB(ψ̃, R) in (1.21). Moreover, because of
the term ε−βRes(εψ̃), we would like to choose β small, while in order to handle the
nonlinear term εβB(R,R), we would like to have β large. The approach turns out to
work with β = 3/2.

In section 2 we give the calculation leading to the energy estimate (1.9) for the
linearized problem and define the improved approximation. The proof of Theorem 1.1
follows in section 3. The local existence of solutions to (1.6) is shown in Appendix A,
which also yields the local existence of solutions to the error equation. In Appendix
B we give a brief review of the underlying physical problem, show how the parabolic
IBLe (1.1) can be formally derived from the governing NSe, and end with a brief
discussion of the hyperbolic Shkadov model.
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2. Preparations.

2.1. The linearized energy estimate. Here we show the straightforward cal-
culations leading to the energy estimate (1.9). In section 3 we extend these to the
quasilinear problem (1.21). We fix c1 = 9, c2 = 2, c4 = R2 in (1.10) and show how
c3 = −11R/5 + 2 cot θ/3 yields (1.9). Using

|ab| ≤ δa2 +
1

4δ
b2, δ > 0,(2.1)

it is clear that, for ε sufficiently small, ‖ · ‖Y is equivalent to ‖ · ‖Y0 with

‖(η, q)‖2
Y0

=
1

2

∫
R

q2 + q2x + η
2 + ε−2(η2

x + η
2
xx) dx,

and hence a norm on H2(R) × H1(R). By Fourier transform it is obvious that the
solution U of the linearized equation Ut = A0U , with A0 from (1.6), exists and is
smooth. We then obtain

d

dt
‖U‖2

Y =

∫
R

{
(q−2η−c3ηx−R2qxx)

[
6

R
η+

(
4

5
− 2

R
cot θ

)
ηx − 3

R
ηxx

+ ε−2Wηxxx− 3

R
q−8

5
qx+

7

2R
qxx

]
− 9ηqx+ε

−2W
(
ηxxqx +R2ηxxxqxx)−c3q2x

}
dx

=

∫
R

{
− 3

R
q2+

12

R
qη−12

R
η2+

(
4

5
− 2

R
cot θ−16

5
+9+

3

R
c3

)
ηxq

+

(
−c3−3R− 7

2R

)
q2x+

(
6R+

8

5
c3 +

10

R

)
qxηx

+

(
−c3

(
4
5− 2

3 cot θ

)
− 6

R

)
η2
x +

(
R2

(
4
5− 2

3 cot θ

)
+ 7c3

2R

)
qxηxx

−7R

2
q2xx+3Rqxxηxx + ε

−2Wc3η
2
xx

}
dx.

The quadratic form in η, q without derivatives is nonpositive. For c3 = −11R/5 +
2 cot θ/3 the coefficient of ηxq vanishes. Moreover, the coefficients of q2x, q

2
xx are

negative definite, and the coefficient of η2
xx is negative definite with strong weight

ε−2. Note that c3 < 0 due to (1.2). The terms with ηx, qx yield d
dt‖U‖2

Y ≤ C1‖ηx‖2
L2 ,

but since η2
x appears in ‖U‖Y with weight ε−2, we nevertheless obtain

d

dt
‖U‖2

Y ≤ C1ε
2‖U‖2

Y − C‖qx‖2
H1 .(2.2)

On the other hand, the coefficient of qηx has to vanish identically, since we have
no negative definite term in q2 and cannot have one, as is clear from the dispersion
relation. Therefore we have to introduce c3 in (1.10). From (2.2) we get (1.9) using
Gronwall’s lemma. The dissipation in ∂xq in (2.2) will be important for the quasilinear
problem (1.21).

2.2. The residual. For notational convenience and without loss of generality for
our purposes, we assume in the following that we have a vertically falling film such
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that cot θ = 0. Then the critical Reynolds number is Rc = 0, and we may further
assume without loss of generality that

R =W = 1.(2.3)

In order to get a small residual in (1.21), we define an improved approximation by

εψ̃(t, x) =

(
εη1(T,X)∑3
j=1 ε

jqj(T,X)

)
, T = ε2, X = ε(x− 2t).(2.4)

Plugging (2.4) into (1.3), (1.4), we first obtain (1.13) and (1.14) as before, and then

O(ε3(1.4)) : q1T − 2q2X =
8

5
η1Xη1 +

7

2
q1XX + η1η1XXX − 3η1XX − 3q3

+ 6η1q2 − 8

5
q2X − 12

5
q1q1X +

8

5
η1η1X

⇒q3 = 1

3

(
4

5
∂4
Xη1+3η1Xη1 +

52

25
η1XXη1+

112

5
η1Xη1+12η

3
1

)
.(2.5)

With q3 given by (2.5), all terms up to order O(ε3) vanish in the residual

Res(εψ̃) = ε4f = ε4
(
f1
f2

)
.(2.6)

To leading order in derivatives we have

f1 = −q3X = − 4

15
∂5
Xη1 + f̃1,

f2 = −εq3T + f̃2 = −4ε

15
∂4
X∂T η1 + f̃2 =

4ε

45
∂8
Xη1 + f̃2.

(2.7)

Later we need

(f1, f2) ∈ C
([
0, ε2T0

]
, H2(R)×H1(R)

)
(2.8)

and therefore

η1 ∈ C([0, T0], H
9(R))(2.9)

in Theorem 1.1. The (nonlinear) functions f̃1,2 in (2.7) contain lower order derivatives
of η1, and it can be easily checked that (2.8) holds if (2.9) does.

In order to estimate the residual in Y , we finally need to take care of how scaling
affects the L2 norm, i.e., ‖u(ε·)‖L2 = ε−1/2‖u(·)‖L2 . This loss of ε−1/2 is the reason
that we cannot choose β = 2 in (1.20), which would be more convenient in order to
control the nonlinear terms in (1.21).

We summarize our results as follows.
Lemma 2.1. Assume that η1 ∈ C([0, T0], H

9(R)). Then

sup
0≤t<T0/ε2

‖εψ̃ − εψ‖Y ≤ Cε5/2 and sup
0≤t≤T0/ε2

‖Res(εψ̃)‖Y ≤ Cε7/2.

Due to the first estimate in Lemma 2.1 we can use εψ̃ instead of εψ in the proof
of Theorem 1.1, and in order to simplify symbols we drop the ˜ in the following. Also
we write ψ = (ψ1, ψ2) and ψ

′
j = ∂Xψj .



APPROXIMATION OF THE IBLe BY THE KSe 1367

3. Proof of Theorem 1.1. In the following many constants which are indepen-
dent of ε and t are denoted by C, and C1, C2 are the constants from Theorem 1.1.

From the local existence of solutions to the IBLe in Theorem A.1 we directly
obtain the following local existence of solutions to (1.21).

Corollary 3.1. Let R0 ∈ H2(R) × H1(R) and 0 < t1 ≤ T0/ε
2. Then there

exists an ε1 > 0 such that for all ε ∈ (0, ε1) there exists a unique solution R ∈
H3,3/2((0, t1)× R)×H2,1((0, t1)× R) of the error equation (1.21) with R(0) = R0.

Proof. For ε1 sufficiently small we have

‖U0‖H2×H1 = ‖(εψ + ε3/2R)|t=0‖H2×H1 ≤ ρ

for all ε ∈ (0, ε1), with ρ > 0 from Theorem A.1. Therefore there exists a unique
solution U∈H3,3/2((0, t1)×R)×H2,1((0, t1)×R) of (1.6). Using the smoothness of η1
we find that the solution R = ε−3/2(U − εψ) of (1.21) has the same regularity.

The proof of Theorem 1.1 now works as follows: due to Corollary 3.1 we have a
local solution R ∈ C([0, t1), H2 ×H1) of (1.21). Thus we may choose t1 so small that
sup0≤t≤t1 ‖R‖Y ≤ 2‖R0‖Y ≤ 2C1. This implies

sup
0≤t≤t1

(‖r‖∞ + ‖ξ‖∞ + ε−1‖∂xξ‖∞) ≤ 2CC1,(3.1)

where C > 0 comes from Sobolev embedding. Using (3.1), we derive an energy

estimate that implies ‖R(t1)‖Y≤eCε2t1‖R0‖Y . Thus, using Corollary 3.1 again, the
solution can be continued and stays O(1)-bounded in Y until t1 = t0 = T0/ε

2.

It will be convenient to write (1.21) as

Rt = A(t, R)R+ ε2f,(3.2)

where, with a0, . . . , b1 from (1.5),

R =

(
ξ
r

)
, A(t, R) =

(
0 −∂x

ã0+ã1∂x+ã2∂
2
x+ε

−2ã3∂
3
x −b̃0−b̃1∂x+b̃2∂2

x

)
,

ã0 = ã0(t, ξ) = a0(εψ1+ε
3/2ξ)− 8

5
ε2ψ′

1+
9

2
ε3ψ′′

1+ε
4ψ′′′

1 +6εψ2+
8

5
ε2ψ′

2+3ε
3ψ′′′

2 ,

ã1 = ã1(t, R ) = a1(εψ + ε3/2R)− 2ε2ψ′
1, ã2 = ã2(t, ξ) = a2(εψ1 + ε

3/2ξ),
ã3 = ã3(t, ξ) = a3(εψ1 + ε

3/2ξ),

b̃0 = b̃0(t, ξ) = b0(εψ1 + ε
3/2ξ)− 8

5
ε2ψ′

1 +
12

5
ε2ψ′

2 +
9

2
ε3ψ′′

1 ,

b̃1 = b̃1(t, R ) = b1(εψ + ε3/2R)− ε2ψ′
1, b̃2 = b2 =

7

2
.

The main idea for obtaining the energy estimate is to define an equivalent norm
NY (R, t) on Y that depends on time and the solution itself in such a way that high or-
der and strongly weighted mixed products like ε−2∂2

xq∂
3
xη still cancel after integration

by parts in d
dt‖R‖2

NY (R,t). This can be achieved by dividing all terms in (1.10) involv-

ing r by ã3. Moreover, we need correction terms that eliminate terms of orderO(ε) and
O(ε3/2) in d

dt‖R‖N(t,R) without derivatives that come from 2εB(ψ̃, R) + ε3/2B(R,R)
in (1.21).
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Thus, with coefficients γ1, . . . , γ4 ∈ R to be determined, we define

‖R‖2
NY (t,R) = E + F1 + F2,(3.3)

E =
1

2

∫
R

{
1

ã 3

[
r2−4rξ−2c3rξx+r2x

]
+9ξ2+ε−2

[
ξ2x+ξ

2
xx

]}
dx,

F1 =

∫
1

ã3
εη1
[
γ1r

2 + γ2ξr
]
dx, F2 =

∫
1

ã3
ε3/2r

[
γ3rξ + γ4ξ

2
]
dx,

where for notational convenience we keep writing c3 for −11/5. Due to (3.1) we have

1− Cε ≤ sup
0≤t≤t0,x∈R

|a3| = sup
0≤t≤t0,x∈R

|1 + εψ1 + ε
3/2ξ| ≤ 1 + Cε.(3.4)

Therefore NY (t, R) is still an equivalent norm on Y if ε is sufficiently small. Moreover,
space and time derivatives of ã0, ã1, . . . , b̃2 produce terms of order O(ε3/2), and in
particular we have

d

dx
ã0 = 6ε3/2ξx + ε

2h1,
d

dx
b̃0 = 3ε3/2ξx + ε

2h2,(3.5)

d

dx
ã3 = ε

3/2ξx + ε
2h3,

d

dt
ã3 = ε

3/2ξt + ε
d

dt
ψ1 = −ε3/2rx + h4,(3.6)

with ‖hj‖L∞ = O(ε2), j = 1, 2, 3, 4. Hence we can estimate terms like, for instance,

( d
dx

b̃0
ã3
)rξ that show up during integration by parts in d

dt‖R‖2
N(t,R) as∫

d

dx

(
b̃0
ã3

)
rξ dx =

∫
1

3ã3
(ε3/2ξxrξ)−6 b̃0

ã2
3

(ε3/2rxrξ)+O(ε2)|rξ|dx

≤ C‖ξ‖∞
∫
εξ2x+εr

2
x+ε

2(ξ2+r2) dx+Cε2
∫
r2+ξ2 dx,(3.7)

and similarly for ( d
dt

1
ã3
)(r2 −4rξ); see (3.10). The first term on the right-hand side of

(3.7) is estimated by ε3ε−2ξ2x, and the second term is well behaved since we will have
an O(1) negative definite term −Cr2x in d

dt‖R‖2
NY (t,R). This is essentially the first

reason why the estimate (2.2) can be carried over to the quasilinear problem (3.2).
The second reason is that the coefficients γ1, . . . , γ4 can be chosen in such a way that
the terms r2, ξ2 without derivatives in d

dt‖R‖2
NY (t,R) have O(ε2) coefficients. This is

possible again due to the fact that the small parameter ε does not as usual enter (1.6)
as a coefficient of the low order terms but in inverse power as coefficient of the high
order damping term.

We start with d
dtE. Using 2

∫
gfxf dx = − ∫ gxf2 dx, we obtain

d

dt
E = d1 + d2 + d3 + d4,(3.8)

d1 =

∫ {[
r−2ξ −c3ξxx−rxx−ã3

d

dx

(
1

ã3

)
rx

]
[
ã0

ã3
ξ+
ã1

ã3
ξx+

ã2

ã3
ξxx+ε

−2ξxxx− b̃0
ã3
r− b̃1
ã3
rx+

b̃2
ã3
rxx+ε

2 f2
ã3

]}
dx,

d2 =

∫
−9ξrx+ε−2(ξxxrx+ξxxxrxx) + 9ξε2f1 + ε

−2ε2
(
ξxf1x + ξxxf1xx) dx,

d3 =

∫
1

ã3

[
2rrx+c3rrxx

]
dx, d4 =

∫ (
d

dt

1

ã3

)[
r2−4rξ−2c3rξx+r2x

]
dx.
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Integration by parts yields

d1+d2+d3 =

∫ {
1

ã3

[−b̃0r2+(ã0+2b̃0)rξ−2ã0ξ
2
]
+O(ε2)(r2+ξ2)

+
1

ã3

[
ã1−2b̃1+9+c3b̃0+O(ε)

]
rξx+

1

ã3

[−c3−b̃0−b̃2+O(ε)
]
r2x

+
1

ã3

[
ã0+c3b̃1−ã2+2b̃2+O(ε)

]
rxξx+

1

ã3

[−c3ã1+2ã2+O(ε)
]
ξ2x

+
[
c3ε

−2+O(ε)
]
ξ2xx+

1

ã3

[
ã1+c3b̃2+O(ε)

]
rxξxx− b̃2

ã3
r2xx−

2ã2

ã3
rxxξxx

+ ε2f2[r−2ξ−c3ξxx−rxx+O(ε)rx
]
+ 9ε2f1ξ + f1xξx + f1xxξxx

}
dx,

(3.9)

where the order symbol O(ε) always refers to terms estimated in L∞. The coefficient
of rξx in (3.9) is O(ε) due to the choice of c3 and (3.1). Similarly to (3.7), d4 can be
estimated as

d4 ≤ C‖r‖∞
∫
ε3/2(|rxr|+|rxξ|) dx+ Cε2

∫
r2 + ξ2 dx

+ Cε3/2‖rx‖∞
∫ [−2c3rξx+r2x]dx,(3.10)

and therefore (3.9) and (3.10), except for the first term on the right-hand side of (3.9),
can be estimated by Cε2E + Cresε

2.
Thus, we now have

(3.11)
d

dt
‖R‖2

NY (t,R) =
d

dt
E +

d

dt
F1 +

d

dt
F2

≤
∫

1

ã3

[−b̃0r2+(ã0+2b̃0)rξ−2ã0ξ
2
]
dx+

d

dt
F1+

d

dt
F2+Cε

2E + ε2Cres.

To control the first three terms on the right-hand side of (3.11), we calculate

d

dt
F1 =

∫
εη1
ã3

[
2γ1r(6ξ − 3r) + γ2ξ(6ξ − 3r)] dx+ h1,

d

dt
F2 =

∫
ε3/2ξ

ã3

[
2γ2r(6ξ − 3r) + γ4ξ(6ξ − 3r)

]
dx+ h2,

where h1 and h2 contain terms like, for instance, h1 = −εη1rxr2/ã3 + · · · , that can
be controlled by the negative definite terms in d

dtE as in (3.7) and (3.10). Since

b̃0 = 3− 6εη1 − 6ε3/2ξ +O(ε2), ã0 = 6− 18εη1 − 6ε3/2ξ +O(ε2),(3.12)

we thus obtain

d

dt
‖R‖2

NY (t,R) ≤
∫

1

ã3

{(−3+6ε(1−γ1)η1+6ε3/2ξ(1−γ3)ε3/2ξ)r2
+
(
12−3(10−4γ1+γ2)εη1−3(6−4γ3+γ4)ε3/2ξ

)
rξ

− (12−6(6+γ2)εη1−6(2+γ4)ε3/2ξ)ξ2}dx

+ Cε2E + Cresε
2.(3.13)
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Choosing γ1 = 1, γ2 = −6, γ3 = 1, γ4 = −2, the O(ε) and O(ε3/2) coefficients in the
integral vanish, and since

∫
1
ã3

[−3r2 + 12rξ − 12ξ2
]
dx ≤ 0, we finally obtain

d

dt
‖R‖2

NY (t,R) ≤ Cε2E + Cresε
2 ≤ Cε2‖R‖2

NY (t,R) + Cresε
2.(3.14)

This gives ‖R‖2
NY (t,R) ≤ eCε

2t‖R|t=0‖2
NY (t,R) + C(e

Cε2t−1), using Gronwall’s lemma.
The proof of Theorem 1.1 is now complete.

Remark 3.2. Theorem 1.1 also holds in higher order Sobolev spaces. For m ≥ 3
we can define Ym = Hm(R)×Hm−1(R), with ‖ ·‖Ym defined in a way similar to ‖ ·‖Y ;
i.e., for cot θ = 0, R = W = 1,

‖U‖2
Y3

=
1

2

∫
R

{
q2 + 9η2 − 4qη − 22

5
ηxq + 2qxηxx + q

2
x

+ q2xx + 2qxηxx + ε
−2(η2

x + η
2
xx + η

2
xxx)

}
dx.

Then for ‖U(0, ·) − εψ(0, ·)‖Ym ≤ C1ε
3/2 and η1 ∈ Hm+6(R) we obtain a solution

U ∈ Hm+1,(m+1)/2 × Hm,m/2 with sup0≤t≤t0 ‖U(t, ·) − εψ(t, ·)‖Ym
≤ C2ε

3/2. The
local existence of solutions in these higher order spaces is already shown in Theorem
A.1, and from the above proof of Theorem 1.1 it can be seen that the high order terms
are uncritical in the energy estimates.

Appendix A. Local existence of solutions for the IBLe. To treat the initial
value problem for the IBLe (1.6), we use the spaces

Hr,s = Hr,s((0, t0)× R) = L2((0, t0), H
r(R)) ∩Hs((0, t0), L

2(R)),

defined for r, s ≥ 0. Because we have a parabolic system, we will always have s = r/2,
and therefore we introduce the notation Kr = Kr((0, t0) × R) = Hr,r/2((0, t0) × R).
We recall a few facts on the spaces Hr,r/2((0, t0)× R), mainly from [11].

If u ∈ Hr,s and j, k ∈ N with 1 − (j/r+k/s) ≥ 0, then ∂kt ∂
j
xu ∈ Hµ,ν with

µ/r = ν/s = 1−(j/r+k/s); see [11, Proposition 4.2.3]. Especially, if u ∈ Kr

and 1−(j/r+2k/r) ≥ 0, then ∂kt ∂
j
xu∈Kr−j−2k. For k < r/2 − 1/2 we have traces

∂kt u(0, ·)∈Hr−2k−1(R); see [11, Proposition 4.2.1]. Conversely, if these traces are
given at t = 0, then there exists a bounded extension operator such that u ∈ Kr;
see [11, Theorem 4.2.3]. Similarly, there exists a bounded extension operator from
Kr = Kr((0, t0)× R) into Kr(R × R); see [24, Lemma 3.1].

For u ∈ Kr(R × R
n) let ˆ̂u(τ, k) =

∫∫
e−i(τt+k·x)u(t, x) dk dt be the Fourier trans-

form in time and space of u. Then we have the equivalence of norms

‖u‖2
Kr(R×R

n) ∼
∫∫

|ˆ̂u(τ, ξ)|2(1+|k|2+|τ |)r dk dτ.(A.1)

From this it follows easily that if u ∈ Kr(R×R
n) with r > (n+2)/2, then u is bounded

and continuous. Finally, we need the special subspace

Kr
0=K

r
0((0, t0)× R) = {u∈Kr((0, t0)× R) : ∂kt u(0, ·) = 0 for k∈N, k<r/2−1/2}.

For u ∈ Kr
0((0,∞) × R) the continuation by u(t) = 0 for t < 0 is in Kr(R × R); see

[11, Theorem 1.11.5]. In addition to the full space-time transform of u ∈ Kr we also
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use the Fourier transform in time only, denoted by û(τ, x) =
∫
e−iτtu(t, x) dt. For

u ∈ Kr
0((0,∞)× R) we then obtain the equivalence

‖u‖2
Kr((0,∞)×R) ∼

∫
‖û(τ, ·)‖2

Hr+|τ |r‖û(τ, ·)‖2
L2 dτ.(A.2)

We introduce the shorthand Kr = Kr × Kr−1. Also, in this section we write
|u|r for the Sobolev norm in the spacial variable x (or its dual k), i.e., |u|r=‖u‖Hr(R),
and, e.g., |û(1+k2)|0 for the L2 norm of the function k �→ û(1+k2). In the proof of
Theorem 1.1 we use the following local existence theorem for the solutions of the IBLe
(1.6) with r = 2; however, here we state a more general case.

Theorem A.1. Let 2 ≤ r < 4, ε > 0, and t0 > 0 be fixed. Then there exists a
ρ > 0 such that for all U0 = (η0, q0) ∈ Hr(R)×Hr−1(R) with |U0|Hr×Hr−1 ≤ ρ there
exists a unique solution

U = (η, q) ∈ Kr+1(A.3)

of the IBLe (1.6) with U |t=0 = U0 and ‖U‖Kr+1 ≤ C|U0|Hr×Hr−1 , where the constant
C > 0 depends only on ε and t0. Moreover, for all 0 < t1 < t0 and all k > 0 we have
U ∈ Kr+k+1((t1, t0)× R); i.e., U is smooth for t > 0.

Remark A.2. Examining the proof of Theorem A.1, we obtain that ρ may be
chosen independently of ε ∈ (0, ε0). Theorem A.1 is used in Corollary 3.1 in this
sense, but for simplicity we do not keep track of this here. Also, the upper bound
r < 4 is only for notational convenience, i.e., to avoid the formulation of higher order
trace conditions at t = 0; see (A.12).

The proof of Theorem A.1 consists of two steps. First we consider the linear
inhomogeneous version of (1.6) with zero initial data, i.e., the equation

LU = F (t), U(0) = 0, LU = Ut −A0U, F ∈ Kr−1
0 ,(A.4)

and estimate its solutions in Kr+1
0 . Then we write the solution U of (1.6) as U =

Ũ+U (1), where Ũ ∈ Kr+1 fulfills Ũ(0) = U0 and some (further) trace conditions at
t = 0; see (A.12). Then U (1) has to solve the equation

LU (1) = G(U (1)), U (1)(0) = 0, G(U (1)) = F (Ũ + U (1))− LŨ.(A.5)

We show that for U (1) ∈ Kr+1
0 we have G(U (1)) ∈ Kr−1

0 , and use the estimates for
(A.4), estimates for the nonlinearity, and the contraction mapping theorem to solve
(A.5).

Lemma A.3. Let r ≥ 2, ε > 0, and t0 > 0. For every F ∈ Kr−1
0 there exists a

unique solution U ∈ Kr+1
0 of (A.4) with ‖U‖Kr+1 ≤ C‖F‖Kr−1 , where C > 0 depends

only on ε, t0.
Proof. We identify F with its extension to Kr−1(R×R), with F (t) = 0 for t ≤ 0.

Then e−σtF ∈ L1(Hr−1)∩L2(Hr−1) for Reσ > 0, and therefore F̂ (τ) has an analytic
extension into Imτ < 0. We write λ = σ + iτ and consider the Fourier transform in t
(i.e., the Laplace transform) of (A.4),

λη̂ = −q̂x + f̂1 ⇔ η̂ =
−q̂x + f̂1

λ
,

λq̂ =
1

λ

(
a00+a10∂x+a20∂

2
x+ε

−2a30∂
3
x

)
(−q̂x+f̂1)−b00q̂−b10q̂x+b20q̂xx+f̂2.

(A.6)
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Now choose σ0 > 0 such that Reµ1,2(k) < σ0 for all k ∈ R. For Reλ = σ > σ0 we
obtain

|η̂|r+1 + |λ|(r+1)/2|η̂|0 ≤ C(|f̂1|r−1 + |λ|(r−1)/2|f̂1|0 + |f̂2|r−2 + |λ|(r−2)/2|f̂2|0
)
,(A.7)

|q̂|r + |λ|r/2|q̂|0 ≤ C(|f̂1|r−1 + |λ|(r−1)/2|f̂1|0 + |f̂2|r−2 + |λ|(r−2)/2|f̂2|0
)
;(A.8)

see below. Moreover, since F̂ is analytic in λ, so is Û = (η̂, q̂) for Reλ > σ0. Let

U(t) =
1

2π

∫
eσ0teiτtÛ(σ0 + iτ) dτ.

Then e−σ0tU is the inverse Fourier transform of the function λ̃ �→ Û(σ0 + λ̃), which
is analytic for Reλ̃ > 0. Thus, by the Paley–Wiener theorem [26, Theorem 6.4.2],
we have U(t) = 0 for t < 0, and from (A.2), (A.7), and (A.8) we obtain e−σ0tU ∈
Kr+1

0 (R+ × R). Since t0 is finite, we thus have U ∈ Kr+1
0 = Kr+1

0 ((0, t0) × R) with
‖U‖Kr+1 ≤ C‖F‖Kr−1 , where C obviously depends only on t0 and σ0, and hence on
t0 and ε.

It remains to show (A.7), (A.8). This is essentially a direct consequence of the
parabolic shape of the spectrum. After Fourier transform in x and sorting terms,
(A.6) becomes

ˆ̂η =
−ikˆ̂q + ˆ̂

f1

λ
, g(λ, k)ˆ̂q = g0(k)

ˆ̂
f1 + λ

ˆ̂
f2,(A.9)

where

g(λ, k) = λ2+λg1(k)+ikg0(k), g1(k) = b20k
2+b10ik+b00,

g0(k) = a00+a10ik−a20k
2−a30ik

3.

Since g(λ, k)=det(λId−A0(ik))=(λ−µ1(k))(λ−µ2(k)), with µ1,2 from (1.7), we have

|g(λ, k)| ≥ C(|λ|2 + (1 + k2)2).

Thus we can estimate

|q̂|r ≤ C|ˆ̂q(1+k2)r/2|0 ≤ C
(∣∣∣∣∣

ˆ̂
f1g0(k)(1+k

2)r/2

g(λ, k)

∣∣∣∣∣
0

+

∣∣∣∣∣
ˆ̂
f2λ(1+k

2)r/2

g(λ, k)

∣∣∣∣∣
0

)

≤ C
(
|ˆ̂f1(1+k

2)(r−1)/2|0+|ˆ̂f2(1+k
2)(r−2)/2|0

)
≤ C(|f̂1|r−1+|f̂2|r−2),

|λ|r/2|q̂|0 ≤ C|λ|r/2
∣∣∣∣∣
ˆ̂
f1g0(k)

g(λ, k)

∣∣∣∣∣
0

+

∣∣∣∣∣
ˆ̂
f2λ

g(λ, k)

∣∣∣∣∣
0

≤ C|λ|(r−2)/2(|ˆ̂f1|0+|ˆ̂f2|0),

|η|r+1 ≤ C
∣∣∣∣∣ (−ikˆ̂q+

ˆ̂
f1)(1+k

2)(r+1)/2

λ

∣∣∣∣∣
0

= C

∣∣∣∣∣ (−ikg0(k)+g(λ, k))
ˆ̂
f1−ikλˆ̂f2

λg(λ, k)
(1+k2)(r+1)/2

∣∣∣∣∣
0

= C

∣∣∣∣∣ (λ+g1(k))
ˆ̂
f1−ik ˆ̂f2

g(λ, k)
(1+k2)(r+1)/2

∣∣∣∣∣
0

≤ C(|f̂1|r−1+|f̂2|r−2),

|λ|(r+1)/2|η|r+1 ≤ C
∣∣∣∣∣ (−ikˆ̂q+

ˆ̂
f1)

λ

∣∣∣∣∣
0

≤ C(|λ|(r−1)/2|ˆ̂f1|0+|λ|(r−2)/2|ˆ̂f2|0).
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Here we have used the typical parabolic splitting of the domain, for instance,∣∣∣∣∣
ˆ̂
f2k

g(λ, k)

∣∣∣∣∣
2

0

=

∣∣∣∣∣
ˆ̂
f2k

g(λ, k)

∣∣∣∣∣
2

L2({k2≤|λ|})
+

∣∣∣∣∣
ˆ̂
f2k

g(λ, k)

∣∣∣∣∣
2

L2({k2≥|λ|})

≤
∣∣∣∣∣k
ˆ̂
f2

|λ|2
∣∣∣∣∣
2

L2({k2≤|λ|})
+

∣∣∣∣∣|λ|−3/2
ˆ̂
f2k|λ|3/2

(|λ|2+(1+k2)2)

∣∣∣∣∣
2

L2({k2≥|λ|})
≤ C|λ|−3|ˆ̂f2|20.

The proof of Lemma A.3 is now complete.
The nonlinear terms in (A.5) can be controlled using the following result, the

proof of which follows via extension from ‖uv‖Ks(R×R
n) ≤ C‖u‖Kr(R×R

n) ‖v‖Ks(R×R
n)

if r > (n+ 2)/2.
Lemma A.4. Let r > 3/2, 0 ≤ s ≤ r. Then there exists a C > 0 such that for all

u ∈ Kr, v ∈ Ks we have uv ∈ Ks and

‖uv‖Ks ≤ C‖u‖Kr‖v‖Ks .(A.10)

Proof of Theorem A.1. Lemma A.4 applied to F gives

‖F (U)‖Kr−1 ≤ C‖U‖2
Kr+1 ,

‖F (U)−F (V )‖Kr−1 ≤ C‖U−V ‖Kr+1(‖U‖Kr−1 + ‖V ‖Kr−1).
(A.11)

Due to [11, Theorem 4.2.3] there exists an extension Ũ ∈ Kr+1 of U0 ∈ Hr ×Hr−1.
We have to choose Ũ = (η̃, q̃) in such a way, that for U (1) ∈ Kr+1

0 the right-hand side
G = F (Ũ + U (1))− LŨ of (A.5) is in Kr−1

0 , i.e.,

∂kt G1|t=0 = 0 for 0 ≤ k < r

2
− 1,

∂kt G2|t=0 = 0 for 0 ≤ k < r

2
− 3

2
.

(A.12)

For r = 2 these conditions are trivially true. For 2 < r ≤ 3, again due to [11, Theo-
rem 4.2.3], we may choose η̃ in such a way that ∂tη̃|t=0 = −∂xq0∈Hr−2(R). Similarly,
for 3 < r ≤ 4 we additionally choose q̃ such that ∂tŨ |t=0 = A(U0)U0∈Hr−2 ×Hr−3.
Thus, in each case, LŨ = F (Ũ) = F (Ũ + U (1)) at t = 0, and so G ∈ Kr−1

0 .
Thus, we finally consider the mapping

Φ(U (1)) = L−1
0 (F (Ũ + U (1))− LŨ),(A.13)

where L−1
0 : Kr−1

0 → Kr+1
0 is the solution operator of (A.4). If ρ is sufficiently small,

it is easy to see via Lemma A.3, (A.11), and the contraction mapping theorem that Φ
has a fixed point U (1) with ‖U (1)‖Kr+1 ≤ C|U0|Hr×Hr−1 , which gives us the solution
U = Ũ + U (1) of the IBLe.

The proof of the regularity result is standard: U ∈ L2((0, t0), H
r+1×Hr) implies

U ∈ Hr+1×Hr for almost every t > 0, and, starting again at some such t1, we obtain
U ∈ Kr+2((t1, t0) × R). The necessary trace conditions at t = t1 are automatically
fulfilled.

Remark A.5. (A.11) holds for r ≥ 2 due to the special form of F , namely, due
to the absence of terms of the form ηxx(ηxx+ ηxxx) and qx(qx+ qxx). If, for instance,
(1.1) is expanded to cubic terms, then we obtain a term −3ε−2η2

xxηx in (1.6), and
then we would need r > 5/2 in Theorem A.1 and therefore m = 3 in Theorem 1.1.
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Appendix B. Formal derivation of the IBLe. In order to make the paper
sufficiently self-contained, and to point out the influence of dissipation, we give here
a brief overview of the physical problem underlying (1.1) and describe how (1.1) is
formally derived. Details of this calculus can be found in, e.g., [4] and the references
therein.

B.1. The inclined film problem. We consider a two dimensional viscous liquid
film flowing down an inclined “plane” with inclination angle θ. Using the thickness
h0 of the flat film as the characteristic length and the surface velocity uN = uN (h0) =
gh2

0 sin θ/2ν of the basic Nusselt solution

(u, v, p) = (uN , 0, pN ), uN (y) =
g sin θ

2ν
(2h0y − y2), pN = ρg cos θ(h0 − y)

as characteristic velocity, the governing dimensionless NSe and the continuity equation
read

ut + (u · ∇)u = −∇p+ 1

R
∆u+

2

R
g, divu = 0.(B.1a)

Here u = (u, v) is the velocity field; R = uNh0/ν is the Reynolds number; ν, ρ, g are
the viscosity, density, and gravitational constant; and g = (1,− cot θ). At the free
surface y = h(t, x) we have the kinematic condition

ht + hxu = v(B.1b)

and the tangential and normal stress conditions

4hxux+(h
2
x−1)(uy+vx) = 0, p− 2

R

hxux−hx(uy+vx)+vy
1+h2

x

= −WeK(h),(B.1c)

where We = σ/(ρu2
Nh0) is the Weber number, σ is the coefficient of surface tension,

and K(h) = hxx(1 + h
2
x)

−3/2 is the interfacial curvature. A constant atmospheric
pressure pa has been adsorbed into p. Finally, at the rigid wall we prescribe the
no-slip condition

u = 0 at y = 0.(B.1d)

For R > Rc = 5
4 cot θ Nusselt’s solution is unstable to long wave perturbations

[2], and in order to analyze this long wave instability a number of reduced equations
for (B.1) have been derived. We briefly describe the derivation of (1.1).

B.2. Derivation of the IBLe. We assume that the Weber number is large,
We = Wε−2, where 0 < ε � 1 is a small parameter, while the Reynolds number is
O(1), and let

u(t, x, y) = ũ(τ, ξ, y), v(t, x, y) = ε2/3ṽ(τ, ξ, y), τ = ε2/3t, ξ = ε2/3x,

p(t, x, y) = ε−2/3p̃(τ, ξ, y), h(t, x) = h̃(τ, ξ).
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Substituting this long wave ansatz into the free boundary value problem (B.1) and
retaining terms up to order O(ε4/3), we obtain

in Ω : ε2/3
(
ũτ+ũξũ+ũy ṽ

)
= −p̃ξ+ε

4/3ũξξ+ũyy+2

R
,(B.2a)

0 = −p̃y − 2ε2/3 cot θ

R
+
ε4/3ṽyy

R
,(B.2b)

ũξ = −ṽy,(B.2c)

at y = h̃(t, ξ) : h̃τ+h̃ξũ = ṽ,(B.2d)

−ũy+ε4/3
(
h̃ξũξ+h̃

2
ξũy−ṽξ

)
= 0,(B.2e)

p̃− 2ε4/3(−ũξ − h̃ξũy)
R

= −Wh̃ξξ
(
1− 3

2
ε4/3h̃2

ξ

)
,(B.2f)

at y = 0 : ũ = ṽ = 0.(B.2g)

In order to derive the IBLe, we define the flow rate

q̃(τ, ξ) =

∫ h̃(τ,ξ)

0

ũ(τ, ξ, y) dy(B.3)

such that ∂τ h̃ = −∂ξ q̃. Following [23], we assume that the velocity field is slaved to

the elevation h̃ and the flow q̃ in a Nusselt-like fashion, i.e.,

ũ =
3q̃

2h̃3
(2h̃y − y2).(B.4)

Substituting (B.3) and (B.4) into (B.2), we obtain

q̃τ = −6

5
∂ξ

(
q̃2

h̃

)
+ ε−2/3

[
h̃W

(
h̃ξξξ

(
1− 3ε4/3h̃2

ξ

2

)
− 3ε4/3h̃2

ξξh̃ξ

)
+

(2h̃− 3q̃/h̃2)

R

]

− 2 cot θh̃ξh̃

R
+
ε2/3

R

[(
7

2

)
q̃ξξ − 9q̃ξh̃ξ

h̃
+

6q̃h̃2
ξ

h̃2
− 9q̃h̃ξξ

2h̃

]
.

This, together with ∂τ h̃ = −∂ξ q̃, is (1.1) when scaling back to t, x, i.e., defining

h(t, x) = h̃(ε−2/3τ, ε−2/3ξ) and q(t, x) = q̃(ε−2/3τ, ε−2/3ξ).
Remark B.1. Evaluating the assumption (B.4) mathematically seems rather

difficult. Note that, with this assumption and defining ṽ(τ, ξ, y) = − ∫ y
0
ũξ(τ, ξ, ỹ) dỹ,

the no-slip boundary condition (B.2g) is fulfilled, but the condition (B.2e) for the
tangential stress holds only up to order O(ε4/3). See also the following subsection.

B.3. Remarks on first order boundary layer theory. If in (B.2) we keep
terms only up to order O(ε2/3), we obtain the so-called boundary layer equation
(see [6])

in Ω : ũτ+ũξũ+ũyũ =
ε−2/3

R

[
ũyy + 2 + RWh̃ξξξ

]− 2 cot θh̃ξ
R

,(B.5a)

ũξ = −ṽy,(B.5b)

at y = h̃(t, ξ) : h̃τ+h̃ξũ = ṽ, ũy = 0,(B.5c)

at y = 0 : ũ = ṽ = 0.(B.5d)
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In this case, the ansatz (B.3) and (B.4) gives

h̃τ = −q̃ξ,

q̃τ = −6

5
∂ξ

(
q̃2

h̃

)
+
ε−2/3

R

[
2h̃− 3q̃

h̃2
+RWh̃∂3

ξ h̃

]
− 2 cot θh̃ξh̃

R
,

(B.6)

and the reduction of (B.5) to (B.6) is exact; i.e., every solution of (B.6) gives an exact
solution of (B.5) via (B.4). In other words, the solutions of (B.6) define an invariant
manifold for (B.5). Moreover, (B.6) reduces to the KSe (1.14) in just the same way
as (1.1) does.

However, (B.6) is a quasilinear hyperbolic system, as can be seen from the disper-
sion relation

µ1,2(k) = −1

2

(
3

R
+

8

5
ik

)
±
√

1

4

(
3

R
+

8

5
ik

)2

− 6

R
ik−

(
4

5
− 2

R
cot θ

)
k2−Wε−2k4

(B.7)

for the linearization of (B.6) (after rescaling to t, x coordinates) around (q, h) =
(2/3, 1). In particular, for |k| → ∞, this yields (in contrast to (1.8))

µ1,2(k) = − 3

2R
± i
(
ε−1

√
Wk2 +O(|k|)

)
,(B.8)

such that the high wave number modes are just uniformly damped but there is no
dissipation.

The derivation of the KSe from (1.1) and from (B.6) is the same, since the dis-
sipation terms first show up in the q-equation at order O(ε3). In other words, the
linear part of the KSe is determined from the local expansion of µ1(k) at k = 0.

However, due to (B.8), the linearization of (B.6) around (h, q) = (1, 2/3) generates
only a strongly continuous semigroup. The local existence of solutions to (B.6) can
still be shown, for instance, using the methods from [9], but with our method we
cannot prove an approximation result like Theorem 1.1 for the reduction of (B.6)
to the KSe. The reason for this is that, due to the lack of dissipation, our energy
estimate for the quasilinear problem breaks down.

Acknowledgment. The author thanks R. L. Pego for helpful discussions and
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Abstract. We show in this paper how numerical bifurcation analysis can be used to study
the evolution of genetically transmitted phenotypic traits. For this, we consider the standard
Rosenzweig–MacArthur prey-predator model [The American Naturalist, 97 (1963), pp. 209–223]
and, following the so-called adaptive dynamics approach, we derive from it a second-order evolu-
tionary model composed of two ODEs, one for the prey trait and one for the predator trait. Then,
we perform a detailed bifurcation analysis of the evolutionary model with respect to various envi-
ronmental and demographic parameters. Surprisingly, the evolutionary dynamics turn out to be
much richer than the population dynamics. Up to three evolutionary attractors can be present, and
the bifurcation diagrams contain numerous global bifurcations and codimension-2 bifurcation points.
Interesting biological properties can be extracted from these bifurcation diagrams. In particular, one
can conclude that evolution of the traits can be cyclic and easily promote prey species diversity.

Key words. bifurcation analysis, coevolution, evolution, evolutionary dynamics, Lotka–Volterra
model, monomorphism, prey-predator model
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Introduction. One of the most important notions in biology, namely evolution,
is now recognized to be of primary importance in many fields of science. Evolution of
markets, institutions, technologies, languages, and social rules are relevant examples.
Thus, a well-founded mathematical theory of evolution is now needed more than ever.

Evolving systems are in general composed of N homogeneous subsystems identi-
fied by two features: dimension ni and characteristic trait xi. For example, in ecology,
the subsystems are interacting plant and animal populations, ni is the number of in-
dividuals of each population or, equivalently, the density of the population, and xi is a
genetically transmitted phenotypic trait (e.g., body size). Both features vary in time,
but densities can vary at much faster rates than traits. This means that an evolving
system has two distinct timescales: one is fast and concerns only the densities, which
vary while traits remain practically constant, and the other concerns the slow varia-
tion of the traits entraining slow variations of the densities. In some favorable cases,
these slow variations of the traits can be described by a standard ODE model (called
the evolutionary model).

The theoretical work developed so far has shown that evolutionary dynamics can
be extremely complex. For example, cyclic regimes [7] (called Red Queen dynamics,
as in [27]) and chaotic regimes [3] are possible, as well as evolutionary suicides and
murders, which occur when the variation of the trait of a population entails the
extinction of the same or another population [20, 10]. Moreover, an evolving system
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can also have alternative evolutionary attractors, in which case the fate of the system
is determined by its ancestral conditions.

Once an evolutionary model is available, the powerful machinery of numerical
bifurcation analysis can be applied to it. This is mandatory if the aim is to detect
the impact of some strategic parameters on the evolution of the system. Systematic
bifurcation analysis with respect to key environmental parameters could, for example,
explain why ecosystems differ at various latitudes, altitudes, and depths. The few
bifurcation studies performed to date on evolutionary models (see, for example, [19,
21, 7]) are far from satisfactory: they are inaccurate because they have been mainly
carried out through simulation, and they are incomplete because they refer to non-
generic cases or point out only some aspects of the full bifurcation diagram. In this
article we therefore present an accurate and detailed bifurcation analysis of a typical
evolutionary model. The problem we tackle is the coevolution of prey and predator
traits, a subject that has received a great deal of attention in the last decade (see
[1] for a review). We consider two populations (prey and predator) and two traits
(one for each population), and the bifurcation analysis of the evolutionary model is
performed with respect to pairs of parameters. The results we obtain are of rather
limited biological value because they refer to a specific prey-predator coevolution
model. However, the methodology is very general and could be applied to other models
in order to obtain, through a suitable comparative analysis, general conclusions on
the coevolution of prey-predator communities.

The paper is organized as follows. In the next section we recall how, under
suitable assumptions on the mutation and selection processes, a canonical evolutionary
model can be derived from a general population model [6, 5]. Then, we focus on
the well known Rosenzweig–MacArthur prey-predator model [26], showing how the
canonical evolutionary model can be explicitly derived from it. Finally, we present
the bifurcation analysis of the evolutionary model and demonstrate how interesting
biological conclusions can be extracted from it. Some comments and comparisons
with the literature close the paper.

The canonical equation of monomorphic evolutionary dynamics. Con-
sider two interacting populations, hereafter called prey and predator populations, with
densities n1 and n2 and phenotypic traits x1 and x2.

At ecological timescale (fast dynamics), the traits are constant while the densities
vary according to two ODEs of the form

ṅ1 = n1F1(n1, n2, x1, x2),
ṅ2 = n2F2(n1, n2, x1, x2),

(1)

where Fi is the net per capita growth rate of the ith population. In the following,
model (1), called the resident model, is assumed to have one strictly positive and
globally stable equilibrium n̄(x1, x2) for each (x1, x2) belonging to a set of the trait
space called the stationary coexistence region. This condition is not strictly necessary,
but it simplifies the discussion.

At evolutionary timescale (slow dynamics), the traits vary according to two ODEs
called the evolutionary model:

ẋ1 = k1G1(x1, x2),
ẋ2 = k2G2(x1, x2),

(2)

where k1 and k2 are suitable constant parameters determined by size and frequency
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of mutations. However, population densities vary slowly with the traits because, at
evolutionary timescale, model (1) is always at the equilibrium n̄(x1, x2).

Some authors discuss evolutionary problems by assigning particular forms to the
functions G1 and G2 in model (2) without connecting them with a population model
(see [2] and references therein). More frequently, model (2) is derived from model (1)
through various arguments [16, 2]. This is a little surprising, since the dynamics of the
traits should reflect the characteristics of the mutation and selection processes, which,
however, are not included in the resident model (1). In fact, the most transparent
approach for deriving the evolutionary model (2) is the so-called adaptive dynamics
approach [15, 22, 6, 13, 12] based on the resident-mutant models, which describe the
interactions among three populations, namely, the two resident populations and a
mutant population with trait x′1 or x′2. (Notice that this approach rules out the
possibility that prey and predator mutants are present at the same time.) When the
prey population is split into two subpopulations (resident and mutant) with densities
n1 and n′1 and traits x1 and x′1, the model is

ṅ1 = n1f1(n1, n2, n
′
1, x1, x2, x

′
1),

ṅ2 = n2f2(n1, n2, n
′
1, x1, x2, x

′
1),

ṅ′1 = n′1f
′
1(n1, n2, n

′
1, x1, x2, x

′
1).

(3)

The initial value of n′1 in these equations is very small because a mutant population is
initially composed of one or a few individuals. A similar third-order model involving
the mutant trait x′2, the density n′2, and the function f ′2 describes the case in which
the mutant is a predator. In the ecological literature, models like model (3) are
often called “competition models” because they describe the competition between
two similar populations. Obviously, model (3), together with its companion model
for the predator mutation, contains more information than the resident model (1).
Indeed, the latter can be immediately derived from the former by disregarding the
mutant equation and letting n′1 = n′2 = 0, thus obtaining

Fi(n1, n2, x1, x2) = fi(n1, n2, 0, x1, x2, x
′
i),

where the function fi(n1, n2, 0, x1, x2, x
′
i) does not depend on x′i. The functions fi and

f ′i , identifying the right-hand sides of the resident-mutant models, are called fitness
functions, and they enjoy a number of structural properties. Function fi, i = 1, 2,
satisfies the condition

fi(n1, n2, n
′
1, x1, x2, x1) = Fi(n1 + n′

1, n2, x1, x2)

because, when x1 = x′1, resident and mutant individuals do not differ, so that only
the total number of prey (n1 + n′

1) matters. Function f ′1 is defined by

f ′1(n1, n2, n
′
1, x1, x2, x

′
1) = f1(n′1, n2, n1, x

′
1, x2, x1)

because either one of the two prey subpopulations can be considered as mutant,
provided the other is considered as resident. Of course, the same properties hold
for the functions f1, f2, and f ′2 appearing in the competition model for the predator
mutation.

Now that we have defined the resident model (1) and the resident-mutant model
(3), we can show how the evolutionary model (2) can be derived following the adaptive
dynamics approach. For this, assume that the resident population model (1) with
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traits x1 and x2 is at its equilibrium n̄(x1, x2) when a mutant appears. If mutations
are rare at ecological timescale, the initial conditions (n̄1(x1, x2), n̄2(x1, x2), n′1) can
be used in model (3) to determine the fate of the mutant population. If the mutant
population does not invade, i.e., if

f ′1(n̄1(x1, x2), n̄2(x1, x2), n′1, x1, x2, x
′
1) < 0(4)

for all small n′1 > 0, then it becomes extinct and the final result is still a pair of
resident populations with traits x1 and x2 and densities n̄1(x1, x2) and n̄2(x1, x2).
By contrast, it can be proved [11] that if (4) holds with the opposite inequality sign
and if mutations are small (i.e., x′1 differs only slightly from x1), then the resident
population generically becomes extinct and is replaced by the mutant population
with density n̄1(x′1, x2). In other words, each mutation brings a new trait into the
system, but competition between resident and mutant populations selects the winner,
namely, the trait that remains in the system. This kind of evolution of the traits is
called monomorphic evolution. This process of mutation and selection can be further
specified by making suitable assumptions on the frequency and distribution of small
mutations [6, 5], and the conclusion is that the rate at which the trait xi varies at
evolutionary timescale is given by the following ODE, called the canonical equation
of adaptive dynamics:

ẋi = kin̄i(x1, x2)
∂f ′i
∂x′i

∣∣∣∣ n1=n̄1(x1,x2)

n2=n̄2(x1,x2)

n′i=0;x′i=xi

,(5)

where ki is proportional to the frequency and variance of mutations, n̄i(x1, x2) is the
equilibrium density of the resident model, and ∂f ′i/∂x

′
i is the derivative of the fitness

of the mutant, called the selective derivative. Equation (5), written for the prey and
for the predator, gives two ODEs that form the evolutionary model (2) with

Gi(x1, x2) = n̄i(x1, x2)
∂f ′i
∂x′i

∣∣∣∣ n1=n̄1(x1,x2)

n2=n̄2(x1,x2)

n′i=0;x′i=xi

.(6)

Thus, model (5) describes the monomorphic coevolution of the traits under the as-
sumption of rare and random mutations of small effects. Monomorphic evolutionary
dynamics are usually presented by drawing a few trajectories of model (5) in the sta-
tionary coexistence region. This set of trajectories, called the coevolutionary portrait,
points out, as sketched in Figure 1, all relevant invariant sets (equilibria, limit cycles,
and saddle separatrices). Some trajectories of the coevolutionary portrait (see gray
regions in Figure 1) reach the boundary of the stationary coexistence region, thus
implying the extinction of one of the two populations.

Figure 2 schematically summarizes monomorphic evolution and highlights the
different roles played by the three models we have introduced. The ecological literature
mainly deals with the resident model (1) since ecologists are interested in the short-
term dynamics of the populations and usually do not even consider the possibility of
having a mutant population involved in the game. By contrast, theoretical studies
on evolution are based on formal evolutionary models (2), or on verbal theories that
can be considered as a sort of surrogate of these models. Figure 2 points out two
facts. The first is that both the resident model (1) and the evolutionary model (2)
are needed if one is interested in the population dynamics entrained at evolutionary
timescale by the dynamics of the traits. The second is that the resident-mutant
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Fig. 1. Example of a coevolutionary portrait in the stationary coexistence region. The portrait
is characterized by three equilibria (two stable foci (filled circles) and one saddle (half-filled circle))
and two limit cycles (one stable (thick line) and one unstable (dashed line)).
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Fig. 2. Flow chart demonstrating the relationships among resident-mutant models, the resident
model, and the evolutionary model.

model (3) is a “source” model, namely, a model that contains the information needed
to answer all questions. Unfortunately, the scheme of Figure 2 is not always taken
into account, and evolutionary models (2) are often derived directly from the resident
model through arguments, which at best give the same result that a hidden equivalent
resident-mutant model would give.

Once monomorphic dynamics has found a halt at a stable monomorphic equilib-
rium x̄, one can look at the second-order terms in the Taylor expansion of the mutant
fitness function to establish whether the equilibrium is a branching point [13] or not.
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More precisely, a stable equilibrium x̄ is said to be a branching point if

∂2f ′i
∂x′2i

∣∣∣∣ n1=n̄1(x̄1,x̄2)

n2=n̄2(x̄1,x̄2)

n′i=0;x′i=xi;x=x̄

> 0(7)

and

∂2f ′i
∂x′i∂xi

∣∣∣∣ n1=n̄1(x̄1,x̄2)

n2=n̄2(x̄1,x̄2)

n′i=0;x′i=xi;x=x̄

< 0(8)

for i equal to 1 or 2, since small mutations of the ith population invade and coexist,
at equilibrium, with the former resident [12]. Thus, branching points are the origin
of dimorphism. Of course, after a branching has occurred, there are three resident
populations, and one can continue the analysis by deriving the three corresponding
canonical equations.

A model of prey-predator coevolution. In this section we specify the prey-
predator coevolution problem, which is analyzed in what follows. First we present the
resident prey-predator model that has most often been used in the last few decades
to predict prey and predator abundances at ecological timescales in the absence of
mutations. We then extend this model to a scenario in which a mutant population is
also present, by adding a third ODE for the mutant population and by specifying the
dependence of the demographic parameters upon the traits of the resident and mutant
populations. This produces a resident-mutant population model from which, following
the scheme described in the previous section, we finally derive an evolutionary model
of the form (2) (details are relegated to the appendix).

The population model we consider is the well-known Rosenzweig–MacArthur
prey-predator model [26]:

ṅ1 = n1

(
r − cn1 − a

1 + ahn1
n2

)
,

ṅ2 = n2

(
e

an1

1 + ahn1
− d

)
,

(9)

where r is prey growth rate per capita, c is prey intraspecific competition, a is predator
attack rate, h is predator handling time (namely, the time needed by each predator
to handle and digest one unit of prey), e is efficiency (namely, a conversion factor
transforming each unit of predated biomass into predator newborns), and d is predator
death rate. The reader interested in more details on the biological interpretation of
the parameters can refer to [23]. The six positive parameters of the model (r, c, a,
h, e, d) could be reduced to three through rescaling. However, we do not follow this
option because it would complicate the biological interpretation of the dependence
of the parameters upon the prey and predator traits. In order to have a meaningful
problem, one must assume that e > dh, because otherwise the predator population
cannot grow even in the presence of an infinitely abundant prey population.

For any meaningful parameter setting, model (9) has a global attractor in R
2
+,

namely,
(a) the trivial equilibrium (r/c, 0) if d/a(e− dh) ≥ r/c,
(b) the strictly positive equilibrium

n̄1 =
d

a(e− dh)
, n̄2 =

c

a

(
r

c
− d

a(e− dh)

)(
1 + ah

d

a(e− dh)

)
(10)
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if

rah− c

2ahc
≤ d

a(e− dh)
<
r

c
,(11)

(c) a strictly positive limit cycle if d/a(e− dh) < (rah− c)/(2ahc).

The transition from (a) to (b) is a transcritical bifurcation (which is generic in the
class of positive systems of the form (9)), while the transition from (b) to (c) is a
supercritical Hopf bifurcation (see [17] for a proof).

If we now imagine that a mutant population is also present, we can enlarge model
(9) by adding a third ODE and by slightly modifying the equations of the resident
populations in order to take the mutant population into account. Of course we also
need to specify how the parameters depend upon the traits x1, x2, x′1, x′2. The num-
ber of possibilities is practically unlimited, because even for well-identified prey and
predator species there are many meaningful options. Thus, at this level of abstrac-
tion, it is reasonable to limit the number of parameters sensitive to the traits, and to
avoid trait dependencies that could give rise to biologically unrealistic evolutionary
dynamics, like the unlimited growth of a trait (so-called runaway). Our choice has
been to assume that the parameters r, e, and d are independent of the traits, because
this will allow us to compare our results with those obtained in [7]. Thus, in the case
of a mutation in the prey population, the resident-mutant model is

ṅ1 = n1

(
r − c(x1, x1)n1 − c(x1, x

′
1)n′1

− a(x1, x2)

1 + a(x1, x2)h(x1, x2)n1 + a(x′1, x2)h(x′1, x2)n′1
n2

)
,

ṅ2 = n2

(
e

a(x1, x2)n1 + a(x′1, x2)n′1
1 + a(x1, x2)h(x1, x2)n1 + a(x′1, x2)h(x′1, x2)n′1

− d

)
,

ṅ′1 = n′1

(
r − c(x′1, x1)n1 − c(x′1, x

′
1)n′1

− a(x′1, x2)

1 + a(x1, x2)h(x1, x2)n1 + a(x′1, x2)h(x′1, x2)n′1
n2

)
.

(12)

The traits are assumed to be real variables obtained from the actual phenotypic traits
through a suitable nonlinear scaling that maps the positive interval of the phenotype
into the real axis. Thus, the maximum and minimum values of the prey (predator)
phenotype correspond to the limit values ∞ and −∞ of x1 (resp., x2). Similarly, in
the case of a mutation in the predator population, the resident-mutant model is

ṅ1 = n1

(
r − c(x1, x1)n1

− a(x1, x2)

1 + a(x1, x2)h(x1, x2)n1
n2 − a(x1, x

′
2)

1 + a(x1, x′2)h(x1, x′2)n1
n′2

)
,

ṅ2 = n2

(
e

a(x1, x2)n1

1 + a(x1, x2)h(x1, x2)n1
− d

)
,

ṅ′2 = n′2

(
e

a(x1, x
′
2)n1

1 + a(x1, x′2)h(x1, x′2)n1
− d

)
.

(13)
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Fig. 3. Bifurcation diagram of evolutionary model (5) with respect to predator efficiency e
and optimum prey trait γ and corresponding sketches of coevolutionary state portraits. Panels a,
b, and c are magnified views of the bifurcation diagram. Parameter values are r = 0.5, d = 0.05,
k1 = k2 = 1, γ0 = 0.01, γ1 = 0.5, γ2 = 1, α = 1, α0 = 0.01, α1 = 1, α2 = 1, α3 = 0.6, θ = 0.9,
θ1 = θ2 = 0.5, θ3 = θ4 = 1.

The functional forms specifying the parameters’ dependence upon the traits are re-
ported in the appendix and are such that the left-hand inequality of condition (11)
(i.e., (rah− c)/(2ahc) ≤ d/(a(e− dh))) is always satisfied. (This excludes the possi-
bility of population cycles.) Thus, the boundary of the stationary coexistence region
is simply the set of pairs (x1, x2) for which d/(a(e−dh)) = r/c (see (11)). This means
that on that boundary n̄2(x1, x2) = 0; i.e., the predator population becomes extinct
if the traits reach the boundary of the stationary coexistence region.

At this point, (6) can be used to derive the evolutionary model (2), since the
strictly positive equilibrium n̄(x1, x2) is known (see (10)). The analytic expressions
of the selective derivatives and of the second-order derivatives needed for evaluating
the branching conditions (7), (8) are not reported because they are very long. In any
case, they can be easily derived by means of any software for symbolic computation.

Bifurcation analysis. The evolutionary model derived in the previous sec-
tion has been studied through numerical bifurcation analysis. Local and global
codimension-1 bifurcations with respect to various parameters have been obtained
by means of specialized software based on continuation techniques [9, 8, 18]. Moreover,
two-dimensional bifurcation diagrams have been produced by focusing on codimension-
2 bifurcation points [17].

The first surprising result is that the evolutionary model is much richer than the
resident population model. In fact, while the latter is characterized by two bifur-
cations, in the former twelve bifurcations have been detected. Figure 3 shows these
bifurcations in the space (e, γ), where e is predator efficiency and γ is the prey trait
value (called optimum) at which intraspecific competition is minimum. In general,
both parameters are influenced by environmental factors. For example, the efficiency
of an herbivore (predator) depends upon the caloric content of its prey (grass), which,
in turn, is mainly fixed by humidity, temperature, and soil composition. Figure 3
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Fig. 4. Bifurcation diagram of evolutionary model (5) with respect to predator efficiency e and
mutation frequency ratio k1/k2 (A) and handling time θ (B). See Figure 3 for coevolutionary state
portraits and parameter values.

points out that there are fourteen subregions in the parameter space characterized by
different coevolutionary portraits. In each one of them, for simplicity, the boundary of
the stationary coexistence region, where the predator population becomes extinct, is
not shown. This, however, fails to point out, graphically, that evolutionary extinction
of the predator population occurs in all cases, as shown in Figure 1, which is actually
the coevolutionary portrait corresponding to subregion 11. It is worth noticing that
this form of evolutionary extinction is always an evolutionary murder. In fact, on the
boundary of the stationary coexistence region ẋ2 = 0, because n̄2 = 0 in (5); i.e., the
predator trait is locally constant while the prey trait varies.

Coevolutionary attractors can be equilibria or limit cycles, and the existence of
alternative attractors is rather common. When they exist, attracting cycles surround
all equilibria. Actually, there can be up to three alternative attractors (two equilibria
and one cycle), as shown by the coevolutionary portraits 10, 11, 13, and 14. There
are ten codimension-2 bifurcation points, namely a cusp (C), two generalized Hopf
(GH1 and GH2), two Bogdanov–Takens (BT1 and BT2), four noncentral saddle-node
homoclinic loops (S1, S2, B1, and B2), and a double homoclinic loop (D) (see [17]).

No other bifurcation curves and codimension-2 bifurcation points are present in
the two extra bifurcation diagrams presented in Figure 4, where the coevolutionary
portraits are intentionally not shown to stress that they are exactly as in Figure 3.
The parameter on the horizontal axis of these two bifurcation diagrams is still the
efficiency of the predator, while the parameter on the vertical axis is related to two
important characteristics of the mutation and predation processes, namely, the ratio
k1/k2 between the frequencies of prey and predator mutations, and the predator
handling time θ corresponding to the maximum attack rate (see the appendix).

The bifurcation diagrams are very useful for deriving interesting biological prop-
erties concerning the impact of various factors on coevolution. For example, one could
be interested in identifying the factors favoring the so-called Red Queen dynamics,
namely, the possibility of cyclic coevolution of the traits. For this, one should extract
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Fig. 5. Red Queen dynamics: in the white regions cyclic coevolution is not possible, while in
the gray regions it is the only long-term form of coevolution. In the black regions both stationary and
cyclic coevolution are possible. Panels (A), (B), and (C) are extracted from the bifurcation diagrams
of Figures 3, 4(A), and 4(B), respectively.

from each bifurcation diagram the subregions 2–4, 8–14, where at least one of the
coevolutionary attractors is a limit cycle. The result is Figure 5, which shows where
cyclic coevolution is the only possible outcome (gray regions) and where stationary co-
evolution is also possible (black regions). Figure 5 indicates that Red Queen dynamics
occur only for intermediate values of predator efficiency. Thus, slow environmental
drifts entraining slow but continuous variations of predator efficiency can promote the
disappearance of Red Queen dynamics. However, if efficiency decreases, Red Queen
dynamics disappear smoothly through a supercritical Hopf bifurcation (where the at-
tracting evolutionary cycle shrinks to a point). By contrast, if efficiency increases,
Red Queen dynamics disappear discontinuously through a catastrophic bifurcation
(tangent bifurcation of limit cycles). Figure 5 also indicates other biologically rele-
vant properties, such as the fact that Red Queen dynamics are facilitated by high
(low) frequency of prey (predator) mutation, and by low predator handling times.
This last result shows that the highest chances for cyclic coevolution are obtained
when θ = 0, i.e., when the Rosenzweig–MacArthur model degenerates into the Lotka–
Volterra model. This brings us to the following rather intriguing conclusion: the
Lotka–Volterra assumptions (which do not give rise to population cycles) can easily
explain coevolutionary cycles, while the Rosenzweig–MacArthur assumptions (which
can easily give rise to population cycles) can hardly support Red Queen dynamics.

Extra information can be added to the bifurcation diagrams of Figures 3 and
4 by specifying whether the stable monomorphic equilibria (x̄1, x̄2) are branching
points (B) or not (NB). This can be easily done by computing (through continuation)
the curves where conditions (7), (8) are critical. Thus, any region of parameter
space characterized by only one stable monomorphic equilibrium can, in principle,
be partitioned into four subregions: in one of these subregions monomorphism is the
only form of coevolution, while in the other three regions dimorphism is possible
through the branching of one of the two populations or of both. However, in all of the
numerical experiments that we have performed, only prey branching occurred. This
is consistent with the well-known principle of “competitive exclusion” [14]. In fact, if
the predator population would branch, the system would converge to an equilibrium
with two slightly different predators and one prey, in contrast with the competitive
exclusion principle. In conclusion, there are only two possibilities: (x̄1, x̄2) is not a
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Fig. 6. In the gray and black regions (extracted from Figure 3) the evolutionary model (5) has
only one stable equilibrium, which is either a branching point (B) for the prey population or not
(NB).

branching point or it is a branching point for the prey population. In other words, our
findings are in line with biological principles and support the idea [4] that predators
are promoters of prey species diversity. Figure 6 shows how the region characterized
by a unique stable equilibrium (x̄1, x̄2) is partitioned into B and NB subregions. The
result is rather interesting if it is complemented with what has already been discovered
about the disappearance of Red Queen dynamics induced by variations of predator
efficiency. In fact, the overall conclusion is that Red Queen dynamics disappear
abruptly if predator efficiency increases, and smoothly if predator efficiency decreases.
However, in the latter case, as soon as Red Queen dynamics disappear, dimorphism
can occur in the prey population. Thus, environmental drifts of any sign can give rise
to discontinuities in the dynamics of the traits. This observation proves once more
that coevolution is an astonishingly complex dynamic process.

Discussion and conclusions. The problem of prey-predator coevolution has
been investigated in this paper from a purely mathematical point of view. For this,
the classic Rosenzweig–MacArthur model (logistic prey and predator with saturat-
ing functional response) has first been transformed into a resident-mutant model by
adding a third equation for the mutant population. Then, an evolutionary model
describing the slow dynamics of the traits has been derived from the resident-mutant
model through the standard adaptive dynamics approach [15, 22, 6, 13, 12]. The
bifurcation analysis of the evolutionary model has shown that the dynamics of the
traits at evolutionary timescale are much more complex than the dynamics of the
populations at ecological timescale. The numerically produced bifurcation diagrams
have proved to be powerful tools for extracting qualitative information on the impact
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of various factors on coevolution. Conclusions like those we have obtained on the
impact of environmental drifts on evolutionary cycles (so-called Red Queen dynam-
ics) could not have been derived without performing a detailed bifurcation analysis
of an evolutionary model. A generally encouraging message emerging from this study
is that other very important biological problems, such as the evolution of mutual-
ism, cannibalism, and parasitism, could most likely be studied successfully through
the bifurcation analysis of the canonical evolutionary model. But the same approach
should also be very effective for studying relevant problems in social sciences and
economics, where mechanisms somewhat similar to biological mutation and selection
can sometimes be identified.

Limiting the discussion to the problem of prey-predator coevolution, we can say
that the results presented in this paper are far more complete than those available in
the literature. Indeed, the only comparable result is the bifurcation analysis presented
in [7], where a bifurcation diagram similar to that of Figure 4(A) was obtained through
simulation. That bifurcation diagram is incomplete and derived for a quite degener-
ate case, i.e., for a Lotka–Volterra model (θ = 0 in our model) with a very special
parameter combination reducing the number of bifurcation curves to six. However,
despite this double degeneracy, the analysis in [7] points out Red Queen dynamics,
multiple evolutionary attractors, and evolutionary murder. A comparison with the
nonmathematical literature (see, for example, [24, 25] and [1]) neither contradicts nor
supports our findings.

Even if what we have presented in this paper might seem rather general, the
analysis should first be repeated for many other prey-predator models and for dif-
ferent assumptions on the trait dependence of the demographic parameters, and a
comparative analysis should be performed in order to extract biologically significant
results. Moreover, there are a number of possible interesting extensions. First, one
could investigate the dynamics of dimorphism by applying the bifurcation approach
followed in this paper to more complex population assemblies, composed, for exam-
ple, of one resident predator population and two resident prey populations. The
outcome of such a study could be that a predator branching generating a second res-
ident predator population is possible, because this outcome is not in conflict with the
principle of competitive exclusion. Second, while remaining in the simple context of
monomorphism, one could be interested in detecting the prey-predator coevolutionary
dynamics under the assumption that the two populations can coexist by cycling at
ecological timescale. This extension is absolutely not trivial, because the derivation
of the evolutionary model is rather difficult in this case. However, the problem is of
great interest because its analysis could perhaps help to answer the very intriguing
question: does coevolution destabilize populations? Third, one could be interested in
extending the analysis to the coevolution of tritrophic food chains composed of a prey,
a predator, and a superpredator population. From the results obtained in this paper,
showing that evolutionary dynamics of ditrophic food chains (composed of a prey and
a predator population) are much more complex than the corresponding population
dynamics, one should naturally be inclined to conjecture that chaotic coevolutionary
dynamics should be possible in tritrophic food chains. The proof of this conjecture
would be a great result.

Appendix. In this appendix we specify how the prey intraspecific competition
c, the predator attack rate a, and the predator handling time h, appearing in the
resident-mutant models (12), (13), depend upon the resident and mutant traits. Due
to our definition of the traits, which are scaled measures of the phenotypes, c, a, and
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h are bounded functions of the traits. Unless otherwise stated, all the parameters
appearing in these functions are assumed to be positive.

Prey intraspecific competition c is given by

c(x1, x
′
1) =

γ1 + γ2 (x1 − γ)
2

1 + γ0(γ1 + γ2 (x1 − γ)
2
)
.(A1)

Notice that c depends only upon its first argument. This means that resident prey
individuals face the same competition when they are opposed to other resident in-
dividuals or to mutant individuals. The parameter γ, which can be either positive
or negative, is the value of the prey trait x1 (called optimum prey trait) at which
intraspecific competition is minimum (and equal to γ1/(1 +γ0γ1)). For prey traits x1

far from γ, intraspecific competition saturates at 1/γ0.
The predator attack rate a is the bell-shaped function

a(x1, x2) = α0 + α exp

(
−
(
x1

α1

)2

+ 2α3

(
x1

α1

)(
x2

α2

)
−
(
x2

α2

)2
)
,(A2)

where α3 < 1. If prey and predator traits are tuned, i.e., if x1 = x2 = 0, the predator
attack rate is maximum (and equal to α0 + α). When prey and predator traits are
far from being tuned, the predator attack rate drops to α0.

The predator handling time is the product of an increasing sigmoidal function of
the prey trait x1 and of a decreasing sigmoidal function of the predator trait x2,

h(x1, x2) = θ

[
1 + θ1 − 2θ1

1 + exp (θ3x1)

] [
1 + θ2 − 2θ2

1 + exp (−θ4x2)

]
,(A3)

where θ is the handling time corresponding to the tuned situation ((x1, x2) = (0, 0)),
referred to as handling time in Figures 4(B) and 5(C).

Finally, we have fixed r, d, and all the parameters of the functions c, a, and h at
the values indicated in the caption of Figure 3, and we have limited θ from above and
e from below so that the following two inequalities hold for all (x1, x2):

e− dh(x1, x2) > 0,
r

c(x1)
≤ 1

a(x1, x2)h(x1, x2)
.

These conditions guarantee that the left-hand inequality of condition (11) holds. Thus,
population cycles are ruled out from our study.
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Abstract. A chief factor that is thought to limit the performance of polymer electrolyte fuel
cells (PEFCs) is the hydrodynamics associated with the cathode. In this paper, a two-dimensional
model for three-component (oxygen, nitrogen, water) gaseous flow in a PEFC cathode is derived,
nondimensionalized, and analyzed. The fact that the geometry is slender allows the use of a narrow-
gap approximation leading to a simplified formulation. In spite of the highly nonlinear coupling
between the velocity variables and the mole fractions, an asymptotic treatment of the problem
indicates that oxygen consumption and water production can be described rather simply in the
classical lubrication theory limit with the reduced Reynolds number as a small parameter. In general,
however, the reduced Reynolds number is O (1), requiring a numerical treatment; this is done using
the Keller–Box discretization scheme. The analytical and numerical results are compared in the limit
mentioned above, and further results are generated for varying inlet velocity and gas composition,
channel width and porous backing thickness, pressure and current density. Also, a novel, compact
way to present fuel cell performance, which takes into account geometrical, hydrodynamical, and
electrochemical features, is introduced.

Key words. proton-exchange membrane (PEM) fuel cells

AMS subject classifications. 35-04, 76S05

PII. S003613990139369X

1. Introduction. There is at present a rapidly increasing interest in improv-
ing the design of fuel cells, that is, electrochemical devices that convert the chemical
energy of a fuel with an oxidant directly into electricity. Fuel cells have a variety of
applications; for instance, the alkaline fuel cell (AFC) was mainly used in space explo-
ration, while the phosphoric acid fuel cell (PAFC), the solid oxide fuel cell (SOFC),
and the molten carbonate fuel cell (MCFC) are most suited to stationary applica-
tions. Of the several types of fuel cells that are currently under development, perhaps
the one that has received the most attention, particularly from the point of view of
commercialization in the automotive industry, has been the polymer electrolyte fuel
cell (PEFC), also often referred to as the proton-exchange membrane (PEM) fuel cell
or the solid polymer fuel cell (SPFC); the merit of this type of fuel cell over others
for this particular application is that it can generate the high current densities that
are required to power a vehicle, as well as the fact that it operates at comparatively
low temperatures (often no higher than 100◦C).

A schematic diagram of a PEFC is given in Figure 1. Essentially, this entails a
polymer membrane sandwiched between two gas-diffusion electrodes, which are each
adjacent to flow channels contained within bipolar plates. The oxidant, usually oxygen
from air which is either dry or humidified to some extent, is fed in at the inlet of the
channel on the cathode side and is transported to the electrolyte/cathode interface;
the fuel, on the other hand, normally hydrogen, is fed at the anode channel inlet and
is transported to the electrolyte/anode interface. Both interfaces contain a catalyst,
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Fig. 1. 2D PEFC.

often platinum, to accelerate the reactions

2H2 → 4H+ + 4e− at the anode,(1.1)

O2 + 4H+ + 4e− → 2H2O at the cathode,(1.2)

in the course of which an electric current is produced to drive a given load. In
particular, the reaction at the cathode also produces both heat and water as by-
products, the latter of which may be present throughout the system as either vapor or
liquid or both; the production of the former can lead to temperatures at the catalytic
layer in the order of 80–90◦C. Optimal fuel cell performance is achieved at typical
voltages of around 0.5 V at current densities of about 1 Acm−2.

Recent years have seen the appearance of mathematical models for some or all of
the parts of a typical fuel cell described above. Modeling proves necessary because of
an, as yet, incomplete understanding of several important phenomena:

1. mass transport limitations, that is, to ensure that sufficient amounts of oxygen
reach the catalytic layer at the cathode in order that a desired current is
sustained;

2. water management, that is, to ensure that the water flow in the system is
great enough to keep the membrane adequately hydrated but low enough to
prevent flooding;

3. thermal management, that is, to ensure that the cell does not overheat, which
may well occur as the result of the heat produced by electrochemical reactions
in the catalyst layer.

Since the full problem is highly three-dimensional (3D), nonisothermal, multi-
phase, multicomponental, and most likely time-dependent in nature, numerous sim-
plifications have been made in existing models to ensure some element of tractability.
Perhaps the first one-dimensional (1D) models to provide a simplified treatment were
developed by Bernardi and Verbrugge [5, 6] and Springer, Zawodzinski, and Gottes-
feld [37]; a recent contribution is due to Gurau, Barbir, and Lui [20]. 1D treatments,
whilst they are able to address some aspects of the three issues related to fuel cell
performance mentioned above, are not able to address these questions at a local level:
that is to say, where oxygen depletion occurs or where there is flooding or inadequate
heat removal. Subsequent pseudo–two-dimensional (2D) models have tackled some of
these issues [12, 17, 31, 44] with varying assumptions about the nature of the flow; in
these so-called along-the-channel models, the resulting equations are ordinary differ-
ential equations with the coordinate along the fuel cell as the independent variable.
Most recently, techniques of computational fluid dynamics have been used. Amongst
models assuming single-phase gaseous flow, there are 2D isothermal models for the
cathode [25, 45], 2D isothermal models for the whole cell [18, 19, 23, 36], 3D isother-
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mal models for the whole cell [14, 15], and 3D nonisothermal models for the whole
cell [35]; generally speaking, there does not appear to be any experimental evidence
that fuel cells are isothermal, although this assumption may indeed be valid for either
small cells or large cells from which heat is removed at an adequate rate. In addition,
two-phase flow at the cathode has also begun to receive attention [22, 31, 41].

This paper primarily addresses the first issue of the three given above. In addition,
one of the goals is to steer between 1D models and full computational fluid dynamics
to derive a 2D formulation that does not sacrifice too many geometrical features, yet
on the other hand does not demand excessive computing time either. We focus here
on the isothermal, three-component, gas-phase, 2D flow in a gas channel and adjacent
porous gas backing of a PEFC cathode (Figure 2), although we note that the problem
of multicomponent flow is a generic one, appearing not only in both electrodes of
a PEFC (the gases are (O2, N 2, H 2O) at the cathode and (H 2,CO2, H2O) at the
anode), but also in electrodes of other types of fuel cells [7, 21]. The geometry is
assumed to be slender, as is typically the case in practice. Air, possibly humidified, is
fed in at the inlet at the left (Figure 2); oxygen that reaches the catalytic layer reacts
to produce water vapor, which is transported, along with oxygen and nitrogen, out
at the outlet. The approach used here, however, differs from previous ones in that we
use scaling arguments, nondimensionalization, and asymptotics to identify the main
governing parameters and, subsequently, to obtain a reduced model. The benefits of
this are the availability of closed-form analytical solutions in certain limits, as well as
a model that is cheap to compute away from those limits; this feature is important
from the point of view of extension to fuel cell stacks where transport in as many as
125 such assemblies may need to be computed (see, e.g., [27, 28, 29, 39]). The solution
of this benchmark problem is useful from several other points of view:

• as a basis for later work and comparison when two-phase flow is introduced;
• to elucidate features that might not be obvious from simply solving the full

equations.
Regarding the second point, it is clear from the majority of cathode studies that
the mole fraction of O2 decreases monotonically along the channel, while the mole
fraction of H 2O increases, with the two slopes in some way dependent on physical and
operating parameters. Among the results of the present treatment are closed-form
expressions for these in certain limits.

The mathematical model is formulated in section 2. This consists of mass, mo-
mentum, and species transport equations and allows for the possibility of varying
mixture density, as well as the crossed diffusion of species. A nondimensional analysis
of the governing equations in section 3 provides an indication of the qualitative fea-
tures one would expect in a multicomponent flow; there are found to be similarities
with classical lubrication theory, in view of the slenderness of the geometry, except
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that the reduced Reynolds number is typically O (1). Furthermore, transport in the
porous backing is found, to a reasonable approximation, to be 1D. In section 4, the
first term in an asymptotic series in the reduced Reynolds number is derived: at lead-
ing order, the mole fractions are found to be solely a function of the distance along the
fuel cell. Section 5 provides a description of a numerical scheme that is subsequently
used when the reduced Reynolds number is O (1); the scheme is verified in the lubri-
cation theory limit for which closed-form solutions can be secured. Section 6 presents
the results. A novel feature which we demonstrate here is that the traditional method
for evaluating fuel cell performance, namely through the use of polarization curves,
can be supplemented by the concept of a “polarization surface,” whereby the average
current density is plotted not as a function of cell potential but as a function of two
dimensionless parameters which depend on cell potential, channel geometry, and inlet
velocity; consequently, individual polarization curves are then paths along a “polar-
ization surface.” The implications of these results for a PEFC are also considered, in
particular, as regards the limitations of the formulation with respect to liquid water
formation, and conclusions are drawn in section 7.

2. Mathematical formulation.

2.1. Basics of multicomponent flow. We define the local mass average ve-
locity, v, of an n-component gas by

v =

∑n
i=1 ρivi∑n
i=1 ρi

,

where vi denotes the velocity of species i with respect to stationary coordinate axes,
and ρi is the mass concentration (the mass of species i per unit of volume of solution).
For each component, the mass flux with respect to a coordinate system fixed in space
is given by

ni = ρωiv + ji, i = 1, . . . , n,

with

ρ =

n∑
i=1

ρi,

where ωi is the mass fraction of species i, given by ωi = ρi/ρ, ji is the mass diffusive
flux relative to the mass-averaged velocity, and ρi denotes the density of species i. If
we consider just concentration diffusion for an ideal gas mixture [8], we have

ji =
c2

ρ

n∑
j=1

MiMjDij∇xj , i = 1, . . . , n;(2.1)

here (Mi)i=1,...,n are the molecular weights, (Dij)i,j=1,...,n are the multicomponent
diffusion coefficients, and (xi)i=1,...,n is the mole fraction of species i and is given by
xi = ci/c, where ci is the molar concentration of species i in moles per m3 (ci = ρi/Mi)
and

c =

n∑
i=1

ci.
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Useful additional identities are c = ρ/M , where M =
∑n

i=1 xiMi and a relation
between the mass and mole fractions

ωi = xicMi/ρ.

In general, (Dij)i,j=1,...,n are strongly dependent on composition but can be expressed
in terms of the Stefan–Maxwell diffusion coefficients, (Dij)i,j=1,...,n , which are inde-
pendent of composition. For a three-component system, as will be the case here, the
relations are of the form [8]

Dij = Dij

{
1 +

xk [(Mk/Mj)Dik −Dij ]

xiDjk + xjDik + xkDij

}
, i, j, k = 1, 2, 3 (i �= j) .(2.2)

(Dij)i,j=1,...,n can in principle be measured experimentally [8, 38].
For the mixture density, we use the constitutive relation for an ideal gas,

ρ =
pM

RT
,(2.3)

where p is the pressure, T is the temperature, and R is the universal gas constant
(8.314 kgm2s−2mol-1K−1). We note, in addition, the possibility that the mixture
viscosity, µmix, will not necessarily be constant either, although we treat it to be so
here.

2.2. Channel. Consider the 2D steady flow of a three-component gas in a chan-
nel of height hf , adjacent to a porous medium of length L and height hp (see Figure
2). The equations of continuity of mass and momentum for the mixture are taken as

∇. (ρv) = 0,(2.4)

∇. (ρv ⊗ v) = −∇
(
p +

2µ

3
∇.v

)
+ µ∇2v − ρgj,(2.5)

where g is the acceleration due to gravity and j is the unit vector in the positive y-
direction; for later use, it is also convenient to define p′, the modified pressure, given
by

p′ = p +
2

3
µ∇.v.

The continuity equation for each of the species,

∇.ni = 0, i = 1, . . . , 3,(2.6)

can be recast as, for the cathode of a fuel cell, with n = 3 in the form of two transport
equations

∇.

(
ρv

M

[
xO2

xH2O

])
= ∇.

(
ρ

M2
M

[ ∇xO2

∇xH2O

])
,(2.7)

where

M = MN2

(
DO2,N2 DO2,N2

DH2O,N2 DH2O,N2

)
−
(

0 MH2ODO2,H2O

MO2DH2O,O2 0

)
.

Here, use has been made of the relation xO2 +xN2 +xH2O = 1 to eliminate xN2 , with
the diffusion coefficients DO2,H2O, DH2O,O2

, DH2O,N2
, and DO2,N2

given by (2.2) .
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2.3. Porous backing. For the porous region, volume-averaging of (2.4)–(2.7)
along the lines of De Vidts and White [13] or Whitaker [43] is required. We present
this at a moderate level of detail in order to sketch how the transport equations that
are normally used, (2.23) below, can be arrived at; fuller details of analogous equations
can be found elsewhere [13, 43]. First, let B be a quantity (either scalar, vector, or
tensor) associated with the gas phase, and let the quantity 〈B〉 be the local volume
(or superficial) average of B,

〈B〉 ≡ 1

V
∫
V(g)

BdV,(2.8)

and let 〈B〉(g) be the intrinsic volume average of B in the gas phase,

〈B〉(g) ≡ 1

V(g)

∫
V(g)

BdV.(2.9)

Also, let γ be the porosity, given by γ = V(g)/V. A comparison of (2.8) and (2.9)
shows that the local and intrinsic volume average for the gas phase is given by

〈B〉 = γ 〈B〉(g) .(2.10)

Taking the superficial average of (2.4) gives

〈∇. (ρv)〉 = 0,(2.11)

whilst the superficial average of (2.5) gives (cf. [42])

〈v〉 = −K
µ
.
(
∇〈p′〉(g) + 〈ρ〉(g) gj

)
+K.∇2

( 〈v〉
γ

)
− F. 〈v〉 ,(2.12)

where K is the Darcy Law permeability tensor and F is the Forchheimer correction
tensor. Writing D̃ij = c2Dij/ρ, we have

∇. 〈civ〉+ 1

V
∫
Ags

cings.vdA +

n∑
j=1

MiMj∇.

(〈
D̃ij

〉[
∇〈xj〉+ 1

V
∫
Ags

xjngsdA

])

+
1

V
n∑
j=1

MiMjD̃ij

∫
Ags

ngs.∇xjdA = 0,(2.13)

where ngs represents the unit normal vector pointing from the gas phase to the solid
phase, and Ags represents the area of the gas-solid interface contained within V. In
the absence of surface reactions and zero normal velocity (passive dispersion), this
reduces to

∇. 〈civ〉+
n∑
j=1

MiMj∇.

(〈
D̃ij

〉[
∇〈xj〉+ 1

V
∫
Ags

xjngsdA

])
= 0,(2.14)

and then

∇. 〈civ〉+
n∑
j=1

MiMj∇.

(
D̃ij

[
∇
(
γ 〈xj〉(g)

)
+

1

V
∫
Ags

xjngsdA

])
= 0,(2.15)
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where we have used the fact that D̃ij changes slowly with temperature and mole
fraction within the representative elementary volume in order to be able to write

∇.
〈
D̃ij∇xj

〉
= ∇.

(
D̃ij 〈∇xj〉

)
.(2.16)

To ascertain this, we generalize the reasoning given by Whitaker [43] as follows. With

D̃ij =
pDij

RTM

=
pDij

RTM

{
1 +

xk [(Mk/Mj)Dik −Dij ]

xiDjk + xjDik + xkDij

}
,

we require

lγ

D̃ij


 ∂D̃ij

∂p

⌋
〈p〉(g)

∇〈p〉(g) +
∂D̃ij

∂T

⌋
〈T 〉(g)

∇〈T 〉(g) +

n∑
l=1

∂D̃ij

∂xl

⌋
〈xl〉(g)

∇〈xl〉(g)



� 1,

where lγ is the pore length scale. Also, for later use, we need to be able to justify
that within the representative elementary volume,

∇. 〈civ〉 = ∇.
( p

RT
〈xiv〉

)
= ∇.

( ρ

M
〈xiv〉

)
= ∇.

( 〈ρ〉
〈M〉 〈xiv〉

)
;

this would be justified if

lγ
Dγ

(
∂Dγ

∂p

⌋
〈p〉(g)

∇〈p〉(g) +
∂Dγ

∂T

⌋
〈T 〉(g)

∇〈T 〉(g)
)

� 1,

where Dγ = p/RT . Thus, we would require

lγ

(
∇〈p〉(g)

p
− ∇〈T 〉(g)

T

)
� 1;(2.17)

we verify that this relation is indeed satisfied in section 3.2.
Now, decomposing according to

φ = 〈φ〉(g) + φ′,

where φ = (xj , cj ,v, ρ) and the primed quantities denote spatial fluctuations, (2.11)
and (2.15) can be shown to become, respectively,

∇.
(
〈ρ〉(g) 〈v〉

)
= −∇. (〈ρ′v′〉) ,(2.18)
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∇.

(
γ 〈ρ〉(g) 〈xi〉(g) 〈v〉(g)

〈M〉(g)
)

+
n∑
j=1

MiMj∇.

(
D̃ij

[
∇
(
γ 〈xj〉(g)

)
+

1

V
∫
Ags

x′
jngsdA

])

−∇.

(
〈ρ〉(g)
〈M〉(g)

〈v′x′
i〉
)

= 0,

(2.19)

where we again use analysis due to Whitaker [43, pp. 14–20]. To keep the ongoing
discussion simple, we assume henceforth that γ is constant. Eventually, we arrive at

∇.

(
γ 〈ρ〉(g) 〈xi〉(g) 〈v〉(g)

〈M〉(g)
)

+

n∑
j=1

MiMj∇.
([
Deff
ij + γDhyd

j δij

]
∇〈xj〉(g)

)
= 0,

(2.20)

where Deff
ij is an effective diffusivity tensor given by

Deff
ij = γD̃ij

(
1 +

1

V(g)

∫
Ags

ngsbgdA

)
,

and δij is the Kronecker delta; here, bg is referred to as the closure variable and is

found from the so-called closure problem. Dhyd
j is called the hydrodynamic dispersion

tensor and is defined by

Dhyd
j := − 〈ρ〉(g)

〈M〉(g)
〈
v′x′

j

〉(g)
.

For gas diffusion electrodes, the following is often used [3, 5, 6, 45]:

Deff
ij = D̃ijγ

3
2 ;

this would imply (
1 +

1

V(g)

∫
Ags

ngsbgdA

)
= γ

1
2 .

For the cathode, with i = O2, N2, and H2O, we have in more expedient form,
on assuming the permeability to be isotropic and constant and neglecting the Forch-
heimer correction term in (2.12) and dispersion terms in (2.18) and (2.19) (see section
3.4),

∇.
(
〈ρ〉(g) 〈v〉

)
= 0,(2.21)

〈v〉 = −κ

µ

(
∇〈p′〉(g) + 〈ρ〉(g) gj

)
+

κ

γ
∇2 〈v〉 ,(2.22)

(2.23)

∇.

(
〈ρ〉(g) 〈v〉
〈M〉(g)

[
〈xO2〉(g)
〈xH2O〉(g)

])
= ∇.


 γ

3
2 〈ρ〉(g)(

〈M〉(g)
)2 〈M〉(g)

[
∇〈xO2〉(g)
∇〈xH2O〉(g)

] ,
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where

〈M〉(g) = MN2

(
〈DO2,N2〉(g) 〈DO2,N2〉(g)
〈DH2O,N2

〉(g) 〈DH2O,N2
〉(g)

)

−
(

0 MH2O 〈DO2,H2O〉(g)
MO2 〈DH2O,O2〉(g) 0

)
,

with

〈Dij〉(g) = Dij

{
1 +

〈xk〉(g) [(Mk/Mj)Dik −Dij ]

〈xi〉(g) Djk + 〈xj〉(g) Dik + 〈xk〉(g) Dij

}
;

(2.21)–(2.23) are then akin to the governing equations for the porous backing used by
most authors, although with more attention having been paid here to the distinction
between intrinsic and superficial variables, the possibility of nonconstant diffusion
coefficients, and the inclusion of crossed diffusion terms.

2.4. Boundary conditions.

2.4.1. Inlet, outlet, upper wall, vertical walls. For boundary conditions in
the channel, we prescribe inlet velocity and gas composition at x = 0, 0 ≤ y ≤ hf , so
that

u = U in, v = 0, xO2
= xinO2

, xH2O = xinH2O,(2.24)

where v = (u, v). At the upper channel wall (0 ≤ x ≤ L, y = hf ), there is no slip, no
normal flow, and no componental flux, so that

u = v =
∂xO2

∂y
=

∂xH2O

∂y
= 0.(2.25)

At the outlet at x = L, 0 ≤ y ≤ hf , we have constant pressure, and no diffusive
componental flux, so that

p = pout,
∂v

∂x
=

∂xO2

∂x
=

∂xH2O

∂x
= 0.(2.26)

At the vertical walls of the porous electrode (x = 0, L,−hp ≤ y ≤ 0), we prescribe no
normal flow, no tangential shear, and no mass flux for the gas components, so that

〈u〉 =
∂ 〈v〉
∂x

=
∂ 〈xO2〉(g)

∂x
=

∂ 〈xH2O〉(g)
∂x

= 0,(2.27)

where 〈v〉 = (〈u〉 , 〈v〉).
2.4.2. Channel/porous backing interface. In addition, matching conditions

are required for the fluid-porous interface at y = 0, 0 ≤ x ≤ L. The conditions for
continuity of normal velocity and normal stress are given, respectively, as

v = 〈v〉 ,(2.28)

p− µ
∂v

∂y
= 〈p〉(g) − µeff

∂ 〈v〉
∂y

,(2.29)



ANALYSIS OF A MODEL FOR THE CATHODE OF A PEFC 1401

where µeff (= µ/γ) is termed the effective viscosity of the porous medium. The
remaining two conditions that are required have been the subject of longstanding
debate ever since the work of Beavers and Joseph [4]; a recent contribution is due to
Jäger and Mikelić [24]. A summary of possible options for the momentum equation
is given by Alazmi and Vafai [1], of which the most relevant for this application, and
indeed most consistent in view of our use of the full Navier–Stokes equations for the
fluid and a Darcy/Brinkman/Forchheimer formulation for the porous medium, is one
due to Ochoa-Tapia and Whitaker [32] when inertial effects are important:

u = 〈u〉 ,(2.30)

µ

γ

∂ 〈u〉
∂y

− µ
∂u

∂y
=

β1µ

κ
1
2

u + β2ρu
2,(2.31)

respectively. Here, β1 and β2 are O (1) constants which would need to be determined
experimentally, although it turns out here that the leading order problem is dictated
more by (2.30) than by (2.31) .

Finally, volume-averaging techniques at the interface analogous to those used for
heat transfer by [33] are required for the mole fraction transport equations. We do
not pursue the details but simply assume the point values for the mole fractions of O2

and H2O in the channel to be equal to their intrinsic values in the porous backing, so
that

〈xO2〉(g) = xO2 , 〈xH2O〉(g) = xH2O at y = 0,(2.32)

and, in addition, that the point values for the mole fraction fluxes of O2 and H2O are
equal to their superficial values in the porous medium, so that

nO2 .n = 〈nO2
.n〉 , nH2O.n = 〈nH2O.n〉 ;

using (2.28) and (2.32) , we arrive at

γ
3
2

∂

∂y

[
〈xO2〉(g)
〈xH2O〉(g)

]
=

∂

∂y

[
xO2

xH2O

]
,(2.33)

respectively.

2.4.3. Catalyst/porous backing interface. At y = −hf , we would expect

〈u〉 , 〈v〉 , 〈xO2〉(g), and 〈xH2O〉(g) to match to their counterparts in the catalytic layer,
although naturally this approach would require us to model the catalyst layer and
then by extension the membrane and the corresponding regions on the anode side.
This has been done to varying degrees by various authors [5, 6, 14, 17, 18, 19, 20,
23, 31, 35, 36, 37]. An alternative approach, often adopted when the flow field in the
porous backing and gas channels rather than the electrochemistry in the catalyst and
the membrane is of interest [25, 30, 45, 41], is to prescribe a current density, I, at
this interface. Using Faraday’s Law, the superficial mass flux of oxygen is given as a
function of current density, so that

〈nO2 .n〉 = −MO2I

4F
,(2.34)

where F is the Faraday constant. The corresponding expression for water is then
taken to be

〈nH2O.n〉 =
MH2O(1 + 2α)I

2F
,(2.35)
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where α is a parameter accounting for the water transport by electro-osmosis in the
membrane; typical values encountered in the literature are α =0.3 [41] and 0.5 ≤ α ≤
1.7 [30, 44, 45]. Furthermore, since nitrogen does not participate in the reaction at
the catalyst layer,

〈nN2 .n〉 = 0.(2.36)

This leads to the following boundary conditions for 〈v〉, 〈xO2〉(g), and 〈xH2O〉(g):

〈ρ〉(g) 〈v〉 =
I

4F
(2(1 + 2α)MH2O −MO2)(2.37)

and

〈ρ〉(g) 〈v〉
〈M〉(g)

[
〈xO2

〉(g)
〈xH2O〉(g)

]
− γ

3
2 〈ρ〉(g)(

〈M〉(g)
)2 M̄

∂

∂y

[
〈xO2

〉(g)
〈xH2O〉(g)

]
=

I

4F

[ −1
2(1 + 2α)

]
.

3. Analysis.

3.1. Nondimensionalization. Writing

x̃ =
x

L
, ỹ =

y

L
, ṽ =

v

U in
, 〈ṽ〉 =

〈v〉
U in

, ρ̃ =
ρ

[ρ]
, 〈ρ̃〉(g) =

〈ρ〉(g)
[ρ]

,

p̃ =
p− pout

[ρ] (U in)
2 , 〈p̃〉(g) =

〈p〉(g) − pout

[ρ] (U in)
2 , p̃′ =

p′ − pout

[ρ] (U in)
2 , 〈p̃′〉(g) =

〈p′〉(g) − pout

[ρ] (U in)
2 ,

Ĩ =
I

[I]
, M =

M

[M ]
, 〈M〉(g) =

〈M〉(g)
[M ]

, c̃ =
c

[ρ] / [M ]
,

Mi =
Mi

[M ]
, i = 1, . . . , 3, D̃ij =

Dij

[D]
, i, j = 1, . . . , 3, D̃eff

ij =
Deff
ij

[D]
, i, j = 1, . . . , 3,

Re =
[ρ]U inL

µ
, Sc =

µ

[ρ] [D]
, Da =

κ

L2
, F r =

U2

gL
,

M̃=
M

[M ] [D]
,
〈
M̃
〉(g)

=
〈M〉(g)
[M ] [D]

,

where [ρ] is a density scale, [D] is a diffusion scale, [I] is a current density scale,
and [M ] is a molecular weight scale (all to be either determined or specified shortly)
and Re, Sc, Da, and Fr are the Reynolds, Schmidt, Darcy, and Froude numbers,
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respectively, we drop the tildes and arrive at the following nondimensionalized forms.
For the channel (0 ≤ x ≤ 1, 0 ≤ y ≤ 1),

∇. (ρv) = 0,(3.1)

∇. (ρv ⊗ v) = −∇
(
p +

2δ2

3
∇.v

)
+ δ2∇2v−Fr−1ρj,(3.2)

∇.

(
ρv

M
[

xO2

xH2O

])
=

δ2

Sc
∇.

(
ρ

M2
M

[ ∇xO2

∇xH2O

])
,(3.3)

where δ2 = Re−1, and for the porous medium (0 ≤ x ≤ 1, −hp/L ≤ y ≤ 0),

∇.
(
〈ρ〉(g) 〈v〉

)
= 0,(3.4)

δ2

ε2
〈v〉 = −∇〈p′〉(g) + δ2∇2

( 〈v〉
γ

)
− Fr−1 〈ρ〉(g) j,

(3.5)

∇.

(
〈ρ〉(g) 〈v〉
〈M〉(g)

[
〈xO2

〉(g)
〈xH2O〉(g)

])
=

δ2

Sc
∇.


γ

3
2

〈ρ〉(g)(
〈M〉(g)

)2 〈M〉(g)
[

∇〈xO2
〉(g)

∇〈xH2O〉(g)
] ,

where ε2 = Da. The boundary conditions are now

u = 1, v = 0, xO2
= xinO2

, xH2O = xinH2O at x = 0, 0 ≤ y ≤ hf/L;(3.6)

u = v =
∂xO2

∂y
=

∂xH2O

∂y
= 0 at 0 ≤ x ≤ 1, y = hf/L;(3.7)

p = 0,
∂v

∂x
=

∂xO2

∂x
=

∂xH2O

∂x
= 0 at x = 1, 0 ≤ y ≤ hf/L;(3.8)

(3.9)

〈u〉 =
∂ 〈v〉
∂x

=
∂ 〈xO2

〉(g)
∂x

=
∂ 〈xH2O〉(g)

∂x
= 0 at x = 0, 1, −hp/L ≤ y ≤ 0.

The boundary conditions for 0 ≤ x ≤ 1, y = −hp/L are now

〈u〉 = 0, 〈ρ〉(g) 〈v〉 = Λ

{
I

4
(2(1 + 2α)MH2O −MO2)

}
,(3.10)

〈ρ〉(g) 〈v〉
〈M〉(g)

[
〈xO2〉(g)
〈xH2O〉(g)

]
− δ2γ

3
2 〈ρ〉(g)

Sc
(
〈M〉(g)

)2 〈M〉(g) ∂

∂y

[
〈xO2〉(g)
〈xH2O〉(g)

]
(3.11)

=
ΛI

4

( −1
2(1 + 2α)

)
,
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Table 1
Scales for nondimensionalization.

[ρ] 1 kgm−3

[M ] [ρ]RT/pout

[I] 104 Am−2

where Λ = [I] [M ] /FU in [ρ] . Finally, the boundary conditions along the fluid-porous
interface on y = 0 reduce to

v = 〈v〉 ,(3.12)

p− δ2 ∂v

∂y
= 〈p〉(g) − δ2 ∂ 〈v〉

∂y
,(3.13)

u = 〈u〉 ,(3.14)

1

γ

∂ 〈u〉
∂y

− ∂u

∂y
=

(
β1

ε

)
u +

(
β2

δ2

)
ρu2(3.15)

and

〈xO2
〉(g) = xO2

, 〈xH2O〉(g) = xH2O,(3.16)

γ
3
2

∂

∂y

[
〈xO2〉(g)
〈xH2O〉(g)

]
=

∂

∂y

[
xO2

xH2O

]
.(3.17)

3.2. Parameters. Typically, U in ∼ 1 ms−1, hf ∼ 10−3 m, hp ∼ 3 × 10−4 m,
L ≥ 10−2 m, [I] ∼ 104 Am−2, pout ∼ 1 atm ∼ 105kgm−1s−2, T ∼ 300–350 K,
0.1 ≤ γ ≤ 0.5, 0.3 ≤ α ≤ 1.7, µ ∼ O(10−5) kgm−1s−1. In addition, MO2

= 0.032
kgmol−1, MH2O = 0.018 kgmol−1, MN2 = 0.028 kgmol−1, F = 96487 Asmol−1, from
which we note that Mmin ≤ M ≤ Mmax, where

Mmin = M |xH2O=1,xO2
=0 = 0.018 kgmol−1,

Mmax = M |xH2O=0,xO2
=1 = 0.032 kgmol−1.

Further, we use the constitutive relation for an ideal gas in order to obtain the density
scale [ρ]; with p ∼ pout, we have ρ ∼ 1 kgm−3, so that [ρ] ∼ 1 kgm−3 seems appropri-
ate. For [D], we take O

(
10−5

)
m2s−1 from available literature, e.g., [5, 6]. Note also

that the relation (2.17) is satisfied, since the smallest length on the macroscale in the
porous backing, hp, is still much larger than the scale for lγ , 10−5–10−6m, suggested
by the electrochemical literature [16, 40]. The scales used for nondimensionalisation
and the physical parameters are summarized in Tables 1 and 2, respectively.

Thence, for the nondimensional parameters Re, Sc,Da, Fr,Λ, we arrive at

Re ∼ 104, Sc ∼ 1, Da ≤ 10−6, F r ∼ 1, Λ ≤ 10−2,

so that δ ∼ 10−2 and ε ≤ 10−3. We note here that some of these parameters have
been encountered before in conjunction with the modeling of flow in SOFC [7, 11], in
particular, the Reynolds number, Re, which represents the ratio of inertial to viscous
forces and the product Schmidt ReSc, which is the ratio of gas flow rate to the rate of
diffusion. (In fact ReSc in our formulation corresponds to the parameter Q in [7, 11,
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Table 2
Physical parameters.

MO2 0.032 kgmol−1

MH2O 0.018 kgmol−1

MN2 0.028 kgmol−1

DO2,H2O 3.749[M ] /RT

DO2,N2
2.827[M ] /RT

DH2O,N2
3.923[M ] /RT

26].) Furthermore, the parameter Λ is a measure of the ratio of the electrochemical
flux of oxygen to the gas flow rate and thus corresponds to the combination E/Q in
[7, 11, 26]. For completeness, we mention that the Froude number, Fr, is the ratio
of inertial to gravitational forces, whereas the Darcy number, Da, is the ratio of the
porous medium permeability to the square of the length scale of the entire geometry.

3.3. Narrow-gap approximation. Typically, hf/L, hp/L � 1, which leads us
to further rescaling as follows. Writing

X = x, Y =
y

σ
, U = u, V =

v

σ
, 〈U〉 = 〈u〉 , 〈V 〉 =

〈v〉
σ

,

P = p, P ′ = p′, 〈P 〉 = 〈p〉 , 〈P ′〉 = 〈p′〉 ,

where σ = hf/L, we simplify further by neglecting terms in O (σ) or lower, although
we retain for the time being terms which contain multiples of σ and the other dimen-
sionless parameters. We introduce the dimensionless parameters ∆,Σ, and Ω, given
by

∆ = δ2/σ2, Σ = σ2/ε, Ω = Λ/σ,

and that an alternative expression for ∆ is ∆ =
(
Reσ2

)−1
, i.e., the reciprocal of the

reduced Reynolds number. We have now, for the channel,

∂

∂X
(ρU) +

∂

∂Y
(ρV ) = 0,(3.18)

ρ

(
U

∂U

∂X
+ V

∂U

∂Y

)
= −∂P ′

∂X
+ ∆

∂2U

∂Y 2
,(3.19)

0 = −∂P ′

∂Y
,(3.20) (

ρU
∂

∂X
+ ρV

∂

∂Y

)[
1

M
xO2

xH2O

]
=

∆

Sc

∂

∂Y

(
ρ

M2
M

∂

∂Y

[
xO2

xH2O

])
(3.21)

and for the porous medium,
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0 =
∂

∂X

(
〈ρ〉(g) 〈U〉

)
+

∂

∂Y

(
〈ρ〉(g) 〈V 〉

)
,(3.22)

〈U〉 = − ε

∆Σ

∂ 〈P ′〉(g)
∂X

+
ε

Σγ

∂2 〈U〉
∂Y 2

,(3.23)

〈V 〉 = − 1

∆Σ2

∂ 〈P ′〉(g)
∂Y

+
ε

Σγ

∂2 〈V 〉
∂Y 2

,(3.24) (
〈ρ〉(g) 〈U〉 ∂

∂X
+ 〈ρ〉(g) 〈V 〉 ∂

∂Y

)(
1

〈M〉(g)
[

〈xO2〉(g)
〈xH2O〉(g)

])
(3.25)

=
∆

Sc

∂

∂Y


 γ

3
2 〈ρ〉(g)(

〈M〉(g)
)2 〈M〉(g) ∂

∂Y

[
〈xO2〉(g)
〈xH2O〉(g)

] .

Note also that

P ′ = P + O
(
δ2
)
, 〈P ′〉(g) = 〈P 〉(g) + O

(
δ2
)
,

and since δ2 � 1, henceforth, we use the actual pressure rather than the modified
pressure. In addition, the gravitational terms in (3.20) and (3.24) are O

(
Fr−1σ

)
and

have therefore been dropped. The boundary conditions are, for 0 ≤ X ≤ 1, Y = 1,

U = V =
∂xO2

∂Y
=

∂xH2O

∂Y
= 0;(3.26)

for 0 ≤ X ≤ 1, Y = 0,

V = 〈V 〉 ,(3.27)

P = 〈P 〉(g) ,(3.28)

U = 〈U〉 ,(3.29)

1

γ

∂ 〈U〉
∂Y

− ∂U

∂Y
=

(
β1σ

ε

)
U +

(
β2σ

δ2

)
ρU2,(3.30)

〈xO2
〉(g) = xO2

, 〈xH2O〉(g) = xH2O,(3.31)

γ
3
2

∂

∂Y

[
〈xO2〉(g)
〈xH2O〉(g)

]
=

∂

∂Y

[
xO2

xH2O

]
;(3.32)

for 0 ≤ X ≤ 1, Y = −H (= hp/hf ),

〈U〉 = 0, 〈ρ〉(g) 〈V 〉 = Ω

{
I

4
(2(1 + 2α)MH2O −MO2

)

}
,(3.33)

〈ρ〉(g) 〈V 〉
〈M〉(g)

[
〈xO2〉(g)
〈xH2O〉(g)

]
− ∆γ

3
2 〈ρ〉(g)

Sc
(
〈M〉(g)

)2 〈M〉(g) ∂

∂Y

[
〈xO2〉(g)
〈xH2O〉(g)

]
(3.34)

=
ΩI

4

[ −1
2(1 + 2α)

]
.
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The neglect of streamwise diffusion terms will of course imply that not all of the
original boundary conditions at X = 0 and 1 in this reduced formulation can be
satisfied, and those terms would need to be reinstated for X ∼ O (σ) and 1 − X ∼
O (σ) . This is beyond the scope of interest here, and for a consistent formulation we
simply retain

U = 1, xO2 = xinO2
, xH2O = xinH2O at X = 0, 0 ≤ Y ≤ 1,(3.35)

(3.36)

〈U〉 =
∂ 〈xO2〉(g)

∂X
=

∂ 〈xH2O〉(g)
∂X

= 0 at X = 0, −H ≤ Y ≤ 0.

For the initial discussion, we proceed under the assumption that Σ,∆,Ω ∼ O (1);
later, we will also require Ω � 1. Further simplification is now possible by noting
from (3.23) that 〈U〉 = 0 to leading order, which reduces (3.22) , (3.24), and (3.25)
still further. Turning to the porous region near Y = 0−, there is no reason a priori
to suppose that the porous core flow should satisfy (3.27)–(3.30); if it did, we would
arrive at U = ∂U

∂Y = 0 at Y = 0, and there would be too many boundary conditions
for (U, V, P ) in the channel. Instead, we require a porous boundary layer for which

Y ∼ ε
1
2 , 〈U〉 ∼ ε

1
2 . Writing

Y = ε
1
2 Ỹ , 〈U〉 = ε

1
2

〈
Ũ
〉
, 〈P 〉(g) =

〈
P̃
〉(g)

, 〈V 〉 =
〈
Ṽ
〉
,

we have, to leading order, in this layer

∂

∂Ỹ

(
〈ρ〉(g)

〈
Ṽ
〉)

= 0,(3.37)

〈
Ũ
〉

=
∂2

∂Ỹ 2



〈
Ũ
〉

γ


 ,(3.38)

0 = −
∂
〈
P̃
〉(g)

∂Ỹ
(3.39)

subject to the matching conditions as Ỹ −→ −∞〈
Ṽ
〉
−→ 〈V 〉 (X, 0) ,

〈
Ũ
〉
−→ 0,

〈
P̃
〉(g)

−→ 〈P 〉(g) (X, 0) ,

where

〈V 〉 (X, 0) = lim
Y→0−

〈V 〉 , 〈P 〉(g) (X, 0) = lim
Y→0−

〈P 〉(g) .

At Y = Ỹ = 0, we have

V =
〈
Ṽ
〉
,(3.40)

P = 〈P 〉(g) ,(3.41)

U = ε
1
2

〈
Ũ
〉
,(3.42)

1

γ

∂
〈
Ũ
〉

∂Ỹ
− ∂U

∂Y
=

(
β1σ

ε

)
U +

(
β2σ

δ2

)
ρU2.(3.43)
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These equations are then used in the following order. First, the channel flow is
determined with boundary conditions, to leading order,

U = 0, V =
〈
Ṽ
〉
.

This gives P (X) which serves a boundary condition for 〈P 〉(g), and finally 〈Ũ〉 can
be computed, the boundary condition for this being, at leading order, simply

∂
〈
Ũ
〉

∂Ỹ
= γ

(
∂U

∂Y

)
Y=0

at Ỹ = 0.

As for the species equations, no such boundary layer in ε is necessary, with (3.25)
being valid all the way up to Y = 0−. In addition, we note that the leading order
equations are independent of β1 and β2.

3.4. Further simplifications and observations. We invoke the constitutive
relation for an ideal gas in dimensionless variables, with

ρ = M+

(
[ρ]
(
U in

)2
pout

)
P, 〈ρ〉(g) = 〈M〉(g) +

(
[ρ]
(
U in

)2
pout

)
〈P 〉(g)(3.44)

for the channel and porous medium, respectively, which can be reduced to just ρ = M,

〈ρ〉(g) = 〈M〉(g) , respectively, for the pressures and velocities being considered here.
The reduced system of equations is now, for 0 ≤ X ≤ 1, 0 ≤ Y ≤ 1,

∂

∂X
(ρU) +

∂

∂Y
(ρV ) = 0,(3.45)

ρ

(
U

∂U

∂X
+ V

∂U

∂Y

)
= − dP

dX
+ ∆

∂2U

∂Y 2
,(3.46)

∂

∂X

(
U

[
xO2

xH2O

])
+

∂

∂Y

(
V

[
xO2

xH2O

])
=

∆

Sc

∂

∂Y

(
M

M
∂

∂Y

[
xO2

xH2O

])
;(3.47)

for 0 ≤ X ≤ 1, −H ≤ Y ≤ 0,

〈ρ〉(g) 〈V 〉 = Ω

{
I

4
(2(1 + 2α)MH2O −MO2)

}
,(3.48)

〈V 〉 = − 1

∆Σ2

∂ 〈P 〉(g)
∂Y

,(3.49)

(3.50)

〈V 〉
[

〈xO2
〉(g)

〈xH2O〉(g)
]
− ∆γ

3
2

Sc 〈M〉(g)
〈M〉(g) ∂

∂Y

[
〈xO2

〉(g)
〈xH2O〉(g)

]
=

ΩI

4

[ −1
2(1 + 2α)

]
.

Note here that (3.48), as well a consideration of the physical parameters, now helps to
justify neglecting inertia terms between (2.12) and (2.22) , as well as dispersion terms
in (2.18) and (2.19) . First, the Forchheimer correction term (see Whitaker [42]) will be
of the order of magnitude of the Reynolds number, Reγ , based on lγ , loosely defined
by

Reγ =
〈ρ〉(g) 〈v〉(g) lγ

µ
;(3.51)
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use of 〈v〉(g) for the velocity scale is justified since the foregoing analysis indicates
that flow in the porous backing will be unidirectional. Consequently, using (2.37) ,

Reγ ∼ I

4Fµ
(2(1 + 2α)MH2O −MO2

) lγ � 1

as required. In addition, considerations based on this length scale provide some
justification for neglecting dispersion effects in the porous backing, as compared to
molecular diffusion. Experimental results for 1D flows (e.g., [2, pp. 606–609]) indicate
that dispersion will be negligible if the Peclet number of molecular diffusion, Peγ , in
the porous medium, defined here by

Peγ =
〈v〉(g) lγ

[D]
,

is much smaller than one; using the parameters given in section 3.2, this indeed turns
out to be the case.

The boundary conditions are, for 0 ≤ X ≤ 1, Y = 1,

U = V =
∂xO2

∂Y
=

∂xH2O

∂Y
= 0,(3.52)

and for X = 0, 0 ≤ Y ≤ 1,

U = 1, xO2 = xinO2
, xH2O = xinH2O at X = 0, 0 ≤ Y ≤ 1;(3.53)

no boundary conditions as such prove to be necessary for X = 0,−H ≤ Y ≤ 0
since only ordinary differential equations are solved for −H ≤ Y ≤ 0. At Y = 0 for
0 ≤ X ≤ 1, porous and fluid quantities are matched through

U = 0, V = 〈V 〉 , P = 〈P 〉 ,(3.54)

〈xO2〉(g) = xO2 , 〈xH2O〉(g) = xH2O,(3.55)

γ
3
2

∂

∂Y

[
〈xO2〉(g)
〈xH2O〉(g)

]
=

∂

∂Y

[
xO2

xH2O

]
.(3.56)

In general, I will not be constant; even more generally, it cannot be described
a priori but is determined by considering the transport of species in the catalyst,
membrane, and the anode side also. However, a common practice in studies which
emphasize the investigation of flow in the porous backing and the gas channel is simply
to prescribe a current density as a function of mole fraction. For example, if we use
the dimensional form of the Tafel law given by He, Yi, and Nguyen [22],

I =
aρ

M
exp

(
αcFη

RT

)
,

where αc (= 2) is the transfer coefficient of the oxygen reduction reaction (1.2), η is
the overpotential for the oxygen reaction, and a

(
= 10−6 Am mol−1

)
is a constant
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Table 3
Geometry and operating parameters for the base case.

xinO2
0.21

xinH2O
0

hf 10−3m

hp 3×10−4m

L 0.1 m

κ 10−12 m2

γ 0.3

U in 1 ms−1

pout 1 atm

T 353 K

µ 10−5kgm−1s−1

related to the exchange current density and oxygen reference concentration for the
oxygen reaction, we obtain the appropriate scale for [I] as

[I] =
a [ρ]

[M ]
exp

(
αcFη

RT

)
;(3.57)

consequently, in dimensionless form,

I
(
〈ρ〉(g) , 〈xO2〉(g) , 〈xH2O〉(g)

)
=

〈ρ〉(g) 〈xO2〉(g)
〈M〉(g)

= 〈xO2〉(g) .(3.58)

A dimensional quantity of importance for the determination of polarization curves is
the average current density, Iav, which is then given by

Iav = [I]

∫ 1

0

IdX.

This completes the formulation and necessary definitions. As a next step, we
consider the possibility of finding an analytical solution in certain parameter ranges;
an obvious choice, in view of the geometry, would be the lubrication theory limit(
∆−1 � 1

)
. The data given in Table 3 for the base case physical parameters indicates

that ∆−1 ∼ O (1). Obviously, taking channels with a smaller aspect ratio or operating
the fuel cell at lower inlet gas velocity would reduce ∆−1, motivating us to then
consider the lubrication theory limit, since it provides qualitatively useful analytical
solutions, as well as a quantitative comparison with our numerical method (see section
6).

4. Asymptotics for
[ρ](Uin)

2

pout � ∆−1 � 1. Assume
[ρ](Uin)

2

pout � ∆−1 � 1,

and rescale according to

〈P 〉(g) = ∆ 〈P 〉(g) , P = ∆P ;

note here that we require a lower restriction on ∆−1 for the following development to
hold; otherwise the simplifications following (3.44) will not apply and ρ will depend
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on P ; in practice, the restriction is not unreasonable. Introducing the asymptotic
series

χ = χ0 + ∆−1χ1 + O
(
∆−2

)
, where χ = (U, V, P, ρ) ,

〈χ〉 = 〈χ0〉+ ∆−1 〈χ1〉+ O
(
∆−2

)
, where χ = (V, P ) ,

χ = χ(0) + ∆−1χ(1) + O
(
∆−2

)
, where χ = (xO2 , xH2O,M) ,

〈χ〉(g) = 〈χ0〉(g) + ∆−1 〈χ1〉(g) + O
(
∆−2

)
, where χ = (ρ) ,

〈χ〉(g) =
〈
χ(0)

〉(g)

+ ∆−1
〈
χ(1)

〉(g)

+ O
(
∆−2

)
, where χ = (xO2

, xH2O,M) ,

we observe that, at leading order, the governing equations permit a solution of the
form

x
(0)
O2

=
〈
x

(0)
O2

〉(g)

= FO2
(X) ,

x
(0)
H2O

=
〈
x

(0)
H2O

〉(g)

= FH2O (X) ,

with FO2 (0) = xinO2
, FH2O (0) = xinH2O

. Then

U0 (X,Y ) =
1

2

dP0

dX

(
Y 2 − Y

)
,

whereupon, writing Φ = (2(1 + 2α)MH2O −MO2
) (note that Φ > 0) and using

d

dX

(∫ 1

0

ρ0U0dY

)
=

ΩΦI (FO2
(X))

4
,

where

ρ0 (X) = MN2 + (MO2 −MN2)FO2 (X) + (MH2O −MN2)FH2O (X) ,

we have ∫ 1

0

ρ0U0dY =
ΩΦ

4
J (X) + ρ0 (0) ,

where

J (X) =

∫ X

0

I (FO2
(X ′)) dX ′.

Hence

dP0

dX
= − 12

ρ0 (X)

[
ΩΦ

4
J (X) + ρ0 (0)

]
,

and so

U0 (X,Y ) =
6

ρ0 (X)

[
ΩΦ

4
J (X) + ρ0 (0)

] (
Y − Y 2

)
,

V0 (X,Y ) = −3ΩΦ

2

I (FO2 (X))

ρ0 (X)

(
Y 2

2
− Y 3

3
− 1

6

)
,

〈V0 (X)〉 = ΩΦ
I (FO2

(X))

4 〈ρ0 (X)〉 ,

〈P0 (X,Y )〉 = −Σ2Ω

{
ΦI (FO2

(X))

4 〈ρ0 (X)〉
}

Y − 12

[
ΩΦJ (X)

〈ρ0 (X)〉 + X

]
.
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At this stage, FO2
(X) and FH2O (X) (and hence U0, V0, 〈V0〉 , 〈P0〉 , ρ0) remain un-

determined, indicating that the problem at O (1) is degenerate; this appears to be
because the boundary conditions for xO2 and xH2O at Y = −H, 1 at this order are
both of Neumann type. This indeterminacy is remedied, however, at O

(
∆−1

)
as

follows.
At O

(
∆−1

)
, (3.47) gives

∂

∂X

(
U0

[
FO2

(X)
FH2O (X)

])
+

∂

∂Y

(
V0

[
FO2

(X)
FH2O (X)

])
(4.1)

=
1

Sc

∂

∂Y

(
M(0)

ρ0 (X)

∂

∂Y

[
x

(1)
O2

x
(1)
H2O

])
;

for 0 ≤ X ≤ 1, −H ≤ Y ≤ 0,

ΩΦI (FO2 (X))

4 〈ρ0 (X)〉
[

FO2 (X)
FH2O (X)

]
− γ

3
2

Sc

〈
M(0)

〉(g)
〈ρ0 (X)〉

∂

∂Y



〈
x

(1)
O2

〉(g)

〈
x

(1)
H2O

〉(g)


(4.2)

=
ΩI (FO2 (X))

4

[ −1
2(1 + 2α)

]
.

Equation (4.1) can be rewritten as

U0

[
F ′
O2

(X)
F ′
H2O

(X)

]
+

(
∂U0

∂X
+

∂V0

∂Y

)[
FO2

(X)
FH2O (X)

]
=

1

Sc

M(0)

ρ0 (X)

∂2

∂Y 2

[
x

(1)
O2

x
(1)
H2O

]
,

and then, on using

∂

∂X
(ρ0U0) +

∂

∂Y
(ρ0V0) = 0,

we have

U0

{[
F ′
O2

(X)
F ′
H2O

(X)

]
− 1

ρ0 (X)

∂ρ0

∂X

[
FO2 (X)
FH2O (X)

]}
=

1

Sc

M(0)

ρ0 (X)

∂2

∂Y 2

[
x

(1)
O2

x
(1)
H2O

]
.

Integrating once with respect to Y, we have

λ0 (X)

{[
F ′
O2

(X)
F ′
H2O

(X)

]
− 1

ρ0 (X)

∂ρ0

∂X

[
FO2 (X)
FH2O (X)

]}(
Y 2

2
− Y 3

3
− 1

6

)
(4.3)

=
1

Sc

M(0)

ρ0 (X)

∂

∂Y

[
x

(1)
O2

x
(1)
H2O

]
,

where we have written U0 = λ0(X)
ρ0(X)

(
Y − Y 2

)
, with

λ0 (X) = 6

[
ΩΦ

4
J (X) + ρ0 (0)

]
,
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and have already implemented (3.52) at O
(
∆−1

)
. Requiring now, at Y = 0,

γ
3
2

∂

∂Y



〈
x

(1)
O2

〉(g)

〈
x

(1)
H2O

〉(g)


 =

∂

∂Y

[
x

(1)
O2

x
(1)
H2O

]
,

we combine (4.2) and (4.3) to give

− 2λ0 (X)

3Ωρ0 (X) I
(
F ′
O2

(X)
) {[ F ′

O2
(X)

F ′
H2O

(X)

]
− 1

ρ0 (X)

∂ρ0

∂X

[
FO2 (X)
FH2O (X)

]}

=
Φ

ρ0 (X)

[
FO2 (X)
FH2O (X)

]
−
[ −1

2(1 + 2α)

]
.

Note that this has led to the elimination of x
(1)
O2

and x
(1)
H2O

and has instead led to a
pair of nonlinear ordinary differential equations for FO2 (X) and FH2O (X).

Next, defining

ζO2
(X) = FO2 (X) /ρ0 (X) , ζH2O (X) = FH2O (X) /ρ0 (X) ,

we simplify to

−4

ΩI (FO2
(X))

[
ΩΦ

4
J (X) + ρ0 (0)

]
∂

∂X

[
ζO2

(X)
ζH2O (X)

]

= Φ

[
ζO2

(X)
ζH2O (X)

]
−
[ −1

2(1 + 2α)

]
,

with initial conditions

ζO2
(0) =

xinO2

MN2
+ (MO2

−MN2
)xinO2

+ (MH2O −MN2
)xinH2O

,

ζH2O (0) =
xinH2O

MN2
+ (MO2

−MN2
)xinO2

+ (MH2O −MN2
)xinH2O

.

Replacing the partial derivative, we can simplify to

dζO2

dζH2O

=
ΦζO2

+ 1

ΦζH2O − 2(1 + 2α)
,

whence, on applying the inlet conditions,[
ΦζO2

(0) + 1
]
ζH2O (X)− [ΦζH2O (0)− 2(1 + 2α)

]
ζO2

(X)(4.4)

= 2(1 + 2α)ζO2
(0) + ζH2O (0) .

Note, in addition, that this result holds regardless of the expression used for the
current density.

Returning now to

−4

ΩI (FO2
(X))

[
Ω

4
ΦJ (X) + ρ0 (0)

]
dζO2

dX
= ΦζO2

+ 1,
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this too can be integrated regardless of the form of I. We have, since J (0) = 0 for
any current density we care to choose,

ζO2
(X) =

1

Φ

{(
ΦζO2

(0) + 1
)( 4ρ0 (0)

4ρ0 (0) + ΩΦJ (X)

)
− 1

}
,(4.5)

which is effectively an integral equation for ζO2
(X). More convenient is a first order

ordinary differential equation for ζO2
(X) , which is obtained after rearranging and

differentiating, as

I

( MN2
ζO2

(X)

1− (MO2
−MN2

) ζO2
(X)− (MH2O −MN2) ζH2O (X)

)

= −4ρ0 (0)

Ω

(
ΦζO2

(0) + 1
)

(
ΦζO2

(X) + 1
)2 dζO2

dX
,

and then

I

(
ζO2

(X)

A + BζO2
(X)

)
= −4ρ0 (0)

Ω

(
ΦζO2

(0) + 1
)

(
ΦζO2

(X) + 1
)2 dζO2

dX
,(4.6)

where

A =
1

MN2

(
(MH2O −MN2

)

(
2(1 + 2α)ζO2

(0) + ζH2O (0)[
ΦζO2

(0) + 1
] )

− 1

)
,

B =
1

MN2

(
(MO2 −MN2) + (MH2O −MN2)

[
ΦζH2O (0)− 2(1 + 2α)

][
ΦζO2

(0) + 1
] )

.

Note that (4.6) implies that if oxygen is fully depleted, at which point (say X = X0)

ζO2
= I = 0, then we will necessarily have

dζO2

dX = 0 there also.
As an example, and for later use, we note a closed-form solution when I ≡

〈xO2〉(g); in this case,

ζO2
(X)

A + BζO2
(X)

= −4ρ0 (0)

Ω

(
ΦζO2

(0) + 1
)

(
ΦζO2

(X) + 1
)2 dζO2

dX
,

which can be integrated exactly to give

A log

(
ζO2

(X)
(
ΦζO2

(0) + 1
)

ζO2
(0)
(
ΦζO2

(X) + 1
))− (AΦ − B)

(
ζO2

(X)− ζO2
(0)(

ΦζO2
(X) + 1

) (
ΦζO2

(0) + 1
))

=
ΩX

4ρ0 (0)
(
ΦζO2

(0) + 1
) .(4.7)

This formula suggests that for Ω ∼ O (1) there is no possibility for oxygen depletion(
ζO2

= 0
)
, since the first term on the left-hand side of (4.7) could not then be balanced

by either of the other two terms. In addition, for Ω � 1 (and noting that A < 0),

A log

(
ζO2

(X)
(
ΦζO2

(0) + 1
)

ζO2
(0)
(
ΦζO2

(X) + 1
)) ∼ ΩX

4ρ0 (0)
(
ΦζO2

(0) + 1
) ,
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whence

ζO2
(X)(

ΦζO2
(X) + 1

) ∼ ζO2
(0)(

ΦζO2
(0) + 1

) exp

(
ΩX

4Aρ0 (0)
(
ΦζO2

(0) + 1
)) ,

and thus

ζO2
(X) ∼ 1(

Φ + 1
ζO2

(0)

)
exp

(
−ΩX

4Aρ0(0)(ΦζO2
(0)+1)

)
− Φ

;

in this regime, we also have

ζH2O (X) ∼ 2

Φ
(1 + 2α) +

ζH2O (0)− 2
Φ (1 + 2α)(

ΦζO2
(0) + 1

)− ΦζO2
(0) exp

(
ΩX

4Aρ0(0)(ΦζO2
(0)+1)

) .

Note also that, thus far, the results are independent of whether or not crossed diffusion
is assumed or if nonlinear diffusion coefficients are used or not.

As a corollary, we observe that the solution at O
(
∆−1

)
, i.e., for x

(1)
O2

, x
(1)
H2O

,

〈x(1)
O2

〉(g), 〈x(1)
H2O

〉(g) still remains undetermined, since consideration of the field equa-

tions and boundary conditions at O
(
∆−1

)
merely leads to the solution being fully

determined at O (1). By analogy, to determine the solutions at O
(
∆−1

)
completely,

we would need to consider the field equations and boundary conditions at O
(
∆−2

)
;

by this stage, however, the algebra becomes lengthy and in the interest of brevity we
omit further discussion. In fact, one does not really gain so much by finding these so-
lutions anyway, since there is no compact solution as there is at O (1), and we proceed
instead to a numerical solution for the general case when ∆−1 ∼ O (1) .

5. Numerical method and results. To complement the asymptotics for ∆−1

� 1, so as to account for regimes when ∆−1 ∼ O (1) , the simplified parabolized
equations were solved numerically using the Keller–Box discretization scheme and
Newton iteration (see, for example, Cebeci and Bradshaw [10]). The system of partial
differential equations to be solved in the channel is of 8th order, and this is coupled
to a 6th order system of ordinary differential equations in the porous region. As
is well known, the scheme is second order accurate in both time-like and space-like
variables, and we omit any further details here. As an indication of the speed of the
computations, we note that a typical run with 500 points across, and 200 points along,
the channel required around 100 CPU seconds on a 500 MHz Compaq Alphaserver
with 3GB RAM.

Results are presented for the Tafel law given in dimensionless form by (3.58)
and used previously for PEFC studies by [22, 25, 30, 45]. Throughout, we keep
γ = 0.3, T = 353 K, and concentrate more on the effect of changes in channel height
and length, porous backing thickness and permeability, pressure, inlet speed, and
composition. Physically realistic and implementable changes in any of these will result
in, at most, an order of magnitude change in the relevant dimensionless parameter.
The most sensitive parameter is Ω, which varies over several orders of magnitude as
the cell voltage Ecell decreases; note here that we revert to using the cell voltage
rather than the overpotential, η, with the two being related by

Ecell = E0 − η,

where E0(= 1.1 V) is termed the open circuit voltage of the fuel cell.
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Fig. 3. Comparison of analytical solution for
〈
xO2

〉(g)
at Y = −H with numerical solutions

for ∆ = 1.89, 1.89× 101, 1.89× 102 (Ecell = 0.75 V).
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Fig. 4. Comparison of analytical solution for
〈
xH2O

〉(g)
at Y = −H with numerical solutions

for ∆ = 1.89, 1.89× 101, 1.89× 102 (Ecell = 0.75 V).

5.1. Effect of ∆ and Ω. We show first results for Ecell = 0.75 V, corresponding
to Ω = 10.2, ranging over several orders of magnitude in ∆ and compare these with
the analytical results in the lubrication theory limit. Figures 3 and 4 are for intrinsic
oxygen and water mole fraction at Y = −H, respectively, and demonstrate that the
lubrication solution works well for ∆−1 as high as O

(
10−2

)
.

On the other hand, the base case physical values given in Table 3 correspond to
∆ = 1.89. Figure 5 shows the streamwise velocity U at Y = 1

2 and illustrates the
extent of deviation from the classical value 3

2 . An interesting limit occurs as Ecell

is decreased. In this case, Ω increases although the quantity Ω 〈xO2
〉(g) at Y = −H

remains O (1); this corresponds to the attainment of the limiting current, and the
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Fig. 5. Comparison of analytical solution for U at Y = 1
2
with numerical solutions for ∆ =

1.89, 1.89× 101, 1.89× 102 (Ecell = 0.75 V).
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Fig. 6. Comparison of analytical solution for
〈
xO2

〉(g)
at Y = −H with numerical solutions

for ∆ = 1.89, 1.89× 101, 1.89× 102 (Ecell = 0.65 V).

corresponding plots are given in Figures 6, 7, and 8; observe that in Figures 6 and
7 the limiting values for intrinsic oxygen and water mole fraction for the analytical

solution are reached very rapidly, so that in Figure 6 the curve for 〈xO2
〉(g) effectively

lies on the X-axis.
With regard to the numerics, it was found that considerably more outer loop

iterations for the density were required as Ω was increased. For instance, whereas 4
iterations sufficed for Ecell = 0.75 V, it was common for 20–30 to be necessary for
Ecell = 0.65 V. In addition, there were difficulties in initiating the marching scheme at
X = 0 for higher values of Ω; we surmise this to be due to the increased nonlinearity
of the equation system. Whilst setting the channel inlet values as an initial guess for
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Fig. 7. Comparison of analytical solution for
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at Y = −H with numerical solutions

for ∆ = 1.89, 1.89× 101, 1.89× 102 (Ecell = 0.65 V) .
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Fig. 8. Comparison of analytical solution for U at Y = 1
2
with numerical solutions for ∆ =

1.89, 1.89× 101, 1.89× 102 (Ecell = 0.65 V).

the first step along the channel was adequate for lower values of Ω, this was found
to be not sufficient for Ecell lower than 0.71 V; for those cases, the first-step solution
for Ecell = 0.71 V had to be used instead, then enabling numerical solutions to be
obtained for higher and higher values of Ω until the limiting current was reached.

5.2. “Polarization surfaces”. It is customary for fuel cell performance to be
given in terms of a polarization curve where the cell potential, Ecell, is given as func-
tion of the average current density, Iav. Generally speaking, if the analysis is done
dimensionally, this leads to a vast number of graphs for each alteration made in one
of the physical parameters. However, a major benefit of the nondimensional analysis
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Fig. 9. Polarization surfaces for pout = 1, 3 atm (H = 0.3).

carried out here is that the results can be expressed considerably more compactly
by plotting polarization “surfaces”; individual polarization curves will therefore be
curves lying on those surfaces. We explain this as follows. From the nondimensional-
ization given above, the emergent nondimensional parameters were ∆,Σ,Ω, and Sc.
In addition, there is γ, which we hold fixed in this study, and xinO2

,xinH2O
, and H, whose

effect on fuel cell performance one would like to explore. First, we observe that, in
the parameter range of interest, Σ has no effect on Iav, since the dimensionless den-
sity is independent of pressure and the pressure in the channel serves as a boundary
condition for the pressure in the porous medium. In addition, a change in Sc can be
effected only by changes in [ρ] , which occurs only if the cathode is run at a different
pressure. Consequently, a tidy representation of Iav is to plot it as a function of ∆
and Ω, for fixed Sc, xinO2

,xinO2
, and H, the benefit of this being that the effect of four

parameters, hf , L, U in, and Ecell, are displayed on one graph; since Ω can vary over
several orders of magnitude, it proves more convenient to use log (Ω) as a variable.
Examples of this are given below.

Figure 9 gives polarization surfaces for H = 0.3, with the pressure at 1 and
3 atmospheres. The limiting current phenomenon is observed as Ω increases, and
its value is observed to increase moderately with increasing ∆ but strongly with
increasing pressure. Figure 10 shows a similar plot, except with computations now
for pout = 1 atm, for H = 0.15 and H = 0.6. Average current densities are found to be
higher for the thinner porous backing, and in both cases a limiting value is evident as
Ω is increased. Figure 11 compares the base case for pout = 1 atm and xinO2

= 0.21 with

two other cases at 1 atm which have differing inlet compositions: dry oxygen
(
xinO2

= 1
)

and partially humidified air, for which xinO2
= 0.13 and xinH2O

= 0.36 (corresponding
to 76% relative humidity) [14, 17, 35]. As is evident, increased oxygen content at
the inlet raises the average current density; for xinO2

= 1, convergence difficulties were
experienced for quite low values of Ω, which explains the rather narrow range of values
presented for this case, but nonetheless the average current density is much higher
than that for the other two cases.
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Fig. 10. Polarization surfaces for H = 0.3, 0.6
(
pout = 1 atm

)
.

Fig. 11. Polarization surfaces for pout = 1 atm with (a) xinO2
= 1, xinH2O

= 0; (b) xinO2
= 0.21,

xinH2O
= 0; (c) xinO2

= 0.13, xinH2O
= 0.36.

6. Conclusions. In this paper, we have considered a 2D model for three-
component gaseous flow in the cathode of a PEFC. Assuming a slender geometry,
we have derived analytical solutions where possible and complemented these with a
numerical study. By choosing to perform the study nondimensionally, we have iden-
tified several features that are not evident from earlier work done dimensionally. In
summary, we identify four main dimensionless parameters (∆,Ω,Σ, Sc; see sections 2
and 3 for definitions); other parameters that are present in this model are the porous
backing porosity, γ (held fixed at 0.3 in this study) , the temperature T (held fixed at
353 K), the ratio of channel and porous backing heights (H), the inlet oxygen and
water content (xinO2

and xinH2O
, respectively), and the number of water molecules affili-

ated to each proton that passes across the membrane to the cathode (α) . We find that
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the flow in the porous backing is essentially unidirectional, although it interacts with
a fully 2D flow in the gas channel. Furthermore, Σ is found to play a secondary role,
having next to no effect on the gas mole fraction distribution in the porous backing;
physically, this implies an insensitivity to porous backing permeability. The fact that
the cathode is more or less isobaric gives that the density is a multiple of the molecular
weight. In addition, the Schmidt number, Sc, can be affected only by variations in
the operating pressure, and we find that a convenient and compact way to understand
fuel cell performance is to plot average current density as a function of ∆ and Ω for
different values of Sc and H; this gives a surface which implicitly contains an infinite
family of polarization curves, which is the customary way to assess cell performance.
These surfaces have been generated numerically, and in comparatively rapid fashion,
using the Keller–Box scheme for systems of parabolic partial differential equations, to
provide a rather comprehensive parameter study.

The present work was, needless to say, limited in several respects. To begin with,
as has often been stated before, at higher current densities two-phase flow can be
expected as water droplets form at the catalytic layer; this will be the starting point
for future work. Also, we limited ourselves here to prescribing an often-used Tafel
law for the current density relation at the catalytic layer, for one temperature value
and one value of porosity; in addition, α was assumed to be constant along the length
of the cell. Naturally, the question arises as to whether more sophisticated modeling
would lead to a qualitative change in the results. Essentially, such an approach would
involve attempting to represent the catalytic layer more faithfully, e.g., as has been
attempted for MCFC [34]. A characteristic of this approach would be that a Tafel
law is used for reactions across this layer, which would be treated as consisting of the
material of which the gas-diffusion electrode as well as polymer electrolyte. Combined
with the fact that this layer is much thinner than the gas-diffusion electrode, it is likely
that the functional form for the current density would not be much different from what
we have used here. On the other hand, if the overpotential and/or temperature are
no longer treated as constant, then the exponential term involving these quantities
in the expression for the current density could indeed affect the results significantly.
Needless to say, this also is the subject of future work.

A final comment concerns the use of nondimensional analysis in fuel cell modeling.
The way that the analysis presented here panned out was a function of the magnitudes
of the relevant parameters for the PEFC. Subsequent work carried out by us on the
anode of a direct methanol fuel cell [9] indicates that the dimensionless parameter Ω
there will actually be much smaller than unity, leading to a different treatment of the
subsequent equations. This emphasizes the point that the treatment presented here
is more far-reaching than just the PEFC.
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Abstract. An initial-boundary value problem for nonlinear magnetohydrodynamics (MHD) in
one space dimension with general large initial data is investigated. The equations of state have
nonlinear dependence on temperature as well as on density. For technical reasons the viscosity
coefficients and magnetic diffusivity are assumed to depend only on density. The heat conductivity
is a function of both density and temperature, with a certain growth rate on temperature. The
existence, uniqueness, and regularity of global solutions are established with large initial data in
H1. It is shown that no shock wave, vacuum, or mass or heat concentration will be developed in a
finite time, although the motion of the flow has large oscillations and there is a complex interaction
between the hydrodynamic and magnetodynamic effects.
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1. Introduction. In this paper we are concerned with the initial-boundary value
problem and large-time behavior of solutions for plane magnetohydrodynamic flows.
Magnetohydrodynamics (MHD) concerns the motion of conducting fluids in an elec-
tromagnetic field with a very broad range of applications. The dynamic motion of
the fluids and the magnetic field interact strongly with each other. The hydrody-
namic and electrodynamic effects are coupled. The equations of three-dimensional
magnetohydrodynamic flows have the following form [4, 16, 18]:

ρt + div(ρu) = 0,(1.1)

(ρu)t + div(ρu⊗ u) +∇p = (∇×H)×H+ divΨ,
Et + div(u(E + p)) = div ((u×H)×H+ νH× (∇×H) + uΨ+ κ∇θ) ,
Ht −∇× (u×H) = −∇× (ν∇×H), divH = 0,

where Ψ = λ′(divu)I + µ(∇u + (∇u)�); ρ denotes the density, u ∈ R
3 the velocity,

H ∈ R
3 the magnetic field, and θ the temperature; E is the total energy given by

E = ρ
(
e+

1

2
|u|2

)
+
1

2
|H|2,(1.2)

with e the internal energy, 1
2 |u|2 the kinetic energy, and 1

2 |H|2 the magnetic energy;
the equations of state p = p(ρ, θ), e = e(ρ, θ) relate the pressure p and the internal
energy e to the density and temperature of the flow; I is the 3 × 3 identity matrix,
and (∇u)� is the transpose of the matrix ∇u; λ′ = λ′(ρ, θ) and µ = µ(ρ, θ) are the
viscosity coefficients of the flow satisfying λ′ + 2µ > 0, ν = ν(ρ, θ) is the magnetic
diffusivity (see [1]) acting as a magnetic diffusion coefficient of the magnetic field,
κ = κ(ρ, θ) is the heat conductivity, and all these kinetic coefficients and the magnetic
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diffusivity are independent of the magnitude and direction of the magnetic field (see
[18]). The magnetic permeability differs only slightly from unity and therefore is taken
to be 1, which does not appear in the equations. The viscosity and heat conduction
terms describe the dissipative processes in MHD.

It is well known that the electromagnetic fields are governed by Maxwell’s equa-
tions. In MHD, the displacement current can be neglected [16, 18]. As a consequence,
the last equation in (1.1) is called the induction equation, and the electric field can
be written in terms of the magnetic field H and the velocity u:

E = ν∇×H− u×H.(1.3)

Although the electric field E does not appear in (1.1), it is indeed induced according
to (1.3) by the moving conductive flow in the magnetic field.

Consider a three-dimensional MHD flow with spatial variables x = (x, x2, x3),
which is moving in the x direction and uniform in the transverse direction (x2, x3):

ρ = ρ(x, t), θ = θ(x, t),

u = (u,w)(x, t), w = (u2, u3),

H = (b1,b)(x, t), b = (b2, b3),

(1.4)

where u and b1 are the longitudinal velocity and longitudinal magnetic field, respec-
tively, and w and b are the transverse velocity and transverse magnetic field, respec-
tively. See Figure 1(a) and (b).

✲ u❅
❅

❅
❅

❅
❅❅�

❆
❆

❆
❆

❆
❆

❆❑
w

Fig. 1(a): velocity (u,w).

✲ b1 = 1❅
❅

❅
❅

❅
❅❅�

❆
❆

❆
❆

❆
❆

❆❑
b

Fig. 1(b): magnetic field (b1,b).

With this special structure (1.4), equations (1.1) are reduced to the following system
for the plane magnetohydrodynamic flows with constant longitudinal magnetic field
b1 = 1 (without loss of generality) and λ = λ

′ + 2µ > 0:

ρt + (ρu)x = 0,

(ρu)t +
(
ρu2 + P

)
x
= (λux)x,

(ρw)t + (ρuw − b)x = (µwx)x,
bt + (ub−w)x = (νbx)x,

Et + (u (E + P )−w · b)x = (λuux + µw ·wx + νb · bx + κθx)x,

(1.5)

where, again as in (1.1), x ∈ R is the spatial variable, t > 0 is the time variable; ρ
denotes the density of the flow, u ∈ R the longitudinal velocity, w ∈ R

2 the transverse
velocity, b ∈ R

2 the transverse magnetic field, and θ the temperature; the total energy
of the plane magnetohydrodynamic flow is

E = ρ
(
e+

1

2
(u2 + |w|2)

)
+
1

2
|b|2,
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with the internal energy e, and

P = p+
1

2
|b|2(1.6)

is the full pressure with p the pressure of fluid. The term 1
2 |b|2 appears here because

of this equality: (∇ ×H) ×H = (− 1
2 |b|2,b)x; both the pressure p and the internal

energy e are related to the density and temperature of the flow according to the
equations of state:

p = p(ρ, θ), e = e(ρ, θ);(1.7)

λ = λ(ρ, θ) and µ = µ(ρ, θ) are the viscosity coefficients of the flow, ν = ν(ρ, θ) is the
magnetic diffusivity, and κ = κ(ρ, θ) is the heat conductivity. All these dissipation
coefficients depend on both ρ and θ generally.

We consider the initial-boundary value problem of (1.5) in a bounded spatial
domain Ω = (0, 1) (without loss of generality) with the following initial condition and
impermeable, thermally insulated boundaries:

(ρ, u,w,b, θ)|t=0 = (ρ0, u0,w0,b0, θ0)(x), x ∈ Ω,
(u,w,b, θx)|∂Ω = 0,

(1.8)

where the initial data satisfy certain compatibility conditions as usual. In this paper,
we are interested in the well-posedness and regularity of global solutions to this initial-
boundary value problem (1.5) and (1.8), as well as the following issue: whether shock
waves, vacuum, and mass and heat concentration are developed in the solutions in a
finite time, provided that the initial data are bounded, smooth, and do not contain a
vacuum. There have been a lot of studies on MHD by physicists and mathematicians
because of its physical importance, complexity, rich phenomena, and mathematical
challenges; see [1, 3, 4, 6, 8, 12, 13, 16, 18, 19, 20, 23, 24] and the references cited
therein. The above initial-boundary value problem is fundamental for the MHD sys-
tem. We investigate such an important problem for the magnetohydrodynamic fluid
flow with the pressure, internal energy, and heat conductivity satisfying certain phys-
ical growth conditions on the temperature. These growth conditions are motivated
by the physical facts for certain important physical regimes where the temperature is
high and experiences rapid change [25]. In particular, the case of perfect gases with
p = Rρθ, e = cvθ is included in the class of fluids investigated in this paper, where R
is the gas constant, cv = R/(γ−1) is the heat capacity of the gas at constant volume,
and γ is the adiabatic exponent. For perfect gases with small smooth initial data,
the existence of global solutions was proved in [12], and the large-time behavior was
studied in [20]. For large initial data, these problems have additional difficulties be-
cause of the presence of the magnetic field and its interaction with the hydrodynamic
motion of the flow of large oscillation. A free boundary value problem on real MHD
flow was studied in [5].

The main goal of this paper is to establish the existence and uniqueness of a global
solution to the initial-boundary value problem with general large initial data in H1

and to show that neither shock waves nor vacuum and concentration are developed
in a finite time. There have been some similar fundamental results on nonlinear
thermoviscoelasticity [7] and on viscous heat-conductive real gases [14]. We consider
the real magnetohydrodynamic flows with general pressure and internal energy, and
permit the generation of heat by the magnetic field as well as its interaction with
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the fluid motion. We remark that the fundamental idea in [15] for the Navier–Stokes
equations of perfect compressible viscous flows does not apply to the problem under
consideration for the magnetohydrodynamic flows with general equations of state
(1.7). Our approach is then based on the methods in [7, 14]. We introduce the
Lagrangian variable and transform the initial-boundary value problem (1.5)–(1.8) into
a corresponding problem in Lagrangian coordinates. The existence and uniqueness of
local solutions can be obtained by using the Banach theorem and the contractivity
of the operator defined by the linearization of the problem on a small time interval
(see [21]). The existence of global solutions is proved by extending the local solutions
globally in time based on the global a priori estimates of solutions. We first obtain an
entropy-type energy estimate involving the dissipative effects of viscosity, magnetic
diffusion, and heat diffusion, which is essential for deducing the lower and upper
bounds of the density. Some new techniques are developed to achieve these bounds.
With these bounds, all the required a priori estimates are obtained subsequently by
our careful analysis and techniques. In particular, the estimates of the temperature
θ are complicated because of the complexity of the system for the general flow and
will be achieved by developing some detailed analysis of the energy equation. The
boundedness of the temperature will be proved by a maximum principle. We remark
that for technical reasons the viscosity coefficients and magnetic diffusion coefficient
are assumed to depend on the density only, and the heat conductivity cannot be a
constant even in the case of perfect flows. It is an open problem to develop more
effective techniques to remove these restrictions.

We reformulate the problem and state the main results in section 2, prove the
existence of global solutions with initial data in H1 by establishing the a priori esti-
mates on the density in section 3, on the velocity and magnetic field in section 4, and
on the temperature in section 5.

2. Reformulation of the initial-boundary value problem and main re-
sults. Consider the initial-boundary value problem (1.5)–(1.8) with positive lower
and upper bounds of the initial density and temperature: C−1

0 ≤ ρ0, θ0 ≤ C0, for

some constant C0 > 0. Without loss of generality, we take
∫ 1

0
ρ0(x)dx = 1. We

first assume that ρ, θ > 0, and then will prove their positive lower bounds later. We
introduce the Lagrangian variable:

y = y(x, t) =

∫ x

0

ρ(ξ, t)dξ.(2.1)

We have 0 ≤ y ≤ 1 since y is increasing in x and∫ 1

0

ρ(x, t)dx =

∫ 1

0

ρ0(x)dx = 1.

We translate problem (1.5)–(1.8) in Eulerian coordinates into the following initial-
boundary value problem in Lagrangian coordinates (y, t), y ∈ Ω = (0, 1), a moving
coordinate along the particle path:

vt − uy = 0,(2.2a)

ut + Py = (λρuy)y ,(2.2b)

wt − by = (µρwy)y ,(2.2c)

(vb)t −wy = (νρby)y ,(2.2d)

Et + (uP −w · b)y = (ρ(λuuy + µw ·wy + νb · by + κθy))y ,(2.2e)
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with the initial-boundary conditions

(v, u,w,b, θ)|t=0 = (v0, u0,w0,b0, θ0)(y), y ∈ Ω,
(u,w,b, θy)|∂Ω = 0,

(2.3)

where v = 1/ρ is the specific volume, p = p(v, θ), e = e(v, θ), and

P = p+
1

2
|b|2, E = e+

1

2
(u2 + |w|2) + 1

2
v|b|2.(2.4)

The second law of thermodynamics states the relation between p and e:

ev(v, θ) + p(v, θ) = θpθ(v, θ).(2.5)

Problem (1.5)–(1.8) and problem (2.2)–(2.3) are equivalent for the solutions under
consideration. Our main interest is to study the behavior of solutions of this prob-
lem with physical equations of state and various physical viscosity coefficients λ, µ,
magnetic diffusivity ν, and heat conductivity κ. We assume that p and e are continu-
ously differentiable and κ is twice continuously differentiable in v > 0 and θ ≥ 0. For
technical reasons we assume that the viscosity coefficients λ, µ, and ν depend only
on v, with continuous first derivatives in v > 0 such that λ1 ≤ λ ≤ λ2, µ1 ≤ µ ≤ µ2,
ν1 ≤ ν ≤ ν2 for v > 0 and for some positive constants λi, µi, νi (i = 1, 2). It is
an open problem to handle the case where these viscosity coefficients depend also on
temperature. We also assume the growth conditions with exponents r ∈ [0, 1] and
q ≥ 2 + 2r such that

(1) there exists a constant e0 > 0 so that, for v > 0 and θ ≥ 0,

pv(v, θ) ≤ 0, e(v, θ) ≥ e0(1 + θ1+r);(2.6)

(2) for any given v1 > 0, there exist positive constants κ0 = κ0(v1), p0 = p0(v1),
e1 = e1(v1) such that, for v ≥ v1, θ ≥ 0,

0 ≤ vp(v, θ) ≤ p0
(
1 + θ1+r

)
, κ(v, θ) ≥ κ0(1 + θ

q), eθ(v, θ) ≥ e1(1 + θr);(2.7)

(3) for any given v2 > v1 > 0, there exist positive constants pi = pi(v1, v2)
(i = 1, 2, 3), ej = ej(v1, v2) (j = 2, 3), and κ1 = κ1(v1, v2) so that, for any v ∈ [v1, v2],
θ ≥ 0,

|vpθ(v, θ)| ≤ p1 (1 + θr), −p3
(
1 + θ1+r

) ≤ v2pv(v, θ) ≤ −p2
(
1 + θ1+r

)
,(2.8)

|ev(v, θ)| ≤ e2(1 + θ1+r), eθ(v, θ) ≤ e3(1 + θr),(2.9)

κ(v, θ) + |κv(v, θ)|+ |κvv(v, θ)| ≤ κ1(1 + θ
q).(2.10)

These growth conditions are motivated by the physical facts: e ∝ θ1+r with r ≈ 0.5
and κ ∝ θ5/2 for important physical regimes where the temperature is high and
changes rapidly; see [2, 6, 23, 25]. The perfect gases are included that correspond
to the special case r = 0. We remark that, if r = 0, we still need the dependence
of the heat conductivity on temperature, and new analysis is required to deal with
the constant heat conductivity. For the initial-boundary value problem (2.2), (2.3),
we will see that, if the initial data is in H1, then the solution will be at least in H1,
and neither shock waves nor vacuum and concentration are developed in a finite time.
Precisely, we have the following results.
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Main Theorem. If for some constant C0 > 0,

C−1
0 ≤ v0, θ0 ≤ C0, ‖(u0,w0,b0)‖L4 + ‖θ0‖L2 ≤ C0,

‖(v0, u0,w0,b0, θ0)‖H1 ≤ C0,

and v0 ∈W 1,∞(Ω), then the initial-boundary value problem (2.2), (2.3) has a unique
global solution (v, u,w,b, θ)(y, t) such that, for any fixed T > 0,

v ∈ L∞(0, T ;H1 ∩W 1,∞(Ω)), (u,w,b, θ) ∈ L∞(0, T ;H1(Ω)),

and, for each (y, t) ∈ Ω× [0, T ],

C−1 ≤ v(y, t), θ(y, t) ≤ C,
‖(u,w,b)‖L2(0,T ;L4∩H1) + ‖θ‖L2(0,T ;L2∩H1) ≤ C,

‖(v, u,w,b, θ)‖2
H1(t) +

∫ t

0

‖(vyt, uyy,wyy,byy, θyy)‖2
L2(s)ds ≤ C,

(2.11)

where C > 0 is some constant.
The results for the initial-boundary value problem (2.2), (2.3) in the main theorem

in Lagrangian coordinates can easily be converted to equivalent statements for the
corresponding results for the initial-boundary value problem (1.5), (1.8) in Eulerian
coordinates. The details are omitted.

The existence and uniqueness of the local solution to the initial-boundary value
problem (2.2), (2.3) is known from the standard method based on the Banach theorem
and the contractivity of the operator defined by the linearization of the problem on
a small time interval [21]. The global existence of a solution can be obtained by
combining the local existence and the global a priori estimates (2.11) using a standard
argument (see [9], for example). The uniqueness of the global solution follows from
the uniqueness of the local solution. Therefore the remaining task is to establish the
global a priori estimates (2.11).

3. A priori estimates on density. We will use the following notation: U =
(u,w,b), Πt = (0, 1) × (0, t), and ϑ = 1/θ. Denote the L1-norm on Ω ⊂ R by
‖·‖ = ∫

Ω
| · |dy, and the L1-norm on Πt ⊂ R

2 by |||·||| = ∫∫
Πt

| · | dy ds. For s > 1, denote
the Ls-norm on Ω ⊂ R by ‖·‖s, and the Ls-norm on Πt ⊂ R

2 by |||·|||s. In the rest
of this paper, we will establish the a priori estimates of the solutions for x ∈ Ω and
t ∈ (0, T ) with any T fixed.

In this section we prove the following estimates.
Lemma 3.1.

C−1 ≤ v ≤ C, ∥∥v + θ + θ1+r + |U |2 + e∥∥+ ∣∣∣∣∣∣K + |Uy|2 + θ2y
∣∣∣∣∣∣ ≤ C,

where

K = ρϑ
(
κϑθ2y + λu

2
y + µ|wy|2 + ν|by|2

)
.

Proof. We have first from (2.2a), by integration, ‖v‖ = ‖v0‖ = 1 without loss of
generality. Integrating the energy equation (2.2e) and using (2.6) and the Cauchy–
Schwarz inequality yields

‖e+ u2 + |w|2 + v|b|2 + θ + θ1+r‖ ≤ C.
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Set ψ(v, θ) ≡ e(v, θ)− θη(v, θ), where η(v, θ) is defined by the relations eθ = θηθ,
ηv = pθ. Then eθ = −θψθθ and ψv = −p. Take Φ1 ≡ 2(ψ(v, θ)−ψ(v, 1)−ψθ(v, θ)(θ−
1)) and Φ2 ≡ 2(ψ(v, 1)− ψ(1, 1)− ψv(1, 1)(v − 1)). Then

1

2

(
Φ1 +Φ2 + u

2 + |w|2 + v|b|2)
t
+K

= (ρ(λuuy + µw ·wy + νb · by + κθy) + p(1, 1)u− uP +w · b− κρϑθy)y ,

where p(1, 1) is the value of p(v, θ) at v = θ = 1. Integrating the above equation over
Πt yields

1

2

∫
Ω

(Φ1 +Φ2)dy +
1

2

∥∥u2 + |w|2 + v|b|2∥∥+ |||K||| ≤ C.

By (2.6),

Φ1 ≥ 2(θ − 1)2
∫ 1

0

eθ(v, 1 + s(θ − 1))
1 + s(θ − 1) s ds ≥ 0,

and Φ2 = −pv(ξ, 1)(v − 1)2 ≥ 0 for some ξ using Taylor’s expansion; therefore

|||K||| ≤ C.(3.1)

Set

w(y, t) ≡
∫ t

0

(λρuy − P ) (y, s)ds+
∫ y

0

u0(ξ)dξ;

then wy = u from (2.2b), and thus

w(y, t) = w(a(t), t) +

∫ y

a(t)

u(ξ, t)dξ,

where a(t) ∈ [0, 1] will be determined later. On the other hand,

w(y, t) =

∫ t

0

(Vt − P )ds+
∫ y

0

u0(ξ)dξ,

where V (v) ≡ ∫ v
1
λ(ξ)ξ−1dξ is increasing in v and λ1 ln v ≤ V (v) ≤ λ2 ln v; then

V (y, t) = V (y, 0) + w(y, t) +

∫ t

0

Pds−
∫ y

0

u0(ξ)dξ

= V (y, 0) + w(a(t), t) +

∫ t

0

Pds+

∫ y

a(t)

u(ξ, t)dξ −
∫ y

0

u0(ξ)dξ.

(3.2)

From the definition of w, we have wt = λρuy − P ; then
(vw)t = (uw)y − u2 − vP + λuy,

and by integration,∫
Ω

vwdy =

∫
Ω

v0w0dy −
∫∫

Πt

(
u2 + vP

)
dy ds+

∫∫
Πt

λuy dy ds.
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There exists a function a(t) ∈ [0, 1] for any t > 0 such that∫
Ω

vwdy = w(a(t), t)

∫
Ω

vdy = w(a(t), t).

Therefore

V (y, t) = V (y, 0) +

∫
Ω

v0(y)

∫ y

0

u0(ξ)dξdy +

∫ t

0

P (y, s)ds−
∫∫

Πt

(
u2 + vP

)
dy ds

+

∫ y

a(t)

u(ξ, t)dξ −
∫ y

0

u0(ξ)dξ +

∫∫
Πt

λuy dy ds.(3.3)

Notice that, from (3.1),

|||λuy||| ≤
∣∣∣∣∣∣λρϑu2

y

∣∣∣∣∣∣+ C ∫ t

0

max
y
θ ‖v‖ ds

≤ C + C |||θ + θy||| ≤ C + C
∫ t

0

∥∥κρϑ2θ2y
∥∥ ‖v‖ ds ≤ C + C |||K||| ≤ C,

(3.4)

and from (2.7),

|||u2 + vP ||| ≤ C|||u2 + 1 + θ1+r + |b|2||| ≤ C.
Then V (y, t) ≥ −C since P ≥ 0. Thus v ≥ C−1 and ρ ≤ C.

From (2.2), we have

et + puy = (κρθy)y + ρ
(
λu2y + µ|wy|2 + ν|by|2

)
.(3.5)

Integrating (3.5) and using (2.7), we obtain∫∫
Πt

ρ
(
λu2y + µ|wy|2 + ν|by|2

)
dy ds

≤ C + 1

2

∫∫
Πt

λρu2y dy ds+ C

∫∫
Πt

ρ
(
1 + θ2+2r

)
dy ds,

and then, from (2.7) and (3.1),

1

2

∣∣∣∣∣∣ρ (λu2y + µ|wy|2 + ν|by|2)∣∣∣∣∣∣ ≤ C + C ∫∫
Πt

(‖θ1+r‖+ ‖θrθy‖
)2
dy ds

≤ C + C
∫ t

0

‖κρϑ2θ2y‖ ‖v‖ ds ≤ C + C |||K||| ≤ C.

Thus, from the boundary condition (2.3) on b and the estimates above,∫ t

0

1

2
|b|2ds =

∫ t

0

∫ y

0

b · byds ≤ |||v|b|2|||+ C|||νρ|by|2||| ≤ C.

Then

V (y, t) ≤ C + C
∫ t

0

θ1+rds+

∫ t

0

1

2
|b|2ds ≤ C + C|||θ1+r + θrθy|||

≤ C + C|||κρϑ2θ2y|||+ C |||v||| ≤ C,
that is, v ≤ C and ρ ≥ C−1. This completes the proof of Lemma 3.1.
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4. A priori estimates on velocity and the magnetic field. We now estab-
lish the following estimates on U = (u,w,b).

Lemma 4.1.

‖(vy, Uy)‖2
2 + |||Uyy|||22 + |||Uy|||44 + |U |2 ≤ C.

Proof. Rewrite (2.2b) as (Vy − u)t = Py, multiply it by Vy − u, and integrate it
to obtain

1

2
‖Vy − u‖2

2 ≤ C +
∫∫

Πt

(pvvy + pθθy + b · by) (Vy − u) dy ds.

From (2.7) we observe that∫ t

0

max
y∈Ω

(
1 + θ1+r

)
ds+

∫ t

0

max
y∈Ω

(
1 + θ2+2r

)
ds+

∫ t

0

max
y∈Ω

(
1 + θ1+r

)2
ds

≤ C
∫ t

0

max
y∈Ω

(
1 + θ1+r

)2
ds ≤ C

∫ t

0

(
1 + ‖θ1+r‖+ ‖θrθy‖

)2
ds

≤ C + C|||κϑ2θ2y||| ≤ C;

(4.1)

then, using (2.8) and Vy = λρvy, we obtain that there exists some constant C1 > 0
such that

1

2
‖Vy − u‖2

2 ≤ C − C1

∣∣∣∣∣∣(1 + θ1+r) v2y∣∣∣∣∣∣+ C ∣∣∣∣∣∣(1 + θ1+r) vyu∣∣∣∣∣∣
+ C |||(1 + θr) θy (Vy + u)|||+

∫∫
Πt

b · by (Vy − u) dy ds

≤ C − C1

2

∣∣∣∣∣∣(1 + θ1+r) v2y∣∣∣∣∣∣+ C ∫ t

0

max
y∈Ω

(
1 + θ1+r

) ‖u2‖ds
+ C|||κϑ2θ2y|||+ C |||(b · by, u)|||22

≤ C − C1

2

∣∣∣∣∣∣(1 + θ1+r) v2y∣∣∣∣∣∣+ C |||b · by|||22 .

Then

‖Vy − u‖2
2 +

∣∣∣∣∣∣(1 + θ1+r) v2y∣∣∣∣∣∣ ≤ C + C |||b · by|||22
and

‖vy‖2
2 ≤ C ‖Vy‖2

2 ≤ C ‖Vy − u‖2
2 + C ‖u‖2

2

≤ C + C |||b · by|||22 .
(4.2)

Multiplying (2.2e) by K1E and (2.2b) by K2u
3, taking the inner product of (2.2c)

with K3|w|2w and (2.2d) with K4|vb|2vb, multiplying (4.2) by K5, respectively, for
proper positive constants Kj , 1 ≤ j ≤ 5, integrating them over [0, 1] × [0, t], adding

them all together, and using Gronwall’s inequality, we have ‖vy‖2
2+ |||b · by|||22 ≤ C by

tedious calculations. Multiply (2.2b) by uyy and integrate on [0, 1] × [0, t] to obtain,
using the interpolation inequality on uy,

|uy|2 ≤ C(1 + δ−1) ‖uy‖2
2 + δ‖λρu2yy‖(4.3)
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for any δ > 0, and from (4.1),

1

2
‖uy‖2

2 ≤ 1

2
‖u0y‖2

2 −
∫∫

Πt

(λρuyy + (λρ)v vyuy − pvvy − pθθy − b · by)uyy dy ds

≤ C − 1

2

∣∣∣∣∣∣λρu2yy∣∣∣∣∣∣+ C ∫ t

0

max
y

(
u2y + θ

2+2r
) ∥∥v2y∥∥ ds+ C ∣∣∣∣∣∣κϑ2θ2y + |b · by|2

∣∣∣∣∣∣
≤ C − 1

4

∣∣∣∣∣∣λρu2yy∣∣∣∣∣∣+ C |||uy|||22 ≤ C − 1

4

∣∣∣∣∣∣λρu2yy∣∣∣∣∣∣ ;
then

‖uy‖2
2 + |||uyy|||22 ≤ C

and

|||uy|||44 =
∫ t

0

max
y
u2y ‖uy‖2

2 ds ≤ C |||(uy, uyy)|||22 ≤ C.

Multiplying (2.2c) by wyy and then integrating, and using the interpolation in-
equality on wy similar to (4.3), we have

1

2
‖wy‖2

2 =
1

2
‖wy(y, 0)‖2

2 −
∫∫

Πt

(
b+

µwy
v

)
y
·wyy dy ds

≤ C − C2 |||wyy|||22 + C |||(|by|+ |vy||wy|)wyy|||

≤ C − 3C2

4
|||wyy|||22 + C |||by|||22 + C

∫ t

0

max
y∈Ω

|wy|2 ‖vy‖2
2 ds

≤ C − C2

2
|||wyy|||22 + C |||wy|||22 ≤ C − C2

2
|||wyy|||22 ,

and then

‖wy‖2
2 + |||wyy|||22 ≤ C.

As a consequence,

|||wy|||44 ≤
∫ t

0

max
y∈Ω

|wy|2 ‖wy‖2
2 ds ≤ C |||(wy,wyy)|||22 ≤ C.

Using vt = uy, we rewrite (2.2d) as

bt =
uy
v
b+

1

v

(
w +

νby
v

)
y

.(4.4)

Multiplying the above equation by byy, integrating it, and using Lemma 3.1 and the
similar interpolation inequalities on b and by to (4.3) yields

1

2
‖by‖2

2 ≤ C − C3 |||byy|||22 + C |||(|uy||b|+ |wy|+ |vy||by|)byy|||

≤ C − 3C3

4
|||byy|||22 + Cmaxy,t

|b|2 |||uy|||22 + C
∫ t

0

max
y∈Ω

|by|2 ‖vy‖2
2 ds

≤ C − C3

2
|||byy|||22 + C ‖b‖2

2 +
1

4
‖by‖2

2 + C |||by|||22
≤ C − C3

2
|||byy|||22 +

1

4
‖by‖2

2 .
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Then

‖by‖2
2 + |||byy|||22 ≤ C.

Thus

|||by|||44 ≤
∫ t

0

max
y∈Ω

|by|2 ‖by‖2
2 ds ≤ C |||(by,byy)|||22 ≤ C.

Using Lemma 3.1 and the above estimates, one obtains the following:

|U |2 ≤ C ‖U‖2
2 + C ‖Uy‖2

2 ≤ C.

The proof of Lemma 4.1 is complete.

5. A priori estimates on temperature. We now make estimates on the tem-
perature θ. Due to the complicated structures of the pressure, internal energy, and
heat conductivity, as well as the strong coupling of the equations, the estimates on
the temperature θ are quite complex.

Lemma 5.1.

‖(θy, Ut, Uyy)‖2
2 + |||(θt, Ut)|||22 + |(vy, Uy)|2 ≤ C, C−1 ≤ θ ≤ C.(5.1)

Proof. To make the estimates on θ, we first define the following:

Θ = max
ΠT

θ(y, t),

X =
∣∣∣∣∣∣(1 + θq+r) θ2t ∣∣∣∣∣∣ , Y = max

t∈[0,T ]

∥∥(1 + θ2q) θ2y∥∥ , Z = max
t∈[0,T ]

‖uyy‖2
2 .

We will show that Θ, X, and Y can be controlled by Z, and then we will derive an
inequality on Z which yields the upper bound of Z and thus the upper bounds of Θ,
X, and Y .

From Lemma 4.1, one has

u2y ≤ ‖uy‖2
2 + 2 ‖uy‖2 ‖uyy‖2 ≤ C + CZ1/2,

which implies

|uy| ≤ C + CZ1/4.(5.2)

Define y(t) ∈ [0, 1] such that θ(y(t), t) = ∫ 1

0
θ(y, t)dy ≤ C. From Lemma 3.1, we have

θ(2q+3+r)/2(y, t) = ‖θ‖(2q+3+r)/2
+
2q + 3 + r

2

∫ y

y(t)

θ(2q+1+r)/2θydξ

≤ C + C
(∫ 1

0

θ2qθ2ydy

)1/2(∫ 1

0

θ1+rdy

)1/2

≤ C + CY 1/2,

and thus

Θ ≤ C + CY β1 ,(5.3)

where β1 = 1/(2q + 3 + r). The rest of the proof can be divided into four steps.



LARGE SOLUTIONS FOR MAGNETOHYDRODYNAMICS 1435

Step 1. We now show that X and Y can be controlled by Z. Use (2.5) and rewrite
(3.5) as

eθθt + θpθuy =

(
κθy
v

)
y

+
λu2y
v
+
µ|wy|2
v

+
ν|by|2
v
.(5.4)

Set H(v, θ) = v−1
∫ θ
0
κ(v, ξ) dξ. Multiplying (5.4) by Ht, using integration by parts

and the boundary condition (2.3), we have

∫∫
Πt

(
eθθt + θpθuy − λ

v
u2y −

µ

v
|wy|2 − ν

v
|by|2

)
Ht dy ds+

∫∫
Πt

κ

v
θyHty dy ds = 0,

(5.5)

where

Ht = Hvuy +
κ

v
θt, Hty = Hvuyy +Hvvuyvy +

(κ
v

)
v
θtvy +

(κ
v
θy

)
t
.

We now estimate all the terms in the above equality. First we have, from (2.6)
and (2.7),∫∫

Πt

eθθt
κ

v
θt dy ds ≥ C4X,

∫ T

0

∫ 1

0

κ

v
θy

(κ
v
θy

)
t
dy ds ≥ C5Y − C,

for some positive constants C4 and C5. From (2.10),

|Hv|+ |Hvv| ≤ C
∫ θ

0

(|κ|+ |κv|+ |κvv|) dξ ≤ C
(
1 + θq+1

)
.

Using (2.8), (2.9), (5.2), (5.3), Lemmas 3.1 and 4.1, and Young’s inequality, we have∫∫
Πt

eθθtHvuy dy ds ≤ C
∣∣∣∣∣∣(1 + θq+r+1

)
θtuy

∣∣∣∣∣∣
≤ C4

8
X + C

(
1 + Θq+2+r

) ∣∣∣∣∣∣u2y∣∣∣∣∣∣ ≤ C4

8
X + CY (q+2+r)β1 + C

≤ C4

8
X +

C5

8
Y + C

and ∫∫
Πt

(
θpθuy − λ

v
u2y −

µ

v
|wy|2 − ν

v
|by|2

)
Hvuy dy ds

≤ C (1 + Θq+1
)
max
y,t

|uy|
∣∣∣∣∣∣(1 + θ1+r) |uy|+ u2y + |wy|2 + |by|2

∣∣∣∣∣∣
≤ C (1 + Θq+1

)
(1 + Z1/4)||| (1 + θ1+r)2 + u2y + |wy|2 + |by|2|||

≤ C + C5

8
Y + CZβ2 ,

with β2 = (2q + 3 + r)/(4(q + 1 + r)) and∫∫
Πt

(
θpθuy − λ

v
u2y −

µ

v
|wy|2 − ν

v
|by|2

)
κ

v
θt dy ds

≤ C ∣∣∣∣∣∣((1 + θ1+r) |uy|+ u2y + |wy|2 + |by|2
)
(1 + θq) θt

∣∣∣∣∣∣
≤ C4

8
X + C

(
1 + Θq+2+r

) |||uy|||22 + C (1 + Θq−r) |||(uy,wy,by)|||44
≤ C4

8
X + CΘq+2+r + C ≤ C4

8
X +

C5

8
Y + C.
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Since θq(y, t) = ‖θ‖q + ∫ y
y(t)
qθq−1θydξ, we use Lemma 3.1 and Young’s inequality to

obtain ∫ t

0

max
y∈Ω
θqds ≤ C + C ∣∣∣∣∣∣θq−1θy

∣∣∣∣∣∣ ≤ C + ∫ t

0

max
y∈Ω
θq−1 ‖θ‖ ds+ C ∣∣∣∣∣∣κϑ2θ2y

∣∣∣∣∣∣
≤ C +

∫ t

0

max
y∈Ω
θq−1ds ≤ C + 1

2

∫ t

0

max
y∈Ω
θqds,

and then ∫ t

0

max
y∈Ω
θqds ≤ C.(5.6)

From (2.6)–(2.10), (5.2), (5.3), (5.6), Lemmas 3.1 and 4.1, and Young’s inequality, we
have ∫∫

Πt

κ

v
θyHvvuyvy dy ds ≤ C

(
1 + Θq+1

)
max
y,t

|uy| |||κθyvy|||

≤ C (1 + Θq+2
)
max
y,t

|uy|
(∫ t

0

max
y
(1 + θq)

∥∥v2y∥∥ ds
)1/2 ∣∣∣∣∣∣κϑ2θ2y

∣∣∣∣∣∣1/2
≤ C(1 + Z1/4)(1 + Y (q+2)β1) ≤ C6

8
Y + CZβ2 + C.

Using (2.10), (5.3), Lemma 4.1, and Young’s inequality yields∫∫
Πt

κ

v
θy

(κ
v

)
v
θtvy dy ds ≤ C |||(1 + θq) θt (κρθy) vy|||

≤ C5

16
X + C

(
1 + Θq−r

) ∫ t

0

max
y

|κρθy|2 ‖vy‖2
2 ds

≤ C5

16
X + C

(
1 + Θq−r

) ∫ t

0

(
‖κρθy‖2

2 + 2‖κρθy (κρθy)y ‖
)
ds

≤ C5

16
X +M

(
1 + Θ2q+2−r) ∣∣∣∣∣∣κϑ2θ2y

∣∣∣∣∣∣+ C (1 + Θq−r) |||κρθy (κρθy)y |||
≤ C5

16
X + C + CY (2q+2−r)β1 + C

(
1 + Θq+1−r) |||κ (κρθy)2y |||1/2 ∣∣∣∣∣∣κϑ2θ2y

∣∣∣∣∣∣1/2 .
Using (5.4), we continue to have∫∫

Πt

κ

v
θy

(κ
v

)
v
θtvy dy ds

≤ C5

16
X +

C6

16
Y + C + C

(
1 + Θq+1−r) ∣∣∣∣∣∣κ (e2θθ2t + θ2p2θu2y + |Uy|4

)∣∣∣∣∣∣1/2
≤ C5

16
X +

C6

16
Y + C + C(1 + Θ(2q+2−r)/2)X1/2 + C(1 + Θ(3q+4)/2) |||uy|||2

+M(1 + Θ(3q+2−2r)/2) |||Uy|||24
≤ C5

16
X +

C6

16
Y + C + C(1 + Θ(2q+2−r)/2)X1/2 + CΘ(3q+4)/2 + C

≤ C5

8
X +

C6

16
Y + CΘ2q+2−r + C ≤ C5

8
X +

C6

8
Y + C.
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From (2.6), (2.10), (5.2), (5.3), (5.6), Lemma 3.1, and Young’s inequality, we have∫∫
Πt

κ

v
θyHvuyy dy ds ≤ C

∣∣∣∣∣∣(1 + θq+1
)
κθyuyy

∣∣∣∣∣∣
≤ C(1 + Θ(4q+5)/4)

∣∣∣∣∣∣κϑ2θ2y
∣∣∣∣∣∣1/2(Z ∫ t

0

(
1 + max

y
θ(2q+3)/2

)
ds

)1/2

≤ C(1 + Y β1(4q+5)/4)Z1/2 ≤ C6

8
Y + CZβ3 + C,

where β3 = 2(2q+3+r)/(4q+7+4r) ∈ (0, 1) and the following estimate is employed:∫ t

0

max
y
θ(2q+3)/2ds ≤ C,(5.7)

which will be shown in the next step. Assuming the estimate (5.7), we conclude, from
(5.5), that

X + Y ≤ C + CZβ4 ,(5.8)

where 0 < β4 = max{β2, β3} < 1.
Step 2. The proof of (5.7) is as follows. For some small δ, from Lemma 3.1,∫ t

0

max
y
θ(2q+3)/2ds ≤

∫ t

0

(
‖θ‖(2q+3)/2

+ ‖θ(2q+1)/2θy‖
)
ds

≤ C + δ
∫ t

0

max
y
θ(2q+3)/2‖θ1+r‖ds+ C|||θ(2q−3−2r)/2θ2y|||

≤ C + 1

2

∫ t

0

max
y
θ(2q+3)/2ds+ C|||θ(2q−3−2r)/2θ2y|||,

and then ∫ t

0

max
y
θ(2q+3)/2ds ≤ C + C|||θ(2q−3−2r)/2θ2y|||.

For r = 1, using Lemma 3.1, we obtain (5.7) since∫ t

0

max
y
θ(2q+3)/2ds ≤ C + C|||θ(2q−5)/2θ2y||| ≤ C + C

∣∣∣∣∣∣κϑ2θ2y
∣∣∣∣∣∣ ≤ C.

For 0 < r < 1, define G(v, θ) =
∫ θ
0
ξ−reθ(v, ξ)dξ. Then, from (2.6)–(2.10), Lemma

3.1, and (3.5),

‖G‖ ≤ C‖θ + θ1−r‖ ≤ C ‖θ + 1‖ ≤ C
and

Gt + (1− r)uy
∫ θ

0

ξ−rpθ(v, ξ)dξ =
λu2y + µ|wy|2 + ν|by|2

vθr
+
rκθ2y
vθr+1

+

(
κθy
vθr

)
y

.

Integrating the above equation and using (2.6)–(2.10) and Lemma 3.1, we have∣∣∣∣∣∣ρϑr (λu2y + µ|wy|2 + ν|by|2)+ rκρθ2yϑr+1
∣∣∣∣∣∣

≤ C + C ∣∣∣∣∣∣u2y + (1 + θ)2∣∣∣∣∣∣ ≤ C + C ∣∣∣∣∣∣κϑ2θ2y
∣∣∣∣∣∣ ≤ C.
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Then, from the above estimate, we have∫ t

0

max
y
θ(2q+3)/2ds ≤ C + C|||θ(2q−3−2r)/2θ2y||| ≤ C + C

∣∣∣∣∣∣κθ2yϑ1+r
∣∣∣∣∣∣ ≤ C.

If r = 0, replace the above definition of G by G(v, θ) =
∫ θ
0
ξ−1/2eθ(v, ξ)dξ and follow

the same procedure to obtain

|||2ρϑ1/2
(
λu2y + µ|wy|2 + ν|by|2

)
+ κρθ2yϑ

3/2||| ≤ C.
Then ∫ t

0

max
y
θ(2q+3)/2ds ≤ C + C|||θ(2q−3)/2θ2y||| ≤ C + C|||κθ2yϑ3/2||| ≤ C.

Step 3. Now we estimate Z. Differentiate (2.2b) with respect to t, multiply it by
ut, and then integrate to obtain

1

2

∥∥u2t∥∥+ ∫∫
Πt

(
λ

v
uyt +

(
λ

v

)
v

u2y − pt − b · bt
)
uyt dy ds ≤ C,

from integration by parts and the initial-boundary condition (2.3). Using Lemmas
3.1 and 4.1 and (5.3), one has the following estimates:∫∫

Πt

λ

v
u2yt dy ds ≥ C7 |||uyt|||22 ,

∫∫
Πt

(
λ

v

)
v

u2yuyt dy ds ≤
C7

8
|||uyt|||22 + C |||uy|||44 ≤ C7

8
|||uyt|||22 + C,

and ∫∫
Πt

ptuyt dy ds ≤ |||(pvuy + pθθt)uyt|||

≤ C7

8
|||uyt|||22 + C

(
1 + Θ2+2r

) |||uy|||22 + C ∣∣∣∣∣∣(1 + θ2r) θ2t ∣∣∣∣∣∣
≤ C7

8
|||uyt|||22 + C(X + Y + 1) ≤

C7

8
|||uyt|||22 + C + CZβ4 .

From (4.4),

|bt|2 ≤M (|b|2u2y + |wy|2 + |byy|2 + |by|2v2y
)
,

and then, by Lemmas 3.1 and 4.1,

|||bt|||22 ≤ C ∣∣∣∣∣∣|b|2u2y + |wy|2 + |byy|2 + |by|2v2y
∣∣∣∣∣∣

≤ Cmax
t

‖by‖2
2 |||uy|||22 + C |||(wy,byy)|||22 + C

∫ t

0

max
y

|by|2 ‖vy‖2
2 ds

≤ C + C |||(by,byy)|||22 ≤ C.

(5.9)

Thus, we have∫∫
Πt

uytb · bt dy ds ≤ C7

8
|||uyt|||22 + C |||bt|||22 ≤ C7

8
|||uyt|||22 + C,
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and then

‖ut‖2
2 + |||uyt|||22 ≤ C + CZβ4 .

From (2.2b),

uyy =
v

λ

(
ut − py − b · by −

(
λ

v

)
v

vyuy

)
,

and then, by Lemma 4.1 and (5.2),

‖uyy‖2
2 ≤ ∥∥u2t + p2vv2y + p2θθ2y + |b|2 + |by|2 + v2yu2y

∥∥
≤ C + CZβ4 + CΘ2+2r ‖vy‖2

2 + CY + Cmaxy,t
u2y ‖vy‖2

2 ≤ C + CZ1/2 + CZβ4 ,

that is, Z ≤ C + CZ1/2 + CZβ4 . Therefore Z ≤ C since the exponents of Z on the
right-hand side of the above inequality are both less than one. Then (5.8) implies
X + Y ≤ C.

Step 4. We now prove the positive lower bound of the temperature with the aid
of a maximum principle. It follows from (5.2) that |uy| ≤ C. Differentiate (2.2c) with
respect to t and then multiply by wt and integrate it to obtain

1

2
‖wt‖2

2 +
∣∣∣∣∣∣µρ|wyt|2∣∣∣∣∣∣ ≤ C −

∫∫
Πt

(µ
v

)
v
vtwy ·wyt dy ds−

∫∫
Πt

bt ·wyt dy ds

≤ 1

2

∣∣∣∣∣∣µρ|wyt|2∣∣∣∣∣∣+ C ∣∣∣∣∣∣u4y + |wy|4 + |bt|2
∣∣∣∣∣∣ ≤ 1

2

∣∣∣∣∣∣µρ|wyt|2∣∣∣∣∣∣+ C,
from integration by parts, the initial-boundary condition (2.3), Lemma 4.1, and (5.9).
Then

‖wt‖2
2 +

∣∣∣∣∣∣µρ|wyt|2∣∣∣∣∣∣ ≤ C.
From (2.2c),

wyy =
v

µ

(
wt − by −

(µ
v

)
v
vywy

)
,

and then

‖wyy‖2
2 ≤ C ∥∥|wt|2 + |by|2 + v2y|wy|2

∥∥ ≤ C + Cmax
y

|wy|2 ‖vy‖2
2

≤ C + C ‖wy‖2
2 +

1

2
‖wyy‖2

2 ,

which implies that

‖wyy‖2
2 ≤ C + C ‖wy‖2

2 ≤ C
and

|wy|2 ≤ C ‖wy‖2
2 + C ‖wyy‖2

2 ≤ C.
Rewrite (5.4) as

eθθt + θpθuy − λ
v
u2y −

µ

v
|wy|2 − ν

v
|by|2 =

(κ
v

)
v
vyθy +

κθ
v
θ2y +

κ

v
θyy.
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Then, by Lemma 4.1, the above estimates, and an interpolation inequality on θ2y,

|||κρθyy|||22 ≤ C ∣∣∣∣∣∣θ2t + u2y + u4y + |wy|4 + |by|4 + v2yθ2y + θ4y
∣∣∣∣∣∣

≤ C + C
∫ t

0

max
y
θ2y
∥∥v2y + θ2y∥∥ ds ≤ C + C |||θy|||22 +

1

2
|||κρθyy|||22 ,

which implies

|||κρθyy|||22 ≤ C + C |||θy|||22 ≤ C.(5.10)

From (3.3),

V (v(y, t))y = V (v(y, 0))y + u(y, t)− u0(y) +
∫ t

0

(py + b · by)dy.

Then, using the interpolation inequalities on |by|2 and θ2y, Lemmas 3.1 and 4.1, and
(5.10), we have

v2y ≤ C(V (v)y)2 ≤ C + C
∫ t

0

(|by|2 + p2vv2y + p2θθ2y) ds
≤ C + C |||(by,byy, θy, θyy)|||22 + C

∫ t

0

v2yds ≤ C + C
∫ t

0

v2yds,

which yields, from Gronwall’s inequality, v2y ≤M. Differentiate (2.2d) with respect to
t and then multiply by (vb)t and integrate to obtain

1

2
‖(vb)t‖2

2 ≤ C − 1

2

∣∣∣∣∣∣νb2
yt

∣∣∣∣∣∣+ C ∣∣∣∣∣∣|wt|2 + u2y|by|2 + u2yy + v2y|bt|2∣∣∣∣∣∣
≤ C − 1

2

∣∣∣∣∣∣νb2
yt

∣∣∣∣∣∣+ C ∫ t

0

max
y

|by|2 ‖uy‖2
2 ds+ C |||bt|||22

≤ C − 1

2

∣∣∣∣∣∣νb2
yt

∣∣∣∣∣∣+ C |||(by,byy)|||22 ≤ C − 1

2

∣∣∣∣∣∣νb2
yt

∣∣∣∣∣∣ ,
which yields

‖(vb)t‖2
2 +

∣∣∣∣∣∣νb2
yt

∣∣∣∣∣∣ ≤ C.
From (2.2d),

‖|byy|‖2
2 ≤ C ∥∥(vb)2t + |wy|2 + v2y|by|2

∥∥ ≤ C + C ‖by‖2
2 ≤ C,

and then

|by|2 ≤ C ‖(by,byy)‖2
2 ≤ C.

As a consequence, we have C−1 ≤ θ ≤ C from the maximum principle (see [22])
applied to (5.4) and the boundedness of (vy, uy,wy,by), 0 < θ ≤ C (from (5.3)), and
the positive lower bound of θ0.

This completes the proof of the main theorem.
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Abstract. Diffraction by impenetrable wedges having arbitrary aperture angle is studied by
means of the Wiener–Hopf (W-H) technique. A system of functional equations called generalized
Wiener–Hopf equations (GWHE) is obtained. Only for certain values of the aperture angle are these
equations recognizable as standard or classical Wiener–Hopf equations (CWHE). However, in all
cases a mapping is found that reduces the GWHE to CWHE. It means that the diffraction by an
impenetrable wedge always reduces to a standard W-H factorization. The solution for the diffraction
by a wedge with given face impedances (the Malyuzhinets problem) is obtained in closed form by an
explicit factorization of the kernel.

Key words. Wiener–Hopf technique, diffraction, scattering, wedge, half-plane

AMS subject classifications. 78A45, 47A68, 35J25, 45E10, 47B35

PII. S0036139901400239

1. Introduction. The first rigorous studies of waves in the presence of geometric
discontinuities are due to Poincaré [1] and Sommerfeld [2], who considered the presence
of a half-plane in free space. The generalization of the half-plane problem led to the
wedge problem, which constituted an important and challenging subject of applied
mathematics in the last century. There are a vast number of papers that address the
wedge problem. They concern many disciplines such as electromagnetism, acoustics,
hydrodynamics, fracture mechanics, and so on. The impenetrable wedges arise from
the introduction of approximate boundary conditions on the surfaces of the wedges.
These conditions considerably simplify the study of wedge problems. In fact, the
external problem (i.e., the evaluation of the fields outside the wedge) is decoupled
from the internal problem (i.e., the evaluation of the fields inside the wedge). This
article deals only with the impenetrable case.

There are many analytical methods for studying fields and waves in angular re-
gions. Among them, the Malyuzhinets method [3] is particularly well known. This
method is based on the use of the Sommerfeld integral. The Wiener–Hopf (W-H)
technique is the most powerful method for solving field problems in the presence of
geometrical discontinuities. However, concerning wedge problems there is the belief
that this technique can be applied only for certain values of the aperture angle. We
have never been satisfied with this limited use of the W-H technique for the wedge
problems. The aim of this work is to show that the W-H technique can handle wedge
problems also in the presence of arbitrary aperture angle. This proposed task is not
easy. For instance, the W-H formulation of wedge problems yields functional equations
(generalized W-H equations) that substantially differ from the well-known classical
W-H equations studied in the literature [4]. However, in this paper it will be shown
that, in a suitable complex plane, the generalized W-H equations (GWHE) always
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reduce to classical W-H equations (CWHE). That means that the diffraction by an
impenetrable wedge always reduces to a standard W-H factorization. For instance,
the solution for the diffraction by a wedge with given face impedances (Malyuzhinets
problem) is obtained in closed form in this paper by an explicit factorization of the
matrix kernel. This yields a new solution of this important problem in a form com-
pletely different from, although equivalent to, the Malyuzhinets solution.

At present, important problems involving angular regions are concerned with
either penetrable wedges or impenetrable wedges surrounded by media in which more
types of waves propagate. In general, for these problems closed form solutions are
not available. However, some recent progress has resulted in efficient approximate
solutions of important cases [5, 6, 7, 8, 9, 10]. The techniques used in these works
are substantially based on the regularization method for singular integral equations.
The regularization method for singular integral equations is well known and used
by many authors to obtain approximate solutions of singular integral equations when
closed form solutions are not obtainable by other methods. The regularization method
consists of reducing the singular integral equation to a Fredholm equation of the second
kind. Such a technique is very convenient since Fredholm equations are amenable to
efficient numerical integration schemes. Every year several papers are produced to
reduce particular wedge problems to the solution of Fredholm equations. The most
important of them differs only in the technique used to obtain the regularization of
the kernels. For example, some works by Budaev [5] and Budaev and Bogy [6, 8] make
use of the Sommerfeld–Malyuzhinets method. Conversely, in the work of Gautesen
[10], the reduction of the singular equation to a Fredholm equation is obtained in part
by using the W-H technique through a decomposition of functions. Even though the
involved method is, of course, approximate, Gautesen’s paper is very interesting since
the kind of regularization performed produces very nice results, though on only one
well-defined wedge problem.

It is worth noticing that the extension of the W-H technique reported in this
paper to deal with wedge problems is not something that has been done merely for
academic reasons, but could have important applications to obtaining the solution of
yet-unsolved wedge problems by introducing approximate factorizations of the kernels
[11], in contrast to methods based on the regularization of the operators.

This paper is organized as follows: Section 2 reports some important functional
equations deduced in Appendix A. After indicating the geometry of the problem,
the boundary conditions are considered in section 3. Their imposition yields the
GWHE for impenetrable wedge problems. Section 4 describes some particular cases
in which the GWHE are immediately recognizable as CWHE. Section 5 deals with the
general case for which a fundamental mapping to a new complex plane is provided.
This mapping reduces the GWHE to the CWHE. Section 6 concerns the diffraction
by a perfectly electrical conducting (PEC) wedge; this problem involves scalar W-H
equations. Section 7 describes the diffraction by a wedge with given face impedances
(the Malyuzhinets problem). This problem involves vector W-H equations. Section 8
presents some physical aspects of the W-H solution.

2. Some functional equations occurring in angular regions. We consider
only time-harmonic electromagnetic fields with a time dependence specified by the
factor ejωt, which is omitted. These electromagnetic fields will be studied in the
angular region indicated in Figure 1 that is defined by the aperture angle γ1, (0 ≤
ϕ ≤ γ1). This region is filled by an isotropic homogeneous medium having complex
permittivity ε and complex permeability µ. Without loss of generality, we assume
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x, u
φ

P
γ1

y
v

Fig. 1. Angular region 0 ≤ φ ≤ γ1.

the z dependence of the electromagnetic field E and H specified by the factor e−jαoz,
which is omitted. According to the circumstances, Cartesian coordinates {x, y, z},
polar coordinates {ρ, ϕ, z}, or oblique coordinates {u, v, z} will be used.

The W-H technique [4] for wedge problems is based on the introduction of the
following Laplace transforms:

Vz+(η, ϕ) =

∫ ∞

0

Ez(ρ, ϕ)e
jηρdρ, Iz+(η, ϕ) =

∫ ∞

0

Hz(ρ, ϕ)e
jηρdρ,(1)

Vρ+(η, ϕ) =

∫ ∞

0

Eρ(ρ, ϕ)e
jηρdρ, Iρ+(η, ϕ) =

∫ ∞

0

Hρ(ρ, ϕ)e
jηρdρ,(2)

where the subscript + indicates plus functions, i.e., functions having regular half-
planes of convergence that are upper half-planes in the η-plane.

Notice that even if Eρ and Hρ may be singular for vanishing values of ρ, there are
no problems of existence of the Laplace transforms in physical problems. To avoid
singular points on the real axis of the η-plane, we assume small losses also in the
presence of no dissipative media. Consequently, the propagation constant (or wave
number) defined by k = ω

√
µε always has negative imaginary part Im[k] < 0.

As will be shown in Appendix A, the following equations hold for 0 ≤ γ1 ≤ π:

ξVz+(η, 0)− τ2
o

ωε
Iρ+(η, 0)− αoη

ωε
Iz+(η, 0)(3)

= −n1Vz+(−m1, γ1)− τ2
o

ωε
Iρ+(−m1, γ1) +

αom1

ωε
Iz+(−m1, γ1),

ξIz+(η, 0) +
τ2
o

ωµ
Vρ+(−η, 0) + αoη

ωµ
Vz+(η, 0)(4)

= −n1Iz+(−m1, γ1) +
τ2
o

ωµ
Vρ+(−m1, γ1)− αom1

ωµ
Vz+(−m1, γ1),

with τo =
√
k2 − α2

o, Im[τo] ≤ 0, ξ = ξ(η) =
√
τ2
o − η2 with the branch ξ(0) = τo,

and with m1 and n1 the functions m = m(η) and n = n(η) defined by m = m(η) =
−η cos γ + ξ sin γ and n = n(η) = −ξ cos γ − η sin γ evaluated for γ = γ1. These
functional equations relate the Laplace transforms of the tangential components of E
and H on the two boundaries ϕ = 0 and ϕ = γ1 of the considered angular region.
They are fundamental to deducing the W-H equations for wedge-shaped regions in
the next section.
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φ = −γb
hb

γb

x

φo
n̂iγa

y

ha

φ = γa

impenetrable wedge

Fig. 2. Scattering by an impenetrable wedge.

When the angular region is defined for −γ2 ≤ ϕ ≤ 0 (0 ≤ γ2 ≤ π), a slight
modification of the deduction reported in Appendix A yields similar equations:

ξVz+(η, 0) +
τ2
o

ωε
Iρ+(η, 0) +

αoη

ωε
Iz+(η, 0)(5)

= −n2Vz+(−m2,−γ2) +
τ2
o

ωε
Iρ+(−m2,−γ2)− αom2

ωε
Iz+(−m2,−γ2),

ξIz+(η, 0)− τ2
o

ωµ
Vρ+(−η, 0)− αoη

ωµ
Vz+(η, 0)(6)

= −n2Iz+(−m2,−γ2)− τ2
o

ωµ
Vρ+(−m2,−γ2) +

αom2

ωµ
Vz+(−m2,−γ2),

where m2 and n2 are the functions m = m(η) and n = n(η) defined by m = m(η) =
−η cos γ + ξ sin γ and n = n(η) = −ξ cos γ − η sin γ evaluated for γ = γ2. It is worth
observing that (3)–(6) also hold in the presence of plane waves.

3. Generalized W-H equations for wedge-shaped regions. Figure 2 shows
the problem that we will study. A plane wave with skew incidence n̂i excites an
impenetrable wedge where linear conditions are defined on the boundaries ϕ = γa
and ϕ = −γb. The longitudinal field components of the plane wave are given by

Ei
z = Eoe

jτoρ cos(ϕ−ϕo)e−jαoz, Hi
z = Hoe

jτoρ cos(ϕ−ϕo)e−jαoz,(7)

where Eo and Ho are known quantities, ϑo is the angle between the n̂i and ẑ, αo =
k cosϑo, and τo = k sinϑo.

The Leontovich conditions on the boundaries of the wedge ϕ = γa and ϕ = −γb
are expressed by[

Ez(ρ, γa)
Hz(ρ, γa)

]
= ha

[
Hρ(ρ, γa)
−Eρ(ρ, γa)

]
,

[
Ez(ρ,−γb)
Hz(ρ,−γb)

]
= −hb

[
Hρ(ρ,−γb)
−Eρ(ρ,−γb)

]
,(8)

with the matrices

ha,b =

[
Za,b
e T a,b

e

T a,b
h Y a,b

h

]
depending on the wedge material.
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The Maxwell equations provide the following relations between the radial com-
ponents Eρ and Hρ and the longitudinal ones Ez and Hz:

ρEρ =
1

jτ2
o

[
αoρ

∂Ez

∂ρ
+ ωµ

∂Hz

∂ϕ

]
, ρHρ =

1

jτ2
o

[
α0ρ

∂Hz

∂ρ
− ωε

∂Ez

∂ϕ

]
.(9)

The mathematical problem to solve consists of finding the solutions Ez and Hz

of the wave equations

∂2

∂x2
Ez +

∂2

∂y2
Ez + τ2

oEz = 0,
∂2

∂x2
Hz +

∂2

∂y2
Hz + τ2

oHz = 0(10)

such that (9) and (8) hold on the boundaries ϕ = γa and ϕ = −γb of the wedge,
and Ez −Ei

z and Hz −Hi
z satisfy the Sommerfeld radiation conditions in the angular

region −γb ≤ ϕ ≤ γa. For physical problems the materials that constitute the wedge
yield parameters of ha,b that ensure the existence and the uniqueness of the solution
of this problem.

Equations (3)–(6) and the Leontovich conditions (8) written in the Laplace do-
main yield the following four equations:

ξVz+(η, 0)− τ2
o

ωε
Iρ+(η, 0)− αoη

ωε
Iz+(η, 0)(11)

= (a1η + b1ξ + e1)Iρ+(−ma, γa) + (c1η + d1ξ + f1)Vρ+(−ma, γa),

ξVz+(η, 0) +
τ2
o

ωε
Iρ+(η, 0) +

αoη

ωε
Iz+(η, 0)(12)

= (a2η + b2ξ + e2)Iρ+(−mb,−γb) + (c2η + d2ξ + f2)Vρ+(−mb,−γb),

ξIz+(η, 0) +
τ2
o

ωµ
Vρ+(−η, 0) + αoη

ωµ
Vz+(η, 0)(13)

= (a3η + b3ξ + e3)Iρ+(−ma, γa) + (c3η + d3ξ + f3)Vρ+(−ma, γa),

ξIz+(η, 0)− τ2
o

ωµ
Vρ+(−η, 0)− αoη

ωµ
Vz+(η, 0)(14)

= (a4η + b4ξ + e4)Iρ+(−mb,−γb) + (c4η + d4ξ + f4)Vρ+(−mb,−γb),
with the constants ai, bi, ci, di, ei, fi (i = 1, 2, 3, 4) depending on the geometrical and
electromagnetic parameters involved in the problem being considered. They are not
specified here.

Notice that, besides the four functions Vz+(η, 0), Iz+(η, 0), Vρ+(η, 0), Iρ+(η, 0)
that are plus functions in the η-plane, there are four other functions which are regular
in ma-lower half-planes and in mb-lower half-planes. Equations (11)–(14) will be
called GWHE.

4. The cases involving classical W-H equations. In some important cases,
(11)–(14) simplify considerably and constitute a vector system of classical W-H equa-
tions. These cases are indicated in Figure 3, and they will be discussed in some
detail.

(a) The problem of the half-plane. The half-plane problem (Figure 3(a)) has been
studied extensively in the past [12]. The most recent solution by means of the W-H
technique [13] concerns the incidence of a skew plane wave on a wedge where the
matrices ha and hb assume the form

ha,b =


Za,b 0

0
1

Za,b


 .(15)
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Fig. 3. (a) Half-plane: γa = γb = π; (b) half-plane junction: γa = π, γb = 0; (c) right wedge:
γa = π, γb = π/2.

The problem of diffraction by an anisotropic impedance half-plane has been addressed
by Hurd and Lüneburg [14] and by Senior and Legault [15].

In the case of the half-plane γa = γb = π, the functions ma and mb simplify
considerably:

ma,b = ma,b(η) = −η cos γa,b + ξ sin γa,b = η.(16)

After algebraic manipulation, the GWHEs (11)–(14) reduce to the classical W-H
system

Gπ(η)X+(η) = Y+(−η),(17)

where

X+(η) =



Vz+(η, 0)
Iρ+(η, 0)
Iz+(η, 0)
Vρ+(η, 0)


 , Y+(−η) =



Iρ+(−η, π)
Iρ+(−η,−π)
Vρ+(−η, π)
Vρ+(−η,−π)


 ,

Gπ(η) = R0(η) + ξR1(η).(18)

The function Y+(−η) is a minus function. These functions are regular in a lower
half-plane in the η-plane. They will be denoted with the subscript − as in Y+(−η) =
X−(η). Equation (18) defines the kernel matrix Gπ(η) through the two matrices R0(η)
and R1(η). It should be observed that R0(η) and R1(η) are rational matrices of η. In
general, they have complicated expressions that are not reported here.

The reason for the possibility of closed form solutions for the half-problem fol-
lows from the structure of the kernel Gπ(η) = G(η), which allows explicit factor-
izations. For instance, since we can explicitly factorize the rational matrix R0(η) =
R0−(η)R0+(η), it is convenient to put G(η) in the form

G(η) = R0−(η)
[
1 + ξR0−(η)−1R1(η)R0+(η)−1

]
R0+(η).(19)

Taking into account that

R0−(η)−1R1(η)R0+(η)−1 =
P (η)

d(η)
,(20)
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where P (η) and d(η) are, respectively, matrix and scalar polynomial functions, we

reduce the factorization of the matrix G(η) to that of the matrix 1 +

√
k2−η2

d(η) P (η).

This matrix does commute with the polynomial matrix P (η) and can be explicitly
factorized by using the procedure indicated in [16, 17, 20]. However, it must be
observed that the more general cases are very cumbersome to deal with, and they still
require considerable mathematical skill. This topic is beyond the scope of this work
and will not be further pursued here.

(b) The problem of the two half-plane junction. The problem of the two half-plane
junction (Figure 3(b)) has been studied extensively in the past [18]. To this author’s
knowledge, the more recent W-H solution is reported in [19]. For this problem, γa =
π ⇒ m = η, and we can ignore (5) and (6). By imposing the boundary equation (8) on
the two faces ϕ = 0 and ϕ = π (Figure 3(b)), (3) and (4) yield a classical W-H equation
of order two, where again the kernel has the form given in (18). Consequently, the
same considerations as in the half-plane problem apply. It should be observed that,
in presence of a skew incident plane wave, when ha and hb assume the form (15),
the factorization of the kernel of order two can be obtained by slightly modifying the
method indicated in [13].

(c) The problem of the right wedge. Even though it is well known that the right
wedge (Figure 3(c)) involves classical W-H equations, these problems are usually
approached with the Malyuzhinets method. The W-H formulation is based again on
(11)–(14), where γa = π, γb = π/2. It yieldsma = η andmb = ξ =

√
k2 − η2. Chang-

ing η with −η in (11)–(14) adds four independent equations that introduce the six
new functions Vz+(−η, 0), Iz+(−η, 0), Vρ+(−η, 0), Iρ+(−η, 0), Iρ+(−η, π), Vρ+(−η, π).
We now have eight equations that involve the fourteen unknowns Vz+(η, 0), Iz+(η, 0),
Vρ+(η, 0), Iρ+(η, 0), Iρ+(η, π), Vρ+(η, π), Iρ+(−ξ,−π

2 ), Vρ+(−ξ,−π
2 ), Vz+(−η, 0),

Iz+(−η, 0), Vρ+(−η, 0), Iρ+(−η, 0), Iρ+(−η, π), and Vρ+(−η, π). Two equations al-
low us to eliminate the two functions Iρ+(−ξ,−π

2 ) and Vρ+(−ξ,−π
2 ). Rearranging the

other six yields a system of classical W-H equations that involve the six plus functions
Vz+(η, 0), Iz+(η, 0), Vρ+(η, 0), Iρ+(η, 0), Iρ+(η, π), Vρ+(η, π) and the six minus func-
tions Vz+(−η, 0), Iz+(−η, 0), Vρ+(−η, 0), Iρ+(−η, 0), Iρ+(−η, π), Vρ+(−η, π). Again
the kernel matrix G(η) of this system has the form (18). Consequently, the same
considerations apply as in the half-plane problem.

5. The standard W-H equations of the wedge problem having arbitrary
aperture angle. When the wedge has an arbitrary aperture angle, the GWHEs
(11)–(14) constitute a closed mathematical problem that has been considered in [21].
By using the concept of generalized decomposition, these equations can be reduced
to Fredholm systems. However, it is very remarkable that we can remain in the
framework of CWHE by introducing a suitable mapping η = η(η) that, by eliminating
the m-plane, allows one to deal only with minus and plus functions of the η-plane
(see Appendix B). As will be seen later, in the η-plane explicit W-H solutions will be
provided for the problems solved by the Sommerfeld–Malyuzhinets method. In fact,
for these problems the scalar decomposition can be accomplished with the classical
Cauchy decomposition formula, and the matrices to factorize are of the Daniele–
Khrapkov type.

With reference to Figure 4(a), equations (11)–(14) can be rearranged in the form

GΦ(η)X+(η) = Y+(−m),(21)
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Fig. 4. (a) An impenetrable wedge with arbitrary aperture angle γa = γb = Φ. (b) PEC wedge
with arbitrary aperture angle γa = γb = Φ.

where

X+(η) =

∣∣∣∣∣∣∣∣∣∣∣∣∣

Vz+(η, 0)

Iz+(η, 0)

− τ
2
o

ωε
Iρ+(η, 0)− αoη

ωε
Iz+(η, 0)

τ2
o

ωµ
Vρ+(−η, 0) + αoη

ωµ
Vz+(η, 0)

∣∣∣∣∣∣∣∣∣∣∣∣∣
,

Y+(−m) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

− τ
2
o

ωε
Iρ+(−m,Φ) +

αom

ωε
Iz+(−m,Φ)

τ2
o

ωµ
Vρ+(−m,Φ)− αom

ωµ
Vz+(−m,Φ)

τ2
o

ωε
Iρ+(−m,−Φ)− αom

ωε
Iz+(−m,−Φ)

− τ2
o

ωµ
Vρ+(−m,−Φ) +

αom

ωµ
Vz+(−m,−Φ)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
,(22)

m = m(η) = −η cosΦ + ξ sinΦ, n = n(η) = −ξ cosΦ− η sinΦ.

In the general case, the matrixGΦ(η) has a complicated expression that is not reported
here.

The mapping to be used to obtain classical W-H equations in impenetrable wedge
problems is (see Appendix B)

η = η(η) = −τo cos
[
Φ

π
arccos

(
− η

τo

)]
.(23)

With this mapping, a generic plus function F+(η) in the η-plane is also a plus function
F+(η) = F+(η) in the η-plane. Besides, since this mapping implies that m = −η(−η),
it follows that the minus function Y+(−m) in the m-plane becomes a minus function
Y +(−η) = Y+(−m) in the η-plane. Consequently, the mapping reduces the equations
(21) to the following W-H system in the η-plane:

GΦ(η)X+(η) = Y +(−η),(24)

where GΦ(η) = GΦ(η), X+(η) = X+(η), Y +(−η) = Y+(−m).
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The solution of the classical W-H equation (24) requires the introduction of
a source term. To this end we decompose the functions Y+(−m) in terms of the
diffracted field (superscript d) and geometrical optical field (superscript g) as follows:

Y+(−m) = Y d
+(−m) + Y g

+(−m).(25)

The geometrical optical field is known. It depends on the direction of the plane wave
ϕo and implies that the function Y g

+(−m) has a pole inmo = k cos(Φ−ϕo) with residue

Ao. Taking into account that m = −η(−η), it follows that Y
g

+(−η) = Y g
+(η(−η)) has

a pole in ηo = −τo cos π
Φϕo, with residue Ro given by

Ro = Ao
dη

dm

∣∣∣∣
η=ηo

= Ao
π

Φ

sin π
Φϕo

sin(Φ− ϕo)
.(26)

The standard factorization of GΦ(η) = GΦ−(η)GΦ+(η) yields

GΦ+(η)X+(η)−G
−1

Φ−(ηo)
Ro

η − η̄o
(27)

= G
−1

Φ−(η)[Y
d

−(−η) + Y
g

+(−η)]−G
−1

Φ−(ηo)
Ro

η − ηo
= w(η).

The member on the right-hand side of the first equality does not have the pole ηo =
−τo cos π

Φϕo and involves only minus functions that are regular for Im[η] < Im[−τo];
since the first member involves only plus functions, it follows that the function w(η)
is entire. Taking into account that η ≈ ηΦ/π as η → ∞, the presence of Laplace
transforms, and the fact that standard factorized matrices have algebraic behavior as
η → ∞ leads to the conclusion that w(η) is vanishing. This provides the following
solution of the W-H system (24):

X+(η) = G
−1

Φ+(η)G
−1

Φ−(ηo)
Ro

η − ηo
.(28)

The W-H technique requires the decomposition in the η-plane of arbitrary functions
X (η):

X(η) = X(η) = X+(η) +X−(m) = X+(η) +X−(η).(29)

An analytical manipulation of the Cauchy decomposition formula [4, p. 17] yields the
following expression of the decomposed plus X+(η) = X+(η):

X+(η) = X+(η) = − 1

πj

∫ ∞

−∞
[X̂(−π + ju)− X̂(−π − ju)]

sinhu

coshu− η/τo
du−

∑
i

Ri

η − ηi
,

(30)

where X̂(w) = X(−τo cosw) and Ri represents the residue of X(η) in the poles ηi
located in the half-plane Im[η] < 0.

To ascertain the validity of the solution (28), when possible we must verify that
the results obtained with the W-H technique are equivalent to those obtained with
other methods. We encountered some difficulties when, after considering specific
problems, we compared the expressions obtained in this paper with the ones obtained
by the Malyuzhinets method. In fact, the two approaches use two different spectral
representations. These representations are the Laplace transform in the W-H tech-
nique and the Sommerfeld functions in the Malyuzhinets method. The difficulties
were overcome only after we used expressions that relate the Sommerfeld function to
the Laplace transform [3, 5, 22].
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6. Solution of the CWHE in the scalar case. Let us consider the case of a
PEC wedge excited by an E-polarized plane wave (∂/∂z = 0, τo = k) (see Figure 4(b)).
Even though simple, this case is significant since it shows all the difficulties involved in
obtaining explicit W-H solutions in wedge problems having arbitrary aperture angles.
For this problem, (4) and (6) may be ignored since the unknowns present in them are
vanishing. Equations (3) and (5) simplify, becoming

ξVz+(η, 0)− ωµIρ+(η, 0) = −ωµIρ+(−m,Φ),(31)

ξVz+(η, 0) + ωµIρ+(η, 0) = ωµIρ+(−m,−Φ),(32)

where ξ = ξ(η) =
√
k2 − η2 and m = m(η) = −η cosΦ + ξ sinΦ. Summing (31) and

(32) yields the scalar generalized W-H equation

ξX+(η) = Y+(−m),(33)

with X+(η) = 2Vz+(η, 0) and Y+(−m) = ωµ[Iρ+(m,−Φ)− Iρ+(m,Φ)]. The mapping

η = η(η) = −k cos[Φπ arccos(−η
k )] yields the following scalar CWHE equation in the

η-plane:

ξ(η)X+(η) = Y +(−η) = X−(η).(34)

The key point for solving the CWHE is the factorization of the kernel ξ(η) =
ξ−(η)ξ+(η). Since we are dealing with scalar functions, this factorization can be
accomplished by using well-known procedures. We obtain (see Appendix C)

ξ−(η) =

√
τo + η

2
, ξ+(η) =

ξ(η(η))

ξ−(η)
.(35)

Taking the source into account, we consider, for illustrative purposes, the case (see
Figure 4) in which the face ϕ = −Φ is in the shadow region: Igρ+(−m,−Φ) = 0. It
yields

Y g
+(−m) = ωµ[Igρ+(−m,−Φ)− Igρ+(−m,Φ)] =

Ao

[m− k cos(Φ− ϕo)]
,(36)

with Ao = 2jk sin(Φ − ϕo)Eo. The residue Ro of Y
g

+(−η) = Y g
+(−m) in the simple

pole ηo = −k cos π
Φϕo is given by (26) as follows:

Ro = Ao
dη

dm

∣∣∣∣
ηo

= Ao
π

Φ

sin 2ϕo

n

sin(Φ− ϕo)
= 4jkEo

sin 2 ϕo

nΦ

nΦ
,

with nΦ = 2Φ
π . Equation (28) provides the solution:

X+(η) = ξ
−1

+ (η)ξ
−1

− (ηo)
Ro

η − ηo
.(37)

To compare 37 to known solutions, we introduce the w-plane defined by η = −k cosw
(see Appendix B). Algebraic manipulation on Vz+(η, 0) = X̃+(η)/2 yields the well-
known result

Vz+(−k cosw, 0)
(38)

=
jEo cos(ϕo/nΦ)

nΦk sinw

(
1

sinw/nΦ − sinϕo/nΦ
+

1

sinw/nΦ + sinϕo/nΦ

)
.
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7. Solution of the CWHE in the vector case. In the wedge with two dif-
ferent face impedances excited by an E-polarized plane wave (∂/∂z = 0, τo = k)
(Malyuzhinets problem), (21) simplifies, and one obtains a vector generalized W-H
equation of order two:

GΦ(η)F+(η) = F−(m),(39)

where

F+(η) =

∣∣∣∣Vz+(η, 0)
Iρ+(η, 0)

∣∣∣∣ , F−(m) =

∣∣∣∣ Iρ+(−m,Φ)
Iρ+(−m,−Φ)

∣∣∣∣ ,
and the kernel GΦ(η) is the matrix given by

GΦ(η) =

∣∣∣∣∣∣∣
− ξ

Za(n+ na)

ξ

Za(n+ na)

ωµ

ξ
ξ

Zb(n+ nb)

ξ

Zb(n+ nb)

ωµ

ξ

∣∣∣∣∣∣∣ ,(40)

where n = −ξ cosΦ− η sinΦ and na,b = ωµ
Za,b

.

In the η-plane we will obtain an explicit factorization by reducing GΦ(η) to a
Daniele–Khrapkov matrix. For this task an algebraic manipulation allows us to rewrite
GΦ(η) in the form

GΦ(η)
(41)

=
(Za − Zb)ξn

2ZaZb(n+ na)(n+ nb)

[
1 1
1 −1

]1 0

0

√
ωµ

ξ−(η)


[1 a
b 1

]1 0

0

√
ωµ

ξ+(η)


[1 0

0 −1

]
,

where

a = f(η)

√
ωµ

ξ−(η)
, b = f(η)

ξ−(η)√
ωµ

, f(η) = 1− 2(n+ na)Za

n(Za − Zb)
.

Equation (41) reduces the matrix factorization of GΦ(η) to the factorization of the
scalar ξn/(n + na)(n + nb) and the matrix factorization of the central matrix [ 1 a

b 1 ].
The factorization of the scalar needs the factorization of ξ, n, and n

n+na,b
in the η-

plane. The factorization of ξ is reported in (35). Using the same procedure, we obtain

the factorization of n(η) = n−(η)n+(η) : n+(η) =
√

k−η
2 , n−(η) = n(η(η))

n+(η) . For what

concerns the factorization of n
n+na,b

= [ n
n+na,b

]−[ n
n+na,b

]+, we can use the logarithmic

decomposition. In the presence of inductive impedances Za,b, (30) yields

[
n+ na,b

n

]
+

= dΦ(η) = exp

[
1

π

∫ ∞

0

arctan

[
sinϑa,b

sinh
[
Φ
π u
]
]

sinhu

coshu− η/k
du

]
.(42)

We are left with the more difficult problem consisting of factorizing the central matrix.

Since ξ
2

−(η) = 1
2 (k+ η), the ratio a

b = ωµ

ξ
2
−(η)

is a rational function of η. It follows that

the matrix [ 1 a
b 1 ] is a Daniele–Khrapkov matrix. For these matrices there is a well-

known method [20]. It yields [ 1 a
b 1 ] = [ 1 a

b 1 ]− • [ 1 a
b 1 ]+, where the minus and plus
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factorized matrices are given by

[
1 a
b 1

]
−

=
√
g−(η)

∣∣∣∣∣∣∣∣∣
cosh

[
1

2
log

[−Zb

Za

]] √
ωµ

ξ−(η)
sinh

[
1

2
log

[−Zb

Za

]]
ξ−(η)√
ωµ

sinh

[
1

2
log

[−Zb

Za

]]
cosh

[
1

2
log

[−Zb

Za

]]
∣∣∣∣∣∣∣∣∣

•

∣∣∣∣∣∣∣∣∣
cosh

[√
ωµ

2
t−(η)ξ−(η)

] √
ωµ

ξ−(η)
sinh

[√
ωµ

2
t−(η)ξ−(η)

]
ξ−(η)√
ωµ

sinh

[√
ωµ

2
t−(η)ξ−(η)

]
cosh

[√
ωµ

2
t−(η)ξ−(η)

]
∣∣∣∣∣∣∣∣∣
,(43)

[
1 a
b 1

]
+

=
√
g+(η)

∣∣∣∣∣∣∣∣∣
cosh

[√
ωµ

2
t+(η)ξ−(η)

] √
ωµ

ξ−(η)
sinh

[√
ωµ

2
t+(η)ξ−(η)

]
ξ−(η)√
ωµ

sinh

[√
ωµ

2
t+(η)ξ−(η)

]
cosh

[√
ωµ

2
t+(η)ξ−(η)

]
∣∣∣∣∣∣∣∣∣
.

The factorization of the scalar

g(η) = 1− f2(η) = − 4ZaZb

(Za − Zb)2
n+ na
n

n+ nb
n

= g−(η)g+(η)

and the decomposition of the scalar

t(η) =
1√

ωµξ(η)
log

[
1 + f(η)

1− f(η)

]
− 1√

ωµξ(η)
log

[
−Zb

Za

]

=
1√

ωµξ−(η)
log

[
n+ nb
n+ na

]
= t−(η) + t+(η)

can be accomplished without any difficulty through (30). For instance, in the presence
of inductive impedances Za,b, we have

t+(η) =

{
1

ξ−(η)
log

[
n+ nb
n+ na

]}
+

(44)

= − 2

π

∫ ∞

0

[
arctan

[
sinϑb

sinh
[
Φ
π u
]
]
− arctan

[
sinϑa

sinh
[
Φ
π u
]
]]

sinh u
2

coshu− η
k

du,

with na,b = k sinϑa,b. Notice that g−(η) and g+(η) behave as constants as η → ∞.

In addition, taking into account that η ≈ ηΦ/π, it follows that t±(η) = O[ 1
η1/2ηΦ/π ].

Since the argument of the hyperbolic functions in (43) is constant or vanishing as
η → ∞, it yields an algebraic behavior of both the factorized matrices.

To complete the solution process, one needs to know the value of ηo and Ro in
order to use (28); once again, one has ηo = −k cos π

Φϕo. Furthermore, by taking into
account (26) and the reflection coefficient on the face ϕ = Φ, one obtains

Ao =

∣∣∣∣∣∣−
2j sin(Φ− ϕo)

Zo + Za sin(Φ− ϕo)
Eo

0

∣∣∣∣∣∣ , Ro =

∣∣∣∣∣∣−
π

Φ

2j sin π
Φϕo

Zo + Za sin(Φ− ϕo)
Eo

0

∣∣∣∣∣∣ .
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Even though the integrals (42) and (44) may be evaluated numerically without any
difficulty, it is worth observing that they involve the Malyuzhinets function ΨΦ(w).
In fact, a cumbersome mathematical deduction not reported here shows that

(45)[
n+ na,b√

k

]
+

∣∣∣∣∣
η=−k cosw

= dΦ(−k)ΨΦ(w + Φ + ϑ̃a,b)ΨΦ(w + Φ− ϑ̃a,b)ΨΦ(w − Φ + ϑ̃a,b)ΨΦ(w − Φ− ϑ̃a,b)

ΨΦ(Φ + ϑ̃a,b)ΨΦ(Φ− ϑ̃a,b)ΨΦ(−Φ + ϑ̃a,b)ΨΦ(−Φ− ϑ̃a,b)
,

(46){ √
k

ξ−(η)
log

[
n+ nb
n+ na

]}
+

∣∣∣∣∣
η=−k cosw

=
1

sin
[
πw
2Φ

] log
[
ΨΦ(w − Φ− ϑ̃b)ΨΦ(w − Φ + ϑ̃b)ΨΦ(w + Φ− ϑ̃a)ΨΦ(w + Φ + ϑ̃a)

ΨΦ(w + Φ− ϑ̃b)ΨΦ(w + Φ + ϑ̃b)ΨΦ(w − Φ− ϑ̃a)ΨΦ(w − Φ + ϑ̃a)

]
,

with η = −k cosw, w = Φ
πw, ϑ̃a,b = π

2 − ϑa,b. These alternative expressions are very
important since they allow one to verify that the W-H solution (28) agrees completely
with the Malyuzhinets solution [3].

8. Physical considerations on the W-H technique applied to wedge
problems. The W-H solution X+(η) = X+(η) of (28) provides the Laplace trans-
forms of the electromagnetic field only in the direction ϕ = 0. In order to obtain
Ez(ρ, ϕ) and Hz(ρ, ϕ) for every value of ϕ, it can be shown [23] that the two func-
tions sE(w) and sH(w) defined by

sE(w) =
j

2

[
−τo sinwVz+(−τo cosw, 0)

+
τ2
o

ωε
Iρ+(−τo cosw, 0)− αoτo cosw

ωε
Iz+(−τo cosw, 0)

]
,

(47)

sH(w) =
j

2

[
−τo sinwIz+(−τo cosw, 0)

− τ2
o

ωµ
Vρ+(−τo cosw, 0) + αoτo cosw

ωµ
Vz+(−τo cosw, 0)

]

are the Sommerfeld functions of the problem. It yields the following representation
of the longitudinal components valid for every value of ϕ:

Ez(ρ, ϕ) =
1

2π

[∫
c1+c2

sE [w + ϕ]e+jτo cos[w]ρdw

]
,

(48)

Hz(ρ, ϕ) =
1

2π

[∫
c1+c2

sH [w + ϕ]e+jτo cos[w]ρdw

]
,

where c1 + c2 is the Sommerfeld contour. By using well-known techniques such as the
saddle point integration method [24] and the Watson lemma, (47) and (48) permit
us to gain a complete physical insight into the solution X+(η) = X+(η), as obtained
from (28). For instance, these solutions provide the diffraction coefficients of the
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geometrical theory of diffraction (GTD) [18, 24] as well as the field behaviors near
the edge ρ = 0 (see [22]). From the engineering standpoint, applications of (28) also
include well-known refinements such as the uniform theory of diffraction (UTD) and
the uniform asymptotic theory (UAT) [18].

When studying diffraction problems where no exact solutions are possible, of
course we must introduce approximate solutions. The basic technique in electromag-
netic engineering is the physical optics approximation. The W-H solution immediately
provides the physical optics solution by observing that the presence of the denomina-
tor η − ηo in the solution (28) indicates that the dominant spectrum is for η ≈ ηo. It

suggests that setting G
−1

Φ+(η) ≈ G
−1

Φ+(ηo) yields

X+(η) ≈ G
−1

Φ+(ηo)G
−1

Φ−(ηo)
Ro

η − ηo
= G

−1

Φ (ηo)
Ro

η̄ − η̄o
.(49)

This approximation represents the physical optical solution. To improve this approx-
imation we can introduce rational approximants for the kernels. They yield rational
matrices that in general can be factorized in closed form. It has been ascertained that
this procedure can be very efficient in obtaining accurate solutions of W-H equations
[11, 25, 26].

9. Conclusions. This paper shows that the wedge problems solved with the
Sommerfeld–Malyuzhinets method can be successfully solved also by the classical
W-H technique. There are many differences between the two methods. For instance,
the Sommerfeld–Malyuzhinets approach requires the solution of difference equations,
whereas the W-H technique involves decomposition-factorization problems. Even
though it seems that both of the methods have the same capability to solve wedge
problems in closed form, it should be observed that, with the extension also to arbi-
trary angular regions, there is no doubt that the W-H technique constitutes the most
general analytical method for solving field problems involving geometrical discontinu-
ities.

Appendix A. Derivation of the functional equation (3) of section 2. For
illustrative purposes, we consider only the reasoning behind (3) in the free source
angular region indicated in Figure 1. In this region the field Ez must satisfy the wave
equation

∂2

∂x2
Ez +

∂2

∂y2
Ez + τ2

oEz = 0.(A1)

Let us introduce the oblique Cartesian coordinates u and v to study this region (γ =
γ1):

u = x− y cot γ, v =
y

sin γ
or x = u+ v cos γ, y = v sin γ.(A2)

With these coordinates (see Figure 1), (1) assumes the form

∂2Ez

∂u2
+
∂2Ez

∂v2
− 2 cos γ

∂2Ez

∂u∂v
+ τ2

0 sin2 γEz = 0.(A3)

Equation (A3) will be solved in the Laplace domain by introducing the Laplace trans-
form

Ẽz(η, v) = L [Ez(u, v)] =

∫ ∞

0

Ez(u, v)e
jηudu.(A4)
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It follows that

d2Ẽz

dv2
+ 2jη cos γ

dẼz

dv
+ (τ2

0 cos2 λ− η2)Ẽz = fη(v),(A5)

where

fη(v) = −2 cos γ
dEz(0+, v)

dv
− jηEz(0+, v) +

∂Ez(u, v)

∂u

∣∣∣∣
u=0+

.(A6)

A standard procedure [24, p. 274] yields the solution of (A5) as follows:

Ẽz(η, v) = A(η)e−j
→
m(η)v −

∫ ∞

0

ejη(v−v1) cos γe−jξ|v−v1| sin γ

2j sin γξ
fη(v1)dv1,(A7)

where A(η) is an unknown function and
→
m(η) and

←
m(η) are the two solutions of the

characteristic equation −m2 + 2η cos γm+ τ2
o sin2 γ − η2 = 0 ( d

dv ⇒ −jm):

→
m(η) = cos γη + sin γξ,

←
m(η) = cos γη − sin γξ,(A8)

with ξ = ξ(η) =
√
τ2
o − η2, ξ(0) = τo for η = 0. On the semiaxis v = 0, (A7) provides

the equation

V+(η, 0) = Ẽz(0, η) = A(η)−
∫ ∞

0

e−jm(η)v1

2j sin γξ
fη(v1)dv1,(A9)

where

m(η) = −η cos γ +
√
τ2
o − η2 sin γ.(A10)

The magnetic field Hx is obtained by the Maxwell equations

Hx = −jωε
τ2
o

(
−∂Ez

∂v

1

sin γ
+
∂Ez

∂u
cot γ

)
+
jαo
τ2
o

∂Hz

∂x
.(A11)

Applying the Laplace transform H̃x(η, v) = L[Hy(u, v)] =
∫∞
0
Hx(u, v)e

jηudu and
taking into account (A7) yields

Iρ+(η, 0) = H̃x(0, η)

=
jωε

τ2
o

(
1

sin γ

[
j
→
mA(η) +

jm

2j sin γξ

∫ ∞

0

e−jm(η)vfη(v)dv

(A12)

− jη cos γẼz(0, η)− Ez(0, 0) cos γ

])
+
jαo
τ2
0

[−jηIz+(η, 0)−Hz(0, 0)].

Algebraic manipulations on the Maxwell equations written in the coordinates u and
v yield

∂Ez

∂u
= − sin γ

ωε

(
−αo ∂Hz

∂u
− jτ2

oHv − ωε cot γ
∂Ez

∂v

)
.(A13)
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Substituting (A13) into (A6) leads to the following result:∫ ∞

0

e−jm(η)vfη(v)dv = −j cos γ(mVρ+(−m, γ)− Ez(0, 0))− jηVρ+(−m, γ)
(A14)

+
sin γ

ωε
(αojmIz+(−m, 0)−αoHz(0, 0)−jτ2

o Iρ+(−m, γ)).

Eliminating A(η) in (A7) and (A12) and taking into account (A14) yields the final
equation (3) of section 2.

Appendix B. The mapping η = η(η). In this appendix we will find a mapping
η = η(η) that will reduce the GWHE (21) in the η-plane to a system of classical W-H
equations (24) in the η-plane. For facilitating function-theoretic manipulations that
may be obscure in the η-plane, we introduce also the angular complex variable w
defined by

η = k cos(w + π) = −k cosw.(B1)

We also will use the notation

f+(η) = f+(−k cosw) =
�

f+(w).(B2)

The key point is the observation that the plus functions f+(η) involved in wedge

problems yield functions f+(−k cosw) =
�

f+(w), whose analytical continuations are

even functions of w in the w-plane, i.e.,
�

f+(−w) =
�

f+(w). In addition, the functions
�

f+(w) are also regular in the point w = 0. In fact, from both mathematical and
physical considerations, it is possible to ascertain that the function f+(η) has only

one branch point that is located in η = k. It follows that
�

f+(w) are meromorphic

functions of w, i.e.,
�

f+(w) = n(w)
d(w) with n(w) and d(w) being entire functions. From

(11)–(14) the functions f+(η) appear as functions of
√
τo − η =

√
2τo cos(

w
2 ) and

η = −τo cosw = τo(1− 2 cos2 w
2 ). It means that near η = τo, i.e., w = −π, we have

n(w) = a0 + a2w
2 + a4w

4 + · · · , d(w) = b0 + b2w
2 + b4w

4 + · · · (w ≈ −π).
(B3)

Since we are dealing with entire functions, (B3) holds for every w. It implies the even-
ness of f+(η) = n(w)/d(w) everywhere. Moreover, since the point w = 0 corresponds
to the regular point η = −τo, f+(−τo cosw) is regular in w = 0.

Conversely, the meromorphic functions f(−τo cosw) that are even in the w-plane
and regular in w = 0 do not involve the branch point η = −τo in the η-plane. In fact,
a Taylor expansion near w = 0 involves only even powers of w:

f(−k cosw) = c0 + c2w
2 + c4w

4 + · · · (w ≈ 0).(B4)

Since w =
√
τ2
o − η2s+(η), where the plus function s+(η) is given by

s+(η) =
1

jπ
√
τ2
o − η2

ln
j
√
τ2
o − η2 − τo − η

j
√
τ2
o − η2 + τo + η

,(B5)
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we can write

f(η) = c0 + c2(τ
2
o − η2)(s+(η))2 + c4(τ

2
o − η2)2(s+(η))4 + · · · (η ≈ −τo).(B6)

It follows that f(η) does not have a branch point in η = −τo. We can also extend our
discussion to minus functions f−(η) by relating them to plus function g+(η) through

f−(η) = g+(−η).(B7)

In the proper sheet it must be

ξ =
√
τ2
o − η2 =

√
τ2
o − (−η)2 = −τo sinw.(B8)

This equality holds only if w(−η) = −w(η) − π. Using the notation (B2), it follows
that g+(−η) = ĝ+(−w − π). This result also shows that a minus function does not
change value when in the w-plane w is substituted by −2π − w.

In the w-plane we have m = τo cos(w+Φ), and the GWHE (21) assumes the form

ĜΦ(w)X̂+(w) = Ŷ+(w + Φ).(B9)

Now the mapping

w =
Φ

π
w(B10)

yields

G̃Φ(w)X̃+(w) = Ỹ+(w + π),(B11)

where the following notation has been used:

G̃Φ(w) = ĜΦ(w) = ĜΦ

(
Φ

π
w

)
.(B12)

The mapping w = Φ
πw ensures that X̃+(w) and Ỹ+(w) are also even functions of w.

Consequently, in the plane η defined by η = −τo cosw = −τo cos π
Φw or

η = −τo cos
[
π

Φ
arccos

(
− η

τo

)]
, η = η(η) = −τo cos

[
Φ

π
arccos

(
− η

τo

)]
,(B13)

these functions do not involve the branch point η = −τo. In addition, we have

m = −η(−η),(B14)

Y+(−m) = Ŷ+(−w − Φ)= Ỹ+(−w − π)= Ỹ+(w(−η))= Ŷ+(w(−η))=Y +(−η).(B15)

It means that Y Φ+(−η) do not involve the branch point η = τo in the η-plane.
The singularities involved in the η-plane derive from the ones present in the η-

plane. They consist of (a) a finite number of poles (structural surface waves), (b)
branch points η = ±τo, and (c) a limited number of poles that arise from the geo-
metrical optic field. The limited number of the poles involved allows one to conclude
that X+(η) has a regular upper half-plane and that X−(η) = Y +(−η) has a regular
lower half-plane. Consequently, (24) constitutes a classical system of W-H equations.
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To facilitate the applications of the mapping η = η(η) defined in (B13), it is useful
to remember that the variables w and w are defined by

η = −τo cosw, η = −τo cosw, w =
Φ

π
w.(B16)

With these variables, we have ξ = −τo sinw, m = τo cos(w+Φ), and n = τo sin(w+Φ).
As an example, the pole mo = τo cos(Φ − ϕo) = τo cos(wo + Φ) implies wo = −ϕo or
wo = − π

Φϕo, which yields ηo = −τo coswo = −τo cos π
Φϕo.

Appendix C. Factorization of the scalar ξ. There are many ways to obtain
the factorization of ξ in the η-plane (see [22]). In this appendix we will obtain this
factorization by inspection, by observing that in the w-plane

ξ =
√
k2 − η2 = −k sinw =

(
−
√
k sin

1

2
w

) √
k sin Φ

πw

sin 1
2w

.(C1)

The factorization is thus accomplished. In fact

−
√
k sin Φ

πw

sin 1
2w

is a plus function since it is even in w and regular in w = 0. Here also
√
k sin 1

2w is
a minus function since it does not change when w is substituted by −2π − w. In the
η-plane we have

ξ−(η) =
√
k sin

1

2
w =

√
k
1− cosw

2
=

√
k + η

2
.(C2)
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Abstract. It is shown that every bounded strictly increasing smooth positive function of suffi-
ciently slow growth is the Jacobian of a radial hole creating equilibrium deformation for an appro-
priately constructed compressible nonlinearly elastic energy.
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1. Introduction. Explicit solutions of model equations can be useful in gain-
ing insight concerning the qualitative behavior of solutions to more general problems.
Unfortunately, the explicit construction of radial equilibrium deformations that create
new holes in a compressible nonlinearly elastic body has proven to be unexpectedly
complicated. Consequently, although cavitation is a common occurrence in rubbery
polymers, explicit solutions that exhibit this phenomenon are rare. The only such
solutions (modulo a radial null-Lagrangian; see Horgan [3] and Steigmann [15]) that
appear in the literature are for an elastic fluid (see, e.g., [3, 6]); for the Blatz–Ko
constitutive relation for foam rubbers, which was obtained, in two dimensions, by
Horgan and Abeyaratne [4] and, in three dimensions, by Tian-hu [18]; for a compress-
ible neo-Hookean material, which was obtained in [11] (see also [1, section 7.6]); and
for the generalized Carroll material, which was obtained by Murphy and Biwa [7] (see
also Shang and Cheng [12]).

The usual method of obtaining an explicit solution is to solve the differential
equation for a postulated model problem. In this paper we take a different approach;
we first posit deformations that, based upon prior results, have desired properties,
and then construct differential equations that have these deformations as solutions.
We show, in particular, that every function in a certain class of radial cavitating
deformations will satisfy an equilibrium equation that is appropriately chosen for that
particular function. The radial deformations we use are those for which the Jacobian
is an increasing radial function. The appropriate stored energy is then constructed as
the sum of two terms. The first is a homogeneous isotropic strongly elliptic stored-
energy function, while the second is a function of the Jacobian of the chosen radial
deformation. This second function is constructed so that the chosen deformation will
automatically satisfy the radial equilibrium equation. Further information on radial
cavitation is contained in the survey article by Horgan and Polignone [5].
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2. The constitutive relation. Let Ψ ∈ C2((0,∞)n) be a symmetric function.
We assume that the stored-energy function for the material is given by

W (F) = Φ(ν1, ν2, . . . , νn) := Ψ(ν1, ν2, . . . , νn) + h(ν1ν2 . . . νn)(2.1)

for all n×nmatrices F with positive determinant, where ν1, ν2, . . . , νn are the principal
stretches, i.e., the eigenvalues of the square root of FFT , and h ∈ C2((0,∞)) is a
function to be determined.

The problem of interest is to determine stationary points of the energy

E(w) =

∫
Bo

W (∇w(x)) dx(2.2)

among orientation-preserving injective w that satisfy the boundary condition w(x) =
λx for x ∈ ∂Bo, where Bo := B(0, Ro) ⊂ R

n is the ball of radius Ro centered at the
origin. For a radial deformation

w(x) =
r(R)

R
x, R := |x|,

r : [0, Ro] → [0,∞), the principal stretches at any point x ∈ Bo are given by (see,
e.g., [1]) ν1(x) = r′(R) and νi(x) = r(R)/R for i = 2, 3, . . . , n. Thus (2.2) reduces to1

E(r) =

∫ Ro

0

Φ

(
r′(R),

r(R)

R
,
r(R)

R
, . . . ,

r(R)

R

)
Rn−1 dR(2.3)

among those r : [0, Ro] → [0,∞) that satisfy r′ > 0 a.e. and r(Ro) = λRo. A
stationary point w of E corresponds to a solution r of the radial equilibrium equation

d

dR

[
Rn−1Φ,1

]
= (n− 1)Rn−2Φ,2 ,(2.4)

where

Φ,i= Φ,i

(
r′(R),

r(R)

R
,
r(R)

R
, . . . ,

r(R)

R

)

and Φ,i (v1, v2, . . . , vn) denotes differentiation of Φ with respect to its ith argument
(see [1, Theorem 7.3]). Also, if r(0) > 0, then the deformed ball contains a spherical
cavity, and r must satisfy the natural boundary condition

T (R) :=

[
R

r(R)

]n−1

Φ,1

(
r′(R),

r(R)

R
,
r(R)

R
, . . . ,

r(R)

R

)
→ 0 as R → 0+,(2.5)

which corresponds to the radial component of the Cauchy stress vanishing on the
cavity surface.

For energies of the form (2.1) the radial equilibrium equation (2.4) becomes

d

dR

[
Rn−1Ψ,1

]− (n− 1)Rn−2Ψ,2= −r(R)n−1 d

dR
h′
(
r′(R)

[
r(R)

R

]n−1
)

,(2.6)

1The energy E is equal to E multiplied by the volume of the unit ball in R
n.



MYRIAD RADIAL CAVITATING EQUILIBRIA 1463

and the natural boundary condition (2.5) reduces to

lim
R→0+

[
h′
(
r′(R)

[
r(R)

R

]n−1
)
+

[
R

r(R)

]n−1

Ψ,1

(
r′(R),

r(R)

R
, . . . ,

r(R)

R

)]
= 0.(2.7)

The main idea in this paper is that, given Ψ and r, (2.6) can be used to define
the function h. In order to accomplish this, we will need the following hypotheses on
the energy:

(En1) for all q > 0 and t > 0

Ψ,11 (q, t, t, . . . , t) > 0;

(En2) there exists λ∗ > 0 such that for every α ≥ λn∗

lim
t→+∞ t1−nΨ,1 (αt

1−n, t, t, . . . , t) = 0;

(En3) for every L > λn∗ there are constants β ∈ [0, n− 1) and K > 0 such that∣∣Ψ,2 (κt
1−n, t, t, . . . , t)

∣∣ ≤ Ktβ

for all λ∗ < t < ∞ and λn∗ ≤ κ ≤ L;
(En4) for q �= t define

R(q, t) := qΨ,1 (q, t, t, . . . , t)− tΨ,2 (q, t, t, . . . , t)

q − t
.(2.8)

Then for every µ > λ∗ we assume that there exists a Bµ > 0 such that

|R(q, t)| ≤ Bµ

for all λ∗ < t < µ and 0 < q < t.
Remark 2.1. Hypothesis (En1) is a consequence of the strong-ellipticity of the

energy Ψ. Hypotheses (En2)–(En4) are satisfied by many examples of stored ener-
gies (see [1, 16, 17]). In particular, Stuart [16, 17] requires a more stringent growth
hypothesis than (En4): 0 ≤ R(q, t) ≤ A+Btβ for 0 < q < t.

3. The construction. Let λcrit > λ0 > 0, and suppose that J ∈ C1([0,∞)) is
a strictly monotone increasing function that satisfies

J(0) = λn0 , lim
R→+∞

J(R) = λncrit,

∫ ∞

0

J ′(t)tn dt ≤ 1.(3.1)

Define ρ : [0,∞)→ [1,∞) by

ρ(R)n := 1 + n

∫ R

0

J(t)tn−1 dt(3.2)

so that

ρ′(R)
[
ρ(R)

R

]n−1

= J(R) for 0 < R < ∞.(3.3)

For future reference we note the following properties of ρ.
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Lemma 3.1. The function ρ given by (3.1) and (3.2) satisfies
(i) 0 < ρ′(R),

(ii) d
dR [

ρ(R)
R ] < 0,

(iii) ρ′(R) < ρ(R)
R ,

(iv) 0 < ρ′′(R),

(v) limR→+∞
ρ(R)
R = limR→+∞ ρ′(R) = λcrit.

Remark 3.2. Properties (i)–(v) are standard properties of radial minimizers and
radial equilibrium deformations (see, e.g., [1, 10, 16, 17]). Since our proof shows that
(3.1)3 is necessary and sufficient for (iii), it is now clear that (3.1)3 is also a standard
property of such deformations. Note also that by (3.2), ρ(0) = 1.

Theorem 3.3. Let Ψ satisfy (En1)–(En4) and let ρ be given by (3.1) and (3.2),
where λ0 > λ∗. Suppose that h ∈ C2((0,∞); (0,∞)) and satisfies

h′(J(R)) =
∫ R

0

(n− 1)sn−2

ρ(s)n−1
Ψ̂2

(
ρ′(s),

ρ(s)

s

)
ds

−Rn−1Ψ̂1

(
ρ′(R),

ρ(R)

R

)[
1

ρ(R)

]n−1

(3.4)

+

∫ R

0

sn−1Ψ̂1

(
ρ′(s),

ρ(s)

s

)
d

ds

[
1

ρ(s)n−1

]
ds

for R ∈ (0,∞), where Ψ̂i(ρ
′(s), ρ(s)s ) := Ψ,i (ρ

′(s), ρ(s)s , ρ(s)s , . . . , ρ(s)s ). Then ρ is a
solution of the radial equilibrium equation (2.6) on (0,∞) and satisfies the natural
boundary condition (2.7).

Remark 3.4. It follows from the proof of the above result (see (4.4)) that
h′(λn0 ) = 0.

Finally, we use ρ to construct a family of equilibrium deformations of Bo. For
any Ro > 0 and δ > 0

uδ(x) :=
rδ(|x|)
|x| x, rδ(R) :=

ρ(δR)

δ
(3.5)

is an orientation-preserving injective radial deformation of Bo, and, in view of (3.3),
(4.1), and [1, Lemma 4.1], J(δ|x|) is the Jacobian of uδ at any point x �= 0. Clearly,
each uδ is a cavitating deformation that creates a new hole of radius 1/δ at the center
of the ball and satisfies the boundary condition

uδ(x) = λx, λn = λ(δ,Ro)
n :=

[1 + n
∫ δRo

0
J(t)tn−1 dt]

(δRo)n
(3.6)

for x ∈ ∂Bo. Moreover, results in [1] show that each of these deformations is contained
in the Sobolev space W 1,p(Bo;R

n) for every p ∈ [1, n), while Theorem 3.3 shows that
uδ is a stationary point for the energy.

Theorem 3.5. Let W be given by (2.1) and satisfy (En1)–(En4). Let λ > λcrit >
λ0 > λ∗. Then there exists a unique δ = δ(λ) such that uδ, given by (3.1), (3.2),
(3.5), and (3.6), is a stationary point of the energy (2.2) and satisfies the boundary
condition uδ(x) = λx for x ∈ ∂Bo.

Proof. Let λ > λcrit. Then since ρ(0) = 1, it is clear from Lemma 3.1(ii) and (v)
that there exists a unique Rλ > 0 such that ρ(Rλ) = λRλ. Define δ = Rλ/Ro. Then
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by (3.5)

uδ(x) :=
ρ(δRo)

δRo
x =

ρ(Rλ)

Rλ
x = λx for |x| = Ro.

4. Proofs for the construction.
Proof of Lemma 3.1. We first note that (i) is clear from (3.2), (3.3), and the

nonnegativity of J . Next, if we divide (3.2) by Rn and use the quotient rule to
differentiate the result with respect to R, we find that[

ρ(R)

R

]n−1
d

dR

[
ρ(R)

R

]
=

(
nJ(R)Rn−1

)
Rn − nRn−1(1 + n

∫ R
0

J(t)tn−1 dt)

nR2n

=
J(R)Rn − (1 + n

∫ R
0

J(t)tn−1 dt)

Rn+1
(4.1)

=
−1 + ∫ R

0
J ′(t)tn dt

Rn+1
,

where an integration by parts has been used to deduce (4.1)3 from (4.1)2. It is now
clear from (4.1) that (3.1)3 is necessary and sufficient for (ii).

Next, if we differentiate ρ(R)/R with respect to R, we see that

d

dR

[
ρ(R)

R

]
=

1

R

[
ρ′(R)− ρ(R)

R

]
,(4.2)

and consequently (iii) is equivalent to (ii). Similarly, if we differentiate (3.3) with
respect to R, we discover that

ρ′′(R)
[
ρ(R)

R

]n−1

= J ′(R)− ρ′(R)(n− 1)

[
ρ(R)

R

]n−2
d

dR

[
ρ(R)

R

]
,(4.3)

and thus (iv) follows from (i), (ii), and the fact that J is increasing.
Finally, to obtain (v) we first note that (ii)–(iv) imply that both limits exist and

are finite. Thus, if we divide (3.2) by Rn and take the limit as R → +∞, we find,
using L’Hôpital’s rule and (3.1)2, that

lim
R→+∞

[
ρ(R)

R

]n
= lim
R→+∞

J(R) = λncrit,

which together with (3.3) yields (v).

Proof of Theorem 3.3. Assume for the moment that s 
→ sn−2Ψ̂2(ρ
′(s), ρ(s)s ) and

s 
→ sn−1Ψ̂1(ρ
′(s), ρ(s)s ) are integrable on (0, R), so that the right-hand side of (3.4)

is well defined on (0,∞). Then, if we differentiate (3.4) with respect to R, it is clear
that ρ satisfies the radial equilibrium equation (2.6) on (0,∞).

In order to show that s 
→ sn−2Ψ̂2(ρ
′(s), ρ(s)s ) is integrable on (0, R) we use (3.3),

(En3), ρ′ ≥ 0, and the fact that J(s) ∈ [λn0 , λ
n
crit] for each s to conclude that

sn−2

∣∣∣∣Ψ̂2

(
ρ′(s),

ρ(s)

s

)∣∣∣∣ = ρ(s)n−2

[
s

ρ(s)

]n−2
∣∣∣∣∣Ψ̂2

(
J(s)

[
ρ(s)

s

]1−n
,
ρ(s)

s

)∣∣∣∣∣
≤ Kρ(s)n−2

[
ρ(s)

s

]β−n+2

≤ Kρ(R)βsn−2−β ,
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which is clearly integrable on (0, R) since β < n− 1.

In order to prove that s 
→ sn−1Ψ̂1(ρ
′(s), ρ(s)s ) is integrable on (0, R), we will

show that

lim
s→0+

sn−1Ψ̂1

(
ρ′(s),

ρ(s)

s

)
= 0.(4.4)

Now, by (3.3),

sn−1Ψ̂1

(
ρ′(s),

ρ(s)

s

)
= ρ(s)n−1

[
s

ρ(s)

]n−1

Ψ̂1

(
J(s)

[
ρ(s)

s

]1−n
,
ρ(s)

s

)
.(4.5)

Moreover, since λn0 ≤ J(s) ≤ λncrit, hypothesis (En1) implies

Ψ̂1

(
λn0 t

1−n, t
) ≤ Ψ̂1

(
J(s)t1−n, t

) ≤ Ψ̂1

(
λncritt

1−n, t
)
, t :=

ρ(s)

s
.(4.6)

Since ρ → 1 and t → +∞ as s → 0+, (4.4) now follows from (En2), (4.5), and (4.6). In
addition, the natural boundary condition (2.7) follows from (3.4), (4.4), together with

the integrability of s 
→ sn−2Ψ̂2(ρ
′(s), ρ(s)s ) and s 
→ sn−1Ψ̂1(ρ

′(s), ρ(s)s ) on (0, R).
Finally, we need to show that the right-hand side of (3.4) is bounded as R → ∞

in order that h can be extended smoothly as a real-valued function on (λncrit,∞). Let
R1 > 0. Then by (3.4)

h′(J(R))− h′(J(R1)) =

∫ R

R1

(n− 1)sn−2

ρ(s)n−1
Ψ̂2

(
ρ′(s),

ρ(s)

s

)
ds

−Rn−1Ψ̂1

(
ρ′(R),

ρ(R)

R

)
ρ(R)1−n

+R1
n−1Ψ̂1

(
ρ′(R1),

ρ(R1)

R1

)
ρ(R1)

1−n

+

∫ R

R1

sn−1Ψ̂1

(
ρ′(s),

ρ(s)

s

)
d

ds

[
ρ(s)1−n

]
ds

(4.7)

for R ∈ (R1,∞). Now, it is clear from Lemma 3.1(v) that (4.7)2 is bounded as
R → ∞. Next, the sum of the integrals on the right-hand side of (4.7)1, (4.7)4 is
equal to

(n− 1)

∫ R

R1

s−1

[
s

ρ(s)

]n [
ρ(s)

s
Ψ̂2

(
ρ′(s),

ρ(s)

s

)
− ρ′(s)Ψ̂1

(
ρ′(s),

ρ(s)

s

)]
ds.(4.8)

However, by Lemma 3.1, λcrit < ρ(s)
s ≤ ρ(R1)

R1
=: µ for R1 ≤ s < ∞ and hence, in

view of (En4), the absolute value of (4.8) is bounded by a constant times∫ R

R1

1

s

[
ρ(s)

s
− ρ′(s)

]
ds =

∫ R

R1

− d

ds

[
ρ(s)

s

]
ds

=
ρ(R1)

R1
− ρ(R)

R
,

which is bounded as R → ∞.
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5. The energy: Uniqueness. In this section we note that, whenever the func-
tion h is convex, the cavitating radial equilibrium solution we have constructed is
the unique global minimizer of the energy among radial deformations. The following
three results can be found in Sivaloganathan [13] (see also [14]).

Proposition 5.1. Assume that

Φ̂11(q, t) > 0(5.1)

for all q > 0 and t > 0. Let rc ∈ C1([0,∞)) ∩ C2((0,∞)) be a cavitating equilibrium
solution; i.e., rc satisfies (2.4) on (0,∞), (2.5), rc(0) > 0, and r′c > 0 a.e. Suppose
that Ro > 0, and define λ = rc(Ro)/Ro. Let r ∈ Aλ,

Aλ := {r ∈ W 1,1((0, Ro)) : r(Ro) = λRo, r(0) ≥ 0, r′ > 0 a.e.},(5.2)

satisfy

0 < lim sup
R→0+

[
r(R)

R

]
.(5.3)

Then

E(rc) < E(r)

unless r ≡ rc, where E is given by (2.3).
Corollary 5.2. Let λ > 0 and Ro > 0. Then, under the hypotheses of the

previous proposition, there exists at most one cavitating equilibrium solution rc ∈
C1([0,∞)) ∩ C2((0,∞)) that satisfies rc(Ro) = λRo.

Remarks. 1. The statement of Theorem 6.8 in [13] actually requires that (5.3) be
satisfied with lim sup replaced by lim inf. However, the remark after the proof of [13,
Theorem 6.9] notes that the result remains valid under this weaker hypothesis.

2. Theorems 6.8 and 6.9 in [13] also appear to require the weakened Baker–
Ericksen inequality R(q, t) ≥ 0, where R is given by (2.8). However, an examination
of the proofs in [13, 14] shows that this inequality is used only to extend a solution
of the radial equilibrium equation from (0, Ro) to (0,∞), a step not needed in our
presentation.

Proof of Corollary 5.2. Let λ > 0 and Ro > 0. If rc is any cavitating equilibrium
solution that satisfies rc(Ro) = λRo, then rc ∈ Aλ and rc satisfies (5.3). Thus, by the
previous proposition, two distinct cavitating equilibrium solutions rc1 and rc2 would
satisfy E(rc2) < E(rc1) and E(rc1) < E(rc2), which is a contradiction.

Corollary 5.3. Let λ > 0 and Ro > 0. Suppose that rc ∈ C1([0,∞)) ∩
C2((0,∞)) is a cavitating equilibrium solution that satisfies rc(Ro) = λRo. Then,
under the hypotheses of the previous proposition, E(rc) < E(rh), where rh(R) := λR.

Proof. For any λ > 0 and Ro > 0 the homogeneous deformation rh(R) := λR
satisfies rh ∈ Aλ and (5.3). The result then follows from Proposition 5.1.

In order to make use of Proposition 5.1 we will need the following additional
hypothesis on the energy:

(En5) there exist φ, ψ : (0,∞) → R and Ψ∗ ∈ C((0,∞)n;R), with φ > 0, ψ ≥ 0,
and Ψ ≥ 0, that satisfy

Ψ(ν1, ν2, . . . , νn) =

n∑
i=1

φ(νi) +
∑
i �=j

ψ(νiνj) + Ψ∗(ν1, ν2, . . . , νn),
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where t 
→ Ψ∗(t, t, . . . , t) is bounded on (0, λ∗] and ψ ≡ 0 if n = 2.
We now use Proposition 5.1 to show that if our equilibrium solutions are su-

persolutions for the energy Ψ, then they are energy minimizers among the radial
deformations.

Theorem 5.4. Let Ψ satisfy (En1)–(En5) and let ρ be given by (3.1) and (3.2),
where λ0 > λ∗ and J ′ > 0 on [0,∞). Suppose that

d

dR

[
Rn−1Ψ̂1

(
ρ′(R),

ρ(R)

R

)]
< (n− 1)Rn−2Ψ̂2

(
ρ′(R),

ρ(R)

R

)
.(5.4)

Finally, suppose in addition that h ∈ C2((0,∞); (0,∞)) satisfies (3.4) and h′′(s) ≥ 0
for s ∈ (0, λn0 ) ∪ [λncrit,∞). Then the radial cavitating deformation rδ(λ) given by
Theorem 3.5 satisfies

E(rδ(λ)) < E(r)

for every r ∈ Aλ (see (5.2)).
Proof. We first show that h′′ is nonnegative on its domain of definition. Let

s ∈ (0,∞). If s /∈ [λn0 , λ
n
crit), then h′′(s) ≥ 0, by hypothesis. If s ∈ [λn0 , λ

n
crit), then

by (3.1) there exists an R ∈ [0,∞) such that J(R) = s. Therefore, by (3.3) and the
radial equilibrium equation (2.6),

d

dR

[
Rn−1Ψ,1

]− (n− 1)Rn−2Ψ,2= −ρ(R)n−1h′′ (J(R))J ′(R).(5.5)

The desired result now follows from (5.4), (5.5), and the assumed positivity of ρ and
J ′.

Now let λ > λcrit, r ∈ Aλ, and suppose that

0 < lim sup
R→0+

[
r(R)

R

]
.(5.6)

Then, by Proposition 5.1, all we need show is that (5.1) is satisfied. If we differentiate
(2.1) twice with respect to ν1 and set ν1 = q and ν2 = ν3 = · · · = νn = t, we find that

Φ̂11(q, t) = Ψ̂11(q, t) + t2n−2h′′(qtn−1).

Consequently, in view of (En1), a sufficient condition for (5.1) is that h′′ be nonneg-
ative on its domain of definition, which has previously been shown.

Before proceeding further we note that the convexity of h, together with h′(λn0 ) =
0 (see the remark following Theorem 3.3), implies that h is bounded below by h(λn0 )
on (0,∞).

Next, suppose alternatively that (5.6) is not satisfied and therefore that

0 = lim
R→0+

[
r(R)

R

]
.

Then, in particular, r(0) = 0, and hence∫ Ro

0

nr′rn−1dR =

∫ Ro

0

d

dR

[
rn
]
dR = r(Ro)

n = λnRno = n

∫ Ro

0

λnRn−1dR.(5.7)

Now, in view of the convexity of h,

h

(
r′(R)

[
r(R)

R

]n)
≥ h(λn) +

(
r′(R)

[
r(R)

R

]n
− λn

)
h′(λn),
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and consequently, by (5.7),

∫ Ro

0

h

(
r′(R)

[
r(R)

R

]n−1
)

Rn−1dR ≥
∫ Ro

0

h(λn)Rn−1dR.(5.8)

If E(r) = +∞, we are done. If instead E(r) < ∞, then by (En5) and since h is
bounded below,

R 
→ Rn−1φ

(
r(R)

R

)
∈ L1((0, Ro)),(5.9)

R 
→ Rn−1ψ

([
r(R)

R

]2)
∈ L1((0, Ro)).(5.10)

We claim that

0 = lim inf
R→0+

RnΨ̂

(
r(R)

R
,
r(R)

R

)
.(5.11)

Otherwise, RnΨ̂
( r(R)

R , r(R)
R

) ≥ K > 0 for small R, and thus

Rn−1Ψ̂

(
r(R)

R
,
r(R)

R

)
≥ K

R
.

This inequality, together with (En5), implies

nRn−1φ

(
r(R)

R

)
+
1

2
n(n− 1)Rn−1ψ

([
r(R)

R

]2)
≥ K

R
− Ψ̂∗

(
r(R)

R
,
r(R)

R

)
,

which, since r(R)/R and hence Ψ∗ are bounded, contradicts (5.9) or (5.10).
Next, Ψ,11 > 0. Therefore Ψ̂(q, t) ≥ Ψ̂(t, t) + (q − t)Ψ̂,1 (t, t), and hence

Ψ̂

(
r′(R),

r(R)

R

)
≥ Ψ̂

(
r(R)

R
,
r(R)

R

)
+

(
r′(R)− r(R)

R

)
Ψ̂,1

(
r(R)

R
,
r(R)

R

)

=
1

n
R1−n d

dR

[
RnΨ̂

(
r(R)

R
,
r(R)

R

)]
,

which, when multiplied by nRn−1 and integrated over (Rk, Ro), yields∫ Ro

Rk

nΨ̂

(
r′(R),

r(R)

R

)
Rn−1dR ≥

[
Rno Ψ̂ (λ, λ)

]
−
[
Rnk Ψ̂

(
r(Rk)

Rk
,
r(Rk)

Rk

)]
.(5.12)

In particular, choose a sequence Rk → 0+ as k → ∞ so that Rnk Ψ̂
( r(Rk)

Rk
, r(Rk)

Rk

)
converges to its lim inf, which is zero by (5.11). Then, if we let k → ∞ in (5.12) and
apply the dominated convergence theorem, we find that∫ Ro

0

Ψ̂

(
r′(R),

r(R)

R

)
Rn−1dR ≥

∫ Ro

0

Ψ̂ (λ, λ)Rn−1dR,

which, together with (2.1) and (5.8), yields E(r) ≥ E(rh). The desired result now
follows from Corollary 5.3.
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6. Examples.

6.1. Ogden materials. In order to illustrate the form that hypotheses (En1)–
(En5) take for a well-analyzed class of materials, we now restrict our attention to
three dimensions and consider materials whose constitutive relation is of the form

Ψ(λ1, λ2, λ3) = φ(λ1) + φ(λ2) + φ(λ3) + ψ(λ1λ2) + ψ(λ2λ3) + ψ(λ1λ3),(6.1)

where φ, ψ ∈ C2((0,∞)). (Such constitutive relations were used by Ogden [8] to
match theory with experiments.)

For such materials we make the following assumptions (cf. [1, 16, 13, 14, 9] and
especially [17, 10]):

(Og1) for all s > 0

φ′′(s) > 0, ψ′′(s) ≥ 0;

(Og2) there exist β ∈ [1, 2), γ ∈ [0, 1), and B > 0 such that for every s > 0

|φ′(s)| ≤ B
[
s−γ + sβ

]
, |ψ′(s)| ≤ B[s−γ + s(β−1)/2].

We now show that (Og1) and (Og2) imply (En1)–(En5). First, it is clear that
(En5) is satisfied with Ψ∗ ≡ 0. Next, we differentiate (6.1) with respect to λ1 and let
λ1 = q and λ2 = λ3 = t to get

Ψ̂1(q, t) = φ′(q) + 2tψ′(qt),

Ψ̂11(q, t) = φ′′(q) + 2t2ψ′′(qt).
(6.2)

Then (Og1) and (6.2)2 yield (En1). If we differentiate (6.1) with respect to λ2 and
let λ1 = q and λ2 = λ3 = t, we get

Ψ̂2(q, t) = φ′(t) + qψ′(qt) + tψ′(t2),(6.3)

and hence, when q = κt−2, we find that

Ψ̂2(κt
−2, t) = φ′(t) + κt−2ψ′(κt−1) + tψ′(t2).(6.4)

In order to obtain (En3) we take the absolute value of (6.4) and use the triangle
inequality and (Og2) to conclude that

|Ψ̂2(κt
−2, t)| ≤ B[(t−γ + tβ) + (κ1−γtγ−2 + κ(β+1)/2t−(β+3)/2) + (t1−2γ + tβ)],

which implies (En3). Similarly, if we take q = αt−2 in (6.2)1 and use the triangle
inequality and (Og2), we obtain

|t−2Ψ̂1(αt
−2, t)| ≤ B[α−γt2(γ−1) + αβt−2(β+1) + 2α−γtγ−1 + 2α(β−1)/2t−(β+1)/2],

which approaches zero as t → ∞ since γ < 1. This implies (En2).
In order to obtain (En4) we first use (6.2)1 and (6.3) to get

R(q, t) = tφ′(t)− qφ′(q)
t− q

+
t2ψ′(t2)− qtψ′(qt)

t− q
.(6.5)

We then fix µ > λ∗ and consider two cases: 1
2λ∗ ≤ q < t < µ and 0 < q < 1

2λ∗ <
λ∗ < t < µ.
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Case I. 0 < q < 1
2λ∗ < λ∗ < t < µ. Then |t − q|−1 ≤ 2/λ∗, and hence (6.5)

together with (Og2) and the triangle inequality yield

|R(q, t)| ≤ 2B

λ∗
[t1−γ + tβ+1 + q1−γ + qβ+1 + t2(1−γ) + tβ+1 + (qt)1−γ + (qt)(β+1)/2],

which is bounded for 0 < q < t < µ since γ < 1. This implies (En4) for small q.
Case II. 1

2λ∗ ≤ q < t < µ. Then (6.5) together with the mean-value theorem

applied to the functions φ̃(s) := sφ′(s) and ψ̃(s) := sψ′(s) yield

R(q, t) = φ̃′(c∗) + tψ̃′(ĉ)(6.6)

for some c∗ ∈ (q, t) and ĉ ∈ (qt, t2). Thus, since φ and ψ are C2, the function |R| is
bounded when 1

2λ∗ ≤ q < t < µ. Therefore (En4) is also valid for larger q.

6.2. Deformations. It is easy to construct radial cavitating deformations: the
specification of a strictly monotone increasing radial Jacobian J(R) that satisfies (3.1)
suffices. The content of Theorem 3.3 is that such a deformation will satisfy the radial
equilibrium equation for every stored energy function of the form (6.1) that satisfies
(Og1) and (Og2), provided h is defined by (3.4). The difficulty is then ensuring that
this equilibrium deformation is the unique radial minimizer of the energy, i.e., that
the combination of deformation and stored energy satisfies (5.4).

One method of obtaining a family of such deformations is to perturb from a known
solution. We illustrate this idea when the initial solution is isochoric. The resulting
deformations will be nearly incompressible, as is expected in many elastomers (see,
e.g., [2] or [8]), since the resulting energy will heavily penalize even small changes in
volume. First, let’s restrict our attention to the energy

Ψ(λ1, λ2, λ3) := φ(λ1) + φ(λ2) + φ(λ3),(6.7)

where φ satisfies (Og1), (Og2) and φ′ is a convex function. (For example, φ(t) = tβ+1

with β ∈ [1, 2).) Then (5.4) reduces to

d

dR

[
R2φ′(ρ′(R))

]
< 2Rφ′

(
ρ(R)

R

)

or, equivalently,

Rφ′′(ρ′(R))ρ′′(R) < 2

[
φ′
(
ρ(R)

R

)
− φ′(ρ′(R))

]
.(6.8)

However, the mapping t 
→ φ′(t) is convex:

φ′
(
ρ(R)

R

)
≥ φ′(ρ′(R)) + φ′′(ρ′(R))

[
ρ(R)

R
− ρ′(R)

]
,

and so, in view of (6.8), a sufficient condition for (5.4) is that the function ρ satisfies

Rρ′′(R) < 2

[
ρ(R)

R
− ρ′(R)

]
(6.9)

(or, equivalently, d
dR trace(F) > 0).



1472 J. SIVALOGANATHAN AND S. J. SPECTOR

Now, let λ0 > 0, and suppose that θ : [0, 1] → [0, 1] is continuous with θ > 0 on
(0, 1] and that

θ(s) = o(s6) as s → 0+.(6.10)

Then for each s ∈ [0, 1] define

ρ(R, s)3 := 1 + 3

∫ R

0

J(t, s)t2 dt,(6.11)

J(R, s) := λ3
0 + θ(s)(1− e−sR)(6.12)

and note that

JR(R, s) = sθ(s)e−sR, sθ(s)

∫ ∞

0

t3e−st dt =
6θ(s)

s3
,(6.13)

where the subscript R denotes the partial derivative with respect to R. (If λ0 = 1,
the deformation at s = 0 is isochoric.) By (6.13), for each s > 0, R 
→ J(R, s) is
strictly monotone increasing and satisfies (3.1)3, provided 0 < θ(s) ≤ s3/6, which is
a consequence of (6.10) for all sufficiently small s.

Next, by (4.2), (4.3), and (6.13)1,

Rρ′′(R)
[
ρ(R)

R

]2
= sθ(s)Re−sR − 2ρ′(R)

[
ρ(R)

R

] [
ρ′(R)− ρ(R)

R

]
,

which shows that (6.9) is equivalent to

sθ(s)Re−sR < 2

[
ρ(R)

R

] [
ρ(R)

R
− ρ′(R)

]2
.(6.14)

However, in view of (4.1), (4.2), and (6.13)1,

R6

[
ρ(R)

R

]4 [
ρ(R)

R
− ρ′(R)

]2
=

[
1− sθ(s)

∫ R

0

t3e−st dt

]2

,

so that (6.14) is the same as

sθ(s)R7

[
ρ(R)

R

]3
< 2esR

[
1− sθ(s)

∫ R

0

t3e−st dt

]2

.(6.15)

Finally, we note that in view of (6.10), θ(s) ≤ s3/12 for s sufficiently small, and
consequently, by (6.13)2,

sθ(s)

∫ R

0

t3e−st dt ≤ 1

2
(6.16)

for small s. In addition, et ≥ (1+t7)/7! and hence, upon multiplying (6.15) by (sR)−7

and making use of (6.16), it suffices to show

2
θ(s)

s6

[
ρ(R)

R

]3
<

1

7!

[
(sR)−7 + 1

]
(6.17)

in order to obtain (6.15). However, for small s, (6.17) is a consequence of (6.10)–(6.12),
which completes the example.



MYRIAD RADIAL CAVITATING EQUILIBRIA 1473

REFERENCES

[1] J. M. Ball, Discontinuous equilibrium solutions and cavitation in nonlinear elasticity, Philos.
Trans. Roy. Soc. London Ser. A, 306 (1982), pp. 557–611.

[2] A. N. Gent and P. B. Lindley, Internal rupture of bonded rubber cylinders in tension, Proc.
Roy. Soc. London Ser. A, 249 (1958), pp. 195–205.

[3] C. O. Horgan, Void nucleation and growth for compressible non-linearly elastic materials: An
example, Internat. J. Solids Structures, 29 (1992), pp. 279–291.

[4] C. O. Horgan and R. Abeyaratne, A bifurcation problem for a compressible nonlinearly
elastic medium: Growth of a microvoid, J. Elasticity, 16 (1986), pp. 189–200.

[5] C. O. Horgan and D. A. Polignone, Cavitation in nonlinearly elastic solids: A review,
Appl. Mech. Rev., 48 (1995), pp. 471–485.

[6] M. R. Lancia, P. Podio-Guidugli, and G. Vergara Caffarelli, Gleanings of radial cavi-
tation, J. Elasticity, 44 (1996), pp. 183–192.

[7] J. G. Murphy and S. Biwa, Nonmonotonic cavity growth in finite, compressible elasticity,
Internat. J. Solids Structures, 34 (1997), pp. 3859–3872.

[8] R. W. Ogden, Large deformation isotropic elasticity: On the correlation of theory and ex-
periment for compressible rubberlike solids, Proc. Roy. Soc. London Ser. A, 328 (1972),
pp. 567–583.

[9] K. A. Pericak-Spector and S. J. Spector, Nonuniqueness for a hyperbolic system: Cavita-
tion in elastodynamics, Arch. Ration. Mech. Anal., 101 (1988), pp. 293–317.

[10] K. A. Pericak-Spector and S. J. Spector, Dynamic cavitation with shocks in nonlinear
elasticity, Proc. Roy. Soc. Edinburgh Sect. A, 127 (1997), pp. 837–857.

[11] K. A. Pericak-Spector, J. Sivaloganathan, and S. J. Spector, An explicit radial cavitation
solution in nonlinear elasticity, Math. Mech. Solids, 7 (2002), pp. 87–93.

[12] X.-C. Shang and C.-J. Cheng, Exact solution for cavitated bifurcation for compressible hy-
perelastic materials, Internat. J. Engrg. Sci., 39 (2001), pp. 1101–1117.

[13] J. Sivaloganathan, A field theory approach to stability of radial equilibria in nonlinear elas-
ticity, Math. Proc. Cambridge Philos. Soc., 99 (1986), pp. 589–604.

[14] J. Sivaloganathan, Uniqueness of regular and singular equilibria for spherically symmetric
problems of nonlinear elasticity, Arch. Ration. Mech. Anal., 96 (1986), pp. 97–136.

[15] D. J. Steigmann, Cavitation in membranes—An example, J. Elasticity, 28 (1992), pp. 277–287.
[16] C. A. Stuart, Radially symmetric cavitation for hyperelastic materials, Anal. Nonlinéaire, 2
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Abstract. In time reversal acoustics experiments, a signal is emitted from a localized source,
recorded at an array of receivers, time reversed, and finally reemitted into the medium. A celebrated
feature of time reversal experiments is that the refocusing of the reemitted signals at the location
of the initial source is improved when the medium is heterogeneous. Contrary to intuition, multiple
scattering enhances the spatial resolution of the refocused signal and allows one to beat the diffraction
limit obtained in homogeneous media. This paper presents a quantitative explanation of time reversal
and other more general refocusing phenomena for general classical waves in heterogeneous media.
The theory is based on the asymptotic analysis of the Wigner transform of wave fields in the high
frequency limit. Numerical experiments complement the theory.

Key words. waves in random media, time reversal, refocusing, radiative transfer equations,
diffusion approximation
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1. Introduction. In time reversal experiments, acoustic waves are emitted from
a localized source, recorded in time by an array of receiver-transducers, time reversed,
and retransmitted into the medium, so that the signals recorded first are reemitted last
and vice versa [7, 8, 13, 16, 18, 19]. The retransmitted signal refocuses at the location
of the original source, with a modified shape that depends on the array of receivers.
The salient feature of these time reversal experiments is that refocusing is much better
when wave propagation occurs in complicated environments than in homogeneous
media. Time reversal techniques with improved refocusing in heterogeneous media
have found important applications in medicine, nondestructive testing, underwater
acoustics, and wireless communications (see the above references). It has also been
applied to imaging in weakly random media [4, 13].

A schematic depiction of the time reversal procedure is given in Figure 1.1. Early
experiments in time reversal acoustics are described in [7]; see also the more recent
papers [11, 12, 13]. A very qualitative explanation for the better refocusing observed
in heterogeneous media is based on multipathing. Since waves can scatter off a larger
number of heterogeneities, more paths coming from the source reach the recording ar-
ray, thus more is known about the source by the transducers than in a homogeneous
medium. The heterogeneous medium plays the role of a lens that widens the aperture
through which the array of receivers sees the source. Refocusing is also qualitatively
justified by ray theory (geometrical optics). The phase shift caused by multiple scat-
tering is exactly compensated when the time reversed signal follows the same path
back to the source location. This phase cancellation happens only at the source lo-
cation. The phase shift along paths leading to other points in space is essentially
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Source

timeTransducers
Array

Recorded signals in time

Random Scatterers

Source

timeTransducers
Array

Recorded signals in time

Random Scatterers

Fig. 1.1. The time reversal procedure. Top: Propagation of signal and measurements in time.
Bottom: Time reversal of recorded signals and back-propagation into the medium.

random. The interference of multiple paths will thus be constructive at the source
location and destructive anywhere else. This explains why refocusing at the source
location is improved when the number of scatterers is large.

As convincing as they are, the above explanations remain qualitative and do not
allow us to quantify how the refocused signal is modified by the time reversal proce-
dure. Quantitative justifications require more careful analysis of wave propagation.
The first quantitative description of time reversal was obtained in [5] in the framework
of randomly layered media (see also the recent work [10]). That paper provides the
first mathematical explanation of two of the most prominent features of time reversal:
heterogeneities improve refocusing, and refocusing occurs for almost every realization
of the random medium. The first multidimensional quantitative description of time
reversal was obtained in [3] for the parabolic approximation, i.e., for waves that prop-
agate in a privileged direction with no backscattering (see also [23, 24] for further
analysis of time reversal in this regime). That paper shows that the random medium
indeed plays the role of a lens. The back-propagated signal behaves as if the initial
array were replaced by another one with a much bigger effective aperture. In a slightly
different context, a recent paper [2] analyzes time reversal in ergodic cavities. There,
wave mixing is created by reflection at the boundary of a chaotic cavity, which plays
a role similar to that of the heterogeneities in a heterogeneous medium.

This paper generalizes the results of [3] to the case of general classical waves
propagating in weakly fluctuating random media. The main results are briefly sum-
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marized as follows. We first show that refocusing in time reversal experiments may
be understood in the following three-step more general framework:

(i) A signal propagating from a localized source is recorded at a single time T > 0
by an array of receivers.

(ii) The recorded signal is processed at the array location.
(iii) The processed signal is emitted from the array and propagates in the same

medium for the same time duration T .
The first main result is that the resulting signal will refocus at the location of the
original source for a large class of waves and a large class of processings. The ex-
periments described above correspond to the specific processing of acoustic waves in
which pressure is kept unchanged and the sign of the velocity field is reversed.

The second main result is a quantitative description of the repropagated signal
at time T . We show that the repropagated signal uB(ξ) at a point ξ near the source
location can be written in the high frequency limit as the following convolution of the
original source S:

uB(ξ) = (F ∗ S)(ξ).(1.1)

The kernel F depends on the location of the recording array and on the signal pro-
cessing. The quality of the refocusing depends on the spatial decay of F . It turns
out that F can be expressed in terms of the Wigner transform [25] of two wave fields.
The decay properties of F depend on the smoothness of the Wigner transform in the
phase space. The Wigner transform in random media has been extensively studied
[9, 25, 27], especially in the high frequency regime, when the wavelength of the initial
signal is small compared to the distance of propagation. It satisfies a radiative trans-
port equation, which is used to describe the evolution of the energy density of waves
in random media [17, 25, 26, 27]. The transport equations possess a smoothing effect
so that the Wigner distribution becomes less singular in random media, which implies
a stronger decay of the convolution kernel F and a better refocusing. The diffusion
approximation to the radiative transport equations provides simple reconstruction
formulas that can be used to quantify the refocusing quality of the back-propagated
signal. This construction applies to a large class of classical waves—acoustic, electro-
magnetic, elastic, and others—and allows for a large class of signal processings at the
recording array.

Some results of this paper have been announced in [1]. The concept of single-time
time reversal emerged during early discussions with Knut Solna. We also stress that
the important property of self-averaging of the time reversed signal (the refocused sig-
nal is almost independent of the realization of the random medium) is not analyzed in
this paper. A formal explanation is given in [3, 23, 24] in the parabolic approximation.
Self-averaging for classical waves will be addressed elsewhere.

This paper is organized as follows. Section 2 recalls the classical setting of time
reversal and introduces single-time time reversal. The retransmitted signal and its
relation to the Wigner transform are analyzed in section 3. A quantitative descrip-
tion of acoustic wave refocusing in weakly fluctuating random media is obtained by
asymptotic analysis; see (3.42) and (3.43) for an explicit expression in the diffusion
approximation. Section 4 generalizes the results in two ways. First, a more general
signal processing at the recording array is allowed, such as recording only the pressure
field of acoustic waves and not the velocity field. Second, the retransmission scheme
is applied to more general waves, and the role of polarization and mode coupling is
explained.
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2. Classical time reversal and single-time time reversal. Propagation of
acoustic waves is described by a system of equations for the pressure p(t,x) and
acoustic velocity v(t,x):

ρ(x)
∂v

∂t
+∇p = 0,(2.1)

κ(x)
∂p

∂t
+∇ · v = 0,

with suitable initial conditions and where ρ(x) and κ(x) are density and compress-
ibility of the underlying medium, respectively. These equations can be recast as the
following linear hyperbolic system:

A(x)
∂u

∂t
+Dj ∂u

∂xj
= 0, x ∈ R

3,(2.2)

with the vector u = (v, p) ∈ C
4. The matrix A = Diag(ρ, ρ, ρ, κ) is positive definite.

The 4×4 matricesDj , j = 1, 2, 3, are symmetric and given byDj
mn = δm4δnj+δn4δmj .

We use the Einstein convention of summation over repeated indices.
The time reversal experiments in [7] consist of two steps. First, the direct problem

A(x)
∂u

∂t
+Dj ∂u

∂xj
= 0, 0 ≤ t ≤ T,(2.3)

u(0,x) = S(x),

with a localized source S centered at a point x0, is solved. The signal is recorded
during the period of time 0 ≤ t ≤ T by an array of receivers located at Ω ⊂ R

3.
Second, the signal is time reversed and reemitted into the medium. Time reversal
is described by multiplying u = (v, p) by the matrix Γ = Diag(−1,−1,−1, 1). The
back-propagated signal solves

∂u

∂t
+A−1(x)Dj ∂u

∂xj
=

1

T
R(2T − t,x), T ≤ t ≤ 2T,(2.4)

u(T,x) = 0,

with the source term

R(t,x) = Γu(t,x)χ(x).(2.5)

The function χ(x) is either the characteristic function of the set where the recording
array is located, or some other function that allows for possibly space-dependent
amplification of the retransmitted signal.

The back-propagated signal is then given by u(2T,x). We can decompose it as

u(2T,x) =
1

T

∫ T

0

ds w(s,x; s),(2.6)

where the vector-valued function w(t,x; s) solves the initial value problem

A(x)
∂w(t,x; s)

∂t
+Dj ∂w(t,x; s)

∂xj
= 0, 0 ≤ t ≤ s,

w(0,x; s) = R(s,x).
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p     (2T,x)

p     (2T,x)

Fig. 2.1. The single-time time reversal procedure. Here, pt denotes ∂p
∂t
.

We deduce from (2.6) that it is sufficient to analyze the refocusing properties of
w(s,x; s) for 0 ≤ s ≤ T to obtain those of u(2T,x). For a fixed value of s, we call
the construction of w(s,x; s) single-time time reversal.

We define single-time time reversal more generally as follows. The direct problem
(2.3) is solved until time t = T to yield u(T−,x). At time T , the signal is recorded
and processed. The processing is modeled by an amplification function χ(x), a blur-
ring kernel f(x), and a (possibly spatially varying) time reversal matrix Γ. After
processing, we have

u(T+,x) = Γ(f ∗ (χu))(T−,x)χ(x).(2.7)

The processed signal then propagates for the same time duration T :

A(x)
∂u

∂t
+Dj ∂u

∂xj
= 0, T ≤ t ≤ 2T,(2.8)

u(T+,x) = Γ(f ∗ (χu))(T−,x)χ(x).

The main questions are whether u(2T,x) refocuses at the location of the original
source S(x) and how the original signal has been modified by the time reversal proce-
dure. Notice that in the case of full (Ω = R

3) and exact (f(x) = δ(x)) measurements
with Γ = Diag(−1,−1,−1, 1), the time-reversibility of first-order hyperbolic systems
implies that u(2T,x) = ΓS(x), which corresponds to exact refocusing. When only
partial measurements are available, we shall see in the following sections that u(2T,x)
is closer to ΓS(x) when propagation occurs in a heterogeneous medium than in a ho-
mogeneous medium.

The pressure field p(t,x) satisfies the following scalar wave equation:

∂2p

∂t2
− 1

κ(x)
∇ ·
(

1

ρ(x)
∇p
)

= 0.(2.9)

A schematic description of the single-time procedure for the wave equation is presented
in Figure 2.1. This is the equation solved in the numerical experiments presented in
this paper. The details of the numerical setting are described in the appendix. A
numerical experiment for the single-time time reversal procedure is shown in Fig-
ure 2.2. In the numerical simulations, there is no blurring, f(x) = δ(x), and the
array of receivers is the domain Ω = (−1/6, 1/6)2. (χ(x) is the characteristic function
of Ω.) Note that the truncated signal does not retain much information about the
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Fig. 2.2. Numerical experiment using the single-time time reversal procedure. Top left: initial
condition p(0,x), a peaked Gaussian of maximal amplitude equal to 1. Top right: forward solution
p(T−,x), of maximal amplitude 0.04. Bottom right: recorded solution p(T+,x), of maximal am-
plitude 0.015 on the domain Ω = (−1/6, 1/6)2. Bottom left: back-propagated solution p(2T,x), of
maximal amplitude 0.07.

ballistic part of the original wave (the part that propagates without scattering with
the underlying medium). If we were in three space dimensions, the truncated signal
in a homogeneous medium would even be identically zero, and no refocusing would
be observed. The interesting aspect of time reversal is that a coherent signal emerges
at time 2T out of a signal at time T+ that seems to have no useful information.

3. Theory of time reversal in random media. Our objective now is to
present a theory that explains in a quantitative manner the refocusing properties
described in the preceding sections. We consider here the single-time time reversal for
acoustic waves. Generalizations to other types of waves and more general processings
in (2.8) are given in section 4.

3.1. Refocused signal. We recall that the single-time time reversal procedure
consists of letting an initial pulse S(x) propagate according to (2.3) until time T ,

u(T−,x) =
∫

R
3

G(T,x; z)S(z)dz,
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where G(T,x; z) is the Green’s matrix solution of

A(x)
∂G(t,x;y)

∂t
+Dj ∂G(t,x;y)

∂xj
= 0, 0 ≤ t ≤ T,(3.1)

G(0,x;y) = Iδ(x− y).

At time T , the “intelligent” array reverses the signal. For acoustic pulses, this means
keeping pressure unchanged and reversing the sign of the velocity field. The array
of receivers is located in Ω ⊂ R

3. The amplification function χ(x) is an arbitrary
bounded function supported in Ω, such as its characteristic function (χ(x) = 1 for
x ∈ Ω and χ(x) = 0 otherwise) when all transducers have the same amplification
factor. We also allow for some blurring of the recorded data modeled by a convolution
with a function f(x). The case f(x) = δ(x) corresponds to exact measurements.
Finally, the signal is time reversed, that is, the direction of the acoustic velocity is
reversed. Here, the operator Γ in (2.7) is simply multiplication by the matrix

Γ = Diag(−1,−1,−1, 1).(3.2)

The signal at time T+ after time reversal then takes the form

u(T+,x) =

∫
R

6

ΓG(T,y′; z)χ(x)χ(y′)f(x− y′)S(z)dzdy′.(3.3)

The last step (2.8) consists of letting the time reversed field propagate through
the random medium until time 2T . To compare this signal with the initial pulse S,
we need to reverse the acoustic velocity once again and define

uB(x) = Γu(2T,x) =

∫
R

9

ΓG(T,x;y)ΓG(T,y′; z)χ(y)χ(y′)f(y − y′)S(z)dydy′dz.

(3.4)

The time-reversibility of first-order hyperbolic systems implies that uB(x) = S(x)
when Ω = R

3, χ ≡ 1, and f(x) = δ(x), that is, when full and nondistorted measure-
ments are available. It remains to understand which features of S are retained by
uB(x) when only partial measurement is available.

3.2. Localized source and scaling. We consider an asymptotic solution of the
time reversal problem (2.3), (2.8) when the support λ of the initial pulse S(x) is much
smaller than the distance L of propagation between the source and the recording array:
ε = λ/L 
 1. We also take the size a of the array comparable to L: a/L = O(1).
We assume that the time T between the emission of the original signal and recording
is of order L/c0, where c0 is a typical speed of propagation of the acoustic wave. We
consequently consider the initial pulse to be of the form

u(0,x) = S

(
x− x0

ε

)

in nondimensionalized variables x′ = x/L and t′ = t/(L/c0). We drop primes to
simplify notation. Here x0 is the location of the source. The transducers obviously
have to be capable of capturing signals of frequency ε−1, and blurring should happen
on the scale of the source, so we replace f(x) by ε−3f(ε−1x). Finally, we are interested
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in the refocusing properties of uB(x) in the vicinity of x0. We therefore introduce the
scaling x = x0 + εξ. With these changes of variables, expression (3.4) is recast as

uB(ξ;x0) = Γu(2T,x0 + εξ)(3.5)

=

∫
R

9

ΓG(T,x0 + εξ;y)ΓG(T,y′;x0 + εz)χ(y,y′)S(z)dydy′dz,

where

χ(y,y′) = χ(y)χ(y′)f
(
y − y′

ε

)
.(3.6)

In what follows we will also allow the medium to vary on a scale comparable to the
source scale ε. Thus the Green’s function G and the matrix A depend on ε. To
simplify notation we do not make this dependence explicit. We are interested in the
limit of uB(ξ;x0) as ε → 0. The scaling considered here is well adapted both to the
physical experiments in [7] and the numerical experiments in Figure 2.2.

3.3. Adjoint Green’s function. The analysis of the repropagated signal relies
on the study of the two point correlation at nearby points of the Green’s matrix
in (3.5). There are two undesirable features in (3.5). First, the two nearby points
x0+εξ and x0+εz are terminal and initial points in their respective Green’s matrices.
Second, one would like to have the product of two Green’s functions, with no matrix
Γ in between. However, Γ and G do not commute. For these reasons, we introduce
the adjoint Green’s matrix, solution of

∂G∗(t,x;y)
∂t

A(x) +
∂G∗(t,x;y)

∂xj
Dj = 0,

G∗(0,x;y) = A−1(x)δ(x− y).

(3.7)

We now prove that

G∗(t,x;y) = ΓG(t,y;x)A−1(x)Γ.(3.8)

Note that for all initial data S(x), the solution u(t,x) of (2.3) satisfies

u(t,x) =

∫
R

3

G(t− s,x;y)u(s,y)dy

for all 0 ≤ s ≤ t ≤ T since the coefficients in (2.3) are time-independent. Differenti-
ating the above with respect to s and using (2.3) yields

0 =

∫
R

3

(
−∂G(t− s,x;y)

∂t
u(s,y)−G(t− s,x;y)A−1(y)Dj ∂u(s,y)

∂yj

)
dy.

Upon integrating by parts and letting s = 0, we get

0 =

∫
R

3

(
−∂G(t,x;y)

∂t
+

∂

∂yj
[
G(t,x;y)A−1(y)Dj

])
S(y)dy.

Since the above relation holds for all test functions S(y), we deduce that

∂G(t,x;y)

∂t
− ∂

∂yj
[
G(t,x;y)A−1(y)Dj

]
= 0.(3.9)
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Interchanging x and y in the above equation and multiplying it on the left and the
right by Γ, we obtain that

∂

∂t

[
ΓG(t,y;x)A−1(x)

]
A(x)Γ− ∂

∂xj
[
ΓG(t,y;x)A−1(x)

]
DjΓ = 0.(3.10)

We remark that with the choice of Γ in (3.2) we have

ΓDj = −DjΓ and ΓA(x) = A(x)Γ,(3.11)

so that

∂

∂t

[
ΓG(t,y;x)A−1(x)Γ

]
A(x) +

∂

∂xj
[
ΓG(t,y;x)A−1(x)Γ

]
Dj = 0

with ΓG(0,y;x)A−1(x)Γ = A−1(x)δ(x− y). Thus (3.8) follows from the uniqueness
of the solution to the above hyperbolic system with given initial conditions. We can
now recast (3.5) as

uB(ξ;x0) =

∫
R

9

ΓG(T,x0 + εξ;y)G∗(T,x0 + εz;y′)Γ

×χ(y)χ(y′)f
(
y − y′

ε

)
A(x0 + εz)S(z)dydy′dz.

(3.12)

One further simplifies (3.12) with the help of the auxiliary matrix-valued functions
Q(t,x;q) and Q∗(t,x,q) defined by

Q(T,x;q) =

∫
R

3

G(T,x;y)χ(y)eiq·y/εdy,

Q∗(T,x;q) =

∫
R

3

G∗(T,x;y)χ(y)e−iq·y/εdy.
(3.13)

They solve the hyperbolic equations (2.3) and (3.7) with initial conditions given by
Q(0,x;q) = χ(x)eiq·x/εI and Q∗(0,x;q) = A−1(x)χ(x)e−iq·x/ε, respectively. Thus
(3.12) becomes

uB(ξ;x0) =

∫
R

6

ΓQ(T,x0 + εξ;q)Q∗(T,x0 + εz;q)ΓA(x0 + εz)S(z)f̂(q)
dqdz

(2π)3
,

(3.14)

where f̂(q) =
∫

R
3 e

−iq·xf(x)dx is the Fourier transform of f(x).

3.4. Wigner transform. The back-propagated signal in (3.14) now has the
form suitable to be analyzed in the Wigner transform formalism [14, 25]. We define

Wε(t,x,k) =

∫
R

3

f̂(q)Uε(t,x,k;q)dq,(3.15)

where

Uε(t,x,k;q) =

∫
R

3

eik·yQ
(
t,x− εy

2
;q

)
Q∗

(
t,x+

εy

2
;q

)
dy

(2π)3
.(3.16)

Taking the inverse Fourier transform, we verify that

Q(t,x;q)Q∗(t,y;q) =
∫

R
3

e−ik·(y−x)/εUε

(
t,
x+ y

2
,k;q

)
dk;
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hence

uB(ξ;x0) =

∫
R

6

eik·(ξ−z)ΓWε

(
T,x0 + ε

z+ ξ

2
,k

)
ΓA(x0 + εz)S(z)

dzdk

(2π)3
.(3.17)

We have thus reduced the analysis of u(ξ;x0) as ε → 0 to that of the asymptotic
properties of the Wigner transform Wε. The Wigner transform has been used exten-
sively in the study of wave propagation in random media, especially in the derivation
of radiative transport equations modeling the propagation of high frequency waves.
We refer to [14, 21, 25]. Note that in the usual definition of the Wigner transform,
one has the adjoint matrix Q∗ in place of Q∗ in (3.16). This difference is not essential
since Q∗ and Q∗ satisfy the same evolution equation, though with different initial
data.

The main reason for using the Wigner transform in (3.17) is that Wε has a weak
limit W as ε → 0. Its existence follows from simple a priori bounds for Wε(t,x,k).
Let us introduce the space A of matrix-valued functions φ(x,k) bounded in the norm
‖ · ‖A defined by

‖φ‖A =

∫
R

3

sup
x

‖φ̃(x,y)‖dy, where φ̃(x,y) =

∫
R

3

e−ik·yφ(x,k)dk.

We denote by A′ its dual space, which is a space of distributions large enough to
contain matrix-valued bounded measures, for instance. We then have the following
result.

Lemma 3.1. Let χ(x) ∈ L2(R3) and f̂(q) ∈ L1(R3). Then there is a constant
C > 0 independent of ε > 0 and t ∈ [0,∞) such that for all t ∈ [0,∞) we have
‖Wε(t,x,k)‖A′ < C.

The proof of this lemma is essentially contained in [14, 21]; see also [1]. One may

actually get L2-bounds for Wε in our setting because of the regularizing effect of f̂ in
(3.15), but this is not essential for the purposes of this paper. We therefore obtain the
existence of a subsequence εk → 0 such that Wεk converges weakly to a distribution
W ∈ A′. Moreover, an easy calculation shows that at time t = 0 we have

W (0,x0,k) = |χ(x0)|2A−1
0 (x0)f̂(k).(3.18)

Here, A0 = A when A is independent of ε, and A0 = limε→0 Aε if we assume that
the family of diagonal matrices Aε(x) is uniformly positive definite, bounded, and
continuous with limit A0 in C(Rd). These assumptions on Aε are sufficient to deal
with the radiative transport regime we will consider in section 3.7. Under the same
assumptions on Aε, we have the following result.

Proposition 3.2. The back-propagated signal uB(ξ;x0) given by (3.17) con-
verges weakly in S ′(R3 × R

3) as ε → 0 to the limit

uB(ξ;x0) =

∫
R

6

eik·(ξ−z)ΓW (T,x0,k)ΓA0(x0)S(z)
dzdk

(2π)3
.(3.19)

The proof of this proposition is based on taking the duality product of uB(ξ;x0)
with a vector-valued test function φ(ξ;x0) in S(R3 ×R

3). After a change of variables
we obtain 〈uB ,φ〉 = 〈Wε, Zε〉. Here the duality product for matrices is given by the
trace 〈A,B〉 =∑i,k〈Aik, Bik〉, and

Zε(x0,k) =

∫
R

6

eik·(z−ξ)Γφ

(
ξ,x0 − ε

z+ ξ

2

)
S∗(z)Aε

(
x0 + ε

z− ξ

2

)
Γ
dzdξ

(2π)3
.

(3.20)
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Defining Z as the limit of Zε as ε → 0 by formally replacing ε by 0 in the above
expression, (3.19) follows from showing that ‖Zε − Z‖A → 0 as ε → 0. This is
straightforward, and we omit the details.

The above proposition tells us how to reconstruct the back-propagated solution
in the high frequency limit from the limit Wigner matrix W . Notice that we have
made almost no assumptions on the medium described by the matrix Aε(x). At this
level, the medium can be either homogeneous or heterogeneous. Without any further
assumptions, we can also obtain some information about the matrix W . Let us define
the dispersion matrix for the system (2.3) as (see [25])

L(x,k) = A−1
0 (x)kjD

j .(3.21)

This is given explicitly by

L(x,k) =




0 0 0 k1/ρ(x)
0 0 0 k2/ρ(x)
0 0 0 k3/ρ(x)

k1/κ(x) k2/κ(x) k3/κ(x) 0


 .

The matrix L has a double eigenvalue ω0 = 0 and two simple eigenvalues ω±(x,k) =
±c(x)|k|, where c(x) = 1/

√
ρ(x)κ(x) is the speed of sound. The eigenvalues ω± are

associated with eigenvectors b±(x,k), and the eigenvalue ω0 = 0 is associated with
the eigenvectors bj(x,k), j = 1, 2. The eigenvectors are given by

b±(x,k) =


 ± k̂√

2ρ(x)
1√
2κ(x)


 , bj(x,k) =


 zj(k)√

ρ(x)
0


 ,(3.22)

where k̂ = k/|k| and z1(k) and z2(k) are chosen so that the triple (k̂, z1(k), z2(k))
forms an orthonormal basis. The eigenvectors are normalized so that

(A0(x)bj(x,k) · bk(x,k)) = δjk(3.23)

for all j, k ∈ J = {+,−, 1, 2}. The space of 4 × 4 matrices is clearly spanned by the
basis bj ⊗ bk. We then have the following result.

Proposition 3.3. There exist scalar distributions a± and amn0 , m,n = 1, 2, so
that the limit Wigner distribution matrix can be decomposed as

W (t,x,k) =

2∑
j,m=1

ajm0 (t,x,k)bj(x,k)⊗ bm(x,k)(3.24)

+ a+(t,x,k)b+(x,k)⊗ b+(x,k) + a−(t,x,k)b−(x,k)⊗ b−(x,k).

The main result of this proposition is that the cross terms bj ⊗ bk with ωj �= ωk
do not contribute to the limit W . The proof of this proposition can be found in [14]
and a formal derivation in [25].

The initial conditions for the amplitudes aj are calculated using the identity

A−1
0 (x) =

∑
j∈J

bj(x,k)⊗ bj(x,k).

Then (3.18) implies that a12
0 (0,x,k) = a21

0 (0,x,k) = 0 and

ajj0 (0,x,k) = a±(0,x,k) = |χ(x)|2f(k), j = 1, 2.(3.25)
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3.5. Mode decomposition and refocusing. We can use the above result to
recast (3.19) as

uB(ξ;x0) = (F (T, ·;x0) ∗ S)(ξ),(3.26)

where

F (T, ξ;x0) =

2∑
m,n=1

∫
R

3

eik·ξamn0 (T,x0;k)Γbm(x0,k)⊗ bn(x0,k)A0(x0)Γ
dk

(2π)3

+

∫
R

3

eik·ξa+(T,x0;k)Γb+(x0,k)⊗ b+(x0,k)A0(x0)Γ
dk

(2π)3
(3.27)

+

∫
R

3

eik·ξa−(T,x0;k)Γb−(x0,k)⊗ b−(x0,k)A0(x0)Γ
dk

(2π)3
.

This expression can be used to assess the quality of the refocusing. When F (T, ξ;x0)
has a narrow support in ξ, refocusing is good. When its support in ξ grows larger, its
quality degrades. The spatial decay of the kernel F (t, ξ;x0) in ξ is directly related to
the smoothness in k of its Fourier transform in ξ:

F̂ (T,k;x0) =

2∑
m,n=1

amn0 (T,x0;k)Γbm(x0,k)⊗ bn(x0,k)A0(x0)Γ
dk

(2π)3

+ Γ [a+(T,x0;k)b+(x0,k)⊗ b+(x0,k)+ a−(T,x0;k)b−(x0,k)⊗ b−(x0,k)]A0(x0)Γ.

Namely, for F to decay in ξ, one needs F̂ (k) to be smooth in k. However, the
eigenvectors bj are singular at k = 0 as can be seen from the explicit expressions

(3.22). Therefore, a priori F̂ is not smooth at k = 0. This means that, in order
to obtain good refocusing, one needs the original signal to have no low frequencies:
Ŝ(k) = 0 near k = 0. Low frequencies in the initial data will not refocus well.

We can further simplify (3.26)–(3.27) if we assume that the initial condition is
irrotational. Taking the Fourier transform of both sides in (3.26), we obtain that

ûB(k;x0) =
∑
j,n∈J

aj(T,x0,k)Ŝn(k)(A0(x0)Γbn(x0,k) · bj(x0,k))Γbj(x0,k),

(3.28)

where we have defined

Ŝ(k) =
∑
n∈J

Ŝn(k)bn(x0,k).(3.29)

Irrotationality of the initial condition means that Ŝ1 and Ŝ2 identically vanish, or
equivalently that

S(x) =

(∇φ(x)
p(x)

)
(3.30)

for some pressure p(x) and potential φ(x). Remarking that Γb± = −b∓ and by

irrotationality that (A0(x0)Ŝ(k) · b1,2(k)) = 0, we use (3.23) to recast (3.28) as

ûB(k;x0) = a−(T,x0,k)Ŝ+(k)b+(x0,k) + a+(T,x0,k)Ŝ−(k)b−(x0,k).(3.31)
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Decomposing the initial condition S(x) as

S(x) = S+(x) + S−(x) such that Ŝ±(k) = Ŝ±(k)b±(x0,k),

the back-propagated signal takes the form

uB(ξ;x0) = (â−(T,x0, ·) ∗ S+(·))(ξ) + (â+(T,x0, ·) ∗ S−(·))(ξ),(3.32)

where â± is the Fourier transform of a± in k. This form is much more tractable
than (3.26)–(3.27). It is also almost as general. Indeed, rotational modes do not
propagate in the high frequency regime. Therefore, they are exactly back-propagated
when χ(x0) = 1 and f(x) = δ(x), and not back-propagated at all when χ(x0) = 0.
All the refocusing properties are thus captured by the amplitudes a±(T,x0,k). Their
evolution equation characterizes how waves propagate in the medium and their initial
conditions characterize the recording array.

3.6. Homogeneous media. In homogeneous media with c(x) = c0 the ampli-
tudes a±(T,x,k) satisfy the free transport equation [14, 25]

∂a±
∂t

± c0k̂ · ∇xa± = 0(3.33)

with initial data a±(0,x,k) = |χ(x)|2f(k) as in (3.25). They are therefore given by

a±(t,x0,k) = |χ(x0 ∓ c0k̂t)|2f̂(k).(3.34)

These amplitudes become more and more singular in k as time grows since their
gradient in k grows linearly with time. The corresponding kernel F decays therefore
more slowly in ξ as time grows. This implies that the quality of the refocusing
degrades with time. For sufficiently large times, all the energy has left the domain Ω
(assumed to be bounded), and the coefficients a±(t,x0,k) vanish. Therefore the back-
propagated signal uB(ξ;x0) also vanishes, which means that there is no refocusing
at all. The same conclusions could also be drawn by analyzing (3.4) directly in a
homogeneous medium. This is the situation in the numerical experiment presented
in Figure 2.2: in a homogeneous medium, the back-propagated signal would vanish.

3.7. Heterogeneous media and the radiative transport regime. The re-
sults of the preceding sections show how the back-propagated signal uB(ξ;x0) is re-
lated to the propagating modes a±(T,x0,k) of the Wigner matrix W (T,x0,k). The
form assumed by the modes a±(T,x0,k), and in particular their smoothness in k, will
depend on the hypotheses we make on the underlying medium, i.e., on the density
ρ(x) and compressibility κ(x) that appear in the matrix A(x). We have seen that
partial measurements in homogeneous media yield poor refocusing properties. We
now show that refocusing is much better in random media.

We consider here the radiative transport regime, also known as the weak coupling
limit. There, the fluctuations in the physical parameters are weak and vary on a scale
comparable to the scale of the initial condition. Density and compressibility assume
the form

ρ(x) = ρ0 +
√
ερ1

(
x

ε

)
and κ(x) = κ0 +

√
εκ1

(
x

ε

)
.(3.35)

The functions ρ1 and κ1 are assumed to be mean-zero spatially homogeneous pro-
cesses. The average (with respect to realizations of the medium) of the propagating
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amplitudes a±, denoted by ā±, satisfy in the high frequency limit ε → 0 a radiative
transfer equation (RTE), which is a linear Boltzmann equation of the form

∂ā±
∂t

± c0k̂ · ∇xā± =

∫
R

3

σ(k,p)(ā±(t,x,p)− ā±(t,x,k))δ(c0(|k| − |p|))dp,

ā±(0,x,k) = |χ(x)|2f̂(k).
(3.36)

The scattering coefficient σ(k,p) depends on the power spectra of ρ1 and κ1. We refer
to [25] for the details of the derivation and explicit form of σ(k,p). The above result
remains formal for the wave equation and requires averaging over the realizations of
the random medium, although this is not necessary in the physical and numerical time
reversal experiments. A rigorous derivation of the linear Boltzmann equation (which
also requires averaging over realizations) has been obtained only for the Schrödinger
equation; see [9, 27]. Nevertheless, the above result formally characterizes the filter
F (T, ξ;x0) introduced in (3.27) and (3.32).

The transport equation (3.36) has a smoothing effect best seen in its integral
formulation. Let us define the total scattering coefficient Σ(k) =

∫
R

3 σ(k,p)δ(c0(|k|−
|p|))dp. Then the transport equation (3.36) may be rewritten as

ā±(t,x,k) = ā±(0,x∓ c0k̂t,k)e
−Σ(k)t(3.37)

+
|k|2
c0

∫ t

0

ds

∫
S2

σ(k, |k|p̂)ā±(s,x∓ c0(t− s)k̂, |k|p̂)e−Σ(k)(t−s)dΩ(p̂).

Here p̂ = p/|p| is the unit vector in the direction of p, and dΩ(p̂) is the surface
element on the sphere S2. The first term in (3.37) is the ballistic part that undergoes
no scattering. It has no smoothing effect, and, moreover, if a(0,x,k) is not smooth in
x, as may be the case for (3.25), the discontinuities in x translate into discontinuities
in k at later times, as in (3.34) in a homogeneous medium. However, in contrast to
the homogeneous medium case, the ballistic term decays exponentially in time and
does not affect the refocused signal for sufficiently long times t � 1/Σ. The second
term in (3.37) exhibits a smoothing effect. Namely, the operator Lg defined by

Lg(t,x,k) = |k|2
c0

∫ t

0

ds

∫
S2

σ(k, |k|p̂)g(s,x∓ c0(t− s)k̂, |k|p̂)e−Σ(k)(t−s)dΩ(p̂)

is regularizing, in the sense that the function g̃ = Lg has at least 1/2 more deriva-
tives than g (in the same space of a Sobolev scale). The precise formulation of this
smoothing property is given by the averaging lemmas [15, 22] and will not be dwelt
upon here. Iterating (3.37) n times, we obtain

ā±(t,x,k) = a0
±(t,x,k) + a1

±(t,x,k) + · · ·+ an±(t,x,k) + Ln+1ā±(t,x,k).(3.38)

The terms a0
±, . . . , a

n
± are given by

a0
±(t,x,k) = ā±(0,x∓ c0k̂t,k)e

−Σ(k)t, aj±(t,x,k) = Laj−1
± (t,x,k).

They describe, respectively, the contributions from waves that do not scatter, scatter
once, twice, . . . . It is straightforward to verify that all these terms decay exponen-
tially in time and are negligible for times t � 1/Σ. The last term in (3.38) has
at least n/2 more derivatives than the initial data a0 or the solution (3.34) of the
homogeneous transport equation. This leads to a faster decay in ξ of the Fourier
transforms â±(T,x0, ξ) of ā±(T,x0,k) in k. This gives a qualitative explanation as
to why refocusing is better in heterogeneous media than in homogeneous media. A
more quantitative answer requires solving the transport equation (3.36).
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3.8. Diffusion regime. It is known for times t much longer than the scattering
mean free time τsc = 1/Σ and distances of propagation L very large compared to lsc =
c0τsc that solutions to the radiative transport equation (3.36) can be approximated by
solutions to a diffusion equation, provided that c(x) = c0 is independent of x [6, 20].
More precisely, we let δ = lsc/L 
 1 be a small parameter and rescale time and space
variables as t → t/δ2 and x → x/δ. In this limit, the wave direction is completely
randomized so that

ā+(t,x,k) ≈ ā−(t,x,k) ≈ a(t,x, |k|),
where a solves

∂a(t,x, |k|)
∂t

−D(|k|)∆xa(t,x, |k|) = 0,

a(0,x, |k|) = |χ(x)|2 1

4π|k|2
∫

R
3

f̂(q)δ(|q| − |k|)dq.
(3.39)

The diffusion coefficient D(|k|) may be expressed explicitly in terms of the scattering
coefficient σ(k,p) and hence related to the power spectra of ρ1 and κ1. We refer to
[25] for the details. For instance, let us assume for simplicity that the density is not
fluctuating, ρ1 ≡ 0, and that the compressibility fluctuations are delta-correlated, so
that E{κ̂1(p)κ̂1(q)} = κ2

0R̂0δ(p+ q). Then we have

σ(k,p) =
πc20|k|2R̂0

2
, Σ(|k|) = 2π2c0|k|4R̂0(3.40)

and

D(|k|) = c20
3Σ(|k|) =

c0

6π2|k|4R̂0

.(3.41)

Let us assume that there are no initial rotational modes, so that the source S(x)
is decomposed as in (3.30). Using (3.31), we obtain that

ûB(k;x0) = a(T,x0, |k|)Ŝ(k).(3.42)

When f(x) is isotropic so that f̂(k) = f̂(|k|), and the diffusion coefficient is given by
(3.41), the solution of (3.39) takes the form

a(T,x0, |k|) = f̂(|k|)
(
3π|k|4R̂0

2c0T

)3/2∫
R

3

exp

(
−3π2|k|4R̂0|x0 − y|2

2c0T

)
|χ(y)|2dy.

(3.43)

When f(x) = δ(x), and Ω = R
3, so that χ(x) ≡ 1, we retrieve a(T,x0,k) ≡ 1; hence

the refocusing is perfect. When only partial measurement is available, the above
formula indicates how the frequencies of the initial pulse are filtered by the single-
time time reversal process. Notice that both the low and high frequencies are damped;
the reason is that low frequencies scatter little from the underlying medium so that it
takes a long time for them to be randomized. High frequencies strongly scatter with
the underlying medium and consequently propagate little, so that the signal that
reaches the recording array Ω is small unless recorders are also located at the source
point: x0 ∈ Ω. In the latter case they are very well measured and back-propagated,
although this situation is not the most interesting physically. Expression (3.43) may
be generalized to other power spectra of medium fluctuations in a straightforward
manner using the formula for the diffusion coefficient in [25].
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Fig. 3.1. Zoom of the initial source and the refocused signal for the numerical experiment of
Figure 2.2.

3.9. Numerical results. The numerical results in Figure 2.2 show that some
signal refocuses at the location of the initial source after the time reversal procedure.
Based on the above theory, however, we do not expect the refocused signal to have
exactly the same shape as the original one. Since the location of the initial source
belongs to the recording array (χ(x0) = 1) in our simulations, we expect from our
theory that high frequencies will refocus well but that low frequencies will not. This
is confirmed by the numerical results in Figure 3.1, where a zoom in the vicinity
of x0 = 0 of the initial source and refocused signal are represented. Notice that
the numerical simulations are presented here only to help in the understanding of
the refocusing theory and do not aim at reproducing the theory in a quantitative
manner. The random fluctuations are quite strong in our numerical simulations, and
it is unlikely that the diffusive regime will be valid. The refocused signal in the right
figure looks, however, like a high-pass filter of the signal in the left figure, as expected
from theory.

4. Refocusing of classical waves. The theory presented in section 3 provides
a quantitative explanation for the results observed in time reversal physical and nu-
merical experiments. However, the time reversal procedure is by no means necessary
to obtain refocusing. Time reversal is associated with the specific choice (3.2) for the
matrix Γ in the preceding section, which reverses the direction of the acoustic velocity
and keeps the pressure unchanged. Other choices for Γ are, however, possible. When
nothing is done at time T , i.e., when we choose Γ = I, no refocusing occurs as one
might expect. It turns out that Γ = I is more or less the only choice of a matrix that
prevents some sort of refocusing. Section 4.1 presents the theory of refocusing for
acoustic waves, which is corroborated by numerical results presented in section 4.2.
Sections 4.3 and 4.4 generalize the theory to other linear hyperbolic systems.

4.1. General refocusing of acoustic waves. In single-time time reversal, the
action of the “intelligent” array is captured by the choice of the signal processing
matrix Γ in (3.3). Time reversal is characterized by Γ given in (3.2). A passive array
is characterized by Γ = I. This section analyzes the role of other choices for Γ, which
we let depend on the receiver location so that each receiver may perform its own kind
of signal processing.



TIME REVERSAL AND REFOCUSING IN RANDOM MEDIA 1491

The signal after time reversal is still given by (3.3), where Γ(y′) is now arbi-
trary. At time 2T , after back-propagation, we are free to multiply the signal by an
arbitrary invertible matrix to analyze the signal. It is convenient to multiply the
back-propagated signal by the matrix Γ0 = Diag(−1,−1,−1, 1) as in classical time
reversal. The reconstruction formula (3.5) is then replaced by

uB(ξ;x0) =

∫
R

9

Γ0G(T,x0 + εξ;y)Γ(y′)G(T,y′;x0 + εz)χ(y,y′)S(z)dydy′dz,

(4.1)

with χ(y,y′) defined by (3.6). To generalize the results of section 3, we need to define
an appropriate adjoint Green’s matrix G∗. As before, this will allow us to remove
the matrix Γ between the two Green’s matrices in (4.1) and to interchange the order
of points in the second Green’s matrix. We define the new adjoint Green’s function
G∗(t,x;y) as the solution to

∂G∗(t,x;y)
∂t

A(x) +
∂G∗(t,x;y)

∂xj
Dj = 0,

G∗(0,x;y) = Γ(x)Γ0A
−1(x)δ(x− y).

(4.2)

Following the steps of section 3.3, we show that

G∗(t,x,y) = Γ(y)G(t,y;x)A−1(x)Γ0.(4.3)

The only modification compared to the corresponding derivation of (3.8) is to multiply
(3.9) on the left by Γ(x) and on the right by Γ0 so that Γ(y) appears on the left in
(3.10). The retransmitted signal may now be recast as

uB(ξ;x0) =

∫
R

9

Γ0G(T,x0 + εξ;y)G∗(T,x0 + εz;y′)Γ−1
0 A(x0 + εz)χ(y,y′)S(z)dydy′dz.

(4.4)

Therefore the only modification in the expression for the retransmitted signal com-
pared to the time reversed signal (3.12) is in the initial data for (4.2), which is the
only place where the matrix Γ(x) appears.

The analysis in sections 3.3–3.7 requires only minor changes, which we now out-
line. The back-propagated signal may still be expressed in terms of the Wigner
distribution (compare to (3.17))

uB(ξ;x0) =

∫
R

6

eik·(ξ−z)Γ0Wε

(
T,x0 + ε

z+ ξ

2
,k

)
Γ0A(x0 + εz)S(z)

dzdk

(2π)3
.(4.5)

The Wigner distribution is defined as before by (3.15) and (3.16). The function Q is
defined as before as the solution of (2.3) with initial data Q(0, x;q) = χ(x)eiq·x/εI,
while Q∗ solves (3.7) with the initial data Q∗(0,x;q) = Γ(x)Γ0A

−1(x)χ(x)e−iq·x/ε.
The initial Wigner distribution is now given by

W (0,x,k) = |χ(x)|2Γ(x)Γ0A
−1(x)f̂(k).(4.6)

Lemma 3.1 and Proposition 3.2 also hold, and we obtain the analogue of (3.19):

u(ξ;x0) =

∫
R

6

eik·(ξ−z)Γ0W (T,x0,k)Γ0A0(x0)S(z)dzdk.(4.7)
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The limit Wigner distribution W (T,x0,k) admits the mode decomposition (3.24) as
before. If we assume that the source S(x) has the form (3.30) so that no rotational
modes are present initially, we recover the refocusing formula (3.31):

ûB(k;x0) = a−(T,x0,k)Ŝ+(k)b+(x0,k) + a+(T,x0,k)Ŝ−(k)b−(x0,k).(4.8)

The initial conditions for the amplitudes a± are replaced by

a±(0,x,k) = Tr
[
A0(x)W (0,x,k)A0(x)b±(x0,k)b

∗
±(x0,k)

]
(4.9)

= |χ(x)|2f̂(k)(A0(x)Γ(x)b∓(x,k) · b±(x,k)).

Observe that when Γ(x) = Γ0, we get back the results of section 3.7. When the
signal is not changed at the array, so that Γ = I, the coefficients a±(0,x,k) ≡ 0,
by orthogonality (3.23) of the eigenvectors bj . Thus no refocusing occurs when the
“intelligent” array is replaced by a passive array, as expected physically.

Another interesting example is when only pressure p is measured, so that the
matrix Γ = Diag(0, 0, 0, 1). Then the initial data is

a±(0,x,k) =
1

2
|χ(x)|2f̂(k),

which differs by a factor 1/2 from the full time reversal case (3.25). Therefore the
retransmitted signal uB also differs by only a factor 1/2 from the latter case, and
the quality of refocusing as well as the shape of the repropagated signal are exactly
the same. The same observation applies to the measurement and reversal of the
acoustic velocity only, which corresponds to the matrix Γ = Diag(−1,−1,−1, 0). The
factor 1/2 comes from the fact that only the potential energy or the kinetic energy
is measured in the first and second cases, respectively. For high frequency acoustic
waves, the potential and kinetic energies are equal; hence the factor 1/2. We can also
verify that when only the first component of the velocity field is measured, so that
Γ = Diag(−1, 0, 0, 0), the initial data is

a±(0,x,k) = |χ(x)|2f̂(k) k2
1

2|k|2 .(4.10)

As in the time reversal setting of section 3, the quality of the refocusing is related
to the smoothness of the amplitudes a± in k. In a homogeneous medium they satisfy
the free transport equation (3.33) and are given by

a±(t,x,k)
= |χ(x− c0k̂t)|2f̂(k)(A0(x− c0k̂t)Γ(x− c0k̂t)b∓(x− c0k̂t,k) · b±(x− c0k̂t,k)).

Once again we observe that, in a uniform medium, a± become less regular in k as
time grows; thus refocusing is poor.

The considerations of section 3.7 show that in the radiative transport regime the
amplitudes a± become smoother in k also with initial data given by (4.9). This leads
to a better refocusing as explained in section 3.5. Let us assume that the diffusion
regime of section 3.8 is valid and that the kernel f is isotropic f̂(k) = f̂(|k|). This
requires in particular that A0(x) be independent of x. We obtain that a±(T,x0,k) =
ã(T,x0, |k|); thus the refocusing formula (4.8) reduces to

ûB(k;x0) = ã(T,x0, |k|)Ŝ(k).(4.11)
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Fig. 4.1. Zoom of the refocused signals for the numerical experiment of Figure 2.2 with pro-
cessing Γ = I (left), with a maximal amplitude of roughly 4× 10−3, and Γ = Diag(0, 0, 0, 1) (right),
with a maximal amplitude of roughly 0.035.

The difference between this and the case treated in section 3.8 is that ã(T,x, |k|)
solves the diffusion equation (3.39) with new initial conditions given by

ã(0,x, |k|) = |χ(x)|2
4π|k|2

∫
R

3

f̂(|q|)(A0Γ(x)b−(q) · b+(q))δ(|q| − |k|)dq(4.12)

=
|χ(x)|2
4π|k|2

∫
R

3

f̂(|q|)(A0Γ(x)b+(q) · b−(q))δ(|q| − |k|)dq.

When only the first component of the velocity field is measured, as in (4.10), the
initial data for ã is

ã(0,x, |k|) = 1

6
|χ(x)|2f̂(|k|).

Therefore even time reversing only one component of the acoustic velocity field pro-
duces a repropagated signal that is equal to the full repropagated field up to a constant
factor.

More generally, we deduce from (4.12) that a detector at x will contribute some
refocusing for waves with wavenumber |k|, provided that∫

S2

f̂(|k|q̂)(A0Γ(x)b∓(q̂) · b±(q̂))dΩ(q̂) �= 0.

When f(x) = f(|x|) is radial, this property becomes independent of the wavenumber
|k| and reduces to

∫
S2(A0Γ(x)b∓(q̂) · b±(q̂))dΩ(q̂) �= 0.

4.2. Numerical results. Let us come back to the numerical results presented in
Figures 2.2 and 3.1. We now consider two different processings at the recording array.
The first array is passive, corresponding to Γ = I, and the second array measures
only pressure so that Γ = Diag(0, 0, 0, 1). The zoom in the vicinity of x0 = 0 of
the “refocused” signals is given in Figure 4.1. The left panel shows no refocusing, in
accordance with physical intuition and theory. The right figure shows that refocusing
indeed occurs when only pressure is recorded (and its time derivative is set to 0 in
the solution of the wave equation presented in the appendix). Notice also that the
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refocused signal is roughly one half the one obtained in Figure 3.1, as predicted by
theory.

4.3. Refocusing of other classical waves. The preceding sections deal with
the refocusing of acoustic waves. The theory can, however, be extended to more
complicated linear hyperbolic systems of the form (2.3), with A(x) a positive definite
matrix, Dj symmetric matrices, and u ∈ C

m. These include electromagnetic and
elastic waves. Their explicit representation in the form (2.3) and expressions for the
matrices A(x) and Dj in these cases may be found in [25]. For instance, the Maxwell
equations

∂E

∂t
=

1

ε(x)
curl H,

∂H

∂t
= − 1

µ(x)
curl E

may be written in the form (2.3) with u = (E,H) ∈ C
6 and the matrix A(x) =

Diag(ε(x), ε(x), ε(x), µ(x), µ(x), µ(x)). Here ε(x) is the dielectric constant (not to be
confused with the small parameter ε), and µ(x) is the magnetic permeability. The
6× 6 dispersion matrix L(x,k) for the Maxwell equations is given by

L(x,k) = −




0 0 0 0 −k3/ε(x) k2/ε(x)
0 0 0 k3/ε(x) 0 −k1/ε(x)
0 0 0 −k2/ε(x) k1/ε(x) 0
0 k3/µ(x) −k2/µ(x) 0 0 0

−k3/µ(x) 0 k1/µ(x) 0 0 0
k2/µ(x) −k1/µ(x) 0 0 0 0


 .

Generalization of our results for acoustic waves to such general systems is quite
straightforward, so we concentrate only on the modifications that need be made.
The time reversal procedure is exactly the same as before: a signal propagates from a
localized source, is recorded, processed as in (3.3) with a general matrix Γ(y′), and re-
emitted into the medium. The retransmitted signal is given by (4.1). Furthermore, the
equation for the adjoint Green’s matrix (4.2), the definition of the Wigner transform
in section 3.4, and the expression (4.7) for the repropagated signal still hold.

The analysis of the repropagated signal is reduced to the study of the Wigner
distribution, which is now modified. The mode decomposition must be generalized.
We recall that

L(x,k) = A−1
0 (x)kjD

j

is the m × m dispersion matrix associated with the hyperbolic system (2.3). Since
L(x,k) is symmetric with respect to the inner product 〈u,v〉A0

= (A0u · v), its
eigenvalues are real and its eigenvectors form a basis. We assume the existence of a
time reversal matrix Γ0 such that (3.11) holds with Γ = Γ0 and such that Γ2

0 = I. For
example, for electromagnetic waves Γ0 = Diag(1, 1, 1,−1,−1,−1). Then the spectrum
of L is symmetric about zero and the eigenvalues ±ωα have the same multiplicity. We
assume in addition that L is isotropic so that its eigenvalues have the form ωα±(x,k) =
±cα(x)|k|, where cα(x) is the speed of mode α. We denote by rα their respective
multiplicities, assumed to be independent of x and k for k �= 0. The matrix L has a
basis of eigenvectors bα,j± (x,k) such that

L(x,k)bα,j± (x,k) = ±ωα(x,k)bα,j± (x,k), j = 1, . . . , rα,
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and bα,j± form an orthonormal set with respect to the inner product 〈 , 〉A0
. The

different ωα’s correspond to different types of waves (modes). Various indices 1 ≤ j ≤
rα refer to different polarizations of a given mode. The eigenvectors bα,j+ and bα,j− are
related by

Γ0b
α,j
+ (x,k) = bα,j− (x,k), Γ0b

α,j
− (x,k) = bα,j+ (x,k).(4.13)

Proposition 3.3 is then generalized as follows (see [14, 25]).
Proposition 4.1. There exist scalar functions aα,jm± (t,x,k) such that

W (t,x,k) =
∑

±,α,j,m
aα,jm± (t,x,k)bα,j± (x,k)⊗ bα,m± (x,k).(4.14)

Here the sum runs over all possible values of ±, α, and 1 ≤ j,m ≤ rα.
The main content of this proposition is again that the cross terms bα,j± (x,k) ⊗

bβ,m∓ (x,k) do not contribute, and neither do the terms bα,j± (x,k)⊗bα
′,m

± (x,k) when
α �= α′. This is because modes propagating with different speeds do not interfere
constructively in the high frequency limit.

We may now insert expression (4.14) into (4.7) and obtain the following general-
ization of (4.8):

ûB(k;x0) =
∑
α,j,m

[
aα,mj− (T,x0,k)Ŝ

α,j
+ (x0,k)b

α,m
+ (x0,k)(4.15)

+ aα,mj+ (T,x0,k)Ŝ
α,j
− (x0,k)b

α,m
− (x0,k)

]
,

where Ŝα,j± (k) = (A(x0)Ŝ(k) · bα,j± (x0,k)). This formula tells us that only the modes

that are present in the initial source (Ŝα,j± (k) �= 0) will be present in the back-
propagated signal but possibly with a different polarization, that is, j �= m.

The initial conditions for the modes aα,jm± are given by

aα,jm± (0,x,k) = |χ(x)|2f̂(k)(A(x)Γ(x)bα,m∓ (x,k) · bα,j± (x,k)),(4.16)

which generalizes (4.9). When Γ(x) ≡ I, we again obtain that aα,jm± (0,x,k) ≡ 0, i.e.,
there is no refocusing as physically expected. When Γ(x) ≡ Γ0, we have for all α that

aα,jm± (0,x,k) = |χ(x)|2f̂(k)δjm.

In a uniform medium the amplitudes aα,jm± satisfy an uncoupled system of free trans-
port equations (3.33),

∂aα,jm±
∂t

± cαk̂ · ∇xa
α,jm
± = 0,(4.17)

which have no smoothing effect, and hence refocusing in a homogeneous medium is
still poor. When f(x) = δ(x) and Ω = R

3, so that χ(x) ≡ 1, we still have that
aα,jm± (T,x0,k) = δjm and refocusing is again perfect, that is, uB(ξ;x0) = S(ξ), as
may be seen from (4.15).
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4.4. The diffusive regime. The radiative transport regime holds when the
matrices A(x) have the form

A(x) = A0(x) +
√
εA1

(
x

ε

)
,

as in (3.35). Then the rα × rα coherence matrices wα± with entries wα±,jm = aα,jm±
satisfy a system of matrix-valued radiative transport equations (see [25] for the details)
similar to (3.36). The matrix transport equations simplify considerably in the diffusive
regime, such as the one considered in section 3.8 when waves propagate over large
distances and long times. We assume for simplicity that A0 = A0(x) and Γ = Γ(x)
are independent of x. Polarization is lost in this regime; that is, aα,jm(t,x,k) = 0 for
j �= m, and wave energy is equidistributed over all directions. This implies that

aα,jj+ (t,x,k) = aα,jj− (t,x,k) = aα(t,x, |k|)

so that aα,jj is independent of j = 1, . . . , rα and of the direction k̂ = k/|k|. Further-
more, because of multiple scattering, a universal equipartition regime takes place so
that

aα(t,x0, |k|) = φ(t,x0, cα|k|),(4.18)

where φ(t,x, ω) solves a diffusion equation in x like (3.39) (see [25]). The diffusion
coefficient D(ω) may be expressed explicitly in terms of the power spectra of the
medium fluctuations [25]. Using (4.16) and (4.18), we obtain when f is isotropic the
following initial data for the function φ:

φ(0,x, ω) =
1

4π
|χ(x)|2

∫
S2

2

|α|
∑

j,ωα>0

f̂

(
ω

cα

)
(A0Γb

α,j
− (k̂),bα,j+ (k̂))dΩ(k̂),(4.19)

where |α| is the number of nonvanishing eigenvalues of L(x,k), and dΩ(k̂) is the
Lebesgue measure on the unit sphere S2.

Let us assume that nonpropagating modes are absent in the initial source S(x);
that is, Ŝj0(k) = 0, with the subscript zero referring to modes corresponding to ω0 = 0.
Then (4.15) becomes

û(k;x0) =
∑
α,j

φ(T,x0, cα|k|)
[
Ŝα,j+ (k)bα,j+ (x0,k) + Ŝα,j− (k)bα,j− (x0,k)

]
.(4.20)

This is an explicit expression for the repropagated signal in the diffusive regime, where
φ solves the diffusion equation (3.39) with initial conditions (4.19).

5. Conclusions. This paper presents a theory that quantitatively describes the
refocusing phenomena in time reversal acoustics as well as for more general processings
of acoustic and other classical waves. We show that the back-propagated signal may
be expressed as the convolution (1.1) of the original source S with a filter F . The
quality of the refocusing is therefore determined by the spatial decay of the kernel F .
For acoustic waves, the explicit expression (3.27) relates F to the Wigner distribution
of certain solutions of the wave equation. The decay of F is related to the smoothness
in the phase space of the amplitudes aj(t,x,k) defined in Proposition 3.3. The latter
satisfy free transport equations in homogeneous media, which sharpens the gradients
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of aj and leads to poor refocusing. In contrast, the amplitudes aj satisfy the radiative
transport equation (3.36) in heterogeneous media, which has a smoothing effect. This
leads to a rapid spatial decay of the filter F and a better refocusing. For longer times,
aj satisfies a diffusion equation. This allows for an explicit expression (3.42)–(3.43)
of the time reversed signal. The same theory holds for more general waves and more
general processing procedures at the recording array, which allows us to describe the
refocusing of electromagnetic waves when only one component of the electric field is
measured, for instance.

Appendix. This appendix presents the details of the numerical simulation of
(2.9). We assume that ρ is constant and that only κ(x) fluctuates. We can therefore
recast (2.9) as

∂2p

∂t2
− c2(x)∆p = 0.

The above wave equation is discretized using a second-order scheme (three point
stencil in every variable) both in time and space. The resolution in time is explicit
and time reversible; i.e., the equation that yields p(tn+1) from p(tn−1) and p(tn) can be
used to retrieve p(tn−1) exactly from p(tn) and p(tn+1). We write c2(x) = c20 + c21(x).
The average velocity is c20 = 1. The random part c21 has been constructed as follows.
Let 2N × 2N be the number of spatial grid points and c21;n,m be the value of c21 at the
grid point (n,m). The values c21;2n,2m have been chosen independently and uniformly
on (−r, r) with r < 1/2. The value of c21 is then set constant on four adjacent pixels by
enforcing that c21;2n−1,2m = c21;2n−1,2m−1 = c21;2n,2m−1 = c21;2n,2m for 1 ≤ n,m ≤ N . In
all simulations, we have N = 200, which generates a grid of 4002 = 1.6× 104 points.
The time step has been chosen so that the CFL condition δt < minx c(x)/(2N) is
ensured. The fluctuations of the velocity field have been chosen larger than those in
the weak-fluctuation regime analyzed in this paper. This is to ensure that sufficient
mixing occurs on the limited 400 × 400 grid that fits on a personal computer. The
domain of truncation has also been centered to maximize the mixing of the recorded
signal. Off-centered domains of truncation give very similar results, albeit with a
smaller signal-to-noise ratio.
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Abstract. Deformation of glass using heat occurs in many industrial and artistic applications,
including the manufacturing of laboratory glass products, drawing of fiber optics, and hand-blown
artistic creations. The formation of glass objects is an art, but the trial-and-error aspect of the
procedures can be reduced by development of a systematic theory, especially when the objects are
formed using mechanical means. Glass microelectrodes are ubiquitous in experimental studies of
the electrophysiology of biological cells and their membranes, and the “pulling” of these electrodes
is based on trial-and-error. To make this process more systematic, we derive a model for glass
microelectrode formation using a coil heater with a gravity-forced electrode puller, assuming that the
glass tube is an incompressible, viscous fluid. The model is one-dimensional, and the effects of thermal
radiation from the coil heater are essential in the formation process. A breaking stress criterion is
imposed to fracture the glass tube, forming the electrode tip. The difficulty with the moving free end
is avoided by introducing a quasi-Lagrangian coordinate system. The model equations are solved
using an adaptive moving grid to account for the local stretching of the glass. A number of examples
using a double-pull paradigm have been computed to illustrate the dependence of the electrode shape
and tip diameter on the heater temperature and the ratio between the inner and outer radii.

Key words. glass tube, microelectrodes, viscous incompressible fluid, radiation heat transfer,
finite-difference method, adaptive grid

AMS subject classifications. 76D99, 80A20, 65M06, 65M50

DOI. 10.1137/S0036139901393469

1. Introduction. Glass objects are routinely produced in industry and in some
technical arts. Such objects include laboratory products, fiber optics, and hand-
blown glassware. In some applications, heat is applied to soften the glass during
the formation of these glass objects, using trial-and-error procedures. However, when
these procedures involve mechanical devices, the use of mathematical models provides
a more systematic approach. For example, the pulling of glass fiber optics has been
studied by Fitt et al. [1] and other researchers [4, 12]. Most of these studies focus on
isothermal or prescribed temperature conditions and on given pulling velocities.

Glass microelectrodes have played an essential role in cell electrophysiology for
decades and will continue to be an important tool in the future. These micropipettes
are used to inject electric current and dyes into cells and to measure membrane po-
tentials by insertion through cellular membranes or formation of a patch clamp of
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the membrane. The data collected give information about membrane electrical prop-
erties in the presence of voltage-gated and receptor-gated ion channels and with the
application of drugs. Laboratories using these microelectrodes usually make them on
a daily basis, using commercially available glass tubes and electrode pullers that use
coil heaters for softening the glass tubes during the stretching procedure.

There are four experimentally relevant parameters that can be measured on glass
microelectrodes. They are tip length, tip diameter, electrode resistance, and electrode
capacitance. Tip length is significant because this determines the physical strength
of the electrode and how easily it will penetrate tissue and cells. A short tip with
steep taper is robust but does not penetrate tissue easily. The converse is true of long,
gently tapering tips.

Tip diameter is important because it determines whether the electrode is suitable
for intracellular recording or for patch recording. Intracellular recordings are made
with electrodes having very narrow tips (approximately 0.1 micron), which can be
obtained using a single-pull electrode puller. Generally, patch clamping requires a
larger tip diameter, of approximately 1 micron outside diameter and 0.5 micron inside
diameter, obtained using a double-pull electrode puller. There is a correlation between
tip length and distal tip diameter; for example, using a specific puller with varying
heater widths and geometries, long tips were of narrower gauge at the ends than short
tips [2].

Capacitance and resistance are properties of the electrode that determine its con-
founding effect on measurements taken from neurons. In order to get accurate data,
one needs to measure these properties and compensate for them. These properties
are functions of the physical form of the electrode, the properties of the glass used to
make it, and the electrolyte used to fill it. Therefore, since the manufacturing process
determines this physical form, the process should be understood so that it can be
tailored to create electrodes fitting the experimentalist’s needs.

Capacitance and electrode resistance as a function of the pulling parameters can
be measured but not at the same time as precise measurement of tip diameter or
shank geometry. The procedure for measuring tip size accurately involves using the
scanning electron microscope (SEM), which is time-consuming and expensive. There
are means to do this nondestructively [3]. Other methods have been explored, in-
cluding measuring the rate of flow of a solution down the shank of an electrode and
using a mathematical model to find tip size [9]. Mittman et al. [7] estimated tip di-
ameter from the pressure needed to force bubbles from a microelectrode immersed in
methanol. From knowledge of the tip diameter and length of the electrode’s tapering
shank, capacitance also has been computed using the approximation that the shank
is a cone [11].

However, the exact relationship between the variables in the actual manufacturing
process (heater geometry, rate of pulling the glass tube, length of first pull (for a
patch electrode), rate of the second pull, etc.) and electrode properties is usually
determined empirically by a method of trial-and-error. Though some work has been
done on the influence of heater geometry and width on electrode form (see [2]), in
general the process is not well determined. In this paper, our objective is to develop
a basic mathematical model for the formation process of these glass microelectrodes
and, through computer simulations, understand the complex interaction of variables
in the manufacturing process with the properties of the resulting electrode. This has
the advantages that many different types of pullers can be simulated, the effects of
many parameters can be explored rapidly, and predictions to guide the formation of
microelectrodes using existing pullers as well as future design of electrode pullers can
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be made. There are several types of pullers in common use today. The differences
among them include heater size and shape, method of application of the force (gravity,
electromagnetic) to extend the glass tube, use of single and double pulls, and auxiliary
cooling methods (e.g., puffs of air).

The main focus of this paper is on the pulling of glass microelectrodes. We will
not analyze the rupture of the glass tube at the end of the pulling process. Instead,
we will impose a breaking stress criterion to terminate the stretching of the glass tube
when the viscous stress inside the glass tube exceeds the critical value of the stress,
i.e., the breaking stress. However, the theory developed here can be generalized and
applied to a broader class of problems. From the fluid dynamics point of view, the
breaking of the glass tube may be due to the collapse of the glass wall. Furthermore,
it also is possible that the inner radius of the glass tube shrinks to zero, resulting
in failure of this production method to produce a functional electrode. Three major
factors that determine these outcomes are the surface tension, viscous stress (tension),
and pressure, which are all affected by the temperature of the glass. Previous studies
of the stability of free surfaces of isothermal fluid jets as well as the effects of pressure
and temperature may be used to predict the behavior of the surfaces in the stretched
section of the glass tube. This will be the subject of a future paper.

The paper is organized as follows. In section 2, the assumptions for the model and
derivation of the model equations are given. Details of the control-volume approach
used in this derivation are specified in Appendix A. The effects of thermal radiation
from the coil heater on the glass tube require the determination of the geometric
factors from the coil and from the background to the glass; see Appendix B. Also
described are the breaking stress criterion, which is used to terminate the numerical
computations, and the glass properties used in the model. The added complication of
a moving boundary due to the stretching of the glass tube is avoided by introducing a
quasi-Lagrangian coordinate system. The actual length of the tube evolves according
to a system of ordinary differential equations.

The finite-difference method is described in section 3 and is used to compute
the solutions numerically in space and time. In section 4, several different cases of
parameter values are given as examples for the numerical computations, and results
for a double pull case are described. The paper closes with a discussion in section 5
on the limitation of the present model and future work for improving it.

2. A model for glass microelectrode formation.

2.1. Derivation of the model. In the model equations developed here for glass
microelectrode formation, we account for certain types of electrode pullers which are
capable of single and multiple pulls. The microelectrode starts off as a glass tube
that is held vertically, being clamped at the top and with a weight hanging from the
bottom; see Figure 2.1(a). The tube then is heated nonuniformly in the longitudinal
direction by radiation from an axially symmetric heated wire coil, which surrounds
the tube near the middle at the initial time. Also, there is radiation loss to the
background, and we assume there is no radiant energy passing through the glass. The
tube heats up to the softening point and begins to stretch due to the weight; see Figure
2.1(b). Examination of microelectrodes formed in this way shows that symmetrical
radial contraction of the glass tube occurs as longitudinal stretching takes place.
Although this is a two-dimensional formation process, we treat the problem in one
space dimension along the tube length by averaging over the cross-sectional area. This
is justified because of the small diameter of the tube compared with its length.
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Fig. 2.1. Schematics of the glass tube before (a) and during (b) the stretching.

In developing a mathematical model to describe the heating of a glass tube to
form a microelectrode, we initially will be working with an Eulerian coordinate system,
with x and t as the spatial and temporal coordinates, respectively. The mass of the
tube is small compared to the hanging weight w and will be ignored in the following
derivation. At t = 0, we assume a uniform glass tube of length �0 with a circular
annular cross section having constant outer radius R0 and constant inner radius r0.
The resulting area of the annular cross section is denoted by s0 = π(R2

0 − r2
0), and

the coordinate along the glass tube is given by 0 ≤ x ≤ �0.
We assume that the stretching glass tube maintains a circular annular cross section

with outer radius R(x, t) and inner radius r(x, t) at a given location x and time t (thus,
R0 = R(x, 0) and r0 = r(x, 0)). The cross-sectional area of the glass tube is given by
s(x, t) = π(R2 − r2) (thus, s0 = s(x, 0)). The length of the tube at time t is denoted
by �(t) (thus, �0 = �(0)), and we refer to the location x = �(t) as the “free end.” The
velocity of the glass at x at time t is given by u(x, t). Thus the extensional strain rate
is given by ∂u/∂x, which corresponds to the spatial variation of the glass velocity.

From experiments, the dependence of density changes on temperature is negligi-
ble. Therefore, to simplify the model equations, we assume that the glass is an incom-
pressible fluid with constant density and that the stretching is axial with concomitant
shrinking of the cross-sectional area, s(x, t). Using a control-volume approach (cf.
Appendix A), we have the continuity equation

∂γ

∂t
+ u

∂γ

∂x
+ γ

∂u

∂x
= 0(2.1)
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where γ(x, t) = s(x, t)/s0.
The axial stress at each point in the glass tube is given by

axial stress =
F

s(x, t)
(2.2)

where F is the axial force and is uniform over the length of the tube because we have
neglected its mass.1 To determine F , we use Newton’s second law to describe the
motion of the applied weight w,

w − F =
wa

g
(2.3)

where the acceleration a = d2�/dt2 is measured at the end of the glass tube and g is
the gravitational acceleration. Thus the glass satisfies the constitutive relation

w

s(x, t)

(
1− a

g

)
= 3µ

∂u

∂x
(2.4)

where µ is the shear viscosity and 3µ is the coefficient of viscosity for axial tension.
We have assumed that viscous stress is dominant over the inertia of the glass and
the surface tension of the glass-air interface. Therefore, the Reynolds number, Re =
ρUL/µ̄, is small2 where ρ is the glass density and U , L, and µ̄ are the characteristic
velocity, length, and viscosity, respectively. Note that µ = µ(θ(x, t)), where θ(x, t)
is the temperature of the glass at (x, t). (The issue of surface tension is addressed
briefly in section 5.) Combining (2.1) and (2.4) yields

∂γ

∂t
+ u

∂γ

∂x
= −P

µ

(
1− a

g

)
(2.5)

where P ≡ w/3s0 = constant.
The temperature distribution θ(x, t), 0 < x < �(t), t > 0, is subject to the initial

condition θ(x, 0) = θ0(x), 0 ≤ x ≤ �(0). We apply a standard control-volume method
for deriving the energy equation (see Appendix A), resulting in

ρ

(
∂cpθ

∂t
+ u

∂cpθ

∂x

)
=

1

s

∂

∂x

(
sκ(θ)

∂θ

∂x

)
+ ER(2.6)

where cp and κ are the specific heat and thermal conductivity of the glass, respectively,
and ER represents the transport of thermal energy to the glass tube by radiation. This
radiation term is given by

ER = 2k

√
π

s(1− β2)

[
Fhg

εhα

1− (1− α)(1− εh)

(
θ4
h − θ4

)
+ Fbg

εbα

1− (1− α)(1− εb)

(
θ4
b − θ4

)]
(2.7)

where k is the Boltzmann constant, α is the absorptivity of the glass to radiative ther-
mal energy, εh and εb are the emissivities of the heater and background, respectively,

1We refer the reader to Appendix A for more details.
2This assumption will be justified in the next section.
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and θh(x, t) and θb(x, t) are the temperatures of the heater and the background, re-
spectively. The quantities Fhg, Fbg, and Fbh are geometric factors between the heater
and the glass tube, the background and the glass tube, and the background and the
heater, respectively. We note that Fgh = Fhg, and similarly for the other two ge-
ometric factors. (The derivation of the geometric factors is given in Appendix B.)
Finally, β = r/R is the ratio of the inner and outer radii; thus s = πR2(1 − β2). In
general, β is a function of x and t and can be determined by treating the interfaces
between the glass tube and the air as free boundaries. When the viscosity of the glass
is small, i.e., the Reynolds number is large, it can be shown that β is approximately a
constant, which is not the case for moderate and large values of the viscosity. Further
discussion of these issues will be given in section 4.

The initial conditions are given by θ(x, 0) = θ0, γ(x, 0) = 1, and u(x, 0) = 0. At
the boundaries x = 0 and x = �(t), θ is fixed at θa, which is the ambient temperature.
Since the boundary at x = 0 is fixed, the velocity u(0, t) = 0. At the moving boundary,
x = �(t), the velocity is given by u(�(t), t) = d�(t)/dt. In summary, the governing
equations of our problem are the coupled equations, (2.5) and (2.6), with the specified
initial and boundary conditions.

Finally, the criterion for determining when the glass tube breaks is the breaking
stress for the glass. The maximal stress in the tube can be computed, and when it
reaches the assumed breaking stress, the tube is considered broken. This procedure
requires an accurate determination of the stress distribution in the tube both spatially
and temporally because it varies rapidly as the tube thins down to small diameters. In
the present study, we will find that, in some cases, the breaking stress is not achieved
after the maximum allowed extension of the glass tube is reached, and this results in
an extremely fine tip with a long shank, which is not usable in experiments. When the
breaking stress is achieved, the glass tube will break into two pieces, and the resulting
shapes of the two electrodes produced then are determined.

3. Numerical procedures. Since the governing equations are nonlinear, we
seek the solution through numerical means. The main purpose of the numerical tests
in this paper is to investigate the effects on the shape of the glass microelectrode tips
obtained by changing the heater temperature θh. This parameter has been chosen
since it is easy to adjust in the laboratory. We will simulate a typical two-pull electrode
formation process used in the laboratory when the glass microelectrode is produced,
which will be described briefly in the following.

3.1. Coordinate transformation. The moving boundary introduces an extra
complication into the model even though the solution behavior is quite regular. To
avoid this added complication in the numerical computations, we choose a quasi-
Lagrangian coordinate system in which the moving boundary is fixed. However, this
coordinate system does not follow the material motion as in true Lagrangian coordi-
nates. This coordinate system can be obtained by a simple transformation from the
Eulerian coordinates, which we now describe.

We derive the governing equations under the new coordinates (ξ,τ) defined by

ξ = ξ(x, t) or x = X(ξ, τ),(3.1)

τ = t,(3.2)

where ξ(0, t) = 0 and ξ(�(t), t) = 1, and with new dependent variables

u(x, t) = U(ξ, τ), θ(x, t) = Θ(ξ, τ), �(t) = L(τ),(3.3)

a(t) = A(τ), γ(x, t) = Γ(ξ, τ), µ(x, t) = ν(ξ, τ).(3.4)
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The relationships between the derivatives in the new (ξ,τ) and the old (x,t) coordinates
are

∂

∂x
= G

∂

∂ξ
,(3.5)

∂

∂t
=

∂

∂τ
− V

∂

∂x

=
∂

∂τ
− V G

∂

∂ξ
(3.6)

where V = ∂X/∂τ is the “grid velocity,” and G = ∂ξ/∂x is the “reciprocal grid
stretching ratio,” which is to be specified.

From (2.4), we have

∂u

∂x
=

P
γµ

(
1− a

g

)
,(3.7)

and in the new coordinates, this becomes

∂U

∂ξ
=

P
GΓν

(
1− A

g

)
(3.8)

where ν = γµ. The constitutive equation for γ, (2.5), under the transformation can
be written as

∂Γ

∂τ
+ (U − V )G

∂Γ

∂ξ
= −P

ν

(
1− A

g

)
.(3.9)

The energy equation, (2.6), now is written in the new coordinates as

ρ

(
∂cpΘ

∂τ
+ G(U − V )

∂cpΘ

∂ξ

)
= GΓ

∂

∂ξ

(
κ(Θ)G

Γ

∂Θ

∂ξ

)
+ ER.(3.10)

In order to solve (3.8)–(3.9), we need to compute conditions at the free end,
L(τ). Integrating (3.8) from ξ = 0 to ξ = 1 and using W (τ) = U(1, τ) = dL/dτ and
dW/dτ = A(τ) = d2L/dτ2, we obtain

dL

dτ
=

(
1− 1

g

d2L

dτ2

)∫ 1

0

P
GΓν

dξ.(3.11)

The information for the moving boundary (the length L(τ) and velocity W (τ)) is
obtained by solving a system of ordinary differential equations derived from (3.11):

dW

dτ
= g − 1

IW,(3.12)

dL

dτ
= W(3.13)

where I =
∫ 1

0
P/(νgGΓ)dξ.
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3.2. Adaptive moving grid generation. A special feature of the problem
being studied here is that the solutions (temperature, radius of the tube, etc.) vary
rapidly in the region near the heater and much more slowly in regions away from the
heater. A uniform grid results in grid points that are unnecessarily dense in some
regions and not sufficiently dense in other regions. Therefore, an adaptive grid is
desirable in the computation.

The approaches used in adaptive grid generation can be divided into two general
categories. When the grid generation and the physical equations are dealt with sep-
arately, the approach is called static regridding. This approach is usually robust and
relatively simple to use. If the grid is generated simultaneously with the solution of
the physical equations, then the approach belongs to the moving mesh methods.

We use a simple moving mesh method by solving a partial differential equation
for the coordinate transformation

ξ = ξ(x, t),(3.14)

τ = t(3.15)

between the domain ξ ∈ [0, 1] and x ∈ [0, L(τ)]. The differential equation, based on
the equidistribution principle, can be written as

∂X

∂τ
=

1

τr

∂

∂ξ

(
M

∂X

dξ

)
, 0 < ξ < 1.(3.16)

Here τr is a (small) relaxation parameter and M =
√
(1 + pΓ−2)/(1 + Γ−2) is the

monitor function, which is chosen such that the grid is dense where Γ is small. The
smoothing parameter p determines the ratio of finest and coarsest grid sizes and
therefore prevents the distribution of too many points in the region when Γ is small.
When solved numerically on a uniform grid 0 = ξ0 < ξ1 < · · · < ξN = 1, subject to the
boundary conditions X(0, τ) = 0 and Xτ (1, τ) = U(1, τ) = W (τ) (or X(1, τ) = L(τ)),
(3.16) generates a nonuniform grid 0 = x0 < x1 < · · · < xN = L(t).

We note that X must be a monotone function of ξ at any given time τ in order
to be a coordinate transformation. This is guaranteed since (3.16) is a heat equation.
Other equations and monitor functions can be used as well. For a detailed discussion,
see [6] and references therein.

3.3. Finite-difference scheme. We solve the system (3.9)–(3.10) by a finite-
difference method. We discretize (3.9) using a backward Euler scheme in time and an
upwind difference in space, namely,

Γi,n+1 − Γi,n = −δτ
P

νi,n+1

(
1− An+1

g

)

+




Gi+1/2,n+1(Ui,n+1 − Vi,n+1)(Γi+1,n+1 − Γi,n+1)
δτ
δξ

if Ui,n+1 − Vi,n+1 ≤ 0,

Gi−1/2,n+1(Ui,n+1 − Vi,n+1)(Γi,n+1 − Γi−1,n+1)
δτ
δξ

if Ui,n+1 − Vi,n+1 > 0

(3.17)

where δξ and δτ are the mesh and time step sizes, respectively, and i and n are the
indices for the space coordinate and time level, respectively. For any grid function
fi,n, we define fi+1/2,n = (fi+1,n+fi,n)/2, fi−1/2,n = (fi−1,n+fi,n)/2. The reciprocal
grid stretching ratio Gi,n is computed using the standard central difference formula.
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We now discretize (3.10) using a backward Euler scheme in time and central-
differences in space; thus

ρcpΘi,n+1 = ρcpΘi,n − ρcpGi,n+1δτ

2Ln+1δξ
(Ui,n+1 − Vi,n+1) (Θi+1,n+1 −Θi−1,n+1)

+
Gi,n+1δτ

Γi,n+1(Ln+1)2δξ2

[
κi+1/2,n+1Γi+1/2,n+1 (Θi+1,n+1 −Θi,n+1)

− κi−1/2,n+1Γi−1/2,n+1 (Θi,n+1 −Θi−1,n+1)
]

+ 2kδτ

√
π

S0Γi,n+1(1− β2)

[
Fhg

εhα

1− (1− α)(1− εh)

(
Θ4
h −Θ4

i,n+1

)
+ Fbg

εbα

1− (1− α)(1− εb)

(
Θ4
b −Θ4

i,n+1

)]
.(3.18)

The equations describing the tip motion, (3.12) and (3.13), are solved in a different
fashion. First, (3.12) is integrated from time level n (τ) to n+ 1 (τ + δτ), assuming
that I is a constant in that time interval, which yields

Wn+1 = gIn+1

[
1− exp

( −δτ

In+1

)]
+Wn exp

( −δτ

In+1

)
.(3.19)

The acceleration then is obtained using (3.12) as

An+1 = g − Wn+1

In+1
.(3.20)

The tip length is obtained using a backward Euler method,

Ln+1 = Ln +Wn+1δτ.(3.21)

The trapezoidal rule is used to evaluate the integral

In+1 = δξ

N∑
i=1

P
2g

(
1

Gi,n+1Γi,n+1νi,n+1
+

1

Gi−1,n+1Γi−1,n+1νi−1,n+1

)
.(3.22)

Finally, the velocity at each interior point is computed by discretizing (3.8) using the
trapezoidal rule

Ui,n+1 = Ui−1,n+1

+ δξ
P
2

(
1− An+1

g

)(
1

Gi,n+1Γi,n+1νi,n+1
+

1

Gi−1,n+1Γi−1,n+1νi−1,n+1

)
.(3.23)

The mesh adaptation also is done numerically. The finite-difference approxima-
tion of (3.16) is

Xi,n+1 = Xi,n +
δτ

τr(δξ)2
[
Mi+1/2,n+1(Xi+1,n+1 −Xi,n+1)

− Mi−1/2,n+1(Xi,n+1 −Xi−1,n+1)
]
.(3.24)

The boundary conditions for (3.24) are

X0,n+1 = 0, XN,n+1 = Ln+1.



1508 H. HUANG, R. M. MIURA, W. P. IRELAND, AND E. PUIL

3.4. Solution algorithm. For the initial conditions, we assume that the glass
tube has uniform properties and constant temperature distribution with no motion.
Since the equation for temperature is second-order in space, we need two boundary
conditions, namely, the Dirichlet conditions that the temperature is held fixed at
both ends. The equation for Γ is first-order in space, which means that normally one
condition needs to be specified. However, U−V = 0 at both ends, so the characteristic
curve at each boundary point, ξ = 0 and 1, is tangent to the boundary. Therefore,
no explicit boundary conditions are needed for Γ. Furthermore, U0,n+1 = 0, which is
sufficient to solve for Ui,n+1.

We assume that the values of the variables at time level n are known, and we use
an iterative procedure for solving the discrete equations for these variables at time
level n+ 1 as follows:

1. the temperature Θ is computed using (3.18);
2. the value of I is calculated using (3.22);
3. then, W , A, and L are obtained from (3.19), (3.20), and (3.21), respectively;
4. the values of Γ are computed from (3.17);
5. the velocity U is determined from (3.23); and
6. after the physical equations are solved, we update the mesh by solving the

mesh equation (3.24), and then move to the next time level.

Using these values of the variables, we update the coefficients, e.g., ν, etc., in the
discrete equations, and repeat steps 1–6 until convergence is achieved. These com-
putations are repeated until either the maximum extension length is reached or the
breaking stress in the glass tube is exceeded.

We note that our numerical method is implicit and an iterative procedure is
required due to the nonlinear nature of the physical and grid generation equations. In
principle, a simpler explicit method also can be used to solve the set of equations listed
above. However, such methods normally impose a severe constraint on the size of the
time step even for linear problems. On the other hand, we can choose a relatively
large step size by using the implicit method. The iterative procedure at each time
step usually converges with only a few iterations.

Most of the results presented in the following section are obtained using 512 grid
points, in the spatial discretization. We have experimented with more grid points,
but the results are essentially the same. The size of the time step, which is allowed
to vary in our computations, is chosen according to the velocity of the glass so that
the free end of the glass moves less than 10−3 of the initial tube length �0.

4. Results. To illustrate the theory developed in this paper, we have carried
out several representative computations of glass microelectrode formation. For patch-
clamp experiments, appropriate strength in the shank of the electrode requires two
separate pulls with different heater temperatures. Therefore, the first pull with heater
temperature θ1

h is stopped when the glass tube is extended to a certain length and
forms a “neck.” The heater is switched off, and switched on again, usually at a lower
temperature θ2

h, after it has been moved to a location approximately at the smallest
part of the neck and the glass tube has cooled down. The glass tube usually breaks
during the second pull with the desired tip shape if the temperature of the heater is set
properly. A maximum extension length, which is determined by the dimension of the
puller, is set for the second pull. The adjustable parameters are the temperature, the
location of the heater, and the force load on the end of the tube. The computations
were carried out for two different values of θ1

h for the first pull, combined with various
heater temperatures θ2

h for the second pull.
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Table 4.1
List of the physical parameters used in the computations.

ρ cp κ k εh εh α

g/cm3 Erg/Kg cm2/sec Erg/cm2sec K4 cm2/g cm2/g cm2/g

2.23 7.538 × 106 1.130 × 105 5.67 × 10−5 1 1 0.4

Since the ratio of the inner and outer radii of the tube, β = r/R, is treated as an
unknown function in our model, we considered two cases. The first set of computations
were carried out assuming that β is a constant, which is valid when the viscosity is
relatively small. For the second set of computations, we assumed that β is a linear
function of the nondimensional area Γ,

β =
1

2
+ β0(Γ− 1)(4.1)

where β0 is a constant. We note that neither of these assumptions on β may be
realistic. However, the computations based on these assumptions will provide useful
information on the limitations and effects of β on the shape of the electrode when
other parameters remain unchanged.

We carried out a number of numerical computations for the double-pull paradigm.
The objective in the double-pull cases was to obtain tip diameters of approximately
1 micron. The important parameter was the heater temperature, which can be con-
trolled in experiments and was varied in the computations. We first describe the
properties of the glass tubes used in the numerical computations and then present the
results of these computations for the glass shapes, temperature distributions, stress
distributions, and their time evolutions.

4.1. Glass properties and geometrical parameters. We first describe the
relevant physical and geometrical parameters. The nonlinear dependence on temper-
ature of the coefficients in the governing equations is determined by experimental
measurements. In order to follow the physical process as closely as possible, we esti-
mate the parameter values from these data.

The most important parameter is the viscosity of the glass, µ. According to the
measurements, the relationship between lnµ and the temperature is piecewise linear.
Therefore, we use power laws for the temperature dependence over certain intervals.
A typical formula for the viscosity of the glass (in g/cm sec) is given by

µ(θ) =




109−c1(θ−293), θ ≤ 900,
103.612−c2(θ−900), 900 ≤ θ ≤ 1100,
103.38−c3(θ−1100), 1100 ≤ θ ≤ 1500.

(4.2)

Here c1 = 8.876 × 10−3, c2 = 1.16 × 10−3, and c3 = 7.355 × 10−3, based on mea-
surements for soda-lime [8]. The other physical parameters used in our computations
also come from the experimental setup and are summarized in Table 4.1. The ini-
tial temperature of the glass tube is set to be the background temperature, or room
temperature (assumed to be 20◦C), i.e., θ0 = θb = 293◦K.

The geometrical parameters for the glass tube and heater are given in Table 4.2.
The other two relevant parameters are �p1 and �p2, which are the maximum lengths
set for the first and second pulls, respectively. Due to the physical constraint of the
puller, �p1 + �p2 is usually fixed, while various combinations are allowed. In this
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Table 4.2
List of the geometrical parameters used in the computations.

Glass Properties Heater Properties

�0 R0 r0 xh �h Rh
cm cm cm cm cm cm

7.56 8.66 × 10−2 4.33 × 10−2 3.63 0.3 0.15

Table 4.3
NB stands for the cases in which the breaking stress criterion is not met; the superscript e

denotes the values at the end of the second pull, and the superscript b denotes the values at which
the maximum stress Smax first exceeds the breaking stress Sb; Rmin and rmin are the outer and
inner radii, respectively, of the glass at the neck.

θ1h (oK) 1100 1500

θ2h (oK) 900 1100 1500 900 1100 1500

Seb (×109 dyn/cm3) 2.41 2.26 2.10 2.45 2.33 2.17

Semax (×109 dyn/cm3) 4.89 1.88 .350 7.49 3.48 .726

Remin (µm) 12.4 6.67 5.35 5.98 3.75 2.71

remin (µm) 6.19 3.33 2.68 2.99 1.88 1.35

Sb (×109 dyn/cm3) 2.40 NB NB 2.44 2.30 NB

Sbmax (×109 dyn/cm3) 2.41 NB NB 2.49 2.31 NB

Rbmin (µm) 51.2 NB NB 55.3 43.0 NB

rbmin (µm) 25.6 NB NB 27.6 21.5 NB

study, however, we have chosen �p1 = 0.58 cm and �p2 = 4 cm. The initial area is
s0 = π(R2

0 − r2
0) = πR2

0(1− β2
0) = 1.767× 10−2.

During the pulling processes, the glass tube usually breaks in the location where
the stress exceeds the “breaking stress.” The breaking stress is a material-dependent
parameter that also depends on the temperature. For example, for the glass used in
this study, the breaking stress (in dyn/cm3) is given by the empirical formula (see
Scholze [10, pp. 255–272])

Sb = 5.12× 1010

√
θ

,(4.3)

which indicates that it becomes easier to break this type of glass as the temperature
increases. For our first set of computations with a constant β, we choose not to
impose the breaking stress. Instead, we use the maximum length �p1 + �p2 as a
stopping criterion. The breaking stress using (4.3) is computed as a reference value.
The breaking stress criterion is imposed for the second set of computations when β is
a function of Γ (4.1).

4.2. Numerical results for constant β. In Table 4.3, we summarize the com-
putational results based on the constant area ratio β = 1/2.

The table lists the minimum radii (the values at the “neck” of the tube) and the
maximum stress at the ends of the first and the second pulls, and when the stress in
the glass tube exceeds the breaking stress computed using formula (4.3). The heater
temperatures for the two pulls are chosen to be a combination of 900◦K, 1100◦K, and
1500◦K, since these are the critical values for the glass viscosity shown in (4.2).
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Table 4.4
NB stands for the cases in which the breaking stress criterion is not met; the superscript b

denotes the values at which the maximum stress Sbmax first exceeds the breaking stress Sb; Rbmin
and rbmin are the outer and inner radii, respectively, at the neck; t is the time from the start of the
second pull; and xmin is the location of the neck from the clamped end of the glass.

θ1h (oK) 1100 1500

θ2h (oK) 900 1042 1044 1046 1100 1190 1192 1194

Sb (×109 dyn/cm3) 2.40 2.28 2.28 NB 2.30 2.25 2.25 NB

Sbmax (×109 dyn/cm3) 2.41 2.28 2.28 NB 2.31 2.25 2.25 NB

Rbmin (µm) 51.2 19.6 17.7 NB 43.0 18.1 15.6 NB

rbmin (µm) 25.6 9.81 8.87 NB 21.5 9.01 7.78 NB

tb (sec) 12.8 9.97 9.95 NB 3.05 2.80 2.80 NB

xbmin (cm) 4.59 4.92 4.99 NB 4.31 4.58 4.65 NB

The first observation one can make is that critical heater temperatures exist, i.e.,
temperatures beyond which the stress in the glass tube never reaches the breaking
stress. It also can be seen that radii at the end of the second pull do not vary
significantly. However, the value of maximum stress that exceeds the breaking stress,
for some of the cases listed, is affected by the heater temperature. This suggests that
if the breaking stress criterion is imposed, then the glass tube may break and the
minimum radius (at the neck) of the tube may vary. This is confirmed by the values
of the radii at which the stress first exceeds the breaking stress. In all the cases,
the radii at the end of the second pull are comparable to the values for the glass
electrodes pulled in the laboratory. However, the radii when the stress exceeds the
breaking stress on the first pull are much larger than those at the end of the second
pull.

To further investigate the dependence of the minimum radii on the heater tem-
perature, we have done simulations with careful variations of the temperature. The
results are given in Table 4.4.

With small variations of the heater temperature, we numerically identified the
critical temperatures for the second pull. For θ1

h = 1100◦K, this critical temperature
is about θ2

h = 1044◦K, whereas for θ1
h = 1500◦K, this critical temperature is about

θ2
h = 1192◦K. In general, the neck radii are sensitive to the heater temperature.
However, when the glass breaks (breaking stress is reached) at the critical heater
temperatures during the second pull, the radii of the neck appear to be less sensitive
to the heater temperature of the first pull.

The time history of the stress and breaking stress offers a clearer picture of what
happens near the critical temperature, as plotted in Figure 4.1 for θ1

h = 1500◦K. It can
be seen that, during the second pull, the breaking stress decreases initially, reaches
a minimum value, and then starts to increase again. This apparently corresponds
to the fact that the temperature at the neck rises first, reaches a maximum, and
then decays when the neck moves away from the center of the heater. In the cases
shown in Figures 4.1(a)–(c), at a relatively low heater temperature (θ2

h = 1100◦K),
the stress at the neck of the glass tube increases monotonically with time and passes
the breaking stress during the second pull. At a higher heater temperature (θ2

h =
1500◦K), the maximum stress increases initially, reaches a maximum value, and then
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Fig. 4.1. Stress and breaking stress (in dyn/cm3) versus time with θ1h = 1500◦K and (a)

θ2h = 1100◦K, (b) θ2h = 1192◦K, (c) θ2h = 1194◦K, (d) θ2h = 1500◦K. The dashed line denotes the
breaking stress, and the symbols (× and +) are the maximum stresses.

decreases. It never reaches the breaking stress (Figure 4.1(d)). Note that the peak
of the maximum stress, just before breaking, decreases with increasing temperature
during the second pull. Deceasing the heater temperature raises the maximum value
of the stress (Figure 4.1(a)). As a result, the stress reaches and passes the breaking
stress sooner for lower heater temperature during the second pull. Therefore, the
neck radii are greater at lower heater temperature during the second pull when the
breaking stress is met since there is insufficient time for the tube to stretch and reduce
the neck radii. This is demonstrated in Figure 4.2, where the outer radius of the neck
is plotted against time.

4.3. Numerical results for variable β. In order to gain some insight on the
effect of β, the ratio of the inner and outer radii of the glass tube, we present some
computations with θ1

h = 1500◦K and θ2
h = 1190◦K, with β given by (4.1) where β0

varies from 0.3 to −0.2. The breaking stress criterion is imposed, and the glass breaks
for every value of β0. In Table 4.5, we have listed the outer and inner radii and the
dimensionless area at the tip (neck) as well as the minimum value of β when the glass
tube breaks. Note that γ is initially 1, so β is initially 0.5 for the first pull. However,
the value of γ is negligible in determining βmin when the glass tube breaks; cf. (4.1)
and Table 4.5. Clearly, the value of β0 (therefore the value of β) has a visible effect
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Fig. 4.2. Neck outer radius (in cm) versus time (in sec) with the same heater temperature
Θ1
H = 1500◦K for the first pull and θ2h = 900, 1100, 1190, 1300, and 1500◦K for the second pull,

ordered from right to left. The times when the maximum stress exceeds the breaking stress and the
corresponding values of the radii are marked. These times depend on the heater temperature during
the second pull.

Table 4.5
Tip geometry as a function of β. The temperatures of the heater are 1500◦K for the first pull

and 1190◦K for the second pull. Radii are given in µm. The minimum value of the reciprocal grid
stretching ratio is given in the second column.

β0 Gmin Rmin rmin βmin

0.3 1.20×10−3 26.5 5.32 0.20

0.2 1.10×10−3 26.1 7.84 0.30

0.1 9.33×10−4 25.0 10.0 0.40

0.0 4.34×10−4 18.1 9.03 0.50

–0.1 1.51×10−5 3.64 2.19 0.60

–0.2 1.31×10−5 3.80 2.66 0.70

on the values of the tip radii and area. It can be seen that the tip area decreases
monotonically as β0 decreases. However, the actual values of the tip outer and inner
radii vary in a more complicated fashion. We note that the effect of β0 (and β) is more
effective in reducing Rmin and rmin when β0 ≤ 0 (βmin ≥ 0.5). There seems to exist a
β0 value between 0 and −0.2 (correspondingly βmin is between 0.5 and 0.7) for which
both radii at the tip are reduced by about a factor of 3–4 (close to their respective
local minima). This corresponds to the case in which the inner radius contracts more
slowly than the outer radius, resulting in a smaller tip area. On the other hand, if
the inner radius contracts more quickly than the outer one (β < 0.5), the effects of
different β0 (β) on the inner radius are clearly demonstrated, while the effects on the
tip area and its outer radius are limited as β0 increases (βmin decreases).

Finally in Figure 4.3, we plot the corresponding shape of the glass tube for three
of the cases computed when the breaking stress is reached. It can be seen that smaller
values of the tip radii, when β0 = −0.1, are due mainly to the time available for the
glass to stretch.
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Fig. 4.3. Shape (outer (solid) and inner (dashed) radii) of a glass tube when it breaks with
θ1h = 1500◦K and θ2h = 1100◦K: β0 = 0.1 (top); β0 = 0 (middle); β0 = −0.1 (bottom).

5. Concluding remarks. In this study, we present a mathematical model for
the formation of glass microelectrodes using a double pull paradigm. The model is
one-dimensional and is based on the assumption that the glass material is an incom-
pressible viscous fluid. Numerical results indicate that the heater temperature plays a
critical role in the formation process. In order to obtain glass electrodes with desirable
tip shape and dimension, one needs a suitable combination of the heater temperature
for the two pulls. Another important factor revealed by our model and the numerical
simulations is the ratio of the inner and outer radii, β. Since our model does not take
the free boundary into account, this ratio remains a free parameter. The effect of β
is investigated by using a simple linear relationship between β and the dimensionless
area γ, which can be viewed as the first-order approximation when γ is close to its
initial value. It is shown that changing the value of β has little effect on the results
when the inner radius contracts faster than the outer one. On the other hand, both
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the inner and outer radii at the tip could be reduced by a factor of four or more if
the inner radius contracts more slowly than the outer one. We also have investigated
the effects of surface tension. It was found that under the physical conditions, surface
tension is at least one order of magnitude smaller than the viscous stress. Therefore,
excluding the effect of surface tension in the current model is justified.

Although our focus here has been on the specific manufacturing paradigm for
glass microelectrodes in the laboratory, our mathematical model does allow us to in-
vestigate a variety of other possible changes in the parameters to obtain better shaped
microelectrodes, e.g., the effects of changes in the weight, the ambient temperature,
and different pulling strategies.

However, a more conclusive result only can be obtained from a more realistic
model which takes the free boundary into account. Work is currently underway to
incorporate the effects of surface tension and pressure changes due to temperature
variations into the current model.

Appendix A. Derivation of the model. To derive both the continuity equa-
tion (2.1) and the energy equation (2.6) for the glass tube, we apply a control-volume
approach. Figure A.1 is a schematic diagram of a typical infinitesimal section of the
glass tube with length ∆x. The control volume consists of four surfaces: two annuli
with areas s(x, t) on the left side and s(x+∆x, t) on the right side, and outer and inner
surfaces with areas given approximately by sout = 2πR(x, t)∆x and sin = 2πr(x, t)∆x
where R and r are the radii of the outer and inner circles on the left side, respectively.
We assume that the effect of the local slopes with respect to x of the outer and inner
radii are negligible.

R
r

∆ x

heat influx
due to
convection

and
conduction

heat outflux
due to
convection
and
conduction

heat flux due
to radiation

Fig. A.1. Schematic of the control volume for the conservation of energy in the glass tube.

The conservation of mass, i.e., the net change of the glass in the control volume
due to the net flux of glass from the left and right sides, is given by the continuity
equation

∂(ρs)

∂t
+

∂(ρsu)

∂x
= 0(A.1)
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where ρ is the glass density and u is the local velocity. With the incompressibility
assumption, i.e., the material derivative of the density is Dρ/Dt = ∂ρ/∂t+u∂ρ/∂x =
0, the continuity equation can be simplified to

∂s

∂t
+

∂(su)

∂x
= 0.(A.2)

Define γ ≡ s/s0 where s0 is the initial constant annular cross-sectional area of the
tube. Then (A.2) becomes

∂γ

∂t
+ u

∂γ

∂x
+ γ

∂u

∂x
= 0.(A.3)

In order to write down the conservation law for the energy, we make the following
observations:

1. On the left surface, the energy influx is due to convective flow of the glass and
conduction of heat through the glass within a period ∆t, which is given by

Ein = s

(
ρcpuθ − κ

∂θ

∂x

)
∆t(A.4)

where cp, κ, and θ are the specific heat, thermal conductivity, and temperature of
the glass, respectively. The first term on the right-hand side is the convection due to
motion of the glass, and the second term is the heat conduction using Fourier’s law.

2. On the right surface, the energy outflux can be written similarly as

Eout = −s

(
ρcpuθ − κ

∂θ

∂x

)
∆t− ∂

∂x

[
s

(
ρcpuθ − κ

∂θ

∂x

)]
∆x∆t.(A.5)

The minus signs reflect the fact that energy is being removed.
3. On the outer surface, the energy exchange mechanism is mainly radiation

between the heater coil, glass pipette, and background. For a differential cross section
of the tube, the radiative heat transfer absorbed at the surface is given by

Erad = sout

[
Fhg

εhα

εh + α− εhα
(θ4
h − θ4) + Fbg

εbα

εb + α− εbα
(θ4
b − θ4)

]
,(A.6)

where we have assumed the standard fourth-power law of surface-to-surface radiative
heat transfer. The factors Fhg and Fbg are geometrical factors related to the relevant
surfaces. In this case, they are the heater surface, the glass outer surface, and the
background. Therefore, the subscripts hg and bg refer to the relationship between the
heater and glass surfaces, and the background and glass surfaces, respectively. The
detailed derivations of these factors are given in Appendix B. The parameters εh, εb,
and α are the emissivities for the heater and the background, and the absorptivity of
the glass, respectively. The first term is the amount of the net energy flux absorbed
by the outer surface of the glass tube, due to the radiation from the heater, which is
at the temperature θh ≥ θ. The second term is the net energy radiated away from
the glass tube towards the background, which is at the temperature θb ≤ θ.

4. There is no net energy exchange through the inner surface of the glass.
5. The incremental change in the internal energy within the control volume of

the glass tube is determined by the change of temperature during the time period ∆t
and is given by

Eint = [ρcps(x, t+∆t)θ(x, t+∆t)− ρcps(x, t)θ(x, t)]∆x.(A.7)
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With these assumptions, we can write down the equation for the temperature
using the conservation of energy; i.e., the net increase in the internal energy is equal
to the net flux of energy into the control volume, and thus (A.7) = (A.4) + (A.5) +
(A.6). After rearranging the terms, we obtain

∂ρcpsθ

∂t
+

∂ρcpsuθ

∂x
=

1

s

∂

∂x

(
sκ(θ)

∂θ

∂x

)

+ 2

√
π

s(1− β2)
k

[
Fhg

εhα

εh + α− εhα
(θ4
h − θ4)

+ Fbg
εbα

εb + α− εbα
(θ4
b − θ4)

]
.(A.8)

We have assumed that the ratio of the inner and outer radii, β = r/R, is a constant
independent of t and x. Note that this equation is different from (2.6) used in our
computations. Equation (A.8) is written in conservation form, while (2.6) is in non-
conservative form. In (A.8), we can rewrite the two terms on the left-hand side as

∂ρcpsθ

∂t
+

∂ρcpsuθ

∂x
= ρs

(
∂cpθ

∂t
+ u

∂cpθ

∂x

)
+ cpθ

(
∂(ρs)

∂t
+

∂ρsu

∂x

)

= ρs

(
∂cpθ

∂t
+ u

∂cpθ

∂x

)

where we have used the continuity equation (A.1). Therefore, the conservation form
(A.8) and nonconservative form (2.6) of the energy equation are equivalent.

Appendix B. Derivation of geometric factors. The derivation of the equa-
tion for the transfer of thermal energy from the coil heater to the glass tube through
radiation requires a detailed knowledge of the differential radiation from a differen-
tial area element on the inside surface of the heater to a differential area element on
the outer surface of the glass tube. It is assumed that there is no radiation passing
through the tube itself. The glass tube surface is assumed to have an absorptivity
equal to α. Also, we take into account the variations of the inner and outer radii of
the tube. However, we assume that the effects due to the local slope of the outer
radius with respect to x are negligible. Also, we approximate the coil by a cylindrical
surface with emissivity εh.

To account for the relative surface orientations of the heater and tube surfaces,
we compute the geometric (or radiation configuration) factor needed to evaluate the
thermal energy transfer to the tube (Howell [5]). The geometry of the heater and tube
system and the notation are shown in Figure B.1. We evaluate the total radiative
heat transfer from the heater to a differential cross section of the tube centered at x.
The differential of the geometric factor for a differential area ds at x on the tube for
a differential area dsh on the heater is given by

dFhg =
cosφ cosφhdsdsh

πσ2

where φ and φh are the angles of the line (of length σ) connecting the differential area
elements ds and dsh with the outer normal of the glass tube and inner normal of the
heater, respectively. The differential area element on the heater is

dsh = RhdydΦ
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Fig. B.1. Geometry for radiative heat transfer from the heater to the glass tube.

where Rh is the heater radius, y is the axial distance between the differential area
elements, and Φ is the angle between the two radial segments shown in Figure B.1.
Thus the geometric factor from the heater to the area element ds is given by

Fhg =
1

π

∫ ∫
cosφ cosφh

σ2
dsh

=
1

π

∫ Φ0

−Φ0

∫ �h

0

cosφ cosφh
σ2

RhdydΦ(B.1)

where

cosφ = −R2 + σ2 − (�2h +R2
h)

2Rσ
,

cosφh =
R2
h + σ2 − (�2h +R2

h)

2Rhσ
,

σ2 = (y + xh − x)2 +R2 +R2
h − 2RRh cosΦ,

Φ0 = cos−1

(
R

Rh

)
.(B.2)

The double integral for the geometric factor (B.1) can be simplified to a single
integral

Fhg = − 1

π

∫ Φ0

0

Rh(Rh −R cosΦ)(R−Rh cosΦ)

·
[

y + xh − x

R2[(y + xh − x)2 +R2]
+

tan−1 y+xh−x
R

R3

]y=�h
y=0

dΦ(B.3)

where

R2 = R2 +R2
h − 2RRh cosΦ.
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The geometric factor between the glass tube and the background is equivalent
to the geometric factor between the glass tube and an infinite cylindrical shell where
the segment shielded by the heater is excluded. The formula for this geometric factor
can be obtained more simply by replacing the cylinder with a spherical shell, again
excluding the portion of the shell shielded by the heater. This formula is given by

Fbg = 1− 1

2π
[2(β2 − β1) + sin 2β2 − sin 2β1](B.4)

where β1 = arctan Rh

xh
and β2 = arctan Rh

xh+�h
.
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Abstract. Periodic travelling waves are a fundamental solution form in oscillatory reaction-
diffusion equations. Here I discuss the generation of periodic travelling waves in a reaction-diffusion
system of the generic λ-ω form. I present numerical results suggesting that when this system is
solved on a semi-infinite domain subject to Dirichlet boundary conditions in which the variables are
fixed at zero, periodic travelling waves develop in the domain. The amplitude and speed of these
waves are independent of the initial conditions, which I generate randomly in numerical simulations.
Using a combination of numerical and analytical methods, I investigate the mechanism of periodic
travelling wave selection. By looking for an appropriate similarity solution, I reduce the problem to
an ODE system. Using this, I derive a formula for the selected speed and amplitude as a function of
parameters. Finally, I discuss applications of this work to ecology.
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AMS subject classification. 35K57

DOI. 10.1137/S0036139902392483

1. Introduction. Periodic travelling waves (PTWs) are a fundamental solution
form in oscillatory reaction-diffusion equations, by which I mean reaction-diffusion
systems whose kinetics have a stable limit cycle. PTWs are the one-dimensional
analogue of spiral waves and target patterns, and underlie many observed behaviors
in biology and chemistry (Bjørnstad, Ims, and Lambin (1999); Scott et al. (2000)).
In 1973, Kopell and Howard published their seminal paper, which showed that a
reaction-diffusion system develops a one-parameter family of PTWs as its kinetics
pass through a Hopf bifurcation. Wave speed or amplitude are convenient parameters
for this family, and an oscillatory reaction-diffusion equation has a PTW solution for
any speed above a critical minimum value and for any amplitude below that of the
limit cycle in the kinetics. Building on Kopell and Howard’s work, periodic travelling
waves were studied extensively in the 1970s and 1980s. This work focussed primarily
on the existence and stability of the solutions. For instance, Maginu (1981) showed
that PTWs of sufficiently high speed are stable in general systems, and Ermentrout
(1981) demonstrated stable small amplitude waves in a particular reaction-diffusion
system. More recent work includes nonlinear stability analysis (Kapitula (1994)), the
application of symmetry methods (Romero, Gandarias, and Medina (2000)), and the
generation of PTWs behind invasive fronts (Sherratt (1994a,b); Sneyd and Sherratt
(1997); Ermentrout, Chen, and Chen (1997); Petrovskii and Malchow (1999), (2000);
Ashwin et al. (2002)).

The simplest behavior of an oscillatory system is a spatially uniform oscillation.
In many cases, this solution is stable on an infinite, spatially homogeneous domain:
for instance, in reaction-diffusion systems, stability is guaranteed when the diffusion
coefficients are sufficiently similar (Kopell and Howard (1973)). However, spatially
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uniform oscillations are incompatible with spatial heterogeneities, which can arise via
spatially varying parameter values or via conditions imposed on finite boundaries.
Such situations provide a potential mechanism for the generation of PTWs in oscilla-
tory chemical or biological systems. For instance, it is well known that in experiments
with the oscillatory Belousov–Zhabotinskii chemical reaction, small impurities such
as dust particles force target patterns or spiral waves rather than homogeneous os-
cillations (Nagashima (1991), Winfree (2001)). Mathematically, the effects of such
heterogeneities have been studied most fully for systems of discrete coupled oscilla-
tors. In particular, the work of Ermentrout, Kopell, and colleagues gives a detailed
account of the response of chains of weakly coupled oscillators to both boundary- and
parameter-based heterogeneities (Ermentrout and Kopell (1984), (1986); Kopell, Er-
mentrout, and Williams (1991); Ren and Ermentrout (1998)). In oscillatory reaction-
diffusion systems, there has been some study of periodic wave generation by spatial
inhomogeneities in the domain (Hagan (1981a); Kopell (1981); Kay and Sherratt
(2000)). However, heterogeneities imposed at the edges of a domain have received
little attention, despite early work by Auchmuty and Nicolis (1976), who developed
series solutions for the Brusselator model close to Hopf bifurcation on a finite domain
with Neumann and Dirichlet end conditions.

In the present paper, I study the generation of PTWs by particular Dirichlet con-
ditions at one edge of a semi-infinite domain. In section 2, I introduce this behavior
with the results of numerical simulations. In section 3, I show that solutions of the
observed form satisfy an ODE system with one free parameter, which corresponds to
the temporal frequency of the oscillations. I then present a combination of analyti-
cal and numerical results suggesting that this ODE system has a solution satisfying
appropriate end conditions for a countably infinite set of values of this parameter.
In section 5, I discuss the hypothesis that in only one of these solutions does the
amplitude vary monotonically in space, and that this determines the stability of the
solutions. In section 6, I use a similarity solution to derive a formula for the speed and
amplitude of the observed periodic wave. Finally, in section 7, I discuss extensions to
two space dimensions and applications of the results.

2. Numerical simulations of PTW generation. All of the work in this paper
involves the following oscillatory reaction-diffusion system:

∂u

∂t
= ∇2u+ (1 − r2)u− (ω0 − ω1r

2)v,(2.1a)

∂v

∂t
= ∇2v + (ω0 − ω1r

2)u+ (1 − r2)v,(2.1b)

where r =
√
u2 + v2. This belongs to the “λ-ω” class of equations introduced by

Kopell and Howard (1973). The kinetics in (2.1) are the normal form of any oscillatory
kinetics close to a supercritical Hopf bifurcation, and, as such, (2.1) is the natural
system for studying generic behavior in systems in which each variable has the same
diffusion coefficient. This system is often seen with (1 − r2) replaced by (λ0 − λ1r

2),
but the coefficients λ0 and λ1 can easily be removed by rescaling. All of the work
in sections 2–6 is in one space dimension; in section 7, two-dimensional behavior is
discussed briefly.

The kinetics of (2.1) have an unstable equilibrium at u = v = 0 and a stable
circular limit cycle centered at this equilibrium, of radius 1. Standard theory, due
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originally to Kopell and Howard (1973), shows that the family of PTWs is given by

u = r∗ cos
[
θ0 ±

√
1 − r∗ 2x+

(
ω0 − ω1r

∗ 2
)
t
]
,(2.2a)

v = r∗ sin
[
θ0 ±

√
1 − r∗ 2x+

(
ω0 − ω1r

∗ 2
)
t
]
,(2.2b)

where r∗ parameterizes the family and θ0 is an arbitrary constant. The wave is stable
as a solution of (2.1), provided that

r∗ > rstab ≡
(

2 + 2ω2
1

3 + 2ω2
1

)1/2

(2.3)

(Kopell and Howard (1973)). In many situations, it is convenient to rewrite system
(2.1) using r and θ = tan−1(v/u), which are polar coordinates in the u-v plane. In
one space dimension, this gives

rt = rxx − rθ2x + r(1 − r2),(2.4a)

θt = θxx +
2rxθx
r

+ ω0 − ω1r
2.(2.4b)

Here and throughout the paper, the suffixes x and t denote derivatives. The PTW
solutions (2.2) are of course given in terms of r and θ by

r = r∗, θ = θ0 ±
√

1 − r∗ 2 x+
(
ω0 − ω1r

∗ 2
)
t.

In fact, it is easy to show that any solution with r constant and < 1 is a PTW.
The starting point of my work is the following very simple situation. I consider

(2.1) on a semi-infinite domain x > 0, say, with the boundary condition u = v = 0
at x = 0. Numerically this can be reproduced by solving on the finite domain 0 <
x < X∞, with X∞ large and with ux = vx = 0 at x = X∞. I consider the solution
that develops from random initial conditions, by which I mean that I use a random
number generator to calculate u and v values, between ±1, at points with an equal
spacing of about ∆x = 5 throughout the domain, and then join these random values
by straight lines to give the initial condition.

For a wide range of values of the parameters ω0 and ω1, the numerical solutions
of this problem show the same behavior (Figure 1). The solution changes rapidly
from the random initial conditions to spatially uniform oscillations everywhere away
from the x = 0 boundary. A transition wave then develops, which has homogeneous
oscillations ahead of it and a PTW behind; this PTW is the long term solution form
away from the x = 0 boundary. The development and persistence of PTWs in these
solutions depends intrinsically on the boundary condition at x = 0. For example, if
the boundary condition is switched to zero flux (ux = vx = 0 at x = 0), the PTWs
disappear, to be replaced by spatially uniform oscillations (see Kay and Sherratt
(1999)). Moreover, the speed/amplitude of the PTWs is independent of the seed in
the random number generator used for the initial conditions. This suggests that the
Dirichlet boundary condition robustly selects a particular member of the PTW family.
The basic goal of the paper is to investigate the details of this selection process.

Before I begin analytical investigation of the solution shown in Figure 1, I men-
tion one final and important result from the numerical simulations. The behavior
illustrated in Figure 1 applies when |ω1| is relatively small. For larger |ω1|, the long



PERIODIC WAVE SELECTION BY DIRICHLET BCs 1523

Fig. 1. Solutions of (2.1) with boundary conditions u = v = 0 at x = 0, and ux = vx = 0 at
x = 400; only part of the solution is plotted. A transition front moves across the domain, behind
which PTWs develop, moving in the positive x-direction in (a), and the negative x-direction in
(b). The solutions are space-time plots, with u plotted at equally spaced times between t = 100
and t = 200 (time increasing up the page). The solutions for v are qualitatively similar. Initial
conditions (t = 0) are generated randomly as described in the main text. The parameter values
are ω1 = 1.0 and (a) ω0 = 1.5, (b) ω0 = −1.3. The equations were solved numerically using a
semi-implicit Crank–Nicolson method.

term behavior consists not of PTWs, but of irregular spatiotemporal oscillations (Fig-
ure 2). Later in the paper, I will show that this behavior arises through the same basic
mechanism and occurs when the PTW that is selected by the boundary conditions
has an amplitude below rstab, defined in (2.3), so that the selected PTW is unstable
as a solution of the PDEs.

3. Reduction to an ODE system. The solutions shown in Figure 1 are illus-
trated more clearly by plotting r and θx rather than u and v (Figure 3). The solution
changes rapidly from the initial conditions, until r ≈ 1 and θx ≈ 0 everywhere away
from the x = 0 boundary, corresponding to spatially homogeneous oscillations in u
and v. A transition wave front in r and θx then develops, moving in the positive
x-direction. Ahead of this front, r → 1 and θx → 0; behind it, r and θx have constant
values, rptw and ψptw say, corresponding to the PTW. Numerical results indicate that
this transition front moves with constant shape and speed, suggesting that one look
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Fig. 2. Long-term solution of (2.1) for which irregular spatiotemporal oscillations develop. The
boundary conditions are u = v = 0 at x = 0, and ux = vx = 0 at x = 500; only part of the solution
is plotted. Note that a band of PTWs is visible close to the x = 0 boundary. The solution is a space-
time plot, with u plotted at equally spaced times between t = 1900 and t = 2000 (time increasing
up the page). The solution for v is qualitatively similar. Initial conditions (t = 0) are generated
randomly as described in the main text. The parameter values are ω0 = 1.5 and ω1 = 1.65. The
equations were solved numerically using a semi-implicit Crank–Nicolson method.

for solutions of (2.1) with the form

r(x, t) = r̂(x− st) and θx(x, t) = ψ̂(x− st) ⇒ θ(x, t) =

∫ z=x−st
ψ̂(z) dz + f(t).

Here s > 0 is the front speed, and f(t) is an arbitrary function of time that enters as
a constant of integration. Substituting these solution forms into (2.4) gives

r̂′′ + sr̂′ + r̂(1 − r̂2 − ψ̂2) = 0,(3.1a)

ψ̂′ + sψ̂ + ω0 − ω1r̂
2 + 2ψ̂r̂′/r̂ = f ′(t).(3.1b)

Thus f ′(t) must be a constant, independent of t. Moreover, since r̂ → 1 and ψ̂ → 0 as

x−st→ ∞, this constant value must be ω0−ω1. Substituting r̂ = rptw and ψ̂ = ψptw
(values at x− st = −∞) gives solutions for rptw and ψptw in terms of s:

rptw =

√
1 − s2

ω2
1

, ψptw = − s

ω1
.(3.2)

Unfortunately, these formulae cannot be used to obtain the values of rptw and ψptw,
since the front speed s is an unknown. However, they do provide one key piece of
information: ψptw has the sign opposite to that of ω1, since s must be positive. This
will be required in what follows.

Having established the sign of ψptw, I now move on to consider the large time form
of the solution for r and θx. Numerical simulations suggest that this is an equilibrium,
which I denote by r(x, t) = R(x) and θx(x, t) = Ψ(x). Hence θ =

∫ x
Ψ(x) dx + g(t),

where g(t) is a constant of integration. Substituting these solution forms into (2.4)
implies that g′(t) must be a constant, which it is convenient to take as ω0 − k, where
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Fig. 3. Time evolution of the solution of (2.1) subject to u = v = 0 at x = 0. I solve on
0 < x < 400 with ux = vx = 0 at x = 400, to approximate a semi-infinite domain. The randomly
generated initial condition rapidly evolves to u, v ≈ 1. A transition wave front then develops, moving
in the positive x-direction. Ahead of the front, r = 1 and ψ = 0, while behind it, r and ψ have values
that are constants corresponding to a periodic travelling wave. The parameter values are ω0 = 0.3
and ω1 = 0.8. The equations were solved numerically using a semi-implicit Crank–Nicolson method.

k is arbitrary and of either sign. The substitution also gives the following equations
for R and Ψ:

Rxx +R(1 −R2 − Ψ2) = 0,(3.3a)

Ψx +
2ΨRx
R

+ k − ω1R
2 = 0.(3.3b)

The boundary condition u = v = 0 implies that R = 0 at x = 0, and I am looking
for solutions for which R and Ψ tend to constant values, denoted rptw and ψptw, as
x → ∞, with the sign of ψptw opposite to that of ω1. In a solution of this form, the
values of rptw and ψptw will be related to k and ω1 by

rptw =

√
k

ω1
, ψptw = −sign(ω1)

√
1 − k

ω1
.(3.4)

These are given simply by substituting the constant values into (3.3) and using the
result that ψptw and ω1 have opposite signs; k is related to the speed s introduced
above by k = ω1 − s2/ω1. Note that k must have the same sign as ω1.
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It is convenient to rescale (3.3) as follows,

φ = R
(ω1

k

)1/2

, w = Rx

(
ω1 − k

k

)1/2

· sign(ω1)

k
,

Γ = −Ψ

R

(
k

ω1 − k

)1/2

sign(ω1), z = x

(
ω1

ω1 − k

)1/2

· k · sign(ω1),

which gives

φz = w,(3.5a)

wz =
−α
k2
φ
[
1 − φ2 − αφ2(Γ2 − 1)

]
,(3.5b)

Γz =
1 − 3wΓ − φ2

φ
,(3.5c)

where α = 1− k/ω1, so that 0 ≤ α ≤ 1. In terms of these new variables, the required
end conditions are

φ = 0 at z = 0 and φ = 1, w = 0, Γ = 1 at z = ∞.(3.6)

Recall that the parameter k in (3.5) is an arbitrary constant of integration, and the
initial question to be studied is for which values of k there are solutions of (3.5)
satisfying these end conditions.

Numerical investigation of appropriate solutions to (3.5) is easiest if one integrates
backwards in z from (1, 0, 1). Straightforward calculation of the eigenvalues at this
equilibrium shows that there is a unique stable eigenvector, and one can calculate
numerically both trajectories corresponding to this eigenvector. For given values of
k and ω1, there is a solution of (3.5) of the required form if φ becomes zero along
one of these trajectories. Numerical investigation indicates that this occurs at a large
but discrete set of values of k. As illustrated in Figure 4, these values of k are widely
separated when |k| is just below |ω1|, and become closer together as |k| approaches
zero. (Recall that the sign of k is determined by that of ω1.) Figure 5 illustrates how
the critical values of k vary with ω1.

4. Solution for small ω1. I have been unable to calculate in general the values
of k for which (3.5) has a solution of the required form. However for small |ω1|
the solutions, and thus the critical values of k, can be found using perturbation
theory. Here I am exploiting the relative simplicity of (2.1) when ω1 = 0, a special
case which has been used by a number of previous authors (for example, Kopell and
Howard (1981)). Figure 6 illustrates the typical form of the solution for the largest
few critical values of |k| when |ω1| is small. There is a characteristic solution form,
with almost periodic oscillations in φ, w, and Γ. To calculate the solutions, it is
enough to investigate one cycle of these oscillations.

Numerical solutions suggest that when |ω1| is small, |k| is also small, with the
ratio A ≡ α/k2 being O(1) as |ω1| → 0. Then α2/k2 = A2ω2

1 + O(ω4
1), and thus the

equations (3.5) have the form

φzz = −Aφ(1 − φ2) + εA2φ3(Γ2 − 1),(4.1a)

Γz =
1 − 3φzΓ − φ2

φ
,(4.1b)
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Fig. 4. A typical plot of the variation with k of φmin, the minimum value of φ along the two
solution trajectories passing through the point φ = 1, w = 0, Γ = 1. The variation has a “zig-
zag” form, with φmin approaching zero at a series of discrete values of k. The case shown is for
ω1 = 0.3, and the dotted line is k = ω1; the constant k must lie between 0 and ω1. The value of φmin
is calculated by solving (3.5) in the negative z-direction starting on the (unique) stable eigenvector
at (1, 0, 1). The solution is continued until φ > 1, keeping track of the minimum value of φ. For
each parameter set, this procedure must be followed twice, starting on either side of (1, 0, 1) along
the stable eigenvector.

where ε = ω2
1 . The appropriate solution structure for these equations when ε 
 1 is

illustrated in Figure 7. I consider one cycle of the solution in three separate regions a–
c, with a fourth region a′ corresponding to region a in the next cycle. The boundary
between regions a and b is the position at which φ has its local maximum, while
region c is a thin layer centered on the local minimum of φ. No thin transition layer is
required between regions a and b, but the location z = z1 of the interface may depend
on ε, as may the location z = z2 of region c, and these dependencies must be found
as part of the solution. The position z = z0 to the left of region a is arbitrary.

In region a, there is no rescaling, and the leading order solutions φa0 , Γa0 satisfy
(4.1) with ε set to zero. The two equations decouple, giving

d2φa0
dz2

= −Aφa0
[
1 − φa 2

0

]
,

dΓa0
dz

=
1 − 3Γa0dφ

a
0/dz − φa 2

0

φa0
.
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Fig. 5. A plot of the amplitude (
√
k/ω1) of possible PTW solutions, corresponding to the

critical values of k for which (3.5) has a solution of the required form. For a series of values of ω1,
I plot the amplitude corresponding to the largest 20 critical values of k, calculated numerically as
discussed in the legend to Figure 4. Superimposed on the plot are the amplitude of PTWs predicted
by numerical simulations of the PDEs (2.1), the theoretical prediction (6.2) of the PTW amplitude,
and the curve determining PTW stability, which is given by (2.3). Note that this last curve does
not refer to the stability of the solution of (3.5), (3.6), but simply to the PTW which this solution
approaches as z → ∞. Stability of this PTW is clearly a necessary but not sufficient condition for
the stability of the solution of (3.5), (3.6).

Thus (
dφa0
dz

)2

=
1

2
A(φa 2

0 − 1)2 + C1,

where C1 is a constant of integration. Numerical solutions suggest that the local
maxima in φ occur at φ = 1 + o(1) as ε → 0, and thus C1 = 0. By construction, φa0
has positive slope, and thus further integration gives

φa0 = tanh

[
(z − z0)

√
A

2

]
,(4.2a)

Γa0 =

√
2

9A
+

k1

tanh3[(z − z0)
√
A/2 ]

.(4.2b)

Here I am taking φa0 = 0 at z = z0, since numerical solutions suggest that the minima
of φ are o(1) as ε→ 0; k1 is a constant of integration.
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Fig. 6. Typical solutions of (3.5) for small |ω1|. I show the solution for the largest three critical
values of |k|, illustrating the typical form of the solution. For the largest value of |k|, the solution is
monotonic in φ, and in successive solutions the variables cycle. The parameter values are ω1 = 0.03
and (a) k = 0.029994, (b) k = 0.029947, (c) k = 0.02986, (d) k = 0.02973.

Similarly, in region b

φb0 = − tanh

[
(z − z2)

√
A

2

]
,(4.3a)

Γb0 = −
√

2

9A
+

k2

tanh3[(z − z2)
√
A/2 ]

,(4.3b)

where k2 is a constant of integration. The solutions in regions a and b are linked by
conditions at z = z1, namely, that dφ/dz = 0 with φ and Γ continuous. Continuity of
φ requires z1 − z0 = z2 − z1 ≡ Z, say, so that z1 = (z0 + z2)/2. The zero derivative
for φ then implies that sech2 [Z

√
A/2 ] = o(1), so that Z → ∞ as ε → 0. Thus the

widths of regions a and b become infinite as ε→ 0. Further details of these widths are
not determined at leading order, but higher order solutions (omitted for brevity) show
that Z = Os(log ε) as ε → 0. Finally, continuity of Γ at z = z1 gives a relationship
between k1 and k2:

k2 = k1 +

√
8

9A
;

here I use the fact that tanh(Z
√
A/2) = 1 + o(1) as ε→ 0.
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Fig. 7. A schematic illustration of one cycle of the solution for φ of (3.5) when ω1 is small,
illustrating the different regions into which the solution is divided for the perturbation theory calcu-
lation.

In region c, which is centered on the minimum of φ, a rescaling of the variables is
required. Numerical solutions suggest that φ is small and Γ large in this region, with
rapid changes in z. Therefore I substitute

φ̃ =
φ

ν1
, Γ̃ = Γ · ν2, ζ =

z − z2
ν1

into (3.5), where ν1 and ν2 are o(1) as ε → 0; the rescaling of φ and z must be the
same to allow matching of φ in regions b and c. This gives

d2φ̃

dζ2
= −ν2

1Aφ̃(1 − ν2
1 φ̃

2) + εA2ν4
1 φ̃

3

(
Γ̃2

ν2
2

− 1

)
,

dΓ̃

dζ
=
ν2 − 3Γ̃dφ̃/dζ − ν2

1ν2φ̃
2

φ̃
.

Therefore the distinguished limit has ε1/2ν2
1/ν2 = 1, in which case the leading order

solutions φ̃c0 and Γ̃c0 satisfy

d2φ̃c0
dζ2

= A2φ̃c 3
0 Γ̃c 2

0 ,

dΓ̃c0
dζ

=
−3Γ̃c0dφ̃

c
0/dζ

φ̃c0
.
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Thus Γ̃c0 = k3/φ̃
c 3
0 and (

dφ̃c0
dζ

)2

= k4 − A2k2
3

φ̃c 2
0

.(4.4)

Here k3 and k4 are constants of integration, which are determined by matching the
solution to that in region b. As ζ → ±∞, (4.4) implies that φ̃c0 = ±k1/2

4 ζ + o(ζ), so

that Γ̃c0 = ±k3/(k
3/2
4 ζ3) + o(ζ−3). In comparison, as z → z−2 , φb0 ∼ −(z − z2)

√
A/2

and Γb0 ∼ (2/A)3/2k2(z− z2)−3. Therefore, matching requires k4 = A/2, k2 = k3, and
ν2 = ν3

1 ⇒ ν1 = ε1/2, ν2 = ε3/2.
The final step in the leading order solution is to determine behavior in region a′.

The solution here is the same as in region a, but with new constants of integration:

φa
′

0 = tanh

[
(z − z′0)

√
A

2

]
,(4.5a)

Γa
′

0 =

√
2

9A
+

k′1
tanh3[(z − z0)

√
A/2 ]

.(4.5b)

Matching this solution with that in region c is directly analogous to the matching of
solutions in regions b and c, and requires k′1 = k3. Hence k′1 = k1 +

√
8/9A.

Consider now a solution of the form illustrated in Figure 6, and with N local max-
ima in φ before φ approaches 1 asymptotically. Let ki1 be the constant of integration
k1 in the leading order solution in region a before the ith maximum (i = 1, . . . , N−1)
or in the part of the solution in which φ approaches 1 asymptotically (i = N). Then
I have shown that ki1 = ki−1

1 +
√

8/9A. Now I require Γ finite at z = 0, and Γ → 1 as

z → ∞. Thus k1
1 = 0 and

√
2/9A+ kN1 = 1 +O(ε1/2); the correction is based on the

next order term in the expansion for Γ in region a (omitted for brevity). Therefore√
2/9A+ (N − 1)

√
8/9A = 1, which can be rearranged to give A = 8

9 (N − 1
2 )2.

This calculation shows that there are a discrete but infinite set of values of A for
which (4.1) has a solution of the required form. These correspond to the values of
k plotted in Figure 4. To make this correspondence precise, recall that A = α/k2,
with α = 1 − k/ω1 and ω1 = ε1/2, so that k = ε1/2 − Aε3/2 + O(ε5/2). Therefore, at
least for sufficiently small ω1, there are solutions of (3.5) for an infinite set of values
of k, given by k = ω1 − 8

9 (N − 1
2 )2ω3

1 + O(ω5
1) (N = 1, 2, . . . ). The solution with

index N has N − 1 local maxima and minima in φ. The values of φ at these extrema
depend on ε: the minima have a height that is O(ε1/2) = O(ω1), and the leading order
correction to φ in regions a and b is O(ε), implying that the maxima have a height
that is 1 −O(ε) = 1 −O(ω2

1).

5. Solutions for general ω1. In the plot of the critical values of k in Figure 4, I
superimpose a plot of the amplitude of the PTW that develops in numerical solutions
of (2.1) subject to u = v = 0 at x = 0 on 0 < x <∞. In every case, this corresponds
to the critical value of k with largest absolute value. This is despite the fact that each
of the other critical values of k corresponds to a possible long term solution of (2.1).
In this section, I will discuss in more detail the structure of the φ-w-Γ phase plane,
to give further insight into the equation forms at different critical values of k.

I begin by investigating the behavior of (3.5) near φ = 0, which is a singularity.
As φ → 0, simple inspection of (3.5c) shows that |dΓ/dz| → ∞ away from the curve
wΓ = 1/3. Behavior near this curve requires more careful investigation, and I look
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for trajectories of the form w = w0 + w̃(φ), Γ = w0/3+Γ̃(φ), where w0 is an arbitrary
constant and w̃ and Γ̃ are o(1) as φ→ 0. Substituting these solution forms into (3.5)
shows that to leading order

w̃(φ) =
−α

2k2w0
φ2, Γ̃(φ) =

1

10w0

(
α

w2
0k

2
− 2

)
φ2.(5.1)

Therefore, despite the singularity of (3.5) at φ = 0, there is a family of nonsingular
trajectories which cross the φ = 0 plane through the curve Γw = 1/3. Such a curve
is sometimes known as a “hole in a singular barrier” (Perumpanani et al. (1999);
Pettet, McElwain, and Norbury (2000)). Of the trajectories crossing φ = 0 through
this curve, only those crossing at positive values of w and Γ are of interest, and taken
together, these make up a surface in φ-w-Γ phase space, which I denote by S(k).
There is a trajectory of the required form for a given value of k if and only if this
surface S(k) contains the point φ = 1, w = 0, Γ = 1.

The surface S(k) has a very complex form, especially for small values of k, making
visualization in three dimensions very difficult. I have found it most instructive to
plot a cross section of the surface, and a natural cross section is the w = 0 plane,
which is illustrated in Figure 8 for the largest three critical values of k when ω1 = 1.
Note that, in each case, the intersection includes the point Γ = φ = 1.

In Figure 8(a) the trajectories making up S(k) intersect the wz < 0 portion of the
w = 0 plane only once. This implies that the corresponding solution of (3.5), (3.6) is
monotonic in φ, and numerical results suggest that this is also true for other ω1, when
k is at its largest critical value. Conversely, for the other critical values of k, numerical
solutions suggest that the trajectory passing through φ = Γ = 1, w = 0 does so only
after previously crossing the w = 0 plane. Based on this, I hypothesize that for given
ω1 there is only one solution of (3.5), (3.6) that is monotonic in φ, namely, that corre-
sponding to the largest initial value of k. Further, I hypothesize that any solutions of
(3.5) with nonmonotonic φ are unstable as solutions of (2.1). A number of results of
the form “nonmonotonicity implies instability” are known for scalar reaction-diffusion
equations (Hagan (1981b), Henry (1981)), and numerical simulations using the solu-
tions of (3.5), (3.6) with small perturbations as initial conditions for (2.1) suggest that
a corresponding result applies in this case. Taken together, these hypotheses provide
an explanation for the solution of (2.1) always corresponding to the solution of (3.5),
(3.6) with the largest critical value of k.

Although I cannot prove these hypotheses, I will present a sketch proof of the
first one. Proof that a solution that is monotonic in φ exists for some value of k is
obtained by direct construction. Numerical solutions of (2.1) with u = v = 0 at x = 0
suggest that the ratio of Ψ and R is constant in the observed solution. Based on this,
I look for a solution of (3.5) in which Γ ≡ 1. The equations (3.5) then give

φz = w,(5.2a)

wz = −
( α
k2

)
φ(1 − φ2),(5.2b)

3w + φ2 = 1.(5.2c)

Combining (5.2a) and (5.2b), and requiring φ = 1 when w = 0, gives

w2 =
α

2k2
(1 − φ2)2.

This is consistent with (5.2c) if and only if k2 = 9α/2. (Recall that the sign of k must
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Fig. 8. An illustration of the intersection between the surface S(k) and the w = 0 plane
for the largest three critical values of k when ω1 = 1. The small circles represent the curve
φ2

[
1− α+ αΓ2

]
= 1; to the right of this curve, wz > 0, so that the trajectories are crossing

from negative to positive w, and to the left of the curve, wz < 0. I have solved (3.5) numerically
for values of w0 increasing from 0.01 in increments of 10−6; initial conditions are w = w0 + w̃,
Γ = Γ0+Γ̃ with w̃ and Γ̃ given by (5.1), and φ = 0.001. In each of these solutions, I record and plot
each point at which the w = 0 plane is crossed. The values of k are (a) k = 0.842, (b) k = 0.621,
(c) k = 0.523.

be the same as that of ω1.) Recalling that α = 1 − k/ω1, this implies

k = k∗ ≡ −9 +
√

81 + 72ω2
1

4ω1
.

Note that the solution trajectory corresponding to this value of k is monotonic in w
as well as φ, and thus lies within Ŝ(k), the subset of S(k) formed by the portion of
the trajectories starting on φ = 0, wΓ = 1/3, until they leave the region φ > 0, w > 0,
φ2[1 + α(Γ2 − 1)] < 1; this last condition is simply wz < 0.
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To study uniqueness, it is convenient to consider varying k with α, rather than
ω1, fixed. Suppose that there is a value of k, k1 say, not equal to k∗, for which there
is a trajectory that is monotonic in φ and connects φ = 0, wΓ = 1/3 with w = 0,
φ = Γ = 1. To be specific, I assume that k1 < k∗, though a corresponding argument
is valid if k1 > k∗. The solution trajectories for k = k1 and k∗ are contained in
S(k1) and Ŝ(k∗), respectively; note that in general the trajectories for k∗ and k1 will
cross φ = 0 at different points along wΓ = 1/3. Straightforward examination of the
eigenvalues and eigenvectors of (3.5) at w = 0, φ = Γ = 1 implies that S(k1) lies
above Ŝ(k∗) close to this point, in the sense that w is greater on S(k1) than on Ŝ(k∗).
Moreover eliminating w0 in (5.1) implies that Ŝ(k∗) lies above S(k1) for sufficiently
small φ. This suggests that the surfaces S(k1) and Ŝ(k∗) intersect, which is impossible
since (3.5b) implies that wz increases with k in the region φ2[1 + α(Γ2 − 1)] < 1. It
remains possible that S(k1) and Ŝ(k∗) wind around one another; I have been unable
to rule this out, although numerical solutions suggest that it does not happen.

6. The form of the observed periodic travelling wave. The sketch proof
in the previous section is constructive, in the sense that it explicitly determines a
formula for k∗. The corresponding solution of (3.5) can easily be determined from
(5.2c) as φ = tanh(z/3). Converting back to the original variables gives

R(x) = rptw tanh

(
x√
2

)
, Ψ(x) = ψptw tanh

(
x√
2

)
,(6.1)

where

rptw =

{
1

2

[
1 +

√
1 +

8

9
ω2

1

]}−1/2

, ψptw = −sign(ω1)



√

1 + 8
9ω

2
1 − 1√

1 + 8
9ω

2
1 + 1




1/2

.

(6.2)

The solution given by (6.1), (6.2) is an excellent match with the long term behavior
predicted by numerical simulations of (2.1) subject to u = v = 0 at x = 0, as
illustrated in Figure 4. Moreover, (6.2) enables direct determination of the properties
of PTWs generated by Dirichlet boundary conditions. For example, substitution of
(6.2) into (2.3) gives the condition for PTW stability as

8ω6
1 + 16ω4

1 − 10ω2
1 − 27 < 0 ⇐⇒ |ω1| < 1.110468 . . . .(6.3)

A detailed numerical study shows that cases such as that shown in Figure 3, in which
irregular oscillations develop, correspond exactly to values of ω1 above this critical
value. Similarly the direction of the PTWs can be determined—this depends on ω0

as well as ω1. The PTW solution for u and v, given in (2.2), moves in the positive
x-direction if and only if (ω0 −ω1r

2) and θx have opposite signs. Therefore the PTW
given by (6.2) moves in the positive x-direction if and only if

ψptw · (ω0 − ω1r
2
ptw) < 0 ⇔ ω0 and ω1 have the same sign(6.4a)

and |ω0| > 2|ω1|
1 +

√
1 + 8

9ω
2
1

.(6.4b)

Conditions (6.3) and (6.4) are illustrated graphically in Figure 9.



PERIODIC WAVE SELECTION BY DIRICHLET BCs 1535

Fig. 9. An illustration of conditions (6.3) and (6.4) for the stability and direction of the PTW
solution generated in the region x > 0 by the boundary condition u = v = 0 at x = 0.

7. Discussion. Using a combination of analysis and numerical simulation, I have
shown that when the λ-ω system (2.1) is solved on a finite domain subject to zero
Dirichlet boundary conditions, PTWs develop. I have shown that there is a discrete
family of possible wave amplitudes for which solutions exist, but my results suggest
that in only one of these cases does the amplitude vary monotonically in space. I
hypothesize that this family is the only stable solution, implying that the boundary
conditions select a unique PTW amplitude that is independent of initial conditions.
A formula for this amplitude is given in (6.2).

An obvious extension of the work presented in this paper is to consider behavior
in two spatial dimensions. I have done a limited program of numerical simulations of
the λ-ω system (2.1) in two dimensions, and a typical result is illustrated in Figure 10.
For this figure, equations (2.1) were solved on an approximately circular but irregular
domain, with the boundary condition u = v = 0. A solution of “target pattern”
form develops, moving inwards from the boundary; an animation of this solution can
be seen at www.ma.hw.ac.uk/∼jas/supplements/dirichlet/. This solution is a natural
two-dimensional extension of the one-dimensional results I have been discussing, in
which planar PTW solutions are modulated by the curvature of the domain. A natural
topic for future analytical work is the spatial scale over which the curvature of the
wave fronts varies.

The mathematical study of PTWs has been given a significant boost recently
by the identification by ecologists of PTWs in cyclic populations. This empirical
work is slow, requiring spatiotemporal field data gathered over many years. (Pop-
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u, v = −1 u, v = 1

Fig. 10. Numerical simulation of the λ-ω system (2.1) in two space dimensions on an ir-
regular domain with boundary condition u = v = 0 on the perimeter. The solutions for u (left)
and v (right) are shown at time t = 400; a “target pattern”-type solution moves inwards from the
boundary towards the center of the domain. The initial conditions (at t = 0) are generated ran-
domly, and the parameters are ω0 = ω1 = 1. The size of the spatial domain is indicated by the
scale bar, which is 50 space units long. An animation corresponding to this figure can be seen at
http://www.ma.hw.ac.uk/∼jas/supplements/dirichlet/. The equations were solved numerically
using an alternating direction semi-implicit method.

ulation cycles typically have a period of between 4 and 10 years.) The analysis of
the data then depends on spatiotemporal statistical methods developed only recently
(Bjørnstad, Ims, and Lambin (1999)). For these reasons, it is too early to assess how
widespread PTWs are in real populations. However, there is now very strong evidence
for the existence of a PTW in cyclic field vole populations in the Kielder forest, on
the Scotland–England border (Lambin et al. (1998); MacKinnon et al. (2001)), and
more limited evidence for PTWs in various other populations, including red grouse in
Northeast Scotland (Moss, Elston, and Watson (2000)), water voles in Eastern France
(Giraudoux et al. (1997)), and larch budmoths in the European Alps (Bjørnstad et
al. (2002)). The major question raised by these ecological studies is, what are the
cause(s) of the PTWs? One possibility is that the PTWs are generated by the invasion
of a prey population by predators (Sherratt, Lewis, and Fowler (1995); Sherratt et al.
(2000)). However, once a whole domain has been invaded, PDE models predict that
the waves will gradually die out (with zero flux boundary conditions; see Kay and
Sherratt (1999)). Thus this mechanism requires a recent invasion, which does not ap-
ply in most cases. In contrast, the mechanism studied in this paper is consistent with
conditions found in many real ecological systems. A Dirichlet boundary condition
(with population density equal to zero) is appropriate when the domain is surrounded
by a region of different habitat in which the population cannot survive—for example,
an area of woodland surrounded by open fields. In a companion paper (Sherratt et al.
(2002)), coworkers and I show that numerical simulations of both PDE and spatially
discrete predator-prey models predict the generation of periodic waves by Dirichlet
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boundary conditions. Extension of the analytical results in the present paper to real-
istic predator-prey models is a major challenge for future work, which would enable
systematic prediction of the occurrence of periodic waves in real populations.
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Abstract. We study longitudinal elastic strain waves in a one-dimensional periodically layered
medium, alternating between two materials with different densities and stress-strain relations. If
the impedances are different, dispersive effects are seen due to reflection at the interfaces. When
the stress-strain relations are nonlinear, the combination of dispersion and nonlinearity leads to
the appearance of solitary waves that interact like solitons. We study the scaling properties of
these solitary waves and derive a homogenized system of equations that includes dispersive terms.
We show that pseudospectral solutions to these equations agree well with direct solutions of the
hyperbolic conservation laws in the layered medium using a high-resolution finite volume method.
For particular parameters we also show how the layered medium can be related to the Toda lattice,
which has discrete soliton solutions.

Key words. nonlinear elasticity, solitons, layered media, homogenization, Toda lattice
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1. Introduction. Consider a heterogeneous medium composed of alternating
layers of two different materials labeled A and B. The layers have widths δA = αδ
and δB = (1 − α)δ, repeating periodically with period δ. The densities of the two
materials are ρA and ρB, respectively, and their response to compression or expansion
is characterized by the stress-strain relations σA(ε) and σB(ε). Then compressional
waves propagating in the direction of layering are modeled by the one-dimensional
hyperbolic system of conservation laws

εt(x, t) − ux(x, t) = 0,(1.1a)

(ρ(x)u(x, t))t − σ(ε(x, t), x)x = 0,(1.1b)

where ε(x, t) is the strain and u(x, t) the velocity. For the layered medium we have

(ρ(x), σ(ε, x)) =

{
(ρA, σA(ε)) if jδ < x < (j + α)δ for some integer j,
(ρB, σB(ε)) otherwise.

(1.2)

For sufficiently small strains, the response can be modeled by linear constitutive re-
lations

σA(ε) = KAε, σB(ε) = KBε,(1.3)

where the bulk moduli KA and KB of both materials are constants. Waves having
long wavelength relative to the layer width can be modeled by a homogenized linear
PDE that has the form of a wave equation with small dispersive term. The effective
wave speed and dispersion coefficient can be calculated from the above parameters
describing the layered medium. This linear case is reviewed in section 2.
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More interesting behavior is observed when the constitutive relations are nonlinear
in each layer. In this case a long-wavelength pulse breaks up into a series of solitary
waves that are each only a few layers wide. This is not a complete surprise since
we expect that a nonlinear wave equation with a dispersive term (again arising from
the layering) may give rise to soliton-like solutions, and the classic soliton equations
such as the KdV equation also exhibit this type of behavior. However, the waves
appearing in the layered medium are harder to characterize than classical solitary
waves. The wave shape is constantly modulating as it passes through the layers, and
thus it cannot be expressed in the form of a fixed-shape wave propagating at constant
speed. These waves appear to interact as solitons, essentially passing through one
another with at most a shift in phase, but it is not yet clear to what extent they are
truly solitons in the technical sense.

To the best of our knowledge, these waves were first observed computationally
in [4], where a high-resolution finite volume method is presented that calculates ac-
curate approximations to these waves. This method is also described in [1]. Here we
use this method to further explore the nature of these waves.

Solitary waves in nonlinear elastic bars have been observed and studied in the
past; see, for example, [5] and the references therein. In this case the material is
homogeneous but the finite cross-sectional area gives rise to reflections at the traction-
free boundaries and hence dispersion.

In section 4 we show that a particular choice of the layered medium can be
directly related to the Toda lattice. This may be significant since the Toda lattice is
completely integrable and has discrete soliton solutions that can be compared directly
to the solitary waves we observe in the corresponding layered medium.

In section 5 we present a homogenized set of equations for the nonlinear layered
medium, and show that solutions to this system agree well with solutions to the layered
medium equations. These equations contain dispersive terms and more complicated
nonlinearities.

2. Waves in linear media. For a homogeneous linear medium with constant
material parameters ρ and K, the governing equations (1.1) are simply

εt − ux = 0,(2.1a)

ρut −Kεx = 0(2.1b)

or qt +Aqx = 0, where

q =

[
ε
ρu

]
, A = −

[
0 1/ρ
K 0

]
.(2.2)

The eigenvalues of A are λ1 = −c and λ2 = +c, where c =
√
K/ρ is the speed of

sound in the material. Purely leftgoing or rightgoing waves have q(x, t) proportional
to the corresponding eigenvector r1 or r2, respectively, given by

r1 =

[
1
Z

]
and r2 =

[
1

−Z
]
.

Here Z = ρc =
√
Kρ is the impedance of the material.

In a layered linear medium, wave propagation can be more complicated. If the
layers are impedance-matched, ZA = ZB, then a rightgoing wave (for example) has
the same characteristic form in both layers, and the wave simply has a different speed
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in each layer. It will distort as it speeds up and slows down, but remains entirely
rightgoing and moves with an effective velocity

c̄ =

(
α

cA
+

(1 − α)

cB

)−1

,(2.3)

as is easily verified by computing the time required to cross two adjacent layers.
If ZA �= ZB, on the other hand, then waves are partially reflected at each interface.

It is impossible to have a purely rightgoing wave in such a composite material. How-
ever, a wave with long wavelength relative to the scale of the layers (i.e., wavelength
� δ) can appear to be essentially rightgoing, and propagates at an effective velocity
of

c̄ =

√
K̂/ρ̄,(2.4)

where

ρ̄ = 〈ρ〉 = αρA + (1 − α)ρB(2.5)

is the average density and

K̂ =
〈
K−1

〉−1
=

(
α

KA

+
(1 − α)

KB

)−1

(2.6)

is the harmonic average of the bulk moduli. The velocity (2.4) reduces to (2.3) if
ZA = ZB, but more generally (2.3) does not hold. In particular, if cA = cB ≡ c
but ZA �= ZB, then c̄ < c, so that even though all waves propagate with speed c,
the effective velocity observed will be smaller. This is because the wave is constantly
reflecting at each interface, and thus the energy propagates more slowly than the local
wave speed.

The layered linear medium can be modeled by a homogenized equation with a
dispersion relation of the form

ω = c̄ξ + dξ3 + · · · ,(2.7)

where ξ is the spatial wavenumber and ω the temporal frequency. The effective speed
c̄ and the dispersion coefficient d were derived by Santosa and Symes [6] using Bloch
wave expansions. These can also be determined from the more general homogenized
equations derived in section 5 for the nonlinear case.

Figures 1 and 2 show a comparison of waves propagating in a homogeneous
medium and two different layered media. In each case the initial data are q(x, 0) ≡ 0
for x ≥ 0, and a wave is generated by motion of the left boundary,

u(0, t) =

{
ū(1 + cos(π(t− 10)/10)) if 0 ≤ t ≤ 20,
0 if t > 20.

(2.8)

The left edge is pulled outward for 0 < t < 20, generating a strain wave that propa-
gates to the right. Since the equations are linear, the magnitude of the disturbance
scales out and we take ū = 1, but for the nonlinear case the magnitude will be
important.

In the figures, the solution is shown at time t = 40, and four different quantities
are displayed in each case: the strain ε(x, t), the corresponding stress σ(ε(x, t), x), the
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Fig. 1. The left column shows a strain wave propagating in a homogeneous medium with wave
speed c = 1. The right column shows a strain wave propagating in a layered medium with constant
impedance. In each case four quantities are shown: strain, stress, velocity, and the characteristic
variable w1(x, t), at time t = 40.

velocity u(x, t), and w1(x, t), where the characteristic variables w1 and w2 are defined
by

w1(x, t) =
1

2Z(x)
(Z(x)ε(x, t) + ρ(x)u(x, t)),(2.9a)

w2(x, t) =
1

2Z(x)
(Z(x)ε(x, t) − ρ(x)u(x, t)).(2.9b)

These satisfy w(x, t) = R−1(x)q(x, t), where R(x) is the matrix of right eigenvectors
of the coefficient matrix A(x) given in (2.2):

R(x) =

[
1 1

Z(x) −Z(x)

]
, R−1(x) =

1

2Z(x)

[
1 Z(x)
1 −Z(x)

]
.(2.10)

The quantities w1 and w2 give the magnitude of leftgoing and rightgoing waves,
respectively.

The left column of Figure 1 shows results for a homogeneous medium with ρ ≡ 1,
K ≡ 1. The wave moves at velocity c = 1 and so lies between x = 20 and x = 40 at
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Fig. 2. A strain wave propagating in a layered medium with impedance mismatch. The left
column shows the solution at time t = 40, the right column at time t = 400. In each case four
quantities are shown: strain, stress, velocity, and the characteristic variable w1(x, t).

time t = 40, with peak at x = 30. Note that w1(x, t) ≡ 0 since the wave is purely
rightgoing.

The right column of Figure 1 shows a layered medium in which δ = 1 and

δA = 0.5, ρA = 4, KA = 0.25, cA = 0.25, ZA = 1,

δB = 0.5, ρB = 1, KB = 1, cB = 1, ZB = 1.
(2.11)

In this case ZA = ZB, and so again the wave is purely rightgoing (w1(x, t) ≡ 0) and
propagates with velocity c̄ = 2/5 from (2.3). The peak of the disturbance is now
observed at x = 30c̄ = 12. Note that in this case the strain ε(x, t) is discontinuous at
each layer interface. The B layers are more easily stretched than the A layers since
KB > KA. The stress σ(ε(x, t), x) must be continuous, however, since the force acting
on each side of the interface must be equal. This condition can be used to find the
jump conditions on ε. Similarly, the velocity u(x, t) must be continuous everywhere,
but the momentum ρ(x)u(x, t) will be discontinuous at the interfaces where ρ(x) has
a jump discontinuity.
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The left column of Figure 2 shows a layered medium in which

δA = 0.5, ρA = 4, KA = 4, cA = 1, ZA = 4,
δB = 0.5, ρB = 1, KB = 1, cB = 1, ZB = 1.

(2.12)

In this case ZA �= ZB, and we have

ρ̄ =
5

2
, K̂ =

8

5
, c̄ =

√
K̂

ρ̄
=

4

5
.(2.13)

The peak of the disturbance is now located at x = 30c̄ = 24. Note that in this case
w1(x, t) is not identically zero, showing that the wave has a significant leftgoing com-
ponent, although the envelope of w1 propagates to the right at the effective velocity
c̄.

The right column of Figure 2 shows this same wave at a much later time, t = 400,
at which point the dispersive effect of the layered medium is apparent. The leading
edge of the wave is still at approximately c̄t = 320, as expected, but trailing oscillations
have appeared behind the wave due to the dispersion.

3. Waves in nonlinear media. We now consider the case of a nonlinear stress-
strain relation σ(ε, x). In particular, we consider the exponential relation

σ(ε, x) = eK(x)ε − 1,(3.1)

which will be related to the Toda lattice in section 4, and the simpler quadratic
relation

σ(ε, x) = K(x)ε+ βK2(x)ε2,(3.2)

which approximates the exponential relation if β = 1/2, and reduces to the linear case
if β = 0. For both of these nonlinear constitutive relations σε(ε, x) = K(x) +O(ε) →
K(x) as ε → 0, and so for very small amplitude waves the linear theory of the last
section applies with bulk modulus K(x).

The system of conservation laws (1.1) can now be written as

qt + f(q, x)x = 0(3.3)

or, for smooth solutions, as

qt + fq(q, x)qx = −fx(q, x).(3.4)

Note that we distinguish between f(q, x)x, the total derivative of f(q(x, t), x) with
respect to x, and fx(q, x), the partial derivative of f(q, x) with respect to the second
variable. The Jacobian matrix for the system (3.4) is

fq(q, x) =

[
0 1/ρ(x)

σε(ε, x) 0

]
,(3.5)

with eigenvalues λ1 = −c and λ2 = +c, where the sound speed c now depends on the
strain as well as x,

c(ε, x) =

√
σε(ε, x)

ρ(x)
.
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Fig. 3. The left column shows a wave propagating in a homogeneous nonlinear medium. Only
the stress is shown at three different times, illustrating shock formation. The right column shows
propagation in a layered nonlinear medium with constant linearized impedance.

The corresponding right eigenvectors of fq are

r1 =

[
1

Z(ε, x)

]
, r2 =

[
1

−Z(ε, x)

]
,(3.6)

where the impedance Z(ε, x) =
√
ρ(x)σε(ε, x) now also depends on ε. For either

constitutive model (3.1) or (3.2) we have c(ε, x) → √
K(x)/ρ(x) and Z(ε, x) →√

ρ(x)K(x) as ε→ 0, which are the linearized sound speed and impedance.
Figures 3 and 4 show computed results for three cases analogous to those shown

for the linear problem in the previous section, but now using the exponential relation
(3.1) and ū = 0.2 in the boundary data (2.8). Here we display only one quantity,
the stress σ(ε(x, t), x), but plot the solution at several different times to show the
evolution.

The left column of Figure 3 shows nonlinear propagation in a homogeneous
medium, with ρ ≡ 1, K ≡ 1. The cosine-shaped wave generated by the bound-
ary condition (2.8) steepens into a shock followed by a rarefaction wave, as expected
from standard nonlinear conservation law theory.

The right column of Figure 3 shows a layered medium with

δA = 0.5, ρA = 4, KA = 0.25,

δB = 0.5, ρB = 1, KB = 1.
(3.7)

In this case the linearized impedances are matched since ρAKA = ρBKB, and again
the rightgoing wave appears to steepen into a shock followed by a rarefaction wave.
However, the full nonlinear impedance does not remain matched, and some reflection
occurs at interfaces. This shock wave is not a sharp discontinuity but remains smeared
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Fig. 4. Propagation in a layered nonlinear medium with impedance mismatch at the interfaces.
The left column shows the stress at three times, and the right column at three later times, illustrating
breakup into a train of solitary waves.

over a few layers. In this case the layering gives rise to an effective viscous equation.
(In this case C13 is nonzero in (5.17) below, while the other C coefficients are all zero.)

Figure 4 shows a more interesting case that is the primary object of study in this
paper. Here the material parameters are

δA = 0.5, ρA = 4, KA = 4,
δB = 0.5, ρB = 1, KB = 1.

(3.8)

Now the linearized impedance is not matched, and large-scale reflections at each
interface lead to dispersive behavior. This dispersion, coupled with the nonlinearity,
results in the existence of solitary waves. In Figure 4 the same boundary motion (2.8)
is applied as before. The resulting pulse, which is long compared to the layer width,
initially starts to steepen as if a shock were forming. But then oscillations develop
and the pulse ultimately breaks up into a train of solitary waves. Similar behavior is
seen with nonlinear dispersive equations such as the KdV equation that are known to
have soliton solutions.

Figure 5 shows both the stress and the strain in the first two solitary waves at
time t = 600. Since it is not clear whether these solitary waves are formally solitons,
we will refer to them as stegotons for shorthand, coming from the Greek root “stego-,”
meaning roof or ridge, and suggested by the rough resemblance of these strain waves
in a layered medium to the back of a stegosaurus.

Note that each stegoton has a width of about ten layers, a fact that is independent
of the periodicity δ used. If δ is made smaller, then the stegotons scale with δ but
remain about ten layers wide. This is expected from the form of the equations. If
q̃(x, t) is a solution to (3.3) for δ = 1, then q(x, t) = q̃(x/δ, t/δ) is a solution for
arbitrary δ (with α fixed). The width in layers does vary slightly with amplitude, as
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Fig. 5. Close-up view of the first two solitary waves from Figure 4 at time t = 600, showing
both the strain and the stress.

500 505 510 515 520 525 530

0

0.2

0.4

0.6

strain at time t = 600.5

500 505 510 515 520 525 530

0

0.2

0.4

0.6

0.8
stress at time t = 600.5

Fig. 6. Close-up view of the two solitary waves from Figure 5 at a slightly later time t = 600.5.
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Fig. 7. (a) A time trace of the stress σ(x0, t) ≥ 0 and velocity u(x0, t) ≤ 0 at a fixed point x0
as four stegotons pass by. (b) The same four waves replotted as functions of τ with the scaling
described in the text. The dashed lines are − sech2(bτ) and 2 sech2(bτ).

does the speed of the solitary wave. The taller stegotons are thinner and travel faster
than shorter ones, similar to the behavior of KdV solitons, for example.

Stegotons do not translate with a fixed wave shape, as illustrated in Figure 6,
where the two stegotons from Figure 5 are shown at a slightly later time, t = 600.5.
For this reason it is difficult to carefully investigate the scaling properties of stegotons
by studying their appearance as functions of x for fixed t. On the other hand, if we pick
a physical location x and observe the solution as a function of t as a stegoton passes
by, then all components of the solution vary smoothly in time. By observing the waves
in this manner it is easy to determine the scaling relation between amplitude, speed,
and width. Figure 7(a) shows the stress σ(x0, t) as a function of t at x0 = 600.25, a
location that is in the center of an A-layer. This shows four distinct solitary waves
passing by, followed by some trailing noise. Here we have also plotted the velocity
u(x0, t), which is negative in each wave.

Figure 7(b) shows plots of the four leading solitary waves from Figure 7(a) after
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Fig. 8. The observed speed of a solitary wave plotted as a function of amplitude, for the four
waves shown in Figure 7.

shifting them to a common location, rescaling each by its amplitude a as measured
from the velocity, a = max |u|, and rescaling the width by

√
a. Hence we plot

1

a
σ(x0, τ) and

1

a
u(x0, τ)(3.9)

as functions of τ , where τ =
√
a(t−tm) and tm is the time at which the velocity reaches

its peak value −a. The velocity plots lie nearly on top of one another, suggesting that
at x = x0 a stegoton of amplitude a has velocity of the form

u(x0, t) = aU
(√
a(t− tm)

)
(3.10)

for some function U(τ). The dashed lines in Figure 7(b) show the functions − sech2(bτ)
and 2 sech2(bτ) for b = 1.7. This shows that the stegoton has roughly, though not
exactly, the sech2 shape seen for many solitons.

The stress does not scale quite as nicely as the velocity, and in particular the stress
is not simply a scalar multiple of the velocity. It is nearly so, however, for the stress
curve that appears tallest in Figure 7(b). This actually corresponds to the shortest
stegoton in the original time trace of Figure 7(a). For this small amplitude wave we
observe σ ≈ −2u. This is consistent with the fact that a linearized homogeneous
medium with impedance Z would have σ = −Zu, and the layered medium we are
using has an effective impedance in the linearized case that is (K̂ρ̄)1/2 = 2.

By observing when the peak appears in the time history at different points x
(each in the center of an A-layer), we can estimate the velocity of each wave. The
observed velocity is plotted against the amplitude in Figure 8 for each of these four
stegotons. They lie almost exactly on the line

v = 0.8 + 0.142a.(3.11)

Recall that c̄ = 0.8 is the effective velocity of the linearized medium from (2.13),
which is the velocity we expect to observe for very small amplitude waves. The
velocity appears to increase linearly with amplitude for nonlinear waves.
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Fig. 9. The collision of two stegotons at three different times is shown in the left column. For
comparison, the right column shows results at the same times for a single stegoton.

These results are for the case in which x0 is in the center of an A-layer. If we
fix x0 at a different spot, then the scaling is the same but the amplitude a and wave
shape U(τ) are different. Indeed, the amplitude varies significantly at different points,
even within the same layer. A more complete characterization of these waves is still
under development.

By recording u(x0, t) at a location x0 that is at the left edge of an A-layer, and
then selecting the part of this time history that captures a single wave passing by, we
obtain data that can be used to replace (2.8) as boundary data for generating a single
stegoton. By rescaling the amplitude and width of this data appropriately using the
scaling determined above, we can also generate stegotons of arbitrary amplitude a.
We have verified that these also propagate as solitary waves, at least if the amplitude
is not too large.

We can also generate a short stegoton at the boundary followed by a taller stegoton
that travels faster and eventually overtakes the first. The left column of Figure 9 shows
the results of this experiment. We observe that the two waves interact in a manner
analogous to classical solitons: the waves appear to exchange identity, and the wave
in front grows and accelerates. After the waves separate, each again has the form
of a solitary stegoton, though shifted in location from where they would be without
interaction. For comparison, the right column of Figure 9 shows the propagation of
the larger stegoton alone, without the presence of the smaller one.

4. Relation to the Toda lattice. The Toda lattice is a discrete lattice of
particles having mass m connected by nonlinear springs with a restoring force that
depends exponentially on the distance stretched. Let Xj(t) be the location of the jth
particle at time t, and assume that the unstretched configuration has Xj = j∆x. The
velocity of this particle is denoted by Uj(t). The spring connecting particle j to j + 1
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has strain

εj+1/2(t) =
Xj+1(t) −Xj(t)

∆x
− 1(4.1)

and exerts a restoring force σ(εj+1/2(t)), where

σ(ε) = eKε − 1.

Since X ′
j(t) = Uj(t), differentiating (4.1) yields

ε′j+1/2(t) =
Uj+1(t) − Uj(t)

∆x
.(4.2)

The Toda lattice is modeled by a system of ODEs consisting of this equation along
with the dynamic equation

mU ′
j(t) = σ(εj+1/2(t)) − σ(εj−1/2(t)).(4.3)

If we rewrite m = ρ∆x, then the system of equations becomes

ε′j+1/2(t) =
Uj+1(t) − Uj(t)

∆x
,

ρU ′
j(t) =

σ(εj+1/2(t)) − σ(εj−1/2(t))

∆x
.

(4.4)

Note that this can be viewed as a finite-difference discretization of the elastic equation
(1.1). Centered differences on a staggered grid are used to approximate each x-
derivative in (1.1). The classical theory of finite-difference methods thus leads us to
expect dispersive behavior, and a “modified equation” analysis of this system would
show that the discrete equations can be approximated by a dispersive nonlinear system
of PDEs. With this combination of nonlinearity and dispersion, solitary waves can
arise. Toda showed that with exponential springs the discrete system is completely
integrable and discrete soliton solutions exist; see [7], [8].

To relate the Toda lattice to a layered medium, it may be tempting to introduce
two different types of springs with constitutive relations σA(ε) and σB(ε) and have
these alternate in the discrete lattice. However, this would introduce a second form
of dispersion and result in a doubly dispersive system.

Since the original Toda lattice already has soliton solutions, we wish to relate the
layered medium directly to the lattice. This is easily done by realizing that the Toda
lattice does in fact consist of alternating layers, since particles alternate with springs.
The corresponding layered medium is one in which thin “particle layers” with finite
mass and infinitesimal compressibility alternate with thicker “spring layers” having
infinitesimal mass and finite compressibility, i.e.,

δA � 1, ρA = O

(
1

δA

)
, KA � 1,

δB = 1 − δA, ρB � 1, KB = O(1).

(4.5)

See Figure 10 for an illustration of this correspondence. (In fact, one observes close
correspondence even when δA is not small relative to δB.)
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Fig. 10. The Toda lattice and a roughly equivalent layered medium.
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Fig. 11. Comparison of the solution to the discrete Toda lattice (circles) with the finite-volume
solution to the layered medium equations (solid line). The strain and velocity are shown.

Figure 11 shows a sample calculation obtained by solving the layered media equa-
tions using

δA = 0.2, ρA = 5, KA = 2000,
δB = 0.8, ρB = 0.005, KB = 0.5.

(4.6)

In the particle layers, which exhibit little strain, the constitutive relation is taken to
be linear with σA(ε) = KAε. The wave speed is then constant in these layers, cA = 20,
which is convenient numerically since by taking ∆t = ∆x/20 (so the Courant number
is exactly 1) an accurate solution is computed even when there are very few points in
these thin layers. The spring layers have the exponential relation σB(ε) = eKBε − 1,
with a wave speed that approaches cB =

√
KB/ρB = 10 for small ε and remains below

20 so that the calculations are stable.
The parameters (4.6) lead to an effective wave speed for the linearized response

(small ε) of

c̄ =

√
K̂

ρ̄
=

√
0.625

1.004
≈ 0.789,(4.7)

and solitary waves move with a speed that is less than 1. To have a close connection
with the Toda lattice, it is important that the wave speeds cA and cB are much larger
than this homogenized wave speed. This means that small amplitude waves bounce
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back and forth within each layer on a much faster time scale than the observed wave
motion, leading to a local equilibration within each layer. As a result, the stress
observed in Figure 11 at any time is roughly constant in each thick spring layer, and
varies rapidly, but essentially linearly, in the thin particle layers. The velocity u, on
the other hand, is roughly constant in each particle layer, since the particle moves as
a rigid unit, and varies linearly across a spring layer. Only under these conditions
can we hope to model the continuum material by a set of discrete springs and masses,
where each spring has a single stress associated with it and is assumed to compress
and expand uniformly.

Figure 11 shows that there is in fact good agreement between the layered medium
and the Toda lattice in this case. The parameters for the Toda lattice used here are
m = 1.004 for the particle mass and K = 0.5 in the stress-strain relation. The mass
is the average density from the layered medium, while the value of K is taken to be
KB, the corresponding parameter from the spring layers. Note that, for the layered
medium solution (solid line), the strain is nearly zero in each thin particle layer and
nearly constant throughout each spring layer. The circles show the discrete solution
computed by solving the ODEs of the Toda lattice. These results are shown at a time
when the initial pulse is just breaking up into solitary waves. At later times both
solutions break up into similar trains of solitary waves.

Because of the correspondence in Figure 10, it is not surprising that the layered
medium exhibits solitary waves in this special case. What is more interesting is the
fact that it continues to exhibit solitary wave behavior even for situations that are
far from this limit, as was exhibited in section 3. In the next section we derive
homogenized equations for the general case that may help to shed some light on this.

5. Homogenized equations. In this section we derive homogenized equations
that describe the effective behavior of the layered media (both linear and nonlinear)
studied in the previous sections. Since the strain and momentum have discontinuities
at each interface and cannot be approximated directly by continuous functions, we
start by rewriting the equations in terms of the stress and velocity, which are contin-
uous. Equation (1.1b), ρ(x)ut − σx = 0, is one equation of this system. We must use
(1.1a) to derive an equation for σt. To do so, we use

σt = σε(ε, x)εt = σε(ε, x)ux

and will assume that the constitutive relation σ(ε, x) is such that we can solve for
σε(ε, x) as a function of σ and x in the form

σε(ε, x) = K(x)G(σ).(5.1)

In particular, for the constitutive equations used in this paper we have

σ(ε, x) = K(x)ε =⇒ G(σ) = 1,
σ(ε, x) = exp(K(x)ε) − 1 =⇒ G(σ) = 1 + σ,
σ(ε, x) = K(x)ε+ βK2(x)ε2 =⇒ G(σ) = 1 + 2βσ − 2β2σ2 +O(σ3).

(5.2)

Then the system (1.1) can be rewritten as

σt −K(x)G(σ)ux = 0,
ρ(x)ut − σx = 0.

(5.3)

This nonlinear system is not in conservation form but is still valid since we are not
interested in shock waves. The leading order terms in the homogenized equation are
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easy to derive by rewriting (5.3) as

K−1(x)σt −G(σ)ux = 0,
ρ(x)ut − σx = 0.

(5.4)

The functions K(x) and ρ(x) vary on a much faster scale than σ and u, and thus
averaging these equations over a period leads to

〈K−1(x)〉σt −G(σ)ux ≈ 0,
〈ρ(x)〉ut − σx ≈ 0.

(5.5)

This gives a homogenized system that again has the form (5.3) but with ρ(x) andK(x)
replaced by the average and harmonic average, respectively. This gives the expected
effective velocity in the linear case, but is lacking the crucial dispersive terms needed
to explain the solitary waves.

To obtain a more accurate description of the homogenized equations, we use a
multiple scale homogenization technique, following [3]. We begin by defining a fast
spatial variable x∗ = x/δ, where δ is the period of the medium, as before, and writing
the bulk modulus and density as functions of x∗: K = K(x∗) and ρ = ρ(x∗). (This
is a slight abuse of notation.) We now adopt the formalism that x̄ = x and x∗ are
independent variables by assuming δ � 1. As a result, spatial derivatives in (5.3)
must be transformed according to

∂

∂x
=

∂

∂x̄
+

1

δ

∂

∂x∗
.

(We introduce x = x̄ in this step to clearly delineate the original spatial scale x and
the new multiple scales x̄ and x∗, but we will simply use x from now on.) System
(5.3) becomes

σt −K(x∗)G(σ)
[
ux + δ−1ux∗

]
= 0,

ρ(x∗)ut −
[
σx + δ−1σx∗

]
= 0.

(5.6)

Using the convention that all underlined quantities are independent of the fast variable
x∗, we insert the asymptotic expansions

u(x, t; δ) = u(0)(x, t) + δu(1)(x, x∗, t) + δ2u(2)(x, x∗, t) +O(δ3),

σ(x, t; δ) = σ(0)(x, t) + δσ(1)(x, x∗, t) + δ2σ(2)(x, x∗, t) +O(δ3)

into (5.6) and collect terms by their powers of δ. During this process, the functionG(σ)
must be expanded as

G(σ) = G(σ(0) + δσ(1) + δ2σ(2) + · · · )
= G(σ(0)) +G′(σ(0))(δσ(1) + δ2σ(2) + · · · )

+
1

2
G′′(σ(0))(δσ(1) + δ2σ(2) + · · · )2 + · · · .

Once the proper choices for scales and asymptotic expansions have been made,
obtaining homogenized equations becomes a purely mechanical, although algebraically
intensive, procedure. For the system of equations that is proportional to δn, we solve

for u
(n+1)
x∗ and σ

(n+1)
x∗ and identify any terms that are independent of x∗. These terms
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must be set to zero; otherwise, when u
(n+1)
x∗ and σ

(n+1)
x∗ are integrated with respect to

x∗, secular terms will arise. The terms that are set to zero give rise to the homogenized
equations.

To identify terms that are independent of x∗, we introduce the following linear
operators:

〈a(x∗)〉 =

∫ 1

0

a(x∗)dx∗,

{a}(x∗) = a(x∗) − 〈a(x∗)〉 ,[[
a
]]
(x∗) =

∫ x∗

s

{a}(ξ)dξ, where s is chosen such that
〈[[
a
]]
(x∗)

〉
= 0.

When using the normal spatial scale, δ is the period of the medium, but when using
the fast spatial scale x∗ = x/δ, the period of the functions K(x∗) and ρ(x∗) is 1.
Therefore, the averaging operator 〈K(x∗)〉, defined above, gives the average value
of K(x∗). (A similar averaging operator can be defined for nonperiodic functions.)
The {·} operator generates the fluctuating part of a function: the part of the function
that has zero average. The [[·]] operator gives the integral of the fluctuating part of
a function, where the constant of integration is chosen such that the average of the
integral of the fluctuating part is zero. As opposed to 〈·〉, both {·} and [[·]] return
functions of x∗. Some useful properties of these operators are derived in [11].

In the case of piecewise constant functions (1.2), 〈ρ(x∗)〉 = ρ̄ = αρA + (1−α)ρB ,

{ρ}(x∗) =

{
(1 − α)(ρA − ρB) if j < x∗ < (j + α) for some integer j,

α(ρB − ρA) otherwise,

and

[[
ρ
]]
(x∗) =

{
(1 − α)(ρA − ρB)

(
x∗ − α

2

)
if j < x∗ < (j + α) for some integer j,

α(ρB − ρA)
(
x∗ − 1+α

2

)
otherwise.

Now we illustrate how the first few terms of the homogenized equations are de-
rived. The leading order equations are

σ
(0)
t −K(x∗)G(σ(0))(u(0)

x + u
(1)
x∗ ) = 0,(5.7a)

ρ(x∗)u
(0)
t − σ(0)

x − σ(1)
x∗ = 0.(5.7b)

We solve for u
(1)
x∗ and σ

(1)
x∗ to obtain

u
(1)
x∗ =

σ
(0)
t

K(x∗)G(σ(0))
− u(0)

x ,(5.8a)

σ
(1)
x∗ = ρ(x∗)u

(0)
t − σ(0)

x .(5.8b)

Before integrating with respect to x∗, we must first remove x∗-independent terms
from the right-hand sides of (5.8). To do this, we apply 〈·〉 to the right-hand sides
of (5.8) and set the result to zero:

0 =
〈
K−1

〉
σ

(0)
t −G(σ(0))u(0)

x ,(5.9a)

0 = 〈ρ〉u(0)
t − σ(0)

x .(5.9b)



SOLITARY WAVES IN LAYERED NONLINEAR MEDIA 1555

We can then integrate the remaining terms in (5.8) to get

u(1) =
[[
K−1

]] σ
(0)
t

G(σ(0))
+ u(1),(5.10a)

σ(1) =
[[
ρ
]]
u

(0)
t + σ(1),(5.10b)

where u(1) and σ(1) are “constants” of integration in terms of x∗ but vary with x and
t.

The O(δ) equations are

σ
(1)
t −K(x∗)G(σ(0))(u(1)

x + u
(2)
x∗ ) −K(x∗)G′(σ(0))σ(1)(u(0)

x + u
(1)
x∗ ) = 0,(5.11a)

ρ(x∗)u
(1)
t − σ(1)

x − σ(2)
x∗ = 0.(5.11b)

We substitute in (5.7a) and (5.10) and solve for u
(2)
x∗ and σ

(2)
x∗ to obtain

u
(2)
x∗ =

[[
ρ
]]
u

(0)
tt + σ

(1)
t

K(x∗)G(σ(0))
− [[K−1

]]G(σ(0))σ
(0)
xt − σ(0)

t σ
(0)
x G′(σ(0))

G(σ(0))2
− u(1)

x

− G′(σ(0))σ
(0)
t

K(x∗)G(σ(0))2

[[[
ρ
]]
u

(0)
t + σ(1)

]
,(5.12a)

σ
(2)
x∗ = ρ(x∗)

[[[
K−1

]]G(σ(0))σ
(0)
tt − (σ

(0)
t )2G′(σ(0))

G(σ(0))2
+ u

(1)
t

]
− [[ρ]]u(0)

xt − σ(1)
x .

(5.12b)

We remove x∗-independent terms by setting

0 =
〈[[
ρ
]]
K−1

〉
u

(0)
tt +

〈
K−1

〉
σ

(1)
t −G(σ(0))u(1)

x − 〈[[ρ]]K−1
〉 u(0)

t σ
(0)
t G′(σ(0))

G(σ(0))

− 〈K−1
〉 σ(1)σ

(0)
t G′(σ(0))

G(σ(0))
,(5.13a)

0 =
〈
ρ
[[
K−1

]]〉 G(σ(0))σ
(0)
tt − (σ

(0)
t )2G′(σ(0))

G(σ(0))2
+ 〈ρ〉u(1)

t − σ(1)
x .

(5.13b)

To save space, we will not perform the final step in the analysis of the O(δ) system
of equations, which involves integrating remaining terms in (5.12).

The most important part of the analysis above is the removal of all terms that
are independent of x∗, since these terms lead to the homogenized equations. To see
this, let us define

u(x, t) = 〈u(x, x∗, t)〉 = u(0)(x, t) + δu(1)(x, t) +O(δ2),

σ(x, t) = 〈σ(x, x∗, t)〉 = σ(0)(x, t) + δσ(1)(x, t) +O(δ2)
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and add up the homogenized equations (5.9) and (5.13) to get

0 =
〈
K−1

〉
σt −G(σ(0))ux + δ

〈[[
ρ
]]
K−1

〉
utt − δ

〈[[
ρ
]]
K−1

〉 utσtG′(σ(0))

G(σ(0))

− δ 〈K−1
〉 σ(1)σtG

′(σ(0))

G(σ(0))
+O(δ2),(5.14a)

0 = 〈ρ〉ut − σx + δ
〈
ρ
[[
K−1

]]〉 G(σ(0))σ
(0)
tt − (σ

(0)
t )2G′(σ(0))

G(σ(0))2
+O(δ2).(5.14b)

To make these equations look more like the original system of equations (3.3),
we replace all t-derivatives (except for the first terms in (5.14)) with x-derivatives by
substituting the equations into themselves. For example,

G(σ(0))σ
(0)
tt − (σ

(0)
t )2G′(σ(0))

G(σ(0))2
=
∂

∂t

[
σ

(0)
t

G(σ(0))

]
=
∂

∂t

[
u

(0)
x

〈K−1〉

]
+O(δ)

=
σ

(0)
xx

〈ρ〉 〈K−1〉 +O(δ) =
σxx

〈ρ〉 〈K−1〉 +O(δ).

Similar substitutions eventually produce

0 =
〈
K−1

〉
σt −G(σ(0))ux − δσ(1)uxG

′(σ(0)) + δ

〈[[
ρ
]]
K−1

〉
〈ρ〉 〈K−1〉 G(σ(0))uxx +O(δ2),

(5.15a)

0 = 〈ρ〉ut − σx + δ

〈
ρ
[[
K−1

]]〉
〈ρ〉 〈K−1〉 σxx +O(δ2).

(5.15b)

Furthermore, we recognize the first few terms of the expansion of G(σ) in (5.15a),
and thus this can be simplified to

0 =
〈
K−1

〉
σt −G(σ)ux + δ

〈[[
ρ
]]
K−1

〉
〈ρ〉 〈K−1〉 G(σ)uxx +O(δ2),(5.16a)

0 = 〈ρ〉ut − σx + δ

〈
ρ
[[
K−1

]]〉
〈ρ〉 〈K−1〉 σxx +O(δ2).(5.16b)

The equations above represent the homogenized versions of (3.3), with terms up to
O(δ) included. However,

〈
ρ
[[
K−1

]]〉
= 0 for piecewise constant functions ρ(x) and

K(x), so we have to compute more terms of this equation to see any interesting
behavior. Hence the terms involving second derivatives vanish in this case, and dis-
persive effects at the next order will dominate. (For other choices of ρ(x) and K(x)
that are rapidly varying but not piecewise constant, the second-derivative terms may
not drop out. Numerical experiments show different behavior in this case, but we
have not yet investigated this in detail.)

As the algebra involved increases exponentially with each order of δ, we have
employed Mathematica to perform the calculations. The homogenized equations in-
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cluding O(δ2) terms are found to be

0 =
〈
K−1

〉
σt −G(σ)ux + δC11G(σ)uxx + δ2C12G(σ)uxxx

+ δ2C13

(
G′(σ)σxuxx +

1

2
G′′(σ)σ2

xux

)
+O(δ3),(5.17a)

0 = 〈ρ〉ut − σx + δC21σxx + δ2C22σxxx +O(δ3),(5.17b)

where

C11 =

〈[[
ρ
]]
K−1

〉
〈ρ〉 〈K−1〉 ,

C21 =

〈
ρ
[[
K−1

]]〉
〈ρ〉 〈K−1〉 ,

C12 =

〈[[
K−1

]][[
ρ
]]〉

〈K−1〉 〈ρ〉 −
〈
K−1

[[
ρ
]]2〉

〈K−1〉 〈ρ〉2 ,

C22 =

〈[[
K−1

]][[
ρ
]]〉

〈K−1〉 〈ρ〉 −
〈[[
K−1

]]2
ρ
〉

〈K−1〉2 〈ρ〉 ,

C13 = 2

〈[[
K−1

]]
ρ
〉2

〈K−1〉2 〈ρ〉2 + 2

〈[[
K−1

]][[
ρ
]]〉

〈K−1〉 〈ρ〉 − 2

〈[[
K−1

]]2
ρ
〉

〈K−1〉2 〈ρ〉 −
〈
K−1

[[
ρ
]]2〉

〈K−1〉 〈ρ〉2 .

(5.18)

In general it can be shown that C11 = −C12; see [11]. For the special case of piecewise
constant material parameters considered in this paper, we find that

C11 = C21 = 0,

C12 = − 1

12
α2(1 − α)2

(ρA − ρB)(Z2
A − Z2

B)

KAKB 〈K−1〉 〈ρ〉2 ,

C22 = − 1

12
α2(1 − α)2

(KA −KB)(Z2
A − Z2

B)

K2
AK

2
B 〈K−1〉2 〈ρ〉 ,

C13 = − 1

12
α2(1 − α)2

〈ρ〉2 (KA −KB)2 + (Z2
A − Z2

B)

K2
AK

2
B 〈K−1〉2 〈ρ〉2 .

(5.19)

Here ZA =
√
ρAKA and ZB =

√
ρBKB are the linearized impedances. Note that if

ZA = ZB, then C12 = C22 = 0. Also note that for the linear case G(σ) = 1, the factor
multiplying C13 vanishes in the homogenized equations (5.17).

Additional terms in the homogenized equations are too complicated to present
in their general form. For the specific case used in section 3 to produce Figures
4–9, we have calculated the homogenized equations including O(δ4) terms. We take
α = 1/2 and use the exponential stress-strain relationship G(σ) = σ + 1 and the
piecewise constant material parameters ρA = kA = 4, ρB = kB = 1. The homogenized
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equations are then

ut =
2σx
5

+
3δ2σxxx

500
+ δ4

(
3σxxxσ

2
x

15625(σ + 1)2
− 72u2

xxσx
15625(σ + 1)

− 12σxxxxσx
15625(σ + 1)

− 96uxxuxxx
15625

− 12σxxσxxx
15625(σ + 1)

− 357σxxxxx
1000000

)
+O(δ6),

(5.20a)

σt =
8(σ + 1)ux

5
+ δ2

(
3(σ + 1)uxxx

125
+

3uxxσx
50

)

+ δ4
(

48uxu
2
xx

15625
− 48σxσxxuxx

15625(σ + 1)
− 4761σxxxuxx

500000
− 72uxxxσ

2
x

15625(σ + 1)

− 357(σ + 1)uxxxxx
250000

− 3543uxxxxσx
500000

− 3891uxxxσxx
500000

)
+O(δ6).

(5.20b)

(The underlines have been dropped for clarity.) Note again that for this case the uxx
and σxx terms drop out, and we can see the appearance of dispersive terms like uxxx
and σxxx in δ2 terms. Also notice that (5.20) has the property that it is invariant
under the reflection u(x, t) → −u(−x, t) and σ(x, t) → σ(−x, t), a property inherited
from the original equations (3.3).

Furthermore, we see that each term proportional to δn always has a total of
n + 1 spatial derivatives, which corroborates the observation made earlier that if
ũ(x, t) and σ̃(x, t) are solutions to (5.20) for δ = 1, then u(x, t) = ũ(x/δ, t/δ) and
σ(x, t) = σ̃(x/δ, t/δ) are solutions for arbitrary δ. This property implies that the
value of δ does not have to be small and that these homogenized equations are valid
for any δ. This suggests that the “higher-order” terms can be dropped, not because δ
is small, but because they involve small coefficients coming from higher-order averages
of the rapidly varying coefficients, as is already apparent in (5.20).

In Figure 12 we compare the solution to the homogenized equations (5.20) with
δ = 1, dropping the O(δ6) terms, with the numerical solution to the original equa-
tions (3.3). The homogenized equations were solved using a pseudospectral numerical
method that computes these smooth solutions with high accuracy (using techniques
discussed in [2] and [9] for similar equations). In this test we take initial data consist-
ing of a nonzero strain in the middle of the computational domain, with zero velocity,
which results in two outgoing pulses that each break up into a train of stegotons.
At later times we show only the leftgoing wave train. We use this initial data with
periodic boundary conditions for ease in using the pseudospectral method, and also
because it is not clear how to impose appropriate boundary conditions of the type
used earlier for the higher-order homogenized equations. The agreement is good, es-
pecially when one considers that the waves have traveled over 400 units by t = 500.
If only the terms up to O(δ3) are retained, solitary waves are still observed, but the
agreement is not as good.

Solving the homogenized equations with boundary data corresponding directly
to the layered medium tests done earlier would require the derivation of appropriate
boundary conditions for these higher-order equations. An example of how this can be
done in a weakly nonlinear case is shown in [10] and [11], but this has not yet been
carried through for the homogenized equations presented here.

6. Conclusions. We have studied elastic waves in nonlinear layered media by
computing numerical solutions to a first-order hyperbolic system of conservation laws
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Fig. 12. Comparison of a pseudospectral solution (dashed curve) to the homogenized equations
(5.20) with the finite-volume solution (solid curve) to the layered medium equations (3.3).

with a spatially varying flux function, using the method described in [1] and [4]. The
layering leads to dispersive behavior if the layers are not impedance-matched, which
in turn gives rise to the appearance of solitary waves that appear to interact in the
manner of classical solitons. There is an approximate one-parameter family of such
waves, whose velocity varies linearly with amplitude. By studying the solution as a
function of time at a fixed point x0, we obtain some indication of the scaling properties
of these waves as the amplitude is varied.

We also showed that, for a special limiting choice of parameters, the layered
medium can be modeled directly by the Toda lattice. Since the Toda lattice is known
to have exact soliton solutions, it is not surprising that similar behavior is observed in
the layered medium in this case. It is more surprising that solitary waves are observed
in cases far from this limit.

A set of nonlinear homogenized equations has been derived that contains disper-
sive terms. Numerical solution of these equations yields results that agree well with
the direct solution of the original hyperbolic system. We hope that further study of
these equations may provide more insight into the nature of these solitary waves.

We have studied in detail only one particular choice of material parameters in
the piecewise constant case with an exponential stress-strain relation. Preliminary
experiments with different choices show a rich variety of other interesting behavior
that should be explored further.

Acknowledgment. The authors would like to thank Arnold D. Kim for advice
on pseudospectral numerical methods.
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Abstract. Formal closed models for vehicular traffic flow are obtained based on the novel
equilibrium solution of the Prigogine–Herman equation. To that effect, Hilbert and Chapman–
Enskog asymptotic series expansions are employed, obtaining the Euler and Navier–Stokes equivalent
equations for traffic flow.
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1. Introduction. We show that hydrodynamic (continuum) models of traf-
fic can be obtained via asymptotic expansions about equilibrium solutions of the
Prigogine–Herman kinetic equation. We therefore focus our efforts on the interval
of vehicular concentrations c, which are less than or equal to the critical concentra-
tion ccrit. Here ccrit is the concentration for which the equilibrium solutions of the
Prigogine–Herman equation bifurcate from a one-parameter family of solutions to a
two-parameter family [25]. It is interesting to note that for many reasonable data (i.e.,
f0, P , T ) in the Prigogine–Herman equation the mathematical value of the critical
concentration closely coincides with the value of the concentration at which traffic flow
is observed to become “unstable” [7]. The term “unstable” is used by traffic engineers
to describe the onset of traffic breakdown (flow is no longer smooth and is prone to
sudden fluctuations). Mathematically this unstable regime is comprised of the con-
centrations c above some constant critical concentration defined via ccrit =

1
Tw(1−P ) ,

where w denotes the desired speed of drivers (T, P are as in (3.5), (3.6), respectively).
Macroscopic (continuum) models of traffic flow typically take the form of partial

differential equations that have as their dependent variables quantities that can be
identified with low-order polynomial moments (in speed) of the distribution function
that is the dependent variable in a kinetic equation. One natural application of ki-
netic equations is therefore the rational development of continuum approximations for
traffic flow. One possible approach is via asymptotic expansions, similar to those of
Chapman and Enskog (e.g., Chapman and Cowling [6]) or Hilbert [12] in the kinetic
theory of gases, about some underlying “equilibrium solution” as the low-order ap-
proximation. Because equilibrium solutions of nonlinear kinetic equations of vehicular
traffic are not easy to obtain [9, 16], approaches other than asymptotic expansions of
the type mentioned above have primarily been used to date. For example, Helbing [10]
assumes a Gaussian type of equilibrium solution for the Paveri-Fontana [28] kinetic
equation and expands asymptotically about it. Wegener and Klar [34] obtain macro-
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scopic approximations in the classical manner of introducing ad hoc approximations
to “close” the system of equations obtained from the first few polynomial moments
of a particular kinetic equation.

Cercignani [4] uses an implementation of the method as proposed by Chapman
[5] and Enskog [8] to obtain Chapman–Enskog approximations of different orders for
the Boltzmann equation. Nelson and Sopasakis [26] have carried out similar cal-
culations using Chapman–Enskog-type expansions, obtaining zeroth- and first-order
model equations of traffic flow.

In this work we employ Hilbert expansions, obtaining zeroth- and first-order mod-
els for the low concentration regime. Further we obtain a higher-order “Burnett equiv-
alent” model, which is valid for the low concentration regime, using Chapman–Enskog
approximations up to second order.

We start by presenting in review the Prigogine–Herman equation and a brief
overview of similar models in section 2. In section 3 we describe and explain how to
obtain the equilibrium solutions for the Prigogine–Herman equation under different
cases of the passing probability P and relaxation time T . Then in section 4 we show
how to use those equilibrium solutions and expand asymptotically around them, thus
obtaining traffic flow models. Expansions of Chapman–Enskog type are presented
in subsection 4.1. Those include the zero-order or Euler-like expansion, the first-
order or Navier–Stokes-like expansion, and the second-order or Burnett-like expansion.
Equivalent expansions of Hilbert type are presented in subsection 4.3 for the zeroth
and first orders only. Last, we briefly present a preliminary numerical simulation for
only the zeroth- and first-order approximations and for a very simple traffic incident
in section 5. For the complete numerical investigations, we refer to the sequel of this
paper [32].

2. Nonlinear models of vehicular traffic. The kinetic model of Prigogine
and Herman is

∂f(x, v, t)

∂t
+ v

∂f(x, v, t)

∂x
= − (f(x, v, t)− f0(x, v, t))

T
+ c(x, t)(v̄ − v)(1− P )f(x, v, t).

(2.1)

Here the various symbols have the following meanings:
– The zeroth-order moment of f(x, v, t), c(x, t) =

∫∞
0
f(x, v, t) dv is vehicular

concentration (or density);
– The first-order moment, v̄(x, t) = 1

c(x,t)

∫∞
0
vf(x, v, t) dv, is mean speed ;

– P is the passing probability, which is assumed known (in this work depending
explicitly on c);

– T is the relaxation time, which is assumed known (in this work depending
explicitly on c);

– f0(x, v, t) is the density function for the desired speed of vehicles, which is
assumed to be known a priori;

– f(x, v, t) is the distribution function of vehicles in space and speed. Thus
f(x, v, t) dx dv is the expected number of vehicles at time t that have position be-
tween x and x+ dx and speed between v and v + dv. This is the unknown function,
which presumably is determined by the Prigogine–Herman equation, along with suit-
able boundary and initial conditions.

In the text to follow, all notation will be suppressed (when understood) in regard
to dependence on space (x), time (t), and velocity (v) variables, unless necessary for
clarity. All distribution functions to be encountered depend on x, v, and t.
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A vehicle, in practice, changes speed due to three types of vehicular interactions:
“slowing down,” “speeding up,” and “passing.” In the classical Prigogine–Herman
kinetic model of vehicular traffic, the first of these types is treated by a fundamental
quadratic interaction term of the Boltzmann type,

c(x, t)(v̄−v)(1−P )f(x, v, t) ≡ (1−P )
(
f(v)

∫ ∞

0

f(v
′
)v
′
dv
′ − f(v)v

∫ ∞

0

f(v
′
) dv

′
)
,

based on the assumption that the speed of the vehicle slowing down is uncorrelated
with that of the vehicle immediately ahead (“lead vehicle”) that necessitates the slow-
ing down. (This is reasonable since we assume a one-lane highway where passing is
always possible and can occur without change in speed by use of another lane which
is designated for passing alone.) By contrast, the other two types of interactions,
for which this “zero correlation” assumption is not true, are treated through a phe-
nomenological relaxation term,

− (f(x, v, t)− f0(x, v, t))
T

.

In keeping with the traditions of the Boltzmann equation of the kinetic theory of
gases, both accelerations and decelerations are assumed to occur instantaneously. This
imposes some limitations on the distance and time scales for validity of the resulting
kinetic equation, and therefore also on any macroscopic (continuum) equation derived
therefrom. Limitations of the latter type do not appear to have been extensively
discussed in the traffic flow literature; they are discussed in the work of Nelson,
Bui, and Sopasakis [27]. One should be very careful in using the Prigogine–Herman
equation to attempt to resolve traffic phenomena on time scales comparable to or
smaller than the time for a vehicle to accelerate. Also important in the derivation of
the equation is the assumption that vehicles are treated as being “point particles,”
which means that they have zero length.

Paveri-Fontana adds [28] a new dimension to the Prigogine–Herman model by
treating desired speeds of drivers as an additional independent variable w,(

∂

∂t
+ v

∂

∂x

)
g(x, v, t;w) +

∂

∂v

(
w − v
T

g(x, v, t;w)

)

= f(x, v, t)

∫ ∞

v

(1− P )(v′ − v)g(x, v′ , t;w) dv′

− g(x, v, t;w)
∫ v

0

(1− P )(v − v′)f(x, v′ , t) dv′ ,

where

f(x, v, t) =

∫ ∞

0

g(x, v, t;w) dw.

Here g = g(x, v, w; t) is the density function, so that g(x, v, w, t) dx dv dw is the
expected number of vehicles at time t that have position between x and x+dx, speed
between v and v + dv, and desired velocity between w and w + dw. P is probability
of passing, T is relaxation time, and v is velocity. Recently Hoogendoorn and Bovy
[13] generalize the Paveri-Fontana theory and develop a traffic model with multiple
user classes and thus multiple desired speeds.
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Nelson [24] attempts to treat both “slowing down” and “speeding up” interactions,
as quadratic interaction terms of the Boltzmann type,

∂f

∂t
+ v

∂f

∂x
=

(
δf

δt

)
+

+

(
δf

δt

)
−
.

Here ( δfδt )+ and ( δfδt )− denote the rate of change of f due, respectively, to speeding

up and slowing down interactions, and suitable expressions for these were obtained
by introducing a certain “mechanical model” describing the behavior of drivers, and a
certain correlation model approximating the passing distribution of vehicles in terms
of f .

Klar and Wegener [16] built on the ideas of Nelson and derived a kinetic model
of vehicular traffic which also takes into account vehicle length:

∂f

∂t
+ v

∂f

∂x
=

(
δf

δt

)
g

+

(
δf

δt

)
l

,

where

(
δf

δt

)
g

+

(
δf

δt

)
l

=

N∑
i=1

(
δf

δt

)i

g

+

N∑
i=1

(
δf

δt

)i

l

.

Here ( δfδt )g and ( δfδt )l denote the gain and loss terms, respectively, due to the ith

threshold. A threshold here generates a change in velocity. Consider two cars, car
1 with position x1 and speed v1, and car 2 at position x2 and speed v2. Car 1 is
assumed to change velocity only in response to its leading vehicle, car 2. If car 1 is
faster than the leading vehicle, car 2, and the headway to car 2 becomes smaller than
a certain threshold, the driver will either slow down or pass the leading vehicle. This
use of thresholds allows cars to be considered as also having lengths.

3. Equilibrium solutions and behavior at high concentrations. This sec-
tion will serve to introduce all the necessary background information regarding equi-
librium solutions, as a prelude to the asymptotic expansions to follow in the next
section. This leads to novel equilibrium solutions of the Prigogine–Herman kinetic
equation (based on some mild assumptions to be found in [25]) that comprise a one-
parameter family in the “stable” low-concentration regime, 0 < c < ccrit for a certain
ccrit > 0, but a two-parameter family on the complementary unstable concentration
range, ccrit < c < cjam. Here cjam is defined to be the concentration of vehicles for
which the flow becomes zero.

We introduce the following notations:

v0(c) =
1

Tc(1− P ) , ζ = ζ(c) = v̄ − v0(c).(3.1)

The equilibrium solutions of (2.1) can then be expressed as

feq = feq(v) =
v0
v − ζ f0 + αcδ(v − ζ),(3.2)

where δ is the Dirac delta function, α a parameter to be determined later, and all
dependence on x and t has been notationally suppressed.

We assume that the desired speed distribution function (f0), the passing prob-
ability (P ), and the relaxation time (T ) are known a priori (with P and T even
taken to depend on concentration (c)), according to the usual assumptions of the
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Prigogine–Herman kinetic theory. Under these assumptions the equilibrium solution
(3.2) depends upon three parameters, namely c, v̄, and α. (For some of the following
considerations it is convenient to replace one of these parameters, usually α, by ζ.)
However, the basic definitions of the distribution function and the associated concen-
tration requires satisfaction of the normalization condition (for the zeroth moment),

c =

∫ ∞

0

feq(v) dv,(3.3)

and the mean-speed condition (for the first moment),

cv̄ =

∫ ∞

0

vfeq(v) dv.(3.4)

Upon substituting the expression (3.2) into these conditions, there results a system
of two equations that must be satisfied by these three parameters. We will work with
more realistic forms of passing probability and relaxation time, as also assumed in
Chapter 4 of Prigogine and Herman [29],

P = 1− c

cjam
(3.5)

and

T = τ
c/cjam

1− c/cjam .(3.6)

We shall frequently find it convenient to work with the “reduced” desired speed dis-
tribution, ϕ0(v; c), as defined by

∫
cϕ0(v; c) dv =

∫
f0(v) dv. The main result of this

section can now be summarized by the following theorem.
Theorem 3.1. In terms of the reduced desired speed distribution, the possible

equilibrium solutions (3.2) can be written as

feq(v; c, α) = cv0(c)
ϕ0(v; c)

v − ζ + cαδ(v − ζ)(3.7)

for the cases of

{
0 < c ≤ ccrit and α = 0, or
ccrit < c < cjam and αmin ≤ α ≤ αmax,

(3.8)

where ζ = ζ̄(α, c) = w − vo(c)
1−α , cjam is the jam concentration of vehicles, v0(c) is

defined in (3.1), and ccrit is the root of c := 1
T (1−P )

∫ w+

w−
ϕ0(v;c)
v−ζ dv. Further, αmin =

max{0, 1−v0(c)F (w−; c)} and αmax = 1−v0(c)F (0; c), where F (ζ; c) =
∫ w+

w−
ϕ0(v;c)
v−ζ dv.

(The exact same theorem will hold if we take constant values of P and T .) For the
details regarding the proof of this theorem, we refer the reader to [25]. To obtain this
result it is necessary to invoke the fact that the traffic-theoretic interpretation of feq(v)
requires that it have support on the interval 0 to w and assumes only nonnegative
values there. The equilibrium solutions comprise a two-parameter family (e.g., c and
α), for c > ccrit. The delta function component can be interpreted as “platoons”
of vehicles traveling at some “synchronized” speed, but now the platoon speed can
vary from ζ̄(αmax, c) = 0 to ζ̄(αmin, c) > 0, rather than being fixed at 0 as in the
classical results of Prigogine and Herman [29, Chapter 4] and Prigogine, Herman, and
Anderson [30].
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Fig. 1. Dependence of the mean-speed curve/continuum on the concentration for a uniform
desired speed distribution from 45 to 90 mph (cjam = 225 vpm, τ = .002 hours).
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Figure 1 shows the mean-speed curve/continuum as a function of concentration,
for a hypothetical situation in which the distribution of desired speeds is uniform from
45 mph to 90 mph, cjam = 225 vehicles per mile (vpm), and τ = .002 hours. A graph
of this distribution function can be found in Figure 2. (These values are reasonably
representative of those obtained observationally by Edie, Herman, and Lam [7].) For
this instance the bifurcation from a curve to a continuum occurs at slightly above
cjam/3 (ccrit ≈ 0.29 · cjam = 65 vpm). This behavior of a two-parameter family
of solutions for concentrations above ccrit is the reason that the Prigogine–Herman
equation is so attractive and preferable to other alternative models of traffic flow.
This model equation, which not only allows for an explicitly calculated equilibrium
solution to be found, also predicts (see [33]) recently only experimentally observed
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concepts such as “synchronized flow” (see Kerner [15]) and “stop and go” traffic.

4. Formal asymptotic solutions of the Prigogine–Herman kinetic equa-
tion. Here we use the equilibrium solutions previously obtained for the Prigogine–
Herman kinetic equation and asymptotically expand them in a small parameter ε
(using the Chapman–Enskog [5, 8] or Hilbert [12] method) to derive hydrodynamic
equivalent equations for traffic flow for the stable (0 < c < ccrit) traffic regime. The
purpose of these expansions will be to produce hydrodynamic equivalent approxima-
tions of traffic flow models.

4.1. The Chapman–Enskog asymptotic expansion. In this section the
zeroth-, first-, and second-order Chapman–Enskog asymptotic expansions are ob-
tained. Numerical results under appropriate conservation-preserving and entropy-
satisfying methods follow in a sequel to this paper [32].

We find a formal asymptotic solution, for the Prigogine–Herman equation, of the
form

f =

∞∑
n=0

εnf (n).(4.1)

To accomplish this we rewrite the Prigogine–Herman equation with the addition of
an artificial “small” parameter ε on the left-hand side,

ε

(
∂f

∂t
+ v

∂f

∂x

)
= Qf,(4.2)

where the operator Qf is defined as

Qf = −f − ϕ0(v)
∫ w+

0
f(v

′
) dv

′

T
+ (1− P )f(v)

∫ w+

0

(v
′ − v)f(v′) dv′ .(4.3)

The addition of the parameter ε concerns scaling issues of Qf . For the Chapman–
Enskog expansion the time derivative is also expanded in powers of ε, as

∂f

∂t
=

∞∑
n=0

εn
∂(n)f

∂t
=

∞∑
n=0

εn

(
n∑

k=0

∂(k)f (n−k)

∂t

)
.(4.4)

In the last equality the expression (4.1) has been used. The ∂(k)f(n−k)

∂t are assumed
to be unknowns to be determined so that existence of terms of the solution (4.1) is
ensured when (4.1) is substituted into (4.2).

Although f is expanded in powers of ε, the concentration c, according to the
Chapman–Enskog method, is not. Thus it is required that all higher-order contribu-
tions to c be zero:

c(n) =

∫ w+

0

f (n) dv ≡ 0, n = 1, 2, . . . , and(4.5)

c(0) =

∫ w+

0

f (0) dv ≡ c(x, t),(4.6)

where c =

∞∑
n=0

εnc(n).(4.7)
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Another important point which is a result of the previous remark is that even though
T and P vary with c, c itself is not expanded in a power series in ε as will be the
case for the Hilbert expansion in the next subsection. Therefore T and P are also not
expanded in ε. This is a very important point and will be used later in the way we
define operators and prove results. For a Chapman–Enskog expansion, T depends on
c(= c(0)) from

T (f (0)) ≡ T (c; f (0)) = τ

∫
f (0)(v) dv

cjam − ∫ f (0)(v) dv
.(4.8)

To prove the main result in this section we first define the following auxiliary operator,

L(g)h(v) := −h(v)− ϕ0(v)
∫ w+

0
h(v

′
) dv

′

T (g)
+ (1− P (g))h(v)

∫ w+

0

(v
′ − v)g(v′) dv′

+(1− P (g))g(v)
∫ w+

0

(v
′ − v)h(v′)dv′ ,(4.9)

and prove the following simple lemma.
Lemma 4.1. The null space of L∗(f (0)) consists of the constants.
Proof. The adjoint of L(f (0)) is

L∗(f (0))h(v) = (1− P )c(0)(ζ(c(0))− v)[h(v)(1− α) + α(h(ζ))]

+
v − ζ(c(0))

T

∫ w+

0

ϕ0(v
′
)

v′ − ζ(c(0))h(v
′
) dv

′
,(4.10)

and we therefore need to solve L∗(f (0))h(v) = 0. So we find functions h(v) such that

(1− P )c(0)T [h(v)(1− α) + α(h(ζ))] =
∫ w+

0

ϕ0(v)

v − ζ(c(0))h(v) dv,(4.11)

implying that h(v) is constant.
Lemma 4.2 (necessary and sufficient condition). There exists a solution of (4.2)

with (4.1) if and only if for every order of the expansion n the following equations
hold:

∂(n−1)

∂t
c = −∂q

(n−1)

∂x
for n = 1, 2, . . . .(4.12)

Proof. We substitute expansions (4.1), (4.4), (4.7) into (4.2). By the Fredholm
alternative, (4.2) will have a solution if and only if the integral over 0 < v < w+ of
the right-hand side is zero, or otherwise, if

∫ w+

0

n−1∑
k=0

∂(k)f (n−k−1)

∂t
+ v

∂f (n−1)

∂x
dv = 0.(4.13)

The result now follows from (4.5), (4.6), and the definition of

q(n) =

∫ w+

0

vf (n)(v) dv for n = 0, 1, . . . .(4.14)
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Note that (4.12) is nothing more than the Lighthill–Whitham–Richards [22, 31]
equations, which, according to this lemma, must hold at every level of the expansion
n in order for the problem to have a solution.

Theorem 4.3. The Chapman–Enskog expansion for the Prigogine–Herman equa-
tion at any order of ε has the form

∂c

∂t
+

∞∑
n=0

εn
∂q(n)

∂x
= 0,(4.15)

where q(n)(x, t; c) =
∫ w+

0
vf (n)(x, v, t; c) dv.

For the proof of this theorem, but also the two corollaries that follow, we direct
the interested reader to [26].

Corollary 4.4. The zeroth-order approximation (ε0) is the Lighthill–Whitham–
Richards (LWR) model,

∂c

∂t
+
∂q

∂x
= 0,(4.16)

where

q = q(0) = Q0(c) :=
1

T (1− P ) + cζ,(4.17)

with ζ(c) the root of F0(ζ) = Tc(1− P )(1− α), where F0(ζ) :=
∫ w+

w−
ϕ0

v−ζ dv.
Corollary 4.5. The first-order Chapman–Enskog approximation is given by

∂c

∂t
+
∂q

∂x
=
∂c

∂t
+
∂
[
q
(0)
CE + q

(1)
CE

]
∂x

=
∂c

∂t
+Q

′
0(c)

∂c

∂x
− ∂

∂x

(
D(c)

∂c

∂x

)
= 0.(4.18)

Here Q
′
0 = dQ0

dc , where Q0 is as in Corollary 4.4, and the “diffusion coefficient” is
defined by

D(c) =
T

F1(ζ(c))

(
cT (1− P ) F2(ζ(c))

F1(ζ(c))2
− 1

)
≥ 0,(4.19)

where Fn(ζ(c)) ≡
∫ w+

0
ϕ0(v)

(v−ζ)n+1 dv.

4.1.1. Second-order (or Burnett-like) expansion.
Corollary 4.6. The Burnett (order 2) approximation to the Prigogine–Herman

equation is given by

∂c

∂t
+
∂q

∂x
=
∂c

∂t
+
∂
[
q
(0)
CE + q

(1)
CE + q

(2)
CE

]
∂x

=
∂c

∂t
+Q

′
0(c)

∂c

∂x
− ∂

∂c

(
D(c)

∂c

∂x

)
∂c

∂x
+
∂

∂c

(
I(c)

(
∂c

∂x

)2
)
∂c

∂x
= 0,(4.20)

where Q0 and D are as in (4.17) and (4.19), respectively, and

A(c) =
T

F 3
1

(
3F
′
1F2

F1
− F ′2

)
,
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B(c) =
T

F 3
1

(
F
′
0F2

F1
+ 2

F
′
2F0

F1
− 6

F0F
′
1F2

F 2
1

− F ′1 − 2ζ
′
F2

)
,

G(c) =
T

F 3
1

(
2
F0

F1
(F
′
1 + ζF2) + 3

F0

c

)
,

H(c) = −3TF0

cF 4
1

,

I(c) =
T

F1
(AF1 +BF2 +GF3 +HF4)− TD(c)F0

cF 3
1

(
F3 − F 2

2

F1

)
,

where Fn(ζ) :=
∫ w+

0
ϕ0(v)

(v−ζ)n+1 dv, and all primes denote derivatives with respect to c.

Proof. The left-hand side of the Prigogine–Herman equation expanded in powers
of a small parameter ε has the form

ε

[
∂f

∂t
+ v · ∂f

∂x

]
= ε

[(
∂(0)

∂t
+ ε
∂(1)

∂t
+ ε2

∂(2)

∂t
+O(ε3)

)
(f (0)+ εf (1)+ ε2f (2) +O(ε3))

+ v · ∂
∂x

(f (0) + εf (1) + ε2f (2) +O(ε3))

]
.

Thus the ε2 terms are ∂(0)

∂t f
(1) + ∂(1)

∂t f
(0) + v · ∂

∂xf
(1). Applying Lemma 4.2, there

exists a solution if and only if

∂(1)

∂t
c = − ∂

∂x
q(1).(4.21)

This, together with

∂(0)

∂t
c = − ∂

∂x
q(0),(4.22)

which can be similarly derived while showing Corollary 4.5, will be proven useful in
the formulations to follow.

Using the conservation law (4.16), or in effect relationship (4.21) and (4.22), we
obtain

∂(0)

∂t
f (1) +

∂(1)

∂t
f (0) + v · ∂

∂x
f (1) =

(
v − ∂q(0)

∂c

)
∂f (1)

∂c

∂c

∂x
− ∂q(1)

∂c

∂f (0)

∂c

∂c

∂x

:= g2

(
c,
∂c

∂x

)
∂c

∂x
.

Similarly, the Chapman–Enskog expansion of the right-hand side of the Prigogine–
Herman equation at order ε2 provides us with

−f (2)(1− P )c(v − ζ) + (1− P )[f (0)q(2) + f (1)q(1)] := L(f (0), f (1))f (2).(4.23)

When we solve the full approximation,

g2

(
c,
∂c

∂x

)
∂c

∂x
= L(f (0), f (1))f (2)

= −f (2)(1− P )c(v − ζ) + (1− P )(f (0)q(2) + f (1)q(1)),
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for f (2) we obtain

f (2) =
1

(1− P )c(v − ζ)
(
(1− P )

(
f (0)q(2) + f (1)q(1)

)
− g2 ∂c

∂x

)
.(4.24)

Integrating with respect to v, we obtain the contribution to the flow as

0 =
q(2)

c

∫ w+

0

f (0)

v − ζ dv +
q(1)

c

∫ w+

0

f (1)

v − ζ dv −
T

F0

∫ w+

0

g2
v − ζ dv

∂c

∂x
.(4.25)

Some of the expressions appearing above are now evaluated here. Particularly, we

simplify the three terms
∫ w+

0
f(0)

v−ζ dv,
∫ w+

0
f(1)

v−ζ dv, and
∫ w+

0
g2

v−ζ dv below. First note
that

∫ w+

0

f (0)

v − ζ dv = c
F1

F0
.(4.26)

Similarly,

∫ w+

0

f (1)

v − ζ dv =
T

F 2
1

(
F3 − F 2

2

F1

)
∂c

∂x
.(4.27)

Last we calculate

g2(v) =

(
A
ϕ(c)

(v − ζ) +B
ϕ(c)

(v − ζ)2 +G
ϕ(c)

(v − ζ)3 +H
ϕ(c)

(v − ζ)4
)
∂c

∂x
,(4.28)

where A = A(c), B = B(c), G = G(c), and H = H(c) are as in the statement of the
theorem. As a result,

∫ w+

0

g2(v)

v − ζ dv = (AF1 +BF2 +GF3 +HF4)
∂c

∂x
.(4.29)

Therefore the second approximation to the flow, q(2), can now be expressed from
(4.25) through expressions (4.26), (4.27), and (4.29), as q(2) = I(c)( ∂c

∂x )
2, where I(c)

is as in the theorem. Thus the second-order hydrodynamic approximation, given the
flow q = q(0) + q(1) + q(2), becomes

0 =
∂c

∂t
+
∂q

∂x

=
∂c

∂t
+Q

′
0(c)

∂c

∂x
− ∂

∂c

[
D(c)

∂c

∂x
− I(c)

(
∂c

∂x

)2
]
∂c

∂x
.

Some very simple nondimensional analysis reveals that we have obtained the
correct form in this complicated-looking flux function. If we abbreviate quantities
such as length (L) and time (t), we have that D(c) is represented in L2/t, ∂c/∂x in
1/L2, and I(c) in t4/L3. We therefore obtain the extra contribution to the flow q(2)

in 1/t as expected.
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4.2. Linear stability analysis. The question of stability for the Chapman–
Enskog expansions just presented is natural, especially in light of the fact that Burnett
level expansions for fluid dynamic problems are destabilizing [14]. We therefore now
perform a linear stability analysis. A brief outline of this procedure is as follows: We
start by linearizing (4.20). We then obtain νk(ω) the Fourier–Laplace transform for
plane (couette) flow of ĉ(x, t). (The “hat” on the c represents small perturbations
from equilibrium, ceq, in space and time.) As a result, the inverse Laplace transform
of νk(ω) gives contributions in the form

Ae−iω(k)t,(4.30)

where A is the amplitude. Therefore our interest lies in identifying the sign of the
imaginary part of ω. It is clear from (4.30) that a positive (negative) value of Im(ω)
implies instability (stability).

To linearize (4.20) we need to introduce some notation. We define the nonlinear
differential operator by

F (c) = f(t, x,Dmc) =
∂c

∂t
+
∂

∂x

[
Q0(c)−D(c)

∂c

∂x
+ I(c)

(
∂c

∂x

)2
]
.(4.31)

Suppose that f(t, x, ξ) is smooth in its arguments t ∈ R+, x ∈ Ω ⊂ R, and ξ = {ξα :
|α| ≤ m}, where c can take values on some vector space R and F : C∞(Ω) → C∞(Ω).
We let the equilibrium solution ceq ∈ Cm(ω). Then the linearization of F at ceq is
LF (ceq) : C

m(Ω) → C(Ω),

LF (ceq)ĉ =
∂

∂ε
F (ceq + εĉ)|ε=0 =

∑
|β|≤m

∂f

∂ξβ
(t, x,Dmceq)D

β ĉ.(4.32)

As a result, linearizing (4.20) gives

∂ĉ

∂t
+ P1ĉ+ P2

∂ĉ

∂x
+ P3

∂2ĉ

∂x2
= 0,(4.33)

where

P1 = Q
′′
0

∂ceq
∂x

−D′′
(
∂ceq
∂x

)2

−D′ ∂
2ceq
∂x2

+ I
′′
(
∂ceq
∂x

)3

+ 2I
′ ∂ceq
∂x

∂2ceq
∂x2

,

P2 = Q
′
0 − 2D′ ∂ceq

∂x
+ 3I

′
(
∂ceq
∂x

)2

+ 2I
∂2ceq
∂x2

, and P3 = −D + 2I
∂ceq
∂x

,

where all primes denote derivatives with respect to ξ and all coefficients are evaluated
at ceq. We now introduce the Fourier–Laplace transform

ĉ(t;x) =
1

2π

∫ ∞

0

eiω(k)t

∫ ∞

−∞
eikxνk(v;ω) dk dω.(4.34)

Therefore (4.33) gives ω(k) = −P1i+ P2k + P3k
2i, which implies that we must have

−P1 + P3k
2 < 0 for stability.(4.35)

In Figure 3 we see, numerically, the contribution to stability due to the advective
part alone. Note that in fact we have instability for this case (positive value) but no
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Fig. 3. The stability contribution term −Q′′0 ∂ceq∂x
due solely to advection, for representative

values of
∂ceq
∂x

for our traffic release problem. Note that, even though the values are positive, they
remain finite for all values of the concentration c up to ccrit ≈ 56. Also note the exponential increase
of instability with concentration.

blow-up, and thus the amplitude A of (4.30) is finite and controlled for concentrations
in the range 0 ≤ c ≤ ccrit. Also note that, as the concentration increases, stability
becomes exponentially difficult to maintain. Similarly, we plot in Figure 4 the stability
due to advection and diffusion terms. Here we notice that, due to the inclusion of
the diffusion part, we have stability (negative value), as would be expected. At the
end of the concentration range we observe small positive (unstable) contributions but
still no blow-up. Notice that stability remains, but instability grows logarithmically
with concentration. Last, in Figure 5 we plot the (in)stability of the complete system
−P1 + P3k

2. Based on these three figures, it is clear that the instability is attributed
to “Burnett” terms contributions. Therefore, once again we observe, similarly to fluid
dynamics problems, that the Burnett expansion is actually destabilizing for all time!
In fact we get a blow-up to stability immediately even for very low concentrations.
That can also be seen numerically in Figure 6, where we try to show the blow-up in
solutions even at times as small as t = 10−13. (See section 5.3 regarding details on
numerics.)

4.3. The Hilbert asymptotic expansion. The Hilbert [12] expansion of the
Prigogine–Herman equation is very similar in form to the Chapman–Enskog expansion
considered above.



1574 ALEXANDROS SOPASAKIS

–280000

–260000

–240000

–220000

–200000

–180000

–160000

–140000

–120000

–100000

–80000

–60000

–40000

–20000

0

C  Concentration(veh./mile)

The Advection-Diffusion Stability Contribution

Fig. 4. The stability contribution term −Q′′0 ∂ceq∂x
+D′′ ( ∂ceq

∂x
)2+D′ ∂

2ceq
∂x2 −D due to advection

and diffusion for representative values of
∂ceq
∂x

for our traffic release problem. Note that it starts
negative and therefore stable while logarithmically increasing but remains finite for all values of the
concentration c up to ccrit ≈ 56.

Theorem 4.7. The Hilbert hydrodynamic approximation to the concentration c
for the Prigogine–Herman equation has the form

∂c(m)

∂t
+
∂q(m)

∂x
= 0, m = 0, 1, . . . , n,(4.36)

where

q(m) = QH
m(c(0), c(1), . . . , c(m))(4.37)

is known at order n of the expansion.
We want to solve this system of n + 1 partial differential equations for n + 1

unknowns.
Proof. The proof is similar to the one given for the Chapman–Enskog expansion.

However, a major difference is that the expansion of the concentration in powers of
the artificially introduced small parameter ε will no longer be set to zero for n ≥ 1.
The flow q(m) will be, at least in principle, known in terms of c(0), c(1), . . . , c(m).
The macroscopic form of the nth-order Hilbert approximation is the system for
m = 0, 1, . . . , n. The corresponding approximation for the density and flow are,
respectively, c = c(0) + c(1) + · · ·+ c(n) and q = q(0) + q(1) + · · ·+ q(n).

We substitute (4.1), (4.7) into (4.2), and for different powers of ε we obtain

Qf (0) = 0 for ε0,(4.38)
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Fig. 5. The total stability contribution, −P1 + P3, for representative values of
∂ceq
∂x

and
∂2ceq
∂x2

for our traffic release problem. Note that it is positive and therefore unstable for all values of
the concentration c up to ccrit ≈ 56. It is clear from this that the extra “Burnett” approximation
determines the stability and dominates the advection diffusion term contributions that we have
observed thus far.

L(f (0))f (n) =

n−1∑
k=0

∂(k)f (n−k−1)

∂t
+ v

∂f (n−1)

∂x
for εn, where n = 1, 2, . . . .

Again it is necessary that ∂f(n−1)

∂t + v ∂f(n−1)

∂x be orthogonal to the null space of
the adjoint, L(f (0))∗. We know that the null space of L(f (0))∗ consists of constants.
Therefore the compatibility condition implies again that a solution f (n) exists if and

only if
∫ w+

0
(∂f

(n−1)

∂t + v ∂f(n−1)

∂x ) dv = 0. This provides the result since it implies the
law of conservation of vehicles,

∂c(n)

∂t
+
∂q(n)

∂x
= 0 for n = 0, 1, . . . .(4.39)

4.3.1. Zero-order Hilbert expansion.
Corollary 4.8. The zero-order Hilbert asymptotic expansion of the Prigogine–

Herman equation has the form

∂c(0)

∂t
+
∂q(0)

∂c(0)
∂c(0)

∂x
= 0,(4.40)

where

q(0)(v) =

∫ w+

0

vf (0)(v) dv =
1

T (1− P ) + c
(0)ζ(c(0)),(4.41)
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Fig. 6. Chapman–Enskog solution using Godunov’s method for the second-order approximation
(Burnett equivalent) equation. The solution blows up (note the nonphysical negative concentrations)
even for very small times.

where T and P will be assumed constant here.
Proof. We solve the right-hand side of (2.1),

Q(f (0)) = 0,(4.42)

and obtain

f (0)(v) =
1

T (1− P )
ϕ0(v)

v − ζ(c(0)) .(4.43)

Thus,

c(0) =

∫ w+

0

f (0)(v) dv =
1

T (1− P )
∫ w+

0

ϕ0

v − ζ(c(0)) dv,(4.44)

which gives a simplifying relation we have used many times before in the Chapman–
Enskog expansion, with the significant difference that now c(0) �= c,∫ w+

0

ϕ0

v − ζ(c(0)) dv = T (1− P )c
(0) := F0(ζ(c

(0))).(4.45)

As a result we can write

q(0) =
1

T (1− P )
∫ w+

0

v
ϕ0(v)

v − ζ(c(0)) dv =
1

T (1− P ) + c
(0)ζ(c(0)).(4.46)
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For f (0) to exist, it must satisfy the condition

∫ w+

0

∂f (0)

∂t
+ v

∂f (0)

∂x
dv = 0,(4.47)

which gives the zero-order hydrodynamic approximation as

∂c(0)

∂t
+
∂q(0)

∂x
= 0.(4.48)

A crucial point that must be emphasized here is that not only will the zero-
order Chapman–Enskog expansion and the zero-order Hilbert expansion both give an
LWR model, but they give the same LWR model! This is not always so obvious in
higher-order expansions, as we will soon see.

4.3.2. First-order Hilbert expansion. We now carry out the evaluation of f
up to two terms, f (0) and f (1).

Corollary 4.9. The first-order Hilbert approximation to the concentration is
given by (4.40) and

∂c(1)

∂t
+
∂q(1)

∂c(1)
∂c(1)

∂x
+
∂q(1)

∂c(0)
∂c(0)

∂x
= 0,(4.49)

where

f (1)(v) =
c(1)

F1(ζ(c(0)))

ϕ0(v)

v − ζ(c(0))2 ,(4.50)

with c(1) = CF1(ζ(c
(0))) for C an arbitrary constant and

q(1) = c(1)
{
F0(ζ(c

(0)))

F1(ζ(c(0)))
+ ζ(c(0))

}
,

where T and P will be assumed constant here.
Proof. We look for a solution (at first order of the series expansion in ε) f (1) of

(2.1) which has the form f
(1)
p + f

(1)
h , where f

(1)
p is the particular solution and f

(1)
h is

the homogeneous solution of

L(f (0))f (1) =
∂f (0)

∂t
+ v

∂f (0)

∂x
,(4.51)

where

L(g)h(v) = −h(v)− ϕ0(v)
∫ w+

0
h(v

′
) dv

′

T
+ (1− P )h(v)

∫ w+

0

(v
′ − v)g(v′) dv′

+(1− P )g(v)
∫ w+

0

(v
′ − v)h(v′) dv′ .

To obtain the homogeneous solution we start by simplifying:
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L(f (0))f
(1)
h (v)=

−f (1)
h

T
+
ϕ0(v)

T

∫ w+

0

f
(1)
h (v) dv +

1

T
f

(1)
h (v)

∫ w+

0

v
′
ϕ0(v

′
)

(v′ − ζ(c(0))) dv
′

− vf
(1)
h (v)

T

∫ w+

0

ϕ0(v
′
)

(v′ − ζ(c(0))) dv
′
+

1

T

ϕ0(v)

(v − ζ(c(0)))
∫ w+

0

v
′
f

(1)
h (v

′
) dv

′

− 1

T

vϕ0(v)

(v − ζ(c(0)))
∫ w+

0

f
(1)
h (v

′
) dv

′

=
ζ(c(0))

(v − ζ(c(0)))
ϕ0(v)

T

∫ w+

0

f
(1)
h (v

′
) dv

′
+
f

(1)
h (v)

T
(ζ(c(0))− v)Tc(1− P )

+
1

T

ϕ0(v)

v − ζ(c(0)
∫ w+

0

v
′
f

(1)
h (v

′
) dv

′

= (1− P )c(0)(ζ(c(0))− v)f (1)
h (v) +

ϕ0(v)

T

∫ w+

0

v
′ − ζ(c(0))
v − ζ(c(0)) f

(1)
h (v

′
) dv

′
.

We define K :=
∫ w+

0
(v
′ − ζ(c(0))f (1)

h (v
′
) dv, and we solve the equation above for f

(1)
h :

f
(1)
h =

K

F0(ζ(c(0)))

ϕ0(v)

(v − ζ(c(0)))2 .(4.52)

A specific description of K can be obtained by simply enforcing the normalization

condition (3.3). This gives K = c(1)F0(ζ(c
(0)))

F1(ζ(c(0)))
. As a result,

f
(1)
h =

c(1)

F1(ζ(c(0)))

ϕ0(v)

(v − ζ(c(0)))2 .(4.53)

It is convenient to take f1
p (v) as the solution that satisfies

∫ w+

0
f

(1)
p (v) dv = 0. That

is, the concentration contribution comes only from the homogeneous solution of the

equation. Therefore from
∫ w+

0
∂f(0)

∂t + v ∂f(0)

∂x dv = 0 we also get
∫ w+

0
vf

(1)
p (v) dv = 0.

Thus,

f (1)(v) = f (1)
p (v) +

c(1)

F1(ζ(c(0)))

ϕ0(v)

(v − ζ(c(0)))2 .(4.54)

Therefore the values of c(1) and q(1) are related by

q(1) = c(1)
{
F0(ζ(c

(0)))

F1(ζ(c(0)))
+ ζ(c(0))

}
,(4.55)

where it is clear here that = q(1)(c(0), c(1)). Thus we have

∂c(1)

∂t
+
∂Q(1)

∂x
= 0,(4.56)

where Q(1) = q(1)(c(0), c(1)); in effect the first-order model is really a system of two
equations in two unknowns. More specifically, it is a system of equations (4.40) and
(4.49) with c(0) and c(1) as the unknowns. This is the central difference between the
Hilbert and Chapman–Enskog expansions. The complete Hilbert first-order approxi-
mation for this order of the expansion is

c[1] = c(0) + c(1),

q[1] = q(0) + q(1).

Similarly the nth-order model will be a system of n equations in n unknowns.
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5. Brief simulations. We now give some preliminary numerical simulations of
solutions to our model equations. We only do this here for the zeroth- and first-order
Chapman–Enskog expansion approximations since this section is meant to give only a
flavor of the type of solutions we can obtain. For a complete investigation, which will
include the second-order approximation and analysis under different traffic situations
and different numerical techniques, we refer to the sequel [32] to this paper, which
is to follow. For the examples that follow here we will leave most of the numerical
details to [32].

5.1. Entropy. It is necessary [21] for uniqueness models, such as the LWR model
[22, 31], to require that their solutions satisfy more than just the conservation equation
and associated initial/boundary conditions. Solutions must also satisfy [17, 23] the
so-called entropy condition. (See Ansorge [1] for a traffic-theoretic interpretation of
the entropy condition.) The entropy condition states [2] (in one of its many versions)
that the shock speed s is restricted by

q
′
(cl, t) < s < q

′
(cr, t)(5.1)

for cl > cr, where q is as usual, for traffic flow, a concave function. For the numerical
methods that follow we use a numerical flux function q∗, which implements (5.1) as
follows:

q∗(cl, cr) =




min
cl≤c≤cr

q(c) for cl ≤ cr,
max

cr≤c≤cl
q(c) for cr < cl.

(5.2)

5.2. Conditions. We construct a traffic flow example for the algorithms in this
work. The value of the parameter τ := .003 hours ≈ 11 seconds is used, as obtained
from data [7]. The reduced desired speed distribution used, ϕ0, corresponds to a
uniform distribution of desired speeds from 40 to 80 mph and 0 elsewhere. The
corresponding equilibrium solution from (3.7), in the stable regime, is

feq(v; c) =

{
cv0(c)

ϕ0(v;c)
v−ζ for 40 mph ≤ v ≤ 80 mph,

0 otherwise,
(5.3)

where c is the density in vehicles per mile per lane (vpmpl).
The problem considered here is defined by the parameters of the preceding para-

graph and the following initial conditions:

c(x, 0) = c(x, t)|t=0 =

{
59(≈ ccrit) vpmpl, x ≤ 0,
4 vpmpl, x > 0.

This corresponds to release into a relatively vacant region at t = 0 of a semi-infinite
“platoon” of vehicles extending indefinitely to the left from x = 0, and initially
at the critical concentration. In that respect, Dirichlet-type boundary conditions
are implemented in the schemes at the ends of the spatial interval. In fact, the
spatial interval has been chosen so that under the given time of consideration of the
development of the wave fronts there will be no interaction with the boundaries. The
resulting solution should have the form of an “acceleration wave,” which is analogous
to a rarefaction wave in gas dynamics [21]. Such flows are often termed “queue
discharge” in traffic engineering.
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The corresponding exact solution to the LWR model (4.16) is a traveling wave,
moving to the left, with density c& = 59 vpmpl on the left, and density cr = 4 vpmpl
on the right. The wave thus propagates to the right (downstream) at a speed s (also
called propagation speed) (q(0)(cr)−q(0)(c&))/(cr−c&) = 57.7 mph initially, and varies
accordingly as the concentration changes after each subsequent approximation.

5.3. Godunov’s method for the stable flow. Godunov’s scheme is the pre-
ferred method [18, 19, 21, 2] for solving hyperbolic conservation laws such as (4.16).
Originally the method was devised to solve inviscid Euler equations in one dimension.
However, here we also implement Godunov’s method [21] for solving the higher-order
hydrodynamic approximation equations (as produced by the Chapman–Enskog first-
order expansion), even though the method is used mostly for hyperbolic problems.
This is feasible, since, for instance, we can reformulate the first-order model (4.18) as

∂c

∂t
+
∂
(
Q0(c)−D(c) dc

dx

)
∂x

= 0,(5.4)

where now the flux function is q = Q0(c) − D(c) dc
dx . We apply Godunov’s method

to this (5.4) form of the advection-diffusion equation with this more elaborate flux
function. Note that, numerically, q = Q(cni , c

n
i+1), as seen immediately below. This

gives a natural way to define dc
dx =

cni+1−cni
xi+1−xi

for each time step n.

The Godunov scheme in general is implemented through

cn+1
i = cni − ∆tn

hi

(
Q(cni , c

n
i+1)−Q(cni−1, c

n
i )
)
,(5.5)

where the cni ’s are approximations to the concentration c at different spatial (i) and
time (n) intervals. Any numerical approximation of the form (5.5) is said to be
conservative. Here hi = xi+1/2 − xi−1/2, and Q is a numerical approximation to the
average flow q past the section boundary xi+1/2 during the time interval [tn, tn+1],

Q(cni , c
n
i+1) ≈

1

∆tn

∫ tn+1

tn

q(c(xi+1/2, t)) dt.(5.6)

We use relation (5.2) in evaluating the integral above (see [21, 2]). The Courant,
Friedrichs, and Lewy (CFL) condition is used as a way to ensure that solutions do
not blow up.

We plot the solution of the zero-order (LWR) model in Figure 7. The results of
this diffusive equation, as can be seen in Figure 8, show the expected behavior for the
concentration. The diffusive action can be seen in the way that the wave front widens
in the space dimension as time advances. This diffusive effect is even more evident in
Figure 9, where we plot the final solution of the front wave for the Godunov scheme
for the advection-diffusion equation together with the corresponding final solution
of the approximate and initial solutions for the LWR equation. For this figure the
computational parameters used are ∆x = .016 miles, while ∆t varies as specified from
the CFL condition.

Godunov’s method, which was originally designed to solve hyperbolic problems,
seems to produce a solution which looks meaningful (and stays bounded) even though
we use it on an advection-dominated diffusion equation. The effect on the time step
from the contribution due to the diffusion coefficient D is seen through the CFL
condition:

∆t ≤ ∆x
∂Q0

∂c − ∂D
∂c

dc
dx

.(5.7)
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Fig. 7. Solution using Godunov’s method for the advection equation. (Concentration is nor-
malized.)

Note that the denominator of the quantity above stays positive, since dc
dx ≤ 0, with

a minimum value of ∂Q0

∂c for cases in which the concentration is unchanged. In fact,
the contributions to the time step due to D are minimal since, for the traffic param-
eters involved in the implementation of this example, 0 ≤ ∂D

∂c < .003 for the stable

concentration regime, and the denominator is therefore dominated by 50 < ∂Q0

∂c < 60.

For the extreme cases of dc
dx = cmin−ccrit

∆x the time step suffers a temporary setback,
which, however, will be quickly remedied in the next time step from the diffusion of
the concentration.

We expect to see that the original shock concentration will eventually “diffuse”
and spread in front of and behind the shock formation, so that the concentration
in the front of the shock will increase and the concentration behind it will decrease.
The solution produced by our method exhibits this type of behavior. Also the scheme
seems to behave well in not producing any erroneous results such as infinite or negative
concentrations.

6. Conclusions. We have seen how traffic flow models can be obtained from
the equilibrium solution of the Prigogine–Herman nonlinear kinetic equation. We
rely on a deterministic equilibrium solution of the form (3.7), which is suitable for
expansion calculations (but also predicts traffic flow for the complete range of pos-
sible traffic concentrations, unlike most other such kinetic equations [25, 33]). As a
result, we obtain here a number of different models of flow, depending on the order of
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Fig. 8. Solution using Godunov’s method for the advection-diffusion equation. (Concentration
is normalized.)

series expansion carried out. This derivation is based solely on (formal) mathematical
principles, which close our equations without any need for ad hoc assumptions.

Chapman–Enskog and Hilbert expansions are presented for zeroth- and first-order
approximations. It is rewarding that at the lowest possible approximation level (ze-
roth) we obtain the well-known LWR model under either type of expansion. For the
first-order model we obtain two seemingly different looking equations. In theory, how-
ever, the Chapman–Enskog and Hilbert expansions are supposed to produce models
which can be shown to be the same. Since numerical results are forthcoming in a
sequel to this paper [32], we will leave this question to be partially resolved there.
Finally, the second-order Chapman–Enskog expansion is carried out to produce a
Burnett equivalent model for traffic flow. Note, however, that, given the stability
analysis results of section 4.2, this level of the expansion will not produce a useful
model. It is possible that techniques similar to those implemented in [14] will be
useful in that respect. The formal mathematical derivation obtained here becomes
even more interesting in light of recent work [3] of such higher-order models. In [3]
the correlation between car-following models such as [11] and [20] and the Kortweg–
de Vries equation is established, and it is shown that the well-known “stop and go”
traffic effect can be triggered by a car following equation that has the form of our
second-order “Burnett-like” model or its possible successor based on techniques from
[14]. In this paper we therefore hint at a mathematical link between empirical mod-
els (such as [3, 20]), which shows the relationship of model parameters to physically
meaningful variables.
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Fig. 9. Comparison of the first-order and zero-order model solution based on Godunov’s scheme.
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A PERIODICALLY FORCED WILSON–COWAN SYSTEM∗
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Abstract. A Wilson–Cowan system, which models the interaction between subpopulations of
excitatory and inhibitory neurons, is studied for the case in which the inhibitory neurons are receiving
external periodic input. If the feedback within the excitatory population is large enough, the response
of the system to large amplitude, low frequency input is determined by the relative values of the
excitatory threshold θx and the inhibitory-to-excitatory feedback parameter b. Feedback to the
inhibitory cells is assumed to be relatively small. In the parameter range considered, the system has
two periodic attractors: a high activity state and a low activity state. It is shown that, depending
on the parameter values, periodic input can produce two completely different effects; it can either
initiate the high activity state or switch it off. If it is assumed that the threshold θx increases with
increased excitatory activity, there exists a range of b for which periodic input can cause bursting
activity in the system.

Key words. Wilson–Cowan system, periodic forcing, bursting, structural stability
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1. Introduction. A Wilson–Cowan system is a system of two first-order differ-
ential equations that model the activity in a localized population of neurons. The
population is assumed to consist of two homogeneous subpopulations, one containing
only excitatory cells and the other only inhibitory cells. The original derivation of
the Wilson–Cowan equations appeared in a 1972 paper [14]. As pointed out recently
in a book by Whittle [13, p. 122], the approximations used in the derivation are
“Draconian in the extreme”; however, as shown by Hoppensteadt and Izhikevich [5,
pp. 45–48], the behavior of an autonomous Wilson–Cowan system can be complex and
interesting. A recent paper by Eggert and van Hemmen [1] shows that it is possible
to design a macroscopic model of neural activity, such as the Wilson–Cowan model,
so it will reproduce in a quantitatively exact manner the joint activity of large groups
of “integrate-and-fire” neurons. This suggests that new results for the Wilson–Cowan
system may apply directly to current models for large populations of single neurons.

In a 1997 paper [12], Tsodyks et al. use a Wilson–Cowan model with biologically
derived coefficients to explain paradoxical behavior in the rat hippocampus, where
the inhibitory cells (interneurons) are assumed to be receiving external periodic in-
put. The authors of that paper make the assumption that the time-dependent input
changes slowly enough so that the system returns to equilibrium at each moment of
time. In this paper, we will analytically examine the time-dependent behavior of a
Wilson–Cowan system with periodic forcing to the inhibitory cells. Our aim is to de-
termine conditions on the parameters under which periodic forcing of low frequency
can significantly alter the behavior of the system. Such results occur when the au-
tonomous system is bistable. In [12] it is assumed that the autonomous system has
a single attractor in the interior of the unit square; therefore, most of our results
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Fig. 1.1. Feedback in the neural population.

are complementary to those in [12]. However, in section 3 we point out one region
of parameter space where our results do overlap and confirm experimental results
described in [12].

The functions x(t) and y(t) in the Wilson–Cowan equations represent, respec-
tively, the fraction of cells in the excitatory subpopulation E and the inhibitory sub-
population I that are active at time t. There are four positive feedback parameters
a, b, c, and d which are used to specify the connection strengths both between and
within the two subpopulations (see Figure 1.1). For example, the net feedback to
E at time t is ax(t) − by(t), and the effect of this on cells in E is determined by a
sigmoidal response function S.

In our analysis, it is not necessary to know the exact form of the function S in
order to determine the behavior of the system. We require only that S be a “soft
threshold function,” as defined in [13, p. 21], that is, have the following properties:

1. S(z) is at least twice continuously differentiable on (−∞,∞).
2. S(z) increases monotonically from 0 to 1 on (−∞,∞).
3. S(z) has a single point of inflection at z = 0.

The third property implies that S′(z) increases monotonically on (−∞, 0) and de-
creases monotonically on (0,∞).

The Wilson–Cowan system to be studied can then be written in the form{
τxx

′(t) = −x(t) + S(ax(t)− by(t)− θx),
τyy

′(t) = −y(t) + S(cx(t)− dy(t)− θy + i(t)),
(1.1)

where i(t) = α sin(ωt) is the external periodic input to the inhibitory cells and θx and
θy are the thresholds for the excitatory and inhibitory cells, respectively. Tsodyks
et al. [12] define the constants τx and τy as the time required to bring neurons in
the respective populations to firing, as they receive subthreshold excitation. In the
original derivation of the equations (see [14]), the time constant τx, for example, was
introduced by setting x(t+τx) equal to the proportion of cells in E which were sensitive
(that is, not in their refractory period) and also receiving threshold excitation at time
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t. In our analysis, we assume that the two time constants are equal, and we therefore
take τx = τy = 1. However, due to the structural stability of the system in the regions
of parameter space being considered, it will be made clear, in section 4, that our
results can be extended to cases in which these two time constants are not the same.

For the system (1.1) we are able to show, under certain conditions on the param-
eters, that low frequency periodic input i(t) = α sin(ωt), with large enough amplitude
α, can be used to switch the activity in the network from a high activity state to a low
activity state. If the parameters are altered slightly, the input can have the opposite
effect; that is, it can force the system into its high activity state. Furthermore, if it
is assumed that θx increases slightly as the activity level x increases, the input can
produce a “bursting” response. The two parameters that are the major determinants
of which type of behavior occurs are the excitatory threshold θx and the feedback pa-
rameter b from I ⇒ E. In the next two sections the reason for requiring low frequency
input will be made clear.

2. Reduction to a first-order equation. In this section it will be shown that
by placing a single restriction on the four feedback parameters a, b, c, and d, the study
of the behavior of the forced Wilson–Cowan system can be reduced to the study of a
single periodic differential equation of first order. Some known properties of periodic
first-order differential equations are stated in the appendix; and these are referred to,
when needed, in this section and in section 3.

We define a new parameter λ ≡ c/a; that is, λ is the ratio of the E ⇒ I feedback
parameter c to the recurrent excitatory E ⇒ E feedback parameter a. We then make
the assumption that the inhibitory feedback parameters are similarly related; that
is, we assume that d/b = λ. This choice of parameter values was motivated by the
experimental data used in the examples in [12]. By proving the structural stability of
the system, the results obtained under this restriction will subsequently be shown to
hold for all d/b sufficiently close to λ. In the numerical simulations in section 5 the
meaning of “sufficiently close” will be quantified for a set of representative systems.

Assume τx = τy = 1 and d = bλ. Then the system (1.1) becomes

x′ = −x+ S(ax− by − θx),

y′ = −y + S(λax− λby − θy + i(t)).(2.1)

We now make a linear change of variables, where (t, x, y) maps to (t, u, x), with
u = ax − by. This linear map induces a topological conjugacy between system (2.1)
and the system

u′ = ax′ − by′

= f(t, u) = −u+ aS(u− θx)− bS(λu− θy + i(t)),

x′ = k(t, u, x) = −x+ S(u− θx).(2.2)

Let P = 2π/ω be the period of i(t). Since the linear conjugacy of (2.1) with (2.2)
respects the identification of (t, x, y) with (t+P, x, y) and (t, u, x) with (t+P, u, x), it
follows that it passes to a linear conjugacy of the induced flows on the quotient spaces
S1 × R2. Therefore there is a one-to-one correspondence between periodic orbits of
(2.1) and periodic orbits of (2.2). Moreover, this correspondence respects the type
(attractor, repeller, saddle) of the periodic orbit.

Consider now system (2.2) on S1 ×R2, and the single differential equation

u′ = f(t, u)(2.3)
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on S1×R. There is a one-to-one correspondence of periodic solutions of (2.2) and (2.3)
which takes attractors of (2.2) to attractors of (2.3) and saddles of (2.2) to repellers
of (2.3). Periodic orbits of (2.2) induce periodic orbits of (2.3) simply by projecting
on the u variable. Going the other way, assume that û(t) is a periodic solution of
(2.3). Since the response function S is bounded, it follows that there exist constants
r < 0 < s such that the slope function k is positive on the line x = r and negative on
the line x = s. Furthermore, the derivative kx is −1. The region {(t, x)|r ≤ x ≤ s}
is a forward invariant contracting region for the equation x′ = k(t, û, x) and therefore
contains a unique periodic attractor for the equation (see Lemma A.4 in the appendix).
It is clear that x′ = k(t, û, x) has no periodic solution outside this invariant region.
So we have shown how a periodic solution of (2.3) corresponds to a periodic solution
of system (2.2).

To simplify the analysis of (2.3) we define a new time variable τ = ωt/(2π). In
terms of τ , (2.3) becomes

du

dτ
=

2π

ω
f(τ, u)

=
2π

ω
[−u+ aS(u− θx)− bS(λu− θy + α sin(2πτ))].(2.4)

Equation (2.4) is periodic of period 1 in τ , and the period in t, P = 2π/ω,
acts as a multiplier of the slopes. This is the reason why low frequency input has a
large effect on the system behavior, whereas high frequency input does not. Using
the fact that S takes values only between 0 and 1, it can be seen that f(τ, u) < 0
whenever u ≥ a, and f(τ, u) > 0 whenever u ≤ −b. This implies that, as τ → ∞,
all solutions of (2.4) ultimately end up inside the region −b ≤ u ≤ a. In the next
section we will examine the slope field for (2.4), restricted to the invariant cylinder
H = {0 ≤ τ < 1 (mod1),−b ≤ u ≤ a} ⊂ S1 × R, and determine the behavior of
solutions under various conditions on the parameters.

3. Periodic solutions of the equation in u. In this section it will be shown
that there are three distinct regions of parameter space in which periodic forcing
to the inhibitory cells can significantly alter the behavior of solutions of (2.4), and
consequently the behavior of solutions of the Wilson–Cowan system (2.1).

In order to determine the number and position of periodic solutions of (2.4), we
need to examine the nullclines f(τ, u) = 0, and also the curves fu(τ, u) = 0. The
former divide the region H into subregions of positive or negative slopes, and the
latter determine where trajectories are getting closer together or further apart.

The function fu(τ, u) = −1 + aS′(u − θx) − bλS′(λu − θy + α sin(2πτ)). Since
S′(z) is everywhere positive and assumes its maximum value at z = 0, if a < 1/S′(0),
fu(τ, u) is negative for all τ and u, and the cylinder H is an invariant contracting
region. In this case, (2.4) has a single periodic attractor (see Lemma A.4 in the
appendix). The more interesting behavior occurs when a > 1/S′(0), and it will be
assumed that this is the case in what follows.

It should be noted that all of the graphs in this section were produced by MAPLE.
The S-function used in drawing these graphs is S(z) = 1/(1 + e−z); however, the
conclusions reached require only that S satisfy the three properties for a generic S-
function, which were given in section 1.

Consider the function f as the difference between two functions g(u) = −u +
aS(u − θx) and the sigmoidally shaped time-dependent function h(τ, u) = bS(λu −
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Fig. 3.1. Zeros of fu(τ, u) = g′(u)− hu(τ, u).

θy + α sin(2πτ)). The function f(τ, u) is zero wherever g(u) and h(τ, u) are equal;
similarly, the function fu(τ, u) is zero where g

′(u) and hu(τ, u) are equal.
We look first for the zeros of fu(τ, u). Again, using the fact that S′(z) has its

maximum at z = 0 and is strictly monotonic on (−∞, 0) and (0,∞), it can be seen
in Figure 3.1 that the function g′(u) = −1+ aS′(u− θx) always has exactly two zeros
when a > 1/S′(0). We define u1 and u2 to be the values of u at which g′(u) = 0; that
is,

u1 < u2 are the two solutions of S′(u− θx) =
1

a
.(3.1)

As τ varies between 0 and 1, the graph of g′ remains fixed, while the graph of
hu(τ, u) = bλS′(λu − θy + α sin(2πτ)) moves left and right (see Figure 3.1); and
if bλS′(0) < aS′(0)−1, the graph of hu(τ, u) must intersect the graph of g′(u) at least
twice, but always between u1 and u2.

Assume that λ < aS′(0)−1
bS′(0) ≡ λb. Notice that for large a the condition λ <

λb is essentially the condition c/a < a/b, which requires the product of the two
external feedback parameters to be small relative to the recurrent excitation. With
this restriction on λ, there will be exactly two intersections if we can show that the
slope of g′(u) is always steeper than the slope of hu(τ, u) at a point of intersection, that
is, if |g′′(u)| > |huu|. Consider the closed u-intervals I1 = {u|0 ≤ g′(u) ≤ bλS′(0), u <
θx} and I2 = {u|0 ≤ g′(u) ≤ bλS′(0), u > θx}. The continuous function S′′(z) is zero
only at z = 0, and therefore |S′′(u− θx)| has strictly positive minimum values m1 on
I1, andm2 on I2. Thus g

′(u) has slope aS′′(u−θx) ≥ am1 in I1 and ≤ −am2 in I2. For
any fixed value of τ , the slope of hu(τ, u) is huu(τ, u) = bλ2S′′(λu− θy + α sin(2πτ));
therefore, for any u in the closed interval [−b, a], |huu(τ, u)| is less than or equal to
bλ2M , where M is the maximum of |S′′(z)| on the interval −bλ − θy − α ≤ z ≤
aλ − θy + α. Therefore, if bλ2M < am, where m = min(m1,m2), at any point of
intersection of the curves g′ and hu we have |g′′(u)| > |huu(u)|.

Now consider the region bounded by the curve g′(u) and the interval u1 ≤ u ≤ u2

on the u-axis. This region is divided by the vertical line through θx into a left subregion
L and a right subregion R. Orienting hu in the direction of increasing u, the result
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Fig. 3.2. Values of θx for which aS(u− θx) is tangent to y = u.

|g′′(u)| > |huu(u)| implies that any intersection of hu with the left boundary of L is an
entrance to L. There is a unique exit from L at the point where hu crosses the vertical
line through θx. Since the number of entrances to L must equal the number of exits
from L, it follows that there is only one intersection of hu with the left boundary of
L. Similarly there is only one intersection of hu with the right boundary of R. These
two intersections are the unique intersections of g′ with hu.

We have therefore shown that if λ < min(λb,
√

am
bM ) ≡ Λ, the function fu(τ, u)

will have exactly two zeros w1(τ) and w2(τ), lying between u1 and u2 for each value
of τ . Note that this also implies that the function f(τ, u) has at most three zeros.
Furthermore, since w1 and w2 are solutions of fu(τ, u) = 0, by implicit differentiation
they are seen to be differentiable functions of τ , with dwi/dτ = −fuτ/fuu. The second
partial derivative fuu(τ, u) is never zero at the points w1(τ) or w2(τ), since it is equal
to the difference of the slopes of g′(u) and hu(τ, u) at those points.

The condition λ <
√

am
bM appears to be more restrictive than the condition λ < λb.

The ratio m/M is less than 1 and approaches 1 as the derivative S′ approaches a
piecewise linear tent function with its peak at 0. However, our proof of the structural
stability of the Wilson–Cowan system in section 4 shows that “sufficiently small”
perturbations of the S-function can be made without altering the general behavior of
the system. Therefore, in biological terms, the condition λ < Λ simply requires that
the external feedback between the two populations be small enough relative to the
recurrent excitation in E.

Next consider the curves where f(τ, u) = 0. With a > 1/S′(0), the graph of
y = aS(u − θx) has its maximum slope, greater than 1, at u = θx and intersects the
line y = u in 1, 2, or 3 points depending on the value of θx. Define θ1 and θ2 to be
the lower and upper values of θx for which the curve y = aS(u− θx) is tangent to the
line y = u (see Figure 3.2); that is, θ1 < θ2 are the solutions θ of the simultaneous
equations {

aS(u− θ) = u,
aS′(u− θ) = 1.

(3.2)

Then if θ1 < θx < θ2, g(u) = −u+ aS(u− θx) has exactly three zeros, and if θx < θ1
or θx > θ2, g(u) has only one zero.
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Fig. 3.4. Slope field in H, with
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We consider first the case of θ1 < θx < θ2. In Figure 3.3, graphs of g(u) and h(0, u)
are drawn. From our discussion of the function g′(u), we know that a local minimum
and a local maximum of g occur at u1 and u2, respectively. Define b2 = g(u2) to be
the local maximum of g, and b1 = g(u1) to be the local minimum. Notice that b2 = 0
when θx = θ2. As θx moves to the left or right of θ2 on the u-axis, the position of
the maximum of g(u), and its magnitude, both change by the same amount θ2 − θx
(see Figure 3.2); therefore, b2 = θ2 − θx. Similarly, it can be seen that the minimum
b1 = g(u1) = θ1 − θx.

If b < b2, as the curve h(τ, u) moves left and right with τ , for any τ between 0
and 1, it always intersects the curve g(u) in exactly three points zi(τ). It can be seen
from Figure 3.3 that for all τ these intersection points satisfy z1(τ) < u1 < z2(τ) <
u2 < z3(τ). From our previous analysis of the function fu, we know that the curve
z2(τ) lies in the region between the curves w1(τ) and w2(τ).

For a representative set of parameter values a > 1/S′(0), θ1 < θx < θ2, b < b2, and
λ < Λ, the position of these curves in H is shown in Figure 3.4. Since fu is negative
for u < u1 and u > u2, and f(τ, u1) < 0, f(τ, u2) > 0 for any τ , the subregions
H1 = {0 ≤ τ < 1 (mod1),−b ≤ u ≤ u1} and H2 = {0 ≤ τ < 1 (mod1), u2 ≤ u ≤ a}
are invariant contracting regions for (2.4), so that Lemma A.4 (appendix) shows that
there always exists a unique attracting period-1 solution u−(τ) in H1 and u+(τ) in
H2. These are the two darker curves seen in Figure 3.4.

By making the input frequency ω small enough, the absolute value of the slope
function (2π/ω)f(τ, u) can be made larger than the absolute value of the derivative
of both w1 and w2 at every value of τ . Under these conditions, the region w1(τ) <
u < w2(τ) is a repelling region for u(τ); that is, it is a contracting forward invariant
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Fig. 3.5. Zeros of the function f(τ, u) = g(u)−
h(τ, u), θ1 < θx < θ2, b > b2.
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Fig. 3.6. Slope field in H, with
θ1 < θx < θ2, b > b2.

region when τ is replaced by −τ . In this case there is a unique period-1 repeller in
the interior of this subregion of H (see the appendix). All of the other solutions are
attracted to either u− or u+. The above analysis allows us to state the following
theorem.

Theorem 3.1. If a > 1/S′(0), θ1 < θx < θ2, b < b2 = θ2 − θx, and λ < Λ,
then, for all ω small enough, for any value of the amplitude α the equation u′ =
(2π/ω)f(τ, u) has exactly three period-1 solutions; attractors u−(τ) and u+(τ) and
repeller u0(τ) satisfying u−(τ) < u1 < u0(τ) < u2 < u+(τ) for all τ . The correspond-
ing Wilson–Cowan system (1.1), with d = λb, τx = τy = 1, has a low activity attract-
ing state (x−(t), y−(t)) corresponding to u−(τ) and a high activity attracting state
(x+(t), y+(t)) corresponding to u+(τ). Every solution with initial values (x(0), y(0))
satisfying ax(0)−by(0) > u0(0) is attracted to (x+, y+), and solutions with (x(0), y(0))
satisfying ax(0) − by(0) < u0(0) are attracted to (x−, y−). The period of oscillation,
in t, of each of these attracting solutions is 2π/ω.

With the parameter values a, b, θx, and λ as hypothesized in Theorem 3.1, low
frequency external input α sin(ωt) to the inhibitory cells cannot significantly change
the behavior of the system. In order for the input to cause one of the two attractors
to lose stability, and hence switch the system from one attracting state to the other,
it is necessary that either (1) the feedback parameter b from I ⇒ E be increased to
a value greater than the bifurcation value b2, or (2) the excitatory threshold θx be
decreased to a value less than θ1. If θx > θ2, the local maximum of the function
f(τ, u) is negative for all values of τ , so that only the lower attractor u−(τ) exists for
any input.

Consider now the case in which θ1 < θx < θ2 and b > b2. In this case it can be
seen in Figure 3.5 that there exists an α∗ such that for all α > α∗ the curve h(τ, u)
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Fig. 3.8. Slope field in H, with
θx < θ1, b1 < b < b2.

moves far enough to the left so that there will be an interval of τ (around τ = 0.25)
in which the intersections z2(τ) and z3(τ) no longer exist. Figure 3.6 shows the
corresponding arrangement of the curves zi(τ) in H. The lower invariant contracting
region H1 still exists, but by making the input frequency ω small enough, the solution
u(τ) of (2.4) with u(0) = a can be made to decrease below the minimum u-value on
the curve z2(τ), and u(τ) will therefore be attracted to the lower period-1 solution
u−(τ). Using the uniqueness of the solutions, it can be seen that all solutions of (2.4)
are then attracted to u−(τ) as τ → ∞. The solution starting at u(0) = a is seen as
the darker curve in Figure 3.6.

Theorem 3.2. If a > 1/S′(0), θ1 < θx < θ2, b > b2, and λ < Λ, there exist
positive constants α∗, and ω∗ depending on α, such that for all α > α∗ and ω < ω∗(α)
all solutions of (2.4) tend to the period-1 solution u−(τ), with −b < u−(τ) < u1.
For these values of the parameters, external input i(t) = α sin(ωt) to the inhibitory
cells forces all solutions of the Wilson–Cowan system (2.1) to the low activity state
(x−(t), y−(t)), which is periodic with period 2π/ω.

If θx < θ1, the external input can produce two different types of behavior. If b is
less than the value of the local minimum b1 = g(u1) = θ1 − θx, which is now positive,
then only the upper period-1 solution u+(τ) exists for any input α sin(ωt); but if
b1 < b < b2, then for all α large enough there will be an interval of τ around τ = 0.75
for which z3(τ) is the only solution of f(τ, u) = 0 (see Figure 3.7). In this case, only
the upper invariant contracting region H2 exists, and the input α sin(ωt) can be used
to drive all solutions to the upper attractor u+(τ) if α > α∗ and ω < ω∗(α). Such a
solution can be seen in the slope field in Figure 3.8, where we have used the initial
value u(0) = −b.
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Fig. 3.10. Slope field in H, with
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Theorem 3.3. If a > 1/S′(0), θx < θ1, b1 < b < b2, and λ < Λ, there exist
positive constants α∗, and ω∗ depending on α, such that for all α > α∗ and ω < ω∗(α)
all solutions of (2.4) tend to the period-1 solution u+(τ), with u2 < u+(τ) < a.
For these values of the parameters, external input i(t) = α sin(ωt) to the inhibitory
cells drives all solutions of the Wilson–Cowan system (2.1) to the high activity state
(x+(t), y+(t)), which is periodic with period 2π/ω in t.

It can be seen in Figure 3.9, however, that if θx < θ1 and b > b2, then for large
enough α there can be intervals of τ where z3 is the only solution of f(τ, u) = 0, as
well as intervals of τ where z1 is the only solution. In this case, with large amplitude,
low frequency input α sin(ωt), both the upper and lower attractors can lose stability,
and the solutions of (2.4) can be made to converge to an attracting periodic solution
which oscillates alternately between the high and low activity states. Such a solution
is shown in the slope field in Figure 3.10. With b large enough, our results in this
region of parameter space resemble those in [12]. As hypothesized in [12], x(t) and
y(t) appear to oscillate in phase in this region. This can be seen in the graph of the
numerical solution pictured in Figure 5.4 in section 5.

The above theorems describe the behavior of the system in three distinct regions
of parameter space. In each of these regions, the system has only hyperbolic periodic
solutions, and in section 4 it will be shown to be a structurally stable system. This
in turn implies that the behavior of the system in each of these regions remains
similar for small perturbations of the parameters d, τx, and τy and also for small
perturbations of the S-function and the input i(t). In all of the systems we have
simulated numerically, the value of d can be varied by a large percentage before any
system bifurcation occurs. Note that the parameter d determines the magnitude of
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the feedback among the cells in the inhibitory subpopulation, and the systems seem
not to be very sensitive to this particular parameter in the regions of parameter space
under consideration.

4. Structural stability of the periodically forced Wilson–Cowan sys-
tem. In this section we show that in each of the three regions of parameter space
described in Theorems 3.1, 3.2, and 3.3 the periodic Wilson–Cowan system (1.1) is
structurally stable. This allows us to conclude that the results for the constrained
system, with d/b = c/a and τx = τy, can be extended to systems where the values of
these parameters lie in sufficiently small neighborhoods of the constrained values, but
in which the constraints are relaxed. In section 5, numerical simulations will be used
to show what this means quantitatively.

We first give the definition of a structurally stable system and state the classical
theorem which applies to three-dimensional autonomous systems on compact mani-
folds [8], [9], [11]. We then prove in Theorem 4.2 that, under certain conditions, the
Wilson–Cowan system (1.1) satisfies the Morse–Smale conditions for structural sta-
bility. The corollary of Theorem 4.2 below shows that in each of the regions described
in Theorems 3.1, 3.2, and 3.3, system (1.1) satisfies all of the hypotheses of Theorem
4.2.

Definition 4.1. A system of differential equations x′ = F (x) on a smooth
manifold M (with or without boundary) is Cr structurally stable if, for all sufficiently
small perturbations of the vector field F and its partial derivatives of order ≤ r, the
unperturbed and perturbed systems are topologically equivalent; that is, there exists a
homeomorphism h : M → M which takes trajectories of the unperturbed system to
trajectories of the perturbed system, preserving the time orientation but not necessarily
the parameterization.

Starting with the periodically forced Wilson–Cowan system (1.1) on R2, we add
a new variable s and a new equation to form a related autonomous system on R×R2.
We then identify the point (s, x, y) with the point (s+P, x, y) to induce on the manifold
S1 ×R2 the system


s′(t) = 1,
τxx

′(t) = −x(t) + S(ax(t)− by(t)− θx),
τyy

′(t) = −y(t) + S(cx(t)− dy(t)− θy + i(s)).
(4.1)

Theorem 4.2. Suppose that system (4.1) has finitely many periodic orbits on
the manifold S1 × R2, all of which are hyperbolic, and that every point approaches
a periodic orbit in forward time, while in backward time every point approaches a
periodic orbit or escapes to infinity, but no nonperiodic point approaches a saddle or-
bit in forward time and a saddle orbit in backward time. Further, suppose that from
the Wilson–Cowan system a sufficiently small perturbation is made of the positive
constants τx, τy, a, b, c, d, θx, and θy; a C1 sufficiently small perturbation is made of
i(t), preserving the period P ; and a C1 sufficiently small perturbation is made of the
function S. Then there exists a closed disk D ⊆ R2 such that any trajectory of the
original or perturbed system either lies entirely in the interior of the manifold with
boundary M = S1 ×D or else enters M and never leaves. In particular, all periodic
orbits of the perturbed and unperturbed system are contained in the interior of M .
The perturbed system is topologically equivalent on M to the unperturbed system, and
the topological equivalence h :M → M approaches the identity as the perturbation and
its first-order partial derivatives approach the unperturbed system and its correspond-
ing partial derivatives. In particular, the perturbed system has no equilibria, all the
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periodic orbits of the perturbed system are hyperbolic, the number of periodic orbits in
the unperturbed and perturbed systems is the same, and corresponding periodic orbits
in the two systems have the same period and type (i.e., attractor, repeller, saddle).

This theorem will be proved by invoking a theorem of Palis, which requires the
following definition.

Definition 4.3 (see [10, pp. 319, 322]). On a compact manifold M (with or
without boundary), we call a differential equation Morse–Smale if

(a) the vector field of the differential equation is nowhere zero on the boundary
and nowhere tangent to the boundary;

(b) there are finitely many equilibria and periodic orbits;

(c) all equilibria and periodic orbits are hyperbolic;

(d) all stable and unstable manifolds intersect transversally;

(e) the nonwandering set coincides with the set of equilibria and periodic orbits.

The following theorem is usually stated for a compact manifold without boundary,
but the proof carries over for a compact manifold with boundary, provided that one
stipulates the tangency condition (a) given in the above definition.

Theorem 4.4 (see [7]). On a compact manifold M (with or without boundary),
a Morse–Smale differential equation is C1 structurally stable, and the equivalence
h :M → M approaches the identity as the perturbation and its first partial derivatives
approach the unperturbed system and its first partial derivatives.

Proof of Theorem 4.2. Let us first rewrite system (1.1) in the form

x′ = F1(t, x, y) = −mx+mS(f1(t, x, y)),

y′ = F2(t, x, y) = −ny + nS(f2(t, x, y)),

wherem = 1/τx, n = 1/τy, f1(t, x, y) = ax−by−θx, and f2(t, x, y) = cx−dy−θy+i(t).
The same differential equation can also be written in vector form as (x, y)′ = F (t, x, y),
where the nonautonomous vector field F (t, x, y) = (F1(t, x, y), F2(t, x, y)).

As was shown previously, the nonautonomous system (1.1) on R × R2 can be
rewritten as an autonomous system (4.1) on S1 × R2, which in vector form can be
denoted by (s, x, y)′ = F#(s, x, y).

Choose r > (m+ n)/min(m,n), and let D be a disk in the (x, y) plane of radius
r, centered at the origin. The vector ν = (x, y) is an outward-pointing normal vector
to the boundary circle of D. For any fixed t, the dot product F • ν = −mx2 − ny2 +
mxS(f1(t, x, y))+nyS(f2(t, x, y)) ≤ −min(m,n)r2+(m+n)r. Our choice of r implies
that F • ν < 0, which shows that for any fixed t, the vector field F points into the
disk D. As a consequence, the vector field F# for the system (4.1) on the manifold
S1 ×R2 points into the manifold with boundary M = S1 ×D. The same is true for
any vector field G# on M that is a sufficiently small C0 perturbation of F#.

Since the first equation in system (4.1) is s′(t) = 1, it follows that the system has
no equilibria. By hypothesis, it has only finitely many periodic orbits, all of which
are hyperbolic.

The condition of Theorem 4.2 that no nonperiodic point is both backward and
forward asymptotic to a saddle implies that the only possible intersection of stable
and unstable manifolds occurs on a periodic orbit. But by the hyperbolicity of peri-
odic orbits, an intersection of stable and unstable manifolds along a periodic orbit is
transverse. Therefore all intersections of stable and unstable manifolds are transverse.

If a point does not escape to infinity in backward time, it approaches a repeller
in backward time or an attractor in forward time. Therefore no nonperiodic point
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can be nonwandering. It follows that the nonwandering set coincides with the set of
periodic orbits.

We have shown above that the conditions of Theorem 4.4 are satisfied. It follows
that system (4.1) on M is C1 structurally stable. Let G# be a sufficiently small C1

perturbation of the unperturbed vector field F#. Then the systems determined by
F# and G# are topologically equivalent on M ; that is, both systems have the same
number of periodic orbits, and corresponding orbits have the same type.

Corollary of Theorem 4.2. Consider any set of parameters τx = τy = 1,
a, b, c, λ, d = λb, θx, θy, α, and ω, with i(t) = α sin(ωt) such that the resulting Wilson–
Cowan system satisfies the conditions for Theorem 3.1, Theorem 3.2, or Theorem 3.3.
Suppose a sufficiently small perturbation is made of the parameters τx, τy, a, b, c, d, θx,
and θy, together with a C

1 sufficiently small perturbation of i(t) preserving the period
P = 2π/ω, and a C1 sufficiently small perturbation of the function S. It follows that
the perturbed system has the same properties as the properties demonstrated for the
unperturbed system in Theorems 3.1, 3.2, and 3.3.

Proof of the corollary. Given a case of the Wilson–Cowan system whose properties
are demonstrated in Theorem 3.1, 3.2, or 3.3, we need to show that this unperturbed
system satisfies the conditions needed to apply Theorem 4.2.

In the ensuing argument we will need to refer to system (4.1), to the linearly
equivalent system

s′ = 1, u′ = f(s, u), x′ = k(s, u, x),(4.2)

and to system

s′ = 1, u′ = f(s, u).(4.3)

The latter are autonomous systems corresponding to systems (2.2) and (2.3) in section
2, with u = ax− by.

The system of Theorem 3.1 has three periodic orbits, and the systems of Theorem
3.2 and Theorem 3.3 have one periodic orbit. Therefore each one has at most finitely
many periodic orbits. We first show that each of these periodic orbits is hyperbolic.
In system (4.2), because u′ depends only on s and u, it follows that a Poincaré map
H : R2 → R2 has the form H(u0, x0) = (H1(u0), H2(u0, x0)). The Jacobian matrix
of this map has the form (

dH1/du0 0
∂H2/∂u0 ∂H2/∂x0

)
.

Therefore the eigenvalues of the Jacobian map are λ1 = dH1/du0 and λ2 = ∂H2/∂x0.
We now compute those eigenvalues.

A Poincaré map H of a periodic differential equation maps the initial value of
each trajectory into its value one period later. We will use the Poincaré map with
initial value at t = 0. It is known [3, pp. 129–130] that the derivative H ′

1(u0) =

exp[
∫ 1

0
fu(t, u(t))dt], where u(t) is the solution of the differential equation u

′ = f(t, u),
with u(0) = u0. Since the periodic orbits determined by Theorems 3.1, 3.2, and 3.3
lie entirely in invariant regions where fu has constant sign, it follows that 0 < λ1 =
H ′

1(u0) �= 1 for any u0 which is the initial point of a periodic orbit. In particular, for
an attracting periodic orbit of the equation u′ = f(t, u) we have 0 < λ1 < 1, and for a
repelling periodic orbit we have λ1 > 1. For a fixed u0, the equation x

′ = −x+S(u−
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θx) is a first-order linear equation with solution x(t) = e−t
∫ t
0
esS(u(s)−θx)ds+e−tx0,

and therefore, λ2 = ∂H2/∂x0 = 1/e.
It follows that corresponding to an attracting periodic orbit for system (4.3) we

have lying above it an attractor in system (4.2), and this attractor has eigenvalues
0 < λ1 < 1 and λ2 = 1/e. Corresponding to a repelling periodic orbit for system
(4.3), we have lying above it a saddle in system (4.2), and this saddle has eigenvalues
λ1 > 1 and λ2 = 1/e. Since the eigenvalues are preserved under the linear change of
variables going from system (4.1) to system (4.2), it follows that the periodic orbits
shown to exist in Theorems 3.1, 3.2, and 3.3 are in fact hyperbolic.

Every initial point (s0, u0, x0) in system (4.2) approaches a periodic orbit in for-
ward time. In backward time it either approaches a periodic orbit or escapes to
infinity.

In the cases of Theorems 3.2 and 3.3, there is no saddle orbit. In the case of
Theorem 3.1, there is a unique saddle orbit α for (4.2) which projects to the repeller
α∗ of (4.3). The points attracted to α in forward time are precisely the points which
project to α∗. However, for such a point which is not on α, in backwards time, the x
value of the trajectory goes to ±∞. Therefore, there is no nonperiodic point of (4.2)
which in both backwards and forwards time is attracted to a saddle orbit.

We have thus shown that any system satisfying the conditions for Theorem 3.1,
3.2, or 3.3 also satisfies the conditions for Theorem 4.2 on structural stability. There-
fore these systems are structurally stable in the sense of Theorem 4.2. In partic-
ular, all the properties demonstrated for the systems in Theorems 3.1, 3.2, or 3.3
also hold under a sufficiently small C1 perturbation of the type referred to in the
corollary.

5. Examples. This section contains numerical solutions of the Wilson–Cowan
system (2.1) for some suitably chosen parameter values, to demonstrate the types of
behavior described in section 3. The examples are specifically chosen to illustrate the
behavior in four different regions of the bifurcation diagram pictured in section 6, and
are labelled according to the region in which they lie. In each of these examples we are
assuming that d/b = c/a = λ. For simplicity we use the sigmoidal response function
S(z) = 1

(1+e−z) . For this particular S-function, the derivative S′(z) = S(z)(1−S(z)),

and S′(0) = 1/4. The excitatory feedback parameter a needs only to satisfy a >
1/S′(0) = 4, and we will arbitrarily choose a = 8. For the chosen S-function the
values of θ1 and θ2, which depend only on S and a, can be found from (3.2) by using
the inverse function S−1(z) = ln(z/(1− z)):

θ1 =
a

2
−
[(a

2

)√
1− 4

a
+ ln

(
1−√1− 4/a

1 +
√
1− 4/a

)]
≈ 2.9343,(5.1)

θ2 =
a

2
+

[(a
2

)√
1− 4

a
+ ln

(
1−√1− 4/a

1 +
√
1− 4/a

)]
≈ 5.0657.

We first consider a system with θ1 < θx < θ2, by letting θx = 3. The bifurcation
value b2 = θ2 − θx is approximately equal to 2.0657. The parameter λ is required to
be less than (aS′(0)−1)/(bS′(0)) = 4/b, and we will arbitrarily choose λ = 0.8, which
is well within the required limit when b is close to b2. This value of λ can also be
shown to satisfy the condition λ <

√
am
bM for this particular S-function and the values

of b being considered. The inhibitory threshold θy is arbitrary, but both θy and λ will
affect the bifurcation value α∗, since they each affect where the function h(τ, u) has
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Fig. 5.1. Solutions (x, y) in Region 1:
θx = 3, b = 1.8.
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Fig. 5.2. Solutions (x, y) in Region 2:
θx = 3, b = 2.2.

its point of inflection. We arbitrarily set θy = 3. The resulting Wilson–Cowan system
is {

x′ = −x+ S(8x− by − θx),
y′ = −y + S(0.8(8x− by)− 3 + α sin(ωt)).

(5.2)

Region 1. With θx = 3 and b = 1.8 < b2, we know from Theorem 3.1 that for any
input α sin(ωt), with small enough frequency ω, almost every solution (x(t), y(t)) will
approach one of the two attracting states (x−, y−), (x+, y+), depending only on the
values of x(0) and y(0). Figure 5.1 shows solutions of (5.2) with b = 1.8 and i(t) =
2.5 sin(0.5t). Two initial conditions, (x(0), y(0)) = (0, 0) and (x(0), y(0)) = (1, 1), are
used, and the corresponding solutions are attracted, respectively, to the lower and
upper periodic solutions. In this case, simulation shows that, except for the change
in period, the periodic solutions are very similar for all values of ω.

Region 2. For the same threshold value θx = 3, with b = 2.2 > b2 and i(t) =
2.5 sin(0.05t), the same two sets of initial conditions were used. It can be seen in
Figure 5.2 that, with α = 2.5, the frequency ω = 0.05 is small enough to drive all
solutions to the lower attractor (x−, y−); that is, 2.5 > α∗ and 0.05 < ω∗(2.5).

The parameter values used in the examples described here are of the same order
of magnitude as those used by Tsodyks et al. [12]; therefore, assuming that the unit
of time is milliseconds, the frequency ω = 0.05 corresponds to a periodic input of
approximately 8 Hertz, whereas ω = 0.5 corresponds to an input of 80 Hertz. In the
case in which θx = 3 and b = 2.2, further simulations were done to find the bifurcation
value of ω when α was equal to 2.5. The upper periodic solution lost stability at
ω ≈ 0.085. This means that the periodic input must cycle at approximately 13 Hertz
or less to cause all of the solutions to tend to the lower attractor (x−, y−), that is, to
turn off the excitation.

Region 3. When θx = 2.8 < θ1, the corresponding value of b2 = θ2 − θx ≈ 2.2657.
Now the value b = 2.1 is less than b2 and greater than b1 = θ1 − θx ≈ 0.0134. With
initial conditions as before, and i(t) again taken to be equal to 2.5 sin(0.05t), Figure
5.3 shows both solutions being driven to the upper attractor (x+, y+). By simulation,
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Fig. 5.3. Solutions (x, y) in Region 3:
θx = 2.8, b = 2.1.
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Fig. 5.4. Wide oscillation in Region 4:
θx = 2.8, b = 2.5.

the bifurcation value in this case was found to be ω∗(2.5) ≈ 0.247. This corresponds
to an input of about 25 Hertz.

Region 4. In Figure 5.4, θx = 2.8 and b = 2.5 > b2, and with the same input
i(t) one sees large oscillations; that is, the solutions oscillate alternately between the
high and low activity states. It can be seen in Figure 5.4 that x(t) and y(t) are
oscillating in phase in this region, whereas in the other three regions they can be seen
to oscillate nearly 180 degrees out of phase. This tends to reinforce the paradoxical
behavior observed by Tsodyks et al. [12]. For this set of parameter values, additional
simulations show that the lower solution loses stability at ω ≈ 0.223, and then the
upper solution loses stability at ω ≈ 0.156. For any ω < 0.156, the system has the
oscillatory behavior shown in Figure 5.4.

A sensitivity analysis was done in each of the four regions by varying d above and
below the value λb. Decreasing d all the way to zero has no significant effect on the
behavior of the system in any of the regions. However, when d is increased, there is a
reduction in the general level of activity in I. This causes the upper solution to regain
stability in Region 2 after a 20 percent increase in d, and in Region 4 after an increase
of 35 percent in d. An increase in d produces no significant change in Regions 1 and
3.

It is interesting to note from the above results that if b is approximately equal
to θ2 − θ1, periodic forcing of low frequency to the inhibitory cells can be used to
drive the system to either its high or low activity state, depending only on whether
the excitatory threshold θx is above or below θ1. If one assumes that, after a period
of high excitation, θx increases (for example, if we had included a refractory period
for the excitatory cells, it might have had this effect), then it can be shown that, in
the range of parameter space where b ≈ θ2 − θ1, the system can be forced to produce
“bursting” activity. To demonstrate this by simulation, the system (5.2) with b = 2.1,
i(t) = 2.5 sin(0.05t), and a third differential equation for θx of the form

dθx
dt

= K1(2.7− θx(t))

+ δ(x(t)− 0.5)[K2(3.2− θx(t))−K1(2.7− θx(t))]
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Fig. 5.5. Bursting response to input, with variable θx.

was solved numerically using MAPLE. The delta function used in the calculation is
δ(z) = 1/(1 + exp(−50z)), and K1 and K2 were arbitrarily chosen to be 0.15. The
value of θx was initialized to 2.8. While the excitatory activity x is greater than
50 percent, θx increases toward 3.2, but it then decreases again when the activity
becomes less than 50 percent. A solution of this system is shown in Figure 5.5.
Further simulations also showed that if d is varied about the value λb = 1.68, the
bursting activity persists, but the length of the bursts increases as d increases. In
contrast, increasing the amplitude α of the forcing function shortened the length of
the bursts.

6. Summary. By reducing the Wilson–Cowan system to a single first-order
differential equation, one is able to bring several known results for periodic first-
order differential equations to bear on the problem of the behavior of the forced
two-dimensional system.

Our results can be summarized in the bifurcation diagram below, using b and
θx as the two bifurcation parameters. In all cases it is assumed that a > 1/S′(0),
λ ≡ c/a < Λ , d/b ≈ c/a, and the system is being forced with low frequency periodic
input.

Note that in only three of the six regions of parameter space is it possible to
use periodic input to the inhibitory cells to force the system to alter its behavior
significantly, and then only if the frequency of the input is low and its amplitude is
large enough. The bursting behavior, noted in the bifurcation diagram, appears to be
a new result for a system of this type.

It seems clear that our results hold not only for the input function i(t) = α sin(ωt)
but also for any P -periodic function which has a single maximum and single minimum
between 0 and P . This will be an area of further study, to determine just exactly
what type of periodic input functions produce the effects noted in this paper.

Another problem for further study involves the question of whether or not the
first-order periodic equation (2.4), with parameters in our parameter range, can ever
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have more than three periodic solutions for any values of ω. In the slope field region
between the two invariant subregions H1 and H2 it seems to be the case, from simula-
tions, that only the single periodic repeller exists. This is definitely true if λ is small
enough, and it can be proved to be true in general for small ω and also for large ω,
but in a middle region both proofs break down. For a slope function f(τ, u) which is
a cubic in u, with coefficient of u3 negative for all τ , there is a theorem (see [2], [6])
which shows that the differential equation can have at most three periodic solutions.
Our slope function is similar to a cubic, for −b < u < a, in the sense that it has two
turning points, a local minimum and then a local maximum. There may be a way to
extend the theorem to such functions, but this has so far proved difficult to do.

Appendix. Properties of solutions of y′ = f(t, y). This section contains
statements of some well-known properties (see, for example, [3], [4]) of solutions of
the first-order differential equation

dy

dt
= f(t, y).(A.1)

A solution of an initial-value problem for (A.1) will be denoted by φ ≡ φ(t, t0, y0),
where φ(t0, t0, y0) = y0 and dφ/dt ≡ f(t, φ(t, t0, y0)) for t ≥ t0. We will assume that
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the slope function f(t, y) is continuous and continuously differentiable in y; therefore,
for any initial value the solution of (A.1) is unique. Furthermore, if y2 > y1, then the
uniqueness and existence theorem for first-order differential equations implies that
φ(t, t0, y2) > φ(t, t0, y1) for all t > t0.

Definition A.1. A forward invariant region for (A.1), in the (t, y)-plane, is
a region V = {t0 ≤ t < ∞, v1(t) < y < v2(t)}, where v1 and v2 are continuously
differentiable curves such that f(t, v1(t)) > v′1(t) and f(t, v2(t)) < v′2(t) for all t ≥ t0.
This implies that the vector field f is entering the region V everywhere along the
curves v1 and v2.

Once a solution of (A.1) enters a forward invariant region V , it can never cross
the curves v1 or v2, and therefore it must remain in V for all t > t0.

Definition A.2. A forward invariant region V for (A.1) is called contracting if
fy(t, y) ≤ −δ < 0, for some positive constant δ, for all (t, y) ∈ V .

Definition A.3. The slope function f(t, y) is called periodic of period P if
f(t+ P, y) = f(t, y) for all t.

Lemma A.4. If the slope function f(t, y) in (A.1) is periodic of period P and V is
a contracting forward invariant region for (A.1), then there exists a unique period-P

attractor φ̂ in V , and all solutions of (A.1) that enter V are attracted to φ̂ as t → ∞.
For a nice proof of this lemma, see p. 115 in [3].
If W is a contracting forward invariant region for (A.1) when the independent

variable t is replaced by −t, a similar proof can be used to show that there exists a
unique repelling solution for (A.1) in W .
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Abstract. The classical Hiemenz solution describes incompressible two-dimensional stagnation
point flow at a solid wall. We consider an unsteady version of this problem, examining particularly
the response close to the wall when the solution at infinity is modulated in time by a periodic factor
of specified amplitude and frequency. While this problem has already been tackled in the literature
for general frequency in cases when the amplitude of the time-periodic factor is either large or small,
we compute the flow for arbitrary values of both these parameters. For any given amplitude, we
find that there exists a threshold frequency above which the flow is regular and periodic, with the
same period as the modulation factor, and beneath which the solution terminates in a finite time
singularity. The dividing line in parameter space between these two possibilities is identified and
favorably compared with the predictions of asymptotic analyses in the small and large frequency
limits.
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1. Introduction. The classical Hiemenz solution describes the flow near a stag-
nation point on a plane wall and may be found in Batchelor [1]. When this flow
is modulated in time by a periodic multiplicative factor on the streamfunction at
infinity, the resulting solution can be used to describe the local dynamics around a
stagnation point on an oscillating body. Equally, the body may be thought of as fixed,
with the flow out in the far field varying periodically in time. The steady streaming
motion established by the Reynolds stresses associated with the oscillatory motion
(Stuart [2]) is an important feature of such time-periodic flows. This effect occurs, for
example, around a transversely oscillating circular cylinder (Schlichting [3]). When
the amplitude of the far field fluctuation is small, modified Hiemenz flow can be used
to model the local effects of disturbances such as acoustic noise impinging on the
boundary layer around a translating bluff body. More generally, such problems fall
within the purview of receptivity theory (e.g., Erturk and Corke [4], Morkovin [5]).
We are concerned with the behavior in the vicinity of the stagnation point, where
the body surface may be considered to be locally flat. In this context we allow for
fluctuations of arbitrary amplitude and frequency.

Other studies pertinent to this modified Hiemenz problem include those by Grosch
and Salwen [6] and Merchant and Davis [7]; among earlier investigations, we mention
those by Matunobu [8], Pedley [9], and Ishigaki [10]; see also Lighthill [11]. Grosch
and Salwen, while confining their attention to small free stream fluctuations, examined
the flow when the frequency of these disturbances is either small or large. Expanding
in power series in the disturbance amplitude and Fourier series in time, they showed
that to leading order the low frequency case is merely a quasi-steady version of the
classical Hiemenz solution, while the high frequency case exhibits a double boundary
layer structure similar to that first discussed by Riley [12] and Stuart [2] for oscillating
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flows. Merchant and Davis tackled the same unsteady Hiemenz problem, but also
examined the flow structure when the mean component of the free stream is very
much smaller than the oscillatory part. In this case a double boundary layer structure
is once again revealed, although the authors showed that no solutions exist when the
mean component of the free stream drops below a certain cut-off point. This is not
to say that solutions with a different asymptotic form do not exist at smaller values
of the free stream mean. We address this point in the current work.

Our interest in the problem was prompted by Hall and Papageorgiou’s [13] re-
cent study of unsteady incompressible flow induced in an infinite channel when the
walls pulsate uniformly in space and periodically in time. Assuming a stagnation
point structure for this flow, they demonstrated numerically the existence of purely
periodic, quasi-periodic, and even chaotic flow solutions, depending on the frequency
and amplitude of the wall motion. Our aim was to investigate the possibility of such
varied dynamics for a periodically forced stagnation point flow in a semi-infinite do-
main. In fact, numerical solution of the unsteady Hiemenz problem shows that for
many parameter values a singularity is encountered at a finite time. This eventuality
is perhaps unsurprising in light of previous studies of colliding boundary layers or
those in which the external flow reverses direction, where such singularities may also
be found. One example is the flow over a rotating disk in a counter-rotating fluid,
whose near-singularity structure was described by [14]. Another study of particular
relevance to the current work is that by Riley and Vasantha [15], who considered the
same problem as ours but with a purely oscillatory (zero mean) free stream. In this
case the equations break down in finite time for any value of the forcing frequency.
The breakdown was interpreted by Riley and Vasantha as the result of drifting fluid
particles in the steady streaming layer accumulating at the stagnation point and ulti-
mately causing an eruption of fluid from the boundary layer. The nature of the finite
time singularity was found to have the same form as that occurring near the equator
of an impulsively started sphere, as studied by Banks and Zaturska [16]. When the
flow in the far field has nonzero mean, as is to be discussed here, the near-singularity
structure is also described by Banks and Zaturska’s analysis. The blow-up is not
localized in space but occurs over the entire flow domain.

That the flow can break down when the mean component of the free stream
is nonzero is not mentioned by either Grosch and Salwen or Merchant and Davis.
However, the former authors demonstrate that the inclusion of a nonzero mean com-
ponent in the free stream can allow the solution to be continued indefinitely without
breakdown. We have found that this is true, provided that a condition between the
fluctuation amplitude and frequency is not violated. The condition amounts to a
threshold frequency, at any given amplitude, below which blow-up will occur but
above which the solution remains regular. It is still conceivable that aperiodic or even
chaotic solutions might exist in the large frequency limit, so long as this condition
is satisfied. However, we have not been able to identify any such solutions despite
extensive numerical searches. At all candidate parameter values tested, the solutions
remain periodic with frequency equal to that of the free stream fluctuation. Never-
theless, the nature of the condition under which breakdown occurs is of interest, and
in this sense our work constitutes a worthwhile extension of the previous studies.

We begin with a problem description, followed by a brief discussion of the nu-
merical methods utilized to solve the governing equations. Results are then presented
together with asymptotic analyses in the small and large frequency limits, and com-
parison is made between the two. We conclude with a short note on the axisymmetric
version of the problem.
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2. Problem statement and numerical method. The problem under consid-
eration is that of two-dimensional unsteady Hiemenz flow approaching a flat plate.
Referring to a set of Cartesian axes (x, y), the flat plate occupies −∞ < x < ∞,
y = 0. We define velocity components U∞u(x, y, t), U∞v(x, y, t) in the x, y direc-
tions, respectively, where U∞ is the typical flow speed in the far field. In this region
the flow is potential, with u = (x/l)U(t), v = −(y/l)U(t), where

U(t) = 1 +∆cos(ωt)(2.1)

for a chosen amplitude ∆ and frequency ω. The remaining parameters are the kine-
matic viscosity ν and an arbitrarily chosen length scale l.

As in the steady case, it is reasonable to assume that the same simple velocity
dependence on the x coordinate also applies in the viscous layer close to the plate. In
this region we introduce the new coordinate η = (y/l)R1/2 and set

u =
(x
l

)
Fη(η, τ), v = −R−1/2F (η, τ)

defining the Reynolds number to be R = U∞l/ν and introducing the new time variable
τ = ωt. Note that we do not require R to be large. Finally, defining the Strouhal
number

σ =
ωl

U∞

and setting a(τ) = 1 +∆cos τ , we may express the wall layer system as

σFητ + F 2
η − FFηη = σaτ + a2 + Fηηη,(2.2)

with

F (0, τ) = Fη(0, τ) = 0, Fη → a(τ) as η → ∞,(2.3)

to satisfy the solid wall boundary conditions and to match to the outer potential
solution. When ∆ = 0, the problem reduces to that of classical steady Hiemenz
flow. The temporally periodic part of (2.1) represents a superimposed disturbance on
the steady far field solution. The response to this disturbance close to the plate is
quantified by solving (2.2) and (2.3) for different values of the fluctuation amplitude
∆ and the Strouhal number σ. We emphasize that ∆ is not restricted to being small.

At this stage we note that functions satisfying (2.2) and (2.3) represent exact
solutions of the Navier–Stokes equations since no approximations have been made.
In addition, while the Reynolds number is not required to be large in this analy-
sis, for ease of description we shall refer to the main flow governed by (2.2) as the
Hiemenz boundary layer, even though no conventional boundary layer approximation
is necessary.

Asymptotic solutions are possible in the limits of small and large frequency, and
these will be discussed in a later section. For general values of the parameters (∆, σ)
numerical methods must be used to solve the wall layer equations. To expedite the
numerical solution, we introduce the function G = Fη and write the equations in the
form

σGτ +G2 − FGη = σaτ + a2 +Gηη,(2.4a)

G = Fη,(2.4b)
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with

F (0, τ) = G(0, τ) = 0, G → a(τ) as η → ∞.(2.5)

We found that calculations should be started at τ = π/2 rather than τ = 0; oth-
erwise, when ∆ � 1, the forcing is too large when the integration is initiated and
the numerical solution blows up instantaneously. In practice, the initial profile makes
negligible difference to the computation of the singular time, and calculations were
always begun with F = G = 0. To march forwards in time we used either the second
order accurate Crank–Nicholson method or the fourth order accurate Runge–Kutta
integration, both with a second order accurate spatial discretization. Thus some in-
dependent numerical check on our results was available. Most of the results presented
in this paper were computed using the latter of the two schemes. However, at vari-
ous stages the computations were repeated using the Crank–Nicholson method, and
these always provided good agreement. For large σ, we found it useful to introduce
a stretched grid in order to insert many more points in the Stokes shear-wave layer
next to the wall, where the most significant changes in the flow are concentrated. We
present some of our results in the next section.

3. Analytical discussion and results. Grosch and Salwen [6] show that, for
sufficiently small amplitude and in the limit of vanishing Strouhal number, the quasi-
steady Hiemenz solution describes the flow to leading order. Specifically, to O(σ), the
solution may be written as F = a(τ)1/2f(a1/2η), where f satisfies the usual steady
Hiemenz equation and boundary conditions. When σ → ∞, again for small enough
∆, the solution adopts a double boundary layer structure, similar to that analyzed
by Riley [12] and Stuart [2]. In this case the boundary layer splits into two regions.
In the lower region, the Stokes layer, the solution is periodic to leading order. The
nonlinear terms in the equations generate a small steady component, which persists to
the upper reaches of the Stokes layer and acts to drive a steady streaming flow in the
outer part of the Hiemenz boundary layer. For both small and large σ, Grosch and
Salwen expanded in Taylor series in the amplitude ∆ and Fourier series in time. While
they were not able to determine the radius of convergence of their series exactly, they
estimated that for large σ the series should converge when ∆ < σ. Later Merchant and
Davis [7] showed that if both the amplitude and the Strouhal number are large, and
if the thickness of the main boundary layer and the induced steady-streaming layer
are chosen to coincide, then no solutions exist in our notation when ∆ > 1.289σ1/2.
This derives from the fact that the leading order steady-streaming equation has no
solution when the amplitude exceeds this bound. However, this does not deny the
existence of other solutions with a different boundary layer structure in these limits.
In the Merchant and Davis flow structure the Stokes layer is linear to leading order.
If instead we hypothesize that solutions exist wherein the nonlinear terms are of the
same order of magnitude as the unsteady terms, corresponding to the scaling ∆ ∼ σ
as σ → ∞, we find that the equations for the leading order Stokes layer problem,
with the appropriate matching condition at infinity, are the same as those studied
by Riley and Vasantha [15]. These correspond to (2.2) and (2.3) with a(τ) = cos τ .
Riley and Vasantha’s results show that these slightly reduced equations terminate in a
singularity at a finite time for all values of σ. In due course we shall present numerical
evidence that no regular solutions exist above the limit laid down by Merchant and
Davis.

As a preliminary test of our codes, we computed small amplitude solutions and
obtained results in excellent agreement with those of Grosch and Salwen. For large σ,
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Fig. 3.1. ∆ = 2.0, σ = 0.5: The locus of G−1
m = 1/minη{G} in time, τ , close to the singularity

at τs = 3.39.

and for ∆ of typical size O(σ1/2), we compared our results with the first two terms in
the asymptotic expansion of Merchant and Davis and again found that our numerics
were in excellent agreement with the theory. For a fixed σ, however, we discovered
that when the value of ∆ exceeds a certain limit, the integration blows up at a finite
time singularity. We shall henceforth label the singular time τs. The flow structure
in the vicinity of τs is the same as that arising near the equator of an impulsively
started sphere, a problem analyzed by Banks and Zaturska [16]. As the singularity is
approached in that situation, the most important terms in the near-equator equations
over the main part of the flow combine to mimic those of our own equation. Close
to the singular time the flow acquires a three-tiered structure, with viscous zones at
the wall and infinity sandwiching an inviscid core region. In this sense the flow is
similar to that attained just prior to the breakdown which occurs a short time after
the direction of a rotating disk is suddenly reversed. The near-singularity structure
for this flow has been examined by Stewartson and Bodonyi [17] and corrected by
Stewartson, Simpson, and Bodonyi [14]. (See also Ockendon [18] for a discussion of
a steady rotating disk flow with a similar three-zone structure.) While Banks and
Zaturska do not give the details of the flow in the upper and lower viscous regions,
we have confirmed that the arguments of Stewartson, Simpson, and Bodonyi may be
adapted accordingly. Further discussion of the viscous zones is suppressed. Instead
we demonstrate that the flow behavior in the middle region is consistent with that
of Banks and Zaturska. By comparison with their theory, in the main part of the
flow we expect η to scale like (τs − τ)−1/2, and thus we write η̂ = η(τs − τ)1/2. From
their predictions we anticipate that F ∝ (τs − τ)−3/2φ(η̂), and thus G ∝ (τs − τ)−1

as τ → τ−s . As time progresses we observe that, at a given τ , the G(η, τ) profile has
at most one local minimum Gm at η = ηm. Tracking the inverse of this minimum
value up to the singular time for the case ∆ = 2.0, σ = 0.5, we plot the graph shown
in Figure 3.1. The relationship between G−1

m and τ appears convincingly linear.
Assuming this to be the case, a more accurate value for τs may be predicted by
means of linear interpolation. Similarly, plotting η−2

m against τ close to the singular
time reveals an apparent linear dependence which is equally compelling. The critical
point dividing singular and periodic solutions at this frequency is ∆ ≈ 1.537. As
the amplitude approaches this value from above, we find that the singular time τs
increases without bound.
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Fig. 3.2. The barrier in (∆, σ) parameter space between regular periodic solutions (below the
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close to σ = 0. The upper graph includes the asymptotic approximation ∆ ∼ 1.289σ1/2 + 0.76 for
large σ (see section 3.1).

We now turn to the general picture in (∆, σ) parameter space. Using the numeri-
cal procedure described above, we have identified the parametric regions in which the
solutions either remain regular and periodic or else become singular in finite time. The
parameter space is divided neatly into two regions by the curve depicted in Figure 3.2.
We believe that points on this curve have been calculated accurately to within 0.1%.
Flows corresponding to points (∆, σ) lying below the curve are periodic, while those
lying above eventually reach a singularity. We have calculated solutions up to and
including σ = 1000 and, for the regular solutions, have encountered no bifurcations
leading to aperiodic flows. Rather, the solutions remain periodic with the same period
as that of the far field disturbance.

Also shown in Figure 3.2 is the asymptotic approximation valid for large values of
σ, to be discussed shortly. Magnifying the curve in the region of zero frequency shows
that it approaches unity as σ → 0, suggesting that, for temporally slowly varying
flows of this kind, only a small amount of flow reversal can be tolerated if the solution
is to remain regular. This limit is discussed in due course.

When the disturbance frequency is large, the boundary layer supports a small
steady flow component, driven by a residual slip velocity from a Stokes layer beneath.
The analysis of Merchant and Davis suggests that no regular solutions exist when
the amplitude is also large, specifically when ∆ > 1.289σ1/2, since then the system
governing the steady streaming component has no solution. In order to provide the
best agreement between our numerical calculations and the large amplitude theory,
we have found it worthwhile to compute the next term in this asymptotic expansion.
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In what follows, we therefore supply a brief description of the asymptotic flow at large
frequencies.

3.1. Large amplitude and frequency. It is convenient at this stage to rescale
(2.2), (2.3) by writing η = ∆−1/2η̂, F = ∆−1/2F̂ , σ = ∆Ω and introducing the small
parameter ε = 1/∆. This leads to the equivalent system:

ΩF̂η̂τ + F̂ 2
η̂ − F̂ F̂η̂η̂ = −Ωsin τ + (ε+ cos τ)2 + F̂η̂η̂η̂,(3.1)

with

F̂ (0, τ) = F̂η̂(0, τ) = 0, F̂η̂ → ε+ cos τ as η̂ → ∞.(3.2)

Now, when ε is small and Ω is large, we look for solutions with ε = a0Ω
−1 +

a1Ω
−2 + · · · . In the Stokes layer, of thickness O(Ω−1/2), the expansion proceeds as

F̂ = Ω−1/2φ0(ξ, τ) + Ω−3/2φ1(ξ, τ) + · · · ,(3.3)

where ξ = Ω1/2η̂ is a scaled coordinate normal to the wall. The first order solution is
given by

φ0(ξ, τ) = ξ cos τ − cos
(
τ − π

4

)
+ e−ξ/

√
2 cos

(
τ − ξ√

2
− π

4

)
.(3.4)

At second order, the solution may be written as φ1(ξ, τ) = 1
2φM (ξ, τ), where

φM is a somewhat lengthy expression appearing as formula (3.20c) of Merchant and
Davis’s paper. As pointed out by Stuart [2], it is not possible to satisfy the infinity
condition at this order; rather a steady slip velocity persists at the top of the Stokes
layer, driving a steady streaming motion above. Therefore we simply note at this
stage that φ1ξ(∞, τ) = −3/4.

With the current choice of scaling, the streaming layer has the same thickness as
the Hiemenz boundary layer (of order Ω1/2 in this notation). Introducing the new
coordinate ζ = Ω−1/2η̂, the relevant expansion is

Ĝ = Ω−1/2{ψ0(ζ, τ) + f0(ζ)}+Ω−3/2{ψ1(ζ, τ) + f1(ζ)}+ · · · ,(3.5)

where Ĝ = F̂ −Ω1/2ζ cos(τ)−Ω−1/2 cos(τ − π/4). The functions ψi equal zero when
averaged over a single time period. In fact ψ0 ≡ 0, and the first order streaming
problem is given by

f ′′′
0 + f0f

′′
0 − f ′

0
2 + a2

0 = 0,(3.6)

with

f0(0) = 0, f ′
0(0) =

−3
4

, f ′
0(∞) = a0.(3.7)

A numerical treatment of this problem by both Merchant and Davis and also by Riley
and Weidman [19] indicates that a unique solution exists when 0 < a0 < 3/4, two
solutions exist when 3/4 < a0 < a0c, and no solutions exist when a0 > a0c, where
a0c ≈ 0.602. Continuing, we derive the second order streaming problem:

f ′′′
1 + f0f

′′
1 − 2f ′

0f
′
1 + f ′′

0 f1 =
1

2
√
2
f ′′
0 − 2a0a1,(3.8)
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with

f1(0) =
13

4
√
2
, f ′

1(0) = 0, f ′
1(∞) = a1.(3.9)

Taking a1 = 0 should reduce the problem to the corresponding equation of Merchant
and Davis. However, we remark that this leaves a right-hand side proportional to f ′′

0 ,
which is absent in that paper and which we believe should be included.

Our concern now is to calculate a1 when a0 = a0c. Numerical trials suggest that
a solution exists for the value a1 = −0.55 and is unique. Reverting to our original
notation, the asymptotic approximation for the critical amplitude proceeds as

∆ = 1.29σ1/2 + 0.76 +O(σ−1/2) as σ → ∞.

This is plotted in Figure 3.2 along with our full numerical results. It provides strong
evidence that it is this asymptote which defines the barrier between large frequency
solutions remaining regular and periodic and those encountering a finite time singu-
larity.

3.2. Small frequency. We now focus our attention on small frequency solu-
tions. The numerical calculations suggest that the barrier between regular and singu-
lar solutions approaches ∆ = 1 as σ → 0 (see Figure 3.2). Naturally, when σ = 0 we
obtain classical Hiemenz flow and therefore expect steady solutions at any amplitude.
In this sense we expect σ → 0 to be a singular limit. While considering a similar flow
but with zero mean at infinity, Riley and Vasantha [15] showed that the singular time
grows without bound as the fluctuation frequency tends to zero. Paralleling their
analysis, we now examine the solution close to σ = 0.

When both the frequency and amplitude are small, the flow follows the quasi-
steady solution given by Grosch and Salwen [6] and mentioned above in section 3.
However, if the amplitude equals or exceeds unity, a(τ) has a zero at τ = τ0, where
τ0 = π − cos−1(1/∆). In what follows, ∆ − 1 is assumed to be nonnegative (but
not necessarily small) so that a(τ) has such a zero. The quasi-steady approximation
will break down when τ approaches τ0, as the unsteady terms, which were hitherto
small, grow to become comparable in size with the others. A consideration of the
relative magnitudes of terms in (2.2) suggests that the quasi-steady approximation
will become invalid when a(τ) = O(σ1/2).

In the vicinity of τ = τ0, a balance of the terms in (2.2) suggests the scalings

(τ0 − τ) = σ1/2T, η = σ−1/4Y, F = σ1/4F̃ (Y, T )

for new order one variables T , Y , F̃ . Neglecting terms of order o(σ4/3), the governing
system reduces to

−F̃Y T + F̃ 2
Y − F̃ F̃Y Y = −µ+ µ2T 2 + F̃Y Y Y ,(3.10a)

F̃ (0, T ) = F̃Y (0, T ) = 0, F̃Y → µT as Y → ∞,(3.10b)

where µ = (∆ − 1)1/2. As T → ∞, F̃ must match to the quasi-steady Hiemenz
solution. We initiate the calculation at T = T∞, where T∞ is sufficiently large, with
the profile

F̃ =

(
µT

T∞

)1/2

f(x), with x =

(
µT

T∞

)1/2

Y,
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Magnification of the curve close to σ = 1.12.

where f(x) satisfies a scaled version of the steady Hiemenz equations. The system
(3.10) is then integrated backwards in time T , using a Crank–Nicholson method. For
all cases considered, the integration terminates at a singularity after a finite time.
The singular time Ts is computed using an interpolation procedure similar to that
mentioned above for the full numerics.

For the particular case ∆ = 2.0, we have computed Ts = −1.51. Thus we predict
that

τs
σ

=
2π

3σ
+

1.51

σ1/2
+ · · · as σ → 0.(3.11)

In Figure 3.3 we show how this estimate compares with the calculated values of τs at
small frequency obtained by solving the full system (2.2), (2.3). The agreement is very
satisfactory. The flow becomes singular for all frequencies in the window σ ∈ (0, 1.12),
beyond which we cross the barrier in Figure 3.2 and the solutions become periodic.
It is interesting to note that as σ → 1.12−, the curve begins to wiggle, a behavior
reminiscent of that seen in Riley and Vasantha’s problem.

In summary of this short section, we remark that low frequency solutions can
become singular as long as ∆ ≥ 1. When ∆ < 1, this is not possible, and the flow
is quasi-steady and periodic. These conclusions are in agreement with the picture
presented in Figure 3.2, where the barrier between regular and irregular solutions
approaches unit fluctuation amplitude as the frequency tends to zero.

4. Axisymmetric stagnation point. As a final note, we remark that behavior
similar to that described in the previous sections is encountered at an axisymmetric
stagnation point. In this case we envisage flow hitting a flat surface and spreading
out radially from the stagnation point in the middle. An exact similarity solution
with linear dependence in the radial coordinate may then be sought. If we confine
our attention to the case in which there is no azimuthal variation, we find that the
governing equation and boundary conditions for this flow are almost exactly the same
as those for the two-dimensional case, the only difference arising in the nonlinear term,
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where −2FFηη appears instead of −FFηη. By analogy with our preceding work, an
amplitude ∆ and Strouhal number σ may be defined. Riley [20] has studied this flow
in detail when the infinity condition has zero mean, and his results suggest that, in
common with the two-dimensional stagnation point looked at by Riley and Vasantha,
finite time breakdown occurs for all values of the frequency parameter σ. The flow
with nonzero mean at infinity may also be studied and, as in the two-dimensional
case, we find that the flow breaks down at a fixed σ as soon as a critical value of ∆
is exceeded. A steady-streaming analysis analogous to that performed above again
agrees well with the numerically computed results. Unfortunately we once more find
no evidence of aperiodic solutions as σ is increased (with ∆ remaining below the
critical curve for regular solutions).

5. Concluding remarks. We have investigated unsteady stagnation point flow
of a modified Hiemenz type. Previously Grosch and Salwen [6] investigated this prob-
lem for small fluctuation amplitudes in the low and high frequency limits. Merchant
and Davis [7] also considered the large amplitude, high frequency limits, establish-
ing an asymptotic structure in which the streaming region above the Stokes layer is
the same thickness as the Hiemenz boundary layer. We have studied the same flow
and, for general parameter values, provided numerical evidence that for all frequen-
cies there exists a threshold value of the amplitude beyond which the flow will break
down in finite time. The flow structure in the vicinity of the singularity is the same as
that arising near the equator of an impulsively started sphere, reported by Banks and
Zaturska [16]. Below the threshold value, the solutions are regular and periodic, with
period equal to that of the free stream disturbance; in the limit of small frequency,
they correspond to the solutions presented by Grosch and Salwen. We have also con-
ducted asymptotic analyses at small and large frequency to predict the dividing line
between singular and periodic solutions in these limits. Both have been successfully
compared with the results of numerical simulations.

In an earlier study, Riley and Vasantha [15] showed that the same problem with
zero mean flow in the free stream breaks down for all possible frequencies. However,
when there exists a small mean flow in the free stream, corresponding to the limit
of large disturbance amplitude in our problem, our work shows that the solution
becomes singular in finite time only when the frequency is smaller than a given value
proportional to the square of the amplitude. All frequencies exceeding this value lead
to regular, periodic solutions.
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Abstract. We consider a system of N phase oscillators having randomly distributed natural
frequencies and diagonalizable interactions among the oscillators. We show that, in the limit of
N → ∞, all solutions of such a system are incoherent with probability one for any strength of
coupling, which implies that there is no sharp transition from incoherence to coherence as the coupling
strength is increased, in striking contrast to Kuramoto’s (special) oscillator system.
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1. Introduction. Synchronization of coupled oscillators is a ubiquitous phe-
nomenon in natural and artificial systems. Examples include synchronization of pace-
maker cells of the heart [11, 12], rhythmic activities in the brain [4, 13], synchronous
flashing of fireflies [1, 2], arrays of lasers [8, 9], and superconducting Josephson junc-
tions [18, 19]. Characterization of the phenomenon using mathematical models has
been a topic of great interest for researchers in various scientific and engineering dis-
ciplines.

Wiener [16, 17], who recognized the ubiquity of synchronization phenomena in
the real world, made a first attempt at characterization using the Fourier integrals.
A more successful approach was taken by Winfree [20], who used a population of
interacting limit-cycle oscillators to describe synchronization properties. He realized
that if the interactions among the oscillators are weak and the oscillators are nearly
identical, the separation of fast and slow timescales leads to a reduced model that
can be expressed in terms solely of the phase of each oscillator. Kuramoto [10] put
this idea on a firmer foundation by employing a perturbation method to show that
the reduced equation has a universal form. His analysis of this model in the case of
mean-field coupling kicked off an avalanche of theoretical investigations of his model
and its generalizations.

More generally and rigorously, if each oscillator has an exponentially stable limit-
cycle and interactions among them are weak, the reduced phase equation can be shown
(see [6, Theorem 9.1, p. 253]) to have the form

θ̇ = ω + εf(θ), θ ∈ T
N ,(1.1)

where ω ∈ R
N is the vector of natural frequencies of the oscillators that are coupled

to one another through the interaction function f : T
N → R

N , and ε > 0 represents
the overall strength of the coupling. The universal form of the interaction function,
derived by Kuramoto [10] under the additional assumption that the oscillators are
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almost identical, corresponds to the choice

fi(θ) =

N∑
j=1

hij(θj − θi), i = 1, . . . , N,(1.2)

where f(θ) = (f1(θ), . . . , fN (θ))T . The mean-field model that he studied results when
hij(x) = sin(x)/N for all i, j.

Let θ(t) be a solution of (1.1). The oscillators i and j are said to be locked if
limt→∞ θi(t)/θj(t) = 1. The solution is said to be coherent if all pairs of oscillators
are locked. If none of the oscillator pairs are locked, the solution is incoherent. A
solution that is neither coherent nor incoherent is called partially coherent. The main
conclusion of Kuramoto’s work [10] on his mean-field model is that in the limit of
N → ∞ there exists a critical coupling strength εc such that for ε < εc the solution is
incoherent, but for ε > εc partially coherent solutions appear, for which the fraction
of locked oscillator pairs is nonzero. Although his result was important, since this be-
havior closely resembles the phase transition phenomena widely observed in statistical
physics, his analysis is heuristic and makes assumptions about the symmetry of the
distribution of natural frequencies, which might not be necessary for the results [14].

In this paper, we consider a class of diagonalizable interaction functions, in which
separation of variables is possible after an appropriate coordinate transformation.
This allows us to prove rigorously that for the system (1.1) with a generic diago-
nalizable interaction function, if the solution is partially coherent, then it is almost
surely coherent. This, together with the fact that the probability of having a coherent
solution goes to zero in the limit of N → ∞, leads to our main conclusion. Namely,
for any ε > 0, the solution is almost surely incoherent in the limit of N → ∞. Our
result shows that a diagonalizable system of phase oscillators cannot exhibit a sudden
transition from incoherence to coherence, in sharp contrast to the mean-field model
of Kuramoto. This implies that for the system (1.1) to exhibit a phase transition, the
interaction function f cannot be diagonalized.

There is an alternative rigorous approach to Kuramoto’s mean-field model, in
which the partial differential equation for the density of oscillators with certain fre-
quency, which is obtained by taking the continuum limitN → ∞, is studied to analyze
the stability of the solutions. See [15] for an excellent review in this direction.

The approach taken here is similar to that in [5, p. 80]. However, some conclusions
made there might be misleading or lack detailed analysis. This paper is intended to
correct and clarify those points.

The rest of the paper is organized as follows. In section 2, we introduce an appro-
priate change of variables to separate a time-like variable from the rest of the system.
In section 3, we define diagonalizable interaction and show how complete separation
of variables can be achieved. We also establish some properties of diagonalizable sys-
tems. Then, in section 4, we introduce randomness of the natural frequencies of the
oscillators and state our main results. Finally, we discuss some approximate behavior
of the system for large N in section 6, and section 7 is reserved for concluding remarks.

2. Separation of the time-like variable. In this and the following sections,
we consider the system (1.1) ofN phase oscillators, where the natural frequency vector
ω and the coupling strength ε are fixed (nonrandom) constants. We will consider ω
to be a random vector in section 4 in order to make probabilistic statements about
the system.

Let us suppose that the interaction function f satisfies two conditions,
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(C1) 1T f(θ) = 0 for all θ ∈ T
N and

(C2) f(v1 + θ) = f(θ) for all θ ∈ T
N ,

where 1 = (1/
√
N, . . . , 1/

√
N)T . The condition (C1) says that the interaction func-

tion is orthogonal to the vector 1. The second condition (C2) expresses the translation
invariance of f along the direction of 1. If, for example, the interaction function has
the form (1.2), these conditions are satisfied if the functions hij are odd. In particular,
the mean-field model of Kuramoto does satisfy these conditions.

Under conditions (C1) and (C2), the system (1.1) can be separated into two inde-
pendent systems—one for the time-like variable and the other for the phase deviations.

LetW be an N×(N−1) matrix whose columns, denoted byWj , j = 1, . . . , N−1,
form an orthonormal basis of the subspace 1⊥ ≡ {x ∈ R

N : 1Tx = 0}. In other words,
W is an N × (N − 1) matrix that satisfies 1TW = 0 and WTW = IN−1, where IN−1

is the (N − 1) × (N − 1) identity matrix. Then, the change of variable

θ = v1 +Wu(2.1)

converts the system (1.1) into two systems,

v̇ = 1Tω,(2.2)

u̇ =WTω + εWT f(Wu),(2.3)

which can be solved separately.
Systems satisfying the conditions (C1) and (C2) arise in mathematical neuro-

science [5, 6], in which θ often takes the form ωt + φ in the limit t → ∞, where
ω is the vector of carrier frequencies and φ is the vector of phase deviations. The
equation (2.3), in some sense, governs the behavior of the phase deviations.

The solution to (2.2) is v(t) = v(0)+(1Tω)t, and hence the variable v is time-like
if 1Tω 
= 0 or, equivalently, if the average natural frequency

∑
i ωi/N is nonzero.

Thus, the behavior of the solution of (1.1) is essentially determined by (2.3).
Recall that the solution is called coherent if limt→∞ θi(t)/θj(t) = 1. This can

be rephrased in terms of the vector µ ≡ limt→∞ u(t)/t of output frequencies of the
u-equation (2.3), if it exists.
Lemma 2.1. Let u(t) be a solution of (2.3), and suppose that µ ≡ limt→∞ u(t)/t

exists. Then, the solution of (1.1) is coherent if and only if µ = 0.
Proof. Let Ω = limt→∞ θ(t)/t = (1Tω)1 + Wµ. Then µ = 0 implies that

Ω = (1Tω)1, which in turn implies that limt→∞ θi(t)/θj(t) = 1.
Conversely, if limt→∞ θi(t)/θj(t) = 1, Ω must be a multiple of 1. Since W is

orthogonal to 1, this implies that Wµ = 0. Since W is invertible, it follows that
µ = 0.

As an immediate consequence of Lemma 2.1, if the solution of (2.3) tends to an
equilibrium, then the corresponding solution of (1.1) is coherent. For example, if
the interaction function f that satisfies (C1) and (C2) is a gradient vector field, i.e.,
f(θ) = −∇V0(θ) for some potential function V0 : T

N → R, then the u-equation (2.3)
is also a gradient system:

u̇ = −∇ [−ωTWu+ εV (u)
]
,(2.4)

where V (u) = V0(Wu). A minimum u∗ of the potential function −ωTWu+εV (u) then
corresponds to the vector of phase deviations for a coherent solution of the original
oscillator system (1.1). As in the proof of Lemma 2.1, we have Ω = (1Tω)1 in this
case, meaning that the output frequency of every oscillator tends to the mean natural
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frequency ω̄ ≡ ∑i ωi/N of the oscillators. For the interaction of the form (1.2), the
potential function takes the form

V (u) = − 1

2N

N∑
i=1

N∑
j=1

Hij(θi − θj) = − 1

2N

N∑
i=1

N∑
j=1

Hij

(
N−1∑
k=1

[Wik −Wjk]uk

)
,

where Hij(x) ≡
∫ x
0
hij(y)dy.

3. Diagonalizable interaction. Assuming that the interactions among the os-
cillators are diagonalizable enables us to carry out a rigorous analysis of the system.
Definition 3.1. We say that the system (1.1) (or the interaction function f) is

diagonalizable if there exist an N × (N − 1) matrix W and real, continuous, periodic
functions pj such that

(i) 1TW = 0,
(ii) WTW = IN−1, and
(iii) f(Wu) =Wp(u) with p(u) = (p1(u1), . . . , pN−1(uN−1))T .

For example, W =W (N) defined by

W
(N)
jk =

1√
N

(
sin

2πjk

N
+ cos

2πjk

N

)

=
2√
N

sin

(
2πjk

N
+
π

4

)
(3.1)

satisfies these conditions.
When the system (1.1) is diagonalizable, the equations for the components of u

become independent of other components:

u̇j = aj + εpj(uj), j = 1, . . . , N − 1,(3.2)

where we set aj =WT
j ω. Thus, the problem is reduced to solving a scalar differential

equation for each j. The following lemma applies to each equation in (3.2).
Lemma 3.2. Let ε > 0, and let a be a real number. Let p(u) be a real, con-

tinuous, periodic function with period L > 0. Define m = min0≤u<L p(u), M =
max0≤u<L p(u). For any solution u(t) of u̇ = a+εp(u), the limit µp(a, ε) ≡ limt→∞ u(t)/t
exists and

µp(a, ε) =

{
L/T (a, ε), a < −εM, a > −εm,
0, −εM ≤ a ≤ −εm,(3.3)

where

T (a, ε) ≡
∫ L

0

du

a+ εp(u)

is the “period” of the solution in the case of a < −εM or a > −εm, in the sense that
u(t+ T (a, ε)) = u(t) + L.

Proof. If −εM ≤ a ≤ −εm, then any solution u(t) tends to a zero of the function
a+ εp(u). Hence, µp(a, ε) = 0.

For notational simplicity, let us drop the dependence of T (a, ε) on a and ε below.
Suppose a > −εm, so that a+ εp(u) > 0 for all u. It is straightforward to show that
the function u(t) defined implicitly by the formula∫ u(t)

u0

du

a+ εp(u)
= t



DIAGONALIZABLE SYSTEM OF PHASE OSCILLATORS 1619

is the unique solution of u̇ = a+ εp(u) with the initial condition u(0) = u0, and that
it satisfies u(t+ T ) = u(t) + L. We have

µp(a, ε) = lim
t→∞

u(t)

t

= lim
t→∞

1

t

(
u0 +

∫ t

0

[a+ εp(u(s))]ds

)

= a+ ε lim
t→∞

1

t

∫ t

0

p(u(s))ds.

Let n be the largest integer for which nT ≤ t. Then, by changing the variables in
each integral using the translation by multiples of T , we see that∫ t

0

p(u(s))ds =

n∑
k=1

∫ kT

(k−1)T

p(u(s))ds+

∫ t

nT

p(u(s))ds

= n

∫ T

0

p(u(s))ds+

∫ t−nT

0

p(u(s))ds.

Consequently,∣∣∣∣∣1t
∫ t

0

p(u(s))ds− 1

T

∫ T

0

p(u(s))ds

∣∣∣∣∣ =

∣∣∣∣∣
(
n

t
− 1

T

)∫ T

0

p(u(s))ds+
1

t

∫ t−nT

0

p(u(s))ds

∣∣∣∣∣
≤ |nT − t|

tT

∫ T

0

|p(u(s))|ds+
1

t

∫ t−nT

0

|p(u(s))|ds

≤ T

tT
T max{|m|, |M |} +

1

t
T max{|m|, |M |}

→ 0

as t → ∞, showing that the limit limt→∞ 1
t

∫ t
0
p(u(s))ds exists and is equal to

1
T

∫ T
0
p(u(s))ds. Thus, by changing variables from s to u and translating by u0,

we see that µp(a, ε) exists and

µp(a, ε) = a+
ε

T

∫ T

0

p(u(s))ds

= a+
ε

T

∫ L

0

p(u)du

a+ εp(u)

=
L

T
.

If a < −εM , then, by replacing u with −u, a with −a, ε with −ε, and m with
M , the problem reduces to the previous case. The lemma is proved.

The function µp(·, ε) in Lemma 3.2, which can easily be shown to be differentiable
with positive derivative outside the interval [−εM, εM ], determines the relationship
between the input frequency a and the output frequency µp(a, ε). If we take p(u) =
sin(u), for example, the integration in the expression of µp can be carried out, and
we get

µp(a, ε) =



−√
a2 − ε2, a < −ε,

0, −ε ≤ a < ε,√
a2 − ε2, a ≥ ε,
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Fig. 3.1. (a) The graph of the input-output frequency function µp(a, ε) versus a for ε = 1
and p(u) = sin(u). (b) The corresponding density g(µ; 1) when a is the standard Gaussian random
variable.

the graph of which is given in Figure 3.1(a) for ε = 1. With this function, the output
frequency vector µ of the u-equation (2.3) can be written as

µ = µ(a) = (µp1(a1, ε), . . . , µpN−1
(aN−1, ε))

T .

It is important to note here that µ does not depend on the initial condition
u(0) = u0, which implies that it is also independent of the initial condition for θ. In
other words, the initial condition for the system (1.1) does not affect the behavior of
its solution, as far as its coherence properties are concerned. Therefore, in this sense,
coherence, partial coherence, and incoherence are properties of the system rather than
of individual solutions for a diagonalizable system.

4. Randomly distributed frequencies. In this section we consider ω to be a
random vector in R

N . We take the components ω1, . . . , ωN of ω to be independent and
identically distributed (i.i.d.) random variables with mean 0 and variance σ2 > 0. In
the general case of mean ω0 
= 0, the problem can always be reduced to the zero-mean
case by the translation of θ by −ω0t.

Since ω is random, the vectors a and µ are also random vectors in R
N−1. Lemma

3.2 along with the relation a = WTω can be used to determine the distribution of
µ from the distribution of ω. For example, if each ωj is standard Gaussian, then so
is each aj , in which case the density g(µ; ε) for the random variable µp(aj , 1) when
p(u) = sin(u) can be computed. The result is

g(µ; ε) =
|µ|e−(µ2+ε2)/2√

2π(µ2 + ε2)
+ δ(µ) erf

(
ε√
2

)
,

where δ(µ) is Dirac’s delta function. The graph of this density is shown in Figure 3.1
for ε = 1.

Our main goal is this section is to compute the probabilities that the system (1.1)
is coherent, partially coherent, or incoherent. The following theorem reveals a curious
property of a generic diagonalizable system of phase oscillators.
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Theorem 4.1. Let the natural frequency vector ω be a random vector in R
N ,

whose components are i.i.d. with a common continuous distribution. Suppose that
(1.1) is a diagonalizable system of N phase oscillators such that W satisfies the con-
dition that Wki 
= Wkj for all k = 1, 2, . . . , N and for all i, j = 1, 2, . . . , N − 1 such
that i 
= j. Then, the partial coherence of the system almost surely implies coherence;
i.e., given that the system is partially coherent, the probability that it is coherent is
one.

Proof. Once again, let Ω(ω) = limt→∞ θ(t)/t = (1Tω)1 +Wµ(ω). Let Sc be the
set of ω in R

N that corresponds to coherent systems, i.e., Sc =
{
ω ∈ RN : Ω(ω) = 0

}
.

By Lemma 2.1, we may also write Sc =
{
ω ∈ RN : µ(ω) = 0

}
. Let Spc be the set

corresponding to partially coherent systems, that is, Spc =
{
ω ∈ RN : Ωi(ω) = Ωj(ω)

for some i 
= j}. It is easy to see that we can also rewrite this in terms of µ as

Spc =

{
ω ∈ RN : There are i 
= j s.t.

N−1∑
k=1

(Wki −Wkj)µk(ω) = 0

}

=
⋃
i �=j

{
ω ∈ RN :

N−1∑
k=1

(Wki −Wkj)µk(ω) = 0

}
≡
⋃
i �=j
S(i,j)
pc .

The probability that the system is coherent, given that the system is partially
coherent, is P (Sc)/P (Spc) since Sc ⊂ Spc. This probability is one if and only if

P (Spc \ Sc) = 0, which would be satisfied if P (S
(i,j)
pc \ Sc) = 0 for every pair i 
= j.

We shall show this next.
Let us fix i and j. For any A ⊂ {1, 2, . . . , N − 1}, denote by Zk the subspace{

µ ∈ R
N−1 : µk = 0

}
, and let ZA =

⋃
k∈A Zk and Z ′

A =
⋂
k/∈A Zk. Let RA denote the

subspace
{
µ ∈ R

N−1 :
∑
k∈A(Wki −Wkj)µk = 0

}
. Define QA = RA ∩ Z ′

A \ {0}. We

will show that P (QA) = 0 for any choice of A. P (S
(i,j)
pc \ Sc) = 0 follows from this by

taking A = {1, 2, . . . , N − 1}.
We shall prove P (QA) = 0 by induction on n = |A|, the cardinality of A. Suppose

first that n = 1 and, say, A = {1}. Since W1i −W1j 
= 0, we have RA =
{
µ ∈ R

N−1 :

µ1 = 0
}

= Z1 and Z ′
A =

⋂N−1
k=2 Zk. Thus, QA =

⋂N−1
k=1 Zk \ {0} = ∅, which implies

P (QA) = 0. The same holds for any other A with |A| = 1.
Suppose that P (QA) = 0 for any A with |A| = n − 1, and consider the case

|A| = n. We have

P (QA) = P (QA ∩ ZA) + P (QA \ ZA)

= P

(⋃
k∈A
QA ∩ Zk

)
+ P (QA \ ZA)

≤
∑
k∈A
P (QA ∩ Zk) + P (QA \ ZA).

We see that P (QA ∩ Zk) = 0 for each k ∈ A, by the induction hypothesis, since we
can write QA∩Zk = RA∩Z ′

A∩Zk \{0} = RAk
∩Z ′

Ak
\{0} = QAk

with Ak = A\{k},
for which we have |Ak| = n− 1. Thus, if we can show P (QA \ ZA) = 0, then we are
done.

We show P (QA \ ZA) = 0 in three steps. First, since Z ′
A is an n-dimensional

subspace and QA ⊂ RA ∩ Z ′
A is an (n − 1)-dimensional subspace, the n-dimensional

Lebesgue measure of QA in Z ′
A must be zero.
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Next, note that the conditional probability distribution of µ, given µ ∈ Z ′
A, is

continuous with respect to the Lebesgue measure outside the set ZA. This can be
seen by noting the following: (1) each component can be written as µj = µpj (aj)
by Lemma 3.2, (2) µ−1

pj exists and is differentiable except at the origin, again by
Lemma 3.2, and (3) the conditional distribution of aj =

∑
kWkjωk, given that µ(ω) ∈

Z ′
A (which is equivalent to −εMk ≤ ∑lWlkωl ≤ −εmk for all k /∈ A), is continuous

everywhere.
Finally, combining these two observations, we see that P (QA \ ZA | Z ′

A) = 0,
which implies that P (QA \ ZA) = P (Z ′

A)P (QA \ ZA | Z ′
A) = 0. This completes the

proof of the theorem.
We next describe the behavior of a generic diagonalizable system in the limit of

N → ∞. In order to formalize the process of taking the limit, we need to choose a
sequence of systems of the form (1.1). Such a sequence can be characterized by the
following:

1. Consider a sequence {W (N)}N=1,2,... of matrices with the following properties:
(a) Each W (N) is an N × (N − 1) matrix with orthonormal columns.
(b) 1TNW

(N) = 0 for all N .
(c) Each W (N) satisfies the condition for W in Theorem 4.1.
(d) ||W (N)||∞ → 0 as N → ∞. (Here || · ||∞ denotes the maximum matrix

norm defined by ||A||∞ = max |Aij |, where the maximum is taken over
all elements of A.) This is like a mixing condition that will be necessary
later in order to apply Proposition 4.3.

2. Consider a sequence {pj}j=1,2,... of real, continuous, periodic functions such
that the corresponding sequence of norms ||pj || ≡ maxj |pj(u)| is bounded.

3. Consider a sequence {ωj}j=1,2,... of i.i.d. random variables with mean ω0 and
variance σ2.

The sequence of matrices W (N) defined by (3.1) satisfies the conditions above. Given
such sequences, for each ε > 0 and N , we define SN,ε to be the diagonalizable sys-
tem (1.1) of phase oscillators using the natural frequency vector ω = (ω1, . . . , ωN )T ,
the functions {p1, . . . , pN−1}, and the matrix W (N). We are now ready to state and
prove our main theorem.
Theorem 4.2. Let SN,ε be defined as above. Then, for any fixed ε > 0, SN,ε is

almost surely incoherent as N → ∞; i.e., the probability that SN,ε is incoherent tends
to one in the limit of N → ∞.

Proof. As mentioned before, we may assume ω0 = 0 without loss of generality,
since the ω0 
= 0 case can always be reduced to the ω0 = 0 case.

From Theorem 4.1, we know that the probability that SN,ε is not incoherent is
equal to the probability qc that it is coherent. We need to show that qc → 0 as
N → ∞.

Let N0 < N be fixed. From Lemma 2.1, it follows that qc = P (µ = 0). Since
the sequence {||pj ||}j=1,2,... is bounded, we can define M = supMj and m = infmj ,
where mj = min0≤u<L pj(u), Mj = max0≤u<L pj(u) for each j. Then, Lemma 3.2
implies

qc = P (µ = 0)

= P (−εMj ≤ a(N)
j ≤ −εmj , j = 1, . . . , N − 1)

≤ P (−εM ≤ a(N)
j ≤ −εm, j = 1, . . . , N0),

where a
(N)
j = (W

(N)
j )Tω.
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The following Proposition shows that for each j, a
(N)
j converges to a Gaussian

random variable with mean 0 and variance σ2.
Proposition 4.3. Let X1, X2, . . . be a sequence of i.i.d. random variables with

EXj = 0 and Var(Xj) = E(X2
j ) = σ2. Suppose that, for each N , real numbers

bN,1, . . . , bN,N satisfy
∑N
j=1 b

2
N,j = 1. Also, suppose that

lim
N→∞

max
1≤j≤N

|bN,j | = 0.

Then we have

SN =

N∑
j=1

bN,jXj
d−→ N (0, σ2)

as N → ∞.
Proof. Let YN,j = bN,jXj . We will apply the Lindeberg–Feller central limit

theorem (see, for example, [3, p. 98]) to YN,j . For this we need to check three condi-
tions. The first is EYN,j = bN,jEXj = 0. The second condition is satisfied because∑N
j=1EY

2
N,j =

∑N
j=1 b

2
N,jEX

2
j = σ2 > 0. To show that the third condition is satisfied,

let ε > 0 be fixed. We have

N∑
j=1

E
(
|YN,j |2

∣∣∣ |YN,j | > ε) =

N∑
j=1

b2N,jE

(
|Xj |2

∣∣∣∣ |Xj | > ε

|bN,j |
)
,

where E(X|A) denotes the conditional expectation of X, given A. Let j be fixed. For
each N , set ZN = |Xj |2 if |Xj | > ε/|bN,j |, and 0 otherwise. Since |bN,j | → 0, ZN ≤
|Xj |2 for each N , and ZN → 0 almost surely, we may use the dominated convergence
theorem to show that for each j = 1, 2, . . . , EZN = E

(|Xj |2 ∣∣ |Xj | > ε/|bN,j |) →
0 as N → ∞. Thus, the third condition

∑N
j=1E

(|YN,j |2 ∣∣ |YN,j | > ε
) → 0 is

satisfied. The conclusion now follows directly from application of the Lindeberg–Feller
theorem.

For each j = 1, . . . , N − 1, we take bN,i = W
(N)
ij and Xi = ωi in Proposi-

tion 4.3, and we see that a
(N)
j converges in distribution to a

(∞)
j as N → ∞, where

a
(∞)
j is a Gaussian random variable. Moreover, due to the orthogonality of W (N),

a
(N)
1 , . . . , a

(N)
N−1, in some sense, become independent in the limit.

Lemma 4.4. The random variables a
(∞)
1 , a

(∞)
2 , . . . are independent.

Proof. We need to show that for any finite A ⊂ N, the collection {a(∞)
k }k∈A is a

set of independent random variables. For simplicity, we prove this only for A = {1, 2},
but a similar argument works for a general case.

Let t1 and t2 be given. Set

bN,j =
t1W

(N)
1j + t2W

(N)
2j√

t21 + t22
.

Then, as N → ∞, maxj |bN,j | approaches zero because maxj |W1j | and maxj |W2j | go

to zero. Also, it is easy to check that
∑N
j=1 b

2
N,j = 1 for all N . Applying Proposi-

tion 4.3, we see that

t1a
(N)
1 + t2a

(N)
2√

t21 + t22
=

N∑
j=1

bN,jωj
d−→ N (0, σ2),
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which implies that t1a
(N)
1 + t2a

(N)
2

d−→ N (0, σ2(t21 + t22)), which in turn implies the con-

vergence of the joint characteristic function of a
(N)
1 and a

(N)
2 as N → ∞. Specifically,

Eeit1a
(∞)
1 +it2a

(∞)
2 = lim

N→∞
Eei(t1a

(N)
1 +t2a

(N)
2 ) = e−σ

2(t21+t
2
2)/2 = e−σ

2t21/2 e−σ
2t22/2.

Therefore, a(∞)
1 and a(∞)

2 are independent.

Let us come back to the proof of Theorem 4.2. As a consequence of a
(∞)
1 , a

(∞)
2 , . . .

being independent Gaussian random variables, we have

qc ≤ P ({−εM ≤ a(N)
j ≤ −εm, j = 1, . . . , N0})

→
[

1√
2πσ2

∫ −εm

−εM
e−x

2/2σ2

dx

]N0

as N → ∞. Since this holds for any fixed N0, and since the right-hand side goes to
zero as N0 → ∞, we conclude that qc → 0. This completes the proof of Theorem
4.2.

5. Example. A network of voltage-controlled oscillator (VCO) devices can be
built as an example of systems with diagonalizable interaction. The behavior of the
jth VCO in the network is described by its phase variable θj , which satisfies [5, 7]:

θ̇j = ωj + Ij(t),

where ωj is the center frequency and Ij(t) is the input signal from other VCOs. The
system is diagonalizable if, for example, Ij(t) has the form

Ij(t) = ε

N−1∑
k=1

W
(N)
jk sin

(
N∑
�=1

W
(N)
�k θ�

)
,

with W (N) defined by (3.1).
This type of interaction can be implemented using commercially available circuit

elements, as follows. The sine terms on the right-hand side can be constructed as
sums and products of output voltages:

sin

(
N∑
�=1

W
(N)
�k θ�

)
=
∑
b

N∏
�=1

cos

(
W

(N)
�k θ� −

b�π

2

)
,

where the sum is taken over all (ordered) binary N -tuples b = (b1, . . . , bN ), b� = 0, 1,
such that

∑
� b� is odd. This means that Ij(t) is a sum of terms that are products

of sin(W
(N)
�k θ�) and cos(W

(N)
�k θ�). Signals of the form sin(W

(N)
�k θ�) can be obtained

by using the amplified version of the input W
(N)
�k I�(t) as the controlling voltage in a

separate VCO with center frequency W
(N)
�k ω�. From these we can get cos(W

(N)
�k θ�)

by the phase shift of π/2. Finally, Ij(t) is obtained by putting these signals through
multipliers and adding the outputs.

6. Discussion. In order to gain additional insights, let us consider the case when
the functions pj = p have the range [−1, 1] and do not depend on j. The arguments
in the proof of Theorem 4.2 suggest that for a diagonalizable system (1.1) with large
N , the probability qc that it is coherent is approximately

qc ≈
[

1√
2πσ2

∫ ε

−ε
e−x

2/2σ2

dx

]N−1

=

[
erf

(
ε

σ
√

2

)]N−1

≡ q̃c(ε;N),
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Fig. 6.1. Probability of coherence q̃c(ε;N) as a function of ε for σ = 1 and N = 100, 1000, 10000.

where erf(x) is the error function. Typical graphs of q̃c(ε;N) are plotted in Figure 6.1.
One can see that for any finite value of N , there seems to be a sharp transition point
through which q̃c(ε;N) changes from 0 to 1. However, unlike the mean-field model of
Kuramoto, this point keeps shifting to the right as N increases, and tends to ∞ in the
limit of N → ∞, although it can be shown that this increase is at most O(

√
lnN).

Lemma 6.1. Let σ > 0 and 0 < q < 1 be fixed. Define εq,σ(N) implicitly by

q = q̃c(εq,σ(N);N). Then εq,σ(N) = O(
√

lnN) as N → ∞; i.e., εq,σ(N)/
√

lnN is
bounded as N → ∞.

Proof. Let x = (σ
√

2)−1εq,σ(N). Then, using a known estimate for the error
function, we have for x ≥ 1

erf(x) ≥ 1 − 2e−x
2

√
πx+

√
πx2 + 4

≥ 1 − 2e−x
2

√
π +

√
π + 4

.

Hence, we have the estimate

q ≥ (1 − C0e
−x2

)N−1 ≥ 1 − (N − 1)C0e
−x2

,

where

C0 =
2√

π +
√
π + 4

.

Here we used the relation (1 − x)n ≥ 1 − nx, which is valid for n ≥ 0 and 0 ≤ x ≤ 1.
The estimate for εq,σ(N) can be obtained by rearranging:

εq,σ(N) ≤ σ
√
C1 + 2 ln(N − 1),

where C1 = 2 lnC0 − ln(1 − q). This implies εq,σ(N) = O(
√

lnN).
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7. Conclusions. In this paper, we have defined a class of systems of phase oscil-
lators characterized by having diagonalizable interactions. For a system in this class,
complete separation of variables through appropriate changes of variable is possible,
which enables us to draw rigorous conclusions about the probabilistic properties of
the system. In particular, we have shown that partial coherence of the system almost
surely implies coherence and, in the limit of large system size, the system is almost
surely incoherent. A major implication of our result is that, unlike the mean-field
model of Kuramoto, diagonalizable systems cannot exhibit a sharp transition from
incoherence to coherence. This provides some insight into what is necessary to see
such a transition in a system of phase oscillators.
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Abstract. A nonlinearly coupled system of bistable (fixed point and limit cycle) differential
equations is analyzed. The nonlinear equations arise from the first several terms in the normal form
expansion near a Bautin bifurcation. Existence and stability of in-phase and out-of-phase periodic
solutions to a pair of identical systems are explored. Existence, uniqueness, and stability of traveling
wave solutions from a stable rest state to a stable periodic solution are proved for the associated
evolution/convolution equation. Numerical simulations suggest some interesting patterns in regimes
where waves no longer exist. The results are shown to hold for a nonreduced conductance-based
model.
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1. Introduction. The analysis of the behavior of coupled neuronal oscillators
and “near” oscillators (i.e., excitable cells) has been the subject of many recent papers
[2, 13, 15, 14]. Intrinsic neuronal oscillations arise primarily via two distinct mech-
anisms [21, 15]: (i) a saddle-node on a limit cycle bifurcation or (ii) a subcritical or
supercritical Hopf bifurcation. In the saddle-node bifurcation, the oscillations that
arise are large-amplitude, and so it is possible to study the effects of coupling between
them by looking at certain normal forms that arise [14, 8]. Coupled systems near a
supercritical Hopf bifurcation have been the subject of numerous studies (e.g., Aron-
son, Ermentrout, and Kopell [1]), most recently by Hoppensteadt and Izhikevich [13].
The problem with such analysis is that the coupling that has been analyzed is linear.
This means that the coupling itself can determine whether or not the system is at rest
or oscillates. Chemical synaptic coupling is inherently nonlinear, unlike coupling via
diffusive-like interactions. This is because subthreshold oscillations and perturbations
from rest are insufficient to excite the channels which release the chemical transmitters
necessary for communication between neurons. Because synaptic coupling between
neurons is nonlinear, the presence of coupling does not alter the stability of the resting
state of such a neuron. This contrasts with diffusive or gap junctional coupling, which
is linear and can therefore affect the stability of the resting state [7, 10, 19].

The oscillations emerging from a subcritical Hopf bifurcation generally “turn
around” for neuronal models to become large-amplitude stable oscillations. Thus, like
the saddle-node case, these large-amplitude oscillations are sufficient to excite chemi-
cal synapses. Furthermore, unlike a supercritical Hopf bifurcation, there is a range of
parameters for which the system is intrinsically bistable: there is a stable equilibrium
point and a stable oscillation. The goal of this paper is to study a reduced model
(normal form) that nonlinearly couples systems with a subcritical Hopf bifurcation.
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We model the bistable subcritical Hopf bifurcation by considering a degenerate
form of the Hopf bifurcation, which arises at the transition between sub- and super-
critical bifurcations. This is called the Bautin bifurcation, and the normal form for
such a bifurcation is

z′ = z(λ+ b|z|2 + f |z|4) ≡ N(z),(1.1)

where b, f are complex numbers and λ is the bifurcation parameter. The usual Hopf
bifurcation does not involve the parameter f and is sub- or supercritical according
to whether the real part of b is, respectively, positive or negative. In the Bautin
bifurcation, the real part of the coefficient b vanishes. Thus, the degeneracy in the
normal form arises from the nonlinear terms in the system. The advantage of the
Bautin normal form is that it captures the bistability of the medium as well as the
fact that the stable oscillation is bounded away from the rest state. Equation (1.1)
can be derived from any nonlinear system near a degenerate Hopf bifurcation [17].

Consider, now, a pair of synaptically coupled neurons near this bifurcation. In
the absence of coupling, they can be described in terms of the complex amplitudes
z1, z2, where each zj satisfies (1.1). Coupling alters the normal form by adding new
terms, whose form can be deduced by using standard symmetry arguments [12] or by
direct (albeit tedious) calculation. The coupled system has the form

z′1 = N(z1) + L1z1 + L2z2 + C1z1|z2|2 + C2z2|z2|2(1.2)

+ C3z
2
1 z̄2 + C4z

2
2 z̄1 + C5z2|z1|2 + C6z1|z1|2,

with an analogous equation for z′2. If the coupling between oscillators is through
diffusion (e.g., gap junctions) then L1 = −L2. In [1, 13] only the linear coupling
terms are kept. [16] studied (1.1) in the context of synchronization between bursters
with linear coupling. We have also included nonlinear coupling terms up to order 3
in (1.2). The motivation for this is as follows. Consider the stability of the origin
zj = 0. The linearized equations have the form

z′1 = (λ+ L1)z1 + L2z2,

z′2 = (λ+ L1)z2 + L2z1,

with eigenvalues λ + L1 ± L2. Thus, linear coupling can alter the stability of the
origin. This cannot happen in a system of synaptically coupled neurons except in
very unusual circumstances. That is, the threshold for synaptic interactions would
have to be nearly identical to the resting state of the neuron. For this reason, we will
assume that the coupling between the two normal forms should not be linear. Thus,
in this paper, we set L1 = L2 = 0.

We turn to the nonlinear coupling terms, of which there are six. Consider two
neurons which are stably at rest (zj = 0). Suppose that we excite one of them past
threshold so that it begins to fire. Then if the neurons are coupled sufficiently strongly,
this should induce the other neuron to begin firing. Of the six coupling terms in (1.2),
only one term can cause this. Since zj = 0 is the rest state, then any coupling term
which includes zj cannot contribute to pushing zj away from rest. For example, if z2
is oscillating, then the only term which can influence a resting z1 is the second term:

z2|z2|2.
While all terms are important once the neurons are both oscillating, the onset of
oscillations is effected only through the second term. Thus, we will restrict the analysis
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of coupled systems to nonlinear coupling with Cn = 0 except for C2. If there is linear
coupling and we are very close to the bifurcation, then the nonlinear coupling can be
scaled out. Thus, one should regard our analysis, which includes nonlinear coupling
terms, to hold for systems that are a small distance from the actual bifurcation. As the
magnitude of the linear terms decreases (and for synaptic coupling, this is very small),
the nonlinear terms have a stronger effect on the behavior, and thus in principle, we
need not be very far from the critical bifurcation at all.

In the first part of the paper, we describe the bifurcations that occur in

z′1 = z1(λ+ (iq)|z1|2 − |z1|4) + (c1 + ic2)z
2
2 z̄2,(1.3)

z′2 = z2(λ+ (iq)|z2|2 − |z2|4) + (c1 + ic2)z
2
1 z̄1,

where b = iq (at the Bautin bifurcation) and all parameters are real. We restrict
our attention to the case in which the coefficient f in (1.1) is real and negative since
we want the resulting large-amplitude oscillations to be stable. We set f = −1 with
no loss in generality. We establish the existence and stability of in- and out-of-phase
oscillations in preparation for section 3 in which we look at spatially distributed
networks.

Spatially distributed neurons and waves have been the object of much recent
analysis. Coupling between neurons is not restricted to nearest neighbors but instead
can involve long spatial scales. Typically, when modeled as a continuum, interactions
take the form of convolutions. The coupled pair of Bautin oscillators can be easily
generalized to a continuous spatial model with convolution coupling:

zt = z(λ+ (iq)|z|2 − |z|4) + (c1 + ic2)

∫ ∞

−∞
J(x− y)z2(y)z̄(y)dy.(1.4)

In the second part of the paper, we will describe the existence of traveling wavefronts,
which join the stable resting state to an oscillatory solution. The resulting waves are
similar in structure to those found in [9] when coupling was diffusive. We analyze the
existence and stability of plane waves for (1.4) as well. We use numerical simulations
to find spatially localized patterns which may be analogous to patterns of activity
used to model working memory. Finally, we close the paper with simulations of a
simple biophysically based model in order to demonstrate that the behavior of the
normal-form-based model holds in more “realistic” neural models.

2. Two coupled equations. In this section we determine under what condi-
tions the symmetric and asymmetric solutions exist and are stable. For this analysis,
it is easiest to put the equations into polar form. We let

zj = rje
iθj

and let φ = θ1 − θ2. Then, substituting into (1.3), we obtain the equations

r′1 = λr1 − r51 + c1r
3
2 cos(φ) + c2r

3
2 sin(φ),(2.1)

r′2 = λr2 − r52 + c1r
3
1 cos(φ)− c2r31 sin(φ),

φ′ = q(r21 − r22)− c1
(
r31
r2

+
r32
r1

)
sin(φ) + c2

(
r32
r1

− r31
r2

)
cos(φ).

Phase-locked solutions with constant r1, r2 to the coupled system of oscillators are
fixed points of (2.1). The existence and stability of periodic solutions is readily ob-
tained. We remark that zj = 0 is an asymptotically stable solution to (1.3) if and only
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if λ < 0. In this section, we will look for limit-cycle solutions to (1.3) with amplitudes
rj bounded away from zero so that the denominators in the equation for φ cause no
problems.

2.1. Symmetric in-phase solutions. We look for solutions of the form ρ =
r1 = r2 (symmetric) and φ = 0. When φ = 0, the sine terms in (2.1) vanish. Inserting
the solution φ = 0, (2.1) is reduced to the first order ODE

ρ′ = λρ+ c1ρ3 − ρ5.(2.2)

The positive roots are given by

1

2

√
2c1±2

√
c21 + 4λ.(2.3)

First, we will establish when these solutions exist.

2.1.1. Existence. We want to determine under what conditions on the pa-
rameters the solutions (2.3) are real. Thus we want to know when the polynomial
f(x) = λ + c1x

2 − x4 has two positive, real roots. For λ > 0 this polynomial will
always have one positive root; thus the upper branch of solutions (2.3) will be real.
Now, because this polynomial is symmetric about the y-axis, in order for two real,
positive roots to exist it must be true that f(0) < 0, implying λ < 0. Also, there
must be a relative maximum at a point x = a so that f(a) > 0. This maximum
occurs at x =

√
c1/2. Thus, the polynomial f(x) will have two positive, real roots if

c1 >
√−2λ.
One of the goals of this paper is to prove the existence of traveling waves connect-

ing a stable rest state to a stable plane wave. Thus, we must choose parameters so
that equations lie in a bistable regime. For this reason, we will only consider param-
eter values that allow two stable states. Thus, we must have two nonzero solutions
to separate stable regions. We will consider only λ < 0. The only requirement that
follows is that c1 >

√−2λ must hold.

2.1.2. Stability. The Jacobian for the polar coordinate system is
 α(r) β(r) γ(r)
β(r) α(r) −γ(r)
a(r) −a(r) b(r)


 ,(2.4)

where α(r) = λ−5r4, β(r) = 3c1r
2, γ(r) = c2r

2, a(r) = 2qr−4c2r, and b(r) = −2c1r
2.

The characteristic polynomial for (2.4) is

(x− α− β)(x2 + (β − b− α) + αb− βb− 2γa).

Thus, a symmetric in-phase solution is stable if the following three conditions hold at
the equilibrium:

α+ β < 0,(2.5)

β − b− α > 0,(2.6)

αb− βb− 2γa > 0.(2.7)

The lower branch of solutions is always unstable. Substituting the value of the
lower branch solution into α+ β gives

−4λ− c21 + c1
√
c21 + 4λ.
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By the requirement for existence, we have that c1 >
√−2λ, and so the above quantity

is real. It is easily seen that the expression is the same as√
c21 + 4λ

[
c1 −

√
c21 + 4λ

]
> 0,

and so the value (2.5) is positive. Thus this periodic solution to (2.2) is unstable and
will act as the desired separatrix between the stable fixed point and the upper periodic
branch. A similar proof is used to show that this eigenvalue is always negative for the
upper branch of solutions; thus it will not prevent stability.

We turn now to the other two conditions. First, consider condition (2.6). Using
the definitions of the various parameters, this condition becomes

5c21 + 4λ+ 5c1R > 0,

where R =
√
(c21 + 4λ) > 0. Since c21 +4λ > 0, this expression is clearly positive, and

thus the condition (2.6) holds on the upper branch. The last condition, (2.7), will not
hold for all parameters, and in fact, as we will show, the left-hand side can become
negative if the parameters c2, q are sufficiently large. We can rewrite condition (2.7) as

F (c2) ≡ Ac22 +Bc2 + C > 0,

where

A = 4c21 + 8λ+ 4c1R,

B = −q(c21 + 4λ+ c21 + c1R) ≡ −qD,
C = 4c1R(λ+ 2c21) + 4c21(5λ+ 2c21).

We note that since c21 + 4λ > 0, λ < 0, and c1 > 0, A,D,C are all positive. In
particular, if c2 = 0, then condition (2.7) holds and the upper branch is asymptotically
stable. Suppose that c2 is nonzero. The parameter q appears only in the coefficient
B. Furthermore, D > 0 so that for fixed c2 we can always find a sufficiently large
value of |q| so that F (c2) < 0 and the upper branch is destabilized. We should choose
c2, q to have the same sign. The critical value of q leads to a zero eigenvalue for the
stability matrix. Since the synchronous solution cannot disappear (its existence is
independent of both c2, q), the bifurcation occurring must be either a transcritical
or a pitchfork. However, due to symmetry, the transcritical cannot occur, and the
resulting bifurcation must be a pitchfork [23]. The critical value of q is readily found
to be

q∗ =
Ac22 + C

Dc2
.

Using AUTO [6], we have tracked the solution through this instability and verified
that it is indeed a pitchfork bifurcation. For λ = −1/5, c1 = c2 = 1, we find that
the synchronous state becomes unstable at q∗ = 5.4473, in agreement with the above
formula. Furthermore, the bifurcation is subcritical. Thus, once the critical value of
q is exceeded, we find that the only stable state is the resting value, r1 = r2 = 0.

2.2. Symmetric out-of-phase solutions. In order for the out-of-phase solu-
tions to exist we must have that c1 < 0. In this paper we will assume that c1 >

√−2λ
and λ < 0, so these solutions are of little interest here.
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2.3. Two-equation summary. For λ < 0 and c1 >
√−2λ there are two in-

phase symmetric periodic solutions. The top branch of solutions is stable as long as q is
sufficiently small. The lower branch is unstable. These solutions, and the zero solution
which is linearly stable, provide a bistable region. For the two-equation system this is
of little consequence in the existence and stability of phase-locked periodic solutions;
however, when modeled in continuum, the bistability leads to traveling waves and
pulsing behaviors that connect the stable origin to the stable periodic solutions, as
we shall see in the subsequent sections.

3. The convolution equation. As stated in the introduction, we will consider
the equation

zt = z[λ+ (b1 + iq)|z|2 − |z|4] + (c1 + ic2)

∫ ∞

−∞
J(x− y)z2(y)z(y)dy,

where
∫∞
−∞ J(x)dx = 1, J(x)≥0, and ||J ||∞ < ∞. We remark that if c2 = 0, then,

no matter what the value of q, the synchronous periodic state z(x, t) = ρ exp(iΩt) is
always stable when it exists. We will also assume that b1 ≥ 0 since we want the local
Hopf bifurcation to be subcritical (and, in fact, throughout most of the paper, we
assume b1 = 0). We will first study the existence and stability of plane wave solutions
to this system. We then turn to the existence of traveling fronts, which join the stable
equilibrium point, z = 0, to a plane wave. Finally, we look at the behavior of these
fronts as q increases. We present numerical evidence for the existence of localized
regions of periodic activity surrounded by the near absence of activity.

3.1. Relationship of the normal form to a kinetic model. The relationship
between the coupling in an actual kinetic model and the normal form given in (1.4)
is derived here. Consider the following system consisting of two synaptically coupled
neurons:

dV1

dt
= f(V1)− gs2(V1 − Vsyn),
ds1
dt

= α(V1)(1− s1)− βs1,
dV2

dt
= f(V2)− gs1(V2 − Vsyn),
ds2
dt

= α(V2)(1− s2)− βs2.

Assume that f(Vrest) = 0 and that ∂f
∂V (Vrest) < 0. Then the uncoupled system has

a stable rest state at V = Vrest. Suppose that α(V ) = α′(V ) = 0 for V less than
some critical value, which itself is greater than Vrest. Then Vrest will remain a stable
equilibrium point for the coupled system. Hence, the coupling will not affect the
existence or stability of the rest state. If we consider N neurons coupled similarly, we
get a system

dVi
dt

= f(Vi)− g(Vi − Vsyn)
∑
j

wi−jsj ,

dsi
dt

= α(Vi)(1− si)− βsi.

We may slave the coupling directly to the presynaptic potentials. Because we have
that α(Vrest) = α′(Vrest) = 0, the expression must be at least second order, and we
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get that

dVi
dt

= f(Vi)− g(Vi − Vsyn)
∑
j

wi−jR(Vj − Vrest),

where R is a function with no linear component. Because we are allowing only terms
that contribute to excitation away from rest, we may simplify even further:

dVi
dt

= f(Vi)− g(Vrest − Vsyn)
∑
j

wi−jR(Vj − Vrest).

And finally, if modeled in continuum, we get that

Vt(x, t) = f(V (x, t))− ĝ
∫ ∞

∞
J(x− y)R(V (y, t)− Vrest)dy,

as desired. (Note that ĝ = g(Vrest − Vsyn).)
3.2. Plane wave solutions. Consider solutions of (1.4) of the form ρei(Ωt−kx).

Substituting this in yields

iρΩei(Ωt−kx) = ρei(Ωt−kx)(λ+ (b1 + iq)ρ
2 − ρ4)

+ (c1 + ic2)

∫ ∞

−∞
J(x− y)ρ3ei(Ωt−ky)dy,

which implies

iΩ = λ+ (b1 + iq)ρ
2 − ρ4 + ρ2(c1 + ic2)

∫ ∞

−∞
J(x− y)eik(x−y)dy

and finally

iΩ = λ+ (b1 + iq)ρ
2 − ρ4 + ρ2(c1 + ic1)Ĵ(k),(3.1)

where Ĵ(k) =
∫∞
−∞ J(s)e

iksds. Taking the imaginary part of the right-hand side of
(3.1), we find that

Ω = qρ2 + c1ρ
2Im(Ĵ(k)) + c2ρ

2Re(Ĵ(k)),(3.2)

with ρ determined so that

λ+ b1ρ
2 − ρ4 + c1ρ2Re(Ĵ(k))− c2ρ2Im(Ĵ(k)) = 0.(3.3)

For the remainder of the paper, we will assume that c2 = 0 and that J(x) is a
symmetric kernel; thus (3.2) and (3.3) become, respectively,

Ω = qρ2(3.4)

and

λ− ρ4 + c1ρ2Ĵ(k) = 0.(3.5)

In the next subsection, we prove the asymptotic stability of these plane waves so
that we can then show the existence of traveling wavefronts connecting the stable rest
state to these oscillations. We remark that setting c2 = 0 is a major simplification. It
is well known that if c2q is large enough, then the corresponding Ginzburg–Landau
model has spatiotemporal chaos. (See, for example, [20], where spatiotemporal chaos
is explored for zt = z(a+ bzz̄) + dzxx. See also section 3.4.3, where such a solution is
exhibited for the present model.)
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3.3. Plane wave stability. We claim that the plane wave solutions defined by
(3.5), (3.4) are asymptotically stable for sufficiently small k. We will show this using
a symmetric kernel J(x) such that dJ

dx (0) = 0 and
∫∞
−∞ J(x)dx = 1. The kernel we

use is (1/
√
π)e−x

2

, and the results can be generalized to any function satisfying the
above requirements.

The plane wave has the form z(x, t) = ρei(Ωt−kx), with ρ and Ω defined as in (3.5)
and (3.4). We now examine the stability of the plane waves by linearizing about a
solution. Let

z(x, t) = ρei(Ωt−kx) + w(x, t).(3.6)

Substituting (3.6) into (1.4) and taking terms linear in w, we obtain

wt = f(w) + c1ρ
2

∫ ∞

−∞
J(x− y)[e2i(Ωt−kx)w̄ + 2w

]
dy,(3.7)

where

f(w) = λw + iqρ2
[
2w + e2i(Ωt−kx)w̄

]− ρ4[3w + 2e2i(Ωt−kx)w̄
]
.(3.8)

Now, let w = ei(Ωt−kx)v and v = v1 + iv2 and substitute into (3.7). This gives
the equation

iΩ(v1 + iv2) + (v1 + iv2)t(3.9)

= g(v1, v2) + c1ρ
2

∫ ∞

−∞
J(s)eiks [3v1(x− s) + iv2(x− s)] ds,

where

g(v) = λ(v1 + iv2) + 2iqρ2(v1 + iv2) + iqρ
2(v1 − iv2)− 3ρ4(v1 + iv2)− 2ρ4(v1 − iv2).

Expanding the integrand in (3.9) and separating the real and imaginary parts gives

c1ρ
2

∫ ∞

−∞
J(s) [3 cos(ks)v1(x− s)− sin(ks)v2(x− s)] ds(3.10)

and

c1ρ
2

∫ ∞

−∞
J(s) [cos(ks)v2(x− s) + 3 sin(ks)v1(x− s)] ds.(3.11)

Let g = g1 + ig2. Then these are

g1(v) = λv1 − qρ2v2 − 5ρ4v1(3.12)

and

g2(v) = λv2 + 3qρ2v1 − ρ4v2.(3.13)

Because Ω = qρ2, we can subtract this from both sides of (3.9). We define

h1(v) = g1(v) + qρ
2v2 = λv1 − 5ρ4v1,(3.14)

h2(v) = g2(v)− qρ2v1 = λv2 + 2qρ2v1 − ρ4v2.(3.15)
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Now, let v1 = eαteilxu1 and v2 = eαteilxu2. Then (3.10) becomes

c1ρ
2eαteilx

∫ ∞

−∞
J(s)

[
3 cos(ks)e−ilsu1 − sin(ks)e−ilsu2

]
ds,

which, because J is assumed to be even, simplifies to

c1ρ
2eαteilx

[
3

∫ ∞

−∞
J(s) cos(ks) cos(ls)u1ds+

∫ ∞

−∞
J(s) sin(ks) sin(ls)u2ds

]
.(3.16)

Similarly, (3.11) becomes

c1ρ
2eαteilx

[∫ ∞

−∞
J(s) cos(ks) cos(ls)u2ds− 3

∫ ∞

−∞
J(s) sin(ks) sin(ls)u1ds

]
.(3.17)

Thus, (3.9) becomes

αu1 =
[
λ− 5ρ4 + 3c1ρ

2Jcc
]
u1 + iJssu2,(3.18)

αu2 =
[
λ− ρ4 + c1ρ2Jcc

]
u2 +

[
2qρ2 − iJss

]
u2,(3.19)

where

Jss =

∫ ∞

−∞
J(s) sin(ks) sin(ls)ds

and

Jcc =

∫ ∞

−∞
J(s) cos(ks) cos(ls)ds.

These can be expressed in terms of the Fourier transform Ĵ(k) of the kernel

Jcc =
1

2
Ĵ(k + l) +

1

2
Ĵ(k − l)

and

Jss = −1

2
Ĵ(k + l) +

1

2
Ĵ(k − l).

For the kernel J chosen, we have the transform Ĵ(k) = e−
1
4k

2

. The top panel of
Figure 1 shows that, for k = 0, the real part of the greatest eigenvalue is negative
for all l �= 0. The middle panel shows that when k = 1, the plane wave solution is
unstable, with the real part of the greatest eigenvalue positive. The bottom panel
shows that there is a k > 0 such that the corresponding plane wave is stable. Thus
there is an interval surrounding k = 0 such that the perturbation goes to zero, and
hence the plane wave is stable.

This result is generalizable to any symmetric, nonnegative, integrable kernel qual-
itatively like a Gaussian. We need only that Ĵ decreases as |k| gets farther from 0.

3.4. Traveling wavefronts. We will show that, under certain restrictions on
the parameters, there exists a traveling wavefront that takes the system from the
stable equilibrium point z = 0 to the plane wave solutions defined by (3.4), (3.5).
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Fig. 1. The real part of the leading eigenvalue for k = 0, k = 1, and k = .5. The horizontal
axis is l, and the vertical axis is the value of the real part of the eigenvalue.

Let Z(k;x, t) = ρ(k) exp(i[Ω(k)t − kx]) be a plane wave as constructed above. For
k = k∗(q) we seek traveling waves connecting z(x, t) = 0 to Z(k∗;x, t). That is, there
exists a real valued function h(ξ) and a real c such that

z(x, t) = h(x− ct)Z(k∗;x, t),

where h(−∞) = 0 and h(∞) = 1. In this paper, we prove only the q = 0 case.

We put the system (1.4) into polar coordinates, making the substitution z = reiθ:

rt = λr + b1r − r5 + c1G1(x, t) + c2G2(x, t),(3.20)

rθt = qr
3 + c1G2(x, t) + c2G1(x, t),(3.21)

where

G1(x, t) =

∫ ∞

−∞
J(x− y)r3(y)cos(θ(x)− θ(y))dy,(3.22)

G2(x, t) =

∫ ∞

−∞
J(x− y)r3(y)sin(θ(x)− θ(y))dy.
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First, suppose that b1 = q = c2 = 0. Then θ = 0 satisfies (3.21). This makes (3.20)

ρ′ = λρ+ b1ρ3 − ρ5 + c1
∫ ∞

−∞
J(x− y)ρ3(y)dy.(3.23)

3.4.1. Existence, uniqueness, asymptotic stability. Proving the existence,
uniqueness, and asymptotic stability of a traveling wave connecting the stable equi-
librium at z = 0 with a stable periodic orbit is done by appealing to the following
theorem.

Theorem 3.1 (see Chen [4]). Consider the evolution equation

ut = Duxx +G(u, J1 ∗ S1(u), . . . , Jn ∗ Sn(u)),(3.24)

where J∗S(u) stands for the convolution ∫
R
J(x−y)S(u(y))dy. Assume the following:

1. For some a ∈ (0, 1), the function f(u) = G(u, S1(u), . . . , Sn(u)) satisfies
f > 0 in (−1, 0) ∪ (a, 1), f < 0 in (0, a) ∪ (1, 2), and f ′(0) < 0, f ′(a) > 0, and
f ′(1) < 0.

2. For each i = 1, . . . , n, the kernel Ji is C
1 and satisfies Ji(.) ≥ 0,

∫
R
Ji(y)dy =

1, and
∫
R
|Ji(y)|dy <∞.

3. The functions G(u, p) (p = (p1, . . . , pn)) and S1(u), . . . , Sn(u) are smooth
functions satisfying for all u ∈ [−1, 2], p ∈ [−1, 2]n, i = 1, . . . , n, Gpi(u, p) ≥ 0,
Sui(u) ≥ 0.

4. Either D > 0 or Gu(u, p) < 0 and Gp1(u, p)Su1(u) > 0 on [−1, 2]n+1.
If conditions 1–4 hold, there exists a unique (up to a translation) asymptotically

stable, monotone traveling wave connecting 0 to 1.
Remark. In our system, the fixed point ρ = 0 corresponds to the zero fixed point

of (1.4), and the fixed point ρ > 0 corresponds to the synchronous periodic solution
to (1.4). Here k∗(0) = 0.

We now show that the following assumptions hold for (3.23).
1. The function f(x) = λx+b1x

3−x5+c1x
3 must satisfy a number of conditions

regarding stability. This is to ensure that there is both a stable equilibrium and a
stable periodic solution with an unstable periodic solution between the two acting
as a separatrix. The first condition is f(0) = 0, f(a) = 0, and f(b) = 0, where b
is the amplitude of the stable periodic orbit and a is the amplitude of the unstable
separatrix. These values can be scaled so that b = 1; however, that is not necessary to
satisfy the assumption. The requirements that f ′(0) < 0 and f ′(b) < 0 are simply to
ensure that both the rest state and periodic solution are stable solutions. f(x) does
satisfy these conditions, as shown in section 1.2, so the first assumption in Chen’s
theorem is satisfied.

2.
∫∞
−∞ J(x− y)dy = 1, J(x) ≥ 0, and J(x) is bounded for all x. We defined J

in this way, so this assumption is satisfied.
3. Gp(u, p) > 0. For our purposes, this quantity is just c1, so we will assume

c1 > 0. This is necessary for the existence of a nonzero root for f .
4. Gu(u, p) < 0 and Su(u) > 0. The first of these is true for sufficiently small b1.

Because we have assumed that b1 = 0, this condition is satisfied. The second quantity,
3c1u

2, is slightly problematic because it vanishes at u = 0; however, because it holds
for all u �= 0, the inequality that this condition is used to satisfy is still satisfied for
our purposes (see the proof of Chen’s theorem). Hence, this assumption is satisfied.

Because all four of the assumptions are valid for the scalar equation, there exists
a unique and asymptotically stable traveling wave connecting the stable fixed point
at z = 0 and the stable periodic solution of (3.23).
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Fig. 2. Traveling wave solution. (A) q = 0.0, λ = −0.2, c1 = 1. This shows u(j, t) with j
horizontal and t vertical. Lightest color is u = 2, and darkest, u = −2. (B) Same as (A) but
q = 1.0. (C) Amplitude R = u2 + v2 as a function of t for j = 20, 30, 40, 50, 60, for q = 1.0.

Since θ = 0, the imaginary part of z is never excited; hence the wave propagated
will be from the stable solution z(x) = 0 for all x > x0 (without loss of generality
we may assume that the wave propagates from left to right) to the stable (parameter
dependent) periodic z(x) = ρ0 with zero imaginary part, as shown in Figure 2(A).
There is no phase-gradient; all of the oscillators are perfectly synchronized after the
wave passes. Because there is no imaginary component of the wave, it has wave
number 0. Although we have no proof of existence of the wave for nonzero q, we
expect that waves continue to exist at least for some finite range of q around 0. Figure
2(B,C) shows a simulation of the equations for q = 1.0. The magnitude, R = u2 + v2,
travels as a front, but there is a clear phase-gradient in the wake of the wave. The
frequency of the oscillations is also higher. More properties of the case q �= 0 are
considered in the next section.

3.5. The parameter q.

3.5.1. Small q. Assume that b1 = c2 = 0 and that q is sufficiently small. (Here,
small depends on the parameters λ and c1.) For nonzero q, we cannot assume that
θ = 0, so that a phase-gradient will appear (see Figure 2(B)). This, in turn, lowers
the effective coupling strength between the oscillators since the coupling includes the
term cos(θ(y)− θ(x)), and for a large enough gradient, this can be quite small. Thus,
one effect of increasing q is the appearance of a phase-gradient which, in turn, weakens
the effective coupling strength and thus should slow the wave down.

Figure 3 shows some properties of the wavefront as a function of the magnitude
q for λ = −0.2, c1 = 1 fixed. As expected from the above discussion, the parameter q
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Fig. 3. Dependence of the wave properties on the parameter q. Upper panel shows the velocity
of the front for λ = −0.2 and c1 = 1. Lower panel shows the phase-gradient. Note the different
horizontal scales. The simulation consists of 100 cells coupled to 20 nearest neighbors with coupling
strength exp(−|j|/2). Front velocity is measured as follows. Let Tj denote the time at which rj = 1.
Then the plotted velocity is just 10/(T70 − T60), that is, ∆x/∆t. The phase-gradient is measured
as follows. Let θj = arctan(vj/uj). The quantity D(t) = (θ60 − θ40)/20 ≈ θx is plotted, and the
value after the second oscillation is taken to be an approximation of the phase gradient. In a finite
domain, D(t) always goes to zero since the network synchronizes.

slows the wave down. For low values of q, this is a gradual decrease in speed. However,
at q ≈ 1.75 there is a precipitous drop in the velocity. For q larger than about 2.25,
the wave ceases to exist and is replaced by a stable localized pulse (see below). The
critical value of q depends on both the coupling strength c1 and λ. The closer λ is to
zero, the less excitation is required to cause propagation, due to the location of the
unstable periodic orbit separating the rest state from the stable oscillation. Thus, for
λ close to zero, wave propagation can occur for higher values of q. As λ gets larger in
magnitude, the separatrix is farther from the stable rest state, and propagation of a
wavefront requires more from the coupling, which large q prevents. This means that
if q is fixed, we can achieve a similar slowing by altering the parameter λ. Indeed,
we will exploit this in the next section, where we show similar phenomena for a
conductance-based neural model. In addition to the drop in the velocity, the phase-
gradient increases with q in an almost linear fashion. We compute the phase-gradient
only up to about q = 1.4, as beyond that, the wave velocity becomes nearly zero,
and whether or not there is a traveling front becomes ambiguous. The nearly linear
dependence on q leads to a simplification for analyzing the effects of q on the wave
velocity. Assume that the oscillations behind the front are quickly drawn to the plane
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Fig. 4. Velocity of the full equations (Figure 3, top) as q varies compared to the velocity
computed from the approximate equation (3.25) using k(q) = q/10, which approximates the slope of
the lower curve in Figure 3.

wave and thus θ(x, t) = Ωt+ k(q)x. Here k(q) ≈ mq is the asymptotic wave number,
and m is the slope of the dependence. Then the amplitude evolves according to the
equation

rt = r(λ+ b1r
2 − r4) + c1

∫ ∞

−∞
J̃(x− y)r3(y) dy,(3.25)

where J̃(x) = J(x) cos(k(q)x). This is identical (up to normalization) to the zero q
model, for which we have proved the existence of a front. Thus, we expect that there
will continue to be traveling fronts for q small enough. However, the new convolution
kernel J̃ is narrower than the original, and thus we expect the velocity to decrease.
Figure 4 shows a comparison of the front velocity for the approximation and the full
equations. For values up to q ≈ 1.4 the approximation is very good. (Recall that the
computation of the phase became difficult beyond q = 1.4.) For larger values of q,
the approximation was not very good.

3.5.2. Larger q and pulse formation. We saw above that the velocity of
the front seems to go to zero as q approaches some fixed finite value. We can ask
what happens for q beyond this point. One possibility is that the wave will not
propagate at all and all initial data will return to the rest state, z = 0. However,
numerical simulations indicate that rather than decay to rest, the medium remains
excited locally and forms localized pulses. Because this excitation is necessary to get
the θ variable excited, q large will prohibit excitation. The parameters are selected
to lie in a bistable region, and thus the solution z(t, x) = 0 is stable. If there is not
sufficient coupling, the wave will not propagate, and under sufficiently large initial
conditions this can result in bumps or pulse solutions (see Figure 5). This figure
shows the real part u(x, t) in a simulation for q = 3.25, which is past the regime of
existence of traveling fronts. The envelope R = u2 + v2 = |z|2 of a pulse appears to
be stationary (inset, Figure 5(B)), while the imaginary part appears to be periodic.
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Fig. 5. (A) Stable localized pulse with q = 3.25, λ = −.2, c1 = 1. Grey scale indicates
magnitude of uj(t). Index is horizontal, and time runs vertically from 0 to 10. (B) Pulse width
versus q. Inset shows r2j , which appears to be stationary. The horizontal line at 1 shows the points
at which the width is measured.

This makes the pulses here quite different from those described in models for working
memory (see the discussion and the next section), which have aperiodic behavior.
As the parameter q decreases, the width of the pulses gets larger (Figure 5(B)). We
conjecture that the width goes to infinity as |q| decreases to q∞. Figure 3 indicates
that the velocity of the fronts goes to zero as q goes to a critical value, q0. We
conjecture that q∞ = q0, and for the present system that this critical value of q is
around 2.5. The reason for this is as follows. Suppose that q < q∞. Then there
are no finite-width pulses. That is, an initial stimulus in the middle of the medium
will expand without bound. This is just a pair of wavefronts propagating outward.
Similarly, if q > q0, then there are no waves with a positive velocity; we expect that
localized sufficiently large initial data will persist and not propagate.

3.5.3. Interactions of pulses. It is possible to initiate multiple pulses in the
same medium; however, the behavior is quite dependent on the initial distance as well
as the relative phases of the two initial conditions. For example, it is possible for two
pulses to merge and form a single pulse, or they can merge and then expand to fill
the medium. In the following simulations, the medium is started at rest except for
two local regions in which uj is either 1 or −1. When uj = 1 for both regions, we
call this an “in-phase” initial condition, and when uj = −1 we call it “out-of-phase.”
Figure 6 shows some examples. In (A), a pair of in-phase initial data merge and
then chaotically fill the medium. This suggests that the appearance of pulses and
the steady-state behavior could depend on the amount of medium initially excited.
Indeed, if we excite successively larger parts of the medium, there is a transition from
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Fig. 6. Interactions between pulses. (A) Two initiated in-phase lead to chaotic behavior; (B)
same as (A) but initially out of phase; (C) same as (A) but started closer together, leading to
merging; (D) two out-of-phase pulses split apart. All figures have q = 3.25, c1 = 1, λ = −0.2.

spatially localized behavior to chaotically expanding behavior. In Figure 6(B), the
same initial data are given as in A, but the two are out of phase. This results in a pair
of local pulses oscillating exactly a half-cycle out of phase. In Figure 6(C), an in-phase
pair is started close to each other, leading to simple merging to a single pulse. Finally
in (D), the same initial data as in (C) but in antiphase results in a splitting apart of
the two pulses rather than a merging. There are many other aspects of interaction
which remain to be explored. In particular, the transition between localized pulses
and slow chaotic spreading is an intriguing problem.
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4. Conductance-based models. The results described in the previous section
apply to a very special system of equations, namely, the normal form for a Hopf
bifurcation. Thus, a natural question to ask is whether a system away from the
bifurcation can have the same behavior. In this section, we consider the behavior of
a simple biophysical model with synaptic coupling. The Morris–Lecar (ML) model
[21] is a membrane model with leak, calcium, and potassium currents. With the right
choice of parameters, the isolated model undergoes a subcritical Hopf bifurcation
and has a small regime of bistability between a resting state and a periodic solution.
Thus, we will synaptically couple an array of ML neurons and, by altering the applied
current, show that the network is able to produce both traveling fronts joining a fixed
point to a periodic orbit and localized regions of activity. The equations for each cell
are

C
dV

dt
= I − gl(V − El)− gCam∞(V )(V − ECa)− gKn(V − EK)− Isyn,

dn

dt
=
n∞(V )− n
τn(V )

,(4.1)

ds

dt
= α(V )(1− s)− s

τ
,

where Isyn is the total synaptic current applied to the ith neuron:

Isyn,i =


∑

j

W (i− j)sj

 (Vi − Esyn).

The functions and parameters used are in the appendix. Basically the g’s are maxi-
mal conductances, the E’s are reversal potentials, and W (j) is the coupling strength
between neurons and decays with distance. In the normal form, we are able to al-
ter certain abstract parameters such as the imaginary part of the coupling and the
nonlinear frequency parameter q. In the actual model, there is no direct analogue of
these parameters. However, we can instead alter the applied current I to take the
system into and out of the regime of bistability. In Figure 7, we choose I so that the
network is near the onset of spontaneous periodicity but remains bistable. A shock
at the left of the medium results in a propagating wave shown on the left. Decreasing
the current (and making the network less excitable) results in a pulse.

Unlike in the simplified model, the pulse does not seem to be periodic. Rather,
it is aperiodic, as is often the case for conductance-based models (see, e.g., [18]).

5. Discussion. We have used a simple canonical model of a bistable oscillatory
system to study the propagation of periodic waves and the loss of these waves as either
the threshold (λ) changes or the “twist”(q) varies. We have also studied the stability
of plane waves in this system. In previous work, we have shown that diffusive coupling
in a bistable (oscillatory and fixed point) system leads to a unique traveling front [9].
We also showed that as the threshold changed, the waves disappeared, leaving in
their wake spatial patterns. Similar behavior is found in the present model. Unlike
the results in [9], we have no closed form for the traveling waves. The existence of
wavefronts for sufficiently small values of q remains an open problem; we have proved
it only for q = 0.

The physiological motivation for this work comes from the behavior of disinhibited
slices of cortical tissue [11, 5]. Shocking the tissue results in the propagation of a front
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Fig. 7. Evolution of the voltage for a network of 100 ML neurons. The horizontal axis is cell

number, and the vertical axis is time in milliseconds. White is a potential of −45 mV, and black is
a potential of 20 mV. (A) Traveling wave for I = 88. (B) Localized pulse for I = 82.

of activity. In experiments the activity eventually terminates due to additional slow
processes so that, rather than a front, one obtains a traveling pulse with a finite
number of oscillations within the envelope. The present model can be augmented
by the addition of a slow negative feedback term, which will terminate the activity,
resulting in a spatially confined propagating pulse.

Stationary patterns of localized activity in networks of spiking models have been
suggested as models for locally persistent neural activity known as working memory
[18, 22]. In these models, the mechanism depends on recurrent excitation of the neu-
rons coupled with lateral inhibition. In the context of these models, lateral inhibition
means that the connection function J(x) is positive for small |x| and negative for |x|
sufficiently large. The present model provides another mechanism which does not de-
pend on lateral inhibition. Rather it depends on bistability between an oscillatory and
a rest state. [3] utilized bistability in a firing rate model to obtain localized structures,
but, as in the above-mentioned models, they require lateral inhibition. The reason
for this can be clarified by looking at our model without the oscillatory component:

rt = r(λ+ br
2 − r4) + c

∫ ∞

−∞
J(x− y)r3(y, t) dy.

The results of [4], while not precluding localized structures, indicate that in the
bistable case, the main type of behavior observed will be stable traveling fronts.
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Thus, even though the system is bistable, localized pulses cannot be found with pos-
itive J(x). However, the presence of oscillations enables local phase gradients to
develop, which can prevent the expansion of the wavefronts beyond a certain range.
The mechanism applies to whole classes of voltage-dependent models in which there
is a subcritical Hopf bifurcation as current is applied to the system (so-called Type
II excitability; see [21]).

It still remains to rigorously prove the existence of these stationary solutions.
These satisfy

0 = R(λ+ b1R
2 −R4) + c1

∫ ∞

−∞
J(x− y)R3(y) cos[Θ(y)−Θ(x)] dy,

R(x)Ω = qR3(x) + c1

∫ ∞

−∞
J(x− y)R3(y) sin[Θ(y)−Θ(x)] dy,

where Ω is an unknown parameter, R(±∞) → 0, and Θ(0) = 0. In the case in which
J(x) = exp(−|x|)/2, one can then convert the integral equations to a set of differential
algebraic equations as follows. Let

C(x) =

∫ ∞

−∞
J(x− y)R3(y) cos(Θ(y)) dy,

S(x) =

∫ ∞

−∞
J(x− y)R3(y) sin(Θ(y)) dy,

so that we must solve

C − Cxx = R3(x) cosΘ(x), S − Sxx = R3(x) sinΘ(x),

with the constraints

0 = R(λ+ b1R
2 −R4) + c1 (cosΘ(x)C(x) + sinΘ(x)S(x)) ,

RΩ = qR3 + c1 (cosΘ(x)S(x)− sinΘ(x)C(x)) .

We have made little progress on this open problem.

Appendix. In the ML equations (4.1), V denotes membrane potential, C is
membrane capacitance, and m and h are gating variables. The g’s and Ej ’s are the
maximal conductances and reversal potentials, respectively, for calcium, potassium,
and leak currents. The gating functions are as follows:

n∞(v) = .5

(
1 + tanh

(
v − v3
v4

))
,

m∞(v) = .5

(
1 + tanh

(
v − v1
v2

))
,

k(v) =
1

1 + exp

(
−v − vt

vs

) ,

τn(v) =
1

cosh

(
v − v3
2v4

) ,
where vt = 10, vs = 5, v1 = −1.2, v2 = 18, v3 = 2, and v4 = 30.
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Fig. 8. Bifurcation diagram obtained by varying I. Arrows denote the values of the current
used for the wave and pulse shown in Figure 7.

-60

20

V

0

0.8

W

0

0.8

S

SLC

ULC

E

Fig. 9. In this figure, ULC is the unstable periodic orbit separating the stable fixed point (E)
and the stable periodic solution (SLC) in three dimensions (V,w, s) for the ML model.

The parameters for the ML equations (4.1) for Figure 7 are φ = .16, gl = 2,
gca = 4.4, gk = 8, EK = −84, EL = −60, ECa = 120, Esyn = 0, τsyn = 50, α = 1,
gsyn = 0.3, and C = 5. With these parameters, the Hopf bifurcation that causes the
bistability occurs slightly to the right of I = 93. The current used for the traveling
waves is I = 88 and for the pulses, I = 82. These are indicated in the bifurcation
diagram. From the bifurcation diagram in Figure 8, at the chosen values for I there
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is a stable rest state and a stable periodic, separated by an unstable separatrix. A
picture of these orbits is shown in Figure 9. It is not easy in three dimensions to
delineate the basins of attraction for the two stable orbits; however, we have found
that low values of s and (V,w) near the fixed point are pulled into the rest state,
while all other initial data are attracted to the limit cycle.

From the bifurcation diagram, it is possible to estimate the parameters λ =
11.07, b = 0.56, q = 2.47 for the model. (Note that we have converted the timescale
from milliseconds to seconds, since frequencies are typically measured in Hz.)
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Abstract. After the celebrated Black–Scholes formula for pricing call options under constant
volatility, the need for more general nonconstant volatility models in financial mathematics motivated
numerous works during the 1980s and 1990s. In particular, a lot of attention has been paid to
stochastic volatility models in which the volatility is randomly fluctuating driven by an additional
Brownian motion. We have shown in [Derivatives in Financial Markets with Stochastic Volatility,
Cambridge University Press, Cambridge, UK, 2000; Internat. J. Theoret. Appl. Finance, 13 (2000),
pp. 101–142] that, in the presence of a separation of time scales between the main observed process
and the volatility driving process, asymptotic methods are very efficient in capturing the effects of
random volatility in simple robust corrections to constant volatility formulas. From the point of view
of PDEs, this method corresponds to a singular perturbation analysis. The aim of this paper is to
deal with the nonsmoothness of the payoff function inherent to option pricing. We present the case
of call options for which the payoff function forms an angle at the strike price. This case is important
since these are the typical instruments used in the calibration of pricing models. We establish the
pointwise accuracy of the corrected Black–Scholes price by using an appropriate payoff regularization
which is removed simultaneously as the asymptotics is performed.

Key words. mathematical finance, option pricing, stochastic volatility, singular perturbations

AMS subject classifications. 60G15, 60G44, 60H15, 60J60, 91B28

DOI. 10.1137/S0036139902401550

1. Introduction. Stochastic volatility models in financial mathematics can be
thought of as a Brownian-type particle (the stock price) moving in an environment
where the diffusion coefficient is randomly fluctuating in time according to some er-
godic (mean-reverting) diffusion process. We then have two Brownian motions, one
driving the motion of the particle and the other driving the fluctuations of the medium.
In the context of physics there is no natural correlation between these two Brownian
motions since they do not “live” in the same space. In the context of finance they
jointly define the dynamics of the stock price under its physical probability measure
or an equivalent risk-neutral martingale measure. Correlation between them is per-
fectly natural. There are economic arguments for a negative correlation or leverage
effect between stock price and volatility shocks, and from common experience and
empirical studies we know that asset prices tend to go down when volatility goes up.
The diffusion equation appears as a contingent claim pricing equation, its terminal
condition being the payoff of the claim. We refer to [5] or [6] for surveys on stochastic
volatility. When volatility is fast mean-reverting, on a timescale smaller than typical
maturities, one can perform a singular perturbation analysis of the pricing PDE. As
we have shown in [2], this expansion reveals a first correction made of two terms: one
is directly associated with the market price of volatility risk, and the other is propor-
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tional to the correlation coefficient between the two Brownian motions involved. We
refer to [2] for a detailed account of evidence of a fast scale in volatility and the use
of this asymptotics to parametrize the evolution of the skew or the implied volatil-
ity surface. We also refer to [4] for a different type of application, namely, variance
reduction in Monte Carlo methods.

The present paper deals with the accuracy of such an expansion in the presence of
another essential characteristic feature in option pricing, namely, the nonsmoothness
of payoff functions. We present the case of call options since these are the liquid
instruments used in the calibration of pricing models. By inverting the Black–Scholes
formula, the price of a call option is given in terms of its implied volatility, which
depends on the strike and the maturity of the option. This set of implied volatilities
form the term structure of implied volatility. For fixed maturity and across strikes it
is known as the smile or the skew due to the observed asymmetry. These objects and
their dynamics are what volatility models are trying to reproduce in order to price
and hedge other instruments.

In [2] we have performed an expansion of the price in powers of the characteristic
mean-reversion time of volatility, and we have shown that the leading order term
corresponds to a Black–Scholes price computed under a constant effective volatility.
The first correction involves derivatives of this constant volatility price. When the
payoff is smooth, we have shown that the corrected price, leading order term plus first
correction, has the expected accuracy; namely, the remainder of the expansion is of
the next order. The nonsmoothness of a call payoff which forms an angle at the strike
price creates a singularity at the maturity time near the strike price of the option.

This paper is devoted to the proof of the accuracy of the approximation in that
case. It is important because this is a natural situation in financial mathematics that
one has to deal with. The proof given here relies on a payoff smoothing argument,
which can certainly be useful in other contexts.

In section 2 we introduce the class of stochastic volatility models which we con-
sider. They are written directly under the pricing equivalent martingale measure
and with a small parameter representing the short timescale of volatility. We recall
how option prices are given as expected values of discounted payoffs or as solutions
of pricing backward parabolic PDEs with terminal conditions at maturity times. In
section 3 we recall the formal asymptotic expansion presented in [2]. In section 4 we
introduce the regularization of the payoff and decompose the main result, accuracy
of the price approximation, into three lemmas. Section 5 is devoted to the proof of
these lemmas. Detailed computations involving derivatives of Black–Scholes prices
up to order seven are given in the appendices, where we also recall the properties of
the solutions of Poisson equations associated with the infinitesimal generator of the
Ornstein-Uhlenbeck process driving the volatility.

2. Class of models and pricing equations. The family of Ornstein–Uhlenbeck
(OU) driven stochastic volatility models (Sεt , Y

ε
t ) that we consider can be written, un-

der a risk-neutral probability P
�, in terms of the small parameter ε,

dSεt = rSεt dt+ f(Y εt )Sεt dW
�
t ,

dY εt =

[
1

ε
(m− Y εt ) − ν

√
2√
ε

Λ(Y εt )

]
dt+

ν
√

2√
ε
dẐ�t ,

where the Brownian motions (W �
t , Ẑ

�
t ) have instantaneous correlation ρ ∈ (−1, 1),

d〈W �, Ẑ�〉t = E
�{dW �

t dẐ
�
t } = ρ dt
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and

Λ(y) =
ρ(µ− r)

f(y)
+ γ(y)

√
1 − ρ2

is a combined market price of risk. It describes the relationship between the physical
measure under which the stock price is observed and the risk-neutral measure under
which the market prices derivative securities; see [2], for example. The price of the
underlying stock is Sεt , and the volatility is a function f of the process Y εt . At the
leading order 1/ε, that is, omitting the Λ-term, Y εt is an OU process that is fast
mean-reverting with a normal invariant distribution N (m, ν2). Notice that in this
framework the volatility driving process (Y εt ) is autonomous in the sense that the
coefficients in its defining SDE do not depend on the stock price Sεt .

In this fast mean-reverting stochastic volatility scenario, the volatility level fluc-
tuates randomly around its mean level, and the epochs of high/low volatility are
relatively short. This is the regime that we consider and under which we analyze the
price of European derivatives. A derivative is defined by its nonnegative payoff func-
tion H(S), which prescribes the value of the contract at its maturity time T when the
stock price is S. The payoff function must in general satisfy the integrability condition

E
�{H(ST )2} <∞,

with E
� denoting expectation with respect to P

�. Moreover, we assume the following:
1. The volatility is positive and bounded: there are constants m1 and m2 such

that

0 < m1 ≤ f(y) ≤ m2 <∞ ∀y ∈ R.

2. The volatility risk-premium is bounded:

|γ(y)| < l <∞ ∀y ∈ R

for some constant l.
It is convenient at this stage to make the change of variable

Xε
t = logSεt , t ≥ 0,

and write the problem in terms of the processes (Xε
t , Y

ε
t ), which satisfy, by Itô’s

formula, the stochastic differential equations

dXε
t =

(
r − 1

2
f(Y εt )2

)
dt+ f(Y εt ) dW �

t ,(2.1)

dY εt =

[
1

ε
(m− Y εt ) − ν

√
2√
ε

Λ(Y εt )

]
dt+

ν
√

2√
ε
dẐ�t .(2.2)

We also define the payoff function h in terms of the log stock price via

H(ex) = h(x), x ∈ R.

The price at time t < T of this derivative is a function of the present value of the
stock price, or equivalently the log stock price, Xε

t = x and the present value Y εt = y
of the process driving the volatility. We denote this price by P ε(t, x, y). It is standard
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in finance to assume that the price is given by (2.3), which is the expected discounted
payoff under the risk-neutral probability measure P

�. See [1], for example.

P ε(t, x, y) = E
�
{
e−r(T−t)h(Xε

T )|Xε
t = x, Y εt = y

}
.(2.3)

We shall also write these conditional expectations more compactly as

P ε(t, x, y) = E
�
t,x,y

{
e−r(T−t)h(Xε

T )
}
.

Under the assumptions on the models considered and the payoff, P ε(t, x, y) is the
unique classical solution to the associated backward Kolmogorov PDE problem

LεP ε = 0,(2.4)

P ε(T, x, y) = h(x)

in t < T , x, y ∈ R, where we have defined the operators

Lε =
1

ε
L0 +

1√
ε
L1 + L2,

L0 = ν2 ∂
2

∂y2
+ (m− y)

∂

∂y
,(2.5)

L1 =
√

2ρνf(y)
∂2

∂x∂y
−
√

2νΛ(y)
∂

∂y
,(2.6)

L2 =
∂

∂t
+

1

2
f(y)2

∂2

∂x2
+

(
r − 1

2
f(y)2

)
∂

∂x
− r · .(2.7)

The operator L0 is the infinitesimal generator of the OU process (Yt) defined by

dYt = (m− Yt) dt+ ν
√

2 dẐ�t ;(2.8)

L1 contains the mixed partial derivative due to the correlation and the derivative due
to the market price of risk, and L2, also denoted by LBS(f(y)), is the Black–Scholes
operator in the log variable and with volatility f(y).

3. Price approximation. We present here the formal asymptotic expansion
computed as in [2, 3], which leads to a (first-order in

√
ε) approximation P ε(t, x, y) ≈

Qε(t, x). In the next section we prove the convergence and accuracy as ε ↓ 0 of this
approximation, which consists of the first two terms of the asymptotic price expansion:

Qε(t, x) = P0(t, x) +
√
εP1(t, x),

which do not depend on y and are derived as follows. We start by writing

P ε = Qε + εQ2 + ε3/2Q3 + · · · = P0 +
√
εP1 + εQ2 + ε3/2Q3 + · · · .(3.1)

Substituting (3.1) into (2.4) leads to

1

ε
L0P0 +

1√
ε

(L0P1 + L1P0)(3.2)

+ (L0Q2 + L1P1 + L2P0) +
√
ε (L0Q3 + L1Q2 + L2P1) + · · · = 0.
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We shall next obtain expressions for P0 and P1 by successively equating the four
leading order terms in (3.2) to zero. We let 〈·〉 denote the averaging with respect to
the invariant distribution N (m, ν2) of the OU process Y introduced in (2.8):

〈g〉 =
1

ν
√

2π

∫
R
g(y)e−(m−y)2/2ν2

dy.(3.3)

Notice that this averaged quantity does not depend on ε.
Below, we will need to solve the Poisson equation associated with L0,

L0χ+ g = 0,(3.4)

which requires the solvability condition

〈g〉 = 0(3.5)

in order to admit solutions with reasonable growth at infinity. Properties of this
equation and its solutions are recalled in Appendix C.

Consider first the leading order term

L0P0 = 0.

Since L0 takes derivatives with respect to y, any function independent of y satisfies
this equation. On the other hand y-dependent solutions exhibit the unreasonable
growth exp(y2/2ν2) at infinity. Therefore we seek solutions which are independent of
y: P0 = P0(t, x) with the terminal condition P0(T, x) = h(x).

Consider next

L0P1 + L1P0 = 0,

which corresponds to the second term in (3.2). Since L1 contains only terms with
derivatives in y, it reduces to L0P1 = 0 and, as for P0, we seek again a function
P1 = P1(t, x), independent of y, with a zero terminal condition P1(T, x) = 0. Hence,
Qε = P0 +

√
εP1, the leading order approximation, does not depend on the current

value of the volatility level.
The next equation

L0Q2 + L1P1 + L2P0 = 0,

which corresponds to the third term in (3.2), reduces to the Poisson equation

L0Q2 + L2P0 = 0,(3.6)

since L1P1 = 0. Its solvability condition

〈L2P0〉 = 〈L2〉P0 = 0,

is the Black–Scholes PDE (in the log variable) with constant square volatility 〈f2〉:

〈L2〉P0 = LBS(σ̄)P0 =
∂P0

∂t
+

1

2
σ̄2 ∂

2P0

∂x2
+

(
r − 1

2
σ̄2

)
∂P0

∂x
− rP0 = 0,(3.7)

where we define the effective constant volatility σ̄ by

σ̄2 = 〈f2〉.
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We choose P0(t, x) to be the classical Black–Scholes price, solution of (3.7) with the
terminal condition P0(T, x) = h(x).

Observe that Q2 = −L−1
0 (L2 − 〈L2〉)P0 as a solution of the Poisson equation

(3.6). This notation includes an additive constant in y, which will disappear when hit
by the operator L1 below. The fourth term in (3.2) gives the equation

L0Q3 + L1Q2 + L2P1 = 0.(3.8)

This is a Poisson equation in Q3, and its solvability condition gives

〈L2〉P1 = −〈L1Q2〉 = 〈L1L−1
0 (L2 − 〈L2〉)〉P0,

which, with its zero terminal condition, determines P1 as a solution of a Black–Scholes
equation with constant square volatility 〈f2〉 and a source term. Using the expressions
for Li, one can rewrite the source as

〈L1L−1
0 (L2 − 〈L2〉)〉P0 =

〈L1L−1
0

(
f(y)2 − 〈f2〉)〉 1

2

(
∂2

∂x2
− ∂

∂x

)
P0

=

(
v3

∂3

∂x3
+ (v2 − 3v3)

∂2

∂x2
+ (2v3 − v2)

∂

∂x

)
P0,(3.9)

where

v2 =
ν√
2

(2ρ〈fφ′〉 − 〈Λφ′〉),

v3 =
ρν√

2
〈fφ′〉,(3.10)

and φ is a solution of the Poisson equation

L0φ(y) = f(y)2 − 〈f2〉.(3.11)

We can therefore conclude the following:
a. The first term P0 is chosen to be the solution of the “homogenized” PDE

problem (3.7). In other words, P0 is simply the Black–Scholes price of the
derivative computed with the effective volatility σ̄.

b. The second term, or correction to the Black–Scholes price, is given explicitly
as a linear combination of the first three derivatives of P0, by

√
ε P1 = −(T − t)

(
V ε3

∂3

∂x3
+ (V ε2 − 3V ε3 )

∂2

∂x2
+ (2V ε3 − V ε2 )

∂

∂x

)
P0,(3.12)

with

V ε2,3 =
√
ε v2,3,(3.13)

since it is easily seen, by using 〈L2〉P0 = 0, that (3.9) is satisfied and that,
on the other hand, the terminal condition P1(T, x) = 0 is satisfied when

limt→T (T − t)∂
iP0

∂xi = 0 for i = 1, 2, 3.
Essential instruments in financial markets are put and call options for which the

payoff function H(S) is piecewise linear. We shall focus on call options:

H(S) = (S −K)+ ⇒ h(x) = (ex −K)+
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for some given strike priceK > 0. Notice that h is only C0 smooth with a discontinuous
first derivative at the kink x = logK (“at the money” in financial terms). Nonetheless,
at t < T , the Black–Scholes pricing function P0(t, x) is smooth and P1(t, x) is well
defined, but second and higher derivatives of P0 with respect to x blow up as t → T
(at the money).

Our main result on the accuracy of the approximation Qε = P0 +
√
ε P1 is as

follows.
Theorem 3.1. Under the assumptions 1 and 2 above, at a fixed point t < T ,

x, y ∈ R, the accuracy of the approximation of call prices is given by

lim
ε↓0

|P ε(t, x, y) −Qε(t, x)|
ε| log ε|1+p = 0

for any p > 0.
Observe that this pointwise approximation is the sense of accuracy needed in

finance applications since option prices are computed at given values of (t, x, y).
Before giving in the next section the proof of Theorem 3.1, we comment on the

interpretation of the approximation and on the validity of the result for more general
payoffs.

Financial interpretation of the approximation. In order to give a meaningful in-
terpretation to the leading order term and the correction in our price approximation
it is convenient to return to the variable S, the underlying price. With a slight abuse
of notation we denote the call option price approximation by P0(t, S) +

√
εP1(t, S).

Indeed, the leading order term P0(t, S) is the standard Black–Scholes price of the call
option computed at the effective constant volatility σ̄. From (3.12), one can easily
deduce that

√
ε P1(t, S) = −(T − t)

(
V ε2 S

2 ∂
2P0

∂S2
+ V ε3 S

3 ∂
3P0

∂S3

)
,(3.14)

which shows that the correction is a combination of the two variables gamma and
epsilon, as introduced in [2]. This correction can alternatively be written in the form

√
ε P1(t, S) = −(T − t)

(
(V ε2 − 2V ε3 )S2 ∂

2P0

∂S2
+ V ε3 S

∂

∂S

(
S2 ∂

2P0

∂S2

))
.(3.15)

Using the classical relation between gamma and vega for Black–Scholes prices of Eu-
ropean derivatives

∂P0

∂σ
= (T − t)σS2 ∂

2P0

∂S2
,

which is easily obtained by differentiating the Black–Scholes PDE with respect to σ,
one can rewrite the correction as

√
ε P1(t, S) = − 1

σ̄

(
(V ε2 − 2V ε3 )

∂P0

∂σ
+ V ε3 S

∂

∂S

(
∂P0

∂σ

))
.(3.16)

Therefore the price correction is a combination of the vega and the delta-vega of the
Black–Scholes price. The vega term corresponds simply to a volatility level correction.
The delta-vega term is proportional to the correlation coefficient ρ and captures the
main effect of skewness in implied volatility as discussed in detail in [2].
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Other payoff functions. The main idea of the proof presented in the next section
is a regularization of the payoff, which does not rely on the particular choice of a
call option. The only place where we use the explicit Black–Scholes formula for a
call option is in the computation (B.1) of the successive derivatives ∂nxP

δ
0 carried

out in Appendix B. Note that if we had started with a payoff function h which was
continuous and piecewise smooth (a call option being a particular case), then P δ0 , the
solution of the parabolic PDE (3.7), would be an integral of the payoff function with
respect to a normal density, as in the case of a call option. The first derivative with
respect to x can be taken on the payoff function, and the higher-order derivatives can
then be taken on the normal density, as detailed in Appendix B for a call option.
Therefore Theorem 3.1 remains valid for general European claims with continuous
payoffs that have singular behavior in their derivatives.

Numerical illustration. To illustrate the asymptotic approximation, we compare
the approximation

Qε = P0 +
√
ε P1

with a numerical solution of the PDE (2.4) for a particular stochastic volatility model
and a call option with strike price K = 100 and three months before expiration. (In
practice, the asymptotic approximation is not used in this manner because of the
difficulties of estimating the volatility parameters precisely; instead the parameters of
the approximation V ε2 and V ε3 are estimated directly from observed options prices, as
described in [2].)

We choose f(y) = ey, where this is understood to stand for a cutoff version of
the exponential function, with the cutoffs (above and below) sufficiently large and
small, respectively, so as not to affect the calculations within the accuracy of our
comparisons. We use the parameter values

ε =
1

200
, m = log 0.1, ν =

1√
2
, ρ = −0.2,

µ = 0.2, r = 0.04

and choose the volatility risk premium γ ≡ 0. It follows from explicit calculations
that the parameters for the asymptotic approximation, are

σ̄ = 0.165, V ε2 = −3.30 × 10−4, V ε3 = 8.48 × 10−5.

Figure 1 shows the numerical solution from an implicit finite-difference approxi-
mation at two levels of the current volatility ey, one at the long-run mean-level σ̄, and
one far above it (0.607). These are compared to the asymptotic approximation, which
does not depend on the current volatility level. In the range 0.95 ≤ K/S ≤ 1.04 shown
in the graph on the right, the maximum deviation of the asymptotic approximation
from the price with the higher volatility is 9% of the latter price, and the maximum
deviation of the asymptotic approximation from the price with the lower volatility is
2.1% of this price.

4. Derivation of the accuracy of the price approximation. In order to
prove Theorem 3.1, we introduce in the next section the regularized price P ε,δ, the
price of a slightly smoothed call option, with δ being the (small) smoothing parameter.
We denote the associated price approximation by Qε,δ. The proof then involves
showing that (i) P ε ≈ P ε,δ, (ii) Qε,δ ≈ Qε, (iii) P ε,δ ≈ Qε,δ and controlling the
accuracy in these approximations by choosing δ appropriately.
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Fig. 1. Call option prices three months from maturity as a function of the current stock price S.
The strike price is K = 100, and the graph on the right focuses on the region “around the money.”

4.1. Regularization. We begin by regularizing the payoff, which is a call option,
by replacing it with the Black–Scholes price of a call with volatility σ̄ and time to
maturity δ. We define

hδ(x) := CBS(T − δ, x;K,T ; σ̄),

where CBS(t, x;K,T ; σ̄) denotes the Black–Scholes call option price as a function of
current time t, log stock price x, strike price K, expiration date T , and volatility σ̄.
It is given by

CBS(t, x;K,T ; σ̄) = P0(t, x;K,T ; σ̄) = exN(d1) −Ke−r
τ2

σ̄2 N(d2),(4.1)

N(x) =
1√
2π

∫ x

−∞
e−y

2/2 dy,

d1 =
x− logK

τ
+ bτ,

d2 = d1 − τ,

where we define

τ = σ̄
√
T − t, b =

r

σ̄2
+

1

2
.

For δ > 0, this new payoff is C∞. The price P ε,δ(t, x, y) of the option with the
regularized payoff solves

LεP ε,δ = 0,

P ε,δ(T, x, y) = hδ(x).

4.2. Main convergence result. Let Qε,δ(t, x) denote the first-order approxi-
mation to the regularized option price:

P ε,δ ≈ Qε,δ ≡ P δ0 +
√
εP δ1 ,

where

P δ0 (t, x) = CBS(t− δ, x;K,T ; σ̄),(4.2)

√
εP δ1 = −(T − t)

(
V ε3

∂3

∂x3
+ (V ε2 − 3V ε3 )

∂2

∂x2
+ (2V ε3 − V ε2 )

∂

∂x

)
P δ0 .(4.3)
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We establish the following pathway to proving Theorem 3.1, where constants may
depend on (t, T, x, y) but not on (ε, δ).

Lemma 4.1. Fix the point (t, x, y), where t < T . There exist constants δ̄1 > 0,
ε̄1 > 0, and c1 > 0 such that

|P ε(t, x, y) − P ε,δ(t, x, y)| ≤ c1δ

for all 0 < δ < δ̄1 and 0 < ε < ε̄1.
This establishes that the solutions to the regularized and unregularized problems

are close.
Lemma 4.2. Fix the point (t, x, y), where t < T . There exist constants δ̄2 > 0,

ε̄2 > 0, and c2 > 0 such that

|Qε(t, x) −Qε,δ(t, x)| ≤ c2δ

for all 0 < δ < δ̄2 and 0 < ε < ε̄2.
This establishes that the first-order asymptotic approximations to the regularized

and unregularized problems are close.
Lemma 4.3. Fix the point (t, x, y), where t < T . There exist constants δ̄3 > 0,

ε̄3 > 0, and c3 > 0 such that

|P ε,δ(t, x, y) −Qε,δ(t, x)| ≤ c3

(
ε| log δ| + ε

√
ε

δ
+ ε

)

for all 0 < δ < δ̄3 and 0 < ε < ε̄3.
This establishes that for fixed δ the approximation to the regularized problem

converges to the regularized price as ε ↓ 0.
The convergence result proceeds from these lemmas as follows.
Proof of Theorem 3.1. Take δ̄ = min(δ̄1, δ̄2, δ̄3) and ε̄ = min(ε̄1, ε̄2, ε̄3). Then

using Lemmas 4.1, 4.2, and 4.3, we obtain

|P ε −Qε| ≤ |P ε − P ε,δ| + |P ε,δ −Qε,δ| + |Qε,δ −Qε|

≤ 2 max(c1, c2)δ + c3

(
ε| log δ| + ε

√
ε

δ
+ ε

)

for 0 < δ < δ̄ and 0 < ε < ε̄, where the functions are evaluated at the fixed (t, x, y).
Taking δ = ε, we have

|P ε −Qε| ≤ c5(ε+ ε| log ε|)

for some fixed c5 > 0, and Theorem 3.1 follows.
A general conclusion to our work is given in section 6 after the proofs of Lemmas

4.1, 4.2, and 4.3 given in the following section.

5. Proof of lemmas.

5.1. Proof of Lemma 4.1. We use the probabilistic representation of the price
given as the expected discounted payoff with respect to the risk-neutral pricing equiv-
alent martingale measure P

�:

P ε,δ(t, x, y) = E
�
t,x,y

{
e−r(T−t)hδ(Xε

T )
}
.
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We define the new process (X̃ε
t ) by

dX̃ε
t =

(
r − 1

2
f̃(t, Y εt )2

)
dt+ f̃(t, Y εt )

(√
1 − ρ2 dŴ �

t + ρ dẐ�t

)
,

where (Ŵ �
t ) is a Brownian motion independent of (Ẑ�t ), (Y εt ) is still a solution of (2.2),

and

f̃(t, y) =

{
f(y) for t ≤ T ,
σ̄ for t > T .

Then we can write

P ε,δ(t, x, y) = E
�
t,x,y

{
e−r(T−t+δ)h(X̃ε

T+δ)
}

and

P ε(t, x, y) = E
�
t,x,y

{
e−r(T−t)h(X̃ε

T )
}
.

Next we use the iterated expectations formula

P ε,δ(t, x, y) − P ε(t, x, y)

= E
�
t,x,y

{
E
�
{
e−r(T−t+δ)h(X̃ε

T+δ) − e−r(T−t)h(X̃ε
T ) | (Ẑ�s )t≤s≤T

}}
to obtain a representation of this price difference in terms of the Black–Scholes func-
tion P0, which is smooth away from the terminal date T . In the uncorrelated case
it corresponds to the Hull–White formula [7]. In the correlated case, as considered
here, this formula is in [8], and can be found in [2, (2.8.3)]. It is simple to compute
explicitly the conditional distribution D(X̃ε

T |(Ẑ�s )t≤s≤T , X̃ε
t ) of X̃ε

T , given the path of

the second Brownian motion (Ẑ�s )t≤s≤T . One obtains

D(X̃ε
T |(Ẑ�s )t≤s≤T , X̃ε

t = x) = N (mε
1, v

ε
1),

where the mean and variance are given by

mε
1 = x+ ξt,T +

(
r − 1

2
σ̄2
ρ

)
(T − t),

vε1 = σ̄2
ρ(T − t)

and we define

ξt,T = ρ

∫ T

t

f̃(s, Y εs ) dẐ�s −
1

2
ρ2

∫ T

t

f̃(s, Y εs )2ds,(5.1)

σ̄2
ρ =

1 − ρ2

T − t

∫ T

t

f̃(s, Y εs )2ds.

It follows from the calculation that leads to the Black–Scholes formula that

E
�
t,x,y{e−r(T−t)h(X̃ε

T ) | (Ẑ�s )t≤s≤T } = P0(t, X̃ε
t + ξt,T ;K,T ; σ̄ρ).

Similarly, we compute

D(X̃ε
T+δ | (Ẑ�s )t≤s≤T , X̃ε

t = x) = N (mε
2, v

ε
2),
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where the mean and variance are given by

mε
2 = x+ ξt,T + rδ +

(
r − 1

2
σ̃2
ρ,δ

)
(T − t),

vε2 = σ̃2
ρ,δ(T − t)

and we define

σ̃2
ρ,δ = σ̄2

ρ +
δσ̄2

T − t
.

Therefore

E
�
t,x,y{e−r(T−t+δ)h(X̃ε

T+δ) | (Ẑ�s )t≤s≤T } = P0(t, X̃ε
t + ξt,T + rδ;K,T ; σ̃ρ,δ),

and we can write

P ε,δ(t, x, y) − P ε(t, x, y)

= E
�
t,x,y {P0(t, x+ ξt,T + rδ;K,T ; σ̃ρ,δ) − P0(t, x+ ξt,T ;K,T ; σ̄ρ)} .

Using the explicit representation (4.1) and that σ̄ρ is bounded above and below as
f(y) is, we find

|P0(t, x+ ξt,T + rδ;K,T ; σ̃ρ,δ) − P0(t, x+ ξt,T ;K,T ; σ̄ρ)| ≤ δc1(eξt,T [|ξt,T | + 1] + 1)

for some c1 and for δ small enough. Using the definition (5.1) of ξt,T and the existence
of its exponential moments, we thus find that

|P ε(t, x, y) − P ε,δ(t, x, y)| ≤ c2δ

for some c2 and for δ small enough.

5.2. Proof of Lemma 4.2. From the definition (3.12) of the correction
√
εP1

and the corresponding definition (4.3) of the correction
√
εP δ1 we deduce

Qε,δ −Qε =

(
1 − (T − t)

(
V ε3

∂3

∂x3
+ (V ε2 − 3V ε3 )

∂2

∂x2
+ (2V ε3 − V ε2 )

∂

∂x

))
(P δ0 − P0).

From the definition (3.10) of the vi’s, the definition (3.13) of the Vi’s, and the bounds
on the solution of the Poisson equation (3.11) given in Appendix C, it follows that

max(|V ε2 |, |V ε3 |) ≤ c1
√
ε

for some constant c1 > 0. Notice that we can write

P δ0 (t, x) = P0(t− δ, x).

Using the explicit formula (4.1), it is easily seen that P0 and its successive derivatives
with respect to x are differentiable in t at any t < T . Therefore we conclude that for
(t, x, y) fixed with t < T

|Qε(t, x) −Qε,δ(t, x)| ≤ c2δ

for some c2 > 0 and δ small enough.
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5.3. Proof of Lemma 4.3. We first introduce some additional notation. Define
the error Zε,δ in the approximation for the regularized problem by

P ε,δ = P δ0 +
√
εP δ1 + εQδ2 + ε3/2Qδ3 − Zε,δ

for Qδ2 and Qδ3 stated below in (5.3) and (5.4). Setting

Lε =
1

ε
L0 +

1√
ε
L1 + L2,

one can write

LεZε,δ = Lε(P δ0 +
√
εP δ1 + εQδ2 + ε3/2Qδ3 − P ε,δ

)
(5.2)

=
1

ε
L0P

δ
0 +

1√
ε

(L0P
δ
1 + L1P

δ
0 )

+ (L0Q
δ
2 + L1P

δ
1 + L2P

δ
0 ) +

√
ε
(L0Q

δ
3 + L1Q

δ
2 + L2P

δ
1

)
+ ε
(L1Q

δ
3 + L2Q

δ
2 +

√
εL2Q

δ
3

)
= ε

(L1Q
δ
3 + L2Q

δ
2

)
+ ε3/2L2Q

δ
3 ≡ Gε,δ

because P ε,δ solves the original equation LεP ε,δ = 0, and we choose P δ0 , P δ1 , Qδ2, and
Qδ3 to cancel the first four terms. In particular, we choose

Qδ2(t, x, y) = −1

2
φ(y)

(
∂2P δ0
∂x2

− ∂P δ0
∂x

)
,(5.3)

so that

L0Q
δ
2 = −L2P

δ
0

(with an “integration constant” arbitrarily set to zero), whereas Qδ3 is a solution of
the Poisson equation

L0Q
δ
3 = −(L1Q

δ
2 + L2P

δ
1 ),(5.4)

where the centering condition is ensured by our choice of P δ1 .
At the terminal time T we have

Zε,δ(T, x, y) = ε
(
Qδ2(T, x, y) +

√
εQδ3(T, x, y)

) ≡ Hε,δ(x, y),(5.5)

where we have used the terminal conditions P ε,δ(T, x, y) = P δ0 (T, x) = hδ(x) and
P δ1 (T, x) = 0. This assumes smooth derivatives of P δ0 in the domain t ≤ T , which
is the case because hδ is smooth. It is shown in Appendix A that the source term
Gε,δ(t, x, y) on the right-hand side of (5.2) can be written in the form

Gε,δ = ε

(
4∑
i=1

g
(1)
i (y)

∂i

∂xi
P δ0 + (T − t)

6∑
i=1

g
(2)
i (y)

∂i

∂xi
P δ0

)

+ ε3/2

(
5∑
i=1

g
(3)
i (y)

∂i

∂xi
P δ0 + (T − t)

7∑
i=1

g
(4)
i (y)

∂i

∂xi
P δ0

)
.(5.6)
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In Appendix A we also show that the terminal condition Hε,δ(x, y) in (5.5) can be
written

Hε,δ(x, y) = ε

(
2∑
i=1

h
(1)
i (y)

∂i

∂xi
P δ0 (T, x)

)
+ ε3/2

(
3∑
i=1

h
(2)
i (y)

∂i

∂xi
P δ0 (T, x)

)
.(5.7)

To bound the contributions from the source term and terminal conditions we need
the following two lemmas, which are derived in Appendices C and B, respectively.

Lemma 5.1. Let χ = g
(j)
i or χ = h

(j)
i with the functions g

(j)
i and h

(j)
i being

defined in (5.6) and (5.7). Then there exists a constant c > 0 (which may depend on
y) such that E

� {|χ(Y εs )|Y εt = y} ≤ c <∞ for t ≤ s ≤ T .
Lemma 5.2. Assume T − t > ∆ > 0 and E

� {|χ(Y εs )|Y εt = y} ≤ c1 <∞ for some
constant c1; then there exist constants c2 > 0 and δ̄ > 0 such that for δ < δ̄ and
t ≤ s ≤ T ∣∣∣∣∣E�t,x,y

{
n∑
i=1

χ(Y εs )
∂i

∂xi
P δ0 (s,Xε

s )

}∣∣∣∣∣ ≤ c2[T + δ − s]min[0,1−n/2],(5.8)

and consequently ∣∣∣∣∣E�t,x,y
{∫ T

t

(T − s)p
n∑
i=1

e−r(s−t)χ(Y εs )
∂i

∂xi
P δ0 (s,Xε

s ) ds

}∣∣∣∣∣(5.9)

≤
{
c2 | log(δ)| for n = 4 + 2p,
c2 δ

min[0,p+(4−n)/2] otherwise.

Proof of Lemma 4.3. We use the probabilistic representation of (5.2), LεZε,δ =
Gε,δ with terminal condition Hε,δ:

Zε,δ(t, x, y) = E
�
t,x,y

{
e−r(T−t)Hε,δ(Xε

T , Y
ε
T ) −

∫ T

t

e−r(s−t)Gε,δ(s,Xε
s , Y

ε
s )ds

}
.

From Lemma 5.2 it follows that there exists a constant c > 0 such that∣∣∣∣∣E�t,x,y
{∫ T

t

e−r(s−t)Gε,δ(Xε
s , Y

ε
s )ds

}∣∣∣∣∣ ≤ c
{
ε+ ε| log(δ)| + ε

√
ε/δ
}
,(5.10)

|E�t,x,y
{
Hε,δ(Xε

T , Y
ε
T )
} | ≤ c

{
ε+ ε

√
ε/δ
}
,(5.11)

and therefore also for (t, x, y) fixed with t < T

|P ε,δ −Qε,δ| = |εQδ2 + ε3/2Qδ3 − Zε,δ|
≤ c

{
ε+ ε| log(δ)| + ε

√
ε/δ
}
,(5.12)

since Qδ2 and Qδ3 evaluated for t < T can also be bounded using (5.3) and (A.5).

6. Conclusion. We have shown that the singular perturbation analysis of fast
mean-reverting stochastic volatility pricing PDEs can be rigorously carried out for call
options. We found that the leading order term and the first correction in the formal
expansion are correct. The accuracy is pointwise in time, stock price, and volatility
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level. It is precisely given in Theorem 3.1. The first correction involves higher-order
derivatives of the Black–Scholes price, which blow up at maturity time and at the
strike price. To overcome this difficulty we have used a payoff smoothing method,
and we have exploited the fact that the perturbation is around the Black–Scholes
price, for which there is an explicit formula. The case of call options is particularly
important, since the calibration of models is based on these instruments. The case of
other types of singularities is open. With some work one can certainly generalize the
method presented here to other European derivatives such as binary options. The case
of path-dependent derivatives such as barrier options is more difficult due to the lack
of an explicit formula for the correction. The situation with American contracts such
as the simplest one, the American put, is much more involved due to the singularities
at the exercise boundary.

Appendix A. Expressions for source term and terminal condition. From
(5.2), the source term in the equation for the error Zε,δ is

Gε,δ = ε
(L1Q

δ
3 + L2Q

δ
2

)
+ ε3/2L2Q

δ
3.(A.1)

To obtain an explicit form for this source term, we consider the three terms separately.
We first introduce the convenient notation

D ≡ ∂

∂x
,

D2 ≡ ∂2

∂x2
− ∂

∂x
.

Consider the term L2Q
δ
2 in (A.1). Using that

L2 = LBS(f(y)) = LBS(σ̄) +
1

2

(
f(y)2 − σ̄2

)D2,(A.2)

LBS(σ̄)D2P
δ
0 = 0,

and (5.3), one deduces

L2Q
δ
2 = −1

4

(
f(y)2 − σ̄2

)
φ(y)D2D2P

δ
0 .

Consider next the term L1Q
δ
3 in (A.1). Using (3.8), we have

Qδ3 = −L−1
0

(L1Q
δ
2 + L2P

δ
1 − 〈L1Q

δ
2 + L2P

δ
1 〉
)

(A.3)

= −L−1
0

(L1Q
δ
2 − 〈L1Q

δ
2〉 + (L2 − 〈L2〉)P δ1

)
.

It follows from (5.3) that

L1Q
δ
2 =

(√
2νρf(y)

∂2

∂x∂y
−
√

2νΛ(y)
∂

∂y

)(
−1

2
φ(y)D2P

δ
0

)
= − 1√

2
νρf(y)φ′(y)DD2P

δ
0 +

1√
2
νΛ(y)φ′(y)D2P

δ
0 .

Now let ψ1 and ψ2 be solutions of

L0ψ1 = f(y)φ′(y) − 〈fφ′〉,(A.4)

L0ψ2 = Λ(y)φ′(y) − 〈Λφ′〉;
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then we find, using (3.11) and (A.2), that Qδ3 can be written

Qδ3 =

(
νρ√

2
ψ1(y)DD2P

δ
0 − ν√

2
ψ2(y)D2P

δ
0

)
− 1

2

(
φ(y)D2P

δ
1

)
.(A.5)

Substituting for L1 and expanding gives

L1Q
δ
3 = ν2ρ2f(y)ψ′

1(y)DDD2P
δ
0 − ν2ρf(y)ψ′

2(y)DD2P
δ
0

− ν2ρΛ(y)ψ′
1(y)DD2P

δ
0 + ν2Λ(y)ψ′

2(y)D2P
δ
0

− ν√
2

(
ρf(y)φ′(y)DD2P

δ
1 − Λ(y)φ′(y)D2P

δ
1

)
.

Consider finally the term L2Q
δ
3 in (A.1); we find, using (A.2) and (A.5),

L2Q
δ
3 =

1

2
(f(y)2 − σ̄2)

[
ρν√

2
ψ1(y)D2DD2P

δ
0 − ν√

2
ψ2(y)D2D2P

δ
0 − 1

2
φ(y)D2D2P

δ
1

]
− 1

2
φ(y)D2

(
v3D3P

δ
0 + v2D2P

δ
0

)
,

with

D3 =
∂3

∂x3
− 3

∂2

∂x2
+ 2

∂

∂x

and v2,3 defined in (3.10).
To summarize, the source term is given by

Gε,δ= ε

{
ν2ρ2f(y)ψ′

1(y)DDD2P
δ
0 − ν2ρf(y)ψ′

2(y)DD2P
δ
0

− ν2ρΛ(y)ψ′
1(y)DD2P

δ
0 + ν2Λ(y)ψ′

2(y)D2P
δ
0

− ν√
2

(
ρf(y)φ′(y)DD2P

δ
1 − Λ(y)φ′(y)D2P

δ
1

)
− 1

4

(
f(y)2 − σ̄2

)
φ(y)D2D2P

δ
0

}

+ ε3/2
{

1

2
(f(y)2−σ̄2)

[
ρν√

2
ψ1(y)D2DD2P

δ
0 −

ν√
2
ψ2(y)D2D2P

δ
0 −

1

2
φ(y)D2D2P

δ
1

]

− 1

2
φ(y)D2(v3D3P

δ
0 + v2D2P

δ
0 )

}
.

By inspection, this can be written in the form (5.6).
From (5.3) and (A.5) we can also see that the terminal condition Hε,δ in (5.5)

can be written in the form (5.7).

Appendix B. Proof of Lemma 5.2. To prove Lemma 5.2 notice first that
a calculation based on the analytic expression for the Black–Scholes price in the
standard constant volatility case gives

∂nxP
δ
0 (s, x) =

{
exN(u/τ + bτ) for n = 1,

exN(u/τ + bτ) +
∑n−2
i=0

b
(n)
i

τ eu∂iue
−(u/τ+bτ)2/2 for n ≥ 2

(B.1)
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for some constants bi and with

τ ≡ σ̄
√
T + δ − s,

u ≡ x− log(K),

b ≡
(
r

σ̄2
+

1

2

)
.

Assume first that T − s ≥ (T − t)/2 > 0, so that τ ≥ σ̄
√

(T − t)/2. Since
∂ixP

δ
0 (s, x) is uniformly bounded in δ, it follows that

|E�t,x,y
{
χ(Y εs )∂ixP

δ
0 (s,Xε

s )
} | ≤ cE�t,x,y {|χ(Y εs )|}(B.2)

for some constant c that may depend on x.
Consider next the case 0 < T − s < (T − t)/2; then∣∣E�t,x,y {χ(Y εs )∂ixP

δ
0 (s,Xε

s )
}∣∣ =

∣∣E�t,x,y{χ(Y εs )E�t,x,y
{
∂ixP

δ
0 (s,Xε

s ) | Ẑ�v ; t ≤ v ≤ s
}}∣∣

and ∣∣∣∣E�t,x,y
{

1

τ
eu∂iue

−(u/τ+bτ)2/2

∣∣∣∣ Ẑ�v ; t ≤ v ≤ s

}∣∣∣∣(B.3)

=
1

τ

∣∣∣∣
∫
eu∂iue

−(u/τ+bτ)2/2p(u)du

∣∣∣∣
=

1

τ i

∣∣∣∣
∫
eτu∂iue

−(u+bτ)2/2p(τu)du

∣∣∣∣ ≤ c

τ i
,

where p is the conditional distribution of u ≡ Xε
s − log(K), which is the Gaussian

distribution with variance at least (T − t)(1 − ρ2)m2
1/2. The bound (5.8) follows

readily from (B.1), (B.2), and (B.3). The bound (5.9) is a direct consequence of (5.8),
and Lemma 5.2 is established.

Appendix C. On the solution of the Poisson equation. Let χ solve

L0χ+ g = 0,

with L0 defined as in (2.5) and with g satisfying the centering condition

〈g〉 = 0,

where the averaging is done with respect to the invariant distribution associated with
the infinitesimal generator L0 (see (3.3) for an explicit formula). Using the explicit
form of the differential operator L0, one can easily deduce that

Φ(y)χ′(y) =
−1

ν2

∫ y

−∞
g(z)Φ(z) dz =

1

ν2

∫ ∞

y

g(z)Φ(z) dz,

with Φ being the probability density of the invariant distribution N (m, ν2) associated
with L0. From this it follows that if g is bounded,

|χ′(y)| ≤ c1,

|χ(y)| ≤ c2(1 + log(1 + |y|)).
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Notice that χ in Lemma 5.1 satisfies

|χ(y)| ≤ cmax(|φ(y)|, |φ′(y)|, |ψ1,2(y)|, |ψ′
1,2(y)|)

for some constant c and with φ and ψ1,2 defined in (3.11) and (A.4), respectively.
These functions are solutions of Poisson equations with g = f2−〈f2〉 or g = fφ′−〈fφ′〉
or g = Λφ′ − 〈Λφ′〉, which are bounded. Therefore χ(y) is at most logarithmically
growing at infinity. The bound in Lemma 5.1 now follows from classical a priori
estimates on the moments of the process Y εt , which are uniform in ε. In the case
Λ = 0 this can easily be seen by a simple time change t = εt′ in (2.2). The case Λ �= 0
follows by a Girsanov change of measure argument.
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CHEMOTACTIC CELLULAR MIGRATION: SMOOTH AND
DISCONTINUOUS TRAVELLING WAVE SOLUTIONS∗
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Abstract. A simple model of chemotactic cell migration gives rise to travelling wave solutions.
By varying the cellular growth rate and chemoattractant production rate, travelling waves with both
smooth and discontinuous fronts are found using phase plane analysis. The phase plane exhibits a
curve of singularities whose position relative to the equilibrium points in the phase plane determines
the nature of the heteroclinic orbits, where they exist. Smooth solutions have trajectories connecting
the steady states lying to one side of the singular curve. Travelling shock waves arise by connecting
trajectories passing through a special point in the singular curve and recrossing the singular curve,
by way of a discontinuity. Hyperbolic partial differential equation theory gives the necessary shock
condition. Conditions on the parameter values determine when the solutions are smooth travelling
waves versus discontinuous travelling wave solutions. These conditions provide bounds on the travel-
ling wave speeds, corresponding to bounds on the chemotactic velocity or bounds on cellular growth
rate. This analysis gives rise to the possibility of representing sharp fronts to waves of invading cells
through a simple chemotactic term, without introducing a nonlinear diffusion term. This is more
appropriate when cell populations are sufficiently dense.

Key words. migration, chemotaxis, travelling wave, phase plane, shock
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1. Introduction. The active migration of cells is a significant feature of nu-
merous biological phenomena ranging from wound healing, scar tissue formation, and
tumor invasion to embryo implantation and organogenesis.

Despite having been the focus of much research, a comprehensive understanding
of the processes of receptor activation, cell-cell signalling, and intracellular organiza-
tion associated with cell migration in various contexts eludes us. In part this is due
to the numerous and complicated mechanisms that are involved and, perhaps more
importantly, to the cooperative or antagonistic interactions between such processes.

Mathematical modelling of biological phenomena provides a timely and efficient
theoretical tool for considering the interaction of various cell migration mechanisms,
and the emergent behavior that arises from these interactions. To date, much of the
mathematical modelling of cell migration has been predicated on the phenomena of
diffusion, chemotaxis, and haptotaxis, either singly or in combination. Such models
typically support travelling wave solutions, which are taken to represent the invading
fronts of populations of migrating cells. An exemplar of such a model based on
the process of diffusion is Fisher’s equation on a one-dimensional spatial domain
[15]. Chemotaxis-based models employ a gradient of a diffusible signaling chemical to
determine the velocity of cell migration [1], [14], [18], whilst haptotaxis-based models
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employ a gradient of extracellular matrix or ligand density [17] to this end.
The extensive literature developed over the last few decades concerning the theo-

retical modelling of chemotaxis is testament to the perceived importance of the role it
plays in cell migration. Many of these mathematical models can identify their origins
in the work of Keller and Segel [9] describing the motion of bacteria as a chemotactic
response. Significant contributions to this body of knowledge include those by Tran-
quillo [22], Tranquillo and Alt [23], Hillen [8], and Othmer and Stevens [16], while
others may be identified in a recent review by Ford and Cummings [6].

The analysis of such models can lead to an understanding of the relative contri-
butions by the mechanisms modelled to the speed of the invading front of cells, and,
by implication, potential strategies for effecting changes to the speed of the invading
front can be hypothesized and investigated.

Typically, invasive phenomena in the context of migrating populations of cells
are characterized by a well-defined boundary. This feature is difficult to reproduce
when using a diffusive flux to represent the migration process. Mathematical models
involving a linear diffusive flux give rise to smooth-fronted solutions, with the solution
being nonzero everywhere (albeit small). A nonlinear diffusive flux, where the diffu-
sivity is density dependent (and equal to zero when the density is zero), gives rise to
solutions with distinct interfaces beyond which the density equals zero. Such models
have been explored in describing population pressures and moisture infiltration [5],
[7], [15], [20], [24], [25]. Even though such solutions have compact support, they are
smooth when the density is positive and do not exhibit shocks. Solutions with shocks
are not realizable with a diffusive mechanism.

For a limited number of specific and very simple models based on chemotaxis,
recent research by Pettet, McElwain, and Norbury [19] and others [17], [12] has shown
the potential for chemotaxis-based models to exhibit travelling wave solutions with
shock fronts. Such sharp-fronted solutions may be viewed as being more indicative
of invading cell populations with a well-defined front or margin than those described
above.

In this article we consider a simple model of chemotactic cell migration, where
there is no contribution to the cell velocity from a diffusion-like term. We explore
this theoretical model of cell migration numerically and analytically to show that, for
various parameter regimes, smooth-fronted or shock-fronted travelling wave solutions
can be supported.

A coupled system of partial differential equations for cell density and chemoattrac-
tant concentration is considered. We introduce a travelling wave coordinate system
with an unknown wave speed to convert the system into a coupled system of ordinary
differential equations. This is explored using phase plane analysis, giving rise to a
rich variety of possible solutions. Consideration of the original system as a hyperbolic
system allows shock conditions to be specified uniquely. Some asymptotic analysis for
large wave speed is also examined.

2. Chemotactic cell migration in a fixed spatial domain of one dimen-
sion. We begin by describing a simple system of equations designed to describe the
chemotactic migration of cells in a fixed domain. We use a coordinate x fixed in space
(i.e., a Eulerian system). The cell density per unit length and the chemoattractant
concentration are denoted by n(x, t) and g(x, t), respectively. The usual conservation-
of-mass argument for a generic chemotaxis problem gives

∂n

∂t
= −χ

∂

∂x

(
n
∂g

∂x

)
+ f(n, g),(2.1)
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Fig. 2.1. Chemotactic cell migration at different wave speeds. Numerical solutions of equations

(2.1)–(2.4) on [0, 1] with the inclusion of Fickian diffusion (Dn
∂2n
∂x2 ) in (2.1). Here Dn = 0.00001,

λ1 = 2, k1 = 1, λ2 = 0.25, λ3 = 1, k2 = 1 and χ = 0.0001, 0.001, 0.002 and 0.003. Initial conditions

are n(x, 0) = e−500x2
and g(x, 0) = 1 with zero flux boundary conditions at x = 0, 1. (a) Advancing

front (moving left to right) of migrating cells at dimensioned time t = 17.5. (b) Retreating front
(moving left to right) of chemoattractant at dimensioned time t = 17.5.

∂g

∂t
= h(n, g),(2.2)

where the chemotactic factor χ is assumed to be a constant and f and h represent
the kinetic terms. This type of model system, where only chemotaxis contributes to
the cell migration, has been studied by several authors [2], [19], [11]. For this reason
we have excluded diffusivity from the model equations (2.1)–(2.2).

Our problem concerns cells n, which proliferate by mitosis and may die or differen-
tiate into another cell type. These two effects can be incorporated into a logistic-type
term for f . The chemoattractant g is produced uniformly throughout the domain and
has a maximum value. Furthermore, the cells consume the chemoattractant, which
creates a gradient of g and produces a migration velocity. These effects are reflected
in our choice of f and h as

f = λ1n(k1 − n),(2.3)

h = λ2g(k2 − g)− λ3ng.(2.4)

Numerical solutions to such a system on a finite domain exhibit travelling wave
solutions, as illustrated in Figure 2.1. Here we have included a small amount of diffu-
sion in n in order to stabilize the system, allowing the use of the Numerical Algorithms
Group (NAG) parabolic partial differential equations package DO3PCF. In Landman,
Pettet, and Newgreen [10] we explicitly introduce two migration mechanisms, namely,
chemotaxis and diffusion. We look at the effect of decreasing diffusivity, when the
diffusion coefficient is small in comparison to the chemotactic sensitivity coefficient,
and show that the solutions look almost identical as the diffusion coefficient is reduced
by several orders of magnitude. Since our interest is in systems of invasion, for which
chemotaxis is the dominant cell migration mechanism, the arguments considered in
[10] allow us to neglect any effect attributable to the small diffusivity introduced for
these numerical results.

We observe that the front of n steepens as the chemoattractant coefficient χ
increases. If the parameter is pushed too far, the solution appears to develop a nu-
merical instability which may be interpreted as the evolution of a jump discontinuity.
These numerical simulations initiate questions about the nature of such solutions and
whether or not smooth and discontinuous travelling wave solutions can be determined
analytically.
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An appropriate dimensionalization is carried out with the following transforma-
tion, where we introduce a length scale L and scaled parameters a and b as shown:

n = k1n
∗, g = k2g

∗, t = Tt∗, x = Lx∗,(2.5)

T =
1

λ3k1
, L2 =

χk2

λ3k1
, a =

λ1

λ3
, b =

λ2k2

λ3k1
.(2.6)

Omitting the asterisk notation, the dimensionless system is

∂n

∂t
= − ∂

∂x

(
n
∂g

∂x

)
+ an(1− n),(2.7)

∂g

∂t
= bg(1− g)− ng.(2.8)

There are many scalings we could have chosen. This scaling focuses on the two most
important terms in the problem, namely, chemotactic migration and the interaction
terms between n and g.

Now, making the travelling wave coordinate transformation z = x− ct, we obtain

dn

dz
=
1

c

d

dz

(
n
dg

dz

)
− an

c
(1− n),(2.9)

dg

dz
= −1

c
[bg(1− g)− ng] ,(2.10)

which, after appropriate substitutions from (2.10) into (2.9), may be written as[
1 +

g

c2
(b(1− g)− 2n)

] dn
dz
=

ng

c3
[b(1− 2g)− n] [b(1− g)− n]− an

c
(1− n),(2.11)

dg

dz
= −1

c
[bg(1− g)− ng] .(2.12)

We will be considering (2.11)–(2.12) in the phase plane, and we will plot tra-
jectories in the (g, n) plane. For b > 0, the steady states of the system are (g, n) =
(0, 0), (1, 0), (0, 1) and (1− 1

b , 1). Since we are interested only in solutions where n and
g are nonnegative, the last state exists only for b > 1. When b = 0, the steady state
(0, 0) is replaced by a continuum of steady states (ḡ, 0). In this paper, we concentrate
on the case b > 0 and briefly comment on the degenerate case b = 0 in section 5.3.

We seek travelling wave solutions connecting (0, 1) or (1 − 1
b , 1) and (1, 0). Lin-

earization about the steady states yields the nature of these states. This information,
together with the eigenvalues and eigenvectors, is listed in Table 1.

3. Phase plane analysis. We will investigate the positive quadrant of the
(g, n) phase plane; this is made interesting by the position of the curve, where the
function premultiplying dn

dz in (2.11) is identically equal to zero. Pettet, McElwain,
and Norbury [19] defined such a curve as a “wall-of-singularities.” Here the wall-of-
singularities can be written as

n =
1

2

(
c2

g
+ b(1− g)

)
.(3.1)

This wall is asymptotic to the n-axis, cutting the positive g-axis at

g =
1

2

(
1 +

√
1 +

4c2

b

)
,
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Table 1
Nature of equilibrium points.

(g, n) Type Eigenvalues
Corresponding

eigenvectors (g, n)

(0, 0) Stable node −a
c
,− b

c
(0, 1) , (1, 0)

(1, 0) Saddle −a
c
, b
c

(1,−a− b) , (1, 0)

(0, 1)

b < 1
Unstable node

b > 1
Saddle

a
c
, 1−b
c

(0, 1) ,
(
1,− (b−1)2

c2(a+b−1)

)

(1− 1
b
, 1)

for b > 1

c2 > 1− 1
b

Unstable node

c2 < 1− 1
b

Saddle

(a+b−1)c±
√
β+γ2

2(c2−1+ 1
b
)

,

where β = 4a(b−1)2

b
,

γ = (a− b+ 1)c

Complicated form

to the right of the steady state (1, 0). Hence all the steady states are to the left of
the wall when 0 < b < 1. If b > 1, the new steady state (1 − 1

b , 1) is below (above)
the wall if c2 > 1 − 1

b (c
2 < 1 − 1

b ). From Table 1, we can see that the nature of
this steady state changes according to the same inequality. The wall gets closer to
the origin as c decreases.

Pettet, McElwain, and Norbury [19] showed that solutions approaching a wall-
of-singularities could not cross the wall unless it passed through special points called
gates or holes in the wall. These points are defined by both the function premulti-
plying dn

dz and the right-hand side in (2.11) being equal to zero simultaneously. Thus,
travelling wave solutions joining two steady states (one unstable and the other stable)
on the same side of the wall-of-singularities could under some circumstance be shown
not to exist when the wall-of-singularities interfered with the trajectory emanating
from the unstable steady state.

Pettet, McElwain, and Norbury concerned themselves only with smooth-fronted
travelling waves. They presumed that any trajectory exiting the unstable steady state
of interest that passed through a hole in the wall could then not recross the wall in
order to connect with the stable steady state. However, Marchant, Norbury, and
Perumpanani [12] showed that for a very simple system of equations (in the class of
(2.1)–(2.2)) a trajectory in the phase plane could indeed follow such a path, recrossing
the wall by way of a jump discontinuity.

In the system we describe here, there is always a hole at the intersection of the wall
with the g-axis. However, it is necessary for the holes to lie within the positive (g, n)
quadrant if any trajectory passing through the hole is to remain in that quadrant.
Depending on the parameter values, for our system there can be no, one, or two holes
contained within the positive quadrant.

The interaction of the trajectories and the wall-of-singularities is extremely inter-
esting. We start by giving some examples.

Consider first the case 0 < b < 1. We seek a trajectory connecting the unstable
node (0, 1) to the saddle (1, 0). By considering the vector field associated with (2.11)
and (2.12), it can be shown that such a trajectory certainly exists if the wall is
sufficiently far from the axes. For example, we fix the wall position (fix b and c) and
vary a, the effective cellular growth rate or mitotic index of n, as illustrated in Figure
3.1. For sufficiently small values of a there is a unique trajectory to the left of the
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Fig. 3.1. Phase plane for (g, n) for increasing values of cellular growth rate a. Here b =
0.25, c = 1. The wall is indicated with a dark line; the holes in the wall and the steady states are
marked with a •. (a) a = 0.5, no holes. (b) a = 1.0, two holes (both with g > 0). (c) a = 2.0, one
hole. (d) a = 4.0, one hole.

wall, connecting the two states (shown here with a = 0.5 and 1); this gives a smooth
travelling wave. However, for large enough values of a, no such trajectory can be
found below the wall, as shown here with a = 2 and 4. In fact, there appears to be a
trajectory from (0, 1) travelling towards the hole in the wall.

Alternatively, we can consider the effect of fixing the two rates a and b and
decreasing the wave speed c. This translates the wall closer to the axes, as shown in
Figure 3.2. When c = 1.5, there is a trajectory lying below the wall joining the steady
states. However, for c = 1 and 0.5, no such trajectory exists, but again there is one
trajectory from (0, 1) heading towards the hole in the wall.

Since trajectories cannot cross each other, or cross the wall at any point other
than a hole in the wall, we must determine how it is possible for a trajectory passing
through a hole to recross the wall and connect to the other steady state. Marchant
[11] investigated this scenario for his system, and his arguments apply equally to our
system of equations. No smooth connection between the two states can be made;
however, there is the possibility for the solution to be nonsmooth, by containing a
jump discontinuity.

It is appropriate to apply Marchant’s approach here to our system. We do this
now, and then return to the phase plane analysis in section 5.
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Fig. 3.2. Phase plane for (g, n) for decreasing values of wave speed c. Here a = 2.0, b = 0.25.
Wall, holes, and steady states marked as indicated previously. Each example has one hole in the
positive quadrant. (a) c = 1.5. (b) c = 1.0. (c) c = 0.5.

4. Hyperbolic PDE theory: Shocks and discontinuities. Introducing a
third variable u = ∂g

∂x , consider the scaled generic chemotaxis problem (2.7) and (2.8)
as a hyperbolic system, namely,

∂n

∂t
= − ∂

∂x
(nu) + f(n, g) = −u

∂n

∂x
− n

∂u

∂x
+ f(n, g),(4.1)

∂u

∂t
= hn

∂n

∂x
+ hg

∂g

∂x
,(4.2)

∂g

∂t
= h(n, g),(4.3)

which in matrix form becomes

∂

∂t


 n

u
g


+


 u n 0

−hn 0 −hg
0 0 0


 ∂

∂x


 n

u
g


 =


 f
0
h


 .(4.4)

The characteristic slopes are determined from the eigenvalues of the 3 × 3 matrix
in (4.4). These are solutions of

λ [(u− λ)(λ)− nhn] = 0.(4.5)

There are three distinct solutions for hn < 0 and n > 0. This confirms that the
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system is strictly hyperbolic [21] with

λ1 =
1

2

[
u−

√
u2 − 4nhn

]
≤ λ2 = 0 ≤ λ3 =

1

2

[
u+

√
u2 − 4nhn

]
.(4.6)

The characteristics have gradient dx/dt = λi, which is never infinite, so the line
t = 0 is nowhere tangent to a characteristic. Hence if initial data for n, u, g is given
along the line t = 0, the resulting Cauchy problem is well posed. By considering
the matrix of right eigenvectors, which correspond to each λi, the λ2 field is always
linearly degenerate, and the λ1 and λ3 fields are genuinely nonlinear characteristic
fields for (n, u, g) in the positive quadrant.

A shock (i.e., a curve separating intersecting characteristics defining a disconti-
nuity in at least one of the variables on either side of the curve) may exist in either of
the two genuinely nonlinear fields. We are looking for a shock that propagates with
the travelling wave speed c, since all the information on a travelling wave moves with
this speed. Following Marchant [11], [12], the Lax entropy condition ensures that the
shocks are physically relevant [4]; hence, since the wave speed c > 0, only the λ3 field
is relevant.

4.1. Shock conditions. We write the system (4.4) in conservation form,

∂P

∂t
+

∂Q

∂x
= S,(4.7)

where

P =


 n

u
g


 , Q =


 nu

−h
0


 , S =


 f
0
h


 .(4.8)

The Rankine–Hugoniot jump condition [4] defining the shock moving with velocity
c in the third field is

[P ] c = [Q] ,(4.9)

where [q] denotes the jump in the quantity q. For our system this gives

[n] c = [nu] ,(4.10)

[u] c = [−h] ,(4.11)

[g] c = 0.(4.12)

Since u = ∂g
∂x = − 1

ch, the second equation always holds, while the third equation
says that there is no discontinuity in g. Using the definition of u and our particular
choice of (dimensionless) kinetic term h = bg(1− g)− ng, the first equation gives

[n] c = [nu] =

[
−1
c
nh

]
= −1

c
[bng(1− g)− n2g]

= −1
c
bg(1− g)[n] +

1

c
g[n2].

(4.13)

This simplifies to (
c2 + bg(1− g)

)
[n] = g

[
n2
]
.(4.14)
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Using the definition [n] = nL − nR, where nL and nR are the values of n on either
side of the shock, (4.14) and (4.12) reduce to

nL + nR =
1

g

(
c2 + bg(1− g)

)
, gL = gR.(4.15)

Recall that the wall-of-singularities satisfies (3.1). Hence, the geometric center of the
jump 1

2 (nL + nR) lies exactly on the wall-of-singularities, and therefore any jump
takes the trajectory to the other side of the wall. Of course, a jump is only allowable
if nR > 0. Note that the Lax entropy condition [4] for the λ3 field is satisfied only if
nL > nR.

4.2. Power series. The trajectories needed to construct a travelling shock wave
can be determined by power series solutions. Equations (2.11) and (2.12) can be
written in the form

dn

dg
= −

ng
c2 [b(1− 2g)− n] [b(1− g)− n]− an(1− n)[
1 + g

c2 (b(1− g)− 2n)] [bg(1− g)− ng]
.(4.16)

Solutions n(g) can be found by expanding in powers about special points. Such points
are steady-state solutions to the system and holes in the wall. Let (gs, ns) be such a
point, and then write

g = gs + f,(4.17)

n(g) = ns + α1f + α2f
2 + α3f

3 + · · · .(4.18)

The coefficients αi are determined sequentially by substituting into (4.16) and then
matching powers of f . The resulting power series has a radius of convergence defined
by the analyticity of the right-hand side of (4.16). This term is not analytic along
the wall, and the lines g = 0 and n = bg(1− g). Below we will be generating a power
series about a hole in the wall and around (1, 0).

5. Phase plane revisited.

5.1. Production rate of g satisfies 0 < b < 1. We now show how to con-
struct a travelling shock wave to the example in Figure 3.1(c), where there is one hole
in the wall in the positive quadrant. This is illustrated in Figure 5.1(a). We first
determine the power series about this hole and find that there are two possible values
of α1. Each of these values provides unique values of the other αi; hence we obtain
two trajectories through the hole in the wall. One of these passes through the n-axis
at n = 1, and this is the one of interest. Points on this curve, to the right of the
hole, are possible values of nL. We next determine the power series through (1, 0)
and determine its intersection with the wall (the limit of its convergence). To the
right of this, we determine the curve which lies below the wall, which marks the outer
envelope of the possible points for nR, such that the midpoint of the shock lies on the
wall. There is a unique value of g that satisfies the jump conditions (4.15). Hence
we obtain two trajectories, one allowing passage through the hole, and, by recrossing
the wall with a jump discontinuity, the other connecting to the steady state on the
g-axis. The corresponding n(z) and g(z) are shown in Figure 5.1(b) (where we have
arbitrarily placed the shock at z = 0).

This example illustrates two interesting facts about the solutions for n. For wave
speed sufficiently large, a unique smooth travelling solution exists between the steady
states (0, 1) and (1, 0). Furthermore, there exists a sufficiently large cellular growth
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Fig. 5.1. Travelling shock wave. Here a = 2.0, b = 0.25, c = 1.0. (a) Construction of the shock
solution. Curve 1 is the power series solution around the hole in the wall; nL must lie on this curve
to the right of the hole. Curve 2 is the power series solution around (1, 0). Curve 3 is equidistant
below the wall as curve 1 is above the wall, defined to the right of the hole. The jump is located
at the point of intersection of curves 2 and 3. (b) The solution profiles for n and g versus z; the
discontinuity in n at z = 0 is highlighted with a thicker line.

rate such that smooth solutions no longer exist and a travelling wave with a shock
exists. Alternatively, for fixed a and b, there is a minimum wave speed such that
smooth travelling wave solutions exist for c > ccrit. We have also found that if c is
decreased further, travelling shock wave solutions exist for cmin < c < ccrit. The cmin
is the value which determines the trajectory which jumps directly to the steady state
(1, 0). For 0 < c < cmin, no smooth or nonsmooth trajectories exist, since to the
right of the hole the distance between the wall and the trajectory through the hole is
greater than the distance between the wall and the g-axis.

5.2. Production rate of g satisfies b > 1. We now turn to increasing b.
Within the range 0 < b < 1, the qualitative behavior of the phase plane is the same as
outlined here with b = 0.25. It remains qualitatively similar when b = 1, although now
all trajectories (except the one along the n-axis) leave the point (0, 1) horizontally. In
Figure 5.2(a) there is a smooth trajectory corresponding to a travelling wave, and in
Figure 5.2(b) there will be a trajectory with a jump corresponding to a travelling shock
wave. However, as b increases through unity, the steady state (0, 1) changes from an
unstable node to a saddle. The only outgoing trajectory emanating from this point is
along the n-axis; hence there is no trajectory joining this point to (1, 0). However, at
the same time a new steady state moves into the positive quadrant, namely (1− 1

b , 1),
which is an unstable node if it lies below the wall (i.e., if c2 > 1− 1

b ), and is a saddle if
it lies above the wall (i.e., if c2 < 1− 1

b ). We wish to determine whether a trajectory
joining (1 − 1

b , 1) and (1, 0) exists and whether it corresponds to smooth travelling
wave solutions.

5.2.1. Sufficiently large wave speed: c2 > 1− 1
b
. In this case, both steady

states are below the wall. Figure 5.3(a) shows that there is a trajectory connecting
these two states. Again, when a is increased as illustrated in Figure 5.3(b), these two
states can be connected by a trajectory passing through a hole in the wall, allowing a
jump discontinuity in n with the wall lying at the midpoint of the jump. Hence again
there is a transition from smooth travelling solutions to travelling solutions with a
discontinuity.
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Fig. 5.2. Phase plane for (g, n) for increasing values of cellular growth rate a. Here b = 1.0,
c = 1.0. Wall, holes, and steady states marked as indicated previously. (a) a = 0.5, no holes. (b)
a = 3.0, one hole.

(a) 0.2 0.4 0.6 0.8 1 1.2 1.4
g

0.2

0.4

0.6

0.8

1

1.2

1.4

n

(b) 0.2 0.4 0.6 0.8 1 1.2 1.4
g

0.2

0.4

0.6

0.8

1

1.2

1.4

n

Fig. 5.3. Phase plane for (g, n) for sufficiently large wave speed and increasing values of cellular
growth rate a. Here b = 1.5, c = 1.0, and so c2 > 1 − 1

b
. Wall, holes, and steady states marked as

indicated previously. (a) a = 0.5, no holes. (b) a = 3.0, one hole.

5.2.2. Sufficiently small wave speed: c2 < 1− 1
b
. In this case, both steady

states are separated by the wall. The only possible way to connect them would be
with a trajectory passing through a hole in the wall. In the two examples shown in
Figure 5.4 (and in others we have tried), there appears to be no connection between
these states. To understand the phase plane figures, it is useful to use a coordinate
transformation similar to that employed by Pettet, McElwain, and Norbury [19],
namely,

d

dZ
=
[
1 +

g

c2
(b(1− g)− 2n)

] d

dz

when [1 + g
c2 (b(1 − g) − 2n)] �= 0. Now the holes in the wall become new steady

states, and the wall becomes a g-nullcline. Figure 5.5 gives the transformed phase
plane corresponding to the examples in Figure 5.4. In Figure 5.5(a), the hole becomes
a stable spiral, and the one on the g-axis is a stable node. It appears that there is
a limit cycle in this example. Since there is no physical or biological interpretation
of Z, unlike z = x − ct, it is not fruitful to pursue the limit cycle analysis here. In
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Fig. 5.4. Phase plane for (g, n) for sufficiently small wave speed and b > 1. Here a = 3.0, and
both examples satisfy c2 < 1− 1

b
. Wall, holes, and steady states marked as indicated previously. (a)

b = 1.5, c = 0.1, one hole. (b) b = 3.0, c = 0.5, two holes.
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Fig. 5.5. Z phase plane for (g, n) for sufficiently small wave speed and b > 1. Here a = 3.0,
and both examples satisfy c2 < 1− 1

b
. Steady states marked as indicated previously. The parameter

values are as for Figure 5.4. (a) b = 1.5, c = 0.1. (b) b = 3.0, c = 0.5.

Figure 5.5(b), one hole becomes an unstable spiral and the other a stable node, while
the one on the g-axis is a saddle.

5.3. Production rate of g satisfies b = 0. In this case, the chemoattractant
has no production term. Since this degenerate case is similar to other recent work
[11], [12], [17], we just summarize the results. When b = 0, the steady state (0, 0) is
replaced by a continuum of steady states (ḡ, 0). Smooth travelling waves exist between
(0, 1) and (ḡ, 0) for ḡ < ḡcrit, as shown in Figure 5.6. Using the power series method
about the hole, we find that there are two values of α1, resulting in two trajectories
through the hole in the wall. One of these passes through the n-axis at n = 1, and the
other passes through the g-axis at g = ḡ, thus defining ḡcrit. For ḡcrit < ḡ < ḡmax,
the connecting trajectory passes through a hole in the wall and has a jump in it,
satisfying the jump condition. The maximum value ḡmax is defined as the value of g
when the trajectory through the hole jumps directly to a point on the g-axis, that is,
nR = 0.
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Fig. 5.6. Phase plane for (g, n) for degenerate case b = 0. Here a = 0.5 and c = 1. Wall,
holes, and steady states marked as indicated previously.

6. Asymptotic analysis for large wave speed c. We have demonstrated
that there is a minimum wave speed for a smooth travelling wave to exist. The phase
plane analysis does not actually allow for a calculation of the actual solution. It can
be found numerically on a finite domain, but the numerical solution will always tend
to the minimum wave speed (see Figure 2.1). Here we investigate the analytic form of
the solution for large wave speed c, following Canosa [3]. We introduce a new space
variable as z = cξ and ε = 1

c2 into (2.11)–(2.12) and obtain

[1 + εg(b(1− g)− 2n)] dn
dξ
= εng [b(1− 2g)− n] [b(1− g)− n]− an(1− n),(6.1)

dg

dξ
= −(bg(1− g)− ng).(6.2)

For small ε we look for an asymptotic expansion of the solution in terms of ε as

n = n0 + εn1 + ε2n2 + · · · ,(6.3)

g = g0 + εg1 + ε2g2 + · · · .(6.4)

Here we investigate the lowest order terms n0 and g0 of the solution. These satisfy

dn0

dξ
= −an0(1− n0),(6.5)

dg0

dξ
= −bg0(1− g0) + n0g0.(6.6)

The n0 equation is decoupled and can be solved as

n0 = (1 + eaξ)−1,(6.7)

where the integration constant has been chosen without any loss of generality so
that n0(0) =

1
2 . Equation (6.6) can be solved analytically, but it is in terms of

hypergeometric functions, which is not very helpful. For b = 0, the solution is simply

g0 = (1 + e−aξ)−1/a,(6.8)

so that n0 = 1 − ga0 . We see in Figure 6.1 that the numerical solution for g0 when
0 < b < 1 differs only slightly from the solution when b = 0, and all solutions for
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Fig. 6.1. The lowest order solution profiles for n and g versus ξ = z/c for large wave speed c.
Here a = 1.0. The g curves depend on its production rate b; here b = 0, 0.5, 1.0, and 1.5.

g0 tend to zero as ξ → −∞. For b > 1, g0 tends to 1 − 1
b . Increasing the cellular

growth rate a steepens the gradient of the front for n0, as expected from our previous
analysis. In particular, the slope −∂n

∂ξ (0) = a, and so it increases linearly with a and
is independent of b to lowest order.

7. Conclusions. In this article we have considered a simple mathematical model
of cell migration, where the dominant mechanism driving the migration is the phe-
nomenon of chemotaxis. Such models have been explored in a number of contexts,
generally with the view to seeking travelling wave solutions that may in some way
characterize the front of invasion.

We have explored the possibility of the existence of both smooth-fronted and
shock-fronted travelling wave solutions to a general model of chemotactic cell migra-
tion. Not surprisingly the mathematical model supports a rich variety of solutions
exhibiting a family of identifiable characteristic behaviors such as shock-fronted trav-
elling wave solutions with lower wave speeds than the smooth-fronted waves.

We have shown that for the model of chemotactic migration considered, for fixed
a and 0 < b < 1, there is a minimum wave speed such that smooth travelling wave
solutions exist between the steady states (0, 1) and (1, 0) for c > ccrit. We have
also found that if c is decreased further, travelling shock wave solutions exist for
cmin < c < ccrit. The cmin is the value which gives the trajectory that jumps directly
to the steady state (1, 0). For 0 < c < cmin, no smooth or nonsmooth trajectories
exist, since to the right of the hole in the wall, the distance between the wall and
the trajectory through the hole is greater than the distance between the wall and the
g-axis. A similar argument holds for the case of a sufficiently large wave speed c, such
that for fixed b and c it is possible to increase the cellular growth rate a through a
critical value so that there is a transition from the existence of a smooth-fronted to a
sharp-fronted travelling wave.

When b > 1, similar critical wave speeds can be found defining smooth and
discontinuous travelling wave solutions between the steady states (1− 1

b , 1) and (1, 0),
but only if the steady states are both on the same side of the wall. If the wall separates
these two steady states, then no travelling wave solutions appear to exist.

The wave speeds described above are dimensionless. In terms of dimensioned
variables they correspond to Tv

L = v√
χλ3k1k2

, using (2.5)–(2.6) and where v is di-

mensioned wave speed. Hence, converting bounds on c to bounds on χ, smooth
travelling wave solutions exist for 0 < χ < χcrit, and travelling shock solutions exist
for χcrit < χ < χmax. For χ > χmax, no smooth or nonsmooth trajectories exist.



1680 K. A. LANDMAN, G. J. PETTET, AND D. F. NEWGREEN

These results have been obtained by considering a phase plane analysis for a
coupled system of equations (2.11)–(2.12), along with power series solutions around
some special points. It should be noted that, near the wall, this system is a singularly
perturbed system, since then the coefficient multiplying the derivative in (2.11) is
small and vanishes identically on the wall. Hence at the wall the system reduces to a
differential-algebraic system. The dynamics near the wall could be decomposed into
fast and slow times. Solutions consist of outer segments away from the wall and inner
segments near the wall; matching occurs at holes in the wall. Such an approach could
be used to establish our results theoretically. This is beyond the scope of this current
paper, which is concerned with establishing the possibility of both smooth-fronted
and shock-fronted travelling wave solutions to a general model of chemotactic cell
migration.

Typically, migrating cell populations in invasive phenomena are characterized by
a well-defined boundary. A nonlinear diffusive flux can capture this feature, but does
not allow for shock solutions. Of particular interest here, though, is the possibility of
representing sharp fronts to waves of invading cells by the simple chemotactic term,
without the need for nonlinear diffusion. As presented here, the chemotactic cell
migration model (2.1)–(2.2) supports jump discontinuities when cmin < c < ccrit.
However, solutions with compact support exist only for c = cmin, whereas for cmin <
c < ccrit there is a smooth leading segment of the front ahead of the discontinuity. We
anticipate that the minimum invasion speed solution (with cmin) will evolve as the
stable solution, using a hyperbolic numerical solver, as indicated by Marchant and
Norbury [13]. Furthermore, the numerical solutions in Figure 2.1 suggest that this
may be the case, since as χ increases, corresponding to c decreasing, the leading edge
contracts. We are presently tackling these issues.

When cell population numbers are sufficiently dense to imply frequent and signif-
icant cell-cell interactions, the suitability of a diffusive flux term comes into question.
In such circumstances, mathematical models of cell migration in which a chemotactic
flux dominates over the diffusive flux are more appropriate. Being essentially hyper-
bolic in nature, these models have the potential to support shock-fronted solutions,
which may be seen as a new paradigm for the representation of cell migration.

Acknowledgments. We would like to thank Dr. Mark McGuinness, at Victoria
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reviewers for their helpful comments and suggestions.
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Abstract. The harmonic map heat flow is a model for nematic liquid crystals and also has
origins in geometry. We present an analysis of the asymptotic behavior of singularities arising in
this flow for a special class of solutions which generalizes a known (radially symmetric) reduction.
Specifically, the rate at which blowup occurs is investigated in settings with certain symmetries,
using the method of matched asymptotic expansions. We identify a range of blowup scenarios in
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1. Introduction. We consider the equation

θt = θrr +
1

r
θr − sin 2θ

2r2
, 0 < r < 1,(1.1)

with boundary conditions θ(t, 0) ∈ πZ and θ(t, 1) = θ1 ∈ R; the reason for this type of
boundary condition at r = 0 will become clear shortly. Solutions of (1.1) may develop
a singularity. In this paper we analyze this blowup behavior using formal matched
asymptotics.

Equation (1.1) is a special case of the harmonic map heat flow

∂u

∂t
= ∆u+ |∇u|2u,(1.2)

where u(t, ·) : Ω → S2; i.e., u(t, x) denotes a unit vector in R
3, Ω ⊂ R

N (in most

physical models N = 3), and |∇u|2 =∑N
j=1

∑3
i=1(

∂ui

∂xj
)2. Stationary solutions of (1.2)

are harmonic maps from Ω to S2.
Observe that we are dealing with blowup of the derivative ∇u while u remains

bounded (in fact, |u(t, x)| = 1 for all t and x), and similarly θr blows up while θ
remains bounded. (As we shall see, θ can make finite jumps.) This stands in contrast
to many widely studied blowup problems, such as the reaction-diffusion equation
ut = ∆u+up with p > 1, where u itself blows up (see, e.g., [8] and references therein).

Equation (1.2) may be reduced to (1.1) if Ω is a disk in R
2: assuming the solution

to be radially symmetric and using polar coordinates (r, φ) on the unit disk, a special
type of solution of (1.2) is given by

u(t, ·) : (r, φ) →

 cosφ sin θ(t, r)

sinφ sin θ(t, r)
cos θ(t, r)


 ,(1.3)
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where θ(t, r) satisfies (1.1). Similarly, when Ω is a cylinder, then the problem of
finding solutions of (1.2) that are both radially symmetric and uniform in the axial
direction may be reduced to (1.1). This is the configuration studied in [11] as a model
for aligned nematic liquid crystals, with the motivation coming from applications in
fiber spinning. Beside the context of liquid crystals (see, e.g., [14]), another appli-
cation in which (1.2) appears is the theory of ferromagnetic materials (e.g., [6, 3]).
In geometry, (1.2) is studied in the construction of harmonic maps of certain homo-
topy types (see, e.g., [15]), where Ω is generally (a subset of) an N -manifold. (The
target manifold may also differ from S2, but if it is not a sphere, (1.2) is altered.)
The formation of singularities in the flow of (1.2) has been extensively studied; we
refer to [15, 16, 9]. Singularities occur due to topological obstructions, a situation
which is comparable to closely related problems in the Ginzburg–Landau equation
(see, e.g., [4]). In the present context, the issue is that while all solutions eventually
converge to equilibria, we can choose initial data in a topological class that does not
contain any equilibria. The solution must then “jump” to another topological class.
The different topological classes are (for fixed θ(t, 1) = θ1) characterized by the value
of θ at the origin, which has to be a multiple of π for the solution to have finite energy
(see below).

We recall some important results, where in view of (1.1) we concentrate on do-
mains Ω ⊂ R

2. Equation (1.2) is the gradient flow associated with the energy
E = 1

2

∫
Ω
|∇u|2 dx. It is well known that a weak solution of (1.2) exists globally.

There may be many weak solutions, but there is a unique one in the class of energy-
decreasing solutions; see [7, 15]. Weak solutions are in H1(Ω, S2) for almost all t > 0,
and, when the initial data are smooth, the solution is locally a classical solution. In
fact, the solution is smooth everywhere except for at most a finite number of space-
time points [15]. Moreover, there are smooth initial conditions for which a singularity
occurs in finite time [5, 2]. As t → ∞ the solution converges weakly to a station-
ary solution and does so smoothly away from at most a finite number of points. At
a singularity, either in finite time or at t = ∞, a sphere is said to bubble off: an
appropriate blowup near the singularity converges to a harmonic map on the sphere
S2 ∼= R2 (see [15]). In this paper we investigate the rate at which these spheres bubble
off in the symmetric setting of (1.1). In the context of liquid crystals this bubbling
means that quanta of energy (i.e., a multiple of 4π) are stored in a singularity (a
region smaller than that captured by the model).

Let us now concentrate on the implications for (1.1). The (weak) solution θ(t, ·)
is continuous on [0, 1] and θ(t, 0) ∈ πZ for all t > 0. The requirement that θ(t, 0) ∈ πZ

is necessary for solutions to have finite energy. Singularities can develop only at the
origin. At a singularity the energy

E(t) = π

∫ 1

0

(
r θ2
r +

sin2 θ

r

)
dr(1.4)

decreases (jumps) by 4π or a multiple thereof. (Of course, away from such singular-
ities, the energy E(t) decreases continuously throughout the evolution, since (1.1) is
the gradient flow associated with (1.4).) Notice that the stationary solutions of (1.1)
with finite energy E are given by

θ(r) = mπ + 2arctan qr for any q ∈ R and m ∈ Z,

and their energy tends to 4π as q → ∞. The solutions θ(r) = (m+ 1
2 )π, m ∈ Z, have

infinite energy and can be disregarded.
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Fig. 1.1. Several initial conditions θ(0, r): (a) no blowup will occur; (b) blowup may occur; (c)
blowup must occur; (d) the degenerate case θ1 = π, which leads to infinite time blowup, as opposed
to finite time blowup for θ1 > π.
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Fig. 1.2. The profile at several times leading up to blowup at t = T . The slope θr(0) goes to
infinity, and the solution jumps from 0 to π at the origin.

Whether or not singularities occur will depend on the initial and boundary data
(see also Figure 1.1). Consider initial conditions such that |θ(0, 0)−θ1| < π. Then the
solution may converge to one of the stationary states as t → ∞ without forming a sin-
gularity. This is indeed what happens when θ(0, r) ∈ C1 and ‖θ(0, r)− θ(0, 0)‖∞ ≤ π.
On the other hand, it has been proved in [2] that blowup may occur for initial data
with |θ(0, 0)− θ1| < π but |θ(0, 0)− θ(0, r)| > π for some r ∈ (0, 1). A more dramatic
situation occurs when |θ(0, 0)−θ1| ≥ π: no stationary solution is available that obeys
both boundary conditions (i.e., θ(0) = θ(0, 0) and θ(1) = θ1). Therefore, for the solu-
tion to approach any of the stationary solutions a jump at the origin must necessarily
occur. This is depicted in Figure 1.2. We focus on this case, and after shifting θ by
a multiple of π, we may restrict our attention to initial/boundary data θ(0, 0) = 0
and θ(t, 1) = θ1 ≥ π. Without loss of generality we will analyze the first instance of
blowup.
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As mentioned before, when blowup occurs, appropriately zooming in on the sin-
gularity will reveal a harmonic map, i.e., one of the stationary solutions. We first
focus on boundary data θ1 > π and consider the special case θ1 = π later. Assuming
the jump of θ(t, 0) to be upwards (without loss of generality), we select a zooming
function R(t) > 0 by requiring that

R(t)θr(t, 0) = 2 for all t up to the blowup time T ∈ (0,∞].

We choose the constant in the right-hand side to be 2 in order to keep the subsequent
algebra as simple as possible. When blowup occurs at t = T , we will thus have

lim
t↑T

θ(t, ρR(t)) = 2 arctan ρ for all fixed ρ > 0.

The main objective of this paper is to determine the asymptotic form of R(t).
At first sight one might think that the blowup rate simply corresponds to self-

similar variables, i.e., R(t) ∼ κ
√
T − t. However, no suitable self-similar solution

exists. (We postpone justification of this statement until the end of this section.)
Indeed, we find that the blowup rate is not the self-similar one. Using formal asymp-
totics, we match an inner layer near r = 0 to an outer region near θ = π (where the
solution is approximately self-similar), which in turn matches into the remote region
where r = O(1). We find that generically

R(t) ∼ κ
T − t

| ln(T − t)|2 as t ↑ T(1.5)

for some blowup time T > 0 and some constant κ > 0. That there is an unknown
constant κ is a consequence of the fact that the profile in the remote region plays a
subdued role. Therefore, in spite of the finiteness of the domain, the scaling invariance
(t, r) �→ (µ2t, µr) with µ > 0 of (1.1) causes an indeterminacy.

The point S(t), the smallest intersection of θ(t, r) with π, behaves as

S(t) ∼ 2

√
T − t

| ln(T − t)| as t ↑ T.

In particular, in this scenario the solution always intersects π close to blowup. There
is no undetermined constant in this asymptotic expression for S(t) because it is (to
leading order) invariant under the scaling invariance. The limit profile at t = T for
small r becomes

θ(T, r) ∼ π +
1

4
κ

r

| ln r| for small r,

with the same constant κ > 0 as in (1.5). We remark that there may be additional
blowup times T ′ > T , for example when |θ(0, 0)− θ1| > 2π, and that θ(t, 0) can jump
only by ±π at a time (and thus the energy by 4π); see [12].

A nongeneric case arises when θ1 = π and, for example, −π < θ(0, r) < π for
r ∈ (0, 1). In that case the asymptotics indicate blowup in infinite time:

R(t) ∼ e−2
√
t−5/4 as t → ∞.

Notice that the blowup is now in infinite time as opposed to finite time for θ1 > π.
Besides, there is no undetermined constant in the leading order term for R(t); the
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Fig. 1.3. In a reverse jump the energy of the solution increases: (a) just before t0, (b) just
after t0.

length of the interval has a direct bearing on the analysis so that the scaling invariance
is lifted. We remark that when θ(0, r) > π for some r ∈ (0, 1), then it can (but does
not necessarily) happen that blowup occurs in finite time via the scenario described
before. In that case the solution intersects π just before blowup. On the other hand,
for initial profiles with −π < θ(0, r) < π a comparison argument shows that this is
not possible.

A different situation in which we can easily see that nongeneric behavior must
occur is when θ1 < π, and the initial data are roughly as depicted in Figure 1.1(b).
When the initial profile has a sufficiently large bump above π, the solution will blow up
in finite time via the scenario described above. On the other hand, when the bump is
small (e.g., stays below π), no blowup occurs. In between these generic (codimension
0) possibilities there needs to be at least one borderline (nongeneric) scenario, and
such degenerate cases are also discussed below. Regarding the large time behavior of
these solutions, in the latter generic case (when no blowup occurs) the limit profile
as t → ∞ is θ∞(r) = 2 arctan

(
r tan θ12

)
, while in the former case the stationary state

θ∞(r) = π − 2 arctan
(
r tan π−θ12

)
is selected (provided that no additional jump back

to 0 occurs), and it turns out this last stationary state is also the limit profile in the
degenerate scenario (if no additional jumps occur).

There is another issue related to these singularities. As explained in [2, 18, 5],
weak solutions have the possibility of releasing the energy formerly lost in a singularity,
thereby causing a sudden increase in the energy E(t). The physical interpretation is
that this released energy was stored in a region of smaller scale than that captured
by the model. We consider the situation where θ makes such a “reverse” jump at
t = t0; see also Figure 1.3. When θ jumps from π to 0 at t = t0, we define as before
R(t) = 2

θr(t,0) for t > t0. One finds that generically

R(t) ∼ κ
t− t0

| ln(t− t0)| as t ↓ t0

for some arbitrary constant κ > 0. Notice the slight difference with (1.5).

Reexamining the reduction of (1.2) to (1.1), the physical meaning of the ansatz
(1.3) is that the direction field u(t, ·) at the boundary of the cylinder is axisymmetric
and the in-plane component points in the radial direction. In fact, the solution class
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Fig. 1.4. Top view of the behavior of the vector u at the boundary of the domain for n = 1,
n = 2, n = 3, and n = 1

2
, the last one necessarily leading to configurations with infinite energy.

defined by (1.3) belongs to a family of solution classes given by

u(t, ·) : (r, φ) →

 cosnφ sin θ(t, r)

sinnφ sin θ(t, r)
cos θ(t, r)


 .(1.6)

The equation for θ now becomes

θt = θrr +
1

r
θr − n2 sin 2θ

2r2
, 0 ≤ r ≤ 1.(1.7)

From a mathematical point of view the constant n > 0 (ignoring the trivial case n = 0
throughout) can be considered as a continuous parameter in (1.7), and it can be used
to unravel the delicate analysis of blowup for n = 1 (which is a borderline case, so
that the asymptotic analysis is particularly delicate). From a physical point of view,
only the values n = 1, 2, 3, . . . make sense. In Figure 1.4 the configurations for n = 1,
2, and 3 are depicted. We note that for n = 1

2 (and odd multiples of 1
2 ) the view from

the top (see Figure 1.4) gives the impression of smoothness (because the molecules
in a nematic liquid crystal are invariant under inversion, or in other words, because
in (1.2) the function u(t, ·) maps from Ω to the projective plane instead of to the
sphere). However, on closer inspection, one observes that in fact a line singularity
with infinite energy is unavoidable, and hence such cases fall outside the scope of the
present paper.

The stationary solutions of (1.7) with finite energy are

θ(r) = mπ + 2arctan(qrn), m ∈ Z, q ∈ R.

We define R(t) such that

R(t)nθ(t, r) ∼ 2rn as r ↓ 0 for all t up to the blowup time.

After rescaling with this blowup rate, the profile tends to a harmonic map (a stationary
state) as t approaches the blowup time T :

lim
t↑T

θ(t, ρR(t)) = 2 arctan ρn for all fixed ρ > 0.

The results of our asymptotic analysis for R(t) give the following as the generic blowup
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Fig. 1.5. Top view of the behavior of the vector u at the boundary of the domain for n = 1 with
φ0 = 0, φ0 =

π
4
, and φ0 =

π
2
.

behavior:

n < 1 : R ∼ κ (T − t)1/n as t ↑ T,

n = 1 : R ∼ κ
T − t

| ln(T − t)|2 as t ↑ T,

1 < n < 2 : R ∼ κ (T − t)1/(2−n) as t ↑ T,

n = 2 : R ∼ κ e−
α0
E2
t as t → ∞,

n > 2 : R ∼ ( (n−2)α0

En
t
)−1/(n−2)

as t → ∞.

Here κ > 0 is an arbitrary constant, En = π
2n2 sin(π

n ) , and α0 = tan( θ1−π2 ) for θ1 ∈
(π, 2π). The above represent the generic behavior (e.g., θ1 = π needs to be considered
separately), and for n ≥ 2 it does not apply to boundary conditions with θ1 ≥ 2π;
the analysis is more involved in that case (see section 3.6). Notice that the blowup
is in finite time for n < 2, versus infinite time blowup for n ≥ 2. Furthermore, it
is remarkable that the borderline case n = 1 has the fastest blowup rate. Finally,
there is no unknown constant for n > 2 since the boundary condition on the right has
direct influence on the asymptotics (and thus there is no scaling invariance). This is
equally true for n = 2, and the translation invariance in time rather than the scaling
invariance can be considered responsible for the indeterminacy here. On the other
hand, n = 2 marks the transition from finite to infinite time blowup, and subtle
behavior can be expected at such a critical value.

There is an additional symmetry which needs to be noted. In the right-hand side
of (1.6) one may replace φ by φ + φ0, which again leads to (1.7). For n = 1 this
presents us with a family of geometrically different solutions, while for n �= 1 all these
solutions are equivalent by rotation of the domain. In Figure 1.5 we have depicted
the situation occurring for φ0 =

π
4 and φ0 =

π
2 (and n = 1), which may be compared

to φ0 = 0 to see the difference in geometry. All these cases are covered by (1.7).
In order to prevent cumbersome bookkeeping and to be able to clarify the crucial

points, we will first analyze the special case n = 1 in section 2. Degenerate cases,
including the special boundary condition θ1 = π, and reverse jumps are treated in
sections 2.5 to 2.7. In section 3 we analyze the general case (1.7), and the special role
of n = 1 will become apparent. We also discuss in section 3.6 the multiscale blowup
associated with boundary conditions θ1 ≥ 2π for n ≥ 2; in section 3.8 we deal with
the case of an unbounded domain. Finally, we present an overview of our results and
draw conclusions in section 4.

It remains a challenge to find proofs for the formal asymptotic results in this pa-
per. We refer to [1] for some tentative results in which the comparison principle and
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lap number theorem for parabolic equations are exploited. These methods circum-
vent nondegeneracy conditions so that, while avoiding the problems associated with
degenerate cases, they fail to uncover the full range of the generic behavior. Another
open problem is what happens in a nonsymmetric situation, both in two and three
dimensions, and what role is played by symmetric solutions in that context. The fact
that n = 1 is such an exceptional case may suggest that it plays a special role.

To finish this section we show why blowup is not governed by self-similar variables.
(This was also observed in [1].) A self-similar solution for finite time blowup is of the
form θ(t, r) = Θ(r/

√
T − t). For the function Θ(y) one obtains the equation

Θyy +

(
1

y
− y

2

)
Θy − n2 sin 2Θ

2y2
= 0.

Since θ(t, 0) jumps from 0 to π, the boundary conditions are Θ(0) = 0, and at infinity
limy→∞Θ(y) = π. We now change coordinates to z = ln y and obtain for Θ̃(z) = Θ(y)

Θ̃zz − 1

2
e2zΘ̃z − n2

2
sin 2Θ̃ = 0,(1.8)

with boundary conditions limz→−∞ Θ̃(z) = 0 and limz→∞ Θ̃(z) = π. There is no solu-
tion to this problem since, on the one hand, G(z)

def
= 1

8 Θ̃
2
z+n2 cos 2Θ̃ is monotonically

increasing, while, on the other hand, limz→−∞ G(z) = limz→+∞ G(z) = n2. This
contradiction shows that there is no such solution, and hence this self-similar scenario
for blowup cannot occur. In fact, Θ̃ = π is the only solution satisfying the condition as
z → ∞; this in part explains why θ ∼ π necessarily holds in the outer region described
below. In this argument it is crucial that

∫ π
0
sin 2θ dθ = 0. For nonlinearities that do

not have zero average, a self-similar blowup rate may be expected. It could thus be
interesting to study a problem in which the average of the nonlinearity approaches
zero as a parameter is varied.

2. The case n = 1.

2.1. Preamble. There will be three scales: the inner, the outer, and the remote
region (see Figure 2.1). The inner is a small region near the origin in which the blowup
is concentrated. It is of order r = O(R(t)), where R(t) is an unknown function (in
fact, the main goal is to determine the asymptotic behavior of R(t)), and in this
region the profile near blowup is 2 arctan(r/R(t)). The outer region is a region with
θ near π in which the equation can be linearized. The typical scale in this region
is r = O(

√
T − t), where T is the blowup time. An obvious requirement for self-

consistency is that R(t) � √
T − t. The remote region is the region where r = O(1),

and at the time of blowup the profile in this region is unknown, but the limit profile
as the origin is approached will come out of the matching procedure.

Throughout the paper the constants C, C̃, and Ci (i ∈ N) will vary from subsec-
tion to subsection.

2.2. The inner approximation. We analyze the boundary layer near r = 0.
As explained in section 1, it is known on general grounds that, when we zoom in
appropriately, we should see 2 arctan(r/R(t)), with R(t) → 0 as t ↑ T . Recall that
the definition of R is R(t) = 2

θr(t,0) . We introduce a new variable ξ = r/R(t) and

obtain for v(t, ξ) = θ(t, r)

R2vt −R′Rξvξ = vξξ +
1

ξ
vξ − sin 2v

2ξ2
.
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Fig. 2.1. The three different scales.

Since R(t) becomes small for t close to blowup, we formally expand the solution in
powers of R′R:

v(t, ξ) ∼ Φ0(ξ) +R′(t)R(t)Φ1(ξ) + (R′(t)R(t))2Φ2(ξ).(2.1)

A motivation for this expansion is that we anticipate that R � R′ as t → T . To these
orders, R2vt does not contribute, since the rescaling is chosen such that the leading
order solution is stationary. Of course we need that R′R → 0 as t → T .

One finds that

Φ0(ξ) = 2 arctan ξ,

and Φ1(ξ) satisfies

Φ1ξξ +
1

ξ
Φ1ξ − cos 2Φ0

ξ2
Φ1 = −ξΦ0ξ.

It turns out that Φ1 is already the interesting term, so that we could have restricted
our analysis to linearizing around Φ0. The equation for Φ2 is

Φ2ξξ +
1

ξ
Φ2ξ − cos 4 arctan ξ

ξ2
Φ2 =

(
1 +K

)
Φ1 − ξΦ1ξ − sin(4 arctan ξ)

ξ2
Φ2

1,(2.2)

where K = limt→T R′′R
R′2 . Here we see that we need R′′R = O(R′2) as t → T in

order for (2.1)–(2.2) to be self-consistent. (It includes, for example, R ∼ (T − t)a and
R ∼ t−a when T = ∞ for any a > 0.) This will turn out to be the case with K = 0.

The nonuniqueness of Φi is resolved by requiring Φi to be regular near ξ = 0, i.e.,
Φi(0) = 0, and Φ′

i(0) = 0 in view of the definition of R(t). One finds

Φ1 =
ξ

1 + ξ2

∫ ξ

0

s(s4 + 4s2 ln s− 1)

(1 + s2)2
ds− ξ4 + 4ξ2 ln ξ − 1

ξ(1 + ξ2)

∫ ξ

0

s3

(1 + s2)2
ds,
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which, after a quite tedious calculation, can be rewritten as

Φ1 =
(1− ξ4) ln(1 + ξ2) + 2ξ4 − ξ2 − 4ξ2

∫ ξ
0

ln(1+s2)
s ds

2ξ(1 + ξ2)
.

For large ξ the inner approximation thus satisfies

v(t, ξ) ∼ π − 2 ξ−1 +R′(t)R(t)(−ξ ln ξ + ξ) for t close to T and large ξ.(2.3)

Here, and in other asymptotic expansions to come, we include all those terms which
might be necessary for performing the matching analysis. (It is not a priori clear
whether all of them will be needed.) Let us briefly comment on the inclusion of the
term R′(t)R(t)ξ in this expansion. Although it is dominated by R′(t)R(t)ξ ln ξ, it is
well known that terms that differ only by orders of ln ξ can play a role in the matching.
We remark that the leading order approximation v ∼ π − 2ξ−1 − R′(t)R(t)ξ ln ξ is
valid if ξ4 � 1

|R′R| and ξ2 � 1
|R′R| , because the next terms are of order O(ξ−3)

and O(R′2R2ξ3 ln ξ); this last term comes from the large ξ behavior for the solution
of (2.2).

We remark that we could for most purposes have restricted our attention to the
asymptotic equation for Φ1,

Φ1ξξ +
1

ξ
Φ1ξ − 1

ξ2
Φ1 ∼ −2

ξ
,

from which we obtain Φ1 ∼ −ξ ln ξ+Cξ for large ξ. The value of C can be determined
only by solving the full problem for Φ1 (with boundary conditions at ξ = 0) as
performed above (i.e., C = 1).

2.3. The outer solution. To analyze the outer solution we convert to self-
similar coordinates

τ = ln(T − t)−1, y = eτ/2r,

where T is the time of blowup. When we set ζ(τ, y) = θ(t, r), ζ satisfies the equation

ζτ = ζyy +

(
1

y
− y

2

)
ζy − sin 2ζ

2y2
.

Linearizing around ζ = π, one obtains the linear equation

ητ = L0η
def
= ηyy +

(
1

y
− y

2

)
ηy − 1

y2
η.(2.4)

We require that η(τ, y) grow less than exponentially for large y, since otherwise it
is impossible to match the outer to the remote region. As a boundary condition for
small y we take η(τ, 0) = 0, at least to leading order. The reason for this choice is
not transparent at the moment since it is actually part of the matching process. We
will clarify this point in the next section. For now we just stress that this boundary
condition is not forced by regularity requirements but turns out to be required to get
consistent matching.

We look for separable solutions of (2.4) obeying these two “boundary” conditions
(one boundary condition and one growth condition, really). The solution of this type
that decays most slowly with τ is η = e−τ/2y. From a different perspective this means
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that, under the above boundary conditions, λ = − 1
2 is the smallest eigenvalue of L0.

(By standard arguments the eigenfunctions are polynomials.) Hence one expects η to
approach π essentially at rate e−τ/2, and thus we set

η ∼ σ(τ)e−τ/2 y.

Since we still have to match to the inner solution (i.e., the true boundary condition
is not η(τ, 0) = 0), we need to let the coefficient σ depend on τ , but in such a way
that σ is not exponential in τ . We thus use “almost” separable solutions or, in the
original variables, “almost” self-similar solutions. For the solution of (2.4) we now
put forward the ansatz

η ∼ e−τ/2
∞∑
i=0

diσ(τ)

dτ i
Ωi(y),(2.5)

where we anticipate σ to be algebraically decaying. When (with the linear operator
L0 defined in (2.4))(L0 +

1
2

)
Ω0 = 0 and

(L0 +
1
2

)
Ωi = Ωi−1, i = 1, 2, . . . ,

then (2.5) is formally a solution of (2.4) for arbitrary σ(τ). In some sense the se-
quence Ωi forms a Jordan sequence of the linear operator L0 at eigenvalue − 1

2 , except
that the left boundary condition need no longer be satisfied. (In fact, since − 1

2 is a
simple eigenvalue, the left boundary condition cannot be satisfied.) This shortage of
boundary conditions causes nonuniqueness for Ωi, but this is not an issue. The left
boundary condition was not a true boundary condition anyway, but merely induced
by matching requirements. One obtains

Ω0 = C0y,

Ω1 = C0(4y
−1 − 2y ln y) + C1y,

where the values of the constants are of no significance because they can be absorbed
in σ, and without loss of information we set C0 = 1 and C1 = 0. Thus for large τ the
outer approximation is

ζ(τ, y) ∼ π + e−τ/2
[
σ(τ)y + σ′(τ)(4y−1 − 2y ln y)

]
for large τ.(2.6)

The function σ(τ) will have to be determined by matching to the inner solution. The

outer approximation is valid, provided that y2(ln y)2 � | σ′σ′′ | and y2| ln y| � |σ′′σ′ |
on the side of large and small y, respectively, because the next terms are of order
O(σ′′y(ln y)2) for large y and O(σ′′y−1) for small y. Here we should keep in mind

that σ will turn out to be algebraically decaying (in which case |σ′′σ′ | = O(τ−1)).

2.4. Matching. To match the outer to the inner solution we rewrite (2.3) in
terms of the self-similar variables:

v(t, ξ) = ṽ(τ, y) ∼ π − 2eτ/2R̃ y−1 + eτ/2R̃′ y
(
− ln y + ln R̃+

τ

2
+ 1
)
,

where R̃(τ) = R(t) and hence R′(t) = eτ R̃′(τ). Comparing this to (2.6), we obtain

O(y−1) : 4e−τ/2σ′ ∼ −2R̃eτ/2,(2.7)

O(y ln y) : −2e−τ/2σ′ ∼ −R̃′eτ/2,(2.8)

O(y) : e−τ/2σ ∼ R̃′eτ/2
(
ln R̃+

τ

2
+ 1
)
.(2.9)
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Equations (2.7) and (2.8) suggest that R̃(τ) = e−τρ(τ), where ρ(τ) is algebraic for
large τ . Substituting this into (2.7) and (2.9), we obtain the following relations for ρ
and σ,

ρ ∼ −2σ′ and
τ

2
ρ ∼ σ as τ → ∞,

from which we conclude that

σ(τ) ∼ κ

2τ
and ρ(τ) ∼ κ

τ2
as τ → ∞

for some κ > 0. We thus find

R(t) ∼ κ
T − t

| ln(T − t)|2 as t ↑ T.(2.10)

We emphasize that this asymptotic behavior of R(t) is clearly completely different
from the self-similar rate (T − t)1/2. It is now possible to check that the regions
of validity for the inner and outer approximations do indeed overlap: the region of
overlap is (τ ln τ)−1/2 � y � 1. We note that the matching conditions (2.7) and (2.8)
convey the same information, so that (2.8) is in some sense redundant, though it
provides additional confidence in the matching.

The smallest intersection of θ(t, r) with π, denoted by r = S(t), can be calculated
from (2.6) using the asymptotic form of σ, which leads to

S(t) ∼ 2

√
T − t

| ln(T − t)| as t ↑ T.

Notice that there is no undetermined constant in this leading order formula.
The asymptotic behavior for small r of the limit profile at t = T is computed by

matching the outer approximation to the remote solution

θ(t, r) ∼ Θ(r) + (t− T )

[
Θrr +

1

r
Θr − sin 2Θ

2r2

]
as t → T,

with Θ(r) being the limit profile θ(T, r). This approximation in the remote region is
valid for r � (T − t)1/2 (at the least). The regions of validity of the outer and remote
approximation overlap. Matching the remote solution to (2.6), we find

θ(T, r) ∼ π +
1

4
κ

r

| ln r| for small r,(2.11)

with the same constant κ > 0 as in (2.10). Notice that θ(T, r) > π for small r. A
quick way to obtain this behavior from (2.6) is by letting τ tend to infinity for fixed y.

We remark that immediately after blowup a different type of inner layer near
r = 0 appears, which describes how analyticity is recovered. In this layer almost
self-similar behavior occurs of the form

θ(t, r) ∼ π +

√
t− T

| ln(t− T )| f1

(
r√

t− T

)
+

√
t− T

| ln(t− T )|2 f2

(
r√

t− T

)
as t ↓ T for small r. Substituting this into the equation for θ, one finds that f1(z) = Dz
for some D ∈ R to be determined, and f2(z) is a solution of

f ′′
2 +

(
1

z
+

z

2

)
f ′
2 −

(
1

z2
+

1

2

)
f2 = f1,
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with the property that f2(z) = O(z) as z → 0. One may solve for f2 by reduction of
order, but it is sufficient to remark that it follows from the limiting equation for large
z that f2(z) ∼ 2Dz ln z as z → ∞. Matching this with (2.11) implies that D = 1

8κ,
so that the result is

θ(t, r) ∼ π +
1

8
κ

r

| ln(t− T )| +
√
t− T

| ln(t− T )|2 f2

(
r√

t− T

)
as t ↓ T for small r.

Let us now come back to the point of choosing the boundary condition for the
outer solution. In section 2.3 it was put forward that the left boundary condition for
the outer solution is η(τ, 0) = 0 but that this is in fact already part of the matching.
Here we explain the reasoning behind this. There is a family of separable solutions
to (2.4):

η = eλτfλ(y),

where f = fλ obeys

λf = L0f
def
= fyy +

(
1

y
− y

2

)
fy − 1

y2
f.(2.12)

Since we are looking for solutions that do not blow up as τ → ∞, we restrict ourselves
to λ ≤ 0. (On the other hand, this restriction will also be a consequence of what
follows.)

Now suppose that λ is not in the set {− 1
2 ,− 3

2 ,− 5
2 , . . . }. We will show that this

leads to inconsistent matching conditions. We find two linearly independent solutions
g(y) and h(y) of (2.12) with the following properties. The asymptotic behavior of
g(y) is g(y) ∼ y as y ↓ 0, and it grows faster than exponentially as y → ∞; it can
therefore be ruled out. The other, linearly independent, solution h(y) grows less than
exponentially as y → ∞, and for small y it behaves as

h(y) ∼ y−1 +
2λ− 1

4
y ln y + Cλy

for some constant Cλ ∈ R , the value of which is not relevant except for λ = 0:
C0 = 1

8 (4 ln 2 + 1 − γ), where γ is Euler’s constant. We note that h(y) is closely
related to a Kummer-U function.

Still assuming that λ /∈ {−1
2 ,− 3

2 ,− 5
2 , . . . }, we are lead to matching conditions of

the form (assuming throughout that σ′ � σ)

O(y−1) : eλτσ ∼ −2R̃eτ/2,

O(y ln y) :
2λ− 1

4
eλτσ ∼ −R̃′eτ/2,

O(y) : Cλe
λτσ ∼ R̃′eτ/2

(
ln R̃+

τ

2
+ 1
)
.

Now R̃ = e(λ−1/2)τρ(τ), where ρ(τ) is not exponential in τ . Since we require that
R � (T − t)1/2 = e−τ/2 for self-consistency, we find that λ ≤ 0. For ρ(τ) one obtains
the relations (if λ < 0)

σ(τ) ∼ −2ρ(τ) and Cλσ(τ) ∼ λ

(
λ− 1

2

)
τρ(τ),
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which immediately leads to a contradiction. When λ = 0 (which would correspond to
an almost self-similar blowup rate) we obtain

σ(τ) ∼ −2ρ(τ) and C0σ(τ) ∼ −1

2
ρ(τ),

and since C0 �= 1
4 , this leads to a contradiction as well. A more intuitive explanation

for the matching failure is that it is impossible to match a leading order term y−1

from the outer expansion with a correction term from the inner one.
If λ ∈ {− 1

2 ,− 3
2 ,− 5

2 , . . . }, then the solution obeying the growth condition on the
right is regular near y = 0; i.e., there are no terms of order y−1 (or y ln y). The set
{− 1

2 ,− 3
2 ,− 5

2 , . . . } thus consists of the eigenvalues of problem (2.12) with boundary
condition f(0) = 0 and the growth condition for y → ∞. This explains the choice of
boundary conditions in section 2.3. The case λ = − 1

2 was dealt with in the previous
sections. In the next section we consider the remaining possibilities.

2.5. Degenerate (nongeneric) cases. There is a whole family of separable
solutions of (2.4) which obey the growth condition (less than exponential) on the
right and the boundary condition on the left (regular near y = 0). The solution
η = e−τ/2y is the first one, i.e., the least rapidly decaying one. In degenerate cases
it may, however, happen that the coefficient σ in front of this term in (2.6) vanishes.
In that case a degenerate situation occurs with codimension 1. The outer solution in
that case becomes

ζ ∼ π + e−3τ/2σ(τ)

(
y − 1

8
y3

)
,

since λ = − 3
2 is the second smallest eigenvalue of L0, with eigenfunction y − 1

8y
3.

Following the calculation in section 2.3, the outer approximation now becomes

ζ ∼ π + e−3τ/2

[
σ(τ)

(
y − 1

8
y3

)
+ σ′(τ)

(
2y−1 − 2y ln y +

1

4
y3 ln y − 3

2
y

)]
.

(2.13)

Notice that the profile is nonmonotone for times close to blowup. The matching
conditions become

O(y−1) : 2e−3τ/2σ′ ∼ −2R̃eτ/2,

O(y ln y) : −2e−3τ/2σ′ ∼ −R̃′eτ/2,

O(y) : e−3τ/2σ ∼ R̃′eτ/2
(
ln R̃+

τ

2
+ 1
)
,

so that R̃(τ) = e−2τρ(τ) and ρ(τ) ∼ Cτ−4/3; hence

R(t) ∼ κ
(T − t)2

| ln(T − t)|4/3 as t ↑ T

for some κ > 0.
To calculate the limit profile we have to match the outer solution into the remote

solution θ(t, r) ∼ Θ(r) = θ(T, r). To match (2.13) to the remote region, one needs to
take into account the highest order terms in τ and y only. For the limit profile one
finds

θ(T, r) ∼ π − 3

8
κ

r3

|2 ln r|1/3 for small r,
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with the same constant κ > 0 as above. Notice that θ(T, r) < π for small r (in contrast
to the nondegenerate case). The first two intersections of θ(t, r) with π, denoted by
S1(t) and S2(t), behave asymptotically as

S1 ∼
√

2

3

T − t

| ln(T − t)| and S2 ∼
√
8(T − t) .

The first intersection comes from the balance between Ω0 and Ω1 (i.e., occurs for
small y), while the second intersection depends only on Ω0 (having y = O(1)).

In a similar vein, for degenerate cases occurring with codimension k (with k =
0, 1, 2, . . . ; the generic case is embedded in this), the (k + 1)th eigenvalue of L0 is
λ = −k− 1

2 , with as eigenfunction a (2k+1)th order polynomial with only odd terms,
say Ωk0(y), which we normalize so that Ωk0(y) ∼ y as y → 0. We note that Ωk0(y) can
be expressed in terms of a generalized Laguerre polynomial. Then

Ωk0(y) =

k∑
i=0

aiy
2i+1 with ai = (−1)i k!

22i(k − i)!(i+ 1)!i!
for i = 0, 1, . . . , k.

To calculate the next term in the expansion Ωk1 we have to solve(
L0 + k +

1

2

)
Ωk1 = Ωk0 .

After a bit of calculation one finds that

Ωk1(y) =
4

k + 1
y−1 − 2Ωk0(y) ln y + hk(y),

where hk is some odd polynomial of degree 2k−1. The outer approximation becomes

ζ ∼ π + e−(k+1/2)τ [σ(τ)Ωk0(y) + σ′(τ)Ωk1(y)],

and thus for small y

ζ ∼ π + e−(k+1/2)τ

[
σ(τ) y + σ′(τ)

(
4

k + 1
y−1 − 2y ln y

)]
.

The matching condition for the codimension k degeneracy become

O(y−1) :
4

k + 1
e−(k+1/2)τσ′ ∼ −2R̃eτ/2,

O(y ln y) : −2e−(k+1/2)τσ′ ∼ −R̃′eτ/2,

O(y) : e−(k+1/2)τσ ∼ R̃′eτ/2
(
ln R̃+

τ

2
+ 1
)
.

Hence R̃ ∼ κe−(k+1)ττ−(2k+2)/(2k+1), or in the original variables,

R(t) ∼ κ
(T − t)k+1

| ln(T − t)|(2k+2)/(2k+1)
as t ↑ T

for some κ > 0. Since Ωk0 ∼ aky
2k+1 as y → ∞, the limit profile is

θ(T, r) ∼ π + (−1)kκ 2k + 1

22k+1k!

r2k+1

|2 ln r|1/(2k+1)
as t ↑ T.
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This limit profile is again obtained by matching to the outer solution or, alternatively,
by taking the limit τ → ∞ for fixed y and subsequently y → ∞. One can analyze the
short time behavior just after blowup in a similar way to that in section 2.4. Finally,
the asymptotic behavior of the first intersection of θ(t, r) with π, denoted by S1(t), is

S1(t) ∼ 2

√
1

(k + 1)(2k + 1)

T − t

| ln(T − t)| as t ↑ T.

We have thus found a countable family of nongeneric blowup scenarios. The codi-
mension 1 situation, for example, occurs at the borderline between the generic blowup
scenario and the case of no blowup (as explained in section 1); it is characterized by
the fact that two intersections of θ(t, r) with π approach the origin simultaneously as
t ↑ T (though at different rates). More generally, in the codimension k scenario the
profile θ(t, r) just before blowup has k+1 intersections with π that approach the origin
as t ↑ T ; in other words, it corresponds to a nongeneric scenario in which the disap-
pearance of sign changes in θ−π coincides with the blowup time (cf. [13] for a detailed
discussion of sign change solutions in a different second order parabolic problem). The
appearance of degenerate cases indicates that it might be hard to obtain a proof of
the formal result that near blowup R(t) ∼ κ T−t

| ln(T−t)|2 holds generically. Restricting

our analysis to certain classes of monotone initial data excludes the degenerate pos-
sibilities, because one can show that the solution then has to remain monotone for
all t > 0 (see [1]), and all the degenerate blowup scenarios have nonmonotone profiles
just before blowup. Our analysis strongly suggests, however, that even without such
restrictions on the initial data, the generic blowup rate is R(t) ∼ κ T−t

| ln(T−t)|2 .

2.6. Boundary condition θ1 = π. When the boundary condition is θ(t, 1)= π,
there is, besides the finite time blowup scenarios described above, an additional pos-
sibility, namely that blowup occurs in infinite time. This infinite time blowup is a
codimension 0 scenario (we analyze degenerate cases as well). In this case there is no
urge to change to self-similar coordinates. Close to blowup the profile is assumed to
be near π in the whole of the remote region (and the limit profile is identically equal
to π). The linearized equation around π is

wt = L1w
def
= wrr +

1

r
wr − 1

r2
w.(2.14)

We substitute a formal series

w ∼ π +

∞∑
i=0

dis(t)

dti
Wi(r),(2.15)

where s(t) is an arbitrary function and

L1W0 = 0 and L1Wi = Wi−1, i = 1, 2, . . . .

Now (2.15) is again a formal solution of the linearized differential equation for any s(t),
and when we require that Wi(1) = 0, then the right boundary condition is satisfied.
There is no a priori left boundary condition. We obtain

W0 = C0(r
−1 − r),

W1 = C0

(
1

2
r ln r +

1

8
r − 1

8
r3

)
+ C1(r

−1 − r),
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where we may again set C0 = 1 and C1 = 0 without loss of generality. Hence for the
remote region we obtain for small r

θ ∼ π + s(t)(r−1 − r) + s′(t)
(
1

2
r ln r +

1

8
r

)
.

Matching in a way similar to that of section 2.4 to the inner solution (2.3), we find
that

O(r−1) : s ∼ −2R,

O(r ln r) :
1

2
s′ ∼ −R′,

O(r) : −s+
1

8
s′ ∼ R′(lnR+ 1).

Hence for large t

R(t) ∼ e−2
√
t−5/4 as t → ∞.

We note that this is the one instance where the term R′Rξ = R′r in the inner ap-
proximation has an influence on the leading order result. (It is needed to calculate
the multiplicative constant e−5/4.) The most striking difference between this result
and the situation in section 2.4 is that blowup now occurs in infinite time. We remark
that, for suitable initial data, blowup may happen in finite time via the scenario in the
previous sections, after which θ → π uniformly as t → ∞ (generically at rate e−λ

2
1t,

where λ1 is the first zero of the Bessel function J1; see also below). However, this
cannot happen for initial profiles |θ(0, r)| ≤ π for all r ∈ [0, 1], since then |θ(t, r)| ≤ π
for all t > 0 (by the comparison principle) and blowup is postponed until t = ∞.

As in the previous section, there is a hierarchy of degenerate cases. Looking for
almost separable solutions, one tries, with λ > 0,

w ∼ π + e−λ
2t

∞∑
i=0

dis(t)

dti
Wi(r).

Now

W0 = J1(λr)− J1(λ)

Y1(λ)
Y1(λr),

where Ji and Yi are the Bessel functions of order i (take W0 = Y1(λr) if Y1(λ) = 0).
Analogous to section 2.4, this does not lead to self-consistent matching unless W0 is
regular at r = 0. Therefore we require that J1(λ) = 0, and we obtain a nice eigenvalue
problem with Dirichlet boundary conditions.

Let λk > 0 be the kth zero of J1 and W0(r) = J1(λkr). Then one finds that

W1 =
π

8

[
J1(λkr)J2(λkr)Y0(λkr)r

2 + J1(λkr)J0(λkr)Y2(λkr)r
2

− 2J0(λkr)J2(λkr)Y1(λkr)r
2 +DkY1(λkr)

]
,

where

Dk
def
= 2J0(λk)J2(λk) < 0.
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The matching conditions become

O(r−1) : −e−λ
2
kt

Dk
4λk

s′ ∼ −2R,

O(r ln r) : e−λ
2
kt
Dkλk
8

s′ ∼ −R′,

O(r) : e−λ
2
kt
1

2
λks ∼ R′(lnR+ 1).

We infer that, with codimension k > 0,

R(t) ∼ κ t−1+4/Dkλ
2
k e−λ

2
kt as t → ∞

for some κ > 0.
We stress that the generic case (discussed at the beginning of this subsection)

does not obey the boundary condition W0(0) = 0 but nevertheless leads to consistent
matching. This is, however, the only consistent case that has a spatial singularity near
the origin in the remote region. (The solution is, of course, not singular in the inner
variable.) This may be somewhat surprising. Let us clarify the role of the generic
and nongeneric scenarios.

Notice that for any λ > 0 the associated eigenfunction W0(r) has sign changes
on (0, 1), leading to intersections of the solution with π close to blowup. Consider
initial profiles that lie entirely below π, i.e., −π < θ(0, r) < π for r ∈ (0, 1). A com-
parison argument shows that for such initial data these blowup profiles are excluded.
This indicates that a generic scenario is associated with λ = 0 (even though the
“eigenfunction” (which obeys the boundary condition at r = 1) for λ = 0 is singular).

The degenerate cases act as borderline cases between finite time blowup and
infinite time blowup. For example, when the initial data have a sufficiently large
bump above π, the solution will blowup in finite time, whereas solutions starting
from initial data below π blow up in infinite time. The codimension 1 scenario found
in this subsection acts as the borderline between generic infinite and generic finite
time blowup. This is most easily understood for initial conditions which have only
one crossing with π, since for such initial data the finite time codimension 1 scenario
plays no role (because it has two crossings with π close to blowup). As we have seen in
this section, the infinite time blowup phenomenon for θ1 = π is essentially driven by
the linear equation (2.14), and for such an equation the presence of high codimension
cases with many sign changes (of θ − π) is not unexpected.

2.7. Reverse jumps. As explained in section 1, weak solutions have the possi-
bility to make a jump in which they increase their energy E(t); see [5, 2]. We consider
the situation where θ(t, 0) jumps from π to 0 (“jumping back”) at t = t0. In these
jumps the energy E necessarily increases by 4π at t = t0.

The inner approximation is the same as in section 2.2, although now R(t) → 0 as
t ↓ t0. Concerning the outer approximation, we argue as follows. As in section 2.3,
we turn to self-similar variables (t > t0),

τ = ln(t− t0), y = e−τ/2r,

and obtain for ζ(τ, y) = θ(t, r)

ζτ = ζyy +

(
1

y
+

y

2

)
ζy − sin 2ζ

2y2
.
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Since a reverse jump can occur at any moment, one generically has θr(t0, 0) = C �= 0,
i.e., the dominant term in the local expansion is Cr = Ceτ/2y. This being a separable
solution of the linearized equation, one proposes a solution of the form eτ/2η(y) (cf.
section 2.3), where η satisfies

ηyy +

(
1

y
+

y

2

)
ηy −

(
1

y2
+

1

2

)
η = 0.

The general solution is

η = C0y + C1y

∫ ∞

y

e−s
2/4

s3
ds,

with arbitrary constants C0, C1 ∈ R and y0 > 0. We see that, as opposed to the
situation in section 2.3, the second independent solution has reasonable growth. In
fact, it tends to 0 as y → ∞ and behaves as y−1 + 1

2y ln y for small y. Therefore the
outer approximation becomes

ζ ∼ π + eτ/2
[
α(τ)y + β(τ)(4y−1 + 2y ln y)

]
for small y and −τ � 1.

As matching conditions for τ → −∞ we find (writing R̃(τ) = R(t))

O(y−1) : 4βeτ/2 ∼ −2R̃e−τ/2,

O(y ln y) : 2βeτ/2 ∼ −R̃′e−τ/2,

O(y) : αeτ/2 ∼ R̃′e−τ/2
(
ln R̃− τ

2
+ 1
)
.

We infer that R̃ ∼ eτρ(τ) with ρ(τ) ∼ −2�
τ for some : = −α(−∞) > 0, and β ∼ �

τ , so
that |β(τ)| � |α(τ)| as τ → −∞. Hence

R(t) ∼ 2:
t− t0

| ln(t− t0)| as t ↓ t0

for some : > 0. The limit profile is

θ(t0, r) ∼ π − :r for small r,

which is consistent with the assumption at the start, so that : = −C. Notice that,
when the jump is downwards from π to 0, then the profile at t = t0 has to be decreasing
for small r.

A whole hierarchy of degenerate cases in which θr(0, 0) = 0 can be calculated as
well. At some t0 > 0 (i.e., after the solution has started to evolve) it happens with
codimension k that θ(t0, r) ∼ π − C̃r2k+1 as r ↓ 0 for some C̃ �= 0. Reverse jumps
at such nongeneric instances can be analyzed via the method presented above. The
jump (of θ(t, 0)) is downwards when C̃ > 0 and upwards when C̃ < 0. For example,
for the codimension 1 scenario one finds

R ∼ 8

3
:

(t− t0)
2

| ln(t− t0)| as t ↓ t0(2.16)

for some : > 0, with θ(t0, r) ∼ π − :r3 as r → 0. Reverse jumps can also happen
at the moment of a forward jump (i.e., t0 = T ); see also [18, section 5]. Then at
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Fig. 2.2. Picture of the situation when t0 = T ; i.e., a reverse jump happens at the moment of
a forward jump: (a) a time just before t = T , (b) t = T = t0, (c) a time just after t = t0.

the self-similar scale a logarithmic correction needs to be applied (cf. the recovery of
analyticity in section 2.4). We note that if t0 = T and if the forward jump from 0 to
π behaves according to the generic scenario, then the reverse jump must be from π
to 2π. (This follows from a comparison of the limiting profiles as t ↑ T and t ↓ t0.) A
schematic picture of the situation is given in Figure 2.2. We leave the details to the
reader and just state the result:

R(t) ∼ κ
t− t0

| ln(t− t0)|2 as t ↓ t0,(2.17)

where κ > 0 is the same constant as in the forward jump (see (2.10)). For t0 = 0 one
may choose, for example, initial data with θ(0, r) ∼ π − Ĉra as r ↓ 0 for any a > 0
and some Ĉ �= 0, and a reverse jump can then happen instantaneously. The analysis
is again along the same lines.

Finally, our analysis suggests that, given a jump time t0, the asymptotic profile
of θ(t0, r) as r ↓ 0 completely determines the blowup rate R(t). In [2] it is conjectured
that from a physical perspective it is most likely that if the solution has first made
a forward jump from 0 to π, the reverse jump happens at the first instance at which
θ(t0, r) < 0 close to the origin. This corresponds to the system selecting an otherwise
degenerate scenario, whereby θ(t0, r) ∼ π − :r3 as r → 0 for some : > 0, and the
blowup rate is then given by (2.16). More degenerate scenarios can of course occur
with higher codimension. We note that our scenario is subtly different from the one
studied in [2], which requires linear behavior of θ at the origin.

3. The general case.

3.1. Preamble. We now analyze the generalization

θt = θrr +
1

r
θr − n2 sin 2θ

2r2
, 0 ≤ r ≤ 1.(3.1)

Apart from the fact that the equation yields physically relevant solutions for n =
1, 2, 3, . . . as explained in section 1, analyzing the dependence of the blowup behavior
on n also enhances the understanding of the special case n = 1.
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We deal with the inner approximation in section 3.2 and then have a first attempt
at matching without using self-similar coordinates to get the general idea in section
3.3. In section 3.4 we deal with n < 2, while section 3.5 deals with n ≥ 2. In section
3.6 we discuss simultaneous blowup at several scales. The special boundary condition
θ(t, 1) = π is dealt with in section 3.7. We remark on the case of an infinite domain
in section 3.8, and section 3.9 is devoted to reverse jumps.

3.2. The inner approximation. The stationary solutions of (3.1) are

θ(r) = mπ + 2arctan(qrn), m ∈ Z, q ∈ R.

Choosing the scaling ξ = r/R(t) so that

R(t)nθ(t, r) ∼ 2rn as r ↓ 0 for all t up to the blowup time,

the outer limit of the inner approximation v(t, ξ) = θ(t, r) (cf. section 2.2) becomes
for n > 1

2 , n �= 1,

v ∼ π − 2 ξ−n +R′R
(

n

2n− 2
ξ−n+2 − Enξ

n

)
.(3.2)

The coefficient of the term ξ−n+2 can be obtained from the asymptotic equation for
Φ1 at large ξ, as explained at the end of section 2.2. The coefficient En of the term
ξn can be obtained only by solving the full problem for Φ1 (borrowing the notation
from section 2.2):

Φ1ξξ +
1

ξ
Φ1ξ − n2 cos(4 arctan ξ

n)

ξ2
Φ1 = − 2nξn

1 + ξ2n
,

with boundary condition limξ↓0
Φ1(ξ)
ξn = 0. We rewrite

cos(4 arctan ξn) =
−6ξ2n + 1 + ξ4n

(1 + ξ2n)2

and note that

d(2 arctan qξn)

dq

∣∣∣
q=1

=
2nξn

1 + ξ2n

is a solution of the homogeneous equation. Using variation of constants, one finds
that the solution we are looking for is

Φ1 =
(1− ξ4n − 4nξ2n ln ξ)

∫ ξ
0

s2n+1

(1+s2n)2 ds+ ξ2n
∫ ξ
0
s(s4n−1+4ns2n ln s)

(1+s2n)2 ds

ξn(1 + ξ2n)
.

This gives for n > 1

En =

∫ ∞

0

s2n+1

(1 + s2n)2
ds =

π

2n2 sin(πn )
.

For n < 1 the value of En is somewhat irrelevant, since the term ξn in (3.2) is non-
dominant in that case. Nevertheless, for 1

2 < n < 1,

En =

∫ 1

0

s2n+1 − 2s4n−3 − s6n−3

(1 + s2n)2
ds− 1.



ASYMPTOTICS OF BUBBLING IN HARMONIC MAPS 1703

For n = 1
2 the outer limit of the inner approximation is

v ∼ π − 2ξ−1/2 +R′R
(
−1

2
ξ3/2 +

(
−9

2
+ 2 ln ξ

)
ξ1/2

)
,

and for n < 1
2 it becomes

v ∼ π − 2ξ−n +R′R
(

n

2n− 2
ξ2−n +

n(2n2 − n+ 1)

4(1− n)2( 1
2 − n)

ξ2−3n

)
.

3.3. A first try. To get a preliminary idea, let us first attempt to match without
going to self-similar coordinates. (This turns out to produce the correct generic rate
for n �= 1; nongeneric cases have to be analyzed in self-similar coordinates.) Near
θ = π the equation can be linearized to

wt = L2w
def
= wrr +

1

r
wr − n2

r2
w.(3.3)

The stationary solution is w = C0r
n + C1r

−n, with C0, C1 ∈ R, and this forms the
inspiration for the formal solution

w =

∞∑
i=0

diα

dti
ψi(r) +

∞∑
i=0

diβ

dti
χi(r),

for some functions α(t) and β(t), and

ψ0 = rn, L2ψi = ψi−1, i = 1, 2, . . . ,

χ0 = r−n, L2χi = χi−1, i = 1, 2, . . . .

The outer approximation becomes

θ ∼ π + α(t)rn + β(t)r−n + β′(t)
1

4(1− n)
r−n+2.

Matching yields (for n > 1
2 )

O(r−n) : β ∼ −2Rn,
O(r−n+2) : β′ 1

4(1− n)
∼ n

2n− 2
R′Rn−1,

O(rn) : α ∼ −EnR
′R1−n,

from which we conclude that

R ∼
[
β0

2
(T − t)

]1/n
, n < 1, as t ↑ T,

R ∼
[
(2− n)α0

En
(T − t)

]1/(2−n)

, 1 < n < 2, as t ↑ T,

R ∼ κe−
α0
E2
t, n = 2, as t → ∞,

R ∼
(
(n− 2)α0

En
t

)−1/(n−2)

, n > 2, as t → ∞,
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for some κ > 0 and α0 = α(T ) > 0 and β0 = β′(T ) > 0 (i.e., β(t) ∼ β0(t − T )). For
n < 1 we have to separately consider the three cases (n < 1

2 , n = 1
2 , n > 1

2 ) with
different asymptotic behavior for the inner solutions; they all lead to results of the
same form.

Notice that when we perform the same analysis for n = 1 we obtain

O(r−1) : β ∼ −2R,

O(r ln r) :
1

2
β′ ∼ −R′,

O(r) : α ∼ R′(lnR+ 1).

One deduces that R ∼ α0
(T−t)

| ln(T−t)| , which is the wrong asymptotic behavior (although
it is almost right); see section 2. The artefact is caused by the fact that one a priori
assumes the limit profile to be θ(T, r) ∼ π +Cr for some C �= 0, whereas this cannot
be fixed a priori but should be determined by matching with the region in which
θ is near π; for this one needs to analyze what happens at an intermediate scale,
the self-similar one. When one performs the matching at the self-similar scale (with
variable y = r/(T − t)1/2), as will be done in section 3.4, it turns out that in the
generic (codimension 0) case the solution is yn (1 < n < 2) or y−n (n < 1); hence
the self-similar scale seems to have no influence. However, this region is crucial since
it introduces a selection mechanism (the requirement that the solution does not grow
exponentially for large y). Therefore, the analysis of the self-similar region does not
appear to influence the result for n �= 1 (in the generic scenario), but for n = 1 it
corrects the result from the above naive approach.

Finally, it is important to note that our analysis thus far suggests that blowup
occurs in infinite time for n ≥ 2 and in finite time for n < 2. This difference causes
us to investigate these cases separately.

3.4. The case n < 2: Finite time blowup. The analysis goes along the same
lines as for n = 1. The inner approximation has been obtained in section 3.2. Let us
here pay some extra attention to the outer solution. One could formulate this analysis
in the same terms as used in section 2.3 for n = 1. The matching for n �= 1 is easier
because it turns out that only the dominant term needs to be taken into account. We
can therefore use a slightly more straightforward approach.

We look for a self-similar solution to (3.3) of the form

w = (T − t)γφ

(
r√

T − t

)
,(3.4)

where γ is not known a priori but has to be determined as part of the process. As
the first boundary conditions we require that φ(y) does not grow exponentially for
y → ∞. The second boundary condition is different for n > 1 and n < 1. For n > 1
we require that φ(0) = 0, while for n < 1 we require that φ = Cy−n + o(yn) for
some C �= 0. These boundary conditions are suggested by our preliminary results
in section 3.3: the terms of order yn and y−n are dominant for n > 1 and n < 1,
respectively. Another, equivalent, point of view is that this boundary condition is in
fact a matching condition, as explained in section 2.4. For both n > 1 and n < 1
there is a sequence of self-similar solutions of the boundary value problem.

For n > 1 the first one is γ = n/2 and φ0 = C0y
n with C0 �= 0; the second one

is γ = n/2 + 1 and φ1 = C1y
n(1− 1

4n+4y
2). In general, there is a family of solutions

γ = n/2 + k and φk = Cky
nfk,n(y

2) for k = 0, 1, 2, . . . , where fk,n is a polynomial
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of degree k and fk,n(0) = 1. (We note that fk,n can be expressed in terms of a
generalized Laguerre polynomial.) Since the inner approximation (3.2) thus needs to
match into C0(T − t)krn for some C0 �= 0, one obtains the matching condition

O(rn) : C0(T − t)k ∼ −EnR
′(t)R(t)1−n.

We only use this one term since we have already seen in section 3.3 that it is the
dominant one. Hence with codimension k = 0, 1, 2, . . . (and 1 < n < 2)

R(t) = κ(T − t)(k+1)/(2−n) as t ↑ T

for some κ > 0, with limit profile

θ(T, r) ∼ π +Ak,nκ
2−nrn+2k as r ↓ 0

for some constant Ak,n, which can be calculated from the coefficient of the highest
order term in the polynomial fk,n (e.g., A0,n = En

4(n+1)(2−n) ).

For n < 1 the first possibly relevant self-similar solution of the form (3.4) is
(T − t)−n/2y−n, but this is simply r−n and does not tend to 0 as t → T , and hence it
is not suitable (it does not correspond to blowup at t = T ). The next is γ = −n/2+1
and φ0 = C̃0y

−n(1− 1
4(1−n)y

2) with C̃0 �= 0. There is again a family of solutions
γ = −n/2+k+1 and φk = C̃ky

−nf̃k,n(y2), where f̃k,n is a polynomial of degree k+1

and f̃k,n(0) = 1. (Again fk,n can be expressed in terms of a generalized Laguerre

polynomial.) Because (3.2) thus needs to match into C̃0(T−t)k+1r−n for some C̃0 �= 0,
one obtains the matching condition

O(r−n) : C̃0(T − t)k+1 ∼ −2Rn,
and hence with codimension k = 0, 1, 2, . . . (and 0 < n < 1)

R(t) ∼ κ(T − t)(k+1)/n as t ↑ T

for some κ > 0, and the limit profile is

θ(T, r) ∼ π +Ak,nκ
nr2−n+2k as r ↓ 0

for some constant Ak,n, which can be calculated from the coefficient of the highest

order term in the polynomial f̃k,n (e.g., A0,n = 1
2(1−n) ).

Immediately after blowup, an inner layer near r = 0 appears. For n < 1 the
leading order behavior in this layer is simpler than for n = 1, being exactly self-
similar. In the generic case (k = 0) one finds

θ(t, r) ∼ π + dnκ
n(t− T )(2−n)/2gn

(
r√

t− T

)
as t ↓ T for small r

for some dn > 0 to be determined. Here

gn(z) =
(
8n(1− n)z2−n + 32n(1− n)2z−n

) ∫ z

0

s2n−1e−s
2/4

(4(1− n) + s2)2
ds

is the solution of the linearized equation in self-similar coordinates with the property
that gn(z) ∼ zn as z → 0. It follows that gn(z) ∼ 4n−1Γ(n + 1)z2−n as z → ∞.

Matching with the limit profile at t = T yields dn =
[
22n−1(1−n)Γ(n+1)

]−1
. Notice

that for 1 < n < 2 special treatment of the short time behavior after blowup is
not necessary. (One would just find that θ(t, r) ∼ π + (t − T )n/2gn(r/

√
t− T ), with

gn(z) =
En

4(n+1)(2−n)z
n.)
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3.5. The case n ≥ 2: Infinite time blowup. For n ≥ 2 blowup occurs
in infinite time, and there are only two scales: an inner and a remote region. In
the remote region the limit profile is now known. Namely, for boundary condition
θ(t, 1) = θ1 ∈ (π, 2π) the limit profile is

lim
t→∞ θ(t, r) ∼ π + 2arctan

(
tan

(
θ1 − π

2

)
rn
)
.(3.5)

The special case θ1 = π is dealt with in section 3.7, and θ1 > 2π is discussed in section
3.6. For small r the limit profile (3.5) behaves as π + 2 tan( θ1−π2 )rn. For θ1 ∈ (π, 2π)

we define α0
def
= 2 tan( θ1−π2 ).

Now the inner approximation (3.2) has to match into α0r, and hence

O(rn) : α0 ∼ −EnR
′(t)R(t)1−n.

One obtains

R ∼
{

κe−
α0
E2
t, n = 2,( (n−2)α0

En
t
)−1/(n−2)

, n > 2,
as t → ∞(3.6)

for some κ > 0. Because the limit profile is known a priori (as opposed to n < 2), the
unknown constant appears to leading order only when n = 2, where it is required due
to translation invariance in time. Furthermore, we note that there are no degenerate
cases; since blowup occurs as t → ∞, it can be determined a priori which of the
stationary states will be the final profile. This depends only on the value of θ1 and
θ(0, 0), and since θ(0, 0) ∈ πZ is not a continuous parameter, degenerate (borderline)
cases are not needed.

3.6. Multiple blowup. In certain situations it may happen that blowup occurs
at several scales simultaneously (a so-called bubble tree; see also [17]), for example,
when θ1 ≥ 2π. For n < 2, i.e., finite time blowup, double (or multiple) blowup does
not need to happen since the necessary jumps can occur at different instances, and
simultaneous blowup is indeed not possible, at least for n = 1; see [12] (and our
analysis reveals no possible finite time bubble tree). On the other hand, for n ≥ 2
multiscale blowup necessarily happens if θ1 ≥ 2π, since all blowup occurs as t → ∞.

Let us take θ1 ∈ (2π, 3π) as an example. The limit profile is now

lim
t→∞ θ(t, r) = 2π + 2arctan

(
tan

(
θ1

2

)
rn
)
.

Define α1 = 2 tan( θ12 ) for θ1 ∈ (2π, 3π). The two blowup rates are R1(t) and R2(t) for
the jumps from 0 to π and from π to 2π, respectively, with R1 � R2 � 1. The first
blowup rate R1(t) is defined as before, namely, so that R1(t)

nθ(t, r) ∼ 2rn as r ↓ 0
for all t > 0. The second blowup rate R2(t) cannot be defined in the same way, and
instead we set

θ(t, R2(t)) =
3π

2
for all t close to blowup,

so that in the limit we have for all ρ > 0

lim
t→∞ θ(t, ρR2(t)) = π + 2arctan ρn and lim

t→∞ θ(t, ρR1(t)) = 2 arctan ρn.



ASYMPTOTICS OF BUBBLING IN HARMONIC MAPS 1707

The inner-inner region, r = O(R1(t)), is as analyzed in section 3.2. The analysis of
the inner region, r = O(R2(t)), is the same except for the boundary condition on the
left. Let x = r/R2(t); then v(t, x) = u(t, r) behaves for large t as

v ∼ π + 2arctanxn +R′
2R2Ψ,

where Ψ obeys

Ψxx +
1

x
Ψx − n2 cos(4 arctanx

n)

x2
Ψ = − 2nxn

1 + x2n
,

with “boundary” condition Ψ(1) = 0. The solution is

Ψ =
(1− x4n − 4nx2n lnx)(A+

∫ x
1

s2n+1

(1+s2n)2 ds) + x2n
∫ x
1
s(s4n−1+4ns2n ln s)

(1+s2n)2 ds

xn(1 + x2n)

with arbitrary A ∈ R. For convenience we define

Bn =

∫ 1

0

s2n+1

(1 + s2n)2
ds.

One infers that

Ψ ∼ (A−Bn)x
−n for small x,

Ψ ∼
(
−
∫ ∞

1

s2n+1

(1 + s2n)2
ds−A

)
xn +

n

2n− 2
x−n+2 for large x.

Matching with the remote solution gives (recalling that En =
∫∞
0

s2n+1

(1+s2n)2 ds)

O(rn) : α1 ∼ (Bn − En −A)R′
2R

1−n
2 ;

hence

R2 ∼
{

c0e
− α1

E2−B2+A t, n = 2,( (n−2)α1

En−Bn+A t
)−1/(n−2)

, n > 2,
(3.7)

for an arbitrary constant c0 > 0.
Matching the inner-inner with the inner gives

O(r−n) : −2Rn1 ∼ (A−Bn)R
′
2R

1+n
2 ,(3.8)

O(rn) : −EnR
′
1R

1−n
1 ∼ 2R−n

2 .(3.9)

From (3.7) and (3.9) we deduce that

R1 ∼

 c2e

−c1e
2α1

E2−B2+A
t

, n = 2,( (n−2)(En−Bn+A)
Enα1(n−1)

)−1/(n−2)( (n−2)α1

En−Bn+A t
)−(2n−2)/(n−2)2

, n > 2,

for arbitrary constants c1, c2 > 0 (c1 = 2
E2

c0). From (3.8) we then conclude that
A = Bn, and hence

R1 ∼

 c2e

−c1e
2α1
E2

t

, n = 2,(
n−2

α1(n−1)

)−1/(n−2)( (n−2)α1

En
t
)−(2n−2)/(n−2)2

, n > 2,
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for arbitrary constants c1, c2 > 0 (which only appear for n = 2), and α1 = 2 tan( θ12 ),
En = π

2n2 sin(π
n ) . Notice the doubly exponential decay for n = 2; there are two

unknown constants c1 and c2 in the leading order asymptotic expression because at
both blowup scales there is a scaling invariance. While the first one could be attributed
to translation invariance in time, the criticality of the case n = 2 is apparent in the
appearance of a second unknown constant; for n > 2 there are no free constants in the
leading order expression. One could generalize this to triple and higher multijumps,
but we leave this to the puzzle-minded reader.

When one tries to perform the above analysis for n < 2, one readily encounters
matching conditions which cannot be fulfilled. We therefore conjecture that there
exist no bubble trees for n < 2; in particular, there are no finite time bubble trees.

3.7. Boundary condition θ1 = π. In the case of the special boundary condi-
tion θ(t, 1) = π we follow the argument of section 2.6. The remote solution w behaves
as

w ∼ π + s(t)(rn − r−n) + s′(t)
1

4

(
1

n− 1
r2−n +

1

n+ 1
r2+n − 2n

n2 − 1
rn
)
.

Matching this with the inner solution, we find

O(r−n) : −s ∼ −2Rn,
O(r−n+2) :

1

4(n− 1)
s′ ∼ n

2(n− 1)
R′Rn−1,

O(rn) : s ∼ −EnR
′R1−n.

We obtain

R(t) ∼
(
4(n− 1)

En
t

)−1/(2n−2)

as t → ∞ for n > 1.

For n < 1 matching suggests R(t) ∼ ( 4(1−n)
En

(T − t)
)1/(2−2n)

. However, this does not
provide consistent matching since it implies that s′ � s. This suggests that we need a
left boundary condition on the remote region of the form w ∼ Cr−n+ o(rn) as r → 0
for some C �= 0. Hence we need to consider solutions of the form (compare to the
degenerate case in section 2.6)

w ∼ π + C0e
−ν2

ntr−n

for some C0 �= 0. Here νn is the first zero of the nth order singular Bessel function Ỹn,
which (for the occasion) is defined with the choice that Ỹn(r) ∼ C̃r−n + o(rn), with
C̃ �= 0 arbitrary. We remark that νn → 0 as n ↑ 1. Matching now yields

O(r−n) : C0e
−ν2

nt ∼ −2Rn,
and hence

R(t) ∼ κe−
ν2
n
n t for n < 1

for some κ > 0. To summarize, one finds that for θ1 = π generically

R(t) ∼




κe−ν
2
nt/n, n < 1,

e−2
√
t−5/4, n = 1,( 4(n−1)

En
t
)−1/(2n−2)

, n > 1,
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provided that no finite time blowup occurs (for n < 2), for example, when one takes
initial data which lie entirely between 0 and π.

For n < 2 there is again a family of degenerate cases (cf. section 2.6); the blowup
is at an exponential rate determined by the zeros of the Bessel functions Ỹn for n < 1
and Jn for 1 < n < 2. For n ≥ 2 degenerate scenarios do not exist. We leave the
details to the diligent reader. For n ≥ 2 the cases θ1 = mπ, m = 2, 3, . . . , involve
multiple blowup, and the technique from the previous section may be used.

3.8. The infinite domain. We will now discuss how the results obtained so far
have to be adapted when we consider an infinite domain, i.e., r ∈ (0,∞), instead of a

finite one. In order to have a solution with finite energy E(t) = π
∫∞
0

(
rθ2
r+n2 sin2 θ

r

)
dr

the profile has to approach a multiple of π at a reasonably fast rate as r → ∞; we
denote this “boundary” condition by limr→∞ θ(t, r) = θ̃1 ∈ πZ. We focus on initial
data which have compact support in the sense that θ(0, r) = mπ for all sufficiently
large r or, more generally, data which decay to mπ exponentially (thus, in particular,
excluding algebraic decay).

Let us first discuss the case θ̃1 = π. There are several possibilities, depending
on the initial data. For n < 2 a generic possibility is finite time blowup (see section
3.4). A priori, another possibility is that there is no blowup and that for large time
the solution converges to one of the equilibria θ(r) = 2 arctan qrn for some q > 0.
For n ≥ 2 this is in fact the only feasible scenario, and no blowup turns out to be a
generic scenario for 1 < n < 2; on the other hand, for n ≤ 1 blowup always occurs
(as is explained below). Regarding nongeneric possibilities, consider, for example,
the parameter range 1 < n < 2 and initial data which have one crossing with π (so
that the finite time codimension 1 blowup scenario is not possible). We deduce that
there should be at least one nongeneric infinite time blowup scenario which acts as
the borderline between the two generic possibilities.

The large time behavior away from the origin is described in terms of self-similar
variables τ = ln t and y = r/

√
t = e−τ/2r, which leads to the linearized equation

ητ = ηyy +

(
1

y
+

y

2

)
ηy − n2

y2
η.

We now analyze the codimension 0 and 1 scenarios for various ranges of n. (Higher
codimension cases can be analyzed in a similar manner.)

For n > 1 the generic behavior is described by the solution

η = C0e
−nτ/2 y−n

∫ ∞

y

s2n−1e−s
2/4 ds(3.10)

for some C0 �= 0; it decays faster than exponentially as y → ∞, and as y → 0
it asymptotically satisfies η ∼ C02

2n−1Γ(n)e−nτ/2y−n = C02
2n−1Γ(n)r−n. Since

matching into the inner solution (3.2) leads to R(t) → κ as t → ∞ for some κ > 0
with limit profile θ∞(r) = 2 arctan(r/κ)n, the generic scenario corresponds to no
blowup. To be more precise, for n > 1 the matching conditions are

O(r−n) : C02
2n−1Γ(n) ∼ −2Rn,

O(rn) : − 1
2nC0t

−n ∼ −EnR
′R1−n.

Hence R(t) ∼ κ+Qq,nt
1−n as t → ∞, where

Qq,n =
[
22n−1κ1−2n(n− 1)Γ(n+ 1)En

]−1
> 0.
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In between the generic possibilities of no blowup and finite time blowup there is
a degenerate infinite time blowup scenario. For this codimension 1 case we find the
outer approximation (writing ζ(τ, y) = θ(t, r))

ζ(τ, y) ∼ π + C1e
−(2+n)τ/2 yn e−y

2/4 as τ → ∞
for some C1 �= 0. Matching this with the inner solution, we infer that for 1 < n < 2
the codimension 1 blowup rate is

R(t) ∼ κt−n/(2−n) as t → ∞ for 1 < n < 2(3.11)

for some κ > 0. Away from the origin the decay towards π is at algebraic rate
O(t−1−n). For n ≥ 2 matching in the nongeneric case is impossible (looking at (3.11),
one could anticipate this), implying that for θ̃1 = π there is never blowup when n ≥ 2.

The case n = 1 is again a borderline one; we find that (3.10) again describes the
generic behavior in the outer region, but we need C0 to depend on τ in a nonexponen-
tial manner. Matching this with the inner solution (2.3) gives matching conditions
(with R̃(τ) = R(t))

O(y−1) : 2C0(τ)e
−τ/2 ∼ −2e−τ/2R̃,

O(y ln y) : C ′
0(τ)e

−τ/2 ∼ −e−τ/2R̃′,

O(y) : −1

2
C0(τ)e

−τ/2 ∼ e−τ/2R̃′
(
ln R̃− τ

2
+ 1
)
.

This generic scenario thus describes blowup at rate

R(t) ∼ κ

ln t
as t → ∞ for n = 1

for some κ > 0. (Since the problem on the infinite domain is scaling invariant,
a multiplicative constant, whose value depends on the initial data, must again be
present.) For r = O(1) the solution approaches π at rate O(1/ ln t) as t → ∞. The
outer approximation in the codimension 1 case is

ζ(τ, y) ∼ π + e−3τ/2e−y
2/4
[
σ(τ)y + σ′(τ)(4y−1 − 2y ln y)

]
as τ → ∞

for some σ(τ), and matching gives the blowup rate R ∼ κt−1(ln t)−4/3 as t → ∞ (i.e.,
a logarithmically corrected version of (3.11) with n = 1), where κ > 0 is arbitrary.
Away from the origin the rate of decay towards π is of order O(t−1(ln t)−4/3).

For n < 1 the outer approximation described by (3.10) does not lead to consistent
matching; we have seen previously that for n < 1 the outer solution should behave as
C̃y−n + o(yn) for small y with C̃ �= 0, which is not satisfied by (3.10). Therefore, for
n < 1 the outer approximation in the generic case is

ζ(τ, y) ∼ π + C2e
−(2−n)τ/2 y−n e−y

2/4 as τ → ∞
for some C2 �= 0. Matching with the inner solution, we find that generically

R(t) ∼ κt−(1−n)/n as t → ∞ for n < 1

for some κ > 0. Away from the origin the decay towards π as t → ∞ is at algebraic
rate O(t−1). For the codimension 1 scenario we find R ∼ κt−(2−n)/n as t → ∞ for
some κ > 0.
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We note that, although the infinite domain allows scaling invariance, spreading
of the form θ(t, r) = Θ(r/

√
t) is seen to be impossible by an argument analogous

to that given at the end of section 1. On the other hand, taking initial data with
θ(t0, r) ∼ Ĉr−a as r → ∞ for some Ĉ �= 0, where 0 < a < n, spreading at a rate
slower than the self-similar one will occur as t → ∞. The matching conditions in
that case imply that the term of order r−n is dominant for all n > 0, which yields
R(t) ∼ κt(n−a)/2n as t → ∞ for some κ > 0 and any 0 < a < n; notice that n−a2n < 1

2
so that the self-consistency condition R′R → 0 as t → ∞ holds. For a = n (i.e.,
θ(t0, r) ∼ Ĉr−n as r → ∞, which is the same rate as a stationary solution) no blowup
occurs, while for a > n there is either blowup (for n ≤ 1) or no blowup (for n > 1),
but we will not pursue the issue of algebraically decaying initial data any further.

The analysis is similar for limr→∞ θ(t, r) = θ̃1 = mπ, m = 2, 3, . . . . For n < 2
a (finite) number of finite time jumps essentially reduces the situation to the case
θ̃1 = π. For n ≥ 2 and boundary value θ̃1 = 2π, blowup will happen as t → ∞ and
one of the stationary states θ∞(r) = π + 2arctan qrn for some q > 0 is selected. The
analysis is completely analogous to the finite domain case θ1 ∈ (π, 2π) discussed in
section 3.5 (notice that it thus differs from the finite domain with θ1 = 2π). The result
is the same as in section 3.5 except that the constant q = α0 cannot be determined
a priori in the case of an infinite domain (and it should not be since the equation
has a scaling invariance). Hence, the asymptotic blowup rate is given by (3.6), the
only alteration being that, in the case of an infinite domain, α0 > 0 is an arbitrary
constant whose value depends on the initial data. For θ̃1 = mπ with m = 3, 4, . . .
(and n ≥ 2) multiscale blowup occurs (see section 3.6), and the analysis of the infinite
domain is analogous to that of the finite domain with θ1 ∈ ((m− 1)π,mπ).

3.9. Jumping back. Finally, we analyze the possibility of reverse jumps for
(3.1). Analogous to section 2.7, the profile at any time generically behaves as Crn for
small r with C �= 0. Hence in the outer region, in self-similar coordinates τ = ln(t−t0)
and y = e−τ/2r, we look for a solution of the form enτ/2ψ(y). The linear equation for
ψ has as solution

ψ = C0y
n + C1y

n

∫ ∞

y

e−s
2/4s−2n−1ds,

with arbitrary constants C0, C1 ∈ R, and y0 > 0. The inner limit of the outer
approximation thus becomes

ζ ∼ π+enτ/2
[
α(τ)yn + β(τ)

(
1

2n
y−n − 1

8(n− 1)
y2−n

)]
for small y and −τ � 1.

Matching with the inner solution gives (writing R̃(τ) = R(t))

O(y−n) :
1

2n
βenτ/2 ∼ −2R̃ne−nτ/2,

O(y2−n) : − 1

8(n− 1)
βenτ/2 ∼ n

2(n− 1)
R̃′R̃n−1e−nτ/2,

O(yn) : αenτ/2 ∼ −EnR̃
′R̃1−ne(−1+n/2)τ .

One concludes that for n > 1 the term of order yn is dominant, and hence as t ↓ t0

R ∼
[
:(2− n)

En
(t− t0)

]1/(2−n)

for 1 < n < 2
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for some : > 0, the limit profile being θ(t0, r) ∼ π − :rn. Considerations about non-
generic cases are analogous to those in section 2.7; for the codimension 1 case one
finds that

R ∼
[
2:(n+ 1)(2− n)

En

]1/(2−n)

(t− t0)
2/(2−n) as t ↓ t0

for some : > 0 with θ(t0, r) ∼ π − :r2+n as r → 0. For n ≥ 2 no consistent matching
is found, implying the rather strong result that reverse jumps do not seem possible.
Notice that these conclusions are in line with what one could expect from section 3.3.

For n < 1 the term of order y−n is dominant; hence the matching conditions give
R ∼ ωn(t − t0) as t ↓ t0 for some ωn > 0, which can be determined using the limit
profile θ(t0, r) ∼ π − :rn as r → 0. Since the inner limit of the outer approximation
behaves as (ζ − π)e−nτ/2 ∼ −4nωnny−n + o(yn) as y → 0, the outer limit of the outer
approximation becomes

ζ ∼ π − 4nωnne
nτ/2yn

[
−2−2n−1Γ(−n) +

∫ ∞

y

e−s
2/4s−2n−1ds

]
.

Hence as t ↓ t0

R ∼
(

: 22n−1

Γ(1− n)

)1/n

(t− t0) for n < 1

for some : with θ(t0, r) ∼ π − :rn as r ↓ 0. Nongeneric cases can also be considered;
for example, for the codimension 1 scenario one finds

R ∼
(

: 22n+1

Γ(1− n)

)1/n

(t− t0)
(n+1)/n as t ↓ t0

for some : with θ(t0, r) ∼ π − :rn+2 as r ↓ 0.
Finally, we do not find any self-consistent scenarios for reverse jumps which in-

crease the energy by more than 4π, i.e., no reverse bubble trees for any n. (This is
analogous to the conclusion in section 3.6 that there are no normal (energy-decreasing)
bubble trees for n < 2; for n ≥ 2 there are normal bubble trees but they are of the
infinite time blowup type.)

4. Conclusion. We have analyzed the blowup rate in the harmonic map heat
flow in a family of symmetric settings, leading to a parabolic problem in one space
dimension:

θt = θrr +
1

r
θr − n2 sin 2θ

2r2
, 0 < r < 1,(4.1)

with boundary conditions θ(t, 0) ∈ πZ and θ(1, t) = θ1. Here n > 0 is a param-
eter, and it corresponds to a well-defined physical situation (e.g., in the context of
aligned nematic liquid crystals) when n = 1, 2, 3, . . . . The initial value problem has a

unique energy-decreasing solution, the energy being E(t) = π
∫ 1

0
(θ2
r+r−2n2 sin2 θ)rdr.

Equation (4.1) is the gradient flow associated with this energy.
Without loss of generality we may assume that θ(0, 0) = 0. During the evolution

of a solution the value of θ at the origin may jump at some time(s) t = T ∈ (0,∞].
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As the time approaches T the quantity limr↓0 r−nθ(t, r) blows up. In this paper we
have determined the asymptotic behavior of the blowup rate R(t), defined by

R(t)nθ(t, r) ∼ 2rn as r ↓ 0 for all t up to the blowup time,

using formal matched asymptotic expansions. After rescaling with this blowup rate,
the profile approaches a harmonic map (a stationary state):

lim
t↑T

θ(t, ξR(t)) = 2 arctan ξn for all fixed ξ > 0.

Since our results suggest important differences between n < 2 and n ≥ 2, let us
first summarize the behavior for n < 2. The generic behavior for θ1 > π is

n < 1 : R ∼ κ (T − t)1/n as t ↑ T,

n = 1 : R ∼ κ
T − t

| ln(T − t)|2 as t ↑ T,

1 < n < 2 : R ∼ κ (T − t)1/(2−n) as t ↑ T,

where κ > 0 is an arbitrary constant and T < ∞ is the time of blowup. There
is also a countable family of degenerate cases. We find that with codimension k
(k = 0, 1, 2, . . . )

n < 1 : R ∼ κ (T − t)(k+1)/n as t ↑ T,

n = 1 : R ∼ κ
(T − t)k+1

| ln(T − t)|(2k+2)/(2k+1)
as t ↑ T,

1 < n < 2 : R ∼ κ (T − t)(k+1)/(2−n) as t ↑ T,

where κ > 0 is again an arbitrary constant. In the codimension k scenario the profile
θ(t, r) just before blowup has k + 1 intersections with π, which approach the origin
as t ↑ T . Countable families of nongeneric blowup rates are encountered in a wide
variety of problems; see [10] for an illustrative example.

For boundary data θ1 = π, blowup can occur (in finite time) via the scenario
described above, but there is another generic blowup behavior (in infinite time) of the
form

n < 1 : R ∼ κ e−
ν2
n
n t as t → ∞,

n = 1 : R ∼ e−2
√
t−5/4 as t → ∞,

1 < n < 2 : R ∼
(
4(n− 1)

En
t

)−1/(2n−2)

as t → ∞,

with arbitrary constant κ > 0. Here En = π
2n2 sin(π

n ) and νn is the first zero of the
Bessel function Ỹn (see section 3.7 for details). There is also a family of nongeneric
infinite time blowup possibilities.

For n ≥ 2 all blowup occurs as t → ∞, and there is always a unique blowup
scenario. For θ1 ∈ (0, π) blowup never occurs (whereas for n < 2 this depends on the
initial profile). For θ1 ∈ (π, 2π) one finds

n = 2 : R ∼ κ e−
α0
E2
t as t → ∞,

n > 2 : R ∼
(
(n− 2)α0

En
t

)−1/(n−2)

as t → ∞,
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where κ > 0 is arbitrary, En = π
2n2 sin(π

n ) , and α0 = tan( θ1−π2 ). No other (nongeneric)

scenarios are found. In the case of boundary data θ1 = π the result is

n ≥ 2 : R ∼
(
4(n− 1)

En
t

)−1/(2n−2)

as t → ∞,

which is the same expression as for 1 < n < 2.

For θ1 ≥ 2π there is blowup over two or more scales (the number being known a
priori from the value of θ1). For 2π ≤ θ < 3π there is blowup over two scales; these
are the simplest examples of so-called bubble trees. For θ1 = 2π the blowup rate in
the innermost region is

n = 2 : R ∼ κ e−4E−2
2 t2 as t → ∞,

n > 2 : R ∼
(

n− 2

3n− 2

)−1/(n−2)(
4(n− 1)

En
t

)−(3n−2)/(2(n−1)(n−2))

as t → ∞,

where κ > 0 is arbitrary. For θ1 ∈ (2π, 3π) we obtain (for the innermost blowup)

n = 2 : R ∼ κ2 e
−κ1e

2α1
E2

t

as t → ∞,

n > 2 : R ∼
(

n− 2

α1(n− 1)

)−1/(n−2)(
(n− 2)α1

En
t

)−(2n−2)/(n−2)2

as t → ∞,

where κ1, κ2 > 0 are arbitrary and α1 = 2 tan( θ12 ). Analogous results hold for other
values of θ1 ≥ 3π.

We now describe the global picture suggested by these formal results. Since the
equation is invariant under the discrete symmetries θ �→ −θ and θ �→ θ + π, we may
without loss of generality assume that θ(0, 0) = 0 and θ1 ≥ 0. For convenience of
notation, let the stationary solution 2 arctan(rn tan θ12 ) be denoted by ϑθ1(r). We
make a subdivision depending on the value of the boundary data θ1.

Case 1: 0 ≤ θ1 < π. No blowup occurs for n ≥ 2 and the limit profile
limt→∞ θ(t, r) = θ∞(r) = ϑθ1(r) for all fixed r > 0. For n < 2 there is, depending
on the initial data, either no blowup or blowup at a finite set of finite time moments
{Ti}Ki=1 for some integer K; if θ1 = 0, then K must be even. At each blowup time
Ti the value of θ at the origin jumps by ±π, and an amount E(Ti) − limt↑Ti = 4πn
of energy is lost (a sphere bubbles off). This may happen via either a generic or a
nongeneric scenario. The blowup instances Ti are all different, and there is no blowup
as T → ∞. If K is even, then the limit profile is θ∞(r) = ϑθ1(r), while if K is odd, it
is θ∞(r) = π − ϑπ−θ1(r). The number of jumps K is a priori bounded from above by

1
4πn max{E(0) − Eθ1 , E(0) − Eπ−θ1}, where E(0) is the energy of the initial data and
Eθ1 is the energy of the stationary state ϑθ1 ; if E(0) < Eπ−θ1 +4πn, then no jump can
occur.

Case 2: θ1 = π. For any n > 0 the limit profile is θ∞(r) ≡ π, and blowup has to
occur at at least one time T ∈ (0,∞]. For n ≥ 2 blowup occurs only as t → ∞, and
an energy loss of 4πn occurs in this limit (i.e., limt→∞ E(t) = 4πn, while E(θ∞) = 0).
There is only one possible blowup rate. For n < 2 there is a finite set of time moments
{Ti}Ki=1 for some integer K with the same properties as for θ1 < π, except that K is
odd (and thus K ≥ 1) and one of the Ti may be equal to ∞, in which case the energy
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jump at infinity is 4πn (i.e., the same as for a finite time jump). Both the finite time
and the infinite time blowup can happen via a generic or nongeneric scenario.

Case 3: π < θ1 < 2π. Blowup has to occur at at least one time T ∈ (0,∞]. For
n ≥ 2 there is blowup only as t → ∞, and the limit profile is θ∞(r) = π + ϑθ1−π(r).
The energy loss at infinity is 4πn, and there is only one possible blowup rate. For
n < 2 the scenario is the same as for θ < π (in particular, there is no infinite time
blowup), with the adaptation that K ≥ 1. If K is odd, then the limit profile is
θ∞(r) = π + ϑθ1−π(r), while if K is even, it is θ∞(r) = 2π − ϑ2π−θ1(r).

Case 4: θ1 = mπ, m = 2, 3, . . . . For any n > 0 the limit profile is θ∞(r) ≡ kπ,
and blowup has to occur at at least one time moment T ∈ (0,∞]. For n ≥ 2 blowup
occurs only as t → ∞, and an energy loss of 4πnm occurs in this limit. There is
only one possible blowup rate, and blowup occurs over m different scales (a so-called
bubble tree, the current analysis furnishing simple concrete examples of how such
behavior can occur); there is a unique blowup scenario. For n < 2 there is a finite set
of time moments {Ti}Ki=1 for some integer K with the same properties as for θ1 = π
(one of the Ti can be equal to ∞), except that the number of blowup times K ≥ m
and K −m is always even. There is no bubble tree, and the energy loss at each Ti is
4πn.

Case 5: θ1 > 2π, θ1 /∈ πZ. Blowup has to occur at at least one time T ∈ (0,∞].
For n ≥ 2 there is blowup only as t → ∞, and the limit profile is θ∞(r) = Mπ +
ϑθ1−Mπ(r), where M is the largest integer smaller than θ1. There is blowup over M
different scales, and the energy loss at infinity is 4πnM (i.e., a bubble tree). There
is just one possible scenario. For n < 2 the scenario is the same as for π < θ < 2π,
with the adaptation that K ≥ M . If K −M is even, then the limit profile is θ∞(r) =
Mπ+ϑθ1−Mπ(r), while if K is even, it is θ∞(r) = (M +1)π−ϑ(M+1)π−θ1(r). Again,
at each blowup time one quantum of energy (i.e., 4πn) is lost.

In the case of an infinite domain r ∈ (0,∞) and boundary conditions at infinity
limr→∞ θ(t, r) = θ̃1 = mπ, m = 0, 1, 2, . . . (in order for profiles to have finite energy),
we restrict our attention to initial data that approach θ̃1 sufficiently fast as r → ∞.
We again describe the results for n ≥ 2 and n < 2 separately.

For n ≥ 2 and θ̃1 = mπ, m = 1, 2, . . . , the situation is very similar to that of
a finite domain with θ1 ∈ ((m − 1)π,mπ). (For m = 0 there is no blowup, and the
solution converges to 0 uniformly as t → ∞.) Blowup occurs over m − 1 scales, and
the limit profile is a stationary state θ∞(r) = (m− 1)π + 2arctan qrn for some q > 0
(which depends on the initial data). The blowup rate is the same as for the finite
domain described previously (with q replacing the constants α0 and α1). There are
no nongeneric scenarios.

For n < 2 the solution has K ≥ m blowup times (cf. the finite domain case),
one of which may be infinity. If K − m is odd, then the limit profile is θ∞(r) =
(m±1)π∓2 arctan qrn for some q > 0, while if K−m is even, then θ∞(r) = mπ. The
finite time blowup rates are the same as for the finite domain (including the possibility
of nongeneric finite time blowup). Whereas for 1 < n < 2 the blowup times are all
generically finite (and there is thus no generic blowup as t → ∞), for n ≤ 1 infinite
time blowup is generic and the rate is

n < 1 : R ∼ κ t−(1−n)/n as t → ∞,

n = 1 : R ∼ κ (ln t)−1 as t → ∞,

with κ > 0 arbitrary. For 1 < n < 2 infinite time blowup can occur with codimen-
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sion 1; the corresponding blowup rate is

n < 1 : R ∼ κ t−(2−n)/n as t → ∞,

n = 1 : R ∼ κ t−1(ln t)−4/3 as t → ∞,

1 < n < 2 : R ∼ κ t−n/(2−n) as t → ∞
for arbitrary κ > 0. There is again a countable family of infinite time blowup scenarios
with higher codimension.

Finally, when one allows for solutions that do not necessarily have decreasing
energy (thereby introducing nonuniqueness), then, depending on n, jumps can occur
in which the energy increases. The physical interpretation is that the energy stored
in the origin at a forward (energy-decreasing) jump is released.

For n < 2 reverse jumps can happen at any time. In the nominally generic
(codimension 0) case we have

n < 1 : R ∼
(

: 22n−1

Γ(1− n)

)1/n

(t− t0) as t ↓ t0,

n = 1 : R ∼ 2:
t− t0

| ln(t− t0)| as t ↓ t0,

1 < n < 2 : R ∼
[
:(2− n)

En
(t− t0)

]1/(2−n)

as t ↓ t0,

where : > 0 with θ(t0, r) ∼ π − :rn. For the codimension 1 scenario one finds

n < 1 : R ∼
(

: 22n+1

Γ(1− n)

)1/n

(t− t0)
(n+1)/n as t ↓ t0,

n = 1 : R ∼ 8

3
:

(t− t0)
2

| ln(t− t0)| as t ↓ t0,

1 < n < 2 : R ∼
(
2:(n+ 1)(2− n)

En

)1/(2−n)

(t− t0)
2/(2−n) as t ↓ t0,

where : > 0 with θ(t0, r) ∼ π − :rn+2. It is conjectured in [2] that a physical system
selects the codimension 1 scenario to release the energy stored in the origin. When
a forward and a reverse jump occur at the same instant (cf. [18]), the rate is given
by (2.17).

For n ≥ 2 no reverse jumps are possible; this is not surprising since energy can
be stored in the origin only as t → ∞, and thus none is available for release.

Acknowledgments. We would like to thank Sigurd Angenent, Marek Fila, Rein
van der Hout, and Giles Richardson for a series of pleasant and enlightening discus-
sions.

REFERENCES

[1] S.B. Angenent, J. Hulshof, and H. Matano, Asymptotics for Gradient Blow-Up in Equiv-
ariant Harmonic Map Flows from D2 to S2, in preparation.

[2] M. Bertsch, R. Dal Passo, and R. van der Hout, Nonuniqueness for the heat flow of
harmonic maps on the disk, Arch. Ration. Mech. Anal., 161 (2002), pp. 93–112.

[3] M. Bertsch, P. Podio-Guidugli, and V. Valente, On the dynamics of deformable ferro-
magnets: I. Global weak solutions for soft ferromagnets at rest, Ann. Mat. Pura Appl.,
179 (2001), pp. 331–360.



ASYMPTOTICS OF BUBBLING IN HARMONIC MAPS 1717
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BACKSCATTERING AND NONPARAXIALITY ARREST
COLLAPSE OF DAMPED NONLINEAR WAVES∗

G. FIBICH† , B. ILAN† , AND S. TSYNKOV‡

SIAM J. APPL. MATH. c© 2003 Society for Industrial and Applied Mathematics
Vol. 63, No. 5, pp. 1718–1736

Abstract. The critical nonlinear Schrödinger equation (NLS) models the propagation of intense
laser light in Kerr media. This equation is derived from the more comprehensive nonlinear Helmholtz
equation (NLH) by employing the paraxial approximation and neglecting the backscattered waves.
It is known that if the input power of the laser beam (i.e., L2 norm of the initial solution) is
sufficiently high, then the NLS model predicts that the beam will self-focus to a point (i.e., collapse)
at a finite propagation distance. Mathematically, this behavior corresponds to the formation of a
singularity in the solution of the NLS. A key question which has been open for many years is whether
the solution to the NLH, i.e., the “parent” equation, may nonetheless exist and remain regular
everywhere, particularly for those initial conditions (input powers) that lead to blowup in the NLS.
In the current study we address this question by introducing linear damping into both models and
subsequently comparing the numerical solutions of the damped NLH (boundary-value problem) with
the corresponding solutions of the damped NLS (initial-value problem) for the case of one transverse
dimension. Linear damping is introduced in much the same way as is done when analyzing the
classical constant-coefficient Helmholtz equation using the limiting absorption principle. Numerically,
we have found that it provides a very efficient tool for controlling the solutions of both the NLH
and NLS. In particular, we have been able to identify initial conditions for which the NLS solution
does become singular, while the NLH solution still remains regular everywhere. We believe that our
finding of a larger domain of existence for the NLH than for the NLS is accounted for by precisely
those mechanisms that have been neglected when deriving the NLS from the NLH, i.e., nonparaxiality
and backscattering.

Key words. Kerr medium, nonlinear wave propagation, self-focusing, singularity formation,
linear damping, limiting absorption, two-way ABCs
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1. Introduction. The focusing critical nonlinear Schrödinger equation (NLS)

iψz(z,x ) + ∆⊥ψ + |ψ|4/dψ = 0, ψ(0,x ) = ψ0(x ),(1.1)

where x ∈ R
d and ∆⊥ = ∂x1x1 + · · · + ∂xdxd

, arises in a variety of physical con-
texts. Of foremost interest is the case d = 2, which corresponds to the propagation
of intense laser beams in Kerr media. In this case, z is the axial coordinate in the di-
rection of propagation, x = (x, y) are the spatial coordinates in the transverse plane,
∆⊥ = ∂xx+∂yy is the diffraction term (transverse Laplacian), and |ψ|2ψ describes the
nonlinear polarization of the Kerr medium. It is well known that solutions to the crit-
ical NLS (1.1) can self-focus and eventually collapse, i.e., become singular, at a finite
propagation distance, provided that their initial power N(0) =

∫ |ψ0|2 dx exceeds a
threshold power Nc, whose value depends only on the dimension d (see [7,28]). Since,
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however, physical quantities do not become infinite, and since in experiments laser
beams continue to propagate beyond the NLS blowup point, the question arises as
to what specific physical mechanism(s), among those that have been neglected when
deriving the NLS from the Maxwell’s equations, actually arrest(s) the collapse. We
recall that the final stage in the derivation of the NLS is to disregard the backscat-
tering and apply the paraxial approximation (see section 2.2) to the critical nonlinear
Helmholtz equation (NLH)

∆E(z,x ) + k2
0(1 + ε|E|4/d)E = 0, ∆ ≡ ∂zz +∆⊥,(1.2)

where k0 is the linear wavenumber and the extent of nonlinearity is measured by the
quantity ε = 4ε0cn2, where n2 is the Kerr coefficient; see, e.g., [3,19]. Therefore, it is
natural to ask whether going back from the NLS to the NLH, i.e., adding nonparax-
iality and backscattering, is sufficient to guarantee existence of the solution with no
singularities. In other words, for a given initial condition that leads to blowup in the
critical NLS, does the NLH (always) have a solution that remains regular everywhere?

The foregoing question has been open for many years. In his celebrated 1965
paper [15], which was the first paper in the literature to predict that the solutions to
the critical NLS could become singular, Kelley was careful to note that the paraxial
approximation, and hence the entire NLS model, breaks down near the singularity.
Feit and Fleck [4] were the first to demonstrate that nonparaxiality of the beam can
arrest the blowup, by showing numerically that the initial conditions that lead to sin-
gularity formation in the NLS result in focusing-defocusing oscillations in the NLH. In
these simulations, however, they did not solve a true boundary-value problem for the
NLH. Instead, they solved an initial-value problem for a “modified” NLH that only
describes the right-propagating wave (while introducing several additional assump-
tions along the way). Akhmediev and collaborators [1, 2] analyzed an initial-value
problem for a different “modified” NLH; their numerical simulations also suggested
that nonparaxiality arrests the singularity formation. Neither numerical approach [4]
nor [1, 2], however, accounted for the effect of backscattering. Fibich [5] applied
asymptotic analysis to derive an ODE in z for self-focusing in the presence of small
nonparaxiality. His analysis suggests that nonparaxiality indeed arrests the singular-
ity formation, resulting instead in decaying focusing-defocusing oscillations. However,
backscattering effects were neglected in this asymptotic analysis.

The aforementioned studies [1,2,4,5,15] have prompted a general belief that non-
paraxiality arrests the collapse. However, no rigorous proof of global existence for
the NLH has ever been provided. Moreover, all the simulations in the above studies
neglected the backscattering and considered only the forward-propagating field. The
first numerical solutions of the NLH as a true boundary-value problem, with backscat-
tering effects fully included, have been obtained by Fibich and Tsynkov in [12], using
a high-order discretization supplemented by a new two-way artificial boundary condi-
tion (ABC). In that study only the case of one transverse dimension was considered, in
order to keep the computational costs low. The simulations in [12] were performed for
the values of the input power of up to 90% of the thresholdNc, and they have captured
the mild self-focusing of the corresponding solutions. In a subsequent paper [10], we
have corroborated experimentally the prediction of the asymptotic analysis that the
magnitude of the backscattered signal scales quadratically with the nonparaxiality
parameter f (see section 2.2), and that the computed NLH solutions converge to the
corresponding NLS solutions as f goes to zero.

The numerical methodology of [12] was obviously not free of limitations of its
own. Foremost, we could not obtain converging solutions for initial powers equal
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to or higher than the critical value Nc. In [12], we considered initial powers only
up to 90% of Nc; in the current paper we computed the NLH solutions for up to
N(0) = 0.99Nc; see section 4. In the course of these simulations we have noticed
that, as N(0) approaches the critical power from below, the convergence rate of the
iterations slows down noticeably. This makes the simulations for higher subcritical
values of N(0) (0.99Nc < N(0) < Nc) difficult to conduct, although it is reasonable
to assume that the NLH solution will converge for input powers all the way up to Nc.
However, for the input power N(0) exactly equal to Nc the convergence of nonlinear
iterations of [12] is lost; see section 4.

The aforementioned slowdown of convergence for input powers slightly below Nc

should be attributed either to deficiencies of the method itself, or to the limits that
insufficient computer resources may impose on the parameters that control the quality
of the discrete approximation, or to both. As concerns the iteration method of [12], it
is the most straightforward approach based on simply freezing the nonlinearity; most
likely, it can be improved or replaced by a more advanced technique, and we plan on
looking into this issue in the future. As for the computer resource requirements, they
are determined by the size of the computational domain, which should be sufficiently
large so as to meet the condition of near-linear propagation in the far field (see [12]),
and by the grid size, which should be sufficiently fine to resolve a given wavelength
and the sharp near-blowup profile. These requirements become more stringent for
higher input powers, which decay at larger distances and/or undergo stronger focus-
ing. In other words, the higher the input power, the larger the domain and/or the
finer the grid that one needs to use in order to maintain the same solution quality
and/or convergence rate. In our previous simulations we have, indeed, seen exam-
ples of diverging NLH solutions with subcritical input powers which converged on a
larger computational domain and/or at a finer resolution. It is still unclear, however,
whether having more computer resources and/or a better nonlinear iteration scheme
will allow one to solve the NLH for initial conditions that lead to collapse in the NLS,
or whether the convergence breakdown at N(0) > Nc is an indication of the loss of
solvability of the NLH or loss of regularity of the solution.

As such, in the current paper we explore an alternative approach to the issue of
solving the NLH in the blowup regime of the NLS, by considering the linearly damped
NLH and the corresponding linearly damped NLS. The addition of linear damping
is not an ad hoc procedure. Indeed, an electromagnetic wave is always partially
absorbed by the medium through which it propagates, an effect neglected in the
original undamped NLH and NLS, both of which model the propagation under “ideal
transparency.” A mathematical motivation to add linear damping comes from the so-
called limiting absorption principle that is used for identifying the unique solutions of
the linear Helmholtz equation; see, e.g., [27]. It is known that the classical constant-
coefficient homogeneous Helmholtz equation

∆E + k2
0E = 0(1.3a)

has nontrivial solutions on the entire space even in the class of functions that van-
ish at infinity, which obviously amounts to nonuniqueness. To fix the problem, the
additional Sommerfeld boundary conditions need to be introduced at infinity that
basically distinguish between the incoming and outgoing waves. On the other hand,
when a complex absorption coefficient is added, the new damped equation

∆E + k2
0(1 + iδ)E = 0(1.3b)
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has only trivial solution. Consequently, its inhomogeneous counterpart will be unique-
ly solvable for any compactly supported right-hand side in rather wide classes of
functions, such as tempered distributions; see [27]. Moreover, when δ −→ ±0, the
unique solution of the inhomogeneous damped equation will converge uniformly on
the entire space to the solution of the respective undamped equation that corresponds
to either the radiation of waves toward infinity (outgoing waves) or, conversely, the
incidence of waves from infinity (incoming waves), where the distinction is rendered
by the sign of δ. This, in particular, implies that if we decide to keep a small but
finite damping in the equation, we may expect its solution to be uniformly close to
the solution of the undamped equation that is driven by the same source terms and is
composed of either only outgoing or only incoming waves in the far field. The latter
consideration is especially important in the context of our iteration algorithm (see
section 3 and [12] for detail), which basically reduces to a repeated solution of the
constant-coefficient Helmholtz equation driven by a variety of compactly supported
right-hand sides and subject to the radiation boundary conditions in the far field.

Solving the damped NLH numerically as a true boundary-value problem required
only minor changes in the algorithm of [12] for the undamped NLH, which are de-
scribed in section 3. At the same time, the addition of damping allows us to better
control the solution. In particular, damping decreases the solution magnitude in the
far field, which is a key requirement for the validity of the ABCs of [12]. As a result,
we have been able to consider initial conditions with powers well above Nc.

Let us recall that, for a given initial condition that leads to the blowup in the
undamped critical NLS, there is a threshold value δS

th of the damping parameter δ
such that if δ > δS

th, then linear damping arrests the collapse, whereas when δ < δS
th,

the solution of the NLS blows up; see [6].1 In the numerical simulations of the
damped NLH reported hereafter we found a similar threshold value δH

th such that
for δ > δH

th the solution exists and is regular everywhere, whereas when δ < δH
th

the iteration scheme diverges. As has been mentioned, in the latter case it is not
clear whether the divergence indicates that there is no solution to the NLH or that
our computational resources are insufficient (or the iteration scheme is suboptimal)
to calculate the solution. Therefore, we can conclude that the actual (analytical)

threshold value δ̂H
th, such that regular solutions to the NLH exist for all δ > δ̂H

th,
is less than or equal to the computed threshold δH

th, which is determined from the

simulations, i.e., that 0 ≤ δ̂H
th ≤ δH

th.
The main result of the current study is that

δH
th < δS

th.

In other words, for a given initial condition that leads to the blowup in the undamped
NLS, there is an entire range of values for the damping coefficient, δH

th < δ < δS
th, for

which the damped NLS solution will blow up, but the NLH solution will be regular
everywhere. Therefore, we can conclude that nonparaxiality and backscattering arrest
the collapse when the damping parameter is in the range δH

th < δ < δS
th. Whether NLH

solutions exist for infinitely small linear damping as well, i.e., in the limit δ −→ 0, is
a question that yet remains to be answered. We believe, however, that this question

1Self-focusing in the critical NLS is highly sensitive to the effect of small perturbations. Some
perturbations can arrest the collapse even if they are initially infinitesimally small [11]. In contrast, an
infinitesimally small linear damping does not arrest the collapse, and a sufficient amount of damping
must be present to regularize the solution.
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should be considerably easier to address, both numerically and analytically, than the
question of solvability of the original undamped NLH.

2. Formulation of the problem.

2.1. The nonlinear Helmholtz equation. A typical setup for the propagation
of electromagnetic waves in a Kerr medium is shown in Figure 2.1. An incoming laser
beam with known characteristics impinges normally on the planar interface z = 0 be-
tween the linear and the nonlinear medium. The electric field E = E(z,x ) is governed
by the NLH (1.2). For simplicity, we consider the cylindrically symmetric case,2 where
E = E(z, r) and r =

√
x2

1 + · · ·+ x2
d. The nonlinear medium occupies the semispace

z ≥ 0 (see Figure 2.1). Consequently, the NLH (1.2) has to be supplemented by
boundary conditions at z = 0 and z −→ +∞. We require that as z −→ +∞, E have
no left-traveling components and that the propagation be diffraction-dominated, with
the field amplitude decaying to zero, i.e., limz→∞ max0≤r<∞ |E(z, r)| = 0, which
also means that the nonlinear wavenumber k2 ≡ k2

0(1 + ε|E|4/d) approaches its linear
limit: limz→+∞ k2 = k2

0. In other words, at large z’s the solution should be a linear
superposition of right-traveling waves. Since the actual numerical simulation is car-
ried out on a truncated domain 0 ≤ z ≤ zmax (Figure 2.1), the desired behavior of the
solution as z −→ +∞ has to be captured by a far-field ABC at the artificial bound-
ary z = zmax. This boundary condition should guarantee a reflectionless propagation
of all the waves traveling towards z = +∞. Often, boundary conditions designed
to ensure the transparency of the outer boundary to the outgoing waves are called
radiation boundary conditions [24].

The situation is more complex at the interface z = 0, where the total field E(0, r)
is composed of a given incoming (right-traveling) component Einc(0, r) and an un-
known backscattered (left-traveling) component Escat(0, r), i.e.,

E(0, r) = Einc(0, r) + Escat(0, r).

As such, the boundary condition at z = 0 has to guarantee the reflectionless propa-
gation of any left-traveling wave through the interface and at the same time be able

wave

0

r

impinging

wave

Einc

backscattered

wave

zzmax

Kerr-type medium

forward

propagating

Fig. 2.1. Schematic of propagation of waves in Kerr media.

2This assumption is quite reasonable, since even when the initial conditions of the NLS are not
cylindrically symmetric, near the singularity the solution becomes cylindrically symmetric [8].
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to correctly prescribe the incoming signal. Implementation of such a two-way ABC
was first carried out in [12] for the undamped NLS, and is extended to the damped
case in section 3.3.

Finally, the electric field vanishes as r −→ +∞. In practice, we truncate the do-
main at some large but finite rmax and require that E(z, rmax) = 0. Similar approaches
to the treatment of remote transverse artificial boundaries have been introduced and
tested previously; see the discussion in the end of section 3.2. In order to avoid
possible problems with reflections from the boundary r = rmax, the computations
of section 4 were conducted with rmax being 40 times larger than the radius of the
impinging beam.

2.2. Paraxial approximation and the NLS. We first introduce the dimen-
sionless quantities r̃, z̃, and ψ as

r̃ =
r

r0
, z̃ =

z

2LDF
, E = eik0z(εr2

0k
2
0)

−d/4ψ(z, r),(2.1)

where r0 is the transverse width of the input beam and LDF = k0r
2
0 is the diffraction

length. Then, by substituting the quantities (2.1) into the NLH (1.2) and dropping
the tildes, we obtain

iψz +∆⊥ψ + |ψ|4/dψ = −4f2ψzz,(2.2)

where f = 1/r0k0 = λ/2πr0 is the nonparaxiality parameter.
The standard derivation of the NLS is motivated by the observation that f � 1,

since typically λ � r0. This suggests that one can neglect the ψzz term, i.e., apply
the paraxial approximation, and obtain the NLS

iψz(z, r) + ∆⊥ψ + |ψ|4/dψ = 0,(2.3)

which is the same as the previously introduced (1.1), except that in (2.3) we use r
instead of x for simplicity. The NLS (2.3) is supplemented by the initial condition at
z = 0:

ψ(0, r) = (εr2
0k

2
0)
d/4Einc(0, r).

Subsequently, it needs to be integrated by a “time”-marching algorithm, where the
direction of propagation z plays the role of time. We reemphasize that backscattering
effects are not taken into account by the NLS (2.3). Indeed, once (2.3) is solved,
the overall solution, according to (2.1), is the slowly varying amplitude ψ times the
forward-propagating oscillatory component eik0z.

2.3. Linear damping. When damping, i.e., linear absorption, is included, the
NLH (1.2) becomes

∆E(z,x ) + k2
0(1 + iδ + ε|E|4/d)E = 0,(2.4)

where k0 is the (real part of the) wavenumber,

δ =
Im(n2

0)

Re(n2
0)
,

and n0 is the linear index of refraction of the medium. The corresponding NLS (2.3)
becomes (see (2.1))

iψz +∆⊥ψ + |ψ|4/dψ + ir2
0k

2
0δψ = 0.(2.5)
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By definition, optical transparency of the medium means that the damping is small.
For example, for water in the visible regime [14],

Im(n2
0)

Re(n2
0)

∼ 10−7.

Having small physical values of damping also agrees well with the mathematical
reasoning behind the limiting absorption principle. As indicated in section 1 (see,
e.g., [27] for detail), for a classical constant-coefficient Helmholtz operator of (1.3a),
the introduction of a small complex absorption coefficient of the appropriate sign [as
in (1.3b)] implies that there will be a unique solution for any compactly supported
excitation, and that this solution will be uniformly close in the entire space R

d+1 to
the solution of the corresponding undamped linear Helmholtz equation driven by the
same sources and subject to the radiation boundary conditions in the far field. In
the following section 3, we show that for the formulation analyzed in this paper the
proper sign of δ is positive.

As we have noted before, the physical case that corresponds to the propagation of
laser beams in bulk Kerr media is d = 2. However, in order to reduce the complexity
of the computations we rather consider a simpler case d = 1, as was previously done
in [12]. Thus, the damped NLH for E = E(z, r) and the damped NLS for ψ = ψ(z, r)
that are solved numerically in this study are

Ezz(z, r) + Err + k2
0(1 + iδ + ε|E|4)E = 0(2.6)

and

iψz(z, r) + ψrr + ir2
0k

2
0δψ + |ψ|4ψ = 0,(2.7)

respectively.

3. Numerical methods. The damped NLH (2.6) is solved using fourth-order
finite differences. The methodology of solution is outlined below in section 3.1; it is
similar to the one that we have introduced in our previous work [12] for solving the
undamped NLH. The choice of a higher-order method is motivated primarily by the
necessity to resolve a small-scale phenomenon of backscattering at the background
of the forward-propagating waves. Indeed, it is generally known that higher-order
methods provide for a better resolution of waves. The damped NLS (2.7) is also
solved using a fourth-order approximation in all coordinate directions. Since the
Schödinger equation models the evolution of the slowly varying envelope, one can
expect the magnitudes of the corresponding higher-order derivatives involved in the
truncation error terms to be smaller for the NLS than for the NLH. This implies that
on a grid of comparable size the accuracy of the numerical approximation for the NLS
should be better than of those for the NLH. Moreover, in our simulations we typically
employ finer grids for the NLS than those that we use for the NLH, thus obtaining
an accurate numerical solution for the simpler model. It then serves as a natural
reference point for the more “elaborate” NLH solution to be compared against.

3.1. Discretization of the NLH and solution methodology. We use a con-
ventional fourth-order central-difference discretization for the Laplacian ∆ = ∂zz+∂rr
of (2.6); thus the stencil is five nodes wide in each coordinate direction. As the equa-
tion is nonlinear, we implement a nested iteration scheme. On the outer loop, we
freeze the nonlinearity, i.e., consider the coefficient k2 ≡ k2

0(1 + iδ + ε|E|4) as a given
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function of the coordinates z and r, which is actually obtained by taking the quantity
|E|4 from the previous iteration; see (2.6). This way we arrive at a linear equation
with variable coefficients. The latter is also solved by iterations on the inner loop of
the nested scheme. Here, we leave the entire varying part of the equation, which is
proportional to ε, on the lower level, and on the upper level need to invert only the
constant-coefficient linear damped Helmholtz operator ∆+ k2

0(1 + iδ)I (cf. (1.3b)).
Formally, our iteration scheme resembles the fixed-point approach; however, no

rigorous convergence theory is available yet, and the convergence is assessed ex-
perimentally. The advantages of using these nested iterations are twofold. First,
the method eventually reduces to the repeated solution of one and the same linear
constant-coefficient equation driven by different source terms, which can be done ef-
ficiently at the discrete level. Second, the radiation boundary conditions at z = zmax

and the two-way ABCs at z = 0 (see Figure 2.1) are most convenient to set on the
upper time level of the iteration scheme already for the linear constant-coefficient
operator.

To solve the linear constant-coefficient damped discrete Helmholtz equation

∆(h)E + k2
0(1 + iδ)E = g,(3.1)

where g is the right-hand side generated on the previous iteration, we first separate the
variables by implementing the discrete Fourier transform in the transverse direction
r; the boundary conditions are symmetry at r = 0 and zero Dirichlet at r = rmax (see
section 2.1). This yields a collection of fourth-order one-dimensional finite-difference
equations (grid index n corresponds to the continuous variable z):

−Ên−2 + 16Ên−1 − 30Ên + 16Ên+1 − Ên+2

12h2
z

+ (k2
0(1 + iδ)− λm)Ên = ĝn(3.2)

parameterized by the dual Fourier variable λm; the latter is defined by formula (29)
of [12]. Each equation (3.2) needs to be solved independently.3 The two-way and radi-
ation ABCs at z = 0 and z = zmax, respectively, for the discrete equation (3.1) are set
in the Fourier space, i.e., individually for each one-dimensional equation (3.2). This
is done by first identifying the linearly independent eigenmodes for the homogeneous
version of this equation. It is important to note that, even though the original dif-
ferential equation is of the second order, we are using its fourth-order approximation,
and thus each homogeneous discrete one-dimensional equation of type (3.2) has four
linearly independent solutions. These solutions are qn1 , q

−n
1 , qn2 , and q−n2 (see [12]),

where q1, 1/q1, q2, and 1/q2 are roots of the characteristic algebraic equation

−1 + 16q + (12h2
z(k

2
0(1 + iδ)− λm)− 30)q2 + 16q3 − q4 = 0.(3.3)

3.2. Roots of the characteristic equation. It is indeed easy to see that (3.3)
has two pairs of mutually inverse roots. We first notice that this equation originates
from a central-difference, i.e., symmetric, discretization (3.2). Given that, if q is a
root, then q−1 is obviously a root as well, which can be verified by direct substitution.
Then, to actually find the roots we rewrite the polynomial on the left-hand side of
(3.3) as

(q − q1)(q − q−1
1 )(q − q2)(q − q−1

2 )

≡− 1 + (d1 + d2)q − (2 + d1d2)q
2 + (d1 + d2)q

3 − q4,

3Note that the discrete equations (3.1) and (3.2) are very similar to the corresponding discrete
equations studied in [12], except that previously we had no damping.
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where

d1 = q1 + q−1
1 , d2 = q2 + q−1

2 ,

and match the coefficients. In so doing, we obtain

d1 + d2 = 16, −2− d1d2 = 12h2
z(k

2
0(1 + iδ)− λm)− 30,(3.4)

so that each pair of roots, q1, q
−1
1 and q2, q

−1
2 , can be found by solving the corre-

sponding quadratic equation,

q2 − d1q + 1 = 0(3.5a)

or

q2 − d2q + 1 = 0,(3.5b)

while the coefficients d1 and d2 are, in turn, determined by solving quadratic equations
(3.4).

At this stage, the key difference between the current analysis for the damped
equation and the previous analysis for the undamped equation of [12] needs to be em-
phasized. As shown in [12], when δ = 0, the first pair of solutions of the homogeneous
equation (3.2), qn1 and q−n1 , approximates the genuine “longitudinal,” i.e., z-aligned,
modes of the undamped homogeneous differential equation (1.3a):

Ê1 = eikcz and Ê2 = e−ikcz,(3.6)

respectively. The functions Ê1 = Ê1(z) and Ê2 = Ê2(z) are two linearly independent
solutions of the ODE

Êzz + (k2
0 − λ)Ê = 0(3.7)

obtained by Fourier transforming (1.3a) with respect to r; λ is the dual variable.
In formulae (3.6), we have denoted kc =

√
k2
0 − λ, and a particular branch of the

square root that we always take is
√
ρeiθ = ρ1/2eiθ/2. The two continuous modes

(3.6) may be either traveling or evanescent waves, depending on whether the real
quantity k2

c = (k2
0 − λ) is positive or negative, or in other words, whether the dual

Fourier variable λ is less or greater than k2
0. To demonstrate the aforementioned

approximation property for the undamped (δ = 0) discretization (3.2), we redefine
kc =

√
k2
0 − λm, introduce α = h2

zk
2
c , and show in [12] that if α > 0, then q1 and

q−1
1 are complex conjugate roots of the characteristic equation (3.3). Both these roots
have unit magnitude |q1| = |q−1

1 | = 1, which indicates that qn1 and q−n1 are pure
discrete traveling waves. Moreover, if α � 1, then (see [12])

q1 = eikchz +O((kchz)
5), q−1

1 = e−ikchz +O((kchz)
5).(3.8)

Equalities (3.8) imply that in the undamped case δ = 0, qn1 is a discrete counterpart
of the right-traveling wave Ê1, and q−n1 is a discrete counterpart of the left-traveling

wave Ê2; the approximation is obviously fourth-order accurate because on the grid
zn = hzn. If α < 0 and still δ = 0, then we again show in [12] that |q1| < 1
and |q−1

1 | > 1, which indicates that qn1 is a right-evanescent wave and q−n1 is a left-
evanescent wave.
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The situation changes drastically with the introduction of damping. In contradis-
tinction to the undamped case, when δ �= 0 the homogeneous differential equation no
longer has pure propagating, i.e., constant-amplitude, longitudinal modes. Indeed,
by Fourier transforming equation (1.3b) in the r direction, we arrive at the family of
ODEs

Êzz + (k2
0(1 + iδ)− λ)Ê = 0(3.9)

parameterized by the dual variable λ. Each of the equations (3.9) has two linearly
independent solutions:

Ê1 = eiz
√
k2
c+ik2

0δ = e
ikcz

√
1+i

k2
0

k2
c
δ
,

Ê2 = e−iz
√
k2
c+ik2

0δ = e
−ikcz

√
1+i

k2
0

k2
c
δ
.

(3.10)

Clearly, the second equality in each formula (3.10) is valid only if kc �= 0. Formulae
(3.10) show that, as long as δ �= 0, there will always be a nontrivial real part in
each exponent. Consequently, the amplitudes of the waves (3.10) will always decrease
or increase exponentially for z −→ ±∞. In particular, if we analyze the traveling
waves regime of the undamped equation, i.e., the case of small λ: k2

0 − λ > 0, and
additionally assume that |δ| � 1, then formulae (3.10) yield (cf. formulae (3.6))

Ê
(damped)
1 ≈ e

ikcz

(
1+i 12

k2
0

k2
c
δ

)
= eikcz−

1
2

k2
0

kc
δz = Ê

(undamped)
1 · e− 1

2

k2
0

kc
δz,

Ê
(damped)
2 ≈ e

−ikcz
(

1+i 12
k2
0

k2
c
δ

)
= e−ikcz+

1
2

k2
0

kc
δz = Ê

(undamped)
2 · e 1

2

k2
0

kc
δz.

(3.11)

Since we identify Ê
(undamped)
1 = eikcz of (3.6) as the right-traveling wave, and

Ê
(undamped)
2 = e−ikcz of (3.6) as the left traveling wave, we can conclude that to

have the propagation toward infinity (i.e., the radiation of waves) accompanied by
the decay of the amplitude (as opposed to growth with no bound), we have to take
positive values of the damping factor δ > 0 (cf. section 1). In this case, the amplitude

of Ê
(damped)
1 will decay exponentially for z −→ +∞ (propagation to the right), and

the amplitude of Ê
(damped)
2 will decay exponentially for z −→ −∞ (propagation to

the left). As one can easily see from (3.11), the rate of decay is controlled by the value
of δ.

In connection to the aforementioned exponential behavior of the longitudinal
modes, a more general fact is also worth mentioning. The full Fourier symbol of the
undamped operator of (1.3a) obviously has real roots on the dual plane; these roots
occupy the entire circle of radius k0 centered at the origin. In contradistinction to
that, the symbol of the damped operator of (1.3b) does not have real roots on the dual
plane. As shown in [20], the damped operator will therefore have an exponentially
decaying fundamental solution. In practical terms it means that the outgoing waves
governed by the damped Helmholtz equation will decay exponentially toward infinity
in all directions. For comparison we recall that the fundamental solution of the
undamped operator is given by a zero-order Hankel function, which only decays at
infinity as the inverse square root of the distance from the origin.

To establish the properties of the propagating modes for the discretization (3.2)
in the presence of damping, and to demonstrate similarities to the continuous damped
case, we first introduce and prove the following result.
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Proposition 3.1. The characteristic equation (3.3) for δ �= 0 does not have roots
with unit magnitude.

Proof. Let us assume the opposite: There exists a unit magnitude root q = eiθ to
the algebraic characteristic equation (3.3). Then,

−1 + 16eiθ + (12h2
z(k

2
0(1 + iδ)− λm)− 30)e2iθ + 16e3iθ − e4iθ

=
[−e−2iθ + 16e−iθ + (12h2

z(k
2
0(1 + iδ)− λm)− 30) + 16eiθ − e2iθ

] · e2iθ

=
[−2 cos(2θ) + 32 cos θ + (12h2

z(k
2
0(1 + iδ)− λm)− 30)

] · e2iθ = 0.

As e2iθ �= 0, the expression in rectangular brackets has to be equal to zero. Since the
only imaginary contribution to this expression is proportional to δ, we conclude that
it is only possible when δ = 0.

Proposition 3.1 implies that, similarly to the continuous case, there will be no
constant-amplitude solutions to the homogeneous counterpart of the discrete equation
(3.2). Each of the four corresponding modes, qn1 , q

−n
1 , qn2 , and q−n2 , will exponentially

decrease in one direction and exponentially increase in the opposite direction. In
particular, if we assume as before that α � 1 in the undamped traveling waves
regime,4 and if we in addition let δ � 1, then, solving (3.4) for d1 first, then (3.5a)
for q1 and q−1

1 , and finally using the Taylor expansion, we obtain (cf. (3.8))

q1 = eikchz− 1
2

k2
0

kc
δhz +O

([
kchz

(
1 + i

1

2

k2
0

k2
c

δ

)]5)
,

q−1
1 = e−ikchz+ 1

2

k2
0

kc
δhz +O

([
kchz

(
1 + i

1

2

k2
0

k2
c

δ

)]5)
.

(3.12)

Equalities (3.12) mean that the damped discrete traveling waves qn1 and q−n1 approx-
imate the damped continuous waves (3.11) with the fourth order of accuracy. This
result is obviously similar to the one obtained in the undamped case; see formulae
(3.8).

Thus far, our discussion has focused on the first pair of roots q1 and q−1
1 of the

characteristic equation (3.3), because these roots correspond to the genuine modes
of the original differential equation. The second pair of roots q2 and q−1

2 is obtained
by solving (3.4) for d2 and subsequently solving (3.5b). The corresponding pair of
solutions qn2 and q−n2 is, of course, a pure numerical artifact. In [12] we have shown
that for δ = 0 the roots q1 and q−1

1 cannot have unit magnitude: |q2| < 1 and
|q−1

2 | > 1, which means that the waves qn2 and q−n2 are always evanescent. In the
damped case, Proposition 3.1 implies that these waves will remain evanescent as well.
The presence of the second pair of waves, however, implies that the discrete equation
requires two more boundary conditions compared to the original differential equation.

In section 1, we have outlined a general two-fold motivation behind the intro-
duction of damping into the Helmholtz equation. One part was coming from physics
because absorption by the medium always accompanies the propagation of electro-
magnetic waves in real-life settings. Moreover, from the standpoint of mathematics
the introduction of damping helps select a unique solution using the limiting absorp-
tion principle. Besides these two key reasons, the presence of damping in the equation
also positively affects the properties of the numerical algorithm.

4This would also imply
k20
kc
hz � 1 because λm is small and kc ∼ k0.
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First, having no roots of unit magnitude presents a significant advantage from
the viewpoint of numerical stability. In this case, every discrete system (3.2), sup-
plemented by the boundary conditions that are discussed below in section 3.3, will
be well posed in the classical sense of [13, 21]. In contrast to that, in the original
undamped case existence of the roots with unit magnitude may, generally speaking,
cause a weak polynomial growth of the error when the grid size is refined, although
no major exponential instability will be possible.

We recall that the original formulation of the problem requires that E(z, r) vanish
as |r| −→ ∞. Instead, when solving the problem numerically, we set E(z, r) = 0
at a large but still finite distance r = rmax. Of course, we expect that on some
fixed bounded region of interest located next to the axis of the propagating beam
our solution will converge to the original infinite-domain solution with the increase
of rmax. A general methodology for solving infinite-domain problems based on a
similar idea was first introduced and studied in [22, 23, 25, 26] in the context of fluid
flow. It was shown, in particular, that one may obtain the convergence rate inversely
proportional to the square of the domain size (i.e., ∼ 1/r2

max using our particular
notations). Besides, for a specific example that involves the Laplace equation that
transforms into a Yukawa equation by introducing small “dissipation,” Mishkov and
Ryaben’kii have shown in [18] that one may expect a much faster convergence of the
damped solution to the undamped one on a fixed-size domain rather than on the
original unbounded domain. Even though the formulation of the problem in [18] is
not quite the same as the one analyzed here, there are still similarities that allow us
to consider the results of [18] as another argument for using the damped equation.

3.3. Boundary conditions. Apart from the foregoing key difference in the
properties of the roots of (3.3) in the undamped and damped case (see section 3.2), the
algorithm for solving the damped NLH remains basically the same as the undamped
algorithm of [12]. Each equation (3.2) needs to be supplemented by the radiation
boundary conditions at z = zmax and two-way ABCs at z = 0.

The radiation boundary conditions are constructed by requiring that on the right
boundary z = zmax the solution of (3.2) be composed of only the waves that prop-
agate/decay to the right, i.e., Ên = c1q

n
1 + c2q

n
2 . The selection is rendered by the

so-called one-way discrete Helmholtz equation [12], which is a linear homogeneous
relation that defines the span of all the appropriate modes. Specifically, let us con-
sider (3.2) on the grid n = 0, 1, . . . , N − 1, N , and assume that the right-hand
side ĝn is small and can therefore be neglected near the right boundary n = N ,
i.e., that the propagation is almost linear in the far field. Then, we require that
the vector [ÊN−3, ÊN−2, ÊN−1, ÊN ]

T be a linear combination of the two vectors
[qN−3

1 , qN−2
1 , qN−1

1 , qN1 ]T and [qN−3
2 , qN−2

2 , qN−1
2 , qN2 ]T , which obviously translates into

Rank


 ÊN−3 ÊN−2 ÊN−1 ÊN

1 q1 q2
1 q3

1

1 q2 q2
2 q3

2


 = 2.(3.13)

Relation (3.13) is, in turn, equivalent to the two scalar equalities

q1q2ÊN−3 − (q1 + q2)ÊN−2 + ÊN−1 = 0,(3.14a)

q1q2ÊN−2 − (q1 + q2)ÊN−1 + ÊN = 0,(3.14b)

which constitute the one-way-to-the-right discrete Helmholtz equation. Relations
(3.14a) and (3.14b) supplement the scheme (3.2) at n = N − 1 and n = N , respec-
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tively, i.e., at the two near-edge nodes of the grid where the regular five-point-wide
stencil of (3.2) cannot be applied.

The two-way ABC at z = 0 also has to possess the capability of radiation bound-
ary conditions, i.e., it has guarantee the transparency of the interface for all the waves
that propagate/decay to the left. In other words, we require that at the left boundary

the outgoing, i.e., scattered, waves be given by Ê
(scat)
n = c1q

−n
1 + c2q

−n
2 . Assuming

for a second the homogeneity ĝn = 0 near n = 0, we could obtain, similarly to (3.13),

Rank


 Ê

(scat)
0 Ê

(scat)
1 Ê

(scat)
2 Ê

(scat)
3

1 q−1
1 q−2

1 q−3
1

1 q−1
2 q−2

2 q−3
2


 = 2.(3.15)

Relation (3.15), again, is equivalent to the one-way-to-the-left discrete Helmholtz equa-
tion:

Ê
(scat)
0 − (q1 + q2)Ê

(scat)
1 + q1q2Ê

(scat)
2 = 0,(3.16a)

Ê
(scat)
1 − (q1 + q2)Ê

(scat)
2 + q1q2Ê

(scat)
3 = 0.(3.16b)

Equations (3.16a), (3.16b), however, cannot be immediately used as the ABC at
z = 0 because the foregoing assumption of homogeneity near the interface is, generally
speaking, not correct, and moreover, (3.16a), (3.16b) do not account for the incoming
wave at z = 0 (see section 2.1), i.e., do not have the important two-way capability. The
analysis of [12] shows that to accurately address both issues, i.e., the inhomogeneity
that comes from the previous iteration and the presence of the incoming wave, it is
sufficient to introduce particular modifications to the right-hand side gn at only two
nodes: n = 0 and n = 1. The corresponding modification due to the incoming signal

is obtained by simply substituting the right-traveling incoming wave Ê
(inc)
0 qn1 into

the one-way-to-the-left Helmholtz equation (3.16a), (3.16b). Altogether, the two-way
ABCs at z = 0 are given by (cf. formulae (3.16a), (3.16b))

Ê0 − (q1 + q2)Ê1 + q1q2Ê2 = ĝ′0,(3.17a)

Ê1 − (q1 + q2)Ê2 + q1q2Ê3 = ĝ′1,(3.17b)

where a prime denotes the aforementioned modification of the right-hand side; see [12].
Again, relations (3.17a) and (3.17b) supplement the scheme (3.2) at the near-edge
nodes n = 0 and n = 1, respectively, where the regular five-point stencil cannot be
applied. Straightforward considerations based on the linear superposition principle
and uniqueness (see [12]) guarantee that inhomogeneous relations (3.17a), (3.17b)
correctly specify the incoming signal at z = 0 and still ensure the reflectionless prop-
agation of all the outgoing waves through z = 0 toward z = −∞.

3.4. Computational complexity. The computational complexity of one solu-
tion of (3.1) is O(NzNr lnNr) operations, where Nz and Nr are the corresponding
grid dimensions. Indeed, the cost of solving each of the Nr one-dimensional systems
(3.2) is linear with respect to Nz, because each of these systems needs to be solved
repeatedly for multiple right-hand sides. As such, the sparse LU decomposition can
be performed only once ahead of time, and the cost of backward substitution is linear.
Therefore, the overall complexity is dominated by the cost of Nz direct and inverse
FFTs of length Nr, which is O(NzNr lnNr).
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For the specific discretization parameters provided in section 4, the numbers of
iterations could vary significantly. The borderline cases, i.e., those with the mini-
mal damping necessary to allow the algorithm to converge, could take as many as
a thousand iterations to reduce the initial relative difference between two successive
iterations by three to four orders of magnitude. In contrast, the cases that involved
damping substantially larger than the required minimum could converge to machine
zero (fifteen orders of magnitude reduction) in as little as two hundred iterations.

4. Results. In this section we present simulation results for the Gaussian initial
conditions E0

inc = exp(−r2) and ψ0 = (εr2
0k

2
0)

1/4 exp(−r2/r2
0) for the NLH and NLS,

respectively. Denoting, as before, the input power of the incoming wave by N(0), we
define the fractional input power as

p =
N(0)

Nc
,(4.1)

i.e., p = 1 when the input power is equal to the NLS critical power Nc. For the
Gaussian initial conditions used in our simulations, p = k0

√
2ε/3π (see [12]). In all

simulations we set k0 = 8 and r0 = 1.
In Table 4.1 we show the calculated threshold values δH

th and δS
th. The quantity

δH
th in Table 4.1 represents the smallest nonnegative value of δ for which we obtain a
global solution of the NLH. By this we mean that the nonlinear iterations converge
in the sense that the value of maxz,r(E

(n+1) −E(n))/maxz,r E
(n+1) drops by at least

a factor of 10−6 in the course of iterations on the computational domain 0 ≤ z ≤ 40
and 0 ≤ r ≤ 40, with grid sizes hz = λ/20 and hr = λ/8, where λ = 2π/k0.
The particular choice of the domain size and grid resolution is “inherited” from our
previous numerical experiments; see [10,12]. The values of δH

th in Table 4.1 are obtained
with at least two significant digits by repeatedly running the code for a given ε and
varying δ, which allows one to “close in” on the threshold. However, as discussed in
section 1, with a larger computational domain and/or a finer grid it may be possible
to obtain regular solutions for smaller values of δ, hence, to obtain a lower value
of the threshold δH

th. For example, using the same computational domain and twice
as fine a grid, hz = λ/40 and hr = λ/16, we could obtain δH

th = 0.0133 instead

Table 4.1
Threshold values of linear damping δ.

Case No. ε p = N(0)/Nc δHth δSth

1 0.06 90% 0 0

2 0.07 97.5% 0 0

3 0.072165819 99% 0 0

4 3π/128 100% 9.6 · 10−5 0

5 0.075 100.9% 0.00023 0

6 0.08 104% 0.00071 0.00025

7 0.1 116% 0.0027 0.0025

8 0.125 130% 0.0049 0.0062

9 0.15 142% 0.0071 0.010

10 0.2 164% 0.0145 0.019

11 0.3 202% 0.030 0.035

12 0.4 233% 0.044 0.050

13 0.5 261% 0.058 0.065
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of δH
th = 0.0145 for the data in row 10 of Table 4.1 (ε = 0.2). Likewise, using the

original grid resolution hz = λ/20 and hr = λ/8 and a computational domain that
was twice as large, zmax = 80 and rmax = 80, we could obtain δH

th = 0.0022 instead of
δH
th = 0.0027 for the data in row 7 of Table 4.1 (ε = 0.1). In other words, the values
of δH

th from Table 4.1 should be considered upper bounds for the actual thresholds.
However, the quantitative limits of pursuing this venue are still unexplored, i.e., it
is not known how far down in δH

th one can go by increasing the domain size and/or
grid resolution. Our ability to answer this question is obviously limited by computer
resources, and as of yet the question remains open. In particular, it is unclear whether
we can achieve δH

th = 0 by choosing a sufficiently large domain and/or fine grid.
Similarly, the quantity δS

th in Table 4.1 represents the smallest nonnegative value
of damping δ for which the NLS solution does not blow up. In our NLS simulations
we use standard fourth-order finite-difference schemes for the spatial derivatives and
explicit fourth-order Runge–Kutta for marching in z. As has recently been shown
in [9], in finite-difference simulations of NLS solutions that are known analytically
to become singular, the computed solution still remains bounded. Therefore, there
is always an element of arbitrariness in selecting a numerical criterion for blowup in
NLS simulations. In our NLH simulations the largest relative increase in amplitude
due to self-focusing has never exceeded a factor of two. In order to make the blowup
criteria in NLH and NLS simulations as close to one another as possible, we define
the computed NLS solution as becoming singular once its amplitude increases by a
factor of two. We checked that altering this NLS blowup criterion leads to only minor
changes in the results for δS

th. For example, using the blowup criterion of relative
focusing by a factor of 4, rather than 2, for ε = 0.08 (row 6 of Table 4.1) gives
δS
th = 0.00021 instead of δS

th = 0.00025; and using this new criterion for ε = 0.15
(row 9 of Table 4.1) yields δS

th = 0.0089 instead of δS
th = 0.010. In particular, this

change does not affect our main finding of initial conditions for which δH
th < δS

th.
As expected, for both the NLS and the NLH the threshold values of δ increase

with ε (i.e., a larger amount of damping is needed to arrest collapse of beams with
higher input power). For ε = 0.06 and ε = 0.07 the input power is below critical.
Therefore, both the NLS and the NLH have global solutions for δ = 0. This behavior
for the NLH holds (at least) until ε = 0.072165819, which corresponds to the last
subcritical value5 that we have checked, N(0) being equal to 99% of Nc.

Starting from ε = 3π/2k2
0 ≈ 0.073631077, which corresponds exactly to N(0) =

Nc, the NLH requires a certain positive amount of damping δ to maintain the reg-
ularity of the solution. For the NLS, the solution with no damping remains regular
until ε = 0.75, which corresponds to p = N(0)/Nc = 1.009. Indeed, it is known
that Nc is only a lower bound for the threshold power for NLS collapse, and that any
initial condition which does blow up, and whose amplitude |ψ0| is not equal to the
ground state profile 31/4

√
sech(2r), has power strictly above Nc (see [7, 16, 17]). In

our simulations we have discovered that for ε = 3π/2k2
0, which is the critical value for

the NLH, as well as for the moderately supercritical values ε = 0.075, ε = 0.08, and
ε = 0.1, when the input power N(0) is only slightly above Nc, the threshold damping
for the NLH is larger6 than that for the NLS: δH

th > δS
th. However, for input powers

that are equal to or higher than 1.30Nc (which corresponds to ε = 0.125) this trend

5As mentioned in section 1, for larger subcritical values of N(0) the convergence of nonlinear
iterations becomes prohibitively slow.

6We recall that the values of δHth in Table 4.1 are only upper bounds for the threshold; lower
values may be obtained by refining the grid and/or enlarging the computational domain.
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Fig. 4.1. Threshold values δHth (open circles “◦”) and δSth (asterisks “∗”) as a function of (p−1)

for the data in Table 4.1. The solid line 0.035(p− 1)1.517 is the best fit to the values of δSth.

reverses (see Table 4.1), and we obtain δH
th < δS

th. Thus, for N(0) ≥ 1.30Nc,
7 there

must be other mechanisms in the NLH not present in the NLS that help suppress
the formation of singularity in the solution. Therefore, we may conclude that in this
regime nonparaxiality and backscattering help arrest collapse of nonlinear waves.8

In [6] Fibich has used asymptotic analysis to show that

δS
th ∼ c(p− 1)3/2,(4.2)

where p is the fractional critical power (4.1). In Figure 4.1 we put this theoretical
prediction to a test by plotting the values of δS

th and δH
th as a function of (p − 1).

When we computed the best fit of the values of δS
th with the two-parameter family

of curves δth = c(p − 1)α, we obtained α = 1.517, which is in excellent agreement
with formula (4.2). Relation (4.2) also provides a good approximation to the data
points δH

th; see Figure 4.1. The only exception is the lowest-power NLH data point
in Figure 4.1 that corresponds to ε = 0.08 (row 6 in Table 4.1), for which the value
of δH

th has most likely been overpredicted numerically because of the computational
constraints discussed previously.

In Figure 4.2 we plot the on-axis (r = 0) amplitudes of the NLH and NLS solutions
for ε = 0.2 and various values of δ. The on-axis behavior is most representative of
the physical processes that we are studying, because for symmetric beams this is the
location of the peak intensity. When δ = δH

th = 0.0145, the NLH solution exists
globally, but the NLS solution becomes singular at a finite propagation distance. As
the value of damping increases, both the NLS and the NLH solutions undergo less

7More precisely, N(0) higher than some value between 1.16Nc and 1.30Nc.
8The fact that for the input values just above the critical power we do not observe nonparaxiality

and backscattering helping arrest the collapse is apparently the “continuation” of the fact that we
have been unable yet to solve the undamped NLH for N(0) ≥ Nc, even though the NLS solution
exists globally for N(0) ≤ 1.009Nc. The reasons are probably the same in both cases; those for the
latter have already been discussed in the section 1.
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Fig. 4.2. On-axis amplitude of NLH (solid) and NLS (dashes) solutions for ε = 0.2 and various
values of δ.

focusing. For all the cases for which both solutions remain regular, the NLS solution
curve is higher than the NLH one from z = 0 until its maximum, i.e., the point of
the arrest of collapse. This provides additional support to the foregoing conclusion
that nonparaxiality and backscattering arrest collapse of nonlinear waves. Note that
after the collapse has been arrested, the NLS solution becomes lower than that of the
NLH. One possible explanation for this is that the NLS solution is undergoing higher
focusing, and hence it loses more power due to damping.

We emphasize that at z = 0 the NLH solution is not equal to E0
inc; see Figure 4.2.

The difference between the two is due to backscattering and can be used to quantify
the level of backscattering for a particular setting; see [10, 12].9 In Table 4.2 we
provide the values of maximum self-focusing and maximum backscattering in the
NLH, defined as maxr,z |E(z, r)| and maxr |E(0, r)−E0

inc(r)|, respectively, for various
values of ε and δ. The dash “—” in a particular cell of Table 4.2 means that the level
of damping was insufficient to guarantee the convergence of the numerical algorithm.
As expected, for a given level of damping δ, the NLH solution undergoes stronger self-
focusing as the nonlinearity coefficient ε increases. The level of backscattering also
increases with the increase of ε. As also expected, for a given input power ε, when the
damping δ increases, the NLH solution undergoes weaker self-focusing (see Figure 4.2).

9There are, in fact, two phenomena that account for the discrepancy between the NLH and NLS
curves: nonparaxiality of the forward propagating wave and backscattering. Because the problem
is nonlinear, these two mechanisms cannot be easily and explicitly told apart inside the domain.
The only location where we can clearly say that the difference is purely due to backscattering is the
“inflow” interface z = 0; see [10].
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Table 4.2
Maximum absolute levels of self-focusing and backscattering in the NLH for a variety of ε and δ.

Maximum self-focusing Maximum backscattering
δ = 0.0145 δ = 0.0175 δ = 0.0210 δ = 0.0145 δ = 0.0175 δ = 0.0210

ε = 0.15 1.1179 1.0601 1.0162 0.0372 0.0373 0.0373
ε = 0.175 1.2718 1.1538 1.0761 0.0420 0.0421 0.0421
ε = 0.2 1.5515 1.3158 1.1716 0.0465 0.0466 0.0467
ε = 0.225 — — 1.3242 — — 0.0509

Table 4.3
Maximum absolute levels of self-focusing and backscattering in the NLH for ε = 0.2.

Case No. Damping δ Max. self-focusing Max. backscattering

1 0.0145 1.5515 0.0465
2 0.0147 1.5296 0.0465
3 0.0150 1.4992 0.0465
4 0.0155 1.4538 0.0465
5 0.0160 1.4135 0.0466
6 0.0165 1.3776 0.0466
7 0.0170 1.3451 0.0466
8 0.0175 1.3158 0.0466
9 0.0180 1.2892 0.0466
10 0.0190 1.2428 0.0466
11 0.0200 1.2041 0.0466
12 0.0210 1.1716 0.0467

Surprisingly, however, changing the value of damping δ has very little or no effect
on the level of backscattering. To further corroborate this observation, we picked a
particular value of the nonlinearity coefficient, ε = 0.2, and ran an additional series
of numerical tests with a substantially finer sampling for δ. These results, which are
presented in Table 4.3, confirm that backscattering is not affected by linear damping.
This phenomenon certainly cannot be explained by saying that linear damping has
an overall negligible effect, since its effect on the focusing dynamics can be clearly
seen through the changing values of the maximum focusing both in Table 4.2 and in
Figure 4.2. At present, we have no good explanation for this surprising observation.

5. Concluding remarks. The question of whether nonparaxiality and backscat-
tering may arrest collapse of nonlinear waves has been open for many years. While
the answer to this question is probably positive, no conclusive argument toward it,
whether analytical or numerical, has been previously available in the literature. In
this study we addressed this question within the framework of the linearly damped
NLH and NLS. As has been mentioned, the addition of linear damping is not ad hoc,
because it has both physical and mathematical motivation. Methodologically, linear
damping provides a very useful “extra dimension” that allows us to efficiently control
the solutions of the NLH and NLS. Specifically, the variation along this extra dimen-
sion has helped us to numerically identify the regimes for which the NLS solution
blows up, while the NLH solution remains regular. In other words, our results furnish
the first ever definite numerical evidence that nonparaxiality and backscattering can
arrest collapse. The question of whether regular solutions to the NLH still exist in the
absence of damping remains open. However, we hope that the arguments based on
linear damping and the limiting absorption principle may be useful for proving global
existence and uniqueness, both for the damped NLH and for the undamped NLH.
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Abstract. This paper considers the dynamics of a radio-frequency driven plasma consisting of
ions and electrons. The method of matched asymptotic expansions is used to derive the dynamics
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1. Introduction. The purpose of this paper is to provide a unified discussion
of the dynamics of a bounded plasma consisting of ions and electrons sustained by
a radio-frequency (rf) current. Such configurations occur naturally in reactive ion
etching [1]. Various models have been introduced to describe the plasma behavior
[2], [3], [4]; a rather complete discussion is found in [1]. In fact the main interest,
both physical and mathematical, for the rf driven plasma is the formation of a space
charge sheath boundary layer near the bounding wall. In this boundary layer the
plasma exhibits time periodic motion, with the same period as the driving current
and with an electric potential ϕ(ξ, τ) satisfying to leading order in a small parameter
the nonlocal (in time τ)-local (in space ξ) system

∂2ϕ

∂ξ2
= (1 + 2ϕ)−1/2 − e−ϕ, −∞ < ξ < 0, 0 ≤ τ ≤ 1,

∂ϕ

∂ξ
= F (τ) at ξ = 0,(1.1)

ϕ → 0,
∂ϕ

∂ξ
→ 0 as ξ → −∞,

where ϕ(ξ) =
∫ 1

0
ϕ(ξ, τ)dτ , and F (τ) > 0 is continuously differentiable with period 1.

System (1.1) is rather intriguing. It possesses no time τ derivatives, yet temporal
behavior is nontrivial due to the appearance of the time average ϕ in the differential
equation for ϕ. Hence two questions come immediately to mind:

i. Where does the nonlocal system (1.1) come from?
ii. Does (1.1) have a solution, and how do we find it?
This paper answers both questions. It is shown that the nonlocal system arises

from the method of matched asymptotic expansions applied to the classical two fluid
model for a collisional plasma undergoing ionization.

Modulo the matching, the physics is well understood and can be found in refer-
ences [2], [3], [4], and the matching itself without details has been suggested in [4]
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and is similar to that given in the paper of Franklin and Ockendon [5], where the
plasma was undriven. Nevertheless, the matching is provided so that the uninitiated
reader will have a straightforward self-contained derivation of (1.1). (While this paper
considers the case of an essentially collisionless sheath, the interested reader can also
consult the paper of Gegick and Young [6], which considers the opposite limit of a
collisional sheath.)

As to solvability of (1.1), the answer is that (1.1) does indeed possess a time pe-
riodic solution. More valuable, however, is that the proof of existence is constructive.
Simply put, the proof is done in two stages as follows.

Step 1. Regularization. The problem (1.1) is regularized in the form

∂2ϕ

∂ξ2
= (1 + 2ϕ)−1/2 − e−ϕ + µϕ, − 1

µ
< ξ < 0, 0 ≤ τ ≤ 1,

∂ϕ

∂ξ
= F (τ) at ξ = 0,(1.2)

ϕ = 0 at ξ = − 1
µ
.

Here µ > 0 represents a small parameter.
Of course (1.2) is still a nonlocal problem, but it admits a variational principle.

If

J(ϕ)
def
=

∫ 1

0

∫ 0

− 1
µ

1

2

(
∂ϕ

∂ξ

)2

+ (1 + 2ϕ)1/2 + e−ϕ + µ
ϕ2

2
− F (τ)

∂ϕ

∂ξ
dξdτ,

then the Euler–Lagrange equations corresponding to minimizing J(ϕ) over a suitable
class of functions ϕ, vanishing at ξ = − 1

µ , are precisely (1.2). Hence the existence of

solutions of (1.2) and their explicit computation in practice can be accomplished by
minimizing J(ϕ).

Step 2. Passage to the limit µ → 0. In fact, it is this process that is the most
delicate. As in all such limiting arguments, precompactness of a sequence of solutions
to (1.2) must be established; this is accomplished with straightforward arguments
based on the behavior of solutions of (1.2) as functions of ξ for fixed τ values.

In practice, of course, one cannot numerically resolve either Step 1 or Step 2
directly. However, it seems that finite-dimensional minimization problems approxi-
mating Step 1 implemented on larger and larger spatial ξ domains would generate
a sequence of approximations. The results given here guarantee a convergent subse-
quence.

The paper is divided into two sections after this Introduction. Section 2 uses
the method of matched asymptotic expansions, similar in spirit to [5], to derive the
dynamics of the plasma in (A) the bulk quasi-neutral plasma regime, (B) a transition
regime between bulk plasma and the space charge sheath, and (C) the sheath itself.
In subsection (D) a short discussion of higher order matching and the need for the
transition layer (B) is provided. Section 3 is devoted to analysis of (1.1). Steps 1 and
2 as outlined above are carried out, and existence of a periodic-in-τ solution of (1.1)
is proven.

2. Derivation of the basic equations. Let ni denote ion density, ne electron
density, Φ electric potential, nch characteristic charged particle density, ui ion velocity,
ue electron velocity, θe electron temperature. We consider a one-dimensional spatial
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domain −R < X < Xw, where Xw is the location of the wall. T denotes time. For
small electron mass, we assume the Boltzmann relation

ne = nch exp

(
eΦ

kθe

)
,

where e is the electron charge and k is Boltzmann’s constant. Denote by mi the mass
of the ions. Then the conservation laws of mass for the ions and electrons and of
momentum for the ions are

∂ni

∂T
+

∂

∂X
(niui) = Zne,

∂ne

∂T
+

∂

∂X
(neue) = Zne,

mi
∂(niui)

∂T
+mi

∂

∂X
(niu

2
i ) = −eni

∂Φ

∂X
− ν(ui)miuini,

where ν is the ion friction coefficient and Z is rate of ionization. (We assume cold

ions and hence the ion pressure is zero.) For simplicity we take ν(ui) =
|ui|
λ ; λ > 0 is

the constant ion collision mean free path. In addition, Φ satisfies Poisson’s equation

−ε0
e

∂2Φ

∂X2
= ni − ne,

where ε0 is the permittivity of free space.
The above equations for ni, ne, ui,Φ may be simplified if we introduce the quan-

tities

cs =

√
kθe

mi
, λD =

√
ε0kθe

ncne2

representing ion sound velocity and Debye length,

t =
Tcs

λ
, x =

X

λ
, ϕ =

−eΦ

kθe
, n+ =

ni

nch
, n− =

ne

nch
,

u+ =
ui

cs
, u− =

ue

cs
, ε =

λD

λ
, z =

Zλ

cs
,

and set n− = e−ϕ by adjusting the zero point of the potential Φ.
In the new dependent variables n+, n−, u+, u−, ϕ the balance laws are now

∂n+

∂t
+

∂

∂x
(n+u+) = zn−,(2.1)

∂n−
∂t

+
∂

∂x
(n−u−) = zn−,(2.2)

∂u+

∂t
+ u+

∂u+

∂x
=

∂ϕ

∂x
− |u+|u+−zu+

(
n−
n+

)
,(2.3)

ε2
∂2ϕ

∂x2
= n+ − n−,(2.4)

n− = e−ϕ.(2.5)

The system is now considered on a bounded domain −L < x < xw, and at
x = −L (L = R

λ , xw =
Xw

λ ) we impose boundary conditions

ϕ = ϕL, u+ = uL, u− = ue
L

(
t

ε2p

)
, n+ = u−1

L , n− = u−1
L ,(2.6)
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where uL = eϕL and ϕL � 0 so that 0 < uL � 1. The boundary value ue
L will be

determined in subsection A to follow. At the wall x = xw we impose the electron
velocity

u− = u−wall
,(2.7)

where u−wall
is independent of ε.

One of the delicate points in this asymptotic derivation is that the wall position
xw is itself to be determined. This is done in subsection C.

Differentiation of the Poisson equation (2.4) with respect to t yields

ε2∂3ϕ

∂t∂x2
=

∂n+

∂t
− ∂n

∂t
= − ∂

∂x
(n+u+) +

∂

∂x
(n−u−),

and hence

ε2
∂2ϕ

∂x∂t
+ n+u+ − n−u− =

f1(t)

ε
(2.8)

for all x. Here f1(t)
ε is the prescribed rf current. We take f1(t) to be a periodic

function in t with period ε2p,
∫ ε2p

0
f1(t)dt = 0. Set t = ε2τp, f(τ)

def
= f1(ε

2τp) so that
f(τ) is periodic with period 1.

In the new τ = t/ε2p time variable, the Euler–Poisson equations become

1

ε2p

∂n+

∂τ
+

∂

∂x
(n+u+) = zn−,(2.9)

1

ε2p

∂u+

∂τ
+ u+

∂u+

∂x
=

∂ϕ

∂x
− |u+|u+ − zu+

(
n−
n+

)
,(2.10)

ε2
∂2ϕ

∂x2
= n+ − n−,(2.11)

1

p

∂2ϕ

∂x∂τ
+ n+u+ − n−u− =

f(τ)

ε
,(2.12)

n− = e−ϕ.(2.13)

Notice that the current equation (2.12) is now used instead of (2.2) since (2.9),
(2.11), (2.12) imply (2.2).

A. Bulk plasma outer solution. First consider a region away from the wall.
Write n+(x, τ), etc., as asymptotic expansions in ε:

n+ = n0 + εn1 + · · · ,
u+ = u0 + εu1 + · · · ,(2.14)

ϕ = ϕ0 + εϕ1 + · · · ,
u− =

u−
0

ε
+ u−

1 + εu−
2 ,

where periodicity in τ is assumed.
Substitution of (2.14) into the rescaled Euler–Poisson system (2.9)–(2.12) and

balancing powers of ε yields

∂n0

∂τ
=

∂n1

∂τ
=

∂u0

∂τ
=

∂u1

∂τ
= 0,
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and hence n0, n1, u0, u1 are independent of τ and depend only on x. Furthermore,
(2.9) implies

1

p

∂n2

∂τ
+

∂

∂x
(n0u0) = ze−ϕ.(2.15)

The Poisson equation (2.11) implies n0 = e−ϕ0 , and ϕ0 is also independent of τ .
Additionally, integration of (2.15) from τ = 0 to τ = 1 and the periodicity of n2 in τ
imply

d

dx
(n0u0) = zn0,(2.16)

which combined with (2.10) and n0 = e−ϕ0 yields

du0

dx
=

z(1 + u2
0) + u3

0

1− u2
0

.(2.17)

Hence u0 is monotone increasing in x and

du0

dx
→ ∞ as u0 → 1.(2.18)

Let xB (the Bohm point) denote that value of x for which limx→xB
u0(x) = 1.

From (2.16), once u0(x) is determined, n0 and hence ϕ0 are determined as well
on (−L, xB). The current equation (2.12) determines

u−
0 = −eϕ0f(τ).(2.19)

Returning to boundary condition (2.6), we see that (2.19) implies ue
L(τ) = eϕLf(τ).

Thus in fact the current f is determined by the boundary condition or vice versa.
To determine the nature of the singularity at xB , set u0 = 1 + U and substitute

into (2.17). Then to leading order in U we find

d

dx
U2 = −(2z + 1),

and, setting U(xB) = 0, we see

U(x) = −((2z + 1)(xB − x))1/2

and

u0(x) ∼ 1− ((2z + 1)(xB − x))1/2 as x → xB .(2.20)

From (2.16) we then see

dn0

dx
∼ −n0

2
(2z + 1)−1/2 as x ↗ xB ,

and since dϕ0

dx = − 1
n0

dn0

dx we see

dϕ0

dx
∼ (2z + 1)−1/2

2
(xB − x)1/2 as x ↗ xB .
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Hence

ϕ0(x) ∼ ϕ0(xB)− (2z + 1)1/2(xB − x)1/2 as x ↗ xB ,(2.21)

where ϕB = ϕ0(xB) = − lnn0(xB) and nB =̇n0(xB) are determined by solving (2.16)
subject to the boundary conditions (2.6).

Let us employ the normalization

ϕB = 0, nB = 1,

which will provide a simplification of the algebraic computation to follow. Of course
this will shift the value of ϕ and hence ϕL by a constant.

B. Transition layer. Introduce a new space variable ζ = x−xB

δ , δ = ε4/5, ζ < 0,
so that the Euler–Poisson system (2.9)–(2.12) becomes

1

δ3/2p

∂n+

∂τ
+

∂

∂ζ
(n+u+) = δze−ϕ,(2.22)

1

δ3/2p

∂u+

∂τ
+ u+

∂u+

∂ζ
=

∂ϕ

∂ζ
− δ|u+|u+ − δz

u+e
−ϕ

n+
,(2.23)

δ1/2 ∂
2ϕ

∂ζ2
= n+ − e−ϕ,(2.24)

1

δp

∂2ϕ

∂ζ∂τ
+ n+u+ − n−u− =

f(τ)

ε
.(2.25)

Again expand

n+ = 1 + δ1/2n1 + · · · ,
u+ = 1 + δ1/2u1 + · · · ,
ϕ = δ1/2ϕ1 + · · · ,

u− =
u−

0

δ5/4
+

u−
1

δ
+ · · · ,

xw = xB + δxw1
+ · · · ,

where all the indicated terms except those for xw are now functions of ζ, τ and are
periodic in τ with period 1. The expansion of the wall location xw will become crucial
in subsection C.

Substitute the expansions into (2.22)–(2.25). We then see, equating powers of δ,
that

∂n1

∂τ
=

∂n2

∂τ
=

∂n3

∂τ
=

∂u1

∂τ
=

∂u2

∂τ
=

∂u3

∂τ
= 0

and n1, n2, n3, u1, u2, u3 are independent of τ . Also (2.22) and the periodicity of n4, n5

in τ imply

∂

∂ζ
(n1 + u1) = 0,

∂

∂ζ
(n1u1 + n2 + u2) = z,(2.26)

whereas (2.23) and the periodicity of u4, u5 in τ imply

∂

∂ζ
(u1 − ϕ1) = 0,

∂u2

∂ζ
+ u1

∂u1

∂ζ
=

∂ϕ2

∂ζ
− 1− z.(2.27)
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Equating order δ1/2 and δ terms in the Poisson equation (2.24) yields

n1 + ϕ1 = 0, n2 + ϕ2 − ϕ2
1

2
=

∂2ϕ1

∂ζ2
.(2.28)

Hence ϕ1, ϕ2 are independent of τ as well, and ϕ2 = ϕ2 in (2.27).
For x in a transition matching regime (say, x− xB = −εα, 0 < α < 4/5) we have

x → xB− and ζ → −∞ as ε → 0. Hence the matching condition

lim
ζ→−∞

n+u+ = 1

is inherited from the bulk plasma solution of subsection A. Since n+ = 1 + δ1/2n1 +
· · · , u+ = 1 + δ1/2u1 + · · ·, in this middle transition layer we see

lim
ζ→−∞

n1 + u1 = 0;

however, (2.26) tells us that n1 + u1 = const, and hence

n1 + u1 = 0.(2.29)

Also from (2.27), (2.28), u1 − ϕ1 = const, n1 = −ϕ1, and since ϕ1 = ϕ1 we have

u1 = ϕ1 = −n1.(2.30)

Next differentiate (2.28) with respect to ζ, and to the resulting expression add
(2.27). This yields

∂

∂ζ
(u2 + n2)− ∂3ϕ1

∂ζ3
+ u1

∂u1

∂ζ
= −1− z + ϕ1

∂ϕ1

∂ζ
.

However, from (2.26), ∂
∂ζ (u2 + n2) = z − ∂

∂ζ (n1u1), and so

2z − ∂

∂ζ
(u1u1)− ∂3ϕ1

∂ζ3
+ u1

∂u1

∂ζ
= −1 + ϕ1

∂ϕ1

∂ζ
.

Finally, use (2.30) to obtain

d3ϕ1

dζ3
=

d

dζ
(ϕ2

1) + 1 + 2z.(2.31)

Recall that in subsection A we have shown for the bulk plasma potential ϕ(x) ∼
−(2z + 1)1/2(xB − x)1/2 as x → xB−. Hence the matching condition for ϕ(ζ) =
δ1/2ϕ1(ζ) + · · · as ζ → −∞ is

ϕ1(ζ)→ −(2z + 1)1/2(−ζ)1/2 as ζ → −∞.(2.32)

The integration of (2.31) and use of (2.32) yield the Painlevé 1 equation

d2ϕ1

dζ2
= ϕ2

1 + (1 + 2z)ζ for −∞ < ζ < 0.(2.33)

If in addition we wish to match the electric field ∂ϕ
∂x of bulk plasma of subsection

A with the transition layer solution of this section, we need to match the additional
condition

∂ϕ

∂x
(x)−

(
(2z + 1)1/2

2

)
(x− xB)

−1/2 → 0 as x → xB ,
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which implies

ϕ′
1(ζ)−

(2z + 1)1/2

2
(−ζ)−1/2 → 0 as ζ → −∞.(2.34)

In [7], [8] it is shown there is only one solution of (2.33) that satisfies (2.31) and (2.34),
i.e., the unique monotone increasing solution of the Painlevé 1 equation.

Hence ϕ1 = u1 = −n1, where ϕ1 is the unique monotone increasing solution
of the Painlevé 1 equation (2.33). Finally, a simple substitution of our asymptotic
expansions into (2.25) yields u−

0 = f(τ).

C. Sheath layer. For the study of the sheath boundary layer near x = xw we
introduce yet another space variable ξ = x−xw

ε , ξ ≤ 0. In this scaling, (2.9)–(2.12)
become

1

εp

∂n+

∂τ
+

∂

∂ξ
(n+u+) = εze−ϕ,(2.35)

1

εp

∂u+

∂τ
+ u+

∂u+

∂ξ
=

∂ϕ

∂ξ
− ε|u+|u+ − εu+

e−ϕ

n+
,(2.36)

∂2ϕ

∂ξ2
= n+ − e−ϕ,(2.37)

1

εp

∂2ϕ

∂ξ∂τ
+ n+u+ − n−u− =

f(τ)

ε
.(2.38)

Again we expand the dependent variables in asymptotic expansions:

n+ = n0 + εn1 + · · · ,
u+ = u0 + εu1 + · · · ,(2.39)

ϕ = ϕ0 + εϕ1 + · · · ,
u− =

u−
0

ε
+ u−

1 + · · · .

Again all terms depend on τ, ξ, where periodicity in τ with period 1 is assumed.
Substituting (2.39) into (2.35)–(2.38) and equating powers of ε, we find

∂n0

∂τ
=

∂u0

∂τ
= 0,

and hence u0, n0 are independent of τ . Also balancing terms of order one in (2.36)
gives

1

p

∂n1

∂τ
+

∂

∂ξ
(n0u0) = 0,

and integration in τ from 0 to 1 and the periodicity of n1 imply

d

dξ
(n0u0) = 0.

In fact we also see that n1 is independent of τ .
Recall that the middle region is defined by ζ = x−xB

δ and the sheath region by
ξ = x−xw

ε . Hence in a matching regime, e.g., x − xw = −εα, 4
5 < α < 1, we have

ζ = −εα−4/5 + xw1 , ξ = −εα−1, and ζ → xw1 , ξ → −∞ as ε → 0.
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Substitution into (2.36) of our asymptotic expansions also yields

1

p

∂u1

∂τ
+ u0

∂u0

∂ξ
=

∂ϕ0

∂ξ
,(2.40)

and again, since u1 is periodic in τ with period one, we see

u0
du0

dξ
=

d

dξ
ϕ0

and hence

u2
0

2
− ϕ0 = const.

Recall in the middle region (subsection B)

ϕ(ζ, τ) = 1 + δ1/2ϕ1 + · · · ,
u+(ζ, τ) = 1 + δ1/2u1 + · · · ;

with x− xw = O(εα)( 45 < α < 1) we know ζ → xw1 , ξ → −∞.
Thus matching the middle and sheath regions must be done as ζ → xw1 from the

middle region and ξ → −∞ from the sheath region.
Since n+u+ = 1 in the middle region trivially, we see that matching requires

n0u0 = 1 for all ξ in the sheath region.
Matching the ion velocity u0 and potential ϕ0 to the middle region requires

u0 → 1, ϕ0 → 0 as ξ → −∞,

and hence the above const. = 1
2 and we have

u2
0

2
− ϕ0 =

1

2
.

But since n0u0 = 1, we have trivially

n0 = (1 + 2ϕ0)
−1/2.(2.41)

Substitution of the asymptotic expansions into the Poisson equation (2.37) gives

∂2ϕ0

∂ξ2
= n0 − e−ϕ0 ,

and use of the relation (2.41) then gives

∂2ϕ0

∂ξ2
= (1 + 2ϕ0)

−1/2 − e−ϕ0 .(2.42)

Next substitute the asymptotic expansion into the current equation (2.38) to obtain

1

p

∂2ϕ0

∂ξ∂τ
− e−ϕ0u−

0 = f(τ).(2.43)

But recall

u− =
u−

0

ε
+ u−

1 + · · · ,
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and u− at x = xw is prescribed independent of ε. Hence at the boundary x = xw,
i.e., ξ = 0, we must have u−

0 (0, τ) = 0, and thus at the boundary ξ = 0 we have

1

p

∂2ϕ0

∂ξ∂τ
= f(τ).

Integrating with respect to τ , we find

∂ϕ0

∂ξ
= F (τ) at ξ = 0,(2.44)

where

F (τ) = p

∫ τ

0

f(τ)dτ +
∂ϕ0

∂ξ
(0, 0).

(Notice that ∂ϕ0

∂ξ (0, 0) is the prescribed initial (rescaled) electric field evaluated at the

boundary ξ = 0.) We will assume F (τ) > 0 on [0, 1].
As noted above, matching the potential in the sheath with the potential deter-

mined by the middle region requires

ϕ0 → 0 as ξ → −∞.(2.45)

Matching ∂ϕ
∂ξ requires revisiting the expansion for the potential ϕ in the middle region.

Recall in the middle region

ϕ(ξ, τ) = δ1/2ϕ1(ζ) + · · · .
Hence

∂ϕ

∂ξ
(ξ, τ) = δ1/2 dϕ1

dζ
(ξ)

dζ

dξ
+ · · · ,

and since ζ = ε1/5ξ + ε−4/5xw,
dζ
dξ = ε1/5 and

∂ϕ

∂ξ
(ξ, τ) = ε3/5 dϕ1

dζ
(ζ) + · · · .

Hence again for a typical transition layer (say, x = −εα, 4
5 < α < 1), ξ → −∞,

ζ → xw1 as ε → 0, and

∂ϕ

∂ξ
→ 0 as ζ → xw1 .

Thus the matching condition for ∂ϕ0

∂ξ is

∂ϕ0

∂ξ
→ 0 as ξ → −∞.(2.46)

In summary, ϕ0(ξ, τ) will satisfy

∂2ϕ0

∂ξ2
= (1 + 2ϕ0)

−1/2 − e−ϕ0 , −∞ < ξ < 0,(2.47)

∂ϕ0

∂ξ
= F (τ) at ξ = 0,(2.48)

ϕ0,
∂ϕ0

∂ξ
→ 0, 0 as ξ → −∞.(2.49)
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There is still one more step in matching the middle and sheath regions, i.e., the
determination of xw1 . Recall that from the middle region

ϕ(ζ) = ε2/5ϕ1(ζ) + · · · ,

where ϕ1 satisfies the Painlevé 1 equation (2.33), which classically [9] satisfies the
formula

ϕ1(ζ) =
6

(ζ − ζ0)2
(1 + h.o.t. in (ζ − ζ0))

near ζ0. Here ζ0 > 0 is the left-most pole of the unique monotone increasing first
Painlevé transient. On the other hand, the sheath solution satisfies (2.47). As we
shall see in subsection D, ϕ0 − ϕ0 → 0 exponentially as ξ → −∞, and hence (2.47)
implies

d2ϕ0

dξ2
∼ ϕ2

0 as ξ → −∞

and hence

ϕ0(ξ) ∼ 6

ξ2
as ξ → −∞.

Thus in a matching region, ϕ has representations ϕ(ζ) ∼ 6ε2/5

(ζ−ζ0)2
from the middle

region, ϕ(ξ) ∼ 6
ξ2 from the sheath region. However, since ζ = x−xB

ε4/5 , ξ = x−xw

ε , we

see ζ = ε−4/5(xw − xB) + ε1/5ξ, and substitution into the above expression for ϕ in
the middle region shows that equality of the two representations of ϕ occurs when

xw = xB + ε4/5ζ0 + · · · , i.e., xw1
= ζ0.

D. Higher order sheath asymptotics. From subsection C we know that
n0, u0, n1 are independent of τ , and balancing terms of order ε yields

d

dξ
(n1u0 + n0u1) = ze−ϕ0 ,(2.50)

d

dξ
(u0u1) =

dϕ1

dξ
− u2

0 −
zu0

n0
e−ϕ0 ,(2.51)

∂2ϕ1

∂ξ2
= n1 + e−ϕ0ϕ1.(2.52)

It is possible to eliminate n1, u1 from (2.50)–(2.52) to find a single higher order
equation for ϕ1. However, the goal here to compute an asymptotic relation for ϕ1 as
ξ → −∞. The computation is in fact elementary.

Equation (2.50) implies

n1u0 + n0u1 ∼ zξ + c1(τ) as ξ → −∞.(2.53)

Equation (2.51) implies

u0u1 − ϕ1 ∼ −(1 + z)ξ + c2 as ξ → −∞.(2.54)
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Thus if we multiply (2.53) by u0, (2.54) by n0, and subtract the resultant equa-
tions, we find

n1u
2
0 + n0ϕ1 ∼ u0(zξ + c1(τ)) + n0((1 + z)ξ − c2) as ξ → −∞,(2.55)

and hence

n1 ∼ −n0

u2
0

ϕ1 +
1

u0
(zξ + c1(τ)) +

n0

u2
0

((1 + z)ξ − c2) as ξ → −∞.(2.56)

Since n0u0 = 1, u
2
0 = 1 + 2ϕ0, and n0(ξ) → 1, u0(ξ) → 1 as ξ → −∞, (2.56) can be

simplified by writing

n1 ∼ −(1 + 2ϕ0)
−3/2ϕ1 + (2z + 1)ξ as ξ → −∞.(2.57)

Inserting (2.57) into (2.52), we see

∂2ϕ1

∂ξ2
∼ (e−ϕ0 − (1 + 2ϕ0)

−3/2)ϕ1 + (2z + 1)ξ as ξ → −∞.(2.58)

Now average (2.58) to see that ϕ1 will have asymptotic behavior as ξ → −∞
given by solutions y(ξ) of the equation

d2y

dξ2
=
(
e−ϕ0 − (1 + 2ϕ0)

−3/2
)
y + (2z + 1)ξ.(2.59)

Next note that ϕ0 − ϕ0 satisfies the equation

∂2

∂ξ2
(ϕ0 − ϕ0) = −e−ϕ0 + e−ϕ0 = (ϕ0 − ϕ0) + · · · ,

and hence

ϕ0 − ϕ0 ∼ a1e
ξ + a2e

−ξ as ξ → −∞.

Since ϕ0, ϕ0 are bounded as ξ → −∞, we must have a1 = 0, ϕ0 = ϕ0 plus exponen-
tially small terms as ξ → −∞. Hence in (2.47) we may replace ϕ0 by ϕ0 as ξ → −∞
to see

∂2ϕ0

∂ξ2
∼ (1 + 2ϕ0)

−1/2 − e−ϕ0 ∼ ϕ2
0 as ξ → −∞

and hence

ϕ0 ∼ 6

ξ2
as ξ → −∞.(2.60)

Substitution of (2.60) into (2.59) shows that (2.59) is asymptotically equivalent to

d2y

dξ2
=
12

ξ2
y + (2z + 1)ξ,(2.61)

which has the explicit solution

y(ξ) = b1ξ
4 + b2ξ

−3 − (2z + 1)

6
ξ3.
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We enforce minimal growth as ξ → −∞ and set b1 = 0 so that

ϕ1 ∼ 2z + 1

6
ξ3 as ξ → −∞.

Recall that our expansion for the potential ϕ in the sheath was written as

ϕ(ξ, τ) = ϕ0(ξ, τ) + εϕ1(ξ, τ) + · · · ,
and hence

ϕ(ξ) = ϕ0(ξ) + εϕ1(ξ) + · · · .
Thus on a matching overlap domain between the middle region and the sheath

domain, say,

x− xw = −εβ ,

4
5 < β < 1, we see ξ = x−xw

ε = −ε(β−1) and

ϕ0(ξ) + εϕ1(ξ) ∼− (2z + 1)

6
ε3β−2 as ε → 0

→ 0 since 3β − 2 > 2

5
.

Analysis of (2.52) shows that

∂2

∂ξ
(ϕ1 − ϕ1) ∼ (ϕ1 − ϕ1),

and hence ϕ1 and ϕ1 are exponentially close as ξ → −∞. Thus on a matching regime
ϕ0 + εϕ1 may be matched to the middle solution.

On the other hand, in the absence of a middle regime, an attempt to directly
match plasma and sheath fails. For example, if x− xw = −εβ , 0 < β < 2

3 , we have

ϕ0(ξ) + εϕ1(ξ) ∼ − (2z + 1)
6

ε3β−2 → −∞ as ε → 0,

which does not match the limit from the quasi-neutral plasma

lim
x→xB−

ϕ(x) ∼ lim
x→x−

B

−(x− xB)
1/2 = 0.

We note that a similar argument is given in the paper of Franklin and Ockendon
[5] in the case when the rf-current and friction are not considered.

3. Existence of solutions for the “exact” sheath system. In this section
we will prove existence of solutions to the exact sheath system (1.1) ((2.47)–(2.49) of
subsection C). It is rewritten here with the subscript zero deleted, i.e., as

∂2ϕ

∂ξ2
= (1 + 2ϕ)−1/2 − e−ϕ, −∞ < ξ < 0,(3.1)

∂ϕ

∂ξ
= F (τ) at ξ = 0,(3.2)

ϕ,
∂ϕ

∂ξ
→ 0, 0 as ξ → −∞.(3.3)
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Again recall that F is a given positive C1 periodic function of τ with period 1, and
the overbar denotes the τ average over interval 0 ≤ τ ≤ 1.

Step 1. Regularization. Define

g(ϕ) =

{
e−ϕ, ϕ ≥ 0,
1− ϕ, ϕ ≤ 0,

so that g(ϕ) is C1(R), convex, and |g′(ϕ)| ≤ 1. It is the boundedness of g′(ϕ) that
proves useful.

We now consider the regularized problem

∂2ϕ

∂ξ2
= (1 + 2ϕ)−1/2 + g′(ϕ) + µϕ, −L < ξ < 0,(3.4)

∂ϕ

∂ξ
= F (τ) at ξ = 0, 0 ≤ τ ≤ 1,(3.5)

ϕ = 0 at ξ = −L, 0 ≤ τ ≤ 1,(3.6)

where L = µ−1, 0 < µ ≤ 1.
We shall prove existence of solutions to (3.4)–(3.6) via the direct method of the

calculus of variations [10].
Set

J(ϕ) =

∫ 1

0

∫ 0

−L

{
1

2

(
∂ϕ

∂ξ

)2

− ∂ϕ

∂ξ
F (τ) + (1 + 2ϕ)1/2 + g(ϕ) +

µϕ2

2

}
dξdτ.(3.7)

Let

H̃1(−L, 0) = {ϕ ∈ H1(−L, 0); ϕ = 0 at ξ = −L},
where H1(−L, 0) ⊂ C[−L, 0] denotes the usual Sobolev space of square integrable
functions with square integrable generalized derivatives on (−L, 0) endowed with inner
product

(ϕ,ψ)H1(−L,0) =

∫ 0

−L

{ϕψ + ϕξψξ}dξ.

Of course H̃1 inherits the H1 inner product. Let H = L2((0, 1); H̃1(−L, 0)) so that
H is a Hilbert space endowed with inner product

(ϕ,ψ)H =

∫ 1

0

∫ 0

−L

{ϕψ + ϕξψξ}dξdτ.

For convenience we recall Jensen’s inequality [10] within the context we will use
here: Let f : R → R be convex and u : [0, 1]→ R be summable; then

f(u) ≤ f(u).(3.8)

Notice that Jensen’s inequality implies

‖ϕ‖H ≥ ‖ϕ‖H̃1 ,(3.9)

and hence ϕ ∈ H implies ϕ ∈ C via the usual Sobolev embedding theorem [10]. Hence
the admissible set

A
def
= {ϕ ∈ H;ϕ ≥ 0 on [−L, 0]}(3.10)

is a well defined closed subset of H.
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Application of the direct method requires three basic estimates [10]:
(i) The functional to be minimized is bounded from below in the class of ad-

missible functions, so that the infimum and therefore a minimizing sequence
exists.

(ii) The functional is weakly lower semicontinuous with respect to weak conver-
gence in the class of admissible functions.

(iii) The minimizing sequence possesses a weakly convergent subsequence, which
converges to an admissible function.

If these estimates can be satisfied, existence of a minimizer can be ascertained.
We will now check (i)–(iii) for our functional J(ϕ) given by (3.7). For ϕ ∈ A note

J(ϕ) ≥ µ

2
‖ϕ‖2

H
−max |F (τ)|µ−1/2‖ϕ‖H,

and hence J(ϕ) is bounded from below for ϕ ∈ H. Thus a minimizing sequence {ϕ(n)}
exists so that m = infϕ∈A J(ϕ), J(ϕ(n)) → m as n → ∞, and ‖ϕ(n)‖H is bounded
for all n ≥ 1. Furthermore, by (3.9), const. ≥ ‖ϕ(n)‖H̃1 for all n. Hence there is a
subsequence of {ϕ(n)} also denoted by {ϕ(n)} and ϕ ∈ H so that ϕ(n) → ϕ weakly in
H and ϕ(n) → w strongly in L2(−L, 0). In fact w = ϕ. To see this, let θ ∈ L2(−L, 0).
By weak convergence of {ϕ(n)} in H,∫ 0

−L

θ(ξ)

∫ 1

0

(ϕ(n) − ϕ)dτdξ → 0 as n → ∞,

and hence ∫ 0

−L

θ(ξ)(ϕ(n) − ϕ)dξ → 0 as n → ∞,

and so w = ϕ.
Finally, by the usual Sobolev embedding theorem, ϕ(n) → ϕ uniformly on [−L, 0],

ϕ(−L) = 0, ϕ is continuous in [−L, 0], ϕ ≥ 0. We summarize the above information
in the following lemma.

Lemma 3.1. J(·) has a minimizing sequence {ϕ(n)} ⊂ H, ϕ(n) → ϕ weakly in
H, ϕ(n) → ϕ strongly in L2(−L, 0) and uniformly on [−L, 0], ϕ is continuous non-
negative with ϕ(−L) = 0 and ϕ ∈ A.

The first and third estimates (i), (iii) in our agenda for applying the direct method
are now complete, and we move on to (ii), i.e., lower semicontinuity.

Lemma 3.2. Let {ϕ(n)} be the convergent minimizing sequence of J(·) given in
Lemma 3.1. Then

lim inf
n→∞ J(ϕ(n)) ≥ J(ϕ).

Proof. We will examine pieces of J(ϕ(n)) separately. First note that the uniform
convergence of {ϕ(n)} on [−L, 0] implies∫ ∞

−L

(1 + 2ϕ(n))1/2dξ →
∫ 0

−L

(1 + 2ϕ)1/2dξ as n → ∞.

Next note that since g is convex
∫ 1

0

∫ 0

−L
g(ϕn) − g(ϕ)dξdτ ≥ ∫ 1

0

∫ 0

−L
g′(ϕ)(ϕn −

ϕ)dξdτ . Since |g′(ϕ)| ≤ 1 we have g′ ∈ L2((−L, 0)× (0, 1)), and via weak convergence
limn→∞

∫ 1

0

∫ 0

−L
g(ϕn)dξdτ ≥ ∫ 1

0

∫ 0

−L
g(ϕ)dξdτ . Thus∫ 1

0

∫ 0

−L

{
1

2

(
∂ϕ

∂ξ

)2

+
µ

2
ϕ2 + g(ϕ)− ∂ϕ

∂ξ
F (τ)

}
dξdτ
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is weakly lower semicontinuous on H. Now put the two pieces of J(·) together, and
the lemma is proven. (Notice that if we had used the original function e−ϕ and not g
we would not know a priori that e−ϕ was in L2((−L, 0)× (0, 1)).)

Now all three elements of the application of the direct method have been satisfied,
and we can assert the following theorem.

Theorem 3.3. J(·) has a minimizer ϕ ∈ A, and ϕ satisfies the weak form of the
Euler–Lagrange equation∫ 1

0

∫ 0

−L

{
∂ϕ

∂ξ

∂ψ

∂ξ
− ∂ψ

∂ξ
F (τ) + (1 + 2ϕ)−1/2ψ + g′(ϕ)ψ − µϕψ

}
dξdτ = 0(3.11)

for all ψ ∈ A.
Proof. We know that m ≥ J(ϕ), and hence J(ϕ) = m and ϕ is a minimizer. The

derivation of the weak form of the Euler–Lagrange equation is classical.
Now set ψ(s, ξ) = χ[0,τ ]ψ1(ξ) in (3.11), where

χ[0,τ ](s) =

{
1, 0 ≤ s ≤ τ ,
0, τ < s < 1,

and ψ1 ∈ H̃1(−L, 0), ψ1 ≥ 0. Then ψ ∈ A, and the weak form of the Euler–Lagrange
equation can be written ∫ τ

0

h(τ)dτ = 0, 0 ≤ τ ≤ 1,(3.12)

where

h(τ)
def
=

∫ 0

−L

(
∂ϕ

∂ξ
− F (τ)

)
ψ′

1(ξ) + ((1 + 2ϕ)
−1/2 + g′(ϕ) + µϕ)ψ1(ξ)dξ.

It is a straightforward application of the Cauchy–Schwarz inequality to see

|h(τ)| ≤ const.

(∥∥∥∥∂ϕ∂ξ
∥∥∥∥

L2(−L,0)

+ µ−1|F (τ)|+ 2µ−1 + µ‖ϕ‖L2(−L,0)

)

and hence h ∈ L1(0, 1). Thus (3.12) holds for all τ ∈ [0, 1] and h ∈ L1(0, 1), so
h(τ) = 0 a.e. in [0, 1].

We summarize in the following lemma.
Lemma 3.4.∫ 0

−L

{(
∂ϕ

∂ξ
− F (τ)

)
ψ′

1(ξ) + ((1 + 2ϕ)
−1/2 + g′(ϕ) + µϕ)ψ1(ξ)

}
dξ = 0(3.13)

for all ψ1 ∈ H̃1(−L, 0), ψ1 ≥ 0, for all τ ∈ S ⊆ [0, 1], meas S = 1; i.e., ϕ is a weak
solution of our regularized problem (3.4)–(3.6) for τ a.e. in [0, 1].

Lemma 3.5. There is a set S1 ⊂ S, meas S1 = 1, so that ϕ is a classical
C2[−L, 0] solution of (3.4)–(3.6) for all τ ∈ S1.

Proof. First ϕ(τ, ·) ∈ H̃1(−L, 0) for τ ∈ S1 ⊂ S, where meas S1 = 1. For if
meas S1 < 1, then set S2 = [0, 1]/S1, where meas S2 > 0, and the inequality∫

S2

‖ϕ(τ, ·)‖2
H̃1(−L,0)

dτ ≤
∫ 1

0

‖ϕ(τ, ·)‖2
H̃1(−L,0)

= ‖ϕ‖2
H
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will be violated. Thus ϕ(τ, ξ) is both a weak solution for (3.4)–(3.6) and a continuous
function of ξ on [−L, 0] for all τ ∈ S1, S1 ⊂ [0, 1], meas S1 = 1. Of course ϕ ∈
H̃1(−L, 0). Hence the right-hand side of (3.4) is continuous in ξ for τ ∈ S1, and
hence ϕ must be in C2[−L, 0], and ϕ is a classical C2[−L, 0] solution of (3.4)–(3.6) for
τ ∈ S1.

Lemma 3.6. Assume F (τ) > 0 for all τ ∈ [0, 1]; then ϕ ≥ 0 for −L ≤ ξ ≤ 0 and
almost all τ ∈ [0, 1].

Proof. Since ϕ is a classical solution of (3.4)–(3.6) for τ1 ∈ S1, if ϕ < 0 at some
ξ ∈ (−L, 0], then boundary conditions ϕ(−L, τ) = 0, ∂ϕ

∂ξ (0, τ) > 0, imply that ϕ must

have a negative minimum at ξ∗ for this value of τ1. Hence ϕ(ξ∗) > 0, ∂2ϕ
∂ξ2 (ξ

∗, τ1) ≥ 0,
and (3.4) implies

0 ≤ (1 + 2ϕ(ξ∗))−1/2 + g′(ϕ(ξ∗, τ1)) + µϕ(ξ∗, τ1).

But g(ϕ) = 1− ϕ when ϕ < 0, and hence g′(ϕ(ξ∗, τ1)) = −1 and
0 ≤ (1 + 2ϕ(ξ∗))−1/2 − 1 + µϕ(ξ∗, τ1) ≤ µϕ(ξ∗, τ1),

which is a contradiction.
Theorem 3.7. Assume F (τ) > 0 for all τ ∈ [0, 1]. There is a classical non-

negative solution ϕ of the regularized system

∂2ϕ

∂ξ2
= (1 + 2ϕ)−1/2 − e−ϕ + µϕ,(3.14)

∂ϕ

∂ξ
= F (τ) at ξ = 0,(3.15)

ϕ = 0 at ξ = −L,(3.16)

which is continuous in τ and twice continuously differentiable in ξ on [0, 1]× [−L, 0].
Proof. By Lemma 3.6 we know ϕ ≥ 0 and hence g′(ϕ) = −e−ϕ. Hence all

that remains to be shown is continuity in τ . Let τ1, τ2 ∈ S1 so that we know that
ϕ(·, τ1), ϕ(·, τ2) are solutions of (3.14)–(3.16). Set w(ξ) = ϕ(ξ, τ1) − ϕ(ξ, τ2). Then
from (3.14) we know

w′′(ξ) = −e−ϕ(ξ,τ1) + e−ϕ(ξ,τ2) + µw(ξ),

and, by the mean-value theorem,

w′′(ξ) = eϕ̂(ξ)w(ξ) + µw(ξ),(3.17)

where 0 < ϕ(ξ, τ1) ≤ ϕ̂(ξ) ≤ ϕ(ξ, τ2) (or vice versa with τ1, τ2 interchanged). Thus,
by integration by parts,∫ 0

−L

w(ξ)w′′(ξ)dξ = w(ξ)w′(ξ) |ξ=0
ξ=−L −

∫ 0

−L

w′(ξ)2dξ

= w(0)(F (τ1)− F (τ2))−
∫ 0

−L

w′(ξ)2dξ,(3.18)

and by (3.17),∫ 0

−L

(w′(ξ)2 + eϕ̂(ξ)w2(ξ) + µ2w2(ξ))dξ ≤ |w(0)||F (τ1)− F (τ2)|.
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By the embedding of the Sobolev space H1(−L, 0) into C[−L, 0], we have

sup
0≤ξ≤L

|w(ξ)|2 ≤ const. sup
0≤ξ≤L

|w(ξ)||F (τ1)− F (τ2)|

and

sup
ξ

|w(ξ)| ≤ |F (τ1)− F (τ2)|.(3.19)

Hence for τ �∈ S1 let {τn} ⊂ S1, τn → τ . Then by (3.19)

sup
ξ

|ϕ(ξ, τn)− ϕ(ξ, τm)| ≤ |F (τn)− F (τm)| → 0 as m,n → ∞.

Thus ϕ(·, τn) is a Cauchy sequence in C[−L, 0] and converges to an element of C[−L, 0]
which we call ϕ(ξ, τ). By construction, ϕ(ξ, ·) is continuous at τ . Finally, represent
the solution of (3.14) as integrals (simply by integrating (3.14) with respect to ξ
twice); then passing to the same limit shows that ϕ(ξ, τ) is a classical solution to
(3.14)–(3.16).

Thus Step 1 is completed: A classical solution of the regularized problem (3.14)–
(3.16) has been obtained. We now proceed to Step 2, passage to the limit as µ → 0+
to obtain a classical solution of (3.1)–(3.3).

Step 2. Passage to the limit as µ → 0.
Lemma 3.8. If ϕ(·, τ) has a local maximum at ξ∗ ∈ (−L, 0), then ϕ(ξ∗) ≥

ϕ(ξ∗, τ).
Proof. If ϕ has a local maximum at ξ∗, then ∂2ϕ

∂ξ2 (ξ
∗, τ) ≤ 0 and, from (3.14),

0 ≥ (1 + 2ϕ(ξ∗))−1/2 − e−ϕ(ξ∗,τ) + µϕ(ξ∗, τ). Since ϕ is nonnegative, e−ϕ(ξ∗,τ) ≥
(1 + 2ϕ(ξ∗))−1/2, and hence 1 + 2ϕ(ξ∗) ≥ e2ϕ(ξ∗,τ) = 1 + 2ϕ(ξ∗, τ) + positive terms,
and the lemma is proven.

Lemma 3.9. Define v(ξ, τ) = ϕ(ξ, τ) − ϕ(ξ). If v(·, τ) has a local maximum at
ξ∗ ∈ (−L, 0), then v(ξ∗, τ) ≤ 0, i.e., ϕ(ξ∗, τ) ≤ ϕ(ξ∗).

Proof. From (3.14),

∂2ϕ

∂ξ2
= (1 + 2ϕ)−1/2 − e−ϕ + µϕ,

∂2ϕ

∂ξ2
= (1 + 2ϕ)−1/2 − e−ϕ + µϕ,

and hence by Jensen’s inequality

∂2v

∂ξ2
= −e−ϕ + e−ϕ + µv ≥ −e−ϕ + e−ϕ + µv.

This in turn implies

∂2v

∂ξ2
≥ e−ϕ(1− e−v) + µv.

Now if v has a local maximum at ξ∗ ∈ (−L, 0), then ∂2v
∂ξ2 (ξ

∗, τ) ≤ 0 and 0 ≥
e−ϕ(1 − e−v) + µv. Since v(ξ∗, τ) > 0 would yield a contradiction, we must have
v(ξ∗, τ) ≤ 0.

Lemma 3.10. (i) If ϕ(0, τ)−ϕ(0) > 0, then the graph of ϕ(·, τ) can intersect the
graph of ϕ at most once on (−L, 0).
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(ii) If ϕ(0, τ) − ϕ(0) ≤ 0, then the graph of ϕ(·, τ) can never intersect the graph
of ϕ on (−L, 0).

Proof. (i) In this case, v(0, τ) = ϕ(0, τ) − ϕ(0) > 0, v(−L, τ) = ϕ(−L, τ) −
ϕ(−L) = 0. If ϕ(·, τ) intersects ϕ twice on (−L, 0), then v(·, τ) has a positive local
maximum in (−L, 0), which contradicts Lemma 3.9.

(ii) In this case, v(0, τ) = ϕ(0, τ) − ϕ(0) ≤ 0, v(−L, τ) = 0, and again if ϕ(·, τ)
intersects ϕ, then v(·, τ) has a positive local maximum in (−L, 0), which again con-
tradicts Lemma 3.9.

From Lemma 3.10 we see that there are three possible cases for behavior of the
graph ϕ(·, τ):

(a) ϕ(0, τ) > ϕ(0), and the graph of ϕ(·, τ) is always above the graph of ϕ on
(−L, 0).

(b) ϕ(0, τ) > ϕ(0), and the graph of ϕ(·, τ) intersects the graph of ϕ once on
(−L, 0).

(c) ϕ(0, τ) ≤ ϕ(0), and the graph of ϕ(·, τ) is always below the graph of ϕ on
(−L, 0).

Lemma 3.11. In case (a), ϕ(·, τ) is monotone increasing in [−L, 0].
Proof. Since ∂ϕ

∂ξ (0, τ) = F (τ) > 0, ϕ is monotone increasing near ξ = 0. Thus
for ϕ to lose monotonicity it would have to possess a local minimum, say at ξ1 < 0,
where ϕ(ξ1, τ) > 0. Since ϕ(−L, τ) = 0, there would have been a local maximum of
ξ2 ∈ (−L, ξ1). By Lemma 3.8, ϕ(ξ2) ≥ ϕ(ξ2, τ), which is a contradiction, and the
lemma is proven.

Lemma 3.12. ϕ is bounded on [−L, 0] × [0, 1], L = µ−1, uniformly in τ, ξ, and
µ.

Proof. If case (a) occurs for some value of τ ∈ [0, τ ], then ϕ(ξ, τ) > ϕ(ξ) on
(−L, 0), and hence (1 + 2ϕ(ξ))−1/2 > (1 + 2ϕ(ξ, τ))−1/2. Hence (3.14) implies

∂2ϕ

∂ξ2
> (1 + 2ϕ)−1/2 − e−ϕ + µϕ.

Multiplication by ∂ϕ
∂ξ (which is nonnegative, by Lemma 3.11) and integration from

ξ = −L to ξ = 0 yields[
1

2

(
∂ϕ

∂ξ

)2

− (1 + 2ϕ)1/2 − e−ϕ − µϕ2

2

]ξ=0

ξ=−L

≥ 0.

Evaluation of ϕ at ξ = 0, ξ = −L and use of (3.15) imply

F 2(τ)

2
≥ (1 + 2ϕ(0, τ))1/2 + e−ϕ(0,τ) + µ

ϕ2

2
(0, τ)− 2,

which gives

2 +
F 2(τ)

2
> (1 + 2ϕ(0, τ))1/2.

Thus in case (a), ϕ(0, τ) is bounded independently of µ, and by monotonicity of ϕ(ξ, τ)
in ξ, so is ϕ(·, τ). Moreover, if case (a) occurs for all τ ∈ [0, 1], the above inequality
shows that ϕ is bounded on [−L, 0], L = µ−1, uniformly in τ and µ.

Now note that case (a) must occur for some value of τ ∈ [0, 1]. (If not, then we
would have only cases (b), (c) and hence a value of ξ where the τ average of ϕ is less
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than ϕ(ξ), which is of course impossible.) Hence, since ϕ is above ϕ in case (a), we
have ϕ bounded independently of µ, and hence trivially case (c) is now covered; i.e.,
ϕ is bounded independently of µ in case (c).

Thus we need consider only case (b). In case (b) denote by ξ∗ the crossing
value of ξ, i.e., ϕ(ξ∗, τ) = ϕ(ξ∗). (Of course ξ∗ will in general depend on τ .) Hence
ϕ(ξ, τ) > ϕ(ξ) on (ξ∗, 0], 0 < ϕ(ξ, τ) < ϕ(ξ) on (−L, ξ∗). Thus we need consider
only the interval (ξ∗, 0) since the boundedness of ϕ implies boundedness of ϕ(·, τ) on
(−L, ξ∗].

By Lemma 3.8, ϕ(·, τ) cannot have a local maximum on (ξ∗, 0). Hence ϕ(·, τ) can
be monotone increasing, be monotone decreasing, or have a local minimum. If ϕ(·, τ)
is monotone decreasing, we trivially have an upper bound, i.e., ϕ(ξ∗). On the other
hand, if ϕ(·, τ) is monotone increasing in (ξ∗, 0), then again

∂2ϕ

∂ξ2
> (1 + 2ϕ)−1/2 − e−ϕ + µϕ,

and multiplication by ∂ϕ
∂ξ > 0 and integration from ξ∗ to 0 yields

F 2(τ)

2
+ (1 + 2ϕ(ξ∗))1/2 + e−ϕ(ξ∗) +

µϕ2(ξ∗)
2

> (1 + 2ϕ(0, τ))1/2 + e−ϕ(0,τ) +
µϕ(0, τ)2

2

> (1 + 2ϕ(0, τ))1/2.

Since ϕ is bounded independently of µ, we see that ϕ(0, τ) is bounded independently
of µ for all τ ∈ [0, 1]. Thus the monotonicity of ϕ on (ξ∗, 0) yields ϕ bounded
independently of µ on (ξ∗, 0) as well as (−L, ξ∗].

Finally, if ϕ has a minimum on (ξ∗, 0), then ϕ is monotone decreasing on (ξ∗, ξ∗∗)
and monotone increasing on (ξ∗∗, 0), where ξ∗∗ is the point of local minimum. On
(ξ∗, ξ∗∗), ϕ is trivially less than ϕ(ξ∗), whereas on (ξ∗∗, 0), ϕ is monotone increas-
ing, and the same argument given above when ϕ was monotone increasing on (ξ∗, 0)
applies. Hence ϕ is bounded on (−L, 0) uniformly in ξ, τ, µ.

Lemma 3.13. In case (b), 0 ≤ ∂ϕ
∂ξ (ξ, τ) ≤ F (τ),−L ≤ ξ ≤ 0, and ∂ϕ

∂ξ is bounded
uniformly in ξ, τ, µ.

Proof. In case (b), we know from Lemma 3.11 that ϕ(·, τ) is monotone, ϕ > ϕ.
Hence

∂2ϕ

∂ξ2
= (1 + 2ϕ)−1/2 − e−ϕ + µϕ ≥ (1 + 2ϕ)−1/2 − e−ϕ + µϕ ≥ µϕ > 0

on (−L, 0). Hence ∂ϕ
∂ξ (ξ, τ) is monotone increasing in ξ, and hence ∂ϕ

∂ξ (−L, τ) ≤
∂ϕ
∂ξ (ξ, τ) ≤ F (τ). But ∂ϕ

∂ξ (−L, τ) ≥ 0 since if ∂ϕ
∂ξ (−L, τ) < 0, then the fact that

ϕ(−L, τ) = 0 implies that ϕ would take on negative values for ξ > −L, which is
impossible. Hence 0 ≤ ∂ϕ

∂ξ (ξ, τ) ≤ F (τ) in case (a).

Lemma 3.14. In case (c), ∂ϕ
∂ξ is bounded uniformly in ξ, τ, µ.

Proof. Let τ1, τ3 be values of τ so that ϕ(τ1, ξ) is in case (a) and ϕ(τ3, ξ) is case
(c). Let ψ(ξ) = ϕ(ξ, τ1)− ϕ(ξ, τ3). Then

ψ′′(ξ) = −e−ϕ(ξ,τ1) + e−ϕ(ξ,τ3) + µ(ϕ(ξ, τ1)− ϕ(ξ, τ3)) ≥ 0 on (−L, 0)
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since ϕ(ξ, τ1) > ϕ(ξ) > ϕ(ξ, τ3) on (−L, 0). Furthermore, ψ′(−L) ≥ 0 since ϕ(ξ, τ1)→
0 as ξ → −L from values above ϕ, while ϕ(ξ, τ3) → 0 as ξ → −L from values below
ϕ. Hence ψ′(ξ) ≥ 0 on [−L, 0] and ∂ϕ

∂ξ (ξ, τ1) ≥ ∂ϕ
∂ξ (ξ, τ3) on [−L, 0], and from Lemma

3.13, F (τ1) ≥ ∂ϕ
∂ξ (ξ, τ3). Finally, integrate the inequality ψ′′(ξ) ≥ 0 from ξ to 0 to

see ψ′(0) ≥ ψ′(ξ) and hence F (τ1)−F (τ3) ≥ ∂ϕ
∂ξ (ξ, τ1)− ∂ϕ

∂ξ (ξ, τ3). Since
∂ϕ
∂ξ (ξ, τ1) ≥ 0,

we conclude F (τ1) ≥ ∂ϕ
∂ξ (ξ, τ3) ≥ F (τ3) − F (τ1) on [−L, 0], and the lemma is

proven.
Lemma 3.15. ϕ′ is bounded uniformly in µ, ξ.
Proof. From (3.14) we have

∂2ϕ

∂ξ2
= (1 + 2ϕ)−1/2 + e−ϕ + µϕ on (−L, 0).

Multiply by ∂ϕ
∂ξ and integrate in τ from 0 to 1 to obtain

1

2

∂

∂ξ

((
∂ϕ

∂ξ

)2
)
= (1 + 2ϕ)−1/2ϕ′(ξ) +

∂

∂ξ

(
e−ϕ +

µϕ2

2

)
.

Now integrate from −L to ξ and we see

1

2

(
∂ϕ

∂ξ

)2∣∣∣∣ξ
−L

= (1 + 2ϕ)1/2 + e−ϕ +
µϕ2

2

∣∣∣∣ξ
−L

.(3.20)

From Lemma 3.12 the right-hand side of (3.20) is bounded uniformly in µ, ξ. Hence
by Jensen’s inequality

(
∂ϕ

∂ξ
(ξ)

)2

≤
(
∂ϕ

∂ξ
(·,−L)

)2

+ const.(3.21)

Since ∂ϕ
∂ξ (τ,−L) ≥ 0, the greatest value of ∂ϕ

∂ξ (τ,−L) must occur in case (a) when

ϕ → 0 as ξ → −L from above ϕ. But in case (a) we already know from Lemma 3.13
that ∂ϕ

∂ξ is bounded uniformly in ξ, τ, µ. Therefore (3.21) implies the statement of the
lemma.

Lemma 3.16. In case (b), ∂ϕ
∂ξ is bounded uniformly in ξ, τ, µ.

Proof. We use the same solution as in the proof of Lemma 3.12 and let ξ∗ denote
the point where ϕ(ξ∗, τ) = ϕ(ξ∗) (where of course ξ∗ will generally depend on τ).
Recall that on (−L, ξ∗), ϕ(ξ, τ) is below ϕ, and on (ξ∗, 0], ϕ(ξ, τ) is above ϕ.

We first consider (−L, ξ∗) and let τ1, τ2 be values of τ for which cases (a) and
(b) occur. (Recall that case (a) must occur since otherwise we would have ϕ < 0 at
some values of ξ on (−L, 0).) Hence ϕ(ξ, τ2) < ϕ(ξ) < ϕ(ξ, τ1) on (−L, ξ∗(τ2)). Set
ψ(ξ) = ϕ(ξ, τ1)− ϕ(ξ, τ2). Then

∂2ψ

∂ξ2
= e−ϕ(ξ,τ2) − e−ϕ(ξ,τ1) + µ(ϕ(ξ, τ1)− ϕ(ξ2, τ2)) ≥ 0

on (−L, ξ∗(τ2)). Since ϕ(ξ, τ1) approaches 0 as ξ → −L from above ϕ, while ϕ(ξ, τ2)
approaches 0 as ξ → −L from below ϕ, we have ψ′(−L) ≥ 0 and hence ψ′(ξ) ≥ 0
on [−L, ξ∗(τ2)]. Thus ∂ϕ

∂ξ (ξ, τ1) > ∂ϕ
∂ξ (ξ, τ2) on [−L, ξ∗(τ2)], and by Lemma 3.13,

F (τ1) ≥ ∂ϕ
∂ξ (ξ, τ2).
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Thus on (−L, ξ∗(τ2)] we have ∂ϕ
∂ξ bounded from above uniformly in ξ, τ, µ. When

∂ϕ
∂ξ (ξ, τ2) ≥ 0, then the bound from below is trivial. Otherwise, a bound from below
can be obtained by considering two cases.

Case 1. ∂ϕ
∂ξ (ξ∗(τ2), τ2) ≥ 0. In this case, ∂ϕ

∂ξ (ξ, τ2) can be negative but only on

subintervals, say (ξ1, ξ2), for which
∂ϕ
∂ξ (ξ1, τ2) =

∂ϕ
∂ξ (ξ2, τ2) = 0. This is because at the

end points of the region (−L, ξ∗(τ2)) we have ∂ϕ
∂ξ (−L, τ2) ≥ 0 and ∂ϕ

∂ξ (ξ∗(τ2), τ2) ≥ 0.
Thus on a region (ξ1, ξ2), for which

∂ϕ
∂ξ (ξ, τ2) < 0, we have

∂2ϕ

∂ξ2
≤ (1 + 2ϕ)−1/2 − e−ϕ + µϕ

(since ϕ < ϕ), and multiplication by ∂ϕ
∂ξ (ξ, τ2) and integration from ξ to ξ2 yields

1

2

(
∂ϕ

∂ξ

)2 ∣∣∣∣ξ2

ξ

≥
[
(1 + 2ϕ)1/2 + e−ϕ +

µϕ2

2

] ∣∣∣∣ξ2

ξ

and hence

sup
ξ

{
(1 + 2ϕ)1/2 + e−ϕ +

µϕ2

2

}
≥ 1

2

(
∂ϕ

∂ξ
(ξ, τ2)

)2

.(3.22)

Since Lemma 3.12 implies that the left-hand side of (3.21) is bounded uniformly in
µ, τ , we have ∂ϕ

∂ξ (ξ, τ2) uniformly bounded in ξ, µ, τ when ∂ϕ
∂ξ (ξ, τ2) < 0 and −L ≤

ξ ≤ ξ∗(τ2).
Case 2. ∂ϕ

∂ξ (ξ∗(τ2), τ2) < 0. In this case, since ϕ < ϕ on (−L, ξ∗(τ2)) and ϕ > ϕ

on (ξ∗(τ2), 0), we must have

ϕ′(ξ∗(τ2)) <
∂ϕ

∂ξ
(ξ∗(τ2), τ2) < 0.(3.23)

Thus on an interval (ξ3, ξ∗(τ2)), where

∂ϕ

∂ξ
(ξ3, τ2) = 0,

∂ϕ

∂ξ
(ξ∗(τ2), τ2) < 0,

and ∂ϕ
∂ξ (ξ, τ) < 0 on (ξ3, ξ∗(τ2)), we have again have from (3.14)

∂2ϕ

∂ξ2
≤ (1 + 2ϕ)−1/2 − e−ϕ + µϕ,

and multiplication by ∂ϕ
∂ξ < 0 and integration from ξ to ξ∗(τ2) yields

1

2

(
∂ϕ

∂ξ

)2 ∣∣∣∣ξ∗(τ2)

ξ

≥
[
(1 + 2ϕ)1/2 + e−ϕ +

µϕ2

2

] ∣∣∣∣ξ∗(τ2)

ξ

and

1

2

(
∂ϕ

∂ξ
(ξ∗(τ2), τ2)

)2

+sup
ξ

(
(1 + 2ϕ)1/2 + e−ϕ +

µϕ2

2

)
≥ 1

2

(
∂ϕ

∂ξ
(ξ, τ2)

)2

.(3.24)
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Lemma 2.12 shows that the second term on the left-hand side of (3.24) is bounded
uniformly in µ, τ , while inequality (3.23) and Lemma 3.15 cover the first term, and
Case 2 is complete.

To complete the proof of the lemma we must consider the interval (ξ∗(τ2), 0]. Now
define Γ(ξ) = ϕ(ξ, τ2)−ϕ(ξ, τ3), where τ2, τ3 are values for which cases (b), (c) occur,
respectively. Again note that if the case (b) occurs, where ϕ > ϕ on (ξ∗(τ2), 0] since
case (a) must occur, then case (c) must also occur. Otherwise, ϕ would be greater
than ϕ on some ξ interval for all τ ∈ [0, 1]. Thus Γ(ξ) is well defined and Γ(ξ) > 0.
From (3.14)

Γ′′(ξ) = −e−ϕ(ξ,τ2) + e−ϕ(ξ,τ3) + µΓ(ξ) > 0(3.25)

since ϕ(ξ, τ2) > ϕ > ϕ(ξ, τ3) on (ξ∗(τ2), 0]. Integrate (3.25) from ξ to 0. We obtain

Γ′(ξ) < Γ′(0) =
∂ϕ

∂ξ
(0, τ2)− ∂ϕ

∂ξ
(0, τ3) = F (τ2)− F (τ3)

and hence

∂ϕ

∂ξ
(ξ, τ2) <

∂ϕ

∂ξ
(ξ, τ3) + F (τ2)− F (τ3).(3.26)

Now on (ξ∗(τ2), 0) we have ϕ(ξ, τ2) > ϕ(ξ), and hence by (3.14)

∂2ϕ

∂ξ2
> (1 + 2ϕ)−1/2 − e−ϕ + µϕ > 0.(3.27)

Hence ϕ(ξ, τ2) can have a local minimum but no local maximum. Hence either ϕ(ξ, τ2)
is monotone increasing or ϕ(ξ, τ2) has a local minimum at ξ∗∗(τ2), ξ∗(τ2) < ξ∗∗(τ2) <
0. If ϕ(ξ, τ2) is monotone increasing, then (3.26) and Lemma 3.14 imply that

∂ϕ
∂ξ (ξ, τ2)

is bounded uniformly in ξ, µ, τ , and we are finished. If ϕ(ξ, τ2) has a local minimum at
ξ∗∗(τ2), then on (ξ∗∗(τ2), 0), ∂ϕ

∂ξ (ξ, τ2) ≥ 0, and again (3.26) yields the uniform bound.
Finally on (ξ∗(τ2), ξ∗∗(τ2)) we have ∂ϕ

∂ξ (ξ, τ2) < 0. Multiply (3.27) by ∂ϕ
∂ξ (ξ, τ2) < 0.

Then integration from ξ∗(τ2) to ξ yields

1

2

(
∂ϕ

∂ξ

)2 ∣∣∣∣ξ
ξ∗(τ2)

<

[
(1 + 2ϕ)1/2 + e−ϕ +

µϕ2

2

] ∣∣∣∣ξ
ξ∗(τ2)

.(3.28)

The right-hand side of (3.28) is bounded uniformly in ξ, µ, τ by Lemma 3.12, and
∂ϕ
∂ξ (ξ∗(τ2), τ2) is also bounded uniformly in ξ, µ, τ by Cases 1 and 2 above. Hence
∂ϕ
∂ξ (ξ, τ2) is uniformly bounded as well, and the lemma is proven.

Lemma 3.17. Let τ, σ ∈ [0, 1]. Then

sup
ξ

|ϕ(τ, ξ)− ϕ(σ, ξ)| ≤ const.|F (τ)− F (σ)|,

where the const. is independent of τ, σ, µ.
Proof. Set w(ξ) = ϕ(τ, ξ)− ϕ(σ, ξ). Then from (3.14)

w′′(ξ) = −e−ϕ(τ,ξ) + e−ϕ(σ,ξ) + µw,

and by the mean value theorem

e−ϕ(σ,ξ) − e−ϕ(τ,ξ) = −e−γ(ξ,σ,τ)(ϕ(σ, ξ)− ϕ(τ, ξ)) = e−γ(ξ,σ,τ)w(ξ),
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where either

0 < ϕ(σ, ξ) < γ(ξ, σ, τ) < ϕ(τ, ξ) or 0 < ϕ(τ, ξ) < γ(ξ, σ, τ) < ϕ(σ, ξ).(3.29)

Hence we see

w′′(ξ) = e−γ(ξ,σ,τ)w(ξ) + µw(ξ),(3.30)

and multiplying (3.30) by w(ξ) and integrating from −L to ξ we find

−
∫ 0

−L

w′(ξ)2dξ + w(ξ)w′(ξ) |0−L=

∫ 0

−L

e−γ(ξ,σ,τ)w2(ξ) + µw2(ξ)dξ.(3.31)

Since w(−L) = 0, w′(0) = F (τ) − F (σ), γ is nonnegative, and by Lemma 3.12 the
function γ is uniformly bounded in τ, σ, µ, ξ, we see

−
∫ 0

−L

w′(ξ)2dξ + w(0)(F (τ)− F (σ))

≥ const1
∫ 0

−L

w2(ξ)dξ,(3.32)

where

e−γ(ξ,σ,τ) ≥ const1 > 0

and the const1 is independent of µ, ξ, τ . From (3.32) we easily see

sup
ξ

|w(ξ)||F (τ)− F (σ)| ≥ const1
∫ 0

−L

w′(ξ)2 +
∫ 0

−L

w(ξ)2dξ

≥ const2
(
sup

ξ
|w(ξ)|

)2

,

where const2 is independent of µ, ξ, τ . The lemma is proven.
Now define the extended function ϕe:

ϕe(ξ, τ ;µ)
def
=

{
ϕ(ξ, τ), −L ≤ ξ ≤ 0,
0, ξ < −L.

Lemma 3.18. {ϕe(·, ·;µ)} is uniformly bounded and equicontinuous on (−∞, 0]×
[0, 1]. Furthermore, {ϕe(·, ·;µ)} has a subsequence which converges as µ → 0 uni-
formly on compact subsets of (−∞, 0]× [0, 1] to a function ϕ#. The function ϕ#(ξ, τ)
is periodic in τ with period 1.

Proof. Lemmas 3.12, 3.13, 3.14, 3.16, 3.17 prove the uniform boundedness and
equicontinuity. Existence of a convergent subsequence on compact subsets of (−∞, 0]×
[0, 1] follows from the Ascoli–Arzela theorem. Finally, the limit function ϕ# inherits
the inequality of Lemma 3.17, and hence ϕ# is periodic in τ with period 1.

Lemma 3.19. The limit function ϕ#(·, τ) is nonnegative on (−∞, 0] and satisfies
(3.1), (3.2) for every τ ∈ [0, 1].

Proof. Since ϕ(·, ·;µ) is a smooth solution of (3.14)–(3.16), it solves the weak form
of the equations (3.14)–(3.16):∫ 0

−L

(
∂ϕ

∂ξ
− F (τ)

)
ψ′(ξ) + ((1 + 2ϕ)−1/2 + e−ϕ + µϕ)ψ(ξ)dξ = 0,
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0 ≤ τ ≤ 1, and all ψ ∈ C∞
0 (−∞, 0]. Integration by parts and use of the definition of

ϕe imply ∫ 0

−∞
−ϕeψ

′′(ξ) + ((1 + 2ϕe)
−1/2 + e−ϕe + µϕe)ψ(ξ)dξ

+ (ϕe(0, τ)− F (τ))ψ′(0) = 0.(3.33)

Now let µ → 0. By Lemma 3.18, {ϕe(·, ·, µ)} has a convergent subsequence which
approaches ϕ# uniformly on compact subsets of (−∞, 0] × [0, 1]. By the uniform
convergence of ϕe to ϕ#, the limit function ϕ# satisfies (3.33) and is a weak solution
of (3.1), (3.2). Since the right-hand side of (3.1) is continuous in ξ, we see that ϕ# is
C2 in ξ, and ϕ# is a classical solution of (3.1), (3.2), twice continuously differentiable
in ξ and continuous in τ . The nonnegativity of ϕ# follows from the nonnegativity of
ϕe.

Theorem 3.20. Assume that F (τ) = p
∫ t

0
f(τ)dτ + ∂ϕ0

∂ξ (0, 0) > 0 is given,
continuously differentiable, and periodic with period 1. Then the limit function ϕ# is
a classical solution of (3.1)–(3.3), twice continuously differentiable in ξ, continuous
in τ , on (−∞, 0]× [0, 1], and periodic in τ with period 1.

Proof. From Lemma 3.19 we know that ϕ# satisfies (3.1)–(3.2). Thus we need
only verify the boundary condition (3.3). Since ϕ(·, ·, µ) satisfied cases (a), (b), (c),
we see that ϕe(·, ·, µ) satisfies the following cases:

(ae). ϕe(0, τ ;µ) > ϕe(0;µ), and the graph of ϕe is always above the graph of ϕe

on (−L, 0) and ϕe(ξ, τ ;µ) = ϕe(ξ, µ) = 0 on (−∞,−L).

(be). ϕe(0, τ ;µ) > ϕe(0;µ), and the graph of ϕe intersects the graph of ϕe once
on (−L, 0) and ϕe(ξ, τ ;µ) = ϕe(ξ, µ) = 0 on (−∞,−L).

(ce). ϕe(0, τ ;µ) ≤ ϕe(0;µ), and the graph of ϕe is always below the graph of ϕe

on (−L, 0) and ϕe(ξ, τ ;µ) = ϕe(ξ, µ) = 0 on (−∞,−L).

Since ϕe(·, τ ;µk) → ϕ#(·, τ) uniformly on compact subsets of (−∞, 0] for some
sequence µk → 0 as k → ∞, the inequalities ϕe ≥ ϕe and ϕe ≤ ϕe of cases (ae), (ce)
are preserved in the limit.

Case (be) has ϕe > ϕe on (ξ∗(µ), 0], ϕe < ϕe on (−L, ξ∗(µ)), ϕe = ϕe on
(−∞,−L]. Consider the sequence {ξ∗(µk)}. If ξ∗(µk) → ∞ as µk → 0, then the
limit function ϕ# satisfies ϕ# ≥ ϕ# on (−∞, 0]. On the other hand, if {ξ∗(µk)} is
bounded as µk → 0, then, possibly extracting a convergent subsequence if necessary,
we have ξ∗(µk)→ ξ0 ≤ 0 and, by uniform convergence, ϕ# ≥ ϕ# on (ξ0, 0], ϕ# ≤ ϕ#

on (−∞, ξ0]. Hence the limit function ϕ# satisfies

(a#). ϕ#(0, τ) ≥ ϕ#(0), and the graph of ϕ# is above or touching the graph of
ϕ# on (−∞, 0].

(b#). ϕ#(0, τ) ≥ ϕ#(0), and the graph of ϕ# intersects the graph of ϕ# once on
(−∞, 0].

(c#). ϕ#(0, τ) ≤ ϕ#(0), and the graph of ϕ# is below or touching the graph of
ϕ# on (−∞, 0].

In case (a#), ϕ# is obtained as the uniform limit of monotone increasing functions

(via Lemma 3.13). Hence ϕ# is nondecreasing in ξ, and
∂ϕ#

∂ξ ≥ 0 on (−∞, 0). Also

since ϕ# ≥ ϕ#, (3.1) implies

∂2ϕ#

∂ξ2
≥ (1 + 2ϕ#)

−1/2 − e−ϕ# ≥ 0,(3.34)
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and hence both ϕ# and
∂ϕ#

∂ξ are nondecreasing and bounded from below on (−∞, 0].

Hence limξ→−∞ ϕ#(ξ, τ) and limξ→−∞
∂ϕ#

∂ξ (ξ, τ) exist.

Now integrate (3.34) from −∞ to 0 in ξ. We see

F (τ)− ∂ϕ#

∂ξ
(−∞, τ) >

∫ 0

−∞
((1 + 2ϕ#)

−1/2 − e−ϕ#)dξ.(3.35)

Since the integrand in (3.35) is nonnegative and limξ→∞ ϕ# exists, (3.35) implies that
the limit is zero. Similarly we have

ϕ#(0, τ)− ϕ#(−∞, τ) =

∫ 0

−∞

∂ϕ#

∂ξ
(ξ, τ)dξ.(3.36)

Again the left-hand side of (3.36) is bounded and the integrand is nonnegative; hence

limξ→−∞
∂ϕ#

∂ξ (ξ, τ) = 0.

Cases (b#) and (c#): Since case (a#) must always occur, and since for ξ suffi-
ciently negative the graphs of ϕ# in cases (b#) and (c#) lie below the graph ϕ# of
case (a#), we have limξ→∞ ϕ#(ξ, τ) = 0 in cases (b#) and (c#) as well.

Now set w(ξ) = ϕ#(τ1, ξ) − ϕ#(τ2, ξ), where ϕ#(τ1, ξ) is as in case (a#) and
ϕ(τ2, ξ) is as in case (b#). Then since ϕ#(τ1, ξ) > ϕ#(τ2, ξ) for ξ sufficiently negative,
say, −∞ < ξ < ξ1 < 0, we have

w(ξ) > 0,(3.37)

w′′(ξ) = −e−ϕ#(τ1,ξ) + e−ϕ#(τ2,ξ) > 0(3.38)

on (−∞, ξ1).
If w′(ξ1) < 0, then w′(ξ) < 0 on (−∞, ξ1) by (3.38). Since w(ξ)→ 0 as ξ → −∞,

we have

0 >

∫ ξ1

−∞
w′(ξ)dξ = w(ξ1),

which is impossible. Hence the only possibility is w′(ξ1) ≥ 0. We must have w′(ξ) ≥ 0
on (−∞, ξ1) since if w

′(ξ2) < 0 for some −∞ < ξ2 < ξ1, then the preceding argument
with ξ1 replaced by ξ2 would show w(ξ2) < 0, a contradiction. Thus for decreasing ξ,
w′(ξ) is monotone decreasing and bounded from below by zero. Hence limξ→−∞ w′(ξ)
exists. Since

w(ξ) =

∫ ξ

−∞
w′(ξ)dξ

and the left-hand side is bounded and the integrand is nonnegative, limξ→−∞ w′(ξ) =
0. Hence

lim
ξ→−∞

∂ϕ#

∂ξ
(τ2, ξ) = lim

ξ→−∞

(
∂ϕ#

∂ξ
(τ1, ξ)− w′(ξ)

)
= 0,

and case (b#) is complete. Fortunately the same argument that was used for case
(b#) applies to case (c#), and the theorem is proven.
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ACOUSTIC PULSE SPREADING IN A RANDOM FRACTAL∗
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Abstract. Fractal medium models are used to model, for instance, the heterogeneous earth
and the turbulent atmosphere. A wave pulse propagating through such a medium will be affected
by multiscale medium fluctuations. For a class of one-dimensional fractal random media defined in
terms of fractional Brownian motion we show how the wave interacts with the medium fluctuations.
The modification in the pulse shape depends on the roughness of the medium and can be described
in a deterministic way when the pulse is observed at its random arrival time. For very rough media
the coherent wave is confined to a surface layer.

Key words. wave propagation, random medium, fractional Brownian motion, homogenization,
anomalous diffusion
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1. Introduction. Propagation of wave pulses in a smooth medium is well under-
stood, but propagation in a rough or multiscale medium is not as well understood. We
will look at how a propagating pulse interacts with rough variations in the medium.

Given the importance and long history of wave propagation and scattering prob-
lems, a multitude of approaches have been developed to analyze them. In the homog-
enization or effective media regime, rapidly varying properties of the medium average
out when the width of the propagating pulse is large compared to the scale of the
medium fluctuations. However, over long propagation distances the accumulated ef-
fect of the scattering, associated with the medium microstructure, gradually changes
the pulse beyond the geometrical effects of the high frequency analysis in the smooth
homogenized medium. In the 1960s and early 1970s, mean pulse propagation over
long distances was analyzed. More recently a mathematical theory has been devel-
oped that gives a more precise description [1, 8, 16] of pulse propagation. It deals
with pulses in a particular realization of the random medium and explains why in
many cases the evolution of the pulse shape is to leading order deterministic. We
refer to this phenomenon as pulse stabilization. So far, two salient features of this
“pulse shaping” theory have been that it assumes a one-dimensional medium and a
separation of scales for the medium heterogeneities; that is, the medium has features
on microscales which are well separated from the macroscale. However, several stud-
ies [9, 13, 14, 21] suggest that, for instance, the earth’s crust should be modeled as
containing fluctuations on a continuum of length scales. Multiscale medium models
are also used for the turbulent atmosphere [20] and, moreover, to model the transition
zone between different parts of tissues or the zone between different parts of certain
devices, for instance, the zone associated with a large change in the dielectric permit-
tivity. Burridge, Papanicolaou, and White give a nice derivation of pulse shaping in
periodic and stationary random media in [6]. Here, we generalize the pulse shaping
theory for a two scale medium, as presented in [6], to the multiscale case.
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The stabilization phenomenon has been shown to hold true also for waves propa-
gating in three spatial dimensions in the case with layered media. This problem has
been analyzed in detail in [7] and more recently also in [12], where it is discussed in
the context of time-reversal of waves. Stabilization and pulse shaping in the case with
slow lateral variations in the medium have been analyzed in [15] and [25].

The analysis of the interaction of a wave pulse with a medium varying on many
length scales is an interesting but largely open question from a mathematical view-
point, despite its importance in applications. We analyze this problem for acoustic
waves propagating in a one-dimensional discrete medium, modeled in terms of frac-
tional Brownian motion. Fractional Brownian motion is a Gaussian (self-similar)
stochastic process and is often used as a model for processes containing fluctuations
on a continuum of length scales, for instance, for modeling of turbulent environments.
The discretization assumes that the medium has a smallest scale. In turbulence theory
this is the inner scale. Below, we refer to media defined in terms of fractional Brow-
nian motion as “fractal” media. The Hurst exponent H characterizes the roughness
of the fractional Brownian motion, and the value H = 1/2 gives standard Brownian
motion. In the simplest case with H = 1/2 the medium model that we consider satis-
fies a separation of scales assumption. For H �= 1/2 the medium contains long-range
interactions and variations on many scales. We show that in the limit of small inner
scale relative to the travel distance the transformation of the pulse shape becomes
deterministic; thus the classic pulse shaping theory for media satisfying a separation
of scales assumption generalizes in this sense. However, now the scale on which the
spreading of the pulse happens depends on the roughness of the medium and does
not in general correspond to the inner scale as in the classic theory. In fact, a pulse
supported on the inner scale is trapped in a surface layer if the medium is rougher
than the standard model. If the medium is smoother than the standard model, i.e.,
H > 1/2, the shape of such a pulse is not affected by the random medium fluctuations.

Most previous work on wave interaction with a fractal object deals with scattering
caused by fractal interfaces. However, some authors have explored wave-interaction
with deterministic fractal media using numerical simulations [4, 17, 26]. Reflections
from a random fractal and how they depend on the fractal exponent is explored
by numerical experiments in [4]. In [17], Konotop, Fei, and Vazquez examine the
wave reflections from a fractal devil’s staircase and introduce a heuristic scheme for
computing effective parameters of such a medium. Sun and Jaggard [26] numerically
explore wave propagation in a similar medium and observe strong resonance effects.
Here, we analyze acoustic pulse transmission through a random fractal and illustrate
our theoretical results with numerical simulations.

In section 2 we state the governing equations for the acoustic pulse and in section
3 the models for the fractal media that we consider. We summarize how the pulse
shaping theory generalizes to these media in section 4. In section 5 we derive the
general averaging result that can be used for fractal media. Finally, in section 6 we
apply this averaging result to the fractal media that we consider and also illustrate
our theoretical results with numerical simulations.

2. Governing equations. We follow the notation set forth in [3] and [6]. The
governing equations for the continuum are the Euler equations giving conservation of
momentum and mass:

ρ ut + pz = 0,(1)

K−1pt + uz = 0,
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with t being time and z measuring depth into the medium. The dependent variables
are the pressure p and the (z-component) of the particle velocity u. The medium
parameters are the density ρ and the bulk-modulus K, which is the reciprocal of the
compressibility. We next make a change of variables from depth z to the first arrival
time from the surface to this depth:

x = x(z) =

∫ z

0

1

c(s)
ds,(2)

with the local speed of sound being c =
√
K/ρ. The first arrival time gives the travel

time for the first arriving disturbances. An important aspect of the propagating pulse
is the travel time of its coherent part and this differs in general from the first arrival
time. In travel time coordinates (1) transforms into

ζut + px = 0,(3)

pt + ζux = 0.

The characteristic impedance ζ is

ζ = ζ(x) =
√
ρ(z(x)) K(z(x)) = ρ(z(x)) c(z(x)),(4)

where z(x) is the inverse of the map defined in (2).

We model ζ as being piecewise constant; thus, within each medium section the
wave propagation can be described as a pure translation of “up”- and “down”-
propagating wave components. We decompose the wavefield in terms of up- and
down-propagating wave components as

u =
1√
ζ
(D − U),(5)

p =
√
ζ (D + U).

The positive x direction defines the downward direction, and D is the wave propagat-
ing in this direction. Our objective is to describe a down-propagating pressure pulse
somewhere deep into the medium and examine how the multiscale random fluctua-
tions in ζ affect this pulse. In section 3 we give the particular models that we consider
for the medium fluctuations and in section 4 discuss their impact on the transmitted
pulse.

3. Modeling of the medium. The discrete medium is defined by a uniform
discretization in the travel time coordinate x as

ζ =

{
1 for x < h,
ζhk for (k − 1) h ≤ x < k h,

(6)

with k ∈ {1, 2, . . .}. Therefore, the time it takes a pulse to traverse a medium section
is constant and equal to h. Such a medium is sometimes referred to as a Goupillaud
medium; it has been discussed in, for instance, [6, 22, 24]. Here, we consider finely
layered media, and h is the small parameter in our modeling. In the next section
we describe our choices for the impedance sequence ζhk , the sequence that defines the
medium.
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3.1. A standard one-scale medium model. We first consider a medium
model where the fluctuations form a stationary process, with the impedances in
the different medium sections being independent and identically distributed. Such
a medium model is used in [5, 6, 16]. Let the discrete impedance sequence be given
by

ζhk = 1 + Zhk ,(7)

with Zhk a sequence of independent mean zero Gaussian random variables with vari-
ance O(h). The medium fluctuations are therefore relatively weak. Note that in
practice we truncate the fluctuations in the above model such that the impedance is
positive and bounded. If β denotes standard Brownian motion, then a version of (7)
can be constructed as

ζhk = 1 + β(kh)− β((k − 1)h).(8)

This formulation serves to motivate the medium model we introduce next, a model
that incorporates fluctuations on many scales.

3.2. Multiscale medium from fractional Brownian noise. We aim to for-
mulate a simple medium model that incorporates long range interactions or corre-
lations, that is, a model that is not limited to one intrinsic scale as is the one in
(8). A standard stochastic model process that incorporates long-range interactions
and variations on a continuum of length scales is fractional Brownian motion (fBm),
{βH(x);x ≥ 0}. This process was introduced by Mandelbrot and Van Ness in [18].
We define the medium model in terms of this process.

First, consider the following generalization of (8):

ζhk = 1 + βH(kh)− βH((k − 1)h),(9)

with βH being fBm with Hurst exponent H. Thus, the fluctuations in the impedance
form a fBm noise sequence. Note that β1/2 is standard Brownian motion, and then
the models (8) and (9) coincide. In general, fBm is a Gaussian process with mean
zero, stationary increments, and with covariance and structure functions

E[βH(x)βH(y)] =
σ2

2
(|x|2H + |y|2H − |x− y|2H),(10)

E[(βH(x)− βH(x−∆x))2] = σ2|∆x|2H ,(11)

where 0 < H < 1, σ is a scaling parameter, and βH(0) = 0. The Hurst exponent H
determines the correlation of the increments. The covariance of a future increment
with the past increment is

E[(βH(x)− βH(x−∆x))(βH(x+∆x)− βH(x))] = σ2(22H−1 − 1)|∆x|2H

and is independent of the location index x. When H > 1/2 this quantity is positive,
so if the past increment is positive, then on average the future increment will be
positive. Feder [10] calls this persistence. When H < 1/2 we have an antipersistent
process, with a positive increment in the past making a positive increment in the
future less likely. The paths of fBm in the persistent case will be associated with
larger excursions, but will be “smoother” than the paths in the antipersistent case.
The quadratic variation of the process in the persistent case is almost surely zero,
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whereas it is almost surely infinite in the antipersistent case [23]. Below we show how
this entails that wave propagation through a medium defined in terms of antipersistent
fBm be qualitatively very different from wave propagation in the persistent case.

In the model (8) the impedance is piecewise constant and ζhk are uncorrelated
with ζhk+m unless m = 0. We refer to this model as a one-scale model whose scale of
variation corresponds to the discretization scale.

In this section we consider a model for the impedance that has long-range corre-
lations; the covariance is now

Cζ(m;h,H, σ) := Cov[ζhk , ζ
h
k+m] ∼ σ2h2HH(2H − 1)

m2(1−H)
as m → ∞,

and the medium therefore exhibits correlations also over long scales. Note that if we
observe the medium on a coarser scale, then we see the same decay of correlations for
a > 0:

Cζ(am;h,H, σ) ∼ a−2(1−H)Cζ(m;h,H, σ) as m → ∞.

Since the medium has similar and nontrivial correlation structure over many scales,
we refer to it as a multiscale model.

In fact, fBm itself is self-similar since βH(x) and a
HβH(x/a) have the same finite-

dimensional distributions for all a > 0. This property illustrates how this process
incorporates variations on all scales.

3.3. A fractal medium model. The model (9) is defined in terms of fractional
Gaussian noise, and the medium fluctuations are therefore stationary. Next, we define
a medium model where the fluctuations are defined by the fBM process itself. In this
case the fluctuations are nonstationary; moreover, they are strong O(1) and not weak
as in the above two models. We consider the medium model

ζhk = exp(βH(kh)).(12)

The value H = 1/3 is of particular interest since the fBm process then corresponds to
Kolmogorov turbulence, a standard medium model in the context of wave propagation
in the turbulent atmosphere. We will see below that the same theorem, Theorem
5.1, that characterizes the transformation of the pulse shape for the models in the
previous two subsections with weak or small medium fluctuations applies in this case
with relatively strong medium fluctuations. Below, in (16), we introduce the interface
reflection coefficients associated with the sequence ζhk . The theorem characterizes the
way in which the decay of the correlations in these interface reflection coefficients
determines how the medium affects the shape of the propagating wave pulse. The
important parameter that determines this decay is the Hurst exponent H, and the
pulse shaping thus depends sensitively on the value of this. We give the decay of
correlations for the interface reflection coefficients in (41). Note that even though the
fluctuations of the impedance in (12) are large, the magnitude of the fluctuations of
the interface reflection coefficients are actually small.

Observe finally that the analysis we present below holds for more general media
models than those discussed above.

4. Summary of results. In this section we characterize the wave pulse that has
propagated through the multiscale medium. We assume the model (9) and in addition
that the density ρ in (4) is constant. This allows us to characterize the travel time
to a given depth. The general case is considered in (5.1). We give a more detailed
account of the results and how they are derived in sections 5 and 6.
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The pulse impinging on the half-space z > 0 has shape p0, a compactly supported
function. In the random medium the transmitted pulse at depth L can be character-
ized in terms of (i) χh(L), a random travel time correction, and (ii) G, a deterministic
pulse shaping function. The support of G is O(

√
L). Let τ(L) be the travel time to

depth z = L in the deterministic (homogenized) medium; then we have the following
result for the transmitted pulse.

Lemma 4.1. Let 1/4 < H ≤ 1/2 and p(0, t) = p0(t/h
H+1/2) be the impinging

pulse at the surface. Then for every ε > 0 and M > 0,

P

(
sup

|s|<M

∣∣∣∣p(L, τ(L) + χh(L) + hH+1/2s)−
∫
p0(s− u)G(u;L) du

∣∣∣∣ > ε

)
(13)

→ 0 as h→ 0.

The random variable χh is a Gaussian random variable with magnitude O(h).
Thus, when we observe the transmitted pulse in a randomly corrected time frame, we
see a deterministic pulse in the small h limit. This is what we refer to as stabilization.
If H = 1/2, then βH is standard Brownian motion that has independent increments,
corresponding to independent medium fluctuations. In this case the spreading of the
pulse happens on the diffusion scale h, which is a measure of the correlation length
of the medium fluctuations. Spreading on this scale corresponds to that discussed
by O’Doherty and Anstey in [19]. If H < 1/2, the increments of βH are negatively
correlated and the medium fluctuations are rougher than in the standard Brownian
case. In this case the pulse shaping is stronger and happens on the anomalous diffusion
scale hH+1/2.

Consider next the case of H > 1/2; now the increments of βH are positively
correlated and the medium fluctuations are smoother than in the standard Brownian
case. The next result shows that in this case there is no change in pulse shape on the
discretization scale in the small h limit.

Lemma 4.2. Let H > 1/2 and p(0, t) = p0(t/h) be the impinging pulse at the
surface. Then for every ε > 0 and M > 0,

P

(
sup

|s|<M
|p(L, τ(L) + χh(L) + hs)− p0(s)| > ε

)
(14)

→ 0 as h→ 0.

The travel time correction χh is characterized as in Lemma 4.1.
Assume that the source pulse is supported on the inner scale: p0 = p0(t/h). In the

Brownian case with H = 1/2 it follows from Lemma 4.1 that on the standard diffusion
scale h we observe stabilization to a fixed pulse shape at the fixed depth L. If H < 1/2
with a stronger pulse shaping, this result generalizes in that we see stabilization on the
scale h to a fixed pulse, but for a travel distance that decreases with h. Analogously,
for H > 1/2, with a weaker pulse shaping, we observe stabilization on the scale h for
a travel distance that increases with decreasing h. This follows from the next result.

Lemma 4.3. Let 1/4 < H < 3/4 and p(0, t) = p0(t/h) be the impinging pulse at
the surface. Then for every ε > 0 and M > 0,

P

(
sup

|s|<M

∣∣∣∣p(Lh1−2H , τ(Lh1−2H) + χh(L) + hs)−
∫
p0(s− u)G(u;L) du

∣∣∣∣ > ε

)
→ 0 as h→ 0.(15)
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Thus, the coherent pulse front will be confined to an O(Lh1−2H) neighborhood
of the surface. The random variable χh is a Gaussian random variable, now with
magnitude O(h1+H(1−2H)).

5. Derivation of pulse shaping.

5.1. Dynamic equations for the pulse front. In order to derive the above
results we need to characterize the evolution of the pulse front and how this relates
to the fluctuations in the impedance ζ. Wave propagation in the discrete medium is
determined by the interface reflection coefficients rhk and the transmission coefficients
τhk . These are defined by

rhk =
ζhk+1 − ζhk
ζhk+1 + ζhk

,(16)

τhk =
√
1− |rhk |2.(17)

Let D± and U± be the wave components in (5) evaluated immediately to the right
and left of interface k at location xk = kh. The interface corresponds to a jump
in the characteristic impedance ζ, and the continuity of p and u gives the appro-
priate interface conditions that determine the associated jumps in D and U . These
jumps correspond to some of the down-propagating energy being converted to the
up-propagating mode and vice-versa. The interface conditions give (see [6])[

D+

U−

]
=

[
τhk −rhk
rhk τhk

] [
D−

U+

]
.(18)

We are interested in the impulse response of the medium, that is, how a down-
propagating impulse at the surface is being transformed as it propagates. The impulse
response is an analogue of the Green’s function for the medium. The transmitted pulse
when we probe the medium with a general down-propagating wave is easily found by
convolution of the source wave with this impulse response. At the initial time we
assume that the medium is at rest and that we probe it with a down-propagating
impulse:

Dt=0 = δ(x+),(19)

Ut=0 = 0.

Wave reflections at the interfaces in the discrete medium lead to a set of down- and
up-propagating impulses. At the time instances t = ih, with i integer, these impulses
are located at the interfaces. The down-propagating pulses are separated by integer
multiples of h in the time coordinate t, and also in the travel time coordinated, x, as
are the up-propagating impulses. We find it convenient to represent these “impulse-
trains” by the magnitude of the impulses indexed as Di

j and U
i
j , with i being the time

index and corresponding to times t = ih. The index j gives the distance from the
front in the x dimension, measured in units of h. Thus, Di

0 is the magnitude of the
first impulse in the down-propagating pulse-train at time t = ih. The initial condition
(19) gives

D0
j = δ0(j),(20)

U0
j = 0.
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In Figure 1 we illustrate the propagation of the impulses by a sequence of “snapshots”
taken at times t = 0, h, and 2h. The figure makes it clear that at time instances
t = ih only every second interface is associated with nonzero impulses and that the
support of the pulse-trains increases with increasing time, giving pulse spreading. An
important aspect of the parameterization is that a finite section of the wave front
evolves autonomously and can be described independently of the tail part of the
wave. We make use of this fact for the analysis of the problem and also for numerical
simulation of the evolution of the wave front. Consider D2

2 in the example given in
Figure 1, that is, the magnitude of the second down-propagating impulse at time
2h. It trails the leading impulse by two sections and is determined by a double
scattering event associated with the initial impulse D0

0. Part of the initial impulse
is first reflected to an up-propagating mode and then aligned with D2

2 through a
second scattering event. The change in D·

2j from one time step to the next can
in general be expressed exactly in terms of double scattering events associated with
down-propagating impulses “ahead” of it when these are evaluated at previous times.
We next show how by unraveling the evolution seen in Figure 1.

Time

0

h

2h

x
‘Depth’

0 h 2h

D0
0

D1
0

U1
0

D2
0

U2
0

D2
2

U2
2

Fig. 1. The generation of multiple reflections in the discrete medium.

From (18) we find

[
Di+1
j

U i+1
j

]
=

[
τhk −rhk
rhk τhk

] [
Di
j

U ij−2

]
,(21)

with k = i+ 1− j. Define

dij =

i−j∏
k=0

τhk D
i
j ,(22)

uij =

i−j−1∏
k=0

τhk U
i
j ,
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with τhk = 1 for k < 0. This gives, using (18), that

di+1
j = dij − rhku

i+1
j ,

ui+1
j = uij−2 + rhkd

i
j ,

with k = i+ 1− j. Then, upon elimination of uij , it follows in view of (20) that

di+1 = di −Ah
i d

i,(23)

with the vector di corresponding to the front part of the wave:

di = [di0, d
i+1
2 , di+2

4 , . . .]′.

The matrix Ah
i = {aik,l} is lower triangular with

aik,l = rhi−k+2 r
h
i−l+2(24)

for k ≥ l. In the next section we use (23) to obtain a characterization of the transmit-
ted pulse. Note that (23) articulates how the change in a down-propagating impulse
at a given time can be expressed exactly in terms of double scattering events associ-
ated with impulses ahead of it when these are evaluated at previous times. Thus, the
statistics of products of reflection coefficients, corresponding to these double scattering
events, will determine the evolution of the pulse shape.

5.2. Stabilization from averaging. We state the conditions and the result
that describe the fascinating stabilization property of the down-propagating pulse
when this is observed in a travel-time frame. With stabilization we mean that the
transmitted pulse becomes essentially deterministic in the small h limit due to averag-
ing in (23). Averaging in (23) means that we can replace Ah

i by its mean value, which
is a lower triangular Toeplitz matrix with the entries on the ith subdiagonal being
E[rhmr

h
m+i], assuming here that the interface reflection coefficients form a stationary

sequence. The following theorem generalizes and makes this precise.
Let [·] denote rounding to integer value, and define

dD
ds

(s, h) = −Ā(s, h) D(s, h),(25)

D(0, h) = e1,

with Ā(s, h) being a lower triangular Toeplitz matrix whose first column is

[a(0, s/g(h), h)/2, a(1, s/g(h), h), . . . , a(K, s/g(h), h)]′

for some function a, and e1 a vector with one in the first entry and zero else; moreover,

D(x, h) = [D
[x/h]
0 , D

[x/h]
2 , . . . , D

[x/h]
2K ]′,(26)

U(x, h) = [U
[x/h]
0 , U

[x/h]
2 , . . . , U

[x/h]
2K ]′,

with Di
j and U

i
j as defined above. Then we have the following.

Theorem 5.1. If for all ε > 0 and ∆ ∈ {0, 1, 2, . . .}

lim
h→0

P


 sup

0<s<L

∣∣∣∣∣∣
[s/(g(h)h)]∑

m=1

rhmr
h
m+∆ −

∫ s

0

a(∆, v/g(h), h) dv

∣∣∣∣∣∣ > ε


 = 0,(27)
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where 0 < g(h)h = o(1) and |a| < c for some constant c, then for all ε > 0

lim
h→0

P

[
sup

0<s<L
||D(s/g(h), h)−D(s, h)|| > ε

]
= 0,(28)

lim
h→0

P

[
sup

0<s<L
||U(s/g(h), h)|| > ε

]
= 0.(29)

The proof of this result is given in Appendix C. The formulation (25) follows from
replacing Ah

i in (23) and the factor
∏m
k=1 τ

h
k in (22) by their corresponding averaged

values. We apply the above result to fractal media in section 6.
The following lemma shows that the condition (27) entails that the interface

reflection coefficients are small. Note, however, that this does not mean that the
medium fluctuations themselves are relatively small.

Lemma 5.2. If for all ε > 0 and ∆ ∈ {0, 1, 2, . . .}

lim
h→0

P


 sup

0<s<L

∣∣∣∣∣∣
[s/(g(h)h)]∑

m=1

rhmr
h
m+∆ −

∫ s

0

a(∆, v/g(h), h) dv

∣∣∣∣∣∣ > ε


 = 0,(30)

where 0 < g(h)h = o(1) and |a| < c for some constant c, then for all ε > 0

lim
h→0

P

[
sup

1≤i≤[L/(g(h)h)]

|rhi | > ε

]
= 0.(31)

We prove this lemma in Appendix A.
For a given random medium model the following lemma gives a convenient way

to check that the condition (27) is satisfied. Define

Sh(s,∆) =

[s/(g(h)h)]∑
m=1

rhmr
h
m+∆ −

∫ s

0

a(∆, v/g(h), h) dv;(32)

then we have the following.
Lemma 5.3. With a and g defined as in (27), if there is an α > 0 and a C > 0

such that for h < h0

sup
0<s<t<L

E[|Sh(t,∆)− Sh(s,∆)|α] ≤ g(h)h|t− s|C,(33)

then the condition (27) is satisfied.
The proof of this lemma can be found in Appendix B.
Theorem 5.1 shows how the shape of the transmitted pulse is affected by the

medium fluctuations. In the next section we give an interpretation of this modification
and show that for an important class of random media models the spreading of the
pulse in the random medium can be described as a convolution with a deterministic
Gaussian pulse shape.

5.3. Pulse shape from the central limit theorem. Assume first that the
interface reflection coefficients are stationary and that

E[rhi r
h
i+∆] = ha(∆).
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It then follows from Theorem 5.1 that in probability limh→0 D(L, h) = D(L) with
D(L) = exp(−LĀ) e1 = exp(−La(0)/2) exp(La(0)Q/2) e1,

where Ā and Q are lower triangular Toeplitz matrices whose first columns are

a = [a(0)/2, a(1), a(2), . . .]′,
q = −[0, 2a(1)/a(0), 2a(2)/a(0), . . .]′,

respectively. Note that multiplication with Q corresponds to a discrete convolution
with its first column. Therefore

D(L) =
∞∑
n=0

pnq
n∗ as h ↓ 0,(34)

where qn∗ denote n-fold convolution, q0 = e1, and where

pn = exp(−La(0)/2)(La(0)/2)n/n!
is a discrete Poisson distribution. For typical media models, for instance, when ζhk form
a Markov process, the first column of Q defines a discrete probability distribution.
Then D is the distribution of a random sum. A central limit theorem argument then
gives that D is approximately a Gaussian pulse shape with standard deviation O(

√
L)

for L large. We show this in Appendix F, where we consider media with slowly varying
media statistics.

6. Application to a fractal environment. In this section we consider the
multiscale medium models introduced in sections 3.2 and 3.3. We show how Theorem
5.1 applies to these media and give the medium statistics that define the deterministic
transformation in the shape of the propagating pulse. The results presented in section
4 follow via a transformation from the travel time coordinate to physical depth.

6.1. Fractional Brownian noise medium. We consider the medium model
(9). A calculation involving the algebra of the moments of Gaussian random variables
gives Lemma 6.1 below.

Lemma 6.1. Let ζhk be defined by (9) and 1/4 < H < 3/4; then there exists
h0 > 0 such that

lim
h→0

E


[s/g(h)h]∑

m=1

rhmr
h
m+∆


 = sa(∆),(35)

V ar


[s/g(h)h]∑

m=1

rhmr
h
m+∆


 ≤ g(h)hsσ4C(H) for h ≤ h0,(36)

with g(h) = h2H−1 and for ∆ ≥ 1

a(∆) = −∆2H−4 (σ2/8) δ41/∆[x
2H ]x=1(37)

∼ −∆2H−4 σ2 H(H − 1/2)(H − 1)(2H − 3) as ∆ → ∞.

In (37) we used the fourth order discrete central difference operator δ4∆ defined
by

δε[f(x)] =
f(x+ ε/2)− f(x− ε/2)

ε
.
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Thus, the coefficients a(·) can be expressed in terms of a fourth order difference
operator of the power law of the underlying fBm. This is related to the fact that these
coefficients are means of products of interface reflection coefficients that themselves are
obtained essentially by discrete differentiation of the impedance sequence. Lemmas
5.3 and 6.1 entail that the condition (27) in Theorem 5.1 is satisfied for the model
(9) with g(h) = h2H−1. Thus, in probability, the transmitted impulse response when
evaluated at depth L̃ = Lh1−2H satisfies

lim
h→0

D(L̃/h, h) = exp(−LĀ) e1,(38)

lim
h→0

||U(L̃/h, h)|| = 0,

where Ā is a lower triangular Toeplitz matrix whose first column is

[a(0)/2, a(1), a(2), . . .]

and U and D are defined in (26). Thus, when we probe the medium with a unit
downgoing impulse at the surface, we observe the pulse shape defined by (38) at
depth L̃. By a transformation of the independent variable to physical depth this
entails that Lemmas 4.2 and 4.3 in section 4 are valid when the fractal medium is
defined by (9). That Lemma 4.1 holds follows from Lemmas 5.3 and 6.1 and from
Theorem 5.1 upon a transformation of the travel-time argument.

We next illustrate these results regarding the model (9) with numerical simula-
tions. In the numerical simulations we use the initial condition (19) and propagate
the pulse essentially according to (23). In practice we reformulate (23) to obtain an
orthogonal propagation operator. In the figures we plot the down-propagating pulse
D at the considered depth. Note that the origin in the plotted coordinate system
corresponds to the front of the pulse, that is DN

0 , with N the total number of sections
in the discrete medium. Thus, in the absence of random medium fluctuations we
will see a unit impulse only at the origin. The random medium variations cause a
spreading of the impulse.

First, we illustrate Lemma 4.3 using the medium model (9). In Figure 2 we
use σ = 5, and the solid, dashed, and dotted lines correspond to h0 = 2−12, h1 =
2−14, andh2 = 2−16, respectively. The pulses are plotted at the scaled depth

x̄(hi) =

(
hi
h0

)1−2H

.

The crosses give the stabilized pulse shape defined by (34). In the top plot we use
H = 0.4, whereas in the bottom plot we useH = 0.6. As expected, we see stabilization
to the theoretical pulse in both cases. Note that the horizontal axis is scaled by h. The
pulse shaping is stronger in the antipersistent case with a rougher medium (top plot).
The limiting pulse shape is close to the Gaussian pulse shape. This can be explained
by the representation (34) of the impulse response. Recall that if the vector q, the
first column of Q, is nonnegative, then (34) can be interpreted as the distribution of
a random sum, and the impulse response will be close to the Gaussian pulse shape.
The vector q is nonnegative for H ≥ 1/2, giving in the small h limit a Gaussian pulse,
as in the bottom plot. For H < 1/2 the sequence q is partly negative. In the top plot
we used a value for the Hurst exponent that is slightly smaller than the Brownian
case, H = 0.4, and the pulse shape is close to the Gaussian shape. Note that, since
the pulses are plotted at depth ∝ h1−2H , we have to go shallower and shallower in the
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Fig. 2. The impulse response of the fractal medium plotted at a depth that scales with the inner
scale h as h1−2H . The horizontal axis is scaled by h. In this frame we see stabilization to a fixed
pulse in the small h limit. This limit is approximately a Gaussian pulse shape. In the top plot
H = .4, and in the bottom H = .6. The medium model is the one defined in (9). The solid, dashed,
and dotted lines correspond to h0 = 2−12, h1 = 2−14, and h2 = 2−16, respectively. The crosses
give the theoretical pulse shapes.

case H < 1/2 to see the stabilized pulse. This corresponds to an antipersistent fBm
and to rough medium variations. In the persistent case with H > 1/2 and a smoother
medium we have to go deeper and deeper into the medium to see the stabilized pulse.
Only in the pure Brownian case with H = 1/2 do we observe the pulse stabilization
at a fixed depth.

Next, we illustrate Lemmas 4.1 and 4.2 using the medium model (9). In Figure
3 we plot the same impulse responses as in Figure 2, only evaluated at the fixed
depth L = 1. As expected, in the small h limit the impulse response in the case
H = .4 < 1/2 (top plot) approaches a stabilized Gaussian pulse shape. Note that
the impulse responses are plotted relative to the scale h2H = h.8. This is the scale
at which the pulse shape stabilizes in the small h limit. The crosses give the limiting
pulse shape and conform closely with the numerical simulations. The bottom plot
shows the transmitted impulses when H = .6 > 1/2. Then the impulse response
becomes close to a unit impulse for small h. The figure shows that the numerical
impulse responses approach, albeit slowly, the unit impulse as h is reduced.

In Figure 4 we show how the impulse response depends rather sensitively on the
value of the Hurst exponent H that gives the roughness of the medium. We use
h = 2−16, L = 1, σ = 1, and the model defined in (9). The solid curve corresponds
to the Kolmogorov scaling law with H = 1/3. The dotted and dashed lines corre-
spond, respectively, to a 20% increase/decrease in the Hurst exponent, giving less
(respectively, more) spreading of the pulse.

6.2. The fractal case. Next, we let ζhk be defined by the medium model in (12).
Observe therefore that the medium fluctuations are strong and O(1), in contrast to
the models considered above, where they were small. However, we will find that the
interaction with the medium fluctuations can be characterized in a way similar to
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Fig. 3. The impulse response of the fractal medium plotted at a fixed depth. The horizontal
axis is scaled by h2H . The top plot illustrates stabilization to a Gaussian pulse on the relative scale
h2H = h.8, the bottom stabilization to the unit impulse. As above, in the top plot H = .4, and in
the bottom H = .6. The medium model is the one defined in (9). The solid, dashed, and dotted lines
correspond to h0 = 2−12, h1 = 2−14, andh2 = 2−16, respectively. The crosses give the theoretical
pulse shapes corresponding to the smallest h value.
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Fig. 4. The impulse response of the fractal medium plotted at a fixed depth. It illustrates how
the pulse shaping depends on the value of the Hurst exponent H that gives the roughness of the
medium. The solid line corresponds to H = 1/3, and the dotted and dashed lines to a 20% increase
(respectively, decrease). The medium model is the one defined in (9).

that above. The following lemma can be shown by a generalization of the analysis
that leads to Lemma 6.1.

Lemma 6.2. Let ζhk be defined by (12) and 1/4 < H < 3/4; then

lim
h→0

E


[s/g(h)h]∑

m=1

rhmr
h
m+∆


 = sa(∆),(39)

V ar


[s/g(h)h]∑

m=1

rhmr
h
m+∆


 ≤ g(h)hsσ4C(H) for h ≤ h0,(40)
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Fig. 5. The figure corresponds to Figure 2 except that medium model (12) rather than (9) is
used. The figure shows the impulse response of the fractal medium plotted at a depth that scales with
the inner scale h as h1−2H , and the horizontal axis is scaled by h. In this frame we see stabilization
to a fixed pulse in the small h limit. In the top plot H = .4, and in the bottom H = .6. The solid,
dashed, and dotted lines correspond to h0 = 2−12, h1 = 2−14, and h2 = 2−16, respectively.

with g(h) = h2H−1 and for ∆ ≥ 1

a(∆) = σ2∆2H−2 δ21/∆[x
2H ]x=1/8(41)

∼ ∆2H−2 σ2H(H − 1/2)/2 as ∆ → ∞.

Note that now the impedance is defined in terms of the fBm process itself rather
than fBm noise, and that the a(·) coefficients thus are defined in terms of a second
rather than fourth order difference operator. We show below that this has a strong
effect on the impulse response. Lemma 6.2 entails that the condition (27) in Theorem
5.1 again is satisfied with g(h) = h2H−1. Thus, in probability, the transmitted impulse
response when evaluated at depth L̃ = Lh1−2H satisfies (38), where Ā is a lower
triangular Toeplitz matrix whose first column is a′ = [a(0)/2, a(1), a(2), . . .], with
a(·) now defined by (41).

Figure 5 corresponds to Figure 2 except that we used the model (12) with σ = 1.
The impulse response is again plotted relative to the scale h and at depth

x̄(hi) =

(
hi
h0

)1−2H

.

Again we observe stabilization in this frame. The solid, dashed, and dotted lines
correspond to h0 = 2−12, h1 = 2−14, and h2 = 2−16, respectively. In the top plot
H = .4, and in the bottom plot H = .6. The transformation of the pulse shape is
weaker than above due to the smoother medium fluctuations. The crosses give the
theoretical pulse shapes, and these conform closely with the numerical simulations
for small h. In this case with a fractal medium the correlations decay more slowly
than for the medium discussed in the previous section, as can be seen from (37) and
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(41). The second moment associated with the discrete distribution q, defined as the
first column of Q in (34), is now unbounded, and the central limit theorem is not
valid for this distribution. Thus, the pulse shape does not approach the Gaussian
shape as it did above. Due to the long-range interactions in the medium fluctuations,
the scattered wave energy is now spread far out and the coherent part of the pulse
reduced in amplitude but not much in its shape.

Appendix A. Magnitude of medium fluctuations. We prove Lemma 5.2
stated in section 5. This lemma shows that the condition (27) entails that in the small
h limit the interface reflection coefficients are small.

First, observe that the condition (27) allows us, for any given ε > 0, to choose h0

so small that for h < h0

P


 sup

0<s<L

∣∣∣∣∣∣
[s/(g(h)h)]∑

m=1

|rhm(ω)|2 −
∫ s

0

a(0, v/g(h), h) dv

∣∣∣∣∣∣ > ε2/4


 < ε

2
.(42)

Now let {hj} be a sequence such that limj→∞ hj = 0. Denote the associated

array of interface reflection coefficients rh
j

i (ω), 1 < i < N j , with

N j = [L/(g(hj)hj)].

Assume that Lemma 5.2 is false. Then there is a subsequence {hj} of the above kind,
a fixed ε > 0, and a sequence of collections of disjoint sets {Fj

i }Nj

i=1 so that

P

[⋃
i

Fj
i

]
=

Nj∑
i=1

P[Fj
i ] > ε,

with

|rhj

i (ω)| > ε for ω ∈ Fj
i .(43)

We next show that this leads to a contradiction. Define

f(s; j) := Shj (s, 0) =

[s/(g(hj)hj)]∑
m=1

|rhj

m (ω)|2 −
∫ s

0

a(0, v/g(hj), hj) dv.

Note that f(s; j) has a jump discontinuity at

s(i;j) := ig(hj)hj ,

that is,

f(s+(i;j); j)− f(s−(i;j); j) = |rhj

i (ω)|2.

For 1 ≤ i ≤ N j we therefore find

sup
0<s<L

∣∣∣∣∣∣
[s/g(hj)hj ]∑

m=1

|rhj

m (ω)|2 −
∫ s

0

a(0, v/g(hj), hj) dv

∣∣∣∣∣∣ = sup
0<s<L

|f(s; j)|

≥
|f(s+(i;j); j)− f(s−(i;j); j)|

2
=

|rhj

i (ω)|2
2

,
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and for ω ∈ Fj
i it follows that

sup
0<s<L

∣∣∣∣∣∣
[s/g(hj)hj ]∑

m=1

|rhj

m (ω)|2 −
∫ s

0

a(0, v/g(hj), hj) dv

∣∣∣∣∣∣ >
ε2

2
.(44)

We can thus conclude that

P


 sup

0<s<L

∣∣∣∣∣∣
[s/g(hj)hj ]∑

m=1

|rhj

m |2 −
∫ s

0

a(0, v/g(hj), hj) dv

∣∣∣∣∣∣ > ε2

4


 ≥

Nj∑
i=1

P[Fj
i ] > ε,

contradicting (42).

Appendix B. A stabilization criterion. In this appendix we prove Lemma
5.3 stated in section 5. To prove Lemma 5.3 we need to show that (33) implies that
for ε > 0 and δ > 0 there is an h0 such that for h < h0

P

[
sup

0<s<L
|Sh(s,∆)| ≥ ε

]
≤ δ,(45)

with Sh defined by (32):

Sh(s,∆) =

[s/(g(h)h)]∑
m=1

rhmr
h
m+∆ −

∫ s

0

a(∆, v/g(h), h) dv.(46)

Observe first that we can choose h̄ so small that for h < h̄

g(h)h sup
(∆,v,h)

a(∆, v, h) <
ε

2
(47)

since |a| is bounded and g(h)h = o(1). From (46) it follows that for h < h̄ and i
integer

P

[
sup

0<s<L
|Sh(s,∆)| ≥ ε

]
≤ P

[
sup

0≤i≤[L/(g(h)h)]

|Sh(ig(h)h,∆)| ≥ ε

2

]
.

Therefore, to show (45) we need to show that for h small enough:

P

[
sup

0≤i≤[L/(g(h)h)]

|Sh(ig(h)h,∆)| ≥ ε

2

]
≤ δ.(48)

In the rest of this section we suppress the dependence on ∆.
The result (48) follows from two bounds that we will derive below from (33). For

i and j integers we have the following two bounds. First,

2L

∆̄
sup

0≤i≤[L/∆̄]

P

[
sup

0≤j≤[∆̄/(g(h)h)]

|Sh(i∆̄ + jg(h)h)− Sh(i∆̄)| ≥ ε

4

]
≤ δ

2
(49)

for

∆̄ = min

[
(δ/2)(ε/4)α

2LC
,L

]
,(50)
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with the quantities involved being defined as in Lemma 5.3. Second,

P

[
sup

0≤i≤[L/∆̄]

|Sh(i∆̄)| ≥ ε

4

]
≤ δ

2
(51)

for

h ≤ H
[
∆̄(δ/2)(ε/4)α

L(L+ ∆̄)C

]
,(52)

with

H(v) =

{ ∞ if suph(g(h)h) < v,
infh | [g(h)h > v] else.

From (49) and (51) we can conclude that (48) is indeed satisfied for ε small if

h ≤ H
[
(δ/2)2(ε/4)2α

4L3C2

]
,

and ∆̄ is chosen as in (50) because then

P

[
sup

0≤i≤[L/(g(h)h)]

|Sh(ig(h)h)| ≥ ε

2

]

≤
[L/∆̄]∑
i=0

P

[
sup

0≤j≤[∆̄/(g(h)h)]

|Sh(i∆̄ + jg(h)h)− Sh(i∆̄)| ≥ ε

4

]

+ P

[
sup

0≤i≤[L/∆̄]

|Sh(i∆̄)| ≥ ε

4

]

≤ 2L

∆̄
sup

0≤i≤[L/∆̄]

P

[
sup

0≤j≤[∆̄/(g(h)h)]

|Sh(i∆̄ + jg(h)h)− Sh(i∆̄)| ≥ ε

4

]
+
δ

2
≤ δ.

We now show (49). Define first the event

A(j; i) =
[
|Sh(i∆̄ + jg(h)h)− Sh(i∆̄)| ≥ ε

4

]
.

Observe that then

P

[
sup

0≤j≤[∆̄/(g(h)h)]

|Sh(i∆̄ + jg(h)h)− Sh(i∆̄)| ≥ ε

4

]

= P


[∆̄/(g(h)h)]⋃

j=1

A(j; i)


 ≤

[∆̄/(g(h)h)]∑
j=1

P[A(j; i)].

Using Chebyshev’s inequality and (33), we find

P[A(j; i)] ≤ E[|Sh(i∆̄ + jg(h)h)− Sh(i∆̄)|α]
(ε/4)α

≤ Cj(g(h)h)2

(ε/4)α
.
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Therefore, we can conclude

P

[
sup

0≤j≤[∆̄/(g(h)h)]

|Sh(i∆̄ + jg(h)h)− Sh(i∆̄)| ≥ ε

4

]

≤ ∆̄

g(h)h
sup

1≤j≤[∆̄/(g(h)h)]

P[A(j; i)] ≤ ∆̄

g(h)h

C∆̄g(h)h

(ε/4)α
=

C∆̄2

(ε/4)α
.

Thus, (49) is satisfied for ∆̄ given as in (50).
Consider next showing (51). Note that

P

[
sup

0≤i≤[L/∆̄]

|Sh(i∆̄)| ≥ ε

4

]
≤
[
L

∆̄
+ 1

]
sup

0≤i≤[L/∆̄]

E[|Sh(i∆̄)|α]
(ε/4)α

≤
[
L

∆̄
+ 1

]
CLg(h)h

(ε/4)α
.

Thus, (51) is satisfied if

(L+ ∆̄)LCg(h)h

∆̄(ε/4)α
≤ δ

2

or

g(h)h ≤
[
∆̄(δ/2)(ε/4)α

L(L+ ∆̄)C

]
,

which gives (52).

Appendix C. Stabilization. We prove Theorem 5.1 given in section 5. Let Xh
i

satisfy

Xh
i+1 = (I−Ah

i ) X
h
i ,(53)

Xh
0 = I,

with Ah
i defined in (23) and X ∈ R

[K]×[K]. We show for all ε > 0

lim
h→0

P

[
sup

0<s<L
||Xh

[s/(g(h)h)] −X(s)|| > ε

]
= 0,(54)

where

dX(s)

ds
= −A(s, h) X(s),(55)

X(0) = I,

and A is a lower triangular Toeplitz matrix whose first column is

[a(0, s/g(h), h), a(1, s/g(h), h), . . . , a(K, s/g(h), h)]′

and with the function a being defined as in (25).
In order to show (54) we introduce a continuous version of Xh

i . Let X
h(s) satisfy

dXh(s)

ds
= −Ah(s) Xh(s),

Xh(0) = I,
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with

Ah(s) = − 1

g(h)h
ln(I−Ah

i ) for (i− 1)g(h)h ≤ s ≤ ig(h)h;

then Xh(ig(h)h) = Xh
i . (Note that, in view of Lemma 5.2, we can truncate the

elements of A.)
Next, define the residual

X̃h(s) = Xh(s)−X(s).

Making use of an integrating factor and that

dX−1(s)

ds
= X−1(s)A(s, h),(56)

X−1(0) = I,

we find

X̃h(s) = −
∫ s

0

Ãh(v) dv Xh(s)−
∫ s

0

X(s) X−1(v)

∫ v

0

Ãh(v′) dv′ Ah(v) Xh(v) dv

+

∫ s

0

X(s) X−1(v) A(v, h)
∫ v

0

Ãh(v′) dv′ Xh(v) dv(57)

with

Ãh(v) = Ah(v)−A(v, h).
From (31) it follows that for all ε > 0

lim
h→0

P

[
sup

1≤i≤[L/(g(h)h)]

||Ah
i || > ε

]
= 0.(58)

Moreover, from (27) it follows that for all ε > 0

lim
h→0

P


[s/(g(h)h)]∑

i=1

|Ah
i (k, l)| − 2

∫ s

0

a(0, s/g(h), h)ds > ε


 = 0,(59)

with Ah
i (k, l) being the elements of the matrix Ah

i . Given a c1 > 0, we find using
(58) that there exists c2 > 0 such that for all δ > 0 there exists h0 > 0 so that

P

[∫ s

0

||Ah(v)||dv > c1

]
≤ P


[s/(g(h)h)]∑

i=1

||Ah
i ||+ c2 sup

j
||Ah

j ||||Ah
i || > c1


+ δ

for h ≤ h0. Therefore, using (58), we find that there exists c1 > 0 such that

lim
h→0

P

[∫ s

0

||Ah(v)||dv > c1

]
= 0.(60)

Note also that for some c3 > 0 ∫ s

0

||A(v, h)||dv < c3(61)
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since the coefficients a are bounded. In view of (55), (56), and (61), we find c4 > 0
such that

max{||X−1||, ||X||} < c4,(62)

and from (60) that there exists c5 > 0 so that

lim
h→0

P

[
sup

0≤s≤t
||Xh(s)|| > c5

]
= 0.(63)

We find using (58) that there exists c6 > 0 such that for all δ > 0 there exists h2 > 0
so that

P

[
sup

0≤s≤L

∥∥∥∥
∫ s

0

Ah(v)−A(v, h)dv
∥∥∥∥ > ε

]

≤ P


 sup

0≤s≤L

∥∥∥∥∥∥
[s/(g(h)h)]∑

i=1

Ah
i +B sup

1≤i≤[L/(g(h)h)]

||Ah
i || −

∫ s

0

A(v, h)dv
∥∥∥∥∥∥ > ε


+ δ

for h ≤ h2 with ||B|| < c6. The bound in (27) then gives

lim
h→0

P

[
sup

0≤s≤L

∥∥∥∥
∫ s

0

Ah(v)−A(v, h)dv
∥∥∥∥ > ε

]
= 0.(64)

From (57) and the above it then follows that

lim
h→0

P

[
sup

0≤s≤L
||X̃h(s)|| > ε

]
= 0,

and we have shown (54). Recall that

dNs+k
k = DNs+k

k Πhs

with Ns = [s/(g(h)h)] and

Πhs =

[s/(g(h)h)]∏
m=1

τhm.

Finally, by using Lemma E.1, which gives the magnitude of Πhs , and the result of
section D, which bounds the relative magnitude of the reflected mode, we obtain
Theorem 5.1.

Appendix D. The reflected mode. In (5) we decompose the wavefield in
terms of up- and a down-propagating wave components. Note that if the wave enters
a homogeneous section with ζ(x) = ζ̄ for x > L, then trivially the reflected wave
component U vanishes for x > L, and the wave field is given in terms of the down-
propagating wave component only. As we now show, the reflected wave component
will be small in general.

Note first that from (21) it follows

U i+1
2j =

j∑
n=0

rhi+1−2(j−n)

n∏
k=1

τhi−1−2(j−k) D
i−n
2(j−n),(65)
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where

0∏
k=1

:= 1.

We parameterize the vector of wave components at the front by

D̃i
j = [Di−j

0 , Di−j+1
2 , . . . , Di

2j ]
′.

Observe that

n∏
k=1

τhi−1−2(j−k) ≤ 1.

Let i ∈ {0, . . . , [L/(g(h)h)]}; then we find

U i+1
2j ≤

{
sup

i+1−2j≤k≤i+1
|rhk |
}

||D̃i
j ||.

From (19) and (21) we get the uniform bound

|Di
j | ≤ 1.(66)

Thus, in view of (31), we find that for all ε > 0 and j ∈ {0, . . . ,K}

lim
h→0

P

[
sup

1≤i≤[L/(g(h)h)]

|U i2j | > ε

]
= 0

and that (29) is satisfied.

Appendix E. A bound on transmission. We show how the magnitude of the
solution of (23) can be bounded. Recall that

dNs+k
k = DNs+k

k Πhs ,

with Ns = [s/(g(h)h)]. Thus, in view of (66), we need to characterize the magnitude
of Πhs .

Lemma E.1. The condition (27) implies that for all ε > 0

lim
h→0

P

[
sup

0<s<L

∣∣∣∣ln(Πhs ) +
∫ s

0

a(0, v/g(h), h) dv/2

∣∣∣∣ > ε

]
= 0,(67)

with

Πhs =

[s/(g(h)h)]∏
m=1

τhm =

[s/(g(h)h)]∏
m=1

√
1− |rhm|2.(68)

Proof. Note first that we can write

ln
√
1− |rhm|2 = −|rhm|2(1 + vhm)

2
,
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with

|vhm| ≤ |rhm|2(69)

if rhm < 1/2. Observe next

P

[
sup

0<s<L

∣∣∣∣ln(Πhs ) +
∫ s

0

a(0, v/g(h), h) dv/2

∣∣∣∣ > ε

]

≤ P


 sup

0<s<L

1

2

∣∣∣∣∣∣
[s/(g(h)h)]∑

m=1

|rhm|2 −
∫ s

0

a(0, v/g(h), h) dv

∣∣∣∣∣∣+ 1

2
sup
m

|vhm|
[s/(g(h)h)]∑

m=1

|rhm|2 > ε


 .

Let δ > 0 be given; then from (27), (31), and (69) it follows that we can choose h0 > 0
such that for h ≤ h0

P


 sup

0<s<L

1

2


supm |vhm|

[s/(g(h)h)]∑
m=1

|rhm|2

 >

ε

2


 < δ

2
.

Therefore, for h ≤ h0

P

[
sup

0<s<L

∣∣∣∣ln(Πhs ) +
∫ s

0

a(0, v/g(h), h) dv/2

∣∣∣∣ > ε

]

≤ δ

2
+ P


 sup

0<s<L

1

2

∣∣∣∣∣∣
[s/(g(h)h)]∑

m=1

|rhm|2 −
∫ s

0

a(0, v/g(h), h) dv

∣∣∣∣∣∣ > ε

2


 .

The result (67) then follows from (27).

Appendix F. Limiting pulse shape and the central limit theorem. Recall
that in the small h limit the impulse response of the random medium is characterized
by the solution of (25). The matrix Ā in (25) is lower triangular and Toeplitz, and
we find

D(T, h) = exp

(
−
∫ T

0

Ā(s, h) ds

)
e1

= exp(−λ(T, h)) exp(λ(T, h)Q(T, h)) e1

using a parameterization analogous to the one in section 5.3. Note that Q is a strictly

lower triangular Toeplitz matrix and λ(T, h) =
∫ T
0
Ā(s, h)(1,1) ds, where Ā(s, h)(1,1)

is the main diagonal entry of the matrix Ā(s, h). For some important random media
models the first column of the matrix Q (denote it q) has nonnegative entries and
defines a discrete density supported on the nonnegative integers. This is the case if,
for instance, the random medium is Markovian. We want to characterize D:

D = D(λ) = exp(−λ) exp(λQ(λ)) e1 =

∞∑
k=0

exp(−λ) λ
k

k!
qk∗λ(70)

in the limit of large λ = λ(T, h) =
∫ T
0
A(s, h)(1,1) ds, corresponding to large travel

time depths. Note that in (70) we made use of the fact that multiplication with
Q corresponds to a discrete convolution. This formulation shows that if indeed qλ
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defines a discrete distribution, then we can regard D as the distribution of a random
sum supported on the nonnegative integers. It follows that the pulse has constant
area as it travels. By the formulas for the moments of a random sum (see [11]), we find
that then the mean of D is λm(λ) and the variance λ(v(λ) +m(λ)2) when m(λ) and
v(λ) are respectively the mean and variance associated with qλ. The next theorem
shows that the normalized random sum converges in distribution to the standard
normal; hence, the wave pulse attains the Gaussian shape as it penetrates deep into
the medium.

Lemma F.1. Let qλ define a discrete distribution with mean m(λ) ≤ m and
variance 0 < v ≤ v(λ) ≤ v, and let Sλ be distributed as a random sum according to

∞∑
k=0

pλkq
k∗
λ ,

with pλk = exp(−λ)λk/k!. Then, in the large λ limit,

Xλ =
Sλ − λm(λ)√
λ(v(λ) +m(λ)2)

(71)

converges in distribution to a standardized zero mean normal random variable.
Proof. Let

exp(im(λ)t)φλ(t)

be the characteristic function of qλ. The characteristic function of Sλ/
√
λ is then

exp{−λ+ λ[exp(im(λ)t/
√
λ) φλ(t/

√
λ)]}

= exp

{
−λ+ λ

[
1 + i

m(λ)t√
λ

− v(λ)t2

2λ
− m(λ)2t2

2λ

]
+ o(1)

}
for λ large. Thus, the characteristic function associated with Xλ defined in (71) is

exp

(−t2
2

+ o(1)

)
in the λ large limit. Hence, Lemma F.1 follows in view of Theorem 26.3 in [2].

Note also that the distribution of Sλ/
√
λ can be approximated by the distribution

of a random sum of Gaussian random variables. The following lemma gives this
characterization of Sλ.

Lemma F.2. Let pλk , qλ, and Sλ be defined as in Lemma F.1. Let EX denote

expectation with respect to the distribution of Xλ = Sλ/
√
λ, and Eg denote expectation

with respect to the distribution defined by

gλ(x) =

∞∑
k=0

pλk
η((x− µk)/σk)

σk
,(72)

where η(·) is the standard normal distribution, µk = km(λ)/
√
λ, σ2

k = kv(λ)/λ, and
m(λ) and v(λ) are defined as in Theorem F.1. Then

lim
λ→∞

(Eg[u]− EX [u]) = 0(73)

for every bounded continuous function u.



1788 KNUT SØLNA

REFERENCES

[1] M. Asch, W. Kohler, G. Papanicolaou, M. Postel, and B. White, Frequency content of
randomly scattered signals, SIAM Rev., 33 (1991), pp. 519–625.

[2] P. Billingsley, Probability and measure, John Wiley & Sons, New York, 1986.
[3] K.P. Bube and R. Burridge, The one-dimensional inverse problem of reflection seismology,

SIAM Rev., 25 (1983), pp. 497–559.
[4] S.A. Bulgakov, V.V. Konotop, and L. Vazquez,Wave interaction with a random fat fractal:

Dimension of the reflection coefficient, Waves Random Media, 5 (1995), pp. 9–18.
[5] R. Burridge, P. Lewicki, and G.C. Papanicolaou, Pulse stabilization in a strongly hetero-

geneous layered medium, Wave Motion, 20 (1994), pp. 177–195.
[6] R. Burridge, G.C. Papanicolaou, and B.S. White, One dimensional wave propagation in

a highly discontinuous medium, Wave Motion, 10 (1988), pp. 19–44.
[7] J. Chillan and J.P. Fouque, Pressure fields generated by acoustical pulses propagating in

randomly layered media, SIAM J. Appl. Math., 58 (1998), pp. 1532–1546.
[8] J.F. Clouet and J.P. Fouque, Spreading of a pulse traveling in random media, Ann. Appl.

Probab., 4 (1994), pp. 1083–1097.
[9] D.J. Crossley and O.G. Jensen, Fractal velocity models in refraction seismology, Pure Appl.

Geophys., 131 (1989), pp. 61–76.
[10] J. Feder, Fractals, Plenum Press, New York, 1988.
[11] W. Feller, An Introduction to Probability Theory and Its Applications, John Wiley & Sons,

New York, 1971.
[12] J.P. Fouque and K. Sølna, Time-reversal aperture enhancement, SIAM J. Appl. Math,

(2003), to appear.
[13] F. Herrmann, A Scaling Medium Representation, A Discussion on Well-Logs, Fractals and

Waves, Ph.D. thesis, Delft University of Technology, Delft, The Netherlands, 1997.
[14] T.A. Hewett, Modeling reservoir heterogeneities with fractals, Proceedings of the 4th Interna-

tional Geostatistics Congress, J. European Union of Geosciences, Terra Abstracts, Suppl.
3, (1992).

[15] W. Kohler, G. Papanicolaou, and B. White, Reflection and transmission of acoustic waves
by a locally layered slab, in Diffuse Waves in Complex Media, J.-P. Fouque, ed., Math and
Physical Sciences Series 531, Kluwer, Dordrecht, The Netherlands, 1999, pp. 347–382.

[16] P. Lewicki, R. Burridge, and M.V. de Hoop, Beyond effective medium theory: Pulse sta-
bilization for multimode wave propagation in high-contrast layered media., SIAM J. Appl.
Math., 56 (1996), pp. 256–276.

[17] V.V. Konotop, Z. Fei, and L. Vazquez, Wave interaction with a fractal layer, Phys. Rev. E,
48 (1993), pp. 4044–4048.

[18] B.B. Mandelbrot and J.W. Van Ness, Fractional Brownian motions, fractional noises and
applications, SIAM Rev., 10 (1968), pp. 422–437.

[19] R.F. O’Doherty and N.A. Anstey, Reflections on amplitudes, Geophys. Prospecting, 19
(1971), pp. 430–458.

[20] G. Papanicolaou and K. Sølna, Wavelet based estimation of Kolmogorov turbulence, in
Long-Range Dependence: Theory and Applications, P. Doukhan, G. Oppenheim, and M.S.
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ORTHONORMAL POLYNOMIAL WAVELETS ON THE INTERVAL
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Abstract. The paper presents an orthogonal wavelet basis for the interval using a linear combi-
nation of Legendre polynomials. Expansion coefficients are taken as appropriate roots of the Cheby-
shev polynomials of the second kind. The new transform is first applied to analytical data, and
appropriate definitions of a scalogram are presented. The transform is then extended to the multidi-
mensional case, finding the tensor-product construction more appropriate than the multiresolution.
The new method offers the possibility to determine meaningful spectra for signals on bounded do-
mains which are constructed in a global and in a local fashion. Analyses of one- and two-dimensional
data from a direct numerical simulation of turbulent channel flow are presented and demonstrate the
potential of the method.
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1. Introduction. Since their advent in the 1980s, wavelets have been put to use
in many different scientific areas. Applications to turbulent flows have been amongst
the first and are comprehensively reviewed in [10]. Recent activity in this area includes
analysis of the flow field in space by means of either continuous or discrete transforms
[3, 26], data compression using orthogonal schemes [28], and the discretization of the
governing Navier–Stokes equations in terms of wavelet functions [13]. Here, we are
concerned with the first of these tasks: data analysis. This is motivated by the need
for an improved understanding of local nonlinear transfer of turbulent kinetic energy
in scale space.

While wavelet analysis has proven to be a valuable tool for investigating spatially
homogeneous configurations, i.e., flow in periodic domains [3, 26, 7, 22], there are
only very few publications dealing with bounded flows. One such example is reference
[9], where, however, only planes parallel to the nonhomogeneous spatial direction are
investigated. We believe that this situation is at least partially due to the lack of
wavelet functions specifically designed for use on bounded intervals which are fully
appropriate for the analysis. A proposal for such a construction is made in the present
paper.

Fischer and Prestin [11] have developed a general method for constructing wavelet
bases on the interval, starting from a set of orthogonal polynomials and making use
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of their reproducing kernel property. However, these authors present only one spe-
cific basis—constructed from Chebyshev polynomials of the second kind—which is
orthogonal. These wavelets are related to a scalar product weighted by the function
w(x) = (1−x2)1/2, and orthogonality is obtained with respect to this weighted prod-
uct. For the purpose of data analysis, any weight other than unity is undesirable since
the interpretation of coefficient values with respect to their energy contribution turns
out to be nonintuitive. Prestin (in a private communication) proposed a modification
to the original construction in which a “hybrid” basis would instead be built from
a combination of Chebyshev and Legendre polynomials, thereby carrying over the
orthogonality of the original pure Chebyshev basis to a weight function of unity.

In the present paper we first discuss the specific requirements a wavelet basis
should fulfill in order to be useful for the purpose of analysis of turbulent flows. This
is followed by a concise overview of related constructions developed in the literature.
The new construction is presented in section 3 and applied to different types of ana-
lytical signals. This leads to important issues, such as the visual presentation of the
coefficients (scalogram) and the study of the local power spectral density, for which
we propose appropriate definitions in section 4. In a further step, the construction
is extended to the multidimensional case (section 5). Applications of the method to
data from turbulent plane channel flow in section 6 give an impression of its potential
for the analysis of nonperiodic turbulent data.

2. Requirements and previous constructions.

2.1. Requirements. The term wavelet is often used in a very broad sense and
can designate functions used in quite different multiscale methods. Features of such
schemes are (i) a certain number of vanishing moments reflected by an oscillatory
nature of the functions; (ii) localization in space; (iii) translational invariance; (iv)
localization in frequency; (v) a rescaling mechanism. In practice, some of these prop-
erties are often watered down due to practical constraints. Since compromises need
to be made it is important to fix desired properties a priori according to the needs
of a target application. This issue is briefly discussed in the following, considering
for notational ease the one-dimensional case. The term frequency will be used when
referring to a Fourier basis while the term scale is employed in a more general sense.

Two- and three-dimensional data sets from turbulent flows tend to be extremely
large. A redundant representation of these data can increase their size consider-
ably and pose problems of computation time and storage requirements. A discrete,
nonredundant representation therefore seems indispensable [26], and the continuous
transform will not be considered in the present context.

The long-range goal of our research is the investigation of energy transfer mech-
anisms in turbulent flows. One approach to perform this is to represent a turbulent
signal f(x) ∈ L2(Ω), where Ω is the spatial domain, through an orthonormal set of
basis functions βλ(x) ∈ L2(Ω), viz.

f(x) =
∑
λ

aλ βλ(x).(1)

The orthonormality property then allows us to decompose the energy E into contri-
butions related to each basis function as

E =
1

| Ω |
∫

Ω

f2(x) dx =
∑
λ

a2λ.(2)
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In mathematical terms, the L2 norm of f is represented by the expansion coefficients
with respect to the basis βλ, according to the Plancherel identity. The scalar product
generating this norm is denoted 〈·, ·〉. In the next step, the representation (1) can
be inserted into the governing Navier–Stokes equations to obtain equations for the
evolution of the coefficients aλ and hence equations for the energy transfer [26].

Turbulent flows exhibit motions over a wide range of scales. If the basis functions
βλ are not very smooth, they contain high-frequency contributions and are not well
localized in the upper frequency range. On the other end of the spectrum, the number
of vanishing moments determines the localization in the low-frequency range. If the
number of these vanishing moments is insufficient, this can yield a decay of the wavelet
spectrum which differs significantly from that of the analogous Fourier spectrum,
which is an undesirable feature [30].

For the physical interpretation of the transform (1) and quantities derived from
it, a pronounced asymmetry of the basis functions also is undesirable. Daubechies’
wavelets, e.g., which have compact support, exhibit such an asymmetry. It can be
alleviated to some extent, but compact support and symmetry exclude each other if
orthogonality is required [5], except for the Haar basis, which is not smooth.

To sum up, we require vanishing moments, orthonormality, smoothness, and some
sort of translational invariance and symmetry for the wavelets to be employed. The
last two notions have to be relaxed for a basis on the interval as discussed below.
Multiresolution algorithms often yield fast numerical schemes due to recursions over
the refinement level. This last issue will be disregarded in the present paper and
postponed to later work.

Finally, it should be stressed that a nonperiodic transform of turbulent data is
important for signals in space rather than in time. The latter can always be made very
long—provided the flow is statistically stationary—such that end effects are removed
by an appropriate windowing. Signals in space, on the other hand, are often limited by
the geometry of the flow. Moreover, physically interesting features frequently develop
in direct proximity of the boundaries. A prototype case is the turbulent plane channel
considered below.

2.2. Real line and periodic case. For later reference we recall some construc-
tions for the real line. Here, it is convenient to work in Fourier space defined by the
Fourier transform

f̂(ω) =

∫
f(x) e−2πixωdx.(3)

The trigonometric functions are not localized in space and are maximally localized
in frequency. In order to design basis functions with localization in space, as well as
frequency, localization in frequency is sacrificed to some extent by lumping together
basis functions with neighboring frequencies. In the following we denote a wavelet by
ψ and a scaling function by ϕ, using j and i as scale and shift indices, respectively.
In the classical case this leads to a dyadic set of wavelet functions with

ψji = 2j/2 ψ(2jx− i),(4)

and analogously for ϕji. The Shannon wavelet, also termed the Littlewood–Paley
basis, [5] is obtained by selecting only frequencies in the band ω ∈ [1/2, 1]:

ψ̂S(ω) =

{
1 if | ω |∈ [ 12 , 1],
0 else.

(5)
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Fourier theory immediately yields the asymptotic decay rate of ψ ∝ 1/x in space.
Better decay is possible only with higher smoothness in frequency space. Meyer
wavelets are constructed by an ingenious incorporation of neighboring decades using
a blending function

ψ̂M (ω) =



e−iωx S(3 | ω | −1) if | ω |∈ [ 13 ,

2
3 ],

e−iωx S(2 − 3
2 | ω |) if | ω |∈ [ 23 ,

4
3 ],

0 else,

(6)

where S is a cosine-based smooth function with S(0) = 0, S(1) = 1, and S2(t)+S2(1−
t) = 1 for t ∈ [0; 1] [5]. The smoother the blending function, the faster the asymptotic
decay of the wavelets in space. It is polynomial for this family if S is not in C∞. Other
constructions such as spline wavelets have noncompact support in frequency space
and decay exponentially in physical space. Wavelets on different scales are obtained
by multiplying ω by a power of two, introducing a logarithmic decomposition of the
frequency axis. But whether it is decomposed into logarithmic segments or some other
intervals, the asymptotic decay rate in physical space is unaltered if the regularity in
Fourier space is maintained.

A periodic basis, i.e., a basis on the circle T = [0, 1], can be obtained from a

wavelet basis on the real line by restricting the frequency to integer values f̂k =
f̂(ω = k), k ∈ Z. This introduces a coarsest scale represented by f̂0, i.e., the constant
function. When considering the periodic case, asymptotic decay in space refers to the
behavior in the limit j → ∞.

2.3. Orthogonal wavelets on the interval. By functions on the interval (here
I = [−1, 1] for later convenience) we understand that in contrast to the circle T no
periodicity is imposed.

Embedding the interval in a larger periodic domain or the real line by padding
with zero and using standard transforms on the larger domains usually creates arti-
facts at the boundaries of the interval due to the generation of a strong singularity.
This is very inconvenient for the analysis.

On the interval, translational invariance therefore has to be relaxed in some way.
In addition to the length scale introduced by the scale index j of the wavelet, the
distance to the nearest boundary unavoidably appears as a second length scale con-
tradicting complete shift invariance. This fact has to be reflected to some extent
by the construction, and translational invariance can therefore be realized only in
some relaxed sense. For the Daubechies wavelets adapted to the interval [4] this is
performed through modification of those translates touching the boundaries. Due to
the orthogonalization procedure, the modified functions tend to take a quite irregular
shape. Furthermore, a minimal refinement level is required to separate the regions
of modification close to both boundaries. According to the above requirements we
therefore do not use this construction for the present application.

2.4. Using the Chebyshev transform. A very elegant method to turn a pe-
riodic wavelet basis into a basis on the interval I is the mapping

x = cos θ, θ ∈ [0, π].(7)

This is the mapping relating cosines and Chebyshev polynomials through Tn(x) =
cos(nθ). In fact, if βT

λ is a basis of periodic functions on T, orthogonal with respect
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to the scalar product

〈·, ·〉T =

∫ 1

0

· · dx,(8)

the functions

βIλ(θ) = βT

λ(θ) + βT

λ(1 − θ)(9)

constitute an orthogonal basis for the weighted scalar product

〈·, ·〉w =

∫ 1

−1

· · w(x) dx(10)

with the Chebyshev weight w(x) = 1/
√

1 − x2 [19, 31]. In fact, this was already
announced and used in [24], where unfortunately the second entry of the sum in (9) was
overlooked. The transform (7), (9) allows us to map an arbitrary periodic basis onto a
basis for the interval I. Computations can then be done with the classical algorithms
(employing fast convolution by FFT for long filters) requiring only a rescaling of the
abscissa. The price, however, is the introduction of the Chebyshev weight.

For the reasons mentioned above we require a basis which is orthonormal with re-
spect to the unweighted scalar product. A naive way of achieving this is to incorporate
the weight into the basis by defining

β̃Iλ =
√
w(x)βIλ(11)

and using β̃Iλ instead of βT

λ in (1). Approximations of square-integrable functions on
I using this basis with finer and finer scale converge in an integral sense. Pointwise
convergence at the interval boundaries, however, is destroyed by the singularities of
the weight at ±1 which are introduced into the basis. This is illustrated in Figure 1,
where a very smooth function is approximated by a truncated series of such wavelets
based on periodic spline wavelets. Hence, this approach is not useful for the present
purpose.

2.5. Wavelets based on Jacobi polynomials. In [11] the authors have con-
structed wavelets based on orthogonal polynomials Pn by means of the reproducing
kernel polynomials. The construction is possible for general orthogonal polynomials,
but in the present context we take Pn to be the Jacobi polynomial of degree n defined
on the interval I = [−1, 1] and orthogonal with respect to the weighted scalar product
(10) with w(x) = wα,β(x) = (1 − x)α(1 + x)β . (The indices α, β are dropped from
now on for convenience.) The reproducing kernel polynomial is

Kn(x, y) =

n∑
k=0

Pk(x)Pk(y).(12)

Scaling functions are defined as

ϕn,i = Kn(x, y
(n+1)
i ), i = 0, . . . , n,(13)

with a suitable set of points y
(n+1)
i , e.g., the zeros of the polynomial Pn+1. Wavelets

are constructed as

ψn,i = K2n(x, y
(n)
i ) −Kn(x, y

(n)
i ), i = 0, . . . , n− 1.(14)

Based on this approach a multiresolution analysis (MRA) [25] of nested subspaces
Vj ⊂ Vj+1 with difference spaces Wj can be generated. Orthogonality of all transla-
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Fig. 1. The reconstructed signal when approximating the function u(x) = exp(−4x2) with the
modified wavelets β̃ defined in (11). Two different resolutions are used. The first employs a grid
with N = 64 points, using 3 of the computed scales for reconstruction; the second employs N = 256
points, using 6 scales for reconstruction.

tions with respect to the related scalar product (including the Jacobi weight) is not
necessarily obtained but can be investigated as described in [11]. In this reference
one example of an orthogonal basis is presented using the Chebyshev polynomials
of the second kind Un. The same construction, when applied directly to Legendre
polynomials Ln, however, does not yield an orthogonal basis.

3. New construction.

3.1. The general setting. In [11] linear combinations of orthogonal polyno-
mials Pk(x) are used for constructing scaling functions and wavelets by regrouping
low-order and high-order polynomials via

ϕji(x) =

2j∑
k=0

ajik Pk(x) ,(15a)

ψji(x) =

2j+1∑
k=2j+1

bjik Pk(x) .(15b)

For wavelets and scaling functions spanning an orthonormal basis of an MRA, these
need to fulfill the following orthogonality conditions:

〈ϕji, ϕjl〉w = δil ,(16a)

〈ψji, ψml〉w = δil δjm ,(16b)

〈ϕji, ψml〉w = 0 (m ≥ j) .(16c)
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Introducing the ansatz (15), we obtain

〈ϕji, ϕjl〉w =

2j∑
k=0

2j∑
n=0

ajikamln〈Pk, Pn〉w ,(17a)

〈ψji, ψml〉w =

2j+1∑
k=2j+1

2m+1∑
n=2m+1

bjikbmln〈Pk, Pn〉w ,(17b)

〈ϕji, ψml〉w =

2j∑
k=0

2m+1∑
n=2m+1

ajikbmln〈Pk, Pn〉w .(17c)

It is clear that due to the orthogonality of the polynomials (i.e., 〈Pk, Pn〉w = δkn)
the choice of the coefficients a, b alone determines the orthogonality properties of the
basis. Therefore, we find

〈ϕji, ϕjl〉w =

2j∑
k=0

ajik ajlk ,(18a)

〈ψji, ψml〉w = δjm

2j+1∑
k=2j+1

bjik bjlk ,(18b)

〈ϕji, ψml〉w = 0 (m ≥ j) .(18c)

(The factor δjm in relation (18b) follows from the fact that the bounds of the two sums
in (17b) need to be equal if the scalar product is to be nonzero.) As a consequence
it is possible to interchange freely the particular type of polynomial—amongst the
class of orthogonal ones—without changing the above properties. Therefore, we can
go about and modify a given basis whose a’s and b’s are such that (16) is verified
and replace the functions Pk(x) and the weight w with any other orthogonal function
and associated weight, in particular with Legendre polynomials related to the weight
w(x) = 1. The construction will now be described in detail.

3.2. Definition of the basis functions. We define wavelets and scaling func-
tions based upon Legendre polynomials Lk(x) and coefficients related to the Cheby-
shev polynomials of the second kind Uk(x) as follows:

ϕji(x) = Cϕji

2j∑
k=0

Uk(y
(2j+1)
i )

√
k + 1/2Lk(x) ,(19a)

j = 0, 1, . . . , i = 0 . . . 2j ,

ψji(x) = Cψji

2j+1∑
k=2j+1

Uk(y
(2j)
i )

√
k + 1/2Lk(x) ,(19b)

j = 0, 1, . . . , i = 0 . . . 2j−1 .

With the above index bounds these functions span the scale spaces Vj and the differ-
ence spaces Wj of an MRA. This MRA fulfills the classical requirements of [25]. The
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polynomials Lk(x) and Uk(x) on the interval x ∈ [−1, 1] can be defined by [1]:

Lk(x) =
1

2k

int(k/2)∑
l=0

(−1)l
(
k
l

)(
2k − 2l
k

)
xk−2l ,(20a)

Uk(x) =
sin((k + 1) arccos(x))

sin(arccos(x))
,(20b)

(where int(r) is the largest integer less or equal r). For an efficient computation their
three-term recursion formulae

Lk+1(x) =
2k + 1

k + 1
xLk(x) − k

k + 1
Lk−1(x) , L0(x) = 1 , L1(x) = x ,(21a)

Uk+1(x) = 2xUk(x) − Uk−1(x) , U0(x) = 1 , U1(x) = 2x(21b)

are used. The parameters y
(n)
i in equations (19) are the zeros of the nth-order Cheby-

shev polynomial of the second kind, i.e.,

y
(n)
i = − cos

(
(i+ 1)π

n+ 1

)
, i = 0 . . . n− 1.(22)

For convenience, the present numbering is different from the standard numbering in

that we have y
(n)
i < y

(n)
i+1. Equations (19) define the coefficients aijk and bijk in

(15). In [11] the orthogonality of the resulting basis with Pk = Uk in (15) is proved.
As discussed above, this property carries over to the functions defined by (19). The
factors

Cϕji =

√
2

2j + 2
sin

(
π
i+ 1

2j + 2

)
,(23a)

Cψji =

√
2

2j + 1
sin

(
π
i+ 1

2j + 1

)
(23b)

have been introduced here for the purpose of normalization in order to fulfill equations
(16) without further constants. The derivation makes use of a trigonometric identity
given in [15, p. 14].

From the presentation it is obvious that the linear approximation properties of
the wavelet functions ψji are those of the spaces Vj spanned by the Legendre polyno-
mials up to degree 2j . In particular, these polynomials constitute an unconditional
basis of L2([−1, 1]) so that any square-integrable function u(x), x ∈ [−1, 1], can be
decomposed as

u(x) = c00 ϕ00(x) + c01 ϕ01(x) +

∞∑
j=0

2j−1∑
i=0

djiψji(x),(24)

where, by orthonormality, the coefficients are obtained from

dji =

∫ 1

−1

u(x)ψji(x) dx ,(25a)

cji =

∫ 1

−1

u(x)ϕji(x) dx.(25b)
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Fig. 2. Convergence of the approximation when analyzing the function u(x) = exp(−4x2) for
x ∈ [−1; 1]. The curve shows the maximum relative error as a function of the number of basis
functions used in the reconstruction. The r.m.s. error (not shown) has a similar behavior.

Again due to orthonormality the decomposition (24) yields a corresponding decom-
position of the “energy” of the signal in terms of the coefficients∫ 1

−1

u(x)2dx = c200 + c201 +
∑
j,i

d2ji.(26)

4. Properties and definition of secondary quantities.

4.1. Implementation and convergence of the approximation. We illus-
trate the global convergence of the approximation of a function by its wavelet ex-
pansion through numerical tests with analytical signals. For this purpose, a partial
reconstruction according to (24) with j ≤ J < ∞ is performed. As a represen-
tative example, Figure 2 shows the variation of the maximum error for the signal
u(x) = exp(−4x2) when the truncation index J is increased. Spectral convergence
is observed as expected. The equivalent to Figure 1 is not shown here since at these
resolutions no difference between the exact and the approximated data can be dis-
cerned. We also note that each function ψji has at least 2j vanishing moments, a fact
resulting from the bounds of the sum in (19) and the orthogonality of the Legendre
polynomials.

At present, the scalar products (25) are evaluated by a Gauss–Lobatto quadrature,
i.e., first performing a Legendre transform of the data—sampled on a Gauss–Lobatto
grid—and then computing the linear combination of Legendre coefficients, which leads
to the respective wavelet coefficients. If data are given in terms of coefficients of
orthogonal polynomials of a different type, like Chebyshev polynomials of the first kind
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as, e.g., used in a spectral simulation, explicit conversion formulas [2] might be used.
Another means for such a conversion is spectral interpolation onto the Legendre grid
as applied in section 4.5 below. The construction of a fast recursive implementation
of the present algorithm using classical relations for orthogonal polynomials is left as
a future extension.

4.2. Localization properties. Figure 3 shows sample wavelet functions of scale
j = 5. It can be observed that they are almost translationally invariant near the
center of the interval, while they visibly increase their amplitude and frequency near
the boundary. This effect of varying shape is more vividly illustrated in Figure 4,
where the envelope of the square of several wavelet functions is shown. Particularly,
the existence of a second local maximum of the amplitude at the nearest boundary
can be observed. From the semilogarithmic plots in Figure 5 the spatial decay of the
functions around their center location can be judged. The envelopes approximately
decay like O(x−2) (cf. Figure 6) which means that the wavelets themselves decay
at a rate of 1/x. This can be understood by referring to the Littlewood–Paley basis
recalled above in section 2.2. In fact, for increasing degree, the zeros of the orthogonal
polynomials become more and more uniformly spaced in the center of the interval so
that in this region the analysis locally resembles a Fourier analysis. For functions ϕji
and ψji defined by (15) this amounts to approaching Shannon wavelets due to the
employed summation bounds. We can therefore conjecture that with nonoverlapping
summation bounds in (15) it will not be possible to improve the decay rate of these
functions. Overlapping bounds, however, would add an additional level of complexity
to the construction as this destroys the automatic interscale orthogonality which is
readily obtained with (15) due to the orthogonality of the underlying polynomials.

The decay, however, is only local. Close to the boundaries the wavelet functions
have a tendency to increase and to exhibit the “tails” mentioned above. Table 1 gives

the contribution of these tails to the energy of the wavelet, i.e., the integral
∫ +1

xtail
ψ2
jidx

with xtail being the location where the slope of the envelope reverses. This quantity
is below one percent for centrally located wavelets. For comparison, Figure 7 shows
the corresponding decay of the wavelets of Fischer and Prestin [11], which are based
upon Chebyshev polynomials of the second kind (Uk instead of Lk in (19)). In the
latter case the tails are similar and even more pronounced. This is also reflected in
the values of Table 1.

We recall that both families of wavelets are related through the basic equation (15)
inasmuch as they have common coefficients aijk, bijk and differ only in the definition
of the associated polynomial function Pk(x). These coefficients aijk are plotted in
Figure 8, where the same indices i, j as in the previous graphs have been chosen.
At the same time, the coefficients represent the Legendre spectrum of the present
wavelets. It is evident from the graphs that the exact spectral distribution of the
basis functions varies with the position index. Furthermore, the low-pass nature of
the scaling functions and the band-pass property of the wavelets is obvious.

One question which arises naturally with respect to the usefulness of the current
basis is its ability to pick up existing features of a given signal without creating
artifacts due to the particular shape of the wavelet functions near the boundary. We
will address this point in section 4.4.

4.3. Definition of a scale number. From the definition of the wavelets and
from the plots in Figure 3 it is obvious that the period of oscillation of wavelets with
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Fig. 3. Wavelet functions of scale index j = 5 computed on a grid with N = 4096 points.
Position indices are i = 16, 19, 29 (top) and i = 26, 27, 28, 29, 30 (bottom). Observe that the abscissa
of the lower plot is zoomed.
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Fig. 4. Envelope of the square of wavelet functions with scale index j = 5 (top) and j = 7
(bottom) for different center locations, i.e., computed on a grid with N = 512 points.
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Fig. 5. Semilogarithmic plot of the envelope of the square of wavelet functions with scale
index j = 5 (top) and j = 7 (bottom) in the center of the interval and close to the boundary, i.e.,
i = 15 = 6, 27 (top) and i = 64, 117 (bottom) computed on a grid with N = 512 points.

the same scale index j varies over the interval. Hence, it is important to distinguish
between the scale index j and the “physical scale.” We therefore attribute a scale
number sji to each wavelet which, at constant j, changes with the position index i.
Defining a “scale” and drawing a scalogram hence becomes a nontrivial issue. Here we
use the centers of the wavelet functions for this purpose as described in the following.
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Fig. 6. Double-logarithmic plot of the decay of the square of the wavelet functions with scale
index j = 7 and with center location in the middle of the interval. The straight line has a slope of
−2.

Table 1
Energy contained in the tails of the wavelet functions at two different levels j and various

positions i (cf. Figures 4 and 5). The “tail-location” xtail corresponds to the local minimum of the
envelope and has been determined visually using a grid with N = 1024 points. The integral has been
evaluated by a low-order quadrature. For comparison, the last two columns show the corresponding
quantities computed for the wavelets of Fischer and Prestin [11] based upon Chebyshev polynomials
of the second kind.

Legendre wavelets Chebyshev wavelets

j i xtail
∫ +1
xtail

ψ2jidx xtail
∫ +1
xtail

ψ2jidx

5 15 0.879 6.17e-3 0.933 4.40e-2
12 0.850 1.46e-2 0.933 1.17e-1
10 0.922 1.67e-2 0.933 1.59e-1
8 0.922 2.80e-2 0.962 2.03e-1
6 0.922 5.54e-2 0.996 2.15e-1
4 0.957 7.87e-2 0.996 3.31e-1

7 63 0.844 1.79e-3 0.953 1.12e-2
50 0.932 2.15e-3 0.992 2.29e-2
40 0.932 3.79e-3 0.992 3.47e-2
30 0.932 7.64e-3 0.992 5.29e-2
20 0.975 1.04e-2 0.992 8.66e-1

Recall that the zeros of the Legendre polynomials are not available in closed form.
As a consequence, the locations of the “centers” of the wavelets and scaling functions
defined here are not available in closed form but need to be determined numerically.
To be specific, by “centers” zϕji, z

ψ
ji we mean the position of the largest positive local

maximum values, excluding the boundaries of the interval, which can be obtained, e.g.,
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Fig. 7. As the second plot of Figure 5, but for the wavelet functions of [11], being based upon
Chebyshev polynomials of the second kind instead of the present Legendre polynomials.

by a fixed point iteration of the first derivative of (19). In practice, this procedure
is, however, very cumbersome and an analytic expression, even approximate, would
be preferable, particularly in view of the way of presenting information with respect
to scale as discussed below. Therefore, we propose—solely for the definition of the
“scale” of a wavelet function—to work with the roots of the Chebyshev polynomials
of the second kind. Instead of the centers zϕji, z

ψ
ji defined above we therefore use the

approximations

ẑϕji = y
(2j+1)
i ,(27a)

ẑψji = y
(2j)
i ,(27b)

with y
(n)
i given in (22). Figure 9 shows the relative difference between the two defi-

nitions zψji and ẑψji. It exhibits a minimum in the center of the interval and near the
boundaries.

For the purpose of data analysis, we associate a “physical scale” with each wavelet
function. In the classical MRA, where wavelets are translationally invariant, the scale
is simply sj = 2−jLx, with Lx being the size of the domain. Here we define the scale
number sji for the nonperiodic wavelets as follows:

sji =
Lx
2




zψji+1 + zψji
2

+ 1 if i = 0 ,

1 − z
ψ
ji + zψji−1

2
if i = 2j − 1 ,

zψji+1 − zψji−1

2
otherwise .

(28)
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Fig. 8. Semilogarithmic plot of the absolute value of the Legendre spectral coefficients (as
a function of the wavenumber k) of wavelet functions (open symbols) and scaling functions (full
symbols). Plots are displayed for scale index j = 5 and i = 4 (top), i = 15 (second), as well as for
j = 7 with i = 64 (third) and i = 117 (bottom), respectively.
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Fig. 9. The difference in the definition of the center locations (top) and the scale number
(bottom) corresponding to each wavelet ψji of the present Legendre basis: sij(ẑji) is the scale defined
by the spatial variation of the Chebyshev roots ẑji given in (28); sji(zji) is the value obtained by
numerically computing the distance between neighboring centers zji of wavelets.
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This results from partitioning the interval into subintervals bounded by the midpoints
between neighboring center locations. Consequently, it implies that

∑
i sji = Lx and

in particular that s00 = Lx. As discussed above, the quantity sji cannot be determined

analytically if the exact centers zψji are used. As a remedy we propose using, instead

of zψji, the roots of the Chebyshev polynomials ẑψji in (28) which upon substitution of
(22) yield

sji(ẑ
ψ
ji) =

Lx
2




cos

(
(2j − 1/2)π

2j + 1

)
cos

(
π/2

2j + 1

)
+ 1 if i = 0 ,

1 − cos

(
3/2π

2j + 1

)
cos

(
π/2

2j + 1

)
if i = 2j − 1 ,

sin

(
(i+ 1)π

2j + 1

)
sin

(
π

2j + 1

)
otherwise .

(29)

Figure 9 shows the resulting relative difference in scale between the definition of sji
with the exact and with the approximated centers. These differences are only appre-
ciable near the boundary, where they reach a very localized maximum of 25 percent.
In the present situation the definition of a “scale” associated with a wavelet necessar-
ily has to be somewhat arbitrary, in particular close to the boundaries. We therefore
feel that the definition (29) suits the purpose of data analysis and visualization. This
is backed by the examples below.

Based on the two definitions of the scale parameter sji two ways of presenting the
coefficients of the present transform can be constructed. They will be detailed and
illustrated by means of analytical signals in the following paragraph. In what follows,
we will then adopt definition (29).

4.4. Transform of analytical signals and coefficient scheme. Before ap-
plication to real-life signals it is instructive to study the transform itself by means
of analytical signals. We consider as a first case the transform of a periodic signal,
u(x) = sin(2π x a), with various frequencies a. This is a particular case of a signal
which can be analyzed with the present new algorithm as well as with a standard
method for periodic signals.

Let us now discuss the representation of the wavelet coefficients. In Figures 10 and
11 we compare two different ways of drawing scalograms for the same coefficient values.
In the first method, used in Figure 10, the “exact”—i.e., iteratively determined—
center locations zψji and resulting scales sji(zji) are used to define rectangular cells
Ωji in the following way:

(a1) The center of Ωji is defined by the coordinate pair (zψji,− log2(sji)).
(a2) The width of Ωji is equal to the scale sji.
(a3) The height of Ωji is set to an arbitrary constant value.

The plot is then obtained by drawing each cell colored according to the absolute value
of the corresponding wavelet coefficient. Note that due to some overlapping of the
rectangles they seem to have the shape of more irregular polygons. In Figure 10
as well as the subsequent scalograms below, 8 wavelet levels j = 0, . . ., 7 have been
computed and plotted. The coefficients of the finest scales are often not visible since
their amplitude is below the threshold for the grayscale.

The second type of visual presentation is displayed in Figure 11. It is based on
the approximate center points and scales via the roots of the Chebyshev polynomials
of the second kind. Introducing the parameter θji = π(i+ 1)/(2j + 1), we can rewrite
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Fig. 10. Wavelet transform of a periodic signal: u(x) = sin(2π x a) with a = 4 (top) and
a = 6.25 (bottom). Note that the second signal is not periodic on the present interval [−1, 1].
In the scalogram on the right the abscissa relates to the position in the domain x ∈ [−1, 1] while
the ordinate gives the inverse of the scale number in logarithmic scale, i.e., − log2(sji). Darker
shading indicates higher (absolute) coefficient values on a linear scale. The total number of modes

is N + 1 = 257. The scale is defined by means of the “exact,” numerically determined centers zψji
of the wavelets. Therefore, the visualization features “cells” which have a seemingly polygonal shape
through overlapping and are filled with the grayscale value according to the coefficients.
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Fig. 11. Coefficient scalograms as in Figure 10, but with the scale defined by means of the

approximate centers ẑψji of the wavelets and with the related transform used to determine the shape
of the cells representing the coefficients.
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the definitions (27), (29) as

ẑψji = cos(θji) ,(30a)

sji(ẑ
ψ
ji) =

Lx
2

sin(θji) sin

(
π

2j + 1

)
, 0 < i < 2j − 1 .(30b)

These relations represent a discrete mapping from dyadic θji to ẑji and sji, respec-
tively, which can be extended to the continuous case by replacing θji with θ ∈ ]0, π[.
In this fashion, a scalogram is constructed with cell boundaries progressively deformed
such as to indicate a spatial change of scale at fixed scale index j. In practice, we
proceed as follows:

(b1) We define a classical scalogram with rectangular cells centered at (θji,
− log2(sji(ẑj,i=2j/2)), i.e., using the scale of the centrally located wavelets
given in (29), and we separate the cells at the midpoints between neighbors.

(b2) We transform the coordinate locations of the cell boundaries by the maps
x = cos(θ), y = − log2(sin(θ)).

The result is a pattern with strips of coefficients of common scale index j which are
bent upwards near the boundaries. By this method, the coefficient values correspond-
ing to small-scale indices j appear at different physical scales along their horizontal
extent, which in a way is a visual representation of the fact that a single wavelet
undergoes a similar variation in frequency along the interval. As Figures 11 and 10
demonstrate, both methods of visualization are of fairly similar quality with respect
to the readability of frequency content and position of the signal. For its smoothness
and because it allows for a natural partitioning of the ordinate without gaps we will
henceforth retain the second type of scalogram.

It can be seen in Figure 11 that the present basis correctly shows a response
at approximately constant scale across the interval. Recall that the use of a real-
valued wavelet always tends to yield small-scale oscillations of the coefficients due
to cancellations between the signal and the wavelet itself [8]. Therefore, a pure sine
wave does not show up as a solid line in the scalogram but rather as a horizontal
band with alternating values. It is particularly noteworthy that in the coefficient
plots no artifacts are generated at the ends of the interval. Although the signal is
periodic in the upper plot, the analysis is entirely independent of this fact. No relation
between both boundaries is imposed or assumed. In the lower graph of Figures 10
and the right-hand graph of Figure 11 the period length of the sine was chosen to
be incommensurate with the length of the interval—a configuration which is not
compatible with a periodic analysis. In the present case, however, the plots of the
coefficients remain similar, even if the values u(x = 1) and u(x = −1) are different
and not zero.

Next, let us turn to the transform of a Gaussian bump, u(x) = exp(−(x −
xc)/(2σ

2)), with different standard deviations σ and center locations xc. Here, the
question is whether the position of the peak can be correctly determined from the
scalogram and if information on the characteristic scale can be extracted in this fash-
ion. Figures 12 to 13 show that this indeed is the case. The maximum amplitudes
of the coefficients are not exactly pyramid-shaped when xc is off-center—an effect
common to all wavelet transforms with downsampling between different levels—but
they do point to the xc-locations. Furthermore, the scale of the cusp (i.e., the smallest
scale where a large amplitude is recorded) corresponds to the scale of the signal. The
observed difference between the cusps of the scalograms in Figures 12 and 13 is of
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Fig. 12. Wavelet transform of a single Gaussian bump: u(x) = exp(−((x − xc)/(2σ))2) with
σ = 0.05 and the locations xc = 0.0, 0.4, 0.8 from top to bottom and from left to right. Darker shading
indicates higher (absolute) coefficient values on a linear scale. The abscissa relates to the position
in the domain x ∈ [−1, 1] while the ordinate gives the inverse of the scale number in logarithmic
scale, i.e., − log2(sji). The total number of modes is N + 1 = 257.

roughly two octaves, i.e., a factor of 4, while the standard deviation of the data varies
fivefold.

4.5. Definition of wavelet spectra. Let us now introduce a pseudowavenum-
ber as the inverse of the scale parameter, kji = 1/sji. As a global power-spectral
density per unit wavenumber we then define

E(km) =
1

∆km

∑
j,i / km

L ≤kji≤km
R

d2ji.(31)

The index pairs (j, i) in the sum are selected such that the pseudowavenumber of the
corresponding wavelet falls into the interval [kmL , k

m
R ], where the whole wavenumber

range considered is partitioned intoM such bins, 1 ≤ m ≤M . In the present work, the
bins are spaced logarithmically. The function (31) is normalized by the wavenumber
increment ∆km so that the following identity holds for the total energy:

Etot =

∫ +1

−1

u(x)2 dx =

1∑
i=0

c20i +

J∑
j=0

2j−1∑
i=0

d2ji =

1∑
i=0

c20i +

M∑
m=1

E(km) ∆km.(32)
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Fig. 13. As Figure 12, but the signal is a narrower bump with σ = 0.01.

Next, we define a local power-spectral density per unit wavenumber

E(kj , x) = 2j
d2ji∗

∆kj
,(33)

where the position index i∗ = i∗(x) corresponds to the wavelet at scale index j whose

center ẑψji lies closest to the location x. In other words, the function E(kj , x) represents
a cut through the scalogram at the abscissa x. Therefore, there are exactly J + 1
such spectral values at each location and the largest scales are obviously redundantly
reproduced in spectra evaluated at small distances from each other. In particular,
the j= 0-coefficient will enter all local spectra. In contrast to the fixed wavenumber
increment ∆km in (31), the increment ∆kj is based on kj,i∗ = 1/sj,i∗ , i.e., on the scale
parameters of the coefficients actually selected. The factor 2j in (33) is introduced
for compatibility with the global spectrum (cf. [7]). Applications of spectral analysis
using the present wavelet basis are given in section 6.

5. Multidimensional basis. The construction of a wavelet basis in more than
one dimension typically proceeds along either one of the following lines [5, p. 313]:

A Performing a tensor product of one-dimensional bases in each coordinate di-
rection. With this procedure two separate scale indices jx, jy are introduced
and the mechanism of rescaling is not directionally invariant. Therefore, this
method is sometimes called rectangular transform [16].
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B Performing a tensor product of one-dimensional MRAs with a “global” scale
index j (square transform) and different wavelets for picking up the various
directional features.

C Design of genuinely multidimensional wavelet/scaling functions with the de-
sired orthonormality and angular selectivity properties.

Due to its additional complexity, a construction of type C is beyond the scope of the
present paper. On the other hand, both constructions A and B are straightforward
once a suitable one-dimensional basis has been found. Regarding their use as a tool
for data analysis, these two options differ in various respects. We have found method
A more useful in the present context and will retain it for subsequent applications.
The reasons for this choice will become obvious during the following presentation
of both methods. The discussion is performed for two space dimensions; for higher
dimensions the situation is analogous.

5.1. Method A: Tensor product of one-dimensional wavelet functions.
The two-dimensional basis according to procedure A consists of the following func-
tions:

ϕ
0,jy
ix,iy

(x, y) = ϕ0,ix(x)ψjy,iy (y), ix = 0 . . . 1, iy = 0 . . . 2jy − 1,(34a)

ϕjx,0ix,iy
(x, y) = ψjx,ix(x)ϕ0,iy (y), ix = 0 . . . 2jx − 1, iy = 0 . . . 1,(34b)

ψ
jx,jy
ix,iy

(x, y) = ψjx,ix(x)ψjy,iy (y), ix = 0 . . . 2jx − 1, iy = 0 . . . 2jy − 1,(34c)

where jx, jy = 0, 1, . . . and the one-dimensional functions ψj,i and φj,i are defined in
(19).

Below we wish to analyze two-dimensional data from a turbulent plane channel
flow computation which possesses one periodic (x) and one bounded (y) coordinate
direction, i.e., we consider the space L2(R/Z × [−1, 1]). For this task we propose a
hybrid construction composed of a periodic wavelet basis and the Legendre wavelet
basis of section 3.2. The two-dimensional scaling functions and the wavelet functions
are then defined as follows:

ϕ
0,jy
ix,iy

(x, y) = ϕ̃0,ix(x)ψjy,iy (y), ix = 0, iy = 0 . . . 2jy − 1,(35a)

ϕjx,0ix,iy
(x, y) = ψ̃jx,ix(x)ϕ0,iy (y), ix = 0 . . . 2jx − 1, iy = 0 . . . 1,(35b)

ψ
jx,jy
ix,iy

(x, y) = ψ̃jx,ix(x)ψjy,iy (y), ix = 0 . . . 2jx − 1, iy = 0 . . . 2jy − 1.(35c)

The functions ϕ(y), ψ(y) are defined in (19). The periodic functions ϕ̃(x), ψ̃(x)
employed here are spline wavelets of order 4 and can be found in detail in references
[29, 12]. With the basis (35), the approximation of a two-dimensional function up to
a scale J reads as follows:

u(x, y) =

J∑
jy=0

2jy−1∑
iy=0

c
0,jy
0,iy
ϕ

0,jy
0,iy

(x, y) +

J∑
jx=0

2jy−1∑
ix=0

1∑
iy=0

cjx,0ix,iy
ϕjx,0ix,iy

(x, y)

+

J∑
jx=0

2jx−1∑
ix=0

J∑
jy=0

2jy−1∑
iy=0

d
jx,jy
ix,iy

ψ
jx,jy
ix,iy

,(36)

which leads to a total number of N(N + 1) coefficients, where N = 2J+1. Due to
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orthogonality, the coefficients are obtained from the following scalar products:

d
jx,jy
ix,iy

=

∫
x

∫
y

u(x, y)ψ
jx,jy
ix,iy

(x, y) dydx ,(37a)

c
jx,jy
ix,iy

=

∫
x

∫
y

u(x, y)ϕ
jx,jy
ix,iy

(x, y) dydx .(37b)

These integrals can be factorized during the computation due to the tensorial nature
of the wavelets and the scaling functions. Therefore, we can first apply the standard
Mallat algorithm to each “row” of data at constant y and then proceed column-
wise by computing the remaining integration in the y-direction by the new scheme of
section 4.1.

Figure 14 shows the shape of the wavelets ψ
jx,jy
ix,iy

(x, y), for the scale indices being
combinations of 2 and 5 and at two locations, in the center of the domain and close
to the boundary y = 1. The localization properties are quite different in the two
coordinate directions. Spline wavelets have an exponential decay while the Legendre
wavelets decay roughly as x−1 and exhibit the characteristic tails near the boundaries
as discussed above.

For visual presentation, the coefficients can be arranged in matrix fashion, i.e.,
collocated blockwise according to the values of the index pair (jx, jy) (cf. Figure 15).
Each coefficient within a block is represented by a rectangle colored according to the
coefficient’s absolute value. The size of this rectangle is determined according to the
wavelet centers, i.e., uniform in the x-direction and using the approximate center
locations of the Legendre wavelets (27) in the y-direction. This leads to flattened
cells near the boundaries y=±1, reflecting the two length scales by their aspect ratio
sx/sy. Examples are provided below.

5.2. Method B: Multidimensional MRA. Following Mallat [25] we define
the following two-dimensional scaling functions and a set of three different types of
wavelet functions:

ϕjix,iy (x, y) = ϕ̃j,ix(x)ϕj,iy (y), ix = 0 . . . 2j − 1, iy = 0 . . . 2j ,(38a)

ψj,1ix,iy (x, y) = ϕ̃j,ix(x)ψj,iy (y), ix = 0 . . . 2j − 1, iy = 0 . . . 2j − 1,(38b)

ψj,2ix,iy (x, y) = ψ̃j,ix(x)ϕj,iy (y), ix = 0 . . . 2j − 1, iy = 0 . . . 2j ,(38c)

ψj,3ix,iy (x, y) = ψ̃j,ix(x)ψj,iy (y), ix = 0 . . . 2j − 1, iy = 0 . . . 2j − 1,(38d)

where j = 0, 1, . . . . Similar to the one-dimensional case this defines a multidimensional
MRA of L2(R/Z×[−1, 1]). Removing the tilde and adjusting the indices in x-direction
provides the analogous basis for the fully nonperiodic case. Observe that the two-
dimensional scaling function ϕjix,iy represents the smooth content of the signal in both

directions at scale index j while the wavelets ψj,1ix,iy , ψj,2ix,iy , ψj,3ix,iy pick up the detailed

information with respect to vertical (y), horizontal (x), and diagonal variations of
the signal, respectively. Figure 16 shows the shape of the three types of wavelets
ψj,qix,iy (x, y), q = 1, 2, 3, for the scale index j = 5 at two locations: in the center of the
domain and close to the boundary y = 1.
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Fig. 14. Illustration of the basis functions of the tensor-product construction according to
method A sampled on a grid with 2562 points. The values for the quadruplet of indices jx, jy , ix, iy
are (a) 5, 5, 16, 16; (b) 5, 5, 16, 27; (c) 2, 5, 2, 16; (d) 2, 5, 2, 27; (e) 5, 2, 16, 2; (f) 5, 2, 16, 3.
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Fig. 15. The graphical representation of the wavelet coefficients d
jx,jy
ix,iy

of the two-dimensional

tensor-product basis (method A) defined by (35).

With (38), the approximation of a two-dimensional function up to a scale J reads

u(x, y) = c00,0 ϕ
0
0,0(x, y) + c00,1 ϕ

0
0,1(x, y)

+

J∑
j=0

2j−1∑
ix=0


 2j∑
iy=0

dj,2ix,iy ψ
j,2
ix,iy

(x, y) +
∑

q={1,3}

2j−1∑
iy=0

dj,qix,iy ψ
j,q
ix,iy

(x, y)


 ,(39)

which leads to a total number of 2+
∑J

j=0{2j (2j+1)+2·22j} = N(N+1) coefficients.
Splitting the inner sum results from the different number of scaling functions and
wavelets in the Legendre construction, as already reflected by the index bounds in
(38). When representing the coefficients obtained from a “classical” two-dimensional
MRA graphically, one customarily uses a block diagram where at each level j the
rectangular domain is divided into quarters. Three of them are used for representing
the coefficients of level j, while the fourth is subdivided again for the following level
j− 1 and so on [25]. We locate the coefficients dj,1ix,iy in the lower left quadrant,

dj,3ix,iy in the lower right, and dj,2ix,iy in the upper right (cf. the schematic in Figure

17), an arrangement differing from the one of Mallat [25, 5]. Its advantage is that
in the one-dimensional limit u(x, y) = u1(x) the coefficients in the scheme located on
the uppermost horizontal line yield the coefficients of the one-dimensional analysis
of u1(x), while analogously those on the leftmost vertical line reproduce the one-
dimensional analysis of u(x, y) = u2(y).

5.3. Transform of a two-dimensional test function. In what follows, the
domain has been mapped to Ω = πT × [−1, 1], which corresponds to the domain of
the turbulence data we wish to analyze below in section 6.3. As an analytical test we
consider a two-dimensional Gaussian bump,

u(x, y) = g ( (y − yc) sin(α) + (x− xc) cos(α) ,

(y − yc) cos(α) − (x− xc) sin(α) ) ,

g(x, y) = exp

(
−1

2

(
x

σx

)2

− 1

2

(
y

σy

)2
)
,(40)
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Fig. 16. Illustration of the basis functions of the two-dimensional MRA (method B) at scale
number j = 5, sampled on a grid with 2562 points. (a) q=1, iy =16, (b) q=2, iy =16, (c) q=3,
iy=16, (d) q=1, iy=27, (e) q=2, iy=27, (f) q=3, iy=27.
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Fig. 17. Graphical representation of the wavelet coefficients dj,qix,iy of the two-dimensional

MRA (method B) given in (38). The enlargement on the right shows that the individual colored
cells of each block of data (coefficients which have common j and q indices) are uniformly spaced in
the horizontal direction and spaced according to the approximate definition of the Legendre wavelet
centers in (29) in the vertical direction. Note that the position of dj,2 and dj,1 is interchanged with
respect to [25, 5].

centered around the position (xc, yc), having the two characteristic length scales σx
and σy and possibly a rotation by an angle α.

The coefficient diagrams of the transforms for various values of the parameters yc,
σx, σy, α (Figures 18 to 21) demonstrate several characteristics of the present hybrid
MRA which are common to methods A and B:

(i) In both cases A and B, the position of the bump can be correctly determined
from the location with the largest scale index (or scale index pair) at which
a significant response is obtained.

(ii) Due to the different localization properties of ψ̃(x) and ψ(y), the response
appears more smeared out in the vertical direction than in the horizontal
direction, especially when the bump is centered near the boundary of the
interval.

(iii) Since the characteristic vertical scale sy of the Legendre wavelets varies with
the position index iy, the response appears at lower values of jx (respectively,
at lower j for q = 1 with method B) when the bump is located closer to the
boundary. Locally, however, both variants of our hybrid base still bear the
strict hierarchical feature of the original MRA in the sense that at a fixed
location the scale varies exponentially with the scale indices jx, jy (or j,
respectively).

With method A, directional information is solely represented by the aspect ratio
sx/sy of the basis functions. We define a global index Is for the aspect ratio:

Is =

∑
jx,jy,ix,iy

(d
jx,jy
ix,iy

)2
sx(jx)

sy(jy, iy)∑
jx,jy,ix,iy

(d
jx,jy
ix,iy

)2
.(41)

The values obtained for various choices of the parameters in the example (40) are
shown in Table 2. The fact that Is takes a value significantly higher than unity
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yc = 0 yc = 0.95

Fig. 18. Coefficient schemes of the transform of a two-dimensional Gaussian bump using the
tensor-product basis A with N = 256 modes. σx = σy = 0.01 (top row); σx = 0.01, σy = 0.1
(center); σx = 0.1, σy = 0.01 (bottom row). The grayscale representing the absolute value of the
wavelet coefficients is linear.

yc = 0 yc = 0.95

Fig. 19. As Figure 18, but the Gaussian bump with σx = 0.1, σy = 0.01 has been rotated by
−45◦ with respect to the horizontal axis.
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yc = 0 yc = 0.95

Fig. 20. As Figure 18, but the transform has been performed with method B.

yc = 0 yc = 0.95

Fig. 21. As Figure 20, but the Gaussian bump with σx = 0.1, σy = 0.01 has been rotated by
−45◦ with respect to the horizontal axis.
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Table 2
Aspect ratio for different test signals according to the two-dimensional Gaussian bump (40) de-

termined by the index Is for method A and index Iq for method B of constructing a two-dimensional
basis. The transform was performed with N = 256.

Method A Method B

yc σx σy α Is Iq

0.0 0.01 0.01 0 3.43 1.14
0.95 0.01 0.01 0 3.25 5.4
0.0 0.01 0.1 0 0.41 21.0
0.95 0.01 0.1 0 0.23 57.5
0.0 0.1 0.01 0 19.45 0.06
0.95 0.1 0.01 0 18.45 0.23
0.0 0.1 0.01 −45◦ 1.36 1.24
0.95 0.1 0.01 −45◦ 0.88 26.0

although σx/σy = 1 again is a consequence of the different localization properties of
the underlying one-dimensional wavelet bases used for the two coordinate directions.
Important, however, is here that this index is approximately invariant with respect
to a vertical shift of the center of the bump (except when σx/σy = 1/10 in which
case a large part of the bump lies outside the upper boundary when yc = 0.95). This
quantity hence provides a useful characterization of the anisotropy of a signal. It
can also be extended to a local coefficient or a scalewise coefficient by an appropriate
restriction of the summation bounds in (41).

Turning now to method B, we remark that the angular selectivity (i.e., the index
q) and the aspect ratio sx/sy are not independent but jointly represent the signal’s
directional properties. We therefore define the index

Iq =

∑
j,ix,iy

(dj,1ix,iy )2∑
j,ix,iy

(dj,2ix,iy )2
(42)

reflecting the ratio of the energies of coefficients with q = 1 and q = 2. Table 2 shows
that, in contrast to Is, the latter coefficient changes considerably when the signal is
shifted vertically. Hence, changing yc not only provokes a shift of the index jy, but
also causes the response to shift between the three wavelet types q = 1, 2, 3. Attempts
to construct a robust joint directional index for method B failed, mainly due to the
problem of attributing a meaningful physical scale to the scaling functions. Similar
effects have to be expected for the doubly nonperiodic case. Because of the apparent
difficulties in interpreting the coefficients from transform B in terms of orientation,
we decided to work with method A from here on.

As discussed in section 4.5, interesting quantitative information can be extracted
from the transformation by means of local spectra. For method A we therefore define
the two-dimensional equivalent of the local power-spectral density (33) as

E(kjx , kjy , x, y) = 2jx2jy

(
d
jx,jy
ix∗ ,iy∗

)2

∆kjx ∆kjy
,(43)

with, again, the indices ix∗ , iy∗ determined from the wavelet center nearest to the
point (x, y).
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Fig. 22. Signal and wavelet coefficient diagram of an instantaneous cut along a wall-normal
line in a turbulent channel flow at friction velocity Reynolds number Reτ = 590. The signal is the
fluctuation of the streamwise velocity component, normalized such that its maximum absolute value
is unity.

6. An application: Local scales in turbulent plane channel flow.

6.1. Flow configuration. We consider the fully developed turbulent flow in a
doubly periodic box between two parallel walls which are spaced apart by 2h. Here,
x is the streamwise, y the wall-normal, and z the spanwise coordinate with u, v, w
being the corresponding velocity components. Fluctuations with respect to the time-
averaged signal are denoted by a prime. The characteristic Reynolds number Reτ ≡
uτh/ν is based upon the wall-friction velocity uτ =

√
ν|∂u/∂y|y=±h (averaged over

the channel walls and in time), the channel half-width h, and the kinematic viscosity
ν. The same reference quantities are used to form a nondimensional length scale l+ =
luτ/ν, the so-called wall-scaling or wall units, which is the analogue to Kolmogorov
scaling in homogeneous-isotropic turbulence and indicates the size of the smallest
features in the flow close to the wall. The superscript + added when numerical values
are given refers to quantities normalized by l+.

We use flow data from a pseudospectral direct numerical simulation of the second
author, performed at Reτ = 590 in a computational domain of size ΩDNS = 2πhT ×
[−h, h] × πhT using 600 × 385 × 600 discrete Fourier/Chebyshev modes, respectively.
This case is similar to the highest Reynolds number case studied in [27], except that
the spatial resolution has been increased substantially.

6.2. Local one-dimensional spectra. We extract instantaneous wall-normal
profiles of velocity fluctuations and interpolate them spectrally to aN = 256 Legendre–
Gauss–Lobatto grid before performing the wavelet transform given by (25).

In turbulent channel flow, high gradients and small structures are generated close
to the solid surfaces. In the one-dimensional cuts these are hence located close to the
extrema of the interval. Figure 22 displays such a snapshot, where the fluctuations of
the streamwise velocity component u′ show such features near y=−1 and y=1, both
of which are not unlike the narrow Gaussian bumps considered in section 4.4. The
wavelet coefficient scalogram again allows a localization of these peaks as well as an
approximate determination of their relative scales. Several coarser undulations of u′

towards the center of the interval produce responses at larger scales.
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Fig. 23. The global wavelet spectrum E(km) as a function of the inverse of the scale number
km = 1/sij (solid line) corresponding to the transform of the data in Figure 22. The dashed

line shows the Legendre coefficient spectrum Ẽ(k̃m). In both cases, the values of the spectrum are
accumulated over logarithmically spaced bins and normalized such that their integral amounts to
unity.

Figure 23 shows the global wavelet energy spectrum for the signal reported in
Figure 22. Also included is the corresponding Legendre coefficient spectrum. Both
curves are normalized by the respective total energy Etot. A very close comparison
is delicate due to the different meaning of “scale” in both cases. The wavenumber
associated with a Legendre polynomial is naturally defined by its degree n as k̃n =
n/Lx. The spacing of zeros and extrema, however, varies over the interval. Since these
functions do not have local character, physical information from features of different
size is summed up over the whole interval. The physical significance of this averaging
over the nonhomogeneous flow direction is unclear and motivates the present approach
for defining a global spectrum by means of wavelets. Here, it is assumed that only
contributions from the same physical scale are accounted for in E(km) (see (31)).

Figure 24 shows the local energy spectra of the streamwise velocity data from
Figure 22, evaluated at different locations. Not surprisingly, close to the center the
largest scales dominate the flow. About halfway towards the lower wall (x= −0.6)
a distinct medium-scale peak is observed, while at x= −0.94 the maximum energy
is recorded for even smaller scales. There are of course strong temporal variations
and any significant statement about turbulent flow structures requires a statistical
approach. This will be done in section 6.4 below.

6.3. Local two-dimensional spectra. Data in planes (containing the wall-
normal and either the streamwise or the spanwise direction) extracted from the raw
three-dimensional fields have been transformed to wavelet space by method A. To
this end, we have first spectrally interpolated the data on a grid comprised of N1 =
512 uniformly spaced points times N2 = 512 Legendre–Gauss–Lobatto points before
evaluating the scalar products in (37).
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Fig. 24. Local wavelet spectra E(km, xc) as a function of the inverse of the scale number
km = 1/sij corresponding to the data of Figure 22 and taken at the following positions within the
interval x ∈ [−1, 1]: ✷, xc = 0.1; ◦, xc = −0.6; �, xc = −0.94.

Figure 25 shows a snapshot of the streamwise velocity fluctuation in a spanwise/
wall-normal plane. The signal bears a vast number of features and one clearly needs
a formalism which helps to extract the desired information. Figure 26 displays the
wavelet representation of this signal by means of the two-dimensional periodic/non-
periodic transform defined above. Inspecting these coefficients, we see that the well-
known small-scale intermittency [18] is apparent. For this purpose, the small-scale
coefficients have been overexposed by multiplying all coefficient values with a factor
of 2max(jx,jy) in the lower graph. This reveals that the high intensity regions become
increasingly localized, i.e., less space-filling, with increasing values of max(jx, jy).

In the following we consider two locations in the near-wall region, i.e., at a wall-
distance of y+ = 89, one of which is located in what seems a lifted low-speed streak
(marked “B” in Figure 25), the other (marked “A”) well away from such events. The
third location, marked “C,” is situated on the centerline of the channel. Figures 27
and 28 show the two-dimensional power-spectral density evaluated at these locations
and plotted for each value of the horizontal scale number kjx as a function of kjy . For

clarity, only the higher horizontal scale numbers k+
jx

≥ 4.3 · 10−3 are included.

Comparing the center to the wall region (“C” vs. “A”), it is visible that for all
horizontal scale numbers kjx the decay of the signal’s energy with increasing kjy is
much faster in the center of the channel, especially at vertical scale numbers around
k+
jy

= 10−2. This is an indication that smaller vertical scales of motion are active at
point “A” while the horizontal scales are comparable to those at “C.”

Comparing locations “A” and “B,” more fine-scale contributions are observed
at point “B” in vertical as well as horizontal direction. While at “A” a smooth and
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Fig. 25. Streamwise velocity fluctuations of a snapshot from a turbulent channel flow at friction
velocity Reynolds number Reτ = 590. The plane is spanwise/wall-normal, i.e., the mean flow is
perpendicular to the plane. The aspect ratio reflects the physical size of the domain. The locations
marked “A,” “B,” and “C” are used in subsequent graphs.

continuous decay of the vertical coefficients is detected for all horizontal wavenumbers,
the spectrum forms a plateau at “B,” in particular for larger kjx . Furthermore, for
k+
jx

= 8.6 · 10−3 . . . 3.5 · 10−2 a local maximum is observed around k+
jy

= 1.5 · 10−2.
This corresponds to features in the flow having a size about the distance of this
point from the wall which indeed is the case for such a low-speed streak. Towards
higher wavenumbers kjy a regular decay of the energy is observed. Its rate at point
“B” is only half of the one at point “A.” Furthermore, the same values are observed
for different kjx in the former case, which means that saturation is attained in the
streamwise direction.

6.4. Statistical results for wall-normal scales. In the past, the wall-normal
scales of turbulent flow have basically been characterized by two methods: inspection
of two-point autocorrelations (e.g., [20]) or analysis of the most energetic modes from
proper orthogonal decomposition (e.g., [23]). In neither case, a clear correspondence
between an a priori defined length scale and its energy is available. The present
wavelet basis for the interval provides just these two ingredients and thus allows for a
quantitative description of the energy content of wall-normal scales and their position.

For the generation of statistical data we have used a total of nstat=150 streamwise/
wall-normal planes from 5 flow fields covering a time span equivalent to one flow-
through time of the computational domain. The quantities considered are the three
velocity components uα (α = 1 . . . 3) with their transform coefficients denoted as

d
jx,jy
ix,iy

(uα). Furthermore, we focus on the distribution of the wall-normal scales and
therefore sum over the indices jx and ix of the statistically homogeneous direction.
This leads us to the following definition of the ensemble-averaged one-dimensional
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Fig. 26. The absolute value of the wavelet coefficients of the transform of streamwise velocity
fluctuations in a turbulent channel flow at friction velocity Reynolds number Reτ = 590. The plane
is spanwise/wall-normal. The numerical grid has a dimension of N = 29. The grayscale coloring is
chosen such that white corresponds to zero intensity and black to maximum intensity. Both graphs
originate from the same data. In the lower graph, the small-scale coefficients are overexposed by a
factor of 2max(jx,jy).

power-spectral density as a function of wall-normal position y and wavenumber kjy :

Eαα(kjy , y) = 2jy
∑
jx,ix

〈(
d
jx,jy
ixc ,iy

(uα)
)2
〉
nstat

∆kjy
,(44)

where 〈·〉nstat
denotes an average over the available samples.
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Fig. 27. Local spectral energy density of the streamwise velocity fluctuations, determined by the
two-dimensional wavelet analysis. The results presented refer locations “A” (top) and “B” (bottom),
indicated in Figure 25, both at a wall-distance of y+ = 89. The various lines correspond to different
values of the spanwise (i.e., horizontal) scale number, stepping through k+jx = 4.3 · 10−3 (solid),

8.6 · 10−3 (dashed), 1.7 · 10−2 (dotted), 3.5 · 10−2 (dash-dotted), 6.9 · 10−2 (solid), 0.14 (dashed) in
the direction indicated by the arrow.
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Fig. 28. As Figure 27, but for location “C” on the centerline of the channel.

Figure 29 shows the premultiplied spectra kjyEαα(kjy , y) for the streamwise (α =
1) and the wall-normal component (α = 2) of velocity, evaluated at different wall-
distances across the channel. This representation allows for a direct comparison
with results for the corresponding streamwise and spanwise spectra available through
Fourier analysis. (For a compilation of experimental and numerical data cf. [17].)
Here we observe a very distinct behavior of the velocity components. The wall-normal
velocity has the maximum energy contained in scales which increase with the wall-
distance, from a peak scale of 15 wall units at y+ = 5 to the largest scale (i.e., the full
channel width) at the centerline. Contrarily, the scale of the energy peak is always the
largest scale in the case of the streamwise velocity fluctuations. These observations
imply that the energetic scales of the wall-normal velocity are strongly constrained
near the wall, while those of the streamwise velocity are affected only to a much lesser
extent. It has long been recognized (e.g., [32, p. 150]) that wall-impermeability has
a strong direct effect upon the wall-normal velocity in turbulent shear flow while not
restricting the motion in planes parallel to the wall. With the present analytical tools
it is finally possible to describe the above effect quantitatively. We believe that the
local wall-normal spectrum could play a particularly important role during the anal-
ysis of new data from ongoing efforts to capture the dynamics of the very large scales
of the logarithmic layer [6].

7. Conclusions. Starting from [11] we have constructed an orthonormal wavelet
basis for the interval by an appropriate recombination of Legendre polynomials. These
functions have been implemented together with routines to perform the corresponding
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Fig. 29. Premultiplied, ensemble-averaged, wall-normal power spectra kjyEαα(kjy , y) as a

function of scale s+y in plane channel flow at Reτ = 590 for streamwise (α = 1) and wall-
normal (α = 2) velocity components. The different lines correspond to different wall distances
y+ = {5, 10, 30, 100, 300, 500}; in both graphs, increasing y+ results in a shift towards larger scales
while line styles rotate through solid, dashed, dotted. The spectra are normalized to unit area.
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forward and backward transform. As a consequence of the inhomogeneity, the spatial
scale of the wavelets depends to some extent not only on the scale index but also
on the translation index. We have devised a suitable definition of the scale number
and developed a scheme for the representation and analysis of the coefficients. The
usefulness of the present basis for data analysis is demonstrated by studying the
transforms of analytical functions as well as data from turbulent flow simulations.
We have defined local power-spectral density functions and find that they constitute
an important tool for the analyst. We have argued that with the present lumping
of blocks of polynomials no decay better than ∝ 1/x is possible. While the rate of
decay cannot be changed, the actual values and the properties of the tails might be
improved. Another route is to modify the lumping by using a smoother selection of
polynomial coefficients as employed in [14]. This work is currently under way.1

In a second part of the paper two variants of a hybrid two-dimensional MRA
have been proposed and implemented. Method A is constructed from a tensor prod-
uct between periodic spline wavelets in the first direction and the present Legendre
wavelets in the second direction. Method B uses the more widespread procedure of
a tensor product of the two corresponding one-dimensional MRAs, leading to three
types of wavelets with different directional properties. In both cases, the implementa-
tion of two nonperiodic directions can be accomplished analogously by using Legendre
wavelets in both directions. Higher dimensions are also straightforward.

The graphical representation of a two-dimensional wavelet analysis is genuinely
more difficult than in the one-dimensional case. We have discussed the implications of
a spatially varying scale parameter and performed visualizations with an adaptation
of the classical scheme combining coefficients with the same scale and, in the case
of method B, direction indices in blocks. It was found that due to the interaction
between directional properties and varying scale ratio sx/sy, method B is less useful
for the purpose of data analysis.

Finally, we have applied the new transform (method A) to the analysis of data
from direct numerical simulation of turbulent plane channel flow. The qualitative
analysis of intermittency of a plane extracted from a snapshot showed velocity fluc-
tuations which are more intermittent at small scales than at large scales—an obser-
vation which is consistent with previous wavelet analyses of spatially homogeneous
flows [26, 3, 21]. We then performed ensemble-averaging and reduced the data to
the form of local wall-normal power spectra. It was found that near the wall, the
most energetic scales of the wall-normal velocity are much smaller than those of the
streamwise velocity, probably due to the constraining effect of wall-impermeability.

The constructions presented in this paper offer numerous perspectives for fu-
ture extensions. One direction is the construction itself in the one-dimensional and
multidimensional cases, such as a variant for semi-infinite intervals, and its optimized
implementation. A second direction is the application to signals of various other areas
and the definition of further secondary quantities based on the wavelet coefficients.

Acknowledgments. The authors like to thank J. Prestin for pointing them to
the possibility of replacing the Chebyshev polynomials by Legendre polynomials in
the wavelet construction.

1This construction has been completed in the meantime. A copy of the manuscript can be
obtained from the authors upon request.
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Abstract. Frontal polymerization is a process of converting a monomer into a polymer by means
of a self-propagating thermal reaction wave. We study initiation of polymerization waves by a high
temperature heat source. A five species reaction model is considered with a focus on the evolution
of two of these species and the temperature of the mixture. The temperature is tracked from the
inert heating to the transition stage. Through an asymptotic analysis, the first correction to the
temperature in transition is found as the solution to an integral equation. Two parameters govern
the qualitative behavior of the solution to the integral equation. Depending on the magnitude of
these parameters, the solution exhibits either bounded or unbounded behavior indicating the onset
or inhibition of propagation of a polymerization wave.

Key words. frontal polymerization, integral equation, initiation
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1. Introduction. Frontal polymerization is the process of converting a monomer
into a polymer by means of a self-propagating high temperature reaction wave. The
chemical process involves two species: a monomer and an initiator, which is needed
to start the growth of polymer chains. In a typical experiment, the species are placed
into a test tube, and the temperature at the end of the tube is increased by applying
a heat source. The increase in temperature induces decomposition of the initiator,
which produces active radicals, and the highly exothermic propagation process begins.
The resulting heat release promotes initiator decomposition ahead of the front, and a
self-sustained reaction wave travels through the mixture leaving polymer in its wake.

Experimental and theoretical studies of frontal polymerization began in the 1970s
(see references 1–4 in [5]). In [5] and [6], a mathematical model for the five species
reaction is presented, and traveling wave solutions are sought. In these theoretical
examinations of the process, the focus has been on the propagation of the thermal front
and its velocity, the spatial profiles of the species involved, the degree of conversion
of monomer, and the final temperature of the mixture. Initiation of a polymerization
front is presumed. From experimental work, however, it is found that initiation of the
front does not always occur. It is desirable to determine the dependence of initiation
on the amount of reactants at the onset of the experiment, the initial temperature, the
heat control imposed at the end of the test tube, and the properties of the initiator.

The purpose of this paper is to examine the initiation process necessary for prop-
agation. In this respect, the current study is similar to ignition considerations in solid
phase combustion problems. Unlike the combustion problem with a single reactant,
the frontal polymerization process involves several chemical reaction steps with differ-
ent reaction rates and activation energies. However, the reaction mechanism in both
types of problem is assumed to be Arrhenius, and, upon nondimensionalization of the
kinetic equations governing frontal polymerization, we can obtain a system of partial
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differential equations of a form similar to those arising in solid phase combustion.
For this reason, the techniques applied in the current analysis are similar to those
employed in [1, 2, 3, 4] in the examination of ignition of a combustible half-space.
Lasseigne and Olmstead [4] consider the effects of reactant consumption, and they
derive an integral equation governing the temperature at the ignition site. In this
paper, we show that the mechanism governing initiation of the polymerization front
gives rise to a similar two parameter integral equation governing the temperature in
the transitional heating stage. In fact, under certain limiting conditions, the integral
equation in [4] for a first order Arrhenius reaction appears as a special case of the in-
tegral equation presented in the current work. An asymptotic analysis of this integral
equation is given, and numerical results are presented.

2. The mathematical model. The typical experiment in free radical frontal
polymerization involves placing a mixture of initiator and monomer into a test tube.
Assuming that the cross-sectional area of the tube is small relative to its length, we
can model the tube as a thin semi-infinite channel x̂ ≥ 0. A boundary condition on
the heat flux will be prescribed at the end (x̂ = 0). The evolution of the reactants
and the temperature can then be tracked. A mathematical model for a five species
reaction is derived in [5] and [6], and the following system of equations governing the
kinetics at time t̂ in dimensional coordinates is given:

dI

dt̂
= −kdI,(2.1)

dR

dt̂
= 2fkdI − kiRM − keRRp,(2.2)

dM

dt̂
= −kiRM − kpMRp,(2.3)

dRp

dt̂
= kiRM − keRRp − 2ktR

2
p,(2.4)

dP

dt̂
= keRRp + ktR

2
p.(2.5)

The five species are the initiator, free radicals, monomer, polymer radicals, and
the final polymer, denoted by I, R, M , Rp, and P , respectively. The parameter f
appearing in the second equation is the ratio of primary radicals in the polymer to
the primary radicals formed by the initiator. In practice, its value is taken to be 1/2
(see [5]). The quantities, written above as k with a subscript, are assumed to have
an Arrhenius dependence on the temperature T of the system. Thus, they can be
expressed as

kα(T ) = k0
α exp

(−Eα

RgT

)
for α = d, i, p, e, t.

Here, k0
α is the frequency factor, Eα is the activation energy for the corresponding

reaction, and Rg is the universal gas constant. The subscripts correspond to the five
reaction steps—initiator decomposition d, polymer chain initiation i, chain propaga-
tion p, free radical termination e, and polymer radical termination t.

To formulate the heat balance in the system, we note that the decomposition step
is slightly endothermic but that each of the four subsequent reactions is exothermic.
However, the most significant heat release occurs in the propagation step [9]. Thus,
only this contribution to the net energy of the system will be considered here. Letting



INITIATION OF FREE-RADICAL POLYMERIZATION WAVES 1833

T (t̂, x̂) denote the temperature of the mixture at time t̂ and at the point x̂, κ > 0
the thermal diffusivity of the mixture, and q > 0 the increase in temperature induced
per unit reacted monomer, we can write the following reaction diffusion equation
governing the temperature:

∂T

∂t̂
= κ

∂2T

∂x̂2
− q

∂M

∂t̂
.(2.6)

Equations (2.1)–(2.6), together with appropriate initial and boundary conditions,
completely describe the state of the mixture. Because we are interested in initiation
of a polymerization front, we will consider a reduced system obtained by imposing
the quasi-steady-state assumption (QSSA) [6], reducing the number of unknowns as
in [5] and [6], and considering only the evolution of the initiator, the monomer, and
the temperature. The QSSA states that the level of free and polymer radicals in the
mixture is nearly constant. Hence, we set (d/dt̂)(R +Rp) = 0. In addition, we make
the following simplifying assumptions as justified in [6]:

ki = kp, ke = kt, and Rp � R.

Summing (2.2) and (2.4) and making the aforementioned assumptions yields

R+Rp ≈
√
2fkd
kt

√
I.

Then (2.3) becomes

dM

dt̂
= −kp

√
2fkd
kt

M
√
I.

Noting that the coefficient in front of M in the above equation is an Arrhenius expo-
nential motivates the following convenient notation for the effective reaction rate:

keff = kp

√
2fkd
kt

, k0
eff = k0

p

√
2fk0

d

k0
t

, and Eeff =
1

2
(Ed − Et) + Ep.

The initial amounts of monomer and initiator present are known and will be
denoted by M0 and I0. Similarly, the initial temperature of the system is given as T0.
In the current work, we will assume that the boundary condition on the temperature
at x̂ = 0 will be a Neumann condition. That is, the heat flux is prescribed as

∂T

∂x̂
= −ĥ(t̂) for x̂ = 0, t̂ > 0.

Further, we assume that ĥ(t̂) > 0 for all t̂. This restriction implies an energy input
at the end of the test tube. Finally, the temperature far from the end is assumed to
be equal to the initial temperature. The reduced, dimensional form of the system to
be studied can then be written as

∂I

∂t̂
= −kd(T )I, I(0) = I0,(2.7)

∂M

∂t̂
= −keff (T )M

√
I, M(0) =M0,(2.8)

∂T

∂t̂
= κ

∂2T

∂x̂2
+ qkeff (T )M

√
I, T (0, x̂) = T0, x̂ ≥ 0,(2.9)

∂T (t̂, 0)

∂x̂
= −ĥ(t̂), and T → T0 as x̂ → ∞.(2.10)
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3. Scaling and nondimensionalization. Because the activation energies are
relatively large, the Arrhenius reaction terms are insignificant, provided that the tem-
perature is relatively small. Thus, we will consider a critical value of the temperature
Tc at which the reaction terms become appreciable. The value of Tc will be made more
precise later. Further, the largeness of the activation energies facilitates a perturbation
scheme in solving for the temperature. Hence, we introduce the small parameter

ε =
RgTc
Eeff

and define the quantities

r =
Ed

Eeff
, k̃0

d = k0
de

−r/ε, k̃0
eff = k0

effe
−1/ε,

t∗ = (k̃0
eff

√
I0 )

−1, x∗ =
√
κt∗.

We also introduce the nondimensional variables

φ =
I

I0
, ψ =

M

M0
, θ =

T

Tc
, θ0 =

T0

Tc
,

h(t) =
x∗

Tc
ĥ(t̂), t =

t̂

t∗
, and x =

x̂

x∗
.

From (2.7)–(2.9), we obtain the corresponding nondimensional system:

∂φ

∂t
= −Aφ exp

{
r

ε

(
1− 1

θ

)}
, φ(0) = 1,(3.1)

∂ψ

∂t
= −ψ

√
φ exp

{
1

ε

(
1− 1

θ

)}
, ψ(0) = 1,(3.2)

∂θ

∂t
=

∂2θ

∂x2
+Bψ

√
φ exp

{
1

ε

(
1− 1

θ

)}
, θ(0, x) = θ0,(3.3)

∂θ(t, 0)

∂x
= −h(t), and θ → θ0 as x → ∞.(3.4)

The additional nondimensional parameters A and B appearing in (3.1) and (3.3)
are defined by

A =
k̃0
d

k̃0
eff

√
I0

and B =
M0q

Tc
.

The role of initiator consumption in the possible inhibition of initiation is inherent in
the scaling of these two parameters. If A is large, for example, we can expect that the
amount of initiator will rapidly decay. This rapid decay or an insufficient quantity of
initiator at the onset of the experiment will cause the reaction to stop before a thermal
front can develop. Similarly, if B is small, the effect of the reaction term in (3.3) is
decreased. This can result in insufficient heat to initiate and maintain propagation of
the polymer chain. In the present analysis, the following scaling will be assumed:

A = A0ε
−1 and B = B0ε

− 1
2 ,

with A0 = O(1) and B0 = O(1) with respect to ε. The numerical values of A, B, and
ε depend on the choice of reactants, their kinetic properties, and the conditions of the
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experiment (e.g., pressure and ambient temperature). Extensive tabulated values of
activation energies, preexponential factors, and other kinetic parameters for various
initiators and monomers can be found in [10]. For typical values of the physical
parameters appearing in (2.7)–(2.10), the value of ε is expected to be in the range
of 10−4 to 10−3. Moreover, at room temperature the values of A0 and B0 can range
between 0.01 and 10. Given the typical range of values for ε, this is consistent with
the assumption that A0 and B0 are O(1) with respect to ε.

For fixed A0, the quantity Tc is defined by the relation

A =
kd(Tc)

keff (Tc)
√
I0

.(3.5)

Equations (3.1) and (3.2) are separable and can be solved explicitly. We have

φ(t) = exp

(
−A

∫ t

0

e
r
ε (1− 1

θ ) ds

)
,

ψ(t) = exp

(
−
∫ t

0

e
1
ε (1− 1

θ ) × e−
A
2

∫ s
0
e
r
ε (1− 1

θ ) dq ds

)
.

Upon substitution of the above into the boundary value problem (3.3)–(3.4), the
system reduces to one involving only a single dependent variable. In the next section,
an asymptotic solution to (3.3)–(3.4) will be derived.

4. Solving for the temperature. As stated, we consider the initial tem-
perature to be small so that the reaction terms are negligible at the onset of the
experiment—during the inert heating stage. In the formulation above, this means
that we take θ0 < 1 and 1 − θ0 = O(1) with respect to ε. This allows us to initially
ignore the Arrhenius term, which is mathematically equivalent to taking the limit
ε → 0 in (3.1)–(3.3). Let θI be given by

θI(t, x) = θ0 +

∫ t

0

h(τ)
e
−x2

4(t−τ)√
π(t− τ)

dτ.

Then θI solves the problem (3.3)–(3.4) in the limit ε → 0; we will call this the inert
solution. From 0 < 1− θ0 and 1− θ0 = O(1), it follows that initially

θ = θI + e.s.t.,

where e.s.t. represents terms that are exponentially small with respect to ε. However,
this remains valid only until such time as θI ≈ 1. In order to continue the analysis,
let us define the critical time tc to be the smallest value such that

1 = θI(tc, 0) = θ0 +

∫ tc

0

h(τ)√
π(tc − τ)

dτ.

For arbitrary h(t), such a critical time need not exist. This suggests a restriction on
the class of boundary conditions that can lead to initiation. We will assume that the
imposed flux h(t) given is such that this critical time does exist. Also note that the
above is evaluated at x = 0 because θI attains its maximum at the end x = 0. The
inert stage of the reaction ends in the neighborhood of (tc, 0), and the system enters
a transition stage where the reaction terms first become appreciable. To further
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our investigation, we perturb about this point and introduce the new independent
variables

ξ =
x

ε
, τ =

t− tc
ε

.

In these inner variables, (3.1)–(3.3) become

φτ = −A0φ exp

{
r

ε

(
1− 1

θ

)}
, φ → 1 as τ → −∞,(4.1)

ψτ = −εψ
√

φ exp

{
1

ε

(
1− 1

θ

)}
, ψ → 1 as τ → −∞,(4.2)

εθτ = θξξ + ε3/2B0ψ
√

φ exp

{
1

ε

(
1− 1

θ

)}
, θ → θ0 as τ → −∞,(4.3)

θξ = O(ε) for ξ = 0 and τ > −∞.(4.4)

We note here that the conditions at t = 0 in the outer variables correspond asymp-
totically to conditions in the inner variables as τ → −∞. The first two equations can
again be solved to obtain

φ(τ) = exp

(
−A0

∫ τ

−∞
e

r
ε (1− 1

θ ) ds

)
,(4.5)

ψ(τ) = exp

(
−ε

∫ τ

−∞
e

1
ε (1− 1

θ ) × e−
A0
2

∫ s
−∞ e

r
ε (1− 1

θ ) dq ds

)
.(4.6)

Substitution of these integrals into (4.3)–(4.4) yields a single problem in the variable
θ.

4.1. An asymptotic expansion. We seek an asymptotic expansion for θ of the
form

θ = θI + εθ0 + ε3/2θ1 + · · · .
Then we can expand θI about (tc, 0) and write

θI = 1 + εaτ − εbξ + o(ε),(4.7)

where

a = lim
t→tc

∂θI
∂t

, b = − lim
x→0

∂θI
∂x

.

For the continued analysis, we must assume that these limits exist and that a > 0
and b > 0. The latter condition follows from requiring that h be a nonnegative
function for all times corresponding to an influx of energy at the end of the test tube.
The condition a > 0 implies that the temperature is increasing at the onset of the
transition phase. Both of these are consistent with the potential for initiation.

Substitution of (4.7) into the expansion of θ yields

θ = 1 + ε(aτ − bξ + θ0) + ε3/2θ1 + o(ε3/2),

so that

1

ε

(
1− 1

θ

)
= (aτ − bξ + θ0) + o(1).
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Combining this result with (4.5) and (4.6) and substituting into the boundary value
problem (4.3)–(4.4), we arrive at the equations governing θ0 and θ1:

θ0
ξξ = 0,

O(ε) :
θ0(−∞, ξ) = 0, θ0

ξ(τ, 0) = 0,
(4.8)

θ1
ξξ = −B0e

aτ−bξ+θ0

exp
(

−A0

2

∫ τ
−∞ er(as−bξ+θ0) ds

)
,

O(ε3/2) :
θ1(−∞, ξ) = 0, θ1

ξ(τ, 0) = 0.

(4.9)

Equation (4.8) has solution

θ0(τ, ξ) = f0(τ), where f0(τ)→ 0 as τ → −∞.

This is substituted into (4.9) to obtain

θ1(τ, ξ) = −B0e
aτ+f0(τ)

∫ ξ

0

∫ z

0

e−bẑ exp

(−A0

2
e−rbẑ

∫ τ

−∞
er(as+f0(s)) ds

)
dẑ dz+f1(τ),

with f1(τ)→ 0 as τ → −∞.
The function f0(τ) governs the first order correction to the inert solution in the

transition stage.

4.2. The transition stage solution. In order to determine the nature of f0 we
need a matching condition for large ξ. To this end, we consider the stretched space
variable

X =
√
εξ.

Let Θ̂ represent the solution in the boundary layer. From (4.3) we have

Θ̂τ = Θ̂XX +O(ε1/2).

Assuming that θ has the following form in the boundary layer,

θ = θI + εΘ̂0 + ε3/2Θ̂1 + · · · ,
the O(ε) problem is

Θ̂0
τ = Θ̂0

XX , Θ̂0 → 0 as τ → −∞.

Additional conditions at X = 0 are needed and are determined by matching to the
outer solution. Observe that as X → 0 and ξ → ∞,

εΘ̂0 + ε3/2Θ̂1 + · · · = εθ0 + ε3/2θ1 + · · · ,(4.10)

εΘ̂0
X + ε3/2Θ̂1

X + · · · = 0 + ε3/2θ1
X + · · ·

= 0 + ε3/2(ε−1/2θ1
ξ) + · · · .(4.11)

Equating by powers in ε, the above implies that

lim
X→0

Θ̂0(τ,X) = lim
ξ→∞

θ0(τ, ξ), lim
X→0

Θ̂X(τ,X) = lim
ξ→∞

θ1
ξ(τ, ξ).
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The equation that Θ̂0 satisfies is

Θ̂0
τ = Θ̂0

XX ,

Θ̂0
X(τ, 0) = −B0e

aτ+f0(τ)

∫ ∞

0

e−bze
−A0

2 e−rbz
∫ τ
−∞ er(as+f0(s)) ds dz(4.12)

≡ J(τ),

Θ̂0 → 0 as τ → −∞.

The additional condition

Θ̂0(τ, 0) = f0(τ)

determines the unknown function f0. The solution of (4.12) can be expressed in terms
of the Green’s function

Θ̂0(X, τ) = −
∫ τ

−∞
J(σ)G(X, τ ; 0, σ) dσ,

where

G(X, τ ; 0, σ) =
1√

π(τ − σ)
e
−X2

4(τ−σ) .

Finally, applying the condition on Θ̂0 at X = 0, we arrive at the nonlinear integral
equation governing the temperature in the transition stage:

f0(τ) = −
∫ τ

−∞

J(σ)√
π(τ − σ)

dσ =
B0

b

∫ τ

−∞

ef0(σ)+aσ√
π(τ − σ)

Q(σ) dσ,(4.13)

where

Q(σ) =

∫ ∞

0

be−bz exp

(
−e−rbzA0

2

∫ σ

−∞
er(f0(s)+as) ds

)
dz.

In the next section, we will examine the integral equation (4.13). We will perform a
coordinate change resulting in the appearance of an additional parameter governing
the qualitative behavior of the solution. Existence considerations will be addressed,
and both analytical and numerical results presented.

5. Analysis of the integral equation. The parameter r was defined as the ra-
tio of the decomposition activation energy to the effective activation energy obtained
by applying the QSSA. Typical experimental values of the activation energy for de-
composition, propagation, and termination are such that Ed � Ep � Et. It follows
that the ratio r is roughly 2. We will consider only values of r such that 1 < r ≤ 2,
with special attention given to the case r = 2.

The integral Q appearing in (4.13) can be expressed in terms of gamma functions.
Note that∫ ∞

0

be−bz exp

(
−e−rbzA0

2

∫ σ

−∞
er(f0(s)+as) ds

)
dz =

Γ
(

1
r

)
r

γ

(
1

r
, q(σ)

)
,

where

q(σ) =
A0

2

∫ σ

−∞
er(f0(s)+as) ds,
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Γ is the gamma function, and γ is the incomplete gamma function defined by

γ(α, z) =
z−α

Γ(α)

∫ z

0

e−ttα−1 dt.

To facilitate the analysis of the integral equation, let us introduce the change of
variables

η = aτ + log

(
B0

b
√
a

)
and u(η) = f0(τ).

In these new coordinates, (4.13) takes the form

u(η) =

∫ η

−∞

eu(σ)+σ√
π(η − σ)

Fr

(
λr

∫ σ

−∞
er(u(s)+s) ds

)
dσ.(5.1)

The function Fr appearing above is defined by

Fr(x) =
Γ
(

1
r

)
r

γ

(
1

r
, x

)
for x > 0, with Fr(0) = 1,

and the parameter λr is the ratio

λr = ar/2−1A0b
r

2Br
0

≥ 0.

Note that in the limiting case r = 2,

F2(x) =

√
π

2

erf(
√
x)√

x

and

λ2 =
A0b

2

2B2
0

.

A number of observations should be made about the parameter λr and the function
Fr defined above. First, in the limiting case, λ = 0 (Fr ≡ 1), equation (5.1) reduces
to the integral equation derived by Liñàn and Williams [1], Kapila [2], and Olmstead
[3]. It is known that this equation has a solution u that is positive and monotonically
increasing, with the asymptotic behavior

u ∼ eη +
1√
2
e2η + · · · as η → −∞,

u ∼ −1
2
log(η∗ − η) + · · · as η → η∗,

with η∗ ≈ −0.431 determined numerically. Also, for every value of r, Fr is positive
monotonically decreasing, with Fr → 0 as its argument tends to infinity. If r = 1,
then (5.1) is exactly that obtained by Lasseigne and Olmstead [4] governing ignition
of a solid half-space with first order Arrhenius reaction and accounting for reactant
consumption. They found that there is a critical value of the parameter λ1 such
that, for values less than this critical value, the solution u becomes unbounded in
finite time—it is this unbounded behavior that is taken to signal the onset of ignition.
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For values of λ1 larger than this critical value, the solution remains bounded for
all finite time. It is the decaying nature of Fr that serves to inhibit initiation of a
polymerization front. This is the case for all r on 1 < r ≤ 2. However, for fixed x
note that (d/dr)Fr(x) > 0. Hence, as r increases, Fr decays less rapidly. As will be
shown in section 5.3, r = 2 appears to be an upper limit for the possible existence of
solutions exhibiting the type of logarithmic singularity analogous to those discussed
in [3] and [4].

5.1. Existence of solutions to the integral equation. We continue the anal-
ysis by establishing the existence of solutions to (5.1). This is useful because it will
establish a lower bound on the time of initiation. To that end, let us consider the
class of bounded functions

S = {u : (−∞, η̃]→ [0, N ]},
where η̃ > −∞ and 0 < N < ∞. Additionally, let the integral operator T be given
by

Tu �−→
∫ η

−∞

eu(σ)+σ√
π(η − σ)

Fr

(
λr

∫ σ

−∞
er(u(s)+s) ds

)
dσ for η ≤ η̃, u ∈ S.

Conditions on η̃ and N are sought to ensure that T is a contraction on S. First,
observe that, for u ∈ S,

Tu ≤ eNI0(η; r, λr),

where

I0(η; r, λr) =

∫ η

−∞

eσ√
π(η − σ)

Fr

(
λr
r
erσ
)

dσ.

Second, let u1 and u2 be elements of S. Then

|Tu1 − Tu2| ≤ sup
u1,u2∈S

|u1 − u2|
{
eNI0(η; r, λr) + e(r+1)NI1(η; r, λr)

}
,

where

I1(η; r, λr) = λr

∫ η

−∞

e(r+1)σ√
π(η − σ)

∣∣∣∣F ′
r

(
λr
r
erσ
)∣∣∣∣ dσ.

Since I0 and I1 are monotonic increasing in η, we can conclude that T is a contraction
on S, provided

I0(η̃; r, λr) ≤ Ne−N(5.2)

and

eNI0(η̃; r, λr) + e(r+1)NI1(η̃; r, λr) < 1.(5.3)

For given λr, there exists a unique pair N̂ < 1, η̂ > −∞ such that (5.2) and (5.3) are
satisfied as equalities. That is,

eN̂I0(η̂; r, λr) = N̂ ,

eN̂I0(η̂; r, λr) + e(r+1)N̂I1(η̂; r, λr) = 1.
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Inequalities (5.2) and (5.3) are satisfied for N = N̂ and any choice of η̃ < η̂. We note
that the value of η̂(λr) provides a lower bound on the time of initiation for given λr.
Moreover, N̂ and η̂ have the following asymptotic expansions for λr � 1 and λr → ∞:

N̂ ∼ 1− λr
(r + 1)3/2

+ · · · ,

η̂ ∼ −1 + λr
rer(r + 1)3/2

+ · · · as λ → 0

and

N̂ ∼ N̂∞ + · · · ,
η̂ ∼ λ2/r

r

(
π

4Γ2( 1
r )

r2−2/r

)
N̂2

∞e−2N̂∞ + · · · as λ → ∞.

The value N̂∞ is the solution to the transcendental equation N̂∞ = (1− N̂∞)e−rN̂∞ .
For 1 < r ≤ 2, the value of N̂∞ is such that 0.33 ≤ N̂∞ < 0.41. Also, r ≤ 2 and

η̂ = O(λ
2/r
r ) as λr → ∞ suggests that the onset of initiation can be delayed as long

as desired by taking λr sufficiently large.
We anticipate two qualitatively different types of solutions to (5.1), depending on

the value of λr. Self-consistent analyses for solutions that remain bounded in finite
time and those that exhibit an unbounded singularity at a finite time are sought. Such
solutions are interpreted as indicating noninitiation and initiation of a front, respec-
tively. Moreover, for a given r, there is a critical value λcr separating the initiation
and noninitiation regimes.

5.2. Noninitiation solutions. First, we consider the existence of solutions
bounded for all finite η. To this end, assume that the solution u has the following
form:

u ∼ Cηd as η → ∞,(5.4)

where C and d are constants to be determined. If λr > 0 and d < 1, then (5.4) implies

eu+ηFr

(
λr

∫ η

−∞
er(u+s) ds

)
∼ Γ( 1

r )

r

(
r

λr

)1/r

as η → ∞.

For each η � 1, we can write

u(η) = C0 + J(η),

where J is defined as

J(η) =
1√
π

∫ η

0

eu+η

√
η − σ

Fr

(
λr

∫ σ

−∞
er(u+s) ds

)
dσ.

Employing the asymptotic techniques given in [7], we find that, as η → ∞,

J(η) ∼ 2Γ( 1
r )

r
√
π

(
r

λr

)1/r

η1/2 + · · · .

Hence, u has the form given in (5.4), with the constants determined as

C =
2Γ( 1

r )

r
√
π

(
r

λr

)1/r

and d =
1

2
.



1842 L. R. RITTER, W. E. OLMSTEAD, AND V. A. VOLPERT

Note that d < 1, which is consistent with our initial requirement. If λr is large
enough so as to advance the damping effect of Fr appearing in the integrand of (5.1),
the leading order behavior of the solution is expected to be square root growth. In
section 5.4, numerical confirmation of this is presented.

5.3. Initiation solutions. Next, we look for solutions of (5.1) that become
unbounded at some finite time value η∗. In the case λr = 0, we know that the
solution of (5.1) has a logarithmic singularity as previously discussed. This motivates
looking for behavior of the form

u ∼ −β log(η∗ − η) + · · · as η → η∗,(5.5)

where β = β(λr) and η∗ = η∗(λr) < ∞. The analysis is facilitated by translating the
singularity to the point at infinity. The techniques given in [7] and [8] can then be
used. In the coordinates

ρ = (η∗ − η)−1, v(ρ) = u(η),

equation (5.1) becomes

v(ρ) =
√
ρ eη

∗
∫ ρ

0

ev−s−1√
π(ρ− s)

s−3/2Fr

(
λre

rη∗
∫ s

0

t−2erv−rt−1

dt

)
ds,(5.6)

and the asymptotic behavior of v is sought as ρ tends to infinity. The cases 1 < r < 2
and r = 2 must be considered separately as they give rise to different matching
requirements.

Suppose 1 < r < 2 and

v ∼ log(ρ1/2) + log(P ) + log(1 + o(ρ1/2)) as ρ → ∞,(5.7)

where P is constant. Then, as ρ → ∞,

ev−1/ρ

ρ3/2
Fr

(
λre

rη∗
∫ ρ

0

t−2erv−rt−1

dt

)
∼ Pρ−1Fr(λre

rη∗Ir(∞)) + o(ρ−1),

where

Ir(∞) =

∫ ∞

0

erv−r/t

t2
dt < ∞.

By the results in [7] and [8], it follows that∫ ρ

0

ev−1/s

s3/2
Fr(λre

rη∗Ir(s))
ds√

π(ρ− s)
∼ P√

π
Fr(λre

rη∗Ir(∞))ρ−1/2 log(ρ)(5.8)

as ρ → ∞. Comparison of (5.7) and (5.8) yields

P =

√
πe−η∗

2Fr(λrerη
∗Ir(∞))

.

Hence,

v ∼ 1

2
log(ρ) +O(1) as ρ → ∞,
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and, returning to the previous coordinates, we have

u ∼ −1
2
log(η∗ − η) +O(1) as η → η∗.

Different initial assumptions are needed when r = 2. In this case, we look for the
solution of (5.6) to have the asymptotic form

v ∼ log(ρβ) + log(1 + o(ρβ)) as ρ → ∞.(5.9)

Under the assumption (5.9), observe that the integral in the argument of F2 appearing
in (5.6) is finite only if β > 1/2. That is, matching can occur only if we restrict
β > 1/2; this becomes a consistency condition on the analysis. Supposing that this is
the case and that (5.9) holds, we find that

ev−ρ−1

ρ3/2
F2

(
λ2e

2η∗
∫ ρ

0

e2v−2t−1

t2
dt

)
∼

√
π

2
e−η∗λ−1/2ρ−1

√
2β − 1 + o(ρ−1)

as ρ → ∞. Then, employing the results in [7] and [8],

ρ−1/2e−η∗v(ρ) ∼ λ
−1/2
2

2
e−η∗

√
2β − 1ρ−1/2 log(ρ) as ρ → ∞.(5.10)

Comparing the left- and right-hand sides of this relation and using (5.9), we arrive at
the equation for β:

β(λ2) =
1

4λ2

(
1−

√
1− 4λ2

)
.(5.11)

The following observations should be made about this result. First, note that β > 1/2,
as was required for the derivation. Also, we see that this result makes sense—insofar
as β is real—only for values of λ2 between 0 and 0.25. This seems to suggest an upper
bound of 0.25 on the critical value of λ2. In fact, the numerical analysis confirms this
where we find that λc2 = 0.11998. Finally, we note that β → 1/2 as λ2 → 0, which
is consistent with the results for r < 2 and those in [1] and [3] for the λ = 0 case.
In terms of the variables u and η, the asymptotic results for the initiation case are
summarized:

u ∼ −1
2
log(η∗ − η) + · · · as η → η∗(λr)

for 1 < r < 2, and

u(η) ∼ −β(λ2) log(η
∗(λ2)− η) + · · · as η → η∗(λ2)

for r = 2 with β given by (5.11). In both cases, the value of η∗ is to be determined
numerically.

5.4. Numerical analysis. Equation (5.1) was solved numerically for several
values of r and λr. Because the lower bound of the integral is infinite, the asymptotic
form of the solution u as η → −∞ is useful. Using the properties of the incomplete
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gamma function and the identity∫ η

−∞

eασ√
π(η − σ)

dσ =
eαη√
α

for all α > 0,

we have

u ∼ eη +
1√
2
e2η + · · · as η → −∞,(5.12) ∫ σ

−∞
er(u+s) ds ∼ 1

r
erσ +

r

r + 1
e(r+1)σ + · · · as σ → −∞.(5.13)

We then fix η0 > −∞ and assume that for all η, σ < η0 the relations (5.12) and (5.13)
hold. Substituting (5.12) and (5.13) into (5.1), we arrive at the following equation,
which is solved numerically:

u(η) = eηerfc
√
η − η0 +

1√
2
e2ηerfc

√
2(η − η0)

+

∫ η

η0

eu+σ√
π(η − σ)

Fr (λrIr(σ)) dσ,

where

Ir(σ) =
1

r
erη0 +

r

r + 1
e(r+1)η0 +

∫ σ

η0

er(u+s) ds.

This approach is similar to that applied by Lasseigne and Olmstead [4]. Moreover,
if r = 1, the above reduces to the integral equation considered in [4] for a first order
reaction term. The accuracy of the numerical methods employed in the current work
was tested by comparing the results obtained for r = 1 with those in [4]. The value
η0 = −10 was found to be sufficient to produce reliable results, and this was used for
all numerical trials given in this paper.

6. Results and discussion. For convenience, we restate the definition of the
parameter λr here,

λr = ar/2−1A0b
r

2Br
0

,

and recall that A0 and B0 are measures of the consumption rate of initiator and
heat release due to conversion of monomer, respectively; r (1 < r ≤ 2) is the ratio
of activation energies associated with decomposition of initiator and polymer chain
propagation. We see that λr is small, provided that A0 is relatively small and B0

relatively large. Hence, we can consider large values of λr to indicate an inadequate
amount of initiator (i.e., initiator is consumed too rapidly) or that heat release is
insufficient to sustain further reaction. Conversely, small values of λr represent a
sufficiently exothermic reaction, in which the consumption rate of initiator is small
relative to the amount of initiator present in the mixture. Small λr values are therefore
expected to lead to initiation, while large values of λr are not. The appearance of a
and b in the ratio is the effect of the inert heating, and the values of these parameters
are controlled by the choice of heat source applied. As suggested by the results in [4]
and the self-consistent analyses in sections 5.2 and 5.3 of this paper, there exists a
critical value of λr separating the initiation and noninitiation regimes.
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Table 6.1
The critical parameter value, λcr, as a function of r.

r 1.5 1.8 1.9 2
λcr 0.6645 0.31086 0.21058 0.11998

Table 6.2
Initiation time η∗ for selected values of λ2.

λ2 0 0.01 0.1 0.117 0.11997
η∗ -0.4310 -0.4287 -0.4088 -0.4048 -0.4037

−10 −9 −8 −7 −6 −5 −4 −3 −2 −1 0
−2

0

2

4

6

8

10
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16

η

u(
η)

Numerical Results
Asymptotic Approx.

Fig. 6.1. Initiation solution of the integral equation for r = 2 and λ2 = 0.1 The solution
approaches the asymptotic approximation U = −β(0.1) log(η∗ − η) as η → η∗ ≈ −0.4088.

The critical parameter value, λcr, was determined numerically for different r val-
ues. The results are given in Table 6.1. If λr < λcr, then the solution exhibits a
logarithmic singularity, with the asymptotic behavior described in section 5.3. For
values of λr larger than λcr, the solution to (5.1) exists and is finite for all η. When
λr is only slightly larger than the critical value, the solution exhibits behavior on two
time scales (see Figure 6.3). The temperature grows slowly while oscillating on a short
time scale. This results from the competing effects of the exponential term appearing
in (5.1) and the decaying function Fr. If λr is increased further, the solution has the
leading form described in section 5.2.

The time at which initiation occurs for the case r = 2 is given in Table 6.2 for
various λ2, with the critical value found to be 0.11998. Solutions of the types described
above for r = 2 are shown in Figures 6.1–6.4. In Figure 6.1, λ2 is less than the critical
value. The solution becomes unbounded at η = −0.4088. The asymptotic results are
shown as a dashed curve for comparison. Similarly, Figure 6.2 shows the initiation
solution for λ2 = 0.11997, just slightly less than the critical value. In both cases,
the singular behavior indicates that the temperature progresses beyond the transition
stage, and a polymerization front is formed. In contrast, Figures 6.3 and 6.4 show
the solution when λ2 is above the critical value. In Figure 6.3, λ2 = 0.4 and the
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Fig. 6.2. Initiation solution of the integral equation for r = 2 and λ2 = 0.11997, just be-
low the critical value of 0.11998. The solution approaches the asymptotic approximation U =
−β(0.11997) log(η∗ − η) as η → η∗ ≈ −0.4037.
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Fig. 6.3. The noninitiation solution showing oscillation for r = 2 and λ2 = 0.4.

temperature oscillations described can be seen. However, the large scale behavior is
slow growth with the oscillations damping as η increases. Figure 6.4 is a plot of the
solution when λ2 = 1. Here, the solution is monotonic with a change of concavity
occurring in a neighborhood of η = 0. The temperature remains bounded, indicating
that a reaction front does not form.
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Fig. 6.4. The noninitiation solution for r = 2 and λ2 = 1.

7. Summary and conclusion. A reduced system governing a five species reac-
tion model of free radical frontal polymerization was considered, and the temperature
was tracked from the inert heating to the transition stage. Through an asymptotic
analysis, the integral equation (4.13) arose as the first correction to the inert solu-
tion. This integral equation was then rewritten by a change of variables as (5.1),
where there appears the parameter λr which governs the qualitative behavior of the
solution. For a fixed ratio of the activation energies, there is a critical value of the
parameter λcr such that the solution of (5.1) has an infinite singularity in finite time
if λr < λcr but remains bounded for all time if λr > λcr.

The unbounded and bounded types of solutions are taken to indicate initiation
and noninitiation in the underlying system, initiation being the formation and onset
of propagation of a polymerization front. In the noninitiation case, but for values of λr
close to the critical value, an oscillatory type of solution was found numerically. The
solution remains bounded in this case, and it appears that the oscillations dampen
with the growth of the independent variable.

The experimental parameters can be chosen so as to ensure the onset of a thermal
front. The critical temperature Tc used in the scaling can be determined by taking
A0 = 1 in the relation (3.5). This results in a transcendental equation for Tc,

Eeff

RgTc
=

kd(Tc)

keff (Tc)
√
I0

.

Then, B0 can be found in terms of the initial amount of monomer and the heat release
parameter q, and the values a and b are given in terms of the known flux condition.

Some additional comments regarding the relationship of the integral equation (5.1)
to the original system (3.1)–(3.4) and the limitations of the results are in order.
First, we have shown that, under certain conditions, the solution to the integral equa-
tion (5.1) exhibits an infinite singularity at a finite time. This singular behavior is
interpreted as thermal runaway and hence initiation of a polymerization front. This
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does not, however, correspond to blow-up of the solution of the original system (3.1)–
(3.4) of interest in this study. For the system (3.1)–(3.4), there exists a unique, global
solution as indicated by the classical theory of parabolic equations. However, the Ar-
rhenius reaction term produces a large temperature gradient at the site of initiation
so that the temperature profile at the end of the tube exhibits a steep increase to the
maximum temperature in a thin reaction zone. It is this sharp increase in temperature
that is modeled asymptotically by the thermal runaway phenomenon of the integral
equation (5.1).

Second, we note that even in the case when thermal runaway occurs in (5.1)—
i.e., when the parameter values are such that λr < λcr—the front formed requires a
sufficiently large amount of initiator present in the mixture for propagation throughout
the tube. While it is possible to induce runaway by imposing a sufficiently high level
of external energy input at x = 0, this case is not of interest since the reaction will
die off and the polymer will not be produced. Hence, for the results obtained in this
paper to be of practical use, the values of a and b must be assumed to be O(1) and
fixed as prescribed by the externally imposed heat flux. Then, the variation in the
magnitude of λr can be viewed as due to changes in the values of A0 and B0, which
correspond to the physical and chemical properties of any particular mixture.
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[1] A. Liñàn and F. A. Williams, Theory of ignition of a reactive solid by constant energy flux,
Combustion Sci. Tech., 3 (1971), pp. 91–98.

[2] A. K. Kapila, Evolution and deflagration in a cold combustible subjected to a uniform energy
flux, Internat. J. Engrg. Sci., 19 (1981), pp. 495–509.

[3] W. E. Olmstead, Ignition of a combustible half space, SIAM J. Appl. Math., 43 (1983), pp.
1–15.

[4] D. Glenn Lasseigne and W. E. Olmstead, Ignition of a combustible solid with reactant
consumption, SIAM J. Appl. Math., 47 (1987), pp. 332–342.

[5] P. M. Goldfeder, V. A. Volpert, V. M.Ilyashenko, A. M.Khan, J. A. Pojman, and S. E.
Solovyov, Mathematical modeling of free-radical polymerization fronts, J. Phys. Chem.
B, 101 (1997), pp. 3474–3482.

[6] C. A. Spade and V. A. Volpert, On the steady-state approximation in thermal free radical
frontal polymerization, Chem. Engrg. Sci., 55 (2002) pp. 641–654.

[7] R. A. Handelsman and W. E. Olmstead, Asymptotic solution to a class of nonlinear Volterra
integral equations, SIAM J. Appl. Math., 22 (1972), pp. 373–384.

[8] W. E. Olmstead and R. A. Handelsman, Asymptotic solution to a class of nonlinear Volterra
integral equations II, SIAM J. Appl. Math., 30 (1976), pp. 180–189.

[9] G. B. Manelis, L. P. Smirnov, and N. I. Peregudov, Nonisothermal kinetics of polymeriza-
tion processes. Finite cylindrical reactor, Combustion Explosion Shock Waves, 13 (1977),
pp. 389–383.

[10] J. Brandrup and E. H. Immergut, Polymer Handbook, Wiley, New York, 1989.



EFFECTIVE EQUATIONS FOR SOUND AND VOID WAVE
PROPAGATION IN BUBBLY FLUIDS∗

NIANQING WANG† AND PETER SMEREKA‡

SIAM J. APPL. MATH. c© 2003 Society for Industrial and Applied Mathematics
Vol. 63, No. 6, pp. 1849–1888

Abstract. Effective equations that describe both sound wave and void wave propagation for
bubbly flows at high Reynolds numbers are derived in this paper. First ideal bubble flows are
considered, and a new method for solving Laplace’s equation for the velocity potential is presented.
This approach is based on a generalization of the method of images and also yields a precise definition
of the ambient field experienced by a bubble. With the velocity potential known, the Lagrangian is
then computed, and equations of motion for a finite number of bubbles using the Euler–Lagrange
equations are derived. The continuum limit is then used to obtain our effective equations. Our
expressions for the sound wave and void wave speeds agree well with previous investigations. The
effects of gravity and viscosity on void waves are considered. Viscous effects are incorporated using
a dissipation function. The steady rise speed and void wave speed for a column of rising bubbles are
computed and found to agree well with experiments.
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1. Introduction. In this paper, we derive effective equations for sound and void
wave propagation in bubbly fluids. Sound propagation was studied by Carstensen and
Foldy [11], who derived the speed of sound using a linear scattering theory developed
by Foldy [13]. Iordanskii [21] and van Wijngaarden [48] derived effective equations
including nonlinear effects. For review of the literature on acoustic waves in bubbly
liquids the reader is referred to the article by van Wijngaarden [49]. Later, Caflisch
et al. [9] provided an alternate derivation that clarified the range of validity of the
effective equations derived by Iordanskii and van Wijngaarden. These equations are
valid when the volume fraction of bubbles is very small. This is, in part, because in
these investigations it was assumed that bubbles would undergo only radial motion. In
order to develop equations valid at higher volume fraction, one must include the effects
of bubble translation. This has been investigated by Crespo [12], Noordzij and van
Wijngaarden [32], Caflisch et al. [10], and Sangani [38], among others. Crespo used
volume averaged equations of motion, which are valid for low frequency perturbations.
He then linearized these equations of motion and computed the speed of sound waves,
the results of which were found to be in good agreement with experiments. Caflisch
et al. [10] linearized the equations of motion and used a multiple-scale method. Their
computation of the wave speed is valid only for small frequencies and was in agreement
with the results of Crespo. Sangani also linearized the equations of motion and then
performed ensemble averaging. He also computed the wave speed, and his expression
was valid over a wide range of wave frequencies. Sangani’s results compare well to
the experimental results of Silberman [40]. In this work we shall derive equations
of motion that are fully nonlinear and valid over a wide range of frequencies. Our
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calculation of the sound speed agrees with those of previous investigators.
There has been considerable work on void wave propagation for ideal bubbly flows

where the bubbles are considered to be rigid spheres surrounded by an incompressible,
inviscid, irrotational fluid. For example, Biesheuvel and van Wijngaarden [8], Geurst
[17, 18], Biesheuvel and Gorissen [6], Wallis [47], Pauchon and Smereka [34], Zhang
and Prosperetti [56], and Park, Drew, and Lahey [33], among others, have derived
effective equations using various types of averaging. The motion of individual bubbles
was studied numerically by Sangani and Didwania [39] and Smereka [42]. Smereka
used the point bubble approximation combined with Euler–Lagrange equations to
obtain explicit equations of motion which were integrated numerically. Sangani and
Didwania used a multipole method together with Newton’s law to simulate bubble
motion. Both investigations observed that in many situations a spatially uniform
mixture of bubbles moving with approximately the same velocity was unstable and
the bubbles would form clusters. In should also be mentioned that van Wijngaarden
[53] predicted that bubbly flows would have a tendency to cluster. We speculate that
the instability of the spatially uniform mixture of bubbles is consistent with the ill-
posed effective equations found by Geurst [17], Wallis [47], and Pauchon and Smereka
[34] for dilute bubbly flows.

It was also found by Sangani and Didwania [39] and Smereka [42] that, if gravity
and viscosity were included, the clustering was much more pronounced. Smereka
constructed a Lyapunov function and showed that bubbles have a strong tendency to
maximize their virtual mass in the direction of motion. This means that the bubbles
will form pancake-shaped clusters. The dynamics of clustering has been studied in
more detail by Yurkovetsky and Brady [55] and Galper and Miloh [16]. Many aspects
of bubbly flows with potential flow interaction have also been discussed in the review
article by Koch and Hill [24].

In an effort to understand the numerical simulations of Sangani and Didwania and
Smereka, Russo and Smereka [37] wrote the equations of motion for individual bubbles
in Hamiltonian form (using the point bubble approximation) and then deduced a
kinetic equation for the probability density of the bubbles in phase space. They
proved that the spatially uniform case was unstable, provided that the variance of the
bubble’s velocity was sufficiently small. On the other hand, they proved that, if the
variance of the bubble’s velocity was sufficiently large, the spatially uniform bubbly
fluid was stable. Similar results were obtained by Spelt and Sangani [45]. Herrero,
Lucquin-Desreux, and Perthame [20] were able to provide a more rigorous derivation
of the equations derived by Russo and Smereka and remove an important assumption.

The effects of liquid viscosity have also been considered by van Wijngaarden and
Kapteyn [52] and van Wijngaarden [53]. Van Wijngaarden and Kaptyen computed
the drag force on a pair of bubbles using an energy dissipation argument. They then
computed averaged equations using ensemble averages over pairs of bubbles. The
results were used to compute the profile of a wave of steady shape. Van Wijngaarden
used the results of van Wijngaarden and Kapteyn to compute the rise speed of a
mixture of bubbles. The result is in good agreement with experimental data.

More recently, Lammers and Biesheuvel [26] studied void waves in bubbly flows
using a theory of Batchelor [4]. They find that the speed c of void waves is given by

c = U0(β) + βU ′
0(β),(1)

where U0 is the rise speed of the bubbles and β is the void fraction. They measure
both c and U0 and find that they agree well with (1). In the current work we also
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obtain (1) by a different approach. In addition, we calculate U0 and find that it agrees
closely with the experimental results of Lammers and Biesheuvel.

2. Outline. We shall derive effective equations by first computing the equations
of motion of N bubbles surrounded by an ideal liquid of infinite extent. We assume
that the bubbles are spherical but may change their radius. To fix ideas let us first
consider a single spherical gas bubble in a liquid which is at rest at infinity. The
equations of motion are well known; they are

RR̈ +
3

2
Ṙ2 − 1

4
|U|2 +

p∞ − P

ρ�
= 0,(2)

1

3
U̇ +

Ṙ

R
U = 0,(3)

where R(t) is the bubble radius, U(t) is the bubble velocity, ρ� is the density of the
liquid, p∞ is the pressure at infinity, and P is the pressure inside the bubble. Surface
tension is neglected for the purpose of simplicity. Equation (2) with U = 0 can be
found in Lamb [25], for example. The inclusion of (3) can be found in Hermans [19],
for example.

Next we consider the situation in which the surrounding liquid is uniformly ac-
celerated. The equations of motion are

RR̈ +
3

2
Ṙ2 − 1

4
|U − v|2 +

p∞ − pg
ρ�

= 0,(4)

1

3
U̇ − v̇ +

Ṙ

R
(U − v) = 0,(5)

where v is the velocity of the liquid at infinity. The equations of motion in this case
are derived by first obtaining the pressure at the bubble surface from Bernoulli’s law
and then demanding that the average pressure on the surface be equal to the pressure
inside the bubble and that total force on the bubble be zero. Equation (5) can be
found in Batchelor [3, p. 455].

Let us consider the situation with N bubbles surrounded by a fluid of infinite
extent initially at rest. The bubbles are then set into motion. It is plausible to think
that each bubble moves only according to certain “ambient” fields. Therefore we write
the equations of motion, heuristically, for the kth bubble as

RkR̈k +
3

2
Ṙ2 − 1

4
|Uk − vA(k)|2 +

pA(k) − Pk
ρ�

= 0,(6)

1

3
U̇k − D?

Dt
vA(k) +

Ṙk
Rk

(Uk − vA(k)) = 0,(7)

where vA(k) and pA(k) are the ambient liquid velocity and the ambient pressure of the
kth bubble, which must be determined. D?

Dt denotes a material derivative associated
to a velocity field yet to be determined. One of the key results of this paper is a
systematic way to determine these ambient fields.

2.1. Summary and approach. Our approach is as follows. First consider
a finite number of bubbles in an infinite expanse of fluid. We assume that the fluid
motion is irrotational, inviscid, incompressible, and at rest at infinity. We also assume
that the bubbles are spherical. We then derive equations of motion for this finite
collection of bubbles using Lagrange’s variational principal as outlined in Lamb [25]
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or Milne-Thompson [30], for example. This requires one to compute the velocity
potential. We develop a new method to solve for the velocity potential. The method
is an extension of the method of images for two bubbles (e.g., Lamb [25]) to multiple
bubbles. We prove that this method is convergent.

With the velocity potential known, we can calculate the Lagrangian for a finite
number of bubbles. In principle we could calculate the exact equations of motion;
however, they would be extremely complex. Instead we truncate our equations of
motion and include only terms involving monopoles and dipoles. In addition, we are
able to systematically deduce the ambient fields. We then take the continuum limit
of our discrete equations of motion and find the following effective equations:

R
d2R

dt2
+

3

2

(
dR

dt

)2

− 1

4
|U − v|2 +

p− pg(R)

ρ�
= 0,(8)

1

3

dU

dt
− Dv

Dt
+

1

R

dR

dt
(U − v) + (U − v) × (∇× v) = 0,(9)

where d
dt = ∂t+U ·∇ and D

Dt = ∂t+v ·∇. The dependent variables are now functions
of space and time (e.g., R = R(x, t)). The ambient pressure p and ambient liquid
velocity v are related as follows:

v = ∇ψ and p = p∞ − ∂ψ

∂t
− 1

2
|v|2,

where p∞ is the pressure at infinity and ψ is the ambient velocity potential. An
explicit expression for ψ is given by (42). We also establish that, to leading order, v
is the volume averaged liquid velocity.

We also consider the effects of gravity and liquid viscosity. We include the viscous
effects by using the energy dissipation method. Our approach is similar to that of van
Wijngaarden and Kapteyn [52] and van Wijngaarden [53] except that we do not use
the assumption of pairwise interaction. When we pass to the continuum limit we find
that, to leading order, the drag force on a bubble, in the case of zero volume flux, is

12πµR(U − 2v − w).

The expression for w is given by (79) in section 5. The above formula in one space
dimension can be written as

12πµR(1 + β + β2)(U − v).

This formula is also valid for all cases when the volume flux is constant in time.
We include this formula in our model along with effects of gravity to study the

propagation of void waves in bubbly flow. Work of Sangani and Didwania [39] and
Smereka [42] suggest that the potential flow approximation cannot be used for void
wave propagation in bubbly flows since it predicts strong clustering of the bubbles,
which is something not observed in experiments. Recent experiments of Zenit, Koch,
and Sangani [58] show that there is some clustering but not to the extent predicted
in [39, 42].

We show that our model has a steady solution which corresponds to a spatially
homogeneous bubble mixture; the computed velocity is in good agreement with exper-
iments. Furthermore, we demonstrate that this steady solution is unstable, which is
in agreement with [39, 42]. We then argue that for naturally occurring perturbations
the instability is rather weak. The propagation of these perturbations corresponds
to void waves. We calculate the speed of these waves and find that our calculations
agree closely with experimental results.



EFFECTIVE EQUATIONS FOR BUBBLY FLOW 1853

3. Equations of motion. We neglect liquid viscosity and gravity in this chap-
ter. The total energy, the sum of the kinetic energy of the liquid and potential energy
stored in the bubbles, is conserved. The Lagrangian is calculated, and the Euler–
Lagrange equations give the equations of motion. The velocity potential, given as
a convergent series, and its combinatorial properties play an important role in the
derivation.

3.1. Velocity potential. For a flow with N disjoint spherical bubbles, we want
to find the velocity potential satisfying

�φ = 0 outside the bubbles,(10)

∂φ

∂n
= Ui · n + Ṙi on the surface of bubble i, i = 1, . . . , N ,(11)

∇φ = 0 at infinity,(12)

where Ṙi, Ui are radial and translational velocities of bubble i, n is the unit normal
vector pointing toward the liquid phase on the surface, and

∂φ

∂n
= n · ∇φ

is the directional derivative along n. We have the following result concerning the
solution of (10)–(12).

Theorem 3.1. Let

φi(r) = − R2
i Ṙi

|r − xi| +
1

2
R3
i∇r

(
1

|r − xi|
)
· Ui.(13)

Here φi is the solution if only the ith bubble is present. The solution of (10)–(12) can
be written as the uniformly convergent series in the liquid,

φ =

N∑
i1=1

φi1 +

N∑
i1,i2=1
i1 �=i2

Ii1φi2 + · · · +

N∑
i1,...,ik=1
i� �=i�+1

Ii1Ii2 · · · Iik−1
φik + · · · ,(14)

where Ii refers to the image potential operator with respect to bubble i. Ii is defined
as follows: let f(x) be a harmonic function inside the ith bubble and let g(x) be a
harmonic function outside the ith bubble such that

∂f

∂n
= − ∂g

∂n
(15)

on the surface of the ith bubble; then g is called the image potential of f with respect
to bubble i with the notation g = Iif .

We note that this is a generalization of the method of images used to solve the
motion of two spheres as outlined in Lamb [25].

Next we define the ambient velocity potential experienced by the jth bubble to
be

ψj =

N∑
i1 �=j

φi1 +

N∑
i1,i2=1
i1 �=j,i1 �=i2

Ii1φi2 + · · · +

N∑
i1,...,ik=1
i1 �=j,i� �=i�+1

Ii1Ii2 · · · Iik−1
φik + · · · .(16)
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The ambient liquid velocity experienced by bubble j is defined as vj = ∇ψj . In the
expression for ψj we see that the final image reflection of each term is not with respect
to bubble j. This means that ψj is harmonic inside bubble j and Ijψj is well defined.

It is easy to derive two useful expressions,

φ = φj + ψj + Ijψj(17)

and

ψj =
∑
j �=k

(φk + Ikψk) .(18)

Most of the proof of Theorem 3.1 will be in Appendix A. Here we only outline
the proof of convergence and show that φ satisfies the boundary condition (11). To
prove the latter, we first notice that

∂φi
∂n

= Ui · n + Ṙi

on the surface of bubble i. Thus φi is the exact solution of (10)–(12) for one bubble.
In the case of multiple bubbles, it follows from (17) that

∂φ

∂n
=
∂φi
∂n

+
∂ψi
∂n

+
∂Iiψi
∂n

.

From the definition of the operator I, we have

∂ψi
∂n

= −∂Iiψi
∂n

at the surface of the bubble i. Hence we find

∂φ

∂n
=
∂φi
∂n

= Ui · n + Ṙi.

To prove convergence we first separate the series into N subseries (one for each
bubble), each of which is harmonic in the region exterior to the corresponding bubble.
We then prove that this series converges in the energy norm. This allows us to prove
that the velocity potential converges on the surface of the corresponding bubble. This
enables us to find the velocity potential on the bubble surface. The Poisson kernel
for the exterior Dirichlet problem is used to prove that the series converges at each
point in the liquid to a solution of Laplace’s equation. The details can be found in
Appendix A.

3.1.1. Example. To understand some of the preceding formulas more easily it
is useful to write them explicitly for the case N = 2. We begin with

φ = φ1 + φ2 + I1φ2 + I2φ1 + I2I1φ2 + I1I2φ1 + I2I1I2φ1 + I1I2I1φ2 + · · · .

The ambient velocity potential for the first bubble is

ψ1 = φ2 + I2φ1 + I2I1φ2 + I2I1I2φ1 + · · · .
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3.1.2. The image operator. The following theorem provides an explicit for-
mula for the image potential with respect to a bubble centered at x = p with radius
R (denoted B).

Theorem 3.2. If f(x) is harmonic inside a bubble centered at p with radius R,
then

IBf(x) =

∞∑
n=1

(−1)nR2n+1∇nf(p) · ∇nx( 1
|x−p| )

(n− 1)!(n+ 1)(2n− 1)!!

= −1

2
R3∇f(p) · ∇x

(
1

|x − p|
)

+ (higher order harmonics).

The proof is given in Appendix B.
This theorem expresses the image potential as an expansion of spherical harmonics

centered at p. With this theorem, (14) can be written as a multipole series, and
it becomes a natural extension of the twin spherical expansion method, which is
commonly used when solving Laplace’s equation outside two spheres (e.g., Ross [36]
or Jeffrey [22]). ∇n is the nth order matrix of partial derivatives, i.e.,

∇n =
∂n

∂xk1∂xk2 · · · ∂xkn
,

where kj = 1, 2, or 3, with j = 1, . . . , n. ∇nf · ∇ng denotes the scalar product of two
nth order matrices.

3.2. Kinetic energy and potential energy. The kinetic energy of the liquid
is

K =
1

2
ρ�

∫
V�

|∇φ|2dv =
1

2
ρ�

∫
V�

∇ · (φ∇φ)dv = −1

2
ρ�

N∑
j=1

∫
Sj

φ
∂φ

∂n
ds,(19)

where ρ� is the density of the liquid, V� is the volume occupied by the liquid, and Si
is the surface of the ith bubble. From (17), we have

K = −1

2
ρ�

N∑
j=1

∫
Sj

(φj + ψj + Ijψj)(Ṙj + Uj · n)ds.

Substituting (13) into the above expression, we obtain

K = −1

2
ρ�

N∑
j=1

∫
Sj

(
−RjṘj − 1

2
RjUj · n + ψj + Ijψj

)
· (Rj + Uj · n)ds.

Next, we use the expressions in Appendix C, and the kinetic energy of the liquid
becomes

K = 2πρ�

N∑
i=1

(
R3
i Ṙ

2 +
1

6
R3
iU

2
i −R2

i Ṙiψi(xi) −
1

2
R3
iUi · vi(xi)

)
.(20)

The first two terms in the parentheses correspond to the energy generated by the
motion of each individual bubble, as if no other bubbles exist. The last two terms are
caused by the interactions between the bubbles through the ambient fields ψi and vi.
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We assume that there is no heat transfer involved in the radial oscillation of the
bubbles and that the adiabatic constant for the gas is γ. Therefore the pressure inside
the bubble is

pg(R) = p∞

(
ρ0

ρ

)γ
= p∞

(
R0

R

)3γ

.

Therefore the potential energy for a single bubble is

−
∫ R
R0

4πR2(pg(R) − p∞)dR = −
∫ R
R0

4πR2p∞

((
R0

R

)3γ

− 1

)
dR

= 4πp∞

(
R3γ

0 R−3γ+3

3γ − 3
+

1

3
R3 − R3

0

3γ − 3
− 1

3
R3

0

)
.

The total potential energy of the bubbles is

Ug = 4πp∞
N∑
i=1

(
R3γ

0 R−3γ+3
i

3γ − 3
+

1

3
R3
i −

R3
0

3γ − 3
− 1

3
R3

0

)
.(21)

We remark that the assumption that the bubbles behave adiabatically can be removed
by using the approach outlined by Smereka [44].

3.3. Euler–Lagrange equations. With the kinetic and potential energy ob-
tained in the last two sections, we can write the Lagrangian of the system as

L = K − Ug.

The Euler–Lagrange equations are

d

dt

∂L
∂Ṙi

− ∂L
∂Ri

= 0,

d

dt

∂L
∂Ui

− ∂L
∂xi

= 0.

To simplify notation, ψi,vi,∇ψi, etc. will be used to refer to their function values at
xi in the subsequent equations of this section. The following formulas are derived in
Appendix D:

∂K

∂Ṙi
= 2πρ�(2R

3
i Ṙ− 2R2

iψi),(22)

∂K

∂Ui
= 2πρ�

(
1

3
R3
iUi −R3

ivi

)
,(23)

∂K

∂Ri
= 2πρ�

(
3R2
i Ṙ

2
i +

1

2
R2
i |Ui|2 − 4RiṘiψi − 3R3

iUi · vi +
3

2
R2
i |vi|2 + F

)
,(24)

∂K

∂xi
= 2πρ�(−2R2

i Ṙivi +R3
i (∇vi)

T · (vi − Ui) +G),(25)
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where F and G involve only ∇2ψi,∇3ψi, . . . , which correspond to spherical harmonics
of higher order than a dipole. From the above formulas, we obtain the equations of
motion

d

dt

(
2R3
i Ṙi − 2R2

iψi

)
−
(

3R2
i Ṙ

2
i +

1

2
R2
i |Ui|2 − 4RiṘiψi − 3R3

iUi · vi

+
3

2
R2
i |vi|2 + F

)
+ 2

p∞
ρ�

(
−R3γ

0 R−3γ+2
i +R2

i

)
= 0,(26)

d

dt

(
1

3
R3
iUi −R3

ivi

)
− (−2R2

i Ṙivi +R3
i (∇vi)

T · (vi − Ui) +G) = 0,(27)

ψi =
∑
i �=k

(φk(xi) + Ikψk(xi)) ,(28)

vi = ∇ψi.(29)

As it stands, the above system is rather intractable for analysis. To proceed further
we must make a simplifying approximation, which will be to keep only terms that
arise from monopoles and dipoles. Therefore, the F and G terms in (26) and (27) will
be ignored. We will also use this approximation to simplify (28) and (29) as follows:
from Theorem 3.2 we have

Ikψk(xi) = −1

2
R3
k∇ψk(xk) · ∇xk

(
1

|xi − xk|
)

+ (higher order harmonics),

which when used with (29) gives

Ikψk(xi) = −1

2
R3
kvk · ∇xk

(
1

|xi − xk|
)

+ (higher order harmonics).

Next, we combine the above formula with (28) to obtain

ψi =
∑
k �=i

[
− R2

kṘk
|xi − xk| +

1

2
R3
k∇xi

(
1

|xi − xk|
)
· (Uk − vk)

]

+ (higher order harmonics).

Thus by ignoring the terms caused by spherical harmonics of orders higher than
dipole, (26)–(29) simplify to

d

dt
(R3
i Ṙi −R2

iψi) −
(

3

2
R2
i Ṙ

2
i +

1

4
R2
i |Ui|2 − 2RiṘiψi − 3

2
R3
iUi · vi +

3

4
R2
i |vi|2

)
+
p∞
ρ�

(−R3γ
0 R−3γ+2

i +R2
i ) = 0,(30)

d

dt

(
1

3
R3
iUi −R3

ivi

)
− (−2R2

i Ṙivi +R3
i (∇vi)

T · (vi − Ui)) = 0,(31)

ψi =
∑
k �=i

− R2
kṘk

|xi − xk| +
1

2
R3
k∇xi

(
1

|xi − xk|
)
· (Uk − vk),(32)

vi = ∇xiψi =
∑
k �=i

∇xi

(
− R2

kṘk
|xi − xk| +

1

2
R3
k∇xi

(
1

|xi − xk|
)
· (Uk − vk)

)
.(33)
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These equations simplify greatly if we define the following ambient pressure motivated
using Bernoulli’s law. The ambient pressure associated with the ith bubble is defined
as

pi
ρ�

=
p∞
ρl

− ∂ψi
∂t

− 1

2
|vi|2.(34)

Then (30) and (31) can be written as

RiR̈i +
3

2
Ṙ2
i −

1

4
|Ui − vi|2 +

1

ρ�
(pi − pg,i) = 0,(35)

1

3
U̇i − Dvi

Dt
+
Ṙi
Ri

(Ui − vi) = (vi − Ui) × (∇× vi),(36)

where

D

Dt
=

∂

∂t
+ vi · ∇ and pg,i = p∞

(
R0

Ri

)3γ

.

In arriving at (36) we have used the identity

−(u · ∇)v + (∇v)T · u = u × (∇× v).

In deriving these equations of motion we have not assumed that ∇×vi = 0; however,
it is apparent from (33) that ∇× vi = 0 since vi = ∇ψi. This means the right-hand
side of (36) is zero. Nevertheless, we shall leave (36) in the form we have written
since, as we shall see later, the continuum limit of vi is not necessarily curl free.

3.3.1. Bubble motion in nonuniform flows. The motion of a bubble in a
nonuniform potential flow has been the subject of much interest. If we consider a
massless rigid spherical bubble with velocity U moving in liquid with an ambient
velocity v, then the equation of motion is

1

2
U̇ =

3

2

(
∂v

∂t
+ (v · ∇)v

)
,(37)

where v is derived from a potential flow, thus ∇ × v = 0. This equation has been
derived by Voinov, Voinov, and Petrov [54], Landweber and Miloh [27], van Wijngaar-
den [51], and Galper and Miloh [14]. Galper and Miloh [14, 15] also derive extensions
of this formula for more complex problems. If Ṙi = 0, then we see that (36) reduces
to (37), where we have used ∇× vi = 0.

Therefore we see that our computation is in agreement with well-known results.
The main contribution of our work is in finding a self-consistent expression for the
ambient liquid velocity produced by the motion of the other bubbles.

4. Continuum limit. In the previous section, we derived the equations of mo-
tion for a finite number of bubbles. In this section, we will take the continuum limit
to obtain our effective equations. This approach is similar to that used by solid state
physics to obtain effective equations; see, for example, Batteh and Powell [5] or Rose-
nau [35]. It also very close to the approach used by Caflisch et al. [9]. This approach is
expected to give a faithful approximation, provided that the wavelength of interest is
considerably longer than the distance between particles. One of the important parts of
this section is taking the continuum limit of (32). This is obtained by approximating
the summation by an integration. Let us explain this with the following example.
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4.0.1. Example. Consider the situation with N point charges located at xj
with charge qj , where j = 1, . . . , N . The ambient electric potential at xi is

ψi(xi) =

N∑
i �=j

qj
|xi − xj | .(38)

We suppose that there exists a smooth function q(x) such that qj = q(xj); then this
summation can be approximated as

ψ(x) =

∫
ρ(y)q(y)

|x − y| dy,(39)

where ρ(x) is the number of particles per unit volume. Since −(4π|x|)−1 is the
fundamental solution of Laplace’s equation in three space dimensions, then it follows
that (39) is equivalent to

�ψ = −4πq(x)ρ(x).(40)

4.1. Effective equations for bubbly flows. Our equations of motion for a
finite number of bubbles are given by (35) and (36), with the ambient field determined
from (32), (33), and (34). When passing to the continuum limit, we first assume that
there exist functions R(x, t) and U(x, t) such that Rk(t) = R(xk, t) and Uk(t) =
U(xk, t). We note that this assumption indicates that we assume that, on length scales
less than the wavelength of interest, the bubbles are all “doing the same thing.” This
assumption implies that neighboring bubbles are oscillating coherently and moving
with the same velocity. If we assume that nearby bubbles have the same velocity,
then this means that we are studying “cold” bubbly flows; in other words, we are
ignoring effects of the fluctuation of the bubbles’ velocity. These effects have been
studied in simpler models of bubbly flows by Russo and Smereka [37] and Herrero,
Lucquin-Desreux, and Perthame [20]. The effects of incoherent bubble oscillations
have been considered by, for example, Carstensen and Foldy [11] and Smereka [44] for
models that ignore the effects of bubble translation. We also point out that this same
assumption was used by Zhang and Prosperetti [57] in what they call sharply peaked
probability distributions. As pointed out in [44], this same assumption was used by
van Wijngaarden [48] and Caflisch et al. [10].

Now we take the continuum limit of (32), following the approach outlined in the
example above, and we find

ψ(x, t) =

∫
ρ

(
−R2(y, t)Ṙ(y, t)

|x − y| +
1

2
R3(y, t)∇x

(
1

|x − y|
)
· (U(y, t) − v(y, t))

)
dy,

where ˙ denotes d
dt = ∂t + U · ∇ and ρ = ρ(y, t) is the number of bubbles per unit

volume. ρ satisfies the following conservation equation,

∂ρ

∂t
+ ∇ · (ρU) = 0,(41)

and is a statement of particle conservation.
Using integration by parts on our expression for ψ, we have

ψ(x, t) =

∫ (
− ρR2Ṙ

|x − y| +
1

2

∇ · (ρR3(U − v)
)

|x − y|

)
dy,
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which is equivalent to

�ψ = −4π

(
−ρR2Ṙ +

1

2
∇ · (ρR3(U − v)

))
.

If we use the void fraction β = 4
3πR

3ρ instead of ρ, the above equation becomes

�ψ =
3β

R
Ṙ− 3

2
∇ (·β(U − v)) .(42)

In a similar way we see that the continuum limit of (33) is

v =

∫ (
−R2Ṙ∇x

(
1

|x − y|
)

+
1

2
R3∇2

x

(
1

|x − y|
)
· (U − v)dy

)
.(43)

Caution has to be taken in evaluating the second part of the above integral, as∫
∇2

x

(
1

|x − y|
)
· pdy

is singular and the integrand is not integrable. We take the principal value, which is
defined. This is justified because bubble i is not in the original sum of (33). From
Smereka [43, (27)] we have

−
∫

∇2
x

(
1

|x − y|
)
· p(y)dy =

4π

3
p(x) + ∇x

∫
V

∇x

(
1

|x − y|
)
· p(y)dy,(44)

where −∫ is the principal value integral. Using the above formula in (43), we obtain

v = ∇ψ +
β

2
(U − v).(45)

To obtain an expression for β we start with (41) and use β = 4
3πR

3ρ to obtain

d

dt

(
3β

4πR3

)
+

(
3β

4πR3

)
∇ · U = 0,

which can be simplified to

dβ

dt
− 3β

R

dR

dt
+ β∇ · U = 0.(46)

This is the conservation of volume for the gas phase. If we take the gradient of (45)
and substitute it into (42), we find

∇ · (βU + (1 − β)v) − 3β

R

dR

dt
= 0.(47)

This is exactly the conservation of total volume. This indicates that, to the level of
our approximation, v is also the volume averaged liquid velocity. We can make this
point even more transparent by subtracting (46) from (47), to obtain

∂(1 − β)

∂t
+ ∇ · ((1 − β)v) = 0.(48)
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This is a statement of conservation of liquid volume.
The continuum limit of (35) and (36) are obtained by realizing that d

dt is the
material derivative. Collecting our results, we find the following set of effective equa-
tions:

R
d2R

dt2
+

3

2

(
dR

dt

)2

− 1

4
|U − v|2 +

p− pg
ρ�

= 0,(49)

1

3

dU

dt
− Dv

Dt
+

1

R

dR

dt
(U − v) + (U − v) × (∇× v) = 0,(50)

�ψ − 3β

R

dR

dt
+

3

2
∇ · (β(U − v)) = 0,(51)

v −∇ψ − β

2
(U − v) = 0,(52)

1

2
v2 +

∂ψ

∂t
+
p− p∞
ρ�

= 0,(53)

∂β

∂t
+ ∇ · (βU) − 3β

R

dR

dt
= 0,(54)

pg − p∞

(
R0

R

)3γ

= 0,(55)

where

d

dt
=

∂

∂t
+ U · ∇ and

D

Dt
=

∂

∂t
+ v · ∇.

To summarize, in the above set of effective equations, (49) and (50) are the continuum
versions of (35) and (36). Equations (51), (52), and (53) are the continuum versions
of (32), (33), and (34), respectively. Finally, (54) is a statement of bubble number
conservation (equivalently, conservation of liquid volume), and (55) is the equation of
state for the gas contained in the bubbles. The equation for the conservation of liquid
volume, (48), shows that the ambient velocity is well approximated by the average
liquid velocity.

We observe from (52) that

∇× v = ∇ψ ×∇
(

2

2 + β

)
+ ∇× (βU),

which is not necessarily zero. This may seem strange since it appears from (33) that
vi is curl free. However, it is important to note that vi(x) has singularities when
x = xk. In the discrete case these singularities are not important, as is clear from
(33). However, when we pass to the continuum limit, these singularities become source
terms which cause the continuum limit to have a nonzero curl.

A simple example of this behavior can be understood using the example given in
subsection 4.01. It is clear that (38) is a harmonic function of xi (�xiψi = 0) except
when xi = xk. The expression for (38) is singular at xi = xk, corresponding to the
location of the charges. It is evident from (40) that the continuum limit, (39), of (38)
is not harmonic due the presence of the charges.

In a similar way, it follows that while the discrete ambient velocity field vi is curl
free, the same is not true of the continuum limit. This behavior is not uncommon;
for example, in the theory of dielectrics the local electric field is curl free, whereas
the ambient field of a continuum of dipoles is not curl free (see, for example Lorrain
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and Corson [29]). We are not claiming that this flow has vorticity. The ambient
liquid velocity has a nonzero curl, whereas the local liquid velocity is curl free. This
may sound contradictory, but it is not; the ambient liquid velocity does not satisfy
the Euler equation. Another way to look at this term is that it reflects the vorticity
present on the surface of each bubble, and the ambient liquid velocity is a homogenized
liquid velocity that accounts for the bubbles. In fact, the net vorticity produced by
a single bubble is zero. Therefore if we had a homogeneous suspension of bubbles all
moving with same velocity, then v would be constant in space and ∇× v = 0.

It is interesting to compare (50) with work of Auton, Hunt, and Prud’homme [1].
In this work the authors compute the force on a bubble in a nonuniform flow with
vorticity. From their work it follows that the equation of motion of the bubble (in our
notation) is given by

CM

(
∂U

∂t
+ U · ∇U

)
= (1 + CM )

(
∂v

∂t
+ v · ∇v

)
− CL(U − v) × ω,(56)

where CM is the added mass coefficient, CL is the rotational lift coefficient, and ω is
the liquid vorticity. If we choose CM = 1

2 and CL = 3
2 , then we see that our result

is the same as theirs (using Ṙ = 0). A priori we should not expect any close relation
between (56) and (50), since in (50), ∇× v is not the vorticity of the liquid. In fact,
Auton, Hunt, and Prud’homme argue for a spherical bubble that CL = 1

2 , whereas
we find CL = 3

2 .

4.2. Sound speed. We now study sound propagation for one dimensional flows,
and therefore we assume that our dependent variables depend on only one space coor-
dinate, which we take to be x. We linearize (49) through (55) around the equilibrium

R = R0, U = v = ψ = 0, β = β0,

and obtain the linearized equations

∂2R

∂t2
+ ω2

0R− 1

R0

∂ψ

∂t
= 0,

∂U

∂t
− 3

∂v

∂t
= 0,

∂2ψ

∂x2
=

3β0

R0

∂R

∂t
− 3

2
β0
∂(U − v)

∂x
,

v =
∂ψ

∂x
+
β0

2
(U − v),

∂β

∂t
− 3β0

R0

∂R

∂t
+ β0

∂U

∂x
= 0,

where the unsubscripted variables represent perturbations from equilibrium and

ω0 =

√
3γP∞
ρ�R2

0

is the natural frequency of a single bubble in an unbounded fluid.
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We let (R,U, v, ψ, β) = (A,B,C,D,E)ei(ωt−kx) and find


−ω2 + ω2
0 0 0 − iω

R0
0

0 iω −3iω 0 0

− 3iωβ0
R0

− 3ikβ0
2

3ikβ0
2 −k2 0

0 −β02 1 + β0
2 ik 0

− 3β0iω
R0

−ikβ0 0 0 iω







A
B
C
D
E


 = 0.

The above equations will have nontrivial solutions when the determinant is zero.
Thus, we obtain the dispersion relation

3ω2β0(1 − β0) = k2R2
0(1 + 2β0)(ω2

0 − ω2).

The effective sound speed is c = ω
k and

c2 =
R2

0(1 + 2β0)(ω2
0 − ω2)

3β0(1 − β0)
.(57)

If we let ω → 0, we have

c20 =
R2

0(1 + 2β0)ω2
0

3β0(1 − β0)
,

which is the same as the expression given by Crespo [12] and Caflisch et al. [10]. The
sound speed in (57) is also in agreement with Sangani [38]. We note that we have
assumed that the liquid is incompressible; therefore to compare with other investi-
gations one must consider the case C� → ∞, where C� is the speed of sound in the
liquid region.

4.3. Void waves. Void waves have been observed, and various properties such
as wave speed have been measured. Typically void waves travel at speeds much slower
than sound waves. This means that void waves and sound waves interact weakly, and
we will not make any significant error if we assume the bubble radius is fixed. In this
case our system of equations becomes

1

3

dU

dt
− Dv

Dt
+ (U − v) × (∇× v) = 0,(58)

�ψ +
3

2
∇ · (β(U − v)) = 0,(59)

v −∇ψ − β

2
(U − v) = 0,(60)

∂β

∂t
+ ∇ · (βU) = 0.(61)

These equations simplify greatly if we consider flows in one spatial dimension. In
this situation (59) and (60) become

∂2ψ

∂x2
+

3

2

∂

∂x
(β(U − v)) = 0 and v − ∂ψ

∂x
− β

2
(U − v) = 0.

We eliminate ψ to obtain

∂

∂x
((1 − β)v + βU) = 0.
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Since we are in the situation where the volume flux is zero, the above equation indi-
cates that

v =
−βU

(1 − β)
.(62)

In the one dimensional case, (58) and (61) become

1

3

(
∂U

∂t
+ U

∂U

∂x

)
−
(
∂v

∂t
+ v

∂v

∂x

)
= 0,(63)

∂β

∂t
+

∂

∂x
(βU) = 0.(64)

If we multiply (63) by 3/2 and use (62), we find

∂

∂t

(
(1 + 2β)

2(1 − β)
U

)
+

∂

∂x

(
(1 − 2β − 2β2)

4(1 − β)2
U2

)
= 0.(65)

Next we consider a new variable

M =
βU

h(β)
, where h(β) =

2β(1 − β)

1 + 2β
;(66)

then (64) and (65) can be written as the following system:

∂β

∂t
+

∂

∂x
(h(β)M) = 0,

(67)

∂M

∂t
+

∂

∂x

(
1

2
h′(β)M2

)
= 0.

This set of conservation laws can be written as

∂

∂t

(
β
M

)
+ A ∂

∂x

(
β
M

)
= 0, where A =


 h′(β)M h(β)

1
2h

′′(β)M2 h′(β)M


 .(68)

The eigenvalues of A are

λ = M

(
h′(β) ±

√
1

2
h(β)h′′(β)

)
.

Upon substituting the expression for h(β), we find

λ =
2M

(1 + 2β)2

(
1 − 2β − 2β2 ± i

√
3β(1 − β)

)
.(69)

This dispersion relation shows that the Fourier modes will increase in magnitude
at a rate proportional to wave number. This indicates that a spatially uniform bubbly
flow is unstable to all perturbations. In fact, the initial value problem for (68) is
ill-posed. This is consistent with the bubble clustering observed in the numerical
simulations done by Sangani and Didwania [39] and Smereka [42]. In the next section,
we will compute the dispersion relation when viscosity and gravity are considered. We
will also offer an explanation of the discrepancy between experiments and numerical
simulations.
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4.4. Comparison with previous work. Geurst [17, 18] derived a set of equa-
tions for two-phase flow using a variational method. The same set of equations were
derived by Wallis [47] and Pauchon and Smereka [34] using different approaches. The
equations contained one phenomenological relation, denoted mG(β), which Wallis calls
the exteria. Pauchon and Smereka showed that Geurst’s equations simplify greatly
in the frame of reference where the volume flux is zero. If we use mG(β) = β/2 in
Guerst’s equations (as written by Pauchon and Smereka), we find that they are iden-
tical to (67). (Note, however, that Pauchon and Smereka use Γ(β), which is 1/h(β)).
It should also be noted that from the work of Smereka and Milton [41] one can show
that the exteria, mG(β), is related to the virtual mass in the zero volume flux frame
m(β), as follows:

mG(β) =
m(β)

ρ�
(1 − β) − β2.(70)

The virtual mass in the zero volume flux frame has been calculated by Zuber [59], van
Wijngaarden [50], Biesheuvel and Spolestra [7], Wallis [47], and Smereka and Milton
[41]. Zuber’s result was

m(β) = ρ�
β

2

(
1 + 2β

1 − β

)
.

The results of the other investigators were similar. Smereka and Milton showed that
Zuber’s result was exact for a certain type of bubbly flow. If we substitute Zuber’s
result into (70), then we find mG(β) = β/2. Thus we conclude that (67) is the same
as that derived by Geurst when Zuber’s expression for the virtual mass is used.

5. Effects of liquid viscosity and gravity. In this section, we consider the
effects of liquid viscosity and gravity in an effort to understand the dynamics of void
waves. We shall assume that the bubble radii are unchanging and of identical sizes.

The effective equations are derived, and the void wave speed obtained is in good
agreement with experimental data. We also offer an explanation of why bubble clus-
tering is not observed in experiments.

5.1. Equations of motion. We shall proceed in a fashion similar to that in
section 3. The Lagrangian is given by

L = K − U ,
where K is given by (20). The potential energy is modified by gravity as follows:

U = Ug + ρ�g

N∑
k=1

4

3
πR3

kzk,

where zk is the z coordinate of the kth bubble and Ug is given by (21). We shall
include effects of liquid viscosity by using a dissipation function denoted as D. The
equations of motion are now

d

dt

∂L
∂Ui

− ∂L
∂xi

=
1

2

∂D
∂Ui

.(71)

The amount of energy dissipated is given by

D =

∫
V�

Ddx, where D = 2µεij · εij ,

where εij is the rate-of-strain tensor.
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We shall assume that the Reynolds number is high, so the flow is close to potential
flow except in the thin boundary layer wrapped around each bubble. We shall further
assume that no significant amount of energy dissipates in the boundary layer. The
verification of this assumption for one bubble can be found in Moore [31]. With this
assumption one finds that

εij =
∂2φ

∂xi∂xj
.

We can check that

D = µ∆E, where E = ∇φ · ∇φ.
Using Green’s theorem, we have

D =

∫
V�

µ∆Edv = −µ
∫
S

∇E · nds = −µ
∫
S

∂E

∂n
ds = −µ

∫
S

∂(∇φ · ∇φ)

∂n
ds,(72)

where the integral is taken on the surface of the bubbles, and n is an outward normal
vector.

5.2. Calculation of drag. In this section we calculate the drag force of a bubble
in the presence of a finite number of bubbles. We begin with the case of a single bubble.

5.2.1. Single bubble. We consider a single bubble, moving with a fixed radius
and a translational velocity U, in a fluid with a constant ambient velocity v∞. The
velocity potential in this case is

φ =
1

2
R3∇r

(
1

|r − x|
)
· (U − v∞) + v∞ · r.

The energy dissipation is computed using (72) and found to be

D = 12πµR|U − v∞|2.(73)

The drag on the bubble is then given by

F =
1

2

∂D
∂U

= 12πµR(U − v∞).(74)

Levich [28] derived (74) using the method outlined here. Moore [31] determined the
drag force by computing the pressure distribution around the bubble. Kang and Leal
[23] and Stone [46] provide alternate derivations.

5.2.2. Two bubbles. For the case of two bubbles in an infinite liquid, van
Wijngaarden and Kapteyn [52], using the energy dissipation argument, derived

F = −12πµR(U − 2vind),(75)

where vind is the velocity generated by the other bubble.

5.2.3. N bubbles. With the expression of the velocity potential (14), we calcu-
late D in Appendix E. After neglecting terms caused by spherical harmonics of orders
higher than dipole, we have

D = 12πµR

N∑
i=1

|Ui − vi(xi)|2.(76)
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From this equation we see that the dissipation due to the ith bubble is

12πµR|Ui − vi(xi)|2.
This compares closely with (73), with v∞ replaced by the ambient field of the ith
bubble (vi). Nevertheless, the drag force will be different from (74) since the ambient
velocity of the ith bubble will depend on the velocities of all of the bubbles. In
Appendix E we compute the drag force and find

1

2

∂D
∂Ui

= 12πµR(Ui − 2vi(xi) − wi(xi)),(77)

where

wi(r) = −
∑
j �=i

1

2
R3∇2

(
1

|r − xj |
)
· vj .

This compares closely with the result by van Wijngaarden and Kapteyn [52].
The continuum limit of (77) is

12πµR(U − 2v − w),

where v is given by (59) and (60); w is determined from

�χ− 3

2
∇ · (βv) = 0,(78)

w −∇χ+
βv

2
= 0.(79)

In one space dimension, (78) and (79) simplify to

∂2χ

∂x2
=

3

2

∂βv

∂x
and w =

∂χ

∂x
− 1

2
βv,

from which it follows that

∂w

∂x
− ∂(βv)

∂x
= 0.

Since w must vanish if v vanishes, then we find

w = βv.

Therefore the drag force is

12πµR(U − (2 + β)v).(80)

Using the expression for v given by (62), we find that the drag force is

12πµRU
1 + β + β2

1 − β
.(81)

We can write this formula in a different form by noticing that the bubble’s velocity
relative to the ambient liquid velocity is

U − v =
U

1 − β
.

Therefore we can rewrite the drag force as

12πµR(1 + β + β2)(U − v).

We have shown, by following a procedure similar to that outlined in Appendix E, that
the formula above is valid for any value of the volume flux.
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5.3. Void waves. With the drag force computed, we can now modify our model
for void waves to include gravity and liquid viscosity. Following the approach previ-
ously outlined, we find that (71) becomes, in the continuum limit,

1

3

(
∂U

∂t
+ U

∂U

∂x

)
−
(
∂v

∂t
+ v

∂v

∂x

)
=

2

3
g

(
1 − U

U∞
1 + β + β2

1 − β

)
,(82)

∂β

∂t
+
∂ (βU)

∂x
= 0,(83)

where v is given by (62) and

U∞ =
R2ρ�g

9µ

is the steady speed of a single bubble rising in an infinite fluid under the force of
gravity. Next we multiply (82) by 3/2, use the expression for v, and rewrite (82) as

∂

∂t

(
(1 + 2β)

2(1 − β)
U

)
+

∂

∂x

(
(1 − 2β − 2β2)

4(1 − β)2
U2

)
= g − gU

U∞

(
(1 + β + β2)

1 − β

)
.(84)

Our model for void wave propagation including dissipation is then given by (83) and
(84).

It is easy to verify that (83) and (84) have the equilibrium solution β = β0 and
U = U0, where

U0 =
1 − β0

1 + β0 + β2
0

U∞.(85)

This corresponds to a spatially uniform mixture of bubbles rising due to gravity in the
zero volume flux frame of reference. The rise speed of the bubbles is given by (85).
The prediction of (85) is in good agreement with the experimental data reported by
Lammers and Biesheuvel [26] as shown in Figure 1 below. This result seems somewhat
paradoxical; it has been shown by Sangani and Didwania [39], Smereka [42], and van
Wijngaarden [53] that, in the context of potential theory, there is not a stable steady
homogeneous distribution of rising bubbles; the key word here is stable. We shall now
show that this steady solution that we have calculated is in fact unstable, in agreement
with [39, 42, 53]. In fact we conjecture that this steady state is only weakly unstable,
which is why (85) is in good agreement with experimental data.

Next we wish to examine the stability of this equilibrium solution. For this
purpose it is useful to use the change of variables described in section 3. That is, we
consider M = βU/h(β); then (83) and (84) can be written as the following system:

∂β

∂t
+

∂

∂x
(h(β)M) = 0,

(86)

∂M

∂t
+

∂

∂x

(
1

2
h′(β)M2

)
= g

(
1 − M

M0(β)

)
,

where h(β) is given by (66) and

M0(β) = U∞
1 + 2β

2(1 + β + β2)
.
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In these variables the equilibrium solution is (β,M) = (β0,M0(β0)). If we linearize
(86) about the equilibrium solution, we obtain the following linear system, with M
and β now being the linearized variables:

∂

∂t

(
β
M

)
+ A0

∂

∂x

(
β
M

)
= R

(
β
M

)
,(87)

where

A0 =


 h′(β0)M0 h(β0)

1
2h

′′(β0)M2
0 h′(β0)M0


 and R =

g

M0(β0)


 0 0

M ′
0(β0) −1


 .

Next we look for solutions of the form (β,M) = (A,B)ei(ωt−kx). We find that there
will be solutions of this form, provided that the following dispersion relationship is
satisfied:

z2 +
g

ikM0(β0)
z − h(β0)

(
1

2
h′′(β0)M2

0 (β0) +
gM ′

0(β0)

ikM0(β0)

)
= 0,(88)

with z = c − h′(β0)M0(β0), where c = ω
k is the phase speed. Solving the above

equation for z reveals that z always has complex roots, indicating that the initial
value problem for (87) is ill-posed. Hence, the growth rate of a Fourier mode is
proporational to its wave number. This seems consistent with numerical simulations
of bubble clustering. In these simulations a spatially uniform distribution of bubbles
quickly assembles into horizontal clusters of bubbles (see Sangani and Didwania [39]
and Smereka [42]). However, in experiments such behavior is not observed and is
inconsistent with experimental observations of void wave propagation. Nevertheless,
we shall see below that our model can predict some phenomena seen in experiments.
To this end, let us then consider situations where the wavelengths tend to be large
and therefore k is small. For small k the dispersion relationship has the two solutions

c1 =
ig

M0(β)k
+ h′(β0)M0(β0) − h(β0)M ′

0(β0) + icI +O(k2),

c2 = (h(β0)M0(β0))
′ − icI +O(k2),

where

cI =
kh(β0)M0(β0)

2g

(
2h(β0)(M ′

0(β0))2 −M2
0 (β0)h′′(β0)

)
.

Substituting in our expressions for h and M0, these become

c1 = i
2g

kU∞
1 + β0 + β2

0

1 + 2β0
+ U∞(1 − 6β0 +O(β2

0)) + icI ,

c2 = cR − icI ,

where

cR =
1 − 2β0 − 2β2

0

(1 + β0 + β2
0)2

U∞(89)
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Fig. 1. The upper curve shows a plot of the predicted bubble rise speed using (85), and the
lower curve shows the predicted void wave speed using (89). We have used U∞ = .219 m/sec. The
circles are the experimental findings of Lammers and Biesheuvel [26], as is the value for U∞.

and

cI =
U3
∞k
2g

(3β0 +O(β2
0)).(90)

In the expression for c1 we observe that its imaginary part is positive. This indicates
that this mode decays. This corresponds to the relaxation of the bubble’s speed to the
equilibrium speed. The second mode corresponds to void waves. It predicts that the
void waves will move with speed cR and will grow with a rate given by cIk. Figure 1
shows a plot of cR as function of the volume fraction along with experimental data.
The agreement is good.

In the experiments of Lammers and Biesheuvel [26] the rise speed of a single
bubble was approximately 25 cm/sec, the void fraction was in the range 0 to 0.4,
and the frequency of naturally occurring void waves was approximately 1 Hz (see
Biesheuvel and Gorissen [6]). Using our expression for the real part of the wave
speed, we can estimate that this corresponds to disturbances with a wavelength of
approximately 27 cm (k ≈ .2). The growth rate of these disturbances (using (90)) is

cIk ≈ 3β0U
3
∞k

2

2g
.

If we use the experimental parameters given above, we find that the growth rate
is approximately β0. This suggests that the void waves do not have time to grow
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significantly in normal experimental settings. Therefore our model predicts that the
observed void waves should grow slightly and travel with a phase speed given by cR.
Recent experiments of Zenit, Koch, and Sangani [58] demonstrate a small amount of
clustering.

Therefore, it appears that our model provides an accurate description of long
wavelength disturbances. It is possible that the model breaks down for small wave-
length disturbances and that there are regularizing effects which, when included in our
model, will result in a well-posed model. Another possibility is that Sangani and Did-
wania [39] and Smereka [42] overestimate the amount of cluster formation observed in
experiments. This could be because in these numerical simulations the computational
domain was a cube with a size of only a few centimeters. Thus they were exciting
modes of a much smaller wavelength than those observed in experiments, due to the
periodic boundary conditions.

Finally, we remark that, if we assume the wave frequencies and wave numbers are
small, then it follows from (84) that

g − gU

U∞

(
(1 + β + β2)

1 − β

)
≈ 0,

which implies that

U ≈ U0(β),

where U0 is given by (85). We can rewrite (83) using the above expression as

∂β

∂t
+ (U0(β) + βU ′

0(β))
∂β

∂x
≈ 0.

This equation was obtained by Lammers and Biesheuvel [26]. Using (85), we note
that the above equation can be written as

∂β

∂t
+ cR

∂β

∂x
≈ 0,

where cR is given by (89). Thus we see, again, that when the frequency and wavenum-
ber of the waves are small, the void wave should travel with a speed given by cR.

6. Summary and conclusions. In this paper we have developed a new method
for solving Laplace’s equation for the velocity potential in a liquid with a finite number
of bubbles. This method is a generalization of the method of images. Our approach
also allows us to define the ambient velocity and ambient pressure associated with a
particular bubble. The velocity potential is then used to calculate the total kinetic
energy of the liquid. We then use the Euler–Lagrange equation to compute exact
equations of motion for a finite collection of bubbles, which are a set of ordinary
differential equations. We then make a simplifying approximation, which is to keep
only terms arising from monopoles and dipoles. We then take the continuum limit of
the equations of motion to obtain a set of partial differential equations that represent
our effective equations for ideal bubbly fluids. Our model includes both sound and
void wave propagation, includes nonlinear effects, and is valid over a wide range of
wave numbers. We show that our model captures the results for the speed of sound
waves from Caflisch et al. [10], Crespo [12], and Sangani [38]. We also show that our
model reduces to Geurst’s model [17, 18] when we consider void wave propagation.
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We then consider the effects of liquid viscosity and gravity on void wave propa-
gation. The effects of liquid viscosity are incorporated by using an energy dissipation
function. We apply this technique for finite collection of bubbles, thus extending the
work of van Wijngaarden and Kapteyn [52] for the two-bubble problem. We then
compute the drag force. The continuum limit of the drag force is found, and our ef-
fective equations for void waves including gravity and liquid viscosity are formulated.
We then observe that our model has a steady-state solution which corresponds to
a mixture of bubbles rising with a steady speed. The calculated bubble rise speed
is in good agreement with experimental values. We also compute the speed of void
waves and find good agreement with experimental results. Our computations show
that these waves are unstable, but, using the experimental parameters, we find that
the instability can be small.

Appendix A. Proof of Theorem 3.1. Theorem 3.1 states that the method of
images, when generalized to N spheres, results in a converging sequence which is the
solution to Laplace’s equation with the correct boundary conditions.

We begin our proof with some definitions. Let B = B(p, R) be a ball of radius R
centered at the point p. We define the energy norms:

||f ||B =

∫
B

|∇f |2dx and ||f ||B =

∫
B

|∇f |2dx,

where B is the region exterior to B. We will also use the L2 norm on the surface of
B (∂B):

||f ||∂B =

(∫
∂B

f2ds

) 1
2

.

We shall make use of Weiss’ sphere theorem, which, in the notation of our paper,
is the following: If f(x) is harmonic inside B = B(p, R), then the image operator
with respect to B is

IBf(r, θ, ψ) =
1

R

∫ R2

r

0

w
∂f

∂w
(w, θ, ψ)dw.

This can be found, for example, in Milne-Thompson [30, p. 520].
Remark. If the closest singularity of f has distance d from p, then IBf is harmonic

for all points outside of B∗(p, R
2

d ), which is a sphere smaller than B(p, R).
Our proof begins with the following three lemmas.
Lemma A.1. Bm = Bm(p,mR), B = B(p, R), and BM = BM (p,MR) are three

concentric spheres with

m < 1 < M, c < 1, 1 < cMm;

f is a harmonic function inside BM ; and IBf is harmonic exterior to Bm. Then we
have

||IBf ||Bm < c||f ||BM ,

where Bm is the region exterior to Bm.
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Proof. Assume that p is at the origin. We can write f in terms of spherical
harmonics:

f(r, θ, ψ) = f(0) +

∞∑
k=1

2k+1∑
j=1

ck,jhk,j(θ, ψ)rk,

where ck,j are constants and hk,j is a set of spherical harmonics which satisfy the
orthogonality condition ∫

unit ball

hk,jhm,idS = δkmδij .

From Weiss’ sphere theorem, we have

IBf =
1

R

∫ R2

r

0

w
∂f

∂w
(w, θ, ψ)dw

=
1

R

∞∑
k=1

2k+1∑
j=1

k

k + 1
ck,jhk,jR

k+1
∣∣∣R2

r

0

=

∞∑
k=1

2k+1∑
j=1

kR2k+1

(k + 1)rk+1
ck,jhk,j .

We can use the divergence theorem and the expansion of f in spherical harmonics to
obtain

||f ||BM =

∫
∂BM

f
∂f

∂n
ds =

∞∑
k=1

2k+1∑
j=1

z
(1)
k,j(91)

with

z
(1)
k,j = k(MR)2k+1c2k,j .

In a similar fashion,

||IBf ||Bm = −
∫
∂Bm

IBf
∂IBf

∂n
ds =

∞∑
k=1

2k+1∑
j=1

z
(2)
k,j ,(92)

where

z
(2)
k,j =

k2R4k+2

(k + 1)(mR)2k+1
c2k,j .

Therefore one has

z
(2)
k,j

z
(1)
k,j

=
k

k + 1

(
1

M2k+1m2k+1

)
.

Since cmM < 1, it follows that

z
(2)
k,j

z
(1)
k,j

< c.



1874 NIANQING WANG AND PETER SMEREKA

Hence

||IBf ||Bm < c||f ||BM .

This completes the proof of Lemma A.1.
Lemma A.2. If f is harmonic outside B(p,R), then

||f ||2∂B ≤ R||f ||B ,
where B is the region outside of B.

Proof. After expanding

f(r, θ, ψ) =
∞∑
k=1

2k−1∑
m=1

ck,mhk,m(θ, ψ)

rk+1
,

we have

||f ||2∂B =

∞∑
k=1

2k−1∑
m=1

c2k,m
R2k

≤ R

∞∑
k=1

2k−1∑
m=1

kc2k,m
R2k+1

= R||f ||B .

This completes the proof of Lemma A.2.
Lemma A.3. If fk, k = 1, 2, . . . , are harmonic functions outside B(p, R) and

||fk||B < Y ck, c < 1, Y are constants,

then there exists a function f such that, at all points x outside B, f is harmonic and

lim
k→∞

k∑
j=1

fj(x) = f(x),

lim
x→∞ f(x) = 0.

Furthermore, the convergence is uniform outside B∗(p, R∗) for any R∗ > R.
Proof. We assume that p is at the origin. From Lemma A.2, we have

||fk||2∂B < R||fk||B < RY ck.

Hence

||fk||∂B <
√
RY (

√
c)k.

Therefore {∑k
i=1 fi}k is a Cauchy sequence in the || · ||∂B norm. Since the L2 space

on ∂B is complete, there exists a function f ∈ L2(∂B) such that

lim
k→∞

∥∥∥∥∥
k∑
i=1

fi − f

∥∥∥∥∥
∂B

= 0.

We define f , for any x outside B, by using

f(x) =

∫
∂B

P (x,y)f(y)dSy,(93)
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where P (x,y) is the Poisson kernel. From Axler, Bourdon, and Ramey [2], we have

P (x,y) =
1

4πR

|x|2 −R2

|x − y|3 .

Therefore ∣∣∣∣∣f(x) −
k∑
i=1

fi(x)

∣∣∣∣∣ =

∣∣∣∣∣
∫
∂B

P (x,y)

(
f(y) −

k∑
i=1

fi(y)

)
dSy

∣∣∣∣∣
≤ ||P (x,y)||∂B ·

∥∥∥∥∥f −
k∑
i=1

fi

∥∥∥∥∥
∂B

,

where the last inequality comes from the Cauchy–Schwarz inequality We also have a
uniform bound on P for all y ∈ ∂B, when x is a fixed point strictly outside B,

P (x,y) ≤ 1

4πR

|x|2 −R2

(|x| − |y|)3 =
1

4πR

|x| +R

(|x| −R)2
.

Hence

lim
k→∞

∣∣∣∣∣f(x) −
k∑
i=1

fi(x)

∣∣∣∣∣ = 0.(94)

Furthermore, if |x| ≥ R∗ > R, then

P (x,y) ≤ 1

4πR

R∗ +R

(R∗ −R)2
.

Thus the convergence in (94) is uniform for |x| ≥ R∗.
In this context, f is harmonic because, from (93) and the fact that P (x,y) is

harmonic in x if y is fixed,

�f =

∫
∂B

�xP (x,y)f(y)dSy = 0.

Since P (x,y) vanishes when x → ∞, then so does f because of (93). This completes
the proof of Lemma A.3.

Proof of Theorem 3.1. Since all the spheres Bi(xi, Ri), i = 1, . . . , N , do not inter-
sect and from the remark after the statement of Weiss’ sphere theorem, we conclude
that IiIj · · ·φk is harmonic not only outside Bi(xi, Ri), but also outside a smaller
sphere B∗(xi, R

2
i /dij), where dij is the distance between xi and the closest point on

∂Bj because Ij · · ·φk has singularities only inside Bj . Therefore, we can find constant
m,M, c such that

• m < 1 < M , c < 1, 1 < cMm,
• BMi (pi,MRi) do not intersect,
• Ii · · · Ijφk is harmonic outside Bmi (pi,mRi).

To achieve this we let 2ε be the smallest distance between the surface of any of the
N spheres. Let q = mini

Ri+ε
Ri

; then the choice M = q
3
4 , m = q−

1
4 , and c = m will

work (for example).
Next, we write

φ =

N∑
j=1

Ωj ,
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where

Ωj = φj +

N∑
i=i1
i1 �=j

Ijφi + · · · +

N∑
i1,...,ik=1
i1 �=j,i� �=i�+1

IjIi1Ii2 · · · Iik−1
φik · · · .(95)

From the remarks above we know that Ωj is harmonic outside Bmj (xj ,mRj).
Our plan is to prove that each term of Ωj satisfies an estimate of the form given

in Lemma A.3. Therefore we must estimate each term in the series. We denote the
kth term of (95) as Tk and let

Y =

N∑
i=1

||φi||Bm
i
.

Then it is obvious that

||T0||Bm
j

= ||φj ||Bm
j
< Y.(96)

To estimate the second term we appeal to Lemma A.1, and we have for i1 �= j

||Ijφi1 ||Bm
j
< c||φi1 ||BM

j
< c||φi1 ||Bm

i1

.

The second inequality follows since BMj is contained in Bmi1 . Now, we sum the above
inequality over i1 to obtain

||T1||Bm
j
< c

N∑
i=i1
i1 �=j

||φi1 ||Bm
i1

< cY.(97)

Now, we look at the kth term and use Lemma A.1 to obtain the following estimate:

||Tk||Bm
j
< c

N∑
i1,...,ik=1
i1 �=j,i� �=i�+1

||Ii1Ii2 · · · Iik−1
φik ||BM

j
.

Next we use the above estimate and the fact that BMj is contained in Bmi1 for i1 �= j
to find

||Tk||Bm
j
< c

N∑
i1,...,ik=1
i1 �=j,i� �=i�+1

||Ii1Ii2 · · · Iik−1
φik ||Bm

i1

.(98)

Applying Lemma A.1 again, we find

||Tk||Bm
j
< c2

N∑
i1,...,ik=1
i1 �=j,i� �=i�+1

||Ii2 · · · Iik−1
φik ||BM

i1
.(99)

Since i1 �= i2, it then follows that all BMi1 are contained in Bmi2 , and we find from the
above inequality

||Tk||Bm
j
< c2

N∑
i2,...,ik=1
i� �=i�+1

||Ii2 · · · Iik−1
φik ||Bm

i2

.(100)
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This is of the same form as (98), so therefore we repeat the same steps as were used
to obtain (99) and (100) and thereby obtain the estimate

||Tk||Bm
j
< ckY.

Next we combine Lemma A.2 and Lemma A.3 to conclude that Ωj is harmonic and
uniformly convergent outside bubble j. It then follows that φ is also harmonic and
uniformly convergent in the liquid region. The completes our proof of Theorem 3.1.

Appendix B. Proof of Theorem 3.2. We begin with the following formula.
Suppose r = (x1, x2, x3); then we have

(101)

(−1)n
(
∇n
(

1

|r|
))

i1···in
=

(2n− 1)!!xi1 · · ·xin
|r|2n+1

+

N2∑
j=1

(−1)j(2n− 2j − 1)!!Aj
|r|2n−2j+1

,

with i1, i2, . . . , in = 1, 2, 3; N2 is the integer part of n2 ; and

Aj =
∑

δk1k2 · · · δk2j−1k2jxk2j+1 · · ·xkn ,

where the sum is over all possible j pairs (k1, k2) · · · (k2j−1, k2j) from i1 to in.
This formula can be proven by induction. Some examples of (101) are(

∇
(

1

|r|
))

i

= − xi
|r|3 ,(

∇2

(
1

|r|
))

ij

=
3xixj
|r|5 − δij

|r|3 ,(
∇3

(
1

|r|
))

ijk

=
−15xixjxk

|r|7 +
3(δijxk + δikxj + δjkxi)

|r|5 ,

where i, j, and k run from 1 to 3.
One can use (101) to prove the following:

(−1)k

(2k − 1)!!
∇kf · ∇k

(
1

|r|
)

= ∇kf · nk

|r|k+1
,(102)

where k ≥ 2 and

n =
r

|r| .

To prove (102) is straightforward. We first notice, since f is harmonic, that

∇kf · δij = 0.

Combining this result with (101), we obtain (102). We are now ready to prove Theo-
rem 3.2; without losing the generality, we assume that p is the origin. According to
Weiss’s sphere theorem, we have

IBf(r) =
1

R

∫ R2

|r|

0

w∇f (wn) · ndw.
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Using a Taylor series expansion for f(r), we can rewrite the above expression as

IBf(r) =
1

R

∫ R2

|r|

0

∞∑
k=1

1

(k − 1)!
wk∇kf(0) · nkdw.

Integrating term by term, we obtain

IBf(r) =

∞∑
k=1

R2k+1

(k − 1)!(k + 1)|r|k+1
∇kf(0) · nk.(103)

Next we combine (102) with (103) to obtain Theorem 3.2. This completes the proof
of Theorem 3.2.

Appendix C. Useful formulas. If g(x) is a harmonic function in B(p, R) and
d, e are constant vectors, then ∫

∂B

g(x)ds = 4πR2g(p),∫
∂B

(d · n)g(x)ds =
4πR3

3
d · ∇g(p),∫

∂B

(d · n)(e · n)ds =
4π

3
R2d · e,∫

∂B

IBg(x)ds = 0,

and

∫
∂B

(d · n) IBg(x)ds =
2πR3

3
d · ∇g(p).

These formulas are established using the orthogonality properties of spherical har-
monics. Theorem 3.2 is used in the proof of the last two equations.

Appendix D. Derivative calculations. In this section we shall compute the
derivatives of K that appear in the Euler–Lagrange equations. When computing these
derivatives, we will not use the expression for K given by (20). Instead we will use
the integral form of K, which we rewrite here:

K = −1

2
ρ�

N∑
j=1

∫
Sj

φ
∂φ

∂n
ds.(104)

We have found it useful, when computing these derivatives, to introduce the
operator Ji, which is defined as follows: if we have N spheres B1, B2, . . . , BN and a
function f(x), which is harmonic outside of Bi, then we say that

g(x) = Jif(x)

if

∂g

∂n
=
∂f

∂n
at ∂Bi,

∂g

∂n
= 0 at ∂Bj when j �= i.

(105)

We note that g(x) will be harmonic outside all of the spheres.
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The operator can be expressed in terms of the image operator (defined in Theo-
rem 3.1) as follows:

Ji(f) = f +

N∑
i1=1,i1 �=i

Ii1f + · · · +

N∑
i1,...,ik=1,ik �=i,ij �=ij+1

Ii1Ii2 · · · Iikf + · · · .(106)

This can be seen by applying Theorem 3.1 with φi = f and φj = 0 if j �= i.
It is easy to verify that the solution to (11) is

φ =

N∑
i=1

Jiφi,(107)

where φi is defined in Theorem 3.1.
One property associated with operator J that we will use, if f and g are harmonic,

is ∫
S

Jif
∂g

∂n
ds =

∫
S

∂Jif

∂n
gds =

∫
Si

∂f

∂n
gds,(108)

where the first equality is Green’s theorem and the second equality follows from the
definition of the operator J .

Proof of (22). We have from (104)

K = −ρ�
2

N∑
j=1

∫
Sj

φ
∂φ

∂n
ds

= −ρ�
2
ρ�

N∑
j=1

∫
Sj

φ(Ṙj + Uj · n)ds.

Thus we have

− 2

ρ�

∂K

∂Ṙi
=

∫
Si

φds+

N∑
j=1

∫
Sj

∂φ

∂Ṙi

∂φ

∂n
ds.(109)

We will consider the two terms on the right-hand side of (109) separately. One has∫
Si

φds =

∫
Si

(φi + ψi + Iiψi)ds.

It follows from Appendix C that this becomes∫
Si

φds = 4πR2
i (−RiṘi + ψi(xi)).(110)

Turning to the second term, we have

N∑
j=1

∫
Sj

∂φ

∂Ṙi

∂φ

∂n
ds =

∫
S

∂φ

∂Ṙi

∂φ

∂n
ds

=
N∑
j=1

∫
S

∂Jjφj

∂Ṙi

∂φ

∂n
ds,
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where we have used (107). Next we observe that Jjφj does not depend on Ṙi unless
i = j; thus we have

N∑
j=1

∫
Sj

∂φ

∂Ṙi

∂φ

∂n
ds =

∫
S

∂Jiφi

∂Ṙi

∂φ

∂n
ds.

Furthermore, the operator Ji does not depend on Ṙi; thus the previous expression
becomes

N∑
j=1

∫
Sj

∂φ

∂Ṙi

∂φ

∂n
ds =

∫
S

Ji

(
∂φi

∂Ṙi

)
∂φ

∂n
ds.(111)

Applying (108), we find∫
S

Ji

(
∂φi

∂Ṙi

)
∂φ

∂n
ds =

∫
Si

∂

∂n

(
∂φi

∂Ṙi

)
φds =

∫
Si

φds.(112)

Combining (109), (110), (111), and (112), we find

∂K

∂Ṙi
= 2πρ�(2R

3
i Ṙ− 2R2

iψi(xi)).

Thus (22) is proven. The proof for (23) is similar to that above.
Proof of (24). When calculating ∂K

∂Ri
, we notice that Ri enters into K in (104) in

three ways:
• the integration region depends on Ri,
• φi depends on Ri,
• the image potential operator Ii depends on Ri.

Therefore we have

∂K

∂Ri
=

∂K

∂RSi
+

∂K

∂Rφi
+

∂K

∂RIi
,

where RSi , Rφi , and RIi represent Ri in the integration region, in φi, and in Ii, respec-
tively.

Step 1. We first assume that φi and Ii are fixed and consider only the effect of
changing the integration region. We have

− 2

ρ�

∂K

∂RSi
=

∂

∂RSi

∫
S

φ
∂φ

∂n
ds =

∂

∂RSi

∫
Si

φ
∂φ

∂n
ds.

It follows from the above result and (17) that

− 2

ρ�

∂K

∂RSi
=

∂

∂RSi

∫
Si

(φi + ψi + Iiψi)
∂φ

∂n
ds.

We continue our calculation by applying Theorem 3.2 to expand Iiψi and using a
Taylor expansion for ψi to obtain

− 2

ρ�

∂K

∂RSi
=

∂

∂RSi

∫
Si

[
− R2

i Ṙi
|r − xi| +

1

2
R3
i∇r

(
1

|r − xi|
)
· Ui

+ ψi(xi) + vi(xi) · (r − xi) − 1

2
R3
ivi(xi) · ∇r

(
1

|r − xi|
)

+ (higher order harmonics)

]
(Ṙi + Ui · n)ds.
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Evaluating the integrand on Si (|r| = Ri) and using the orthogonality properties of
spherical harmonics, we find

− 2

ρ�

∂K

∂RSi
=

∂

∂RSi

∫
Si

[
− R2

i Ṙi
RSi

− R3
i

2(RSi )2
Ui · n + ψi(xi)

+ RSi vi(xi) · n +
R3
i

2(RSi )2
vi(xi) · n

]
(Ṙi + Ui · n)ds.

The integration over Si is performed using the results in Appendix C, and we obtain

− 2

ρ�

∂K

∂RSi
=

∂

∂RSi

[
4π(RSi )2

(
−R2

i Ṙ
2
i

RSi
+ ψi(xi)Ṙi

)

+
4π(RSi )2

3
Ui ·

(
− R3

iUi
2(RSi )2

+RSi vi(xi) +
R3
i

2(RSi )2
vi(xi)

)]
.

Next, we take the derivative of the above expression and evaluate it at RSi = Ri to
obtain

− 2

ρ�

∂K

∂RSi
= −4πR2

i Ṙ
2
i + 8πRiṘiψi(xi) + 4πR2

iUi · vi(xi).(113)

Step 2. We now assume that the integration region and Ii are fixed, and that
only Ri in φi is changing. We need to calculate

− 2

ρ�

∂K

∂Rφi
=

∂

∂Rφi

∫
S

φ
∂φ

∂n
ds.

Applying (107) and using the fact that only φi is changing, we have

− 2

ρ�

∂K

∂Rφi
=

∂

∂Rφi

∫
S

Ji(φi)
∂φ

∂n
ds.

In this case neither Ji nor ∂φ∂n depend on Rφi ; thus we may write the above equation
as

− 2

ρ�

∂K

∂Rφi
=

∫
S

Ji

(
∂φi

∂Rφi

)
∂φ

∂n
ds.

Substituting our expression for φi given by (13), we have

− 2

ρ�

∂K

∂Rφi
=

∫
S

Ji

(
− 2Rφi Ṙi
|r − xi| +

3

2
(Rφi )

2∇r
(

1

|r − xi|
)
· Ui

)
∂φ

∂n
ds.

It follows from (108) and (17) that we can write the previous expression as

− 2

ρ�

∂K

∂Rφi
=

∫
Si

∂

∂n

(
− 2Rφi Ṙi
|r − xi| +

3

2
(Rφi )2∇r

(
1

|r − xi|
)
· Ui

)
(φi + ψi + Iiψi)ds.



1882 NIANQING WANG AND PETER SMEREKA

Evaluating the normal derivatives at the bubble surface and setting Rφi = Ri, we
obtain

− 2

ρ�

∂K

∂Rφi
=

∫
Si

(
2Ṙi
Ri

+
3Ui · n
Ri

)
(φi + ψi + Iiψi)ds.

Next, (13) and the results of Appendix C are used to deduce

− 2

ρ�

∂K

∂Rφi
= −8πR2

i Ṙ
2
i + 8πRiṘiψi(xi) − 2πR2

i |Ui|2 + 6πR2
iUi · vi(xi).(114)

Step 3. Finally, we wish to calculate ∂K
∂Ri

, where only Ri in the operator Ii is
changing. We start with

− 2

ρ�

∂K

∂RIi
=

∂

∂RIi

∫
S

φ
∂φ

∂n
ds.

Since ∂φ∂n and the region of integration does not depend on RIi , we then have

− 2

ρ�

∂K

∂RIi
=

∫
S

∂φ

∂RIi

∂φ

∂n
ds.(115)

The task at hand then is to calculate ∂φ
∂RI

i
. This will be done using (14). Some

terms of φ in (14) have multiple occurrences of Ii. For these terms, we separate each
into several terms, so that after the separation, each term only has one changing Ii,
denoted by Ĩi. For example, we have

∂

∂RI1
I1I2I1I3I4I1φ3 =

∂

∂RI1

(
Ĩ1I2I1I3I4I1φ3 + I1I2Ĩ1I3I4I1φ3 + I1I2I1I3I4Ĩ1φ3

)
.

By doing this, we find

∂φ

∂RIi
=

∂

∂RIi




Id+

∑
jl �=jl+1,jm �=i

Ij1 · · · Ijm


 Ĩi


 ∑
i �=k1,kl �=kl+1

Ik1 · · · Iknφkn+1




 ,

where Id is the identity operator. From the expressions of Ji and ψi in (106) and
(16), we obtain

∂φ

∂RIi
=
∂JiĨiψi
∂RIi

.

Since Ji does not depend on RIi , we can write the previous equation as

∂φ

∂RIi
= Ji

(
∂Ĩiψi
∂RIi

)
.

We use the above equation to rewrite (115) as

− 2

ρ�

∂K

∂RIi
=

∫
S

Ji

(
∂Ĩiψi
∂RIi

)
∂φ

∂n
ds.
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It follows from (108) that

− 2

ρ�

∂K

∂RIi
=

∫
Si

φ
∂

∂n

(
∂Ĩiψi
∂RIi

)
ds

=

∫
Si

(φi + ψi + Iiψi)
∂

∂n

(
∂Ĩiψi
∂RIi

)
ds.

If we expand Ĩiψi using (103), we can show

∂

∂n

(
∂Ĩiψi
∂RIi

)
= W =

∞∑
k=1

−(2k + 1)(RIi )
k−2

(k − 1)!
∇kψi(xi) · nk.

We also expand Iiψi using (103) and expand ψi in a Taylor series to obtain

− 2

ρ�

∂K

∂RIi
=

∫
Si

[
−RiṘi − Ri

2
Ui · n +

∞∑
k=0

1

k!
Rki∇kψi(xi) · nk

+

∞∑
k=1

R2k+1
i

(k − 1)!(k + 1)Rk+1
i

∇kψi(xi) · nk
]
Wds

=

∫
Si

(
−Ri

2
Ui · n +

∞∑
k=1

2k + 1

(k + 1)!
Rki∇kψi(xi) · nk

)
Wds

= 2πR2
iUi · vi(xi) − 6πR2

i |vi(xi)|2 + F,(116)

where we have let RIi = Ri. F contains terms involving ∇kψ · ∇kψ with k > 1. We
have used the orthogonality of spherical harmonics and the results in Appendix C to
arrive at (116). Combining all three parts ((113), (114), and (116)), we have

∂K

∂Ri
= 2πρ�

(
3R2
i Ṙ

2
i +

1

2
R2
i |Ui|2 − 4RiṘiψi(xi) − 3R2

iUi · vi(xi) +
3

2
R2
i |vi|2 + F

)
,

which is (24).
Proof of (25). We first expand the monopole and dipole terms at x in Laurent

series around y:

1

|r − x| =
∞∑
n=0

1

n!

|x − y|2n+1

|r − y|2n+1
∇ny
(

1

|x − y|
)
· (r − y)n

=
1

|r − y| +
(x − y) · (r − y)

|r − y|3 + · · · ,

∇r

(
1

|r − x|
)

=
∞∑
n=0

−(2n+ 1)

n!

|x − y|2n+1

|r − y|2n+3
∇ny
(

1

|x − y|
)
· (r − y)n+1

+
1

(n− 1)!

|x − y|2n+1

|r − y|2n+1
∇ny
(

1

|x − y|
)
· (r − y)n−1

= ∇r

(
1

|r − y|
)

+ · · · .
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We follow the same procedure as in the previous section to calculate ∂K
∂xi

. If xIi , xφi ,

and xIi are used to represent xi in the integration region, in φi, and in Ii, respectively,
we can make our calculation by using the same arguments as in the previous section
and the two Laurent series above. Without writing the details, we obtain

∂

∂xSi

∫
S

φ
∂φ

∂n
ds = 4πR2

i Ṙivi +
4π

3
R2
i ṘiUi +

4π

3
R2
i + (∇vi)

T · Ui,

∂

∂xφi

∫
S

φ
∂φ

∂n
ds = −4π

3
R2
i ṘiUi + 4πR2

i Ṙivi + 2πR3
i (∇vi)

T · Ui,

∂

∂xIi

∫
S

φ
∂φ

∂n
ds =

2π

3
R3
i (∇vi)

T · Ui − 4πR3
i + (∇vi)

T · vi +G,

where vi = vi(xi) and G will have only terms involving ∇kψi(xi) · ∇k+1ψi(xi), with
k > 1. Adding all three parts together, we have

∂K

∂xi
= 2πρ�

(
−2R2

i Ṙivi +R3
i (∇vi)

T · (vi − Ui) +G
)
.

Appendix E. Energy dissipation and drag force. In this appendix, we will
calculate energy dissipation of bubbly flow with a finite number of bubbles. We then
calculate the drag force on each bubble.

Energy dissipation. From (72), we have

D = −µ
∫
S

∂(∇φ · ∇φ)

∂r
ds.

Using (17) in the above expression, we have

D = −µ
N∑
i=1

∫
Si

∂

∂n
|∇ (φi + ψi + Iiψi)|2 ds.

Applying Theorem 3.2 and expanding ψi, we obtain

D =−µ
N∑
i=1

∫
Si

∂

∂n

∣∣∣∣∣∇
(

− R2
i Ṙi

|r − xi| +
1

2
R3
i∇r

(
1

|r − xi|
)
· Ui

+ ψi(xi) + vi(xi) · (r − xi) − 1

2
R3
ivi(xi) · ∇r

(
1

|r − xi|
)

+ (higher order harmonics)

)∣∣∣∣∣
2

ds

=−µ
N∑
i=1

∫
Si

∂

∂n

∣∣∣∣∣−R2
i Ṙi∇r

(
1

|r − xi|
)

+
1

2
R3
i∇2

r

(
1

|r − xi|
)
· (Ui − vi)

+ vi + (higher order harmonics)

∣∣∣∣∣
2

ds.
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Since spherical harmonics of different order are orthogonal to each other, we calculate
each term in the above equation separately. For the monopole term, we have∫

Si

∂

∂n

∣∣∣∣∣∇
(
− R2

i Ṙi
|r − xi|

)∣∣∣∣∣
2

ds =

∫
Si

∂

∂n

[
R4
i Ṙ

2
i

|r − xi|4
]
ds

=

∫
Si

−4Ṙ2
i

|r − xi|ds

= −16πRiṘ
2
i .

A direct calculation from Mathematica shows us that∫
Si

∂

∂n

(
∂2

∂x2

(
1

|r − xi|
))2

ds = − 96π

5R5
i

,∫
Si

∂

∂n

(
∂2

∂x2

(
1

|r − xi|
)

∂2

∂y2

(
1

|r − xi|
))

ds =
48π

5R5
i

,∫
Si

∂

∂n

(
∂2

∂x2

(
1

|r − xi|
)

∂2

∂x∂y

(
1

|r − xi|
))

ds = 0,∫
Si

∂

∂n

(
∂2

∂x2

(
1

|r − xi|
)

∂2

∂y∂z

(
1

|r − xi|
))

ds = 0,∫
Si

∂

∂n

(
∂2

∂x∂y

(
1

|r − xi|
)

∂2

∂x∂y

(
1

|r − xi|
))

= − 72π

5R5
i

,∫
Si

∂

∂n

(
∂2

∂x∂y

(
1

|r − xi|
)

∂2

∂x∂z

(
1

|r − xi|
))

= 0.

With these results, we can calculate dipole terms in energy dissipation and find∫
Si

∂

∂n

∣∣∣∣∇
(

1

2
R3
i∇r

(
1

|r − xi|
)
· (Ui − vi(xi))

)∣∣∣∣2 ds
= −1

4
R6
i

(
96π

5R5
i

+
72π

5R5
i

+
72π

5R5
i

)
|Ui − vi(xi)|2

= −12πRi|Ui − vi(xi)|2.
Hence one finds

D =

N∑
i=1

µπRi

(
16Ṙ2

i + 12|Ui − vi(xi)|2
)

+ (terms caused by higher order harmonics).

Drag force. We assume there is no radial oscillation and all bubbles have same
radius R. Then

Fi = −1

2

∂D
∂Ui

= −6µπR
∂

∂Ui

N∑
j=1

|Uj − vj |2

= −6µπR
∂

∂Ui

N∑
j=1

(|Uj |2 − 2Uj · vj(xj) + |vj(xj)|2)

= −12µπR


Ui − ∂

∂Ui

N∑
j=1

Uj · vj(xj) +
1

2

∂

∂Ui

N∑
j=1

|vj(xj)|2

 .(117)
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From the expression for the kinetic energy K in (20), we have, when radial oscillations
are absent,

N∑
j=1

Uj · vj(xj) = − K

πρ�R3
+

1

3

N∑
j=1

|Uj |2.

Hence one finds

∂

∂Ui

N∑
j=1

Uj · vj(xj) = − 1

πρ�R3

∂K

∂Ui
+

2

3
Ui.

Using (23), we have

∂

∂Ui

N∑
j=1

Uj · vj(xj) = 2vi(xi).(118)

Unfortunately we cannot calculate exactly

∂

∂Ui

N∑
j=1

|vj(xj)|2,

and we will use (14) to provide an approximate calculation. Using the first term in
(14), we have

φ ≈
N∑
j=1

φi,

and it follows that

ψj ≈
N∑

k �=j,k=1

φk.

With the expression for φj in (13), we have

∂vj(xj)

∂Ui
=
∂∇ψj(xj)

∂Ui
≈
{

1
2R

3
i∇2

(
1

|xi−xj |
)
, i �= j,

0, i = j.

Therefore we find (with Ri = R)

(119)

∂

∂Ui

N∑
j=1

|vj(xj)|2 = 2

N∑
j=1

∂vj(xj)

∂Ui
· vj(xj) =

N∑
j=1,j �=i

R3∇2

(
1

|xi − xj |
)
· vj(xj).

Using (117), (118), and (119), we obtain

Fi ≈ −12πµR(Ui − 2vi(xi) − wi(xi)),

where

wi(r) = −
∑
j �=i

1

2
R3∇2

(
1

|r − xj |
)
· vj(xj).
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Abstract. We provide a complete description of the critical threshold phenomenon for the two-
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1. Introduction and statement of main results. We are concerned with the
critical threshold phenomenon in multidimensional Euler–Poisson equations. In this
paper we consider a localized version of the following two-dimensional (2D) Euler–
Poisson equations:

∂tρ+∇ · (ρU) = 0, x ∈ R
2, t ∈ R

+,(1.1)

∂t(ρU) +∇ · (ρU ⊗ U) = −kρ∇φ,(1.2)

−∆φ = ρ− c, x ∈ R
2,(1.3)

which are the usual statements of the conservation of mass, Newton’s second law,
and the Poisson equation defining, say, the electric field in terms of the charge. Here
k > 0 is a scaled physical constant, which signifies the property of the underlying
repulsive forcing (avoiding the case of an attractive force with k < 0), and c denotes
the constant “background” state. The unknowns are the local density ρ = ρ(x, t), the
velocity field U = (u, v)(x, t), and the potential φ = φ(x, t). It follows that, as long
as the solution remains smooth, the velocity U solves a forced transport equation

∂tU + U · ∇U = F, F = −k∇φ,(1.4)

with φ being governed by Poisson’s equation (1.3).
This hyperbolic-elliptic coupled system (1.1)–(1.3) describes the dynamic behav-

ior of many important physical flows, including charge transport [25], plasma with
collision [15], cosmological waves [3], and the expansion of cold ions [13]. Let us men-
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tion that the Euler–Poisson equations could also be realized as the semiclassical limit
of the Schrödinger–Poisson equation and are found in the “cross section” of Vlasov–
Poisson equations. These relations have been the subject of a considerable amount of
work in recent years, and we refer to [11, 7] and references therein for further details.

To put our study in the proper perspective we recall a few of the references
from the considerable amount of literature available on the behavior of the Euler–
Poisson and related problems. Let us mention the local existence in the small Hs-
neighborhood of a steady state, e.g., [21, 26, 10]; the global existence of weak solutions
with geometrical symmetry [6]; the two-carrier types in one dimension [32]; and the
relaxation limit for the weak entropy solution (consult [24] for the isentropic case, and
[16] for the isothermal case). Recently, the global existence of time-dependent sheaths
with geometric symmetry was established in [14] by studying the Euler–Poisson system
(1.1)–(1.3) with c = e−φ, the so-called Boltzmann relation.

For the question of global behavior of strong solutions, however, the choice of the
initial data and/or damping forces is decisive. The nonexistence results in the case
of attractive forces, k < 0, have been obtained by Makino and Perthame [23], and for
repulsive forces by Perthame [27]. For research on the singularity formation in the
model with diffusion and relaxation, consult [33]. In all these cases, the finite lifespan
is due to a global condition of large enough initial (generalized) energy, staying outside
a critical threshold ball. Using the characteristic-based method, Engelberg [8] gave
local conditions for the finite-time loss of smoothness of solutions in Euler–Poisson
equations. Global existence due to damping relaxation and with nonzero background
can be found in [30, 31, 17]. For the model without damping relaxation the global
existence was obtained by Guo [12], assuming that the flow is irrotational. His result
applies to H2-small neighborhoods of constant state.

When dealing with the questions of time regularity for Euler–Poisson equations
without damping, one encounters several limitations of the classical stability analysis.
Among other issues, we mention that

(i) stability analysis does not tell us how large perturbations can be before losing
stability—indeed, the smallness of the initial perturbation is essential to making the
energy method work (see, e.g., [12]);

(ii) the steady solution may be only conditionally stable due to the weak dissipa-
tion in the system, say, in the one-dimensional (1D) Euler–Poisson equations [9].

In order to address these difficulties, we advocated, in [9], a new notion of critical
threshold (CT), which describes the conditional stability of the 1D Euler–Poisson
equations, where the answer to the question of global vs. local existence depends on
whether the initial configuration crosses an intrinsic O(1) critical threshold. Little
or no attention has been paid to this remarkable phenomenon, and our goal is to
bridge the gap of previous studies on the behavior in Euler–Poisson solutions, a gap
between the regularity of Euler–Poisson solutions “in the small” and their finite-time
breakdown “in the large.” The CT in the 1D Euler–Poisson system was completely
characterized in terms of the relative size of the initial velocity slope and the initial
density. Moving to the multidimensional setup, one has first to identify the proper
quantities which govern the critical threshold phenomenon. In [19] we have shown
that these quantities depend in an essential manner on the eigenvalues of the gradient
velocity matrix, ∇u. In order to trace the evolution of M := ∇U , we differentiate
(1.4), obtaining formally

∂tM + U · ∇M +M2 = −k(∇⊗∇)φ = kR[ρ− c],(1.5)
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where R[ ] is the 2× 2 Risez matrix operator, defined as

R[f ] =: ∇⊗∇∆−1[f ] = F−1

{
ξjξk
|ξ|2 f̂(ξ)

}
j,k=1,2

.

The above system is complemented by its coupling with the density ρ, which is gov-
erned by

∂tρ+ U · ∇ρ+ ρtrM = 0.(1.6)

Passing to the Lagrangian coordinates, that is, using the change of variables α 	→
x(α, t) with x(α, t) solving

dx

dt
= U(x, t), x(α, 0) = α,

Euler–Poisson equations are recast into the coupled system

d

dt
M +M2 = kR[ρ− c],(1.7)

d

dt
ρ+ ρtrM = 0,(1.8)

with d/dt standing for the usual material derivative, ∂t+U ·∇. It is the global forcing,
kR[ρ − c], which presents the main obstacle to studying the CT phenomenon of the
multidimensional Euler–Poisson setting.

In this work we focus on the restricted Euler–Poisson (REP) system introduced in
[19], which is obtained from (1.7) by restricting attention to the local isotropic trace,
k
2 (ρ− c)I2×2, of the global coupling term kR[ρ− c], namely,

d

dt
M +M2 =

k

2
(ρ− c) · I2×2,(1.9)

d

dt
ρ+ ρtrM = 0.(1.10)

We are concerned with the initial value REP problem (1.9), (1.10), subject to initial
data

(M,ρ)(·, 0) = (M0, ρ0).

We note in passing that the REP system is to the full Euler–Poisson equations what
the restricted Euler model is to the full Euler equations; consult [29, 4, 1, 2, 5, 19]. The
existence of a critical threshold phenomenon associated with this 2D REP model with
zero background, c = 0, was first identified by us [19]. The current paper provides
a precise description of the critical threshold for the 2D REP system (1.9), (1.10),
with both zero and nonzero background charges. In particular, we use the so-called
spectral dynamics lemma [19, Lemma 3.1] to obtain remarkable explicit formulae for
the critical threshold surfaces summarized in the main Theorems 1.1 and 1.2 below.

To state our main results, we introduce two quantities with which we characterize
the behavior of the velocity gradient tensorM . These are the trace, d := trM (and we
note that in caseM coincides with ∇U , then d stands for the divergence, d = ux+vy),
and the nonlinear quantity Γ := (trM)2 − 4detM , which serves as an index for the
spectral gap. Indeed, if λi, i = 1, 2, are the eigenvalues of M , then

λ1 =
1

2
[d−

√
Γ], λ2 =

1

2
[d+

√
Γ],
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and hence Γ is nothing but the square of the spectral gap Γ = (λ2 − λ1)
2. We note

that when M coincides with ∇U , then Γ = (ux − vy)
2 + 4uyvx, and the role of this

spectral gap was first identified in the context of the 2D Eikonal equation in [19,
Lemma 5.2].

We observe that if Γ < 0, then the spectral gap is purely imaginary. Otherwise,
the spectral gap is real.

Theorem 1.1 (2D REP with zero background). Consider the 2D repulsive REP
system (1.9)–(1.10), with k > 0 and with zero background c = 0. The solution of the
2D REP remains smooth for all time if and only if the initial data (ρ0,M0) lies in
one of the following two regions, (ρ0, d0,Γ0) ∈ S1 ∪ S2:

(i) (ρ0, d0,Γ0) ∈ S1,

S1 :=

{
(ρ, d,Γ)

∣∣∣ Γ ≤ 0 and

{
d ≥ 0 if ρ = 0,
d arbitrary if ρ > 0,

}}
(ii) (ρ0, d0,Γ0) ∈ S2,

S2 :=
{
(ρ, d,Γ)

∣∣∣ ρ > 0, Γ > 0, and d ≥ g(ρ,Γ)
}
,

where

g(ρ,Γ) := sgn(Γ− 2kρ)

√
Γ− 2kρ+ 2kρ ln

(
2kρ

Γ

)
.

Theorem 1.2 (2D REP with nonzero background). Consider the 2D repulsive
REP system (1.9)–(1.10), with k > 0 and with nonzero background c > 0. The solution
of the 2D REP remains smooth for all time if and only if the initial data (ρ0,M0) lies
in one of the following three regions, (ρ0, d0,Γ0) ∈ S1 ∪ S2 ∪ S3:

(i) (ρ0, d0,Γ0) ∈ S1,

S1 :=

{
(ρ, d,Γ)

∣∣∣ Γ ≤ 0 and

{
d ≥ 0 if ρ = 0,
d arbitrary if ρ > 0,

}}
(ii) (ρ0, d0,Γ0) ∈ S2,

S2 :=

{
(ρ, d,Γ)

∣∣∣ 0 < Γ <
k

2c
ρ2 and

{ |d| ≤ g1(ρ,Γ) if Γ < 2k(ρ− c),
d ≥ g1(ρ,Γ) if Γ ≥ 2k(ρ− c),

}}
where

g1(ρ,Γ) :=

√√√√Γ− 2k

[
c+
√
ρ2 − 2ck−1Γ + ρ ln

(
ρ−
√
ρ2 − 2ck−1Γ

2c

)]
,

(iii) (ρ0, d0,Γ0) ∈ S3,

S3 :=

{
(ρ, d,Γ)

∣∣∣ Γ =
k

2c
ρ2, d = g2(ρ,Γ), ρ > 0

}
,

where

g2(ρ) = g1(ρ,Γ)|Γ= k
2cρ

2 :=

√
−2ck +

k

2c
ρ2 + 2kρ ln

(
2c

ρ

)
.
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Several remarks are in order.
1. The above results show that the global smooth solution is ensured if the initial

velocity gradient has complex eigenvalues, which applies, for example, for a class of
initial configurations with sufficiently large vorticity |u0y−v0x| � 1. With other initial
configurations, however, the finite-time breakdown of solutions may, and actually
does, occur unless the initial divergence is above a critical threshold, expressed in
terms of the initial density and initial spectral gap. Hence, global regularity depends
on whether the initial configuration crosses an intrinsic O(1) critical threshold.

2. The critical threshold in the 1D Euler–Poisson equations depends on the
relative size of the initial velocity slope and the initial density; consult [9]. In contrast
to the 1D scenario, the critical threshold presented here depends on three initial
quantities: density ρ0, divergence ∇ ·U0, and initial spectral gap Γ0 = (u0x− v0y)2 +
4u0yv0x.

3. Theorem 1.1 tells us that the size of the initial subcritical range which gives
rise to the regular solution is decreasing as the initial ratio Γ0/ρ0 is increasing. In
particular, when this ratio is larger than 2k, then the initial divergence must stay
above a positive critical threshold to avoid the finite-time breakdown.

4. From Theorem 1.2 we see that the initial critical range which guarantees global
regularity shrinks as the initial ratio Γ0/ρ

2
0 is increasing in (−∞, k2c ). Finite-time

breakdown must occur when this ratio is larger than k
2c .

5. The limit c ↓ 0 is a sort of singular limit , and hence one cannot recover
Theorem 1.1 simply by passing to the limit c→ 0 in Theorem 1.2.

It is well known that a finite-time breakdown is a generic phenomenon for non-
linear hyperbolic convection equations, which is realized by the formation of shock
discontinuities. In the context of Euler–Poisson equations, however, there is a deli-
cate balance between the forcing mechanism (governed by a Poisson equation) and
the nonlinear focusing (governed by Newton’s second law), which supports a critical
threshold phenomenon.

In this paper we show how the persistence of the global features of the solutions for
REP hinges on a delicate balance between the nonlinear convection and the localized
forcing mechanism dictated by the Poisson equation. Here we use these restricted
models to demonstrate the ubiquity of critical thresholds in the solutions of some
of the equations of mathematical physics. This remarkable CT phenomenon has
been found in other contexts, such as the scalar convolution model for nonlinear
conservation laws [18], a nonlocal model in the nonlinear wave propagation [28], etc.
Let us mention in particular the recent study [20], which shows, in the 2D case, how
rotation enforces a CT phenomenon through which it prevents finite-time breakdown
of nonlinear convection. Let us point out that the approach taken in this paper
applies to the 3D case, leading to a closed 4× 4 nonlinear system of ODEs governing
the time-dynamics of the 3D REP. Identifying the CT phenomenon for such a system,
however, is a formidable task which we hope to pursue in a future work.

In this paper we focus our attention on the restricted Euler–Poisson equations,
“restricted” in the sense of using the same recipe for localized forcing as in the re-
stricted Euler dynamics [29, 4, 1, 2, 5, 19]. We note in passing that the presence of
global forcing in the full 2D Euler–Poisson equation, where (ρ− c)I2×2 on the right-
hand side of (1.9) is restored to the full R[ρ− c] term, should allow for an additional
stabilizing effect. We conjecture, therefore, that the full 2D Euler–Poisson equations
admit a similar CT phenomenon, and in particular, that they admit global smooth so-
lutions for subcritical initial data. As remarked earlier, the main obstacle in handling
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this global case is the lack of an accurate description for the propagation of the Risez
transform. Finally, one should not expect the current pressureless model to provide
a faithful description of the model with pressure. The addition of a pressure term
provides yet an additional mechanism for mixing between different particle paths.

We now conclude this section by outlining the rest of the paper. In section 2 we
study the critical threshold for the REP with zero background. The key observation
is that the spectral gap is conserved along the particle path. With this property we
will be able to reduce the full dynamics on the 2D manifold parameterized by this
initial spectral gap. In section 3 we discuss the critical threshold for the REP with
nonzero background, where the CT arguments become considerably more involved.
We treat the different cases which are indexed by the initial spectral gap.

2. 2D REP with zero background. In this section we prove the existence of
the critical threshold of the 2D REP with zero background (c = 0)

d

dt
M +M2 =

k

2
ρI2×2,(2.1)

d

dt
ρ+ ρtrM = 0.(2.2)

This system with initial data (ρ0,M0) is well posed in the usual Hs Sobolev spaces for
a short time. The global regularity follows from the standard boot-strap argument,
once an a priori estimate on ‖M(·)‖L∞ is obtained. First we show that, for the 2D REP
(2.1)–(2.2), the velocity gradient tensor is completely controlled by the divergence d
and the density ρ.

Lemma 2.1. Let M be the solution of the 2D REP; then the boundedness of M
depends on the boundedness of trM and ρ; namely, there exists a constant, Const =
ConstT , such that

‖M(·, t)‖L∞[0,T ] ≤ ConstT .‖(trM, ρ)‖L∞[0,T ].

Proof. For the 2D case the velocity gradient tensor is completely governed by
p := M11 −M22, q := M12 +M21, ω = M12 −M21, and d = M11 +M22. From the
M equation (2.1),

d

dt

(
M11 M12

M21 M22

)
+

(
M2

11 +M21M12 dM12

dM21 M21M12 +M2
22

)
=
k

2
ρI2×2,

one can obtain

d

dt
p+ pd = 0,

d

dt
q + qd = 0,

d

dt
ω + ωd = 0,

which, when combined with the mass equation

d

dt
ρ+ ρd = 0,

gives

(p, q, ω) = (p0, q0, ω0)ρ
−1
0 ρ.

This shows that |Mij |L∞ are bounded in terms of |d|L∞ and |ρ|L∞ as asserted.
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This lemma tells us that to show the global regularity it suffices to control the
divergence d and the density ρ. Let λi, i = 1, 2, be the eigenvalues of the velocity
gradient tensor; then d = λ1 + λ2, and the continuity equation (1.10) reads

d

dt
ρ+ ρ(λ1 + λ2) = 0.(2.3)

The spectral dynamics lemma [19, Lemma 3.1] tells us that the velocity gradient
equation (1.9) yields

d

dt
λ1 + λ2

1 =
k

2
ρ,(2.4)

d

dt
λ2 + λ2

2 =
k

2
ρ.(2.5)

Following [19], we consider the difference of the last two equations, which gives for
η := λ2 − λ1

d

dt
η + η(λ1 + λ2) = 0.

This, combined with the mass equation (2.3) and trM = λ1 + λ2, yields

d

dt

(
η

ρ

)
= 0 ⇒ η

ρ
=
η0(α)

ρ0(α)
, α ∈ R

2.

Set β := η2
0(α)/ρ

2
0(α) as a moving parameter with the initial position α ∈ R

2; one
then obtains a closed system for ρ and d:

ρ′ + ρd = 0, ′ :=
d

dt
,(2.6)

d′ +
d2 + βρ2

2
= kρ.(2.7)

The first is the mass equation; the second is a restatement of summing (2.4), (2.5),
d′ + (d2 + η2)/2 = kρ with η2 = βρ2.

We shall study the dynamics of (ρ, d) parameterized by β. It is easy to see that
if the initial eigenvalues are complex, then the eigenvalues remain complex as time
evolves. From

β =
Γ0

ρ2
0

, Γ0 = (λ2(0)− λ1(0))
2,

we see that we need to distinguish between two cases, namely, β < 0, where the initial
spectral gap is complex, and β ≥ 0, where the initial spectral gap is real.

2.1. Complex spectral gap. We first study the case β < 0 when the initial
eigenvalues are complex, i.e., Im(λi) �= 0.

Lemma 2.2. The solution of a 2D REP remains smooth for all time if eigenvalues
are initially complex. Moreover, there is a global invariant given by

d2 − βρ2

ρ
+ 2k ln ρ = Const.(2.8)
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Fig. 2.1. Zero level set d′ = 0. Complex spectral gap.

Proof. To obtain the desired global invariant we set q := d2; then from (2.6)–(2.7)
we deduce

dq

dρ
= 2d

d′

ρ′
= −2k + βρ+

q

ρ
.

Integration gives

q

ρ
− βρ+ 2k ln ρ = Const,

which leads to (2.8). The boundedness of d follows at once, since for negative β’s,

d2 ≤ max
ρ>0

{
Const.ρ− 2k ln ρ+ βρ2

}
=: C2

1 .

In particular, substitution of the lower bound d ≥ −C1 into the mass equation
gives

ρ′ ≤ C1ρ,

which yields the desired upper bound for the density, ρ(·, t) ≤ ρ0(α)e
C1t.

Remark. More precise information about the large time behavior is available from
phase plane analysis. According to (2.7), the zero level set d′ = 0 is the hyperbola
Q := kρ− (d2 + βρ2)/2 = 0, with a right branch passing the critical point (0, 0) and
a left branch located in the left half-plane, ρ < 0; see Figure 2.1.

The trajectory on the plane ρ < 0 does not affect the solution behavior in the
region ρ > 0 since ρ = 0 is an invariant set governed by

ρ ≡ 0, d′ = −d
2

2
→ d(t) =

d0

1 + d0
2 t
.

Note that (0, 0) is the only critical point of the autonomous ODE system (2.6), (2.7)
on the right half phase plane, and that the vector field in {(ρ, d), Q < 0, d ≥ 0} is
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Fig. 2.2. Zero level set d′ = 0. Real spectral gap.

converging to the critical point (0, 0). It follows that for global smoothness it suffices
to control the divergence d from below in the region {(ρ, d), Q < 0, d < 0, ρ > 0} and
to control the density from above in the region {(ρ, d), Q > 0}.

For the former case we have, recalling that β < 0,(
d

ρ

)′
= k +

d2

2ρ
− βρ

2
≥ k,

and its integration along a particle path gives

d ≥
(
kt+

d0

ρ0

)
ρ.

This shows that the divergence d is bounded from below, and, in particular, it becomes
positive for large time since the density is positive. To the upper bound for ρ in the
region Q > 0, where d(t) ≥ d0(α), we substitute this estimate into the mass equation,
yielding

ρ′ ≤ −ρd0(α).

This clearly gives the upper bound for the density ρ ≤ ρ0(α)e
−d0t.

2.2. Real spectral gap. When β ≥ 0, the initial spectral gap is real, and there
are two cases to be considered, as follows.

Subcase 1. β = 0 when the eigenvalues are equal, i.e., λ1(0) = λ2(0). In this
case the zero level set d′ = 0 becomes a parabola passing through the only critical
point (0, 0) (see Figure 2.2), and one can repeat arguments similar to our phase plane
analysis in the previous case of distinct real roots. Note that the global invariant (2.8)
becomes

d2

ρ
+ 2k ln ρ = Const.

Subcase 2. β > 0 when the eigenvalues are initially real.
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Lemma 2.3. If eigenvalues of ∇U0 are real, then the solution of 2D REP remains
smooth for all time if and only if

λ1(0) + λ2(0) ≥ g(ρ0),

where

g(ρ) := sgn

(
ρ− 2k

β

)√
ρ×
(
F (ρ)− F

(
2k

β

))
, F (ρ) = βρ− 2k ln ρ.

Proof. The system (2.6)–(2.7) has two critical points on the phase plane: O(0, 0)
and A( 2k

β , 0); see Figure 2.3.

The coefficient matrix of the linearized system around (ρ∗, d∗) is

L(ρ∗, d∗) =

( −d∗ −ρ∗
k − βρ∗ −d∗

)
.

A simple calculation gives the eigenvalues of L,

λ± = −d∗ ±
√
ρ∗(βρ∗ − k).

At (0, 0), we have λ1 = λ2 = 0, and hence (0, 0) is a nonhyperbolic critical point.

Another critical point, A( 2k
β , 0), is a saddle since λ1,2 = ±

√
2
βk. We shall use the

above facts to construct the critical threshold via the phase plane analysis.
Assume that the seperatrix enters (leaves) A along the line d = s(ρ− 2k

β ). Upon
substitution into the linearized system around A, i.e.,

ρ′ = −2k

β
d, d′ = −k

(
ρ− 2k

β

)
,

one can obtain

s = ±
√
β

2
.
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Thus, two seperatrices leave/enter A along the directions

θ1 = −arctg

√
β

2
and θ2 = arctg

√
β

2
.

In the phase plane the zero level set d′ = 0 is an ellipse (see Figure 2.3),

d2 + β

(
ρ− k

β

)2

=
k2

β
.

Let γs(A) be the portion of the stable manifold of the system coming into A from
{d < 0}. In order to prove the existence of a critical threshold it suffices to show
that γs(A) can come only from O. Let B be the lowest point of the ellipse with
coordinates ( kβ ,− k√

β
), and let PB be a horizontal line intersecting with ρ = 0 at

(0,− k√
β
). According to the vector field inside the ellipse we see that the trajectory

γs(A) can come only from the area OPB by crossing the curve OB. Note that
the vector field on PB is going outside OPB and that ρ = 0 is invariant. Thus
all trajectories in the area OPB originate from O. Therefore γs(A) can originate
only from O (as t → −∞) and becomes a portion of one unstable manifold of O.
By symmetry we can show that the unstable manifold of the system issued from A
entering {d > 0} will end through the portion {d > 0} at O.

Thus the critical curve g : R
+ → R is the one defined as

{(ρ, d), d = g(ρ)} = γs(A).

In order to have a precise formula for g we need to use the global invariant (2.8), i.e.,

d2 − βρ
ρ

+ 2k ln ρ = Const.

Thus all trajectories can be expressed as

d2 = ρ[C(α) + F (ρ)],

with

C(α) =
d2
0

ρ0
− F (ρ0), F (ρ) := βρ− 2k ln ρ.

Note that F (ρ) is a convex function and minρ>0 F = F ( 2k
β ) = 2k[1 − ln(2k

β )]. Due
to the symmetry, the homoclinic connection is possible when the trajectory passes
(ρ0, 0) with ρ0 ≤ 2k

β and converging to (0, 0) as t → ±∞; i.e., the initial data must

satisfy 0 < ρ0 <
2k
β and

C(α) ≤ −F
(

2k

β

)
, i.e.,

d2
0

ρ0
≤ F (ρ0)− F

(
2k

β

)
.

The seperatrices passing through (2k
β , 0) correspond to C(α) = −F ( 2k

β ). The stable

manifold γs(A) can be written as d = g(ρ) for 0 ≤ ρ <∞, where

g(ρ) = sgn

(
ρ− 2k

β

)√
ρ

(
F (ρ)− F

(
2k

β

))
.
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It remains to prove that the initial data satisfying d0 < g(ρ0) always lead to finite-time
breakdown.

First, in the region {(ρ, d), d < −
√
ρ(F (ρ)− F ( 2k

β ))}, there must exist a finite
time T1 > 0 such that ρ(T1) >

2k
β for ρ0 ≤ 2k

β (take T1 = 0 for ρ0 >
2k
β ) since ρ′ > 0.

Therefore ρ(t) ≥ ρ(T1) for t ≥ T1 and

ρ′ = −ρd ≥ ρ

√
ρ

(
ρ(T1)− F

(
2k

β

))
for t ≥ T1.

Integration over [T1, t] gives

√
ρ(t) ≥

√
2ρ(T1)

2− (t− T1)
√
ρ(T1)(F (ρ(T1))− F ( 2k

β ))
, t ≥ T1.

Thus the solution must become unbounded before the time

T1 +
2√

ρ(T1)(F (ρ(T1))− F ( 2k
β ))

.

Second, we consider the trajectories in the region{
(ρ, d), ρ >

2k

β
, |d| <

√
ρ

(
F (ρ)− F

(
2k

β

))}
.

Note that at finite time the trajectory must enter the subregion {(ρ, d), d < 0}
through the left point (ρ∗, 0) identified as

d2 = ρ[F (ρ)− F (ρ∗)], ρ ≥ ρ∗ >
2k

β
.

This, combined with the Riccati-type inequality

d′ <
−d2

2
,

ensures the breakdown at finite time. This completes the confirmation of the curve
d = g(ρ) as a critical threshold.

Proof of Theorem 1.1. It suffices to summarize the above cases, taking

β =
Γ0

ρ2
0

into account. Clearly the cases β < 0 and β = 0 correspond to the set

{(ρ0,M0), Γ0 ≤ 0}.
For β > 0, i.e., Γ0 > 0, we rewrite the critical threshold as

d0 = sgn

(
ρ0 − 2k

β

)√
ρ0

(
F (ρ0)− F

(
2k

β

))

= sgn(Γ0 − 2kρ0)

√
Γ0 − 2kρ0 + 2kρ0 ln

(
2kρ0

Γ0

)
,
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where we have used the relation F (ρ) = βρ− 2k ln ρ and

F (ρ0) =
Γ0

ρ0
− 2k ln ρ0,

F

(
2k

β

)
= 2k − 2k ln

(
2kρ2

0

Γ0

)
.

This completes the proof of Theorem 1.1.

3. 2D REP with nonzero background. This section is devoted to the study
of the REP with nonzero background c > 0, for which the velocity gradient tensor
M = ∇U solves

d

dt
M +M2 =

k

2
[ρ− c],(3.1)

d

dt
ρ+ ρtrM = 0.(3.2)

Again, using the spectral dynamics lemma presented in [19], the spectral dynamics of
M is governed by

λ′1 + λ2
1 =

k

2
(ρ− c), ′ :=

d

dt
,

λ′2 + λ2
2 =

k

2
(ρ− c),

ρ′ + ρ(λ1 + λ2) = 0.

As in the zero background case, the difference η := λ2 − λ1 is proportional to the
density along the particle path in the sense that

η(t)

ρ(t)
=
η0(α)

ρ0(α)
, α ∈ R

2.

Further manipulation gives a closed system

ρ′ = −ρd,(3.3)

d′ = k(ρ− c)− d2 + βρ2

2
=: Q, β :=

η2
0

ρ2
0

.(3.4)

Once again the dynamics of (3.3), (3.4) is influenced by the choice of β. We
proceed to discuss the solution behavior of (3.3), (3.4) by distinguishing two cases:

(1) for β < 0, the spectral gap is complex;
(2) for β ≥ 0, the spectral gap is real.

3.1. Complex spectral gap. We first discuss the case β < 0, which corresponds
to the case in which the eigenvalues are initially complex.

Lemma 3.1. Assume that the eigenvalues are initially complex with Im(λi(0)) �=
0. Then the solution of (3.3), (3.4) remains smooth for all time. Moreover, there is
a global invariant in time, given by

V (ρ, d) = ρ−1
[
d2 − βρ2 + 2kρln

( ρ
2c

)
+ 2ck

]
.
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Fig. 3.1. Zero level set d′ = 0. Complex spectral gap with nonzero background.

Proof. A straightforward computation yields V̇ = 0 along the 2D REP solutions,
which implies that the curves V = Const are invariants of the flow. As before, for
negative β’s we have

d2 ≤ max
ρ>0

{
Const.ρ− 2kρ ln

( ρ
2c

)
− 2ck + βρ2

}
≤ C2

1 ,

and the bounds of d (and hence of ρ) follow.
Remark. As before, more detailed information is available in this case by a phase

plane analysis. If the eigenvalues are initially complex, then one has β = η2
0/ρ

2
0 < 0.

The zero level set d′ = Q = 0 becomes a hyperbola; see Figure 3.1.
The intersection of its right branch with d = 0 is the rest point A = (ρ∗, 0) of the

system, where

ρ∗ =
k

β
+

√
k2

β2
− 2ck

β
.

The coefficient matrix of the linearization around (ρ∗, 0) is

L(ρ∗, 0) =

(
0 −ρ∗

k − βρ∗ 0

)
.

Its eigenvalues satisfy

λ2 = ρ∗(βρ∗ − k) = −ρ∗
√
k2 − 2ckβ < 0.

Hence such a critical point is a nonhyperbolic equilibrium. The nonlinear effect plays
essential roles in the solution behavior. In order to locate the possible critical thresh-
old, we first study the solution around (ρ∗, 0). Setting n = ρ− ρ∗, we then have

n′ = −ρ∗d− nd,(3.5)

d′ =
√
k2 − 2ckβn− d2

2
− β

2
n2.(3.6)
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It is easy to see that the flow governed by the linear part stays on the ellipse√
k2 − 2ckβn2 + ρ∗d2 = Const.

In order to capture the dynamics of the nonlinear system in the neighborhood of the
critical point (n, d) = (0, 0), we employ the polar coordinates of the form

n =
r cos θ

(k2 − 2ckβ)1/4
,

d =
−r sin θ√

ρ∗
.

Careful calculation with these polar coordinates yields that (3.5)–(3.6) can be recast
into the form

r′ = R(r, θ),(3.7)

θ′ = −√
ρ∗(k2 − 2ckβ)1/4 + Θ(r, θ),(3.8)

where

R(r, θ) =
r2 sin θ

2
√
ρ∗

[
1 +

k cos2 θ√
k2 − 2ckβ

]
,

Θ(r, θ) = − r cos θ

2
√
ρ∗
√
k2 − 2ckβ

[√
k2 − 2ckβ sin2 θ − βρ∗ cos2 θ

]
.

When r is sufficiently small, θ′ is strictly negative. The pleasant implication of this
is that the orbits of system (3.5), (3.6) spiral monotonically in θ around (ρ∗, 0). But
the even power of r2 does not indicate the stability property of the critical point.

Observe that if (n(t), d(t)) is a solution, so is (n(−t),−d(−t)). Such symmetry
implies that there is a center in the neighborhood of (ρ∗, 0).

In order to clarify the global behavior of the flow around such a center, we appeal
to the global invariant

V (ρ, d) = ρ−1
[
d2 − βρ2 + 2kρ ln

( ρ
2c

)
+ 2ck

]
.

We claim that V is positive definite, which serves as a (majorization of) Lyapunov
functional. To this end, we consider the function H(ρ) := −βρ2 + 2kρ ln

(
ρ
2c

)
+ 2ck,

which is convex and takes its minimum at ρmin, satisfying

ln
(ρmin

2c

)
= −1 +

β

k
ρmin.

Observe that, since β < 0, the function

h(ρ) := 1− β

k
ρ+ ln

( ρ
2c

)
is an increasing function in ρ > 0 and h(ρmin) = 0, which, when combined with the
fact that h(ρ∗) ≥ 0, verifies that

0 < ρmin ≤ ρ∗, ρ∗ := β−1[k −
√
k2 − 2ckβ].



1904 HAILIANG LIU AND EITAN TADMOR

Indeed, for ρ∗ we have

h(ρ∗) = 1− β

k
ρ∗ + ln

(
ρ∗

2c

)
=
√

1− 2ck−1β − ln(1 +
√

1− 2ck−1β) ≥ 0.

Therefore H(ρ) is nonnegative since

H(ρmin) = βρ2
min − 2kρmin + 2ck = β(ρmin − ρ∗)(ρmin − ρ̄∗) ≥ 0,

where ρ̄∗ = β−1[k +
√
k2 − 2ckβ].

The invariant curves, V = Const., represent, of course, the bounded periodic
orbits containing (ρ∗, 0).

3.2. Real spectral gap. We divide the region β ∈ [0,∞) into subregions de-
pending on the number of critical points on the phase plane, and then study the
solution behavior with β in each subregion. The solution behavior depends strongly
on the number of critical points and their stability property.

Let (ρ∗, d∗) be a critical point of the system; then the coefficient matrix of the
linearization around (ρ∗, d∗) reads

L(ρ∗, d∗) =

( −d∗ −ρ∗
k − βρ∗ −d∗

)
.

Its eigenvalues are given by

λ = −d∗ ±
√
ρ∗(βρ∗ − k).(3.9)

We now discuss subcases distinguished by the number and type of critical points
as β changes.

• β = 0. Here the zero level set d′ = Q = 0 is a parabola, d2 = 2k(ρ − c),
intersecting with d = 0 at (ρ∗, d∗) = (c, 0). From (3.9) we see that at this
point the eigenvalues of L are λ = ±√

cki, a pure imaginary number, and the
critical point (c, 0) is nonhyperbolic. The stability property of this critical
point has to be determined by taking into account the nonlinear effect.

• 0 < β < k
2c . The zero level set Q = 0 is an ellipse, located on the right

half-plane ρ > 0. There are two critical points (ρ∗, d∗) = (ρ∗, 0) with

ρ∗ =
k

β
±
√
k2

β2
− 2kc

β
.

The associated eigenvalues of L are

λ(ρ∗1) = ±
√
ρ∗1
√
k2 − 2ckβi, λ(ρ∗2) = ±

√
ρ∗2
√
k2 − 2ckβ.

Therefore (ρ∗1, 0) is a center of the linearized system, and (ρ∗2, 0) is a saddle;
see Figure 3.2.

Possible bifurcation as β changes from 0 to k
2c may be responsible for the

complicated solution structure in this regime.
• β = k

2c . The zero level set Q = 0, i.e.,

d2 + β

(
ρ− k

β

)2

= 0,

degenerates to a single point (ρ∗, d∗) = ( kβ , 0), the only critical point with
zero eigenvalues.
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Fig. 3.2. Critical points in the ρ-d plane. Real spectral gap with nonzero background.

• β > k
2c . In this case

Q = −1

2

[
d2 + β

(
ρ− k

β

)2

+ 2kc− k2

β

]
≤ k2

2β
− kc < 0.

There is no critical point at all in the finite phase plane.
The solution behavior distinguished by the above cases is given in the following

lemmata.
Lemma 3.2. If λ1(0) = λ2(0), then the solution of (3.3), (3.4) remains smooth

for all time, indicated by the global invariant

d2 + 2ck

ρ
+ 2k ln ρ = Const.(3.10)

Proof. The assumption amounts to β = 0. As discussed above, (c, 0) is the only
critical point and the center of the linearized system. In order to find the global
invariant we set R(t) := k(ρ− c)2 + cd2. Along the trajectory dx

dt = U(x, t),

d

dt
R(t) = 2k(ρ− c)ρ′ + 2cdd′ = −d[k(ρ− c)2 +R(t)].(3.11)

From the mass equation it follows that

d = −ρ
′

ρ
,

which, when inserted into the relation (3.11), gives

dR

dρ
=
k(ρ− c)2

ρ
+
R

ρ
.

Integration gives

R

ρ
+
kc2

ρ
+ 2ck ln ρ− kρ = Const,

which leads us to the global invariant as asserted in (3.10). This global invariant is
compact and ensures that both divergence d and the density ρ remain bounded as
time evolves.
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We leave the case 0 < β < k
2c for later and study the critical case β = k

2c .

Lemma 3.3. If λ2(0) − λ1(0) =
√

k
2cρ0, then the solution of (3.3), (3.4) always

develops finite-time breakdown unless the initial data lies within the set{
(ρ, d) ∈ R

+ × R
+,

d2 + 2ck

ρ
− k

2c
ρ+ 2k ln ρ = 2k ln(2c)

}
.

Proof. The given assumption is equivalent to the case β = k
2c . In this case the

divergence always decreases except at the critical point (2c, 0) since

d′ = −d
2

2
− k(ρ− 2c)2

4c
≤ 0.

In order to clarify the solution behavior, we proceed to obtain the global invariant.
Setting q := d2, one then has

dq

dρ
=

2dd′

ρ′
=
q + βρ2 − 2k(ρ− c)

ρ
.

Solving this equation, we obtain

q

ρ
= βρ− 2k ln ρ− 2ck

ρ
+ Const.

Therefore we come up with a global invariant

d2 + 2ck

ρ
− βρ+ 2k ln ρ = Const.(3.12)

The only trajectory converging to the critical point is realized by a half-trajectory
converging to (2c, 0) from the first quadrant. For all other trajectories not passing
the critical point (2c, 0), the rate d′ is strictly negative. The divergence will become
negative at finite time even if it is initially positive, which, when combined with the
Riccati-type inequality d′ ≤ −d2/2, confirms the finite-time breakdown.

We now look at the case β > k
2c .

Lemma 3.4. Assume that the eigenvalues are initially real and |λ2(0)− λ1(0)| >√
k
2cρ0(α). Then the solution of (3.3), (3.4) always develops finite-time breakdown.
Proof. The given assumption is nothing but the inequality β > k

2c . Note that
there is no critical point in the finite phase plane; actually Q remains negative for all
time. The solution must develop breakdown in finite time. In fact from

d′ = −d
2

2
− β

2

(
ρ− k

β

)2

− kc

β

(
β − k

2c

)
,(3.13)

we find that

d′ ≤ −δ with δ :=
kc

β

(
β − k

2c

)
> 0.

This ensures that dmust become negative beyond a finite time T0, say, T0 > max{d0δ , 0}.
The d− equation (3.13) also gives

d′ ≤ −d
2

2
,
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whose integration over [T0, t] leads to

d(t) ≤ d(T0)

1− 1
2d(T0)(t− T0)

.

Hence the solution must break down at a finite time before T0 − 2
d(T0)

.

Finally we conclude this subsection by discussing the delicate case 0 < β < k
2c .

Set

G(ρ, ρ∗, β) := β(ρ− ρ∗)− 2k ln

(
ρ

ρ∗

)
− 2ck

ρ
+

2ck

ρ∗
,

with ρ∗ = β−1[k ±
√
k2 − 2ckβ] being the ρ-coordinate of the intersection point of

the trajectory with the ρ-axis.
Lemma 3.5. Assume that the real eigenvalues satisfy 0 < |λ2(0) − λ1(0)| <√

k
2cρ0(α). Then for any β ∈ (0, k2c ) the solutions of (3.3), (3.4) remain smooth for

all time if and only if

|λ1(0) + λ2(0)| ≤
√
ρ0G(ρ0, ρ

∗
2, β0) for ρ0 ≤ ρ∗2

and

λ1(0) + λ2(0) =
√
ρ0G(ρ0, ρ

∗
2, β0) for ρ0 > ρ

∗
2.

Proof. The assumption tells us that β < k
2c . In this case there are two critical

points in the phase plane, A = (ρ∗1, 0) and B = (ρ∗2, 0); see Figure 3.2. B is a saddle
whose two manifolds pass, enclosing the critical point A, which is a center of the
linearized system. Let Ws(B) denote the stable manifold coming from the region
{(ρ, d), ρ < ρ∗2, d < 0}, and Wu(B) the unstable manifold entering into {(ρ, d), ρ <
ρ∗2, d > 0}. To prove the results stated in the theorem it suffices to show that for any
β ∈ (0, k2c ) such that Wu(B) ∩Ws(B) is not empty, there exists a saddle connection
(homoclinic orbit).

This follows from the continuity argument supported by the following facts:
(1) BothWu(B) andWs(B) pass through the segment OA, with flow going down-

ward since d′ < 0 and ρ′ = 0 on OA; see Figure 3.2
The level curve d′ = 0 is an ellipse with upper vortex P located at ( kβ , 0). Let

P1 denote the intersection of the tangent line of the ellipse Q = 0 through P with
the axis ρ = 0. The vector field inside the ellipse shows that Wu(B) must escape
the ellipse from the curve PA. Note that the trajectories on PP1 and AP enter into
the region PAOP1, and the axis ρ = 0 is an invariant set. These facts ensure that
Wu(B) must enter the region d < 0 through OA. Similarly we can show that Ws(B)
for ρ ≤ ρ∗2 must enter the region d > 0 through OA.

(2) As β increases in (0, k2c ), the point Wu(B) ∩ OA moves to the right, and the
point Ws(B) ∩OA moves to the left.

We prove the claim forWu(B)∩OA, and the case forWs(B)∩OA follows similarly.
The claim follows from the following two observations:

(i) The slope of the unstable manifoldWu(B, β) at (ρ∗2, 0) is ∂ρd|ρ=ρ∗2 = λ−(ρ∗2, β),
and the eigenvalue λ−(ρ∗2, β) is increasing in β. Indeed,

dλ−(ρ∗2, β)
dβ

= − β2

kλ−(ρ∗2, β)

{
k +

√
k2 − 2ckβ +

ckβ√
k2 − 2ckβ

}
> 0.
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(ii) Wu(B, β1) does not intersect with Wu(B, β2) for β1 �= β2. As previously, we
can find the global invariant of the system

d2 = ρ

[
βρ− 2k ln ρ− 2ck

ρ
+ Const

]
,

from which the left branch of the unstable manifold of B can be explicitly expressed
as

d =

√
ρ

[
β(ρ− ρ∗2)− 2k ln

(
ρ

ρ∗2

)
− 2ck

ρ
+

2ck

ρ∗2

]
, 0 < ρ < ρ∗2.

A careful calculation gives

∂d

∂β
=
ρ

2d
(ρ− ρ∗2) < 0,

which ensures the claim (ii).
(3) Let ρu(β) be the ρ-coordinate of the point Wu(B, β) ∩OA, and ρs(β) be the

ρ-coordinate of the point Ws(B, β) ∩OA. We claim

lim
β→0+

ρu(β) < lim
β→ k

2c−
ρs(β).

In fact, from the expression of seperatrices

d2 = ρG(ρ, ρ∗2, β), ρ < ρ∗,

we find that the ρ-coordinates of points Wu/s(B) ∩OA satisfy

G(ρ, ρ∗2, β) ≡ 0.

Note that

∂G

∂ρ
=
β

ρ2
(ρ− ρ∗1)(ρ− ρ∗2),

∂G

∂β
= ρ− ρ∗2.

Thus we have for 0 < ρ < ρ∗1

∂ρ

∂β
= −

∂G
∂β

∂G
∂ρ

=
ρ2

β
(ρ∗1 − ρ) > 0.

This confirms the above assertion.
Combining the above observations, we conclude that there exists a β0 ∈ (0, k2c )

for which a saddle connection exists. It remains to show that, as β changes in the
region (0, k2c ), the above saddle connection is preserved. Observe that if (ρ(t), d(t))
is a solution, so is (ρ(−t),−d(−t)). Such symmetry prevents the occurrence of the
possible bifurcation when β changes.

Using the nonlinear terms in the equation and the vector field, we can show for
the initial data outside the closed curve—saddle connection—that the solution always
develops finite-time breakdown; details are omitted.

Proof of Theorem 1.2. Summarizing the results stated in the above lemmata, we
see that the case β < 0 and β = 0 corresponds to the set

S1 =

{
(ρ0, d0,Γ0)

∣∣∣ Γ0 ≤ 0 and

{
d0 ≥ 0 if ρ0 = 0,
d0 arbitrary if ρ0 > 0,

}}
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since Γ0 = βρ2
0. The case 0 < β < k

2c corresponds to 0 < Γ0 < k
2cρ

2
0, and the

divergence is required to satisfy the critical threshold condition

|d0| ≤
√
ρ0G(ρ0, ρ∗2, β), 0 < ρ0 < ρ

∗
2,

and d0 =
√
ρ0G(ρ0, ρ∗2, β) for ρ0 ≥ ρ∗2. Using Γ0 = βρ2

0 and

ρ∗2 = β−1[k +
√
k2 − 2ckβ] =

2ck

k2 −
√
k2 − 2ckβ

=
2cρ0

ρ0 −
√
ρ2
0 − 2c

k Γ0

,

one has

ρ0G(ρ0, ρ
∗
2, β) = ρ0

[
β(ρ0 − ρ∗2)− 2k ln

(
ρ0

ρ∗2

)
− 2ck

ρ0
+

2ck

ρ∗2

]

= Γ0


1− 2c

ρ0 −
√
ρ2
0 − 2cΓ0

k


− 2kρ0 ln


ρ0 −

√
ρ2
0 − 2cΓ0

k

2c




− 2ck + k

(
ρ0 −

√
ρ2
0 −

2cΓ0

k

)

= Γ0 − 2ck − 2k

√
ρ2
0 −

2cΓ0

k
− 2kρ0 ln


ρ0 −

√
ρ2
0 − 2cΓ0

k

2c


 ,

which leads to the critical threshold described by the set S2. The set S3 can be
determined in a similar manner.
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Abstract. We consider denoising applications using nonlinear diffusion filters of BV type. Using
the multiple timescales method, an equation is derived that approximates the time evolution of the
image noise. Analysis of the corresponding variational inequality leads to an estimate of the timescale
over which the noise decays to its local mean, given in terms of the filter parameters. We present a
number of computed examples that demonstrate the validity of our stopping time estimate.
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1. Introduction. In a diffusion filtering experiment, one attempts to recover an
underlying image UI(x) from a noisy image u0(x) : x ∈ Ω ⊂ R

2. This is achieved by
taking u0(x) as initial data for a diffusion equation,

∂u

∂t
= ∇ · [D(x, u,∇u)∇u] : u(x, 0) = u0(x),(1.1)

and integrating (1.1) over a certain time interval, say t ∈ [0, T ]. The final solution
u(x, T ) is taken to be a reasonable approximation to UI(x). Choice of the diffusivity
D(x, u,∇u) and selection of T control the effectiveness of the filtering process. In this
paper we are interested in diffusion filters D, of the form:

D(x, u,∇u) = D(x, |∇u|) ≡ µ+
τ0

|∇u| ,(1.2)

with µ > 0 and τ0 > 0.

Formally, since D → ∞, where |∇u| → 0, in place of (1.1) we generally consider

∂u

∂t
= ∇ · τ ,(1.3)
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where τ = (τx, τy):

|(τx, τy)| > τ0(x) ⇐⇒




τx =

[
µ+

τ0(x)

|∇u|
]
∂u

∂x
,

τy =

[
µ+

τ0
|∇u|

]
∂u

∂y
,

(1.4)

|(τx, τy)| ≤ τ0 ⇐⇒ |∇u| = 0.(1.5)

We remark here that (1.3)–(1.5) also model an inelastic visco-plastic fluid (a Bingham
fluid [17]), of unit density, flowing axially along a cylindrical duct with cross-sectional
area Ω. In this analogy, u is the fluid velocity and D represents the effective viscosity
of the fluid. The parameters µ and τ0 are referred to as the plastic viscosity and the
yield stress. Various industrial muds, slurries, and pastes are represented fairly well
by such rheological models [20], as well as certain porous media flows [15] and the
flows of particular types of lava [14]. There is a long and well-established literature
concerning the flow of such materials; see, for example, [13, 17, 33, 36, 34, 35, 39, 40,
43, 47, 50, 59, 64, 67, 72, 75, 77, 78] and many others.

The constitutive laws (1.4), (1.5) distinguish between |∇u| = 0 and |∇u| > 0.
These laws could alternatively be written as

τ ∈ ∂h(∇u),

where ∂h(t) is the subgradient of

h(t) :=
µ

2
|t|2 + τ0|t|.

However, (1.4) and (1.5) are more physically instructive, since they immediately reveal
the key characteristic of Bingham fluids, i.e., that a certain yield stress has to be
exceeded in order for a flow to be initiated. The formulation (1.4), (1.5) is the classical
formulation commonly used in fluid mechanics applications.

The aim of our study is to develop a physically motivated rationale for choosing
the stopping time T when using a diffusion filter of type (1.2). We note that for
computational ease we will often use a regularized form of (1.3)–(1.5). In this case,
we solve (1.1) on Ω, replacing D by Dβ :

Dβ ≡ µ+
τ0

(|∇u|2 + β2)1/2
, β � 1.(1.6)

Nonlinear diffusion filtering, using either (1.3)–(1.5) or (1.6), has been considered
previously by Alvarez and colleagues [2, 3, 4], Catté et al. [21], Perona and Malik [63],
and Weickert [76], to name but a few.

In the nonlinear diffusion framework, natural relations exist between biased dif-
fusion and regularization theory via the Euler equation for the regularization func-
tional. The regularization parameter and the diffusion time are analogous if one re-
gards regularization as time-discrete diffusion filtering with a single implicit time step
[68, 49, 69, 71]. A popular specific energy functional that arises from unconstrained
total variation denoising [1, 22, 25] is

1

2

∫
Ω

(u(x)− u0(x))
2 dx + α

∫
Ω

|∇u(x)| dx.(1.7)
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Constrained total variation minimization also leads to a nonlinear diffusion process
with a bias term using a time-dependent penalization parameter [68]. Total variation
denoising in the continuous and discrete setting has been considered by many authors
recently. We give a list which is not at all complete: [11, 12, 18, 22, 23, 24, 26, 27, 28,
31, 32, 37, 38, 44, 45, 46, 48, 51, 52, 53, 54, 55, 58, 60, 61, 62, 63, 66, 70, 71, 73, 74].
The minimizer of (1.7) approximates the solution of the partial differential equation

∂u

∂t
= ∇ ·

( ∇u

|∇u|
)
,(1.8)

which has been integrated implicitly over one time step, ∆t = α, from the initial
condition u0(x). An iterative regularization, consisting of minimizing the functionals

1

2

∫
Ω

(u(x)− un−1(x))
2 dx + α

∫
Ω

|∇u(x)| dx

over u(x), and denoting successive minimizers by un, will approximate the solution
of (1.1) at discrete time points tn = nα, n = 1, 2, . . . . The approximation via im-
plicit time steps is justified by nonlinear semigroup theory (see, e.g., [19]). Actually,
nonlinear semigroup theory defines the solution of the partial differential equation via
implicit time steps. Remarkable properties of the total variation flow equation and
bounded variation regularization have been derived recently [7, 9, 8, 10, 16], including
analytically calculated solutions. A numerical comparison of denoising with iterative
regularization and total variation flow has been given in [65, 66].

Total variation flow and bounded variation regularization are capable of recon-
structing blocky data. See [30] for the continuous regularization setting. In [57]
it is shown in a discrete setting that bounded variation regularization favors piece-
wise constant minimizers. For work on this topic in the PDE framework we refer
to [7, 9, 8, 10, 16]. It is considered a drawback of the low-shear viscosity regular-
ization (1.6) that it does not recover blocky structures accurately. However, as we
have shown in the different context of multiphase Bingham fluid flow [34, 35], this
filtering technique is capable of preserving horizontal fluid flow regions, which in the
image processing context are data regions of constant grey level intensity. This, to
a certain extent, shows that Bingham filtering techniques are capable of preserving
essential image details. Since the solution of the Bingham fluid flow equation is in
the Sobolev-space H1 with respect to the space variable, the effect of staircasing,
which is sometimes considered a drawback of total variation regularization and total
variation flow (see [16, 57]), is limited. Of course, whether or not blocky structures
are of interest depends entirely on the image and the application being considered.

The main scope of the paper is to utilize the similarity of (1.1) and Bingham
mud flow to derive an asymptotic estimate for the optimal stopping time in problems
such as (1.1). The basic idea is to split the solution of (1.1) into low and high
frequency components. The high frequency components decay rapidly, and a time
can be determined at which they have essentially disappeared. The separation of
low and high frequency components as presented below is generally applicable to any
sort of diffusion filtering (such as total variation flow) as long as an estimate for
the time of disappearance of the high frequency components is available. For the
Bingham mud flow counterpart, optimal stopping criteria can be given in terms of
the physical parameters of the filter. In order to derive the optimal stopping time we
adapt results derived by Bristeau for a Bingham fluid flow, described in Glowinski,
Lions, and Trémolières [40]. These results are limited to the case µ > 0. However, for
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µ = 0, the estimates are still formally applicable and are sharp in predicting the time
of disappearance of a highly oscillating piecewise constant function, as we find by a
comparison with recent results in [16].

2. Decay in nonlinear diffusion filtering. A key idea behind any form of
diffusion filtering is that the decay of high frequency components in the initial data
(i.e., the noise) will occur more rapidly than of the underlying image. In a digital
image the spatial frequency of the noise is typically the pixel scale, say ε, where ε � 1.
We can generally expect that the basic image will be denoised by a diffusion filter
only if UI varies over length-scales larger than ε, i.e., unless additional information on
UI is available. For example, if Ω = (0, 1)× (0, 1) and a linear diffusion filter τ0 = 0 is

used, the nth Fourier mode decays like e−(µnπ)2t. Frequencies above n ∼ ε−1 are not
present, and hence selection of µ ∼ ε ensures that linear diffusion of the noise occurs
on an O(1) timescale. If T � 1, we expect that the linear diffusion filter will have
little effect on the initial image. Including τ0 > 0 in the filter results in a nonlinear
problem, in which the decay of both the noise and underlying image is accelerated.

Suppose that (1.1) is solved numerically, imposing homogeneous Neumann con-
ditions on ∂Ω. Without loss of generality, we may assume that u0(x) has zero mean,
and we may thus expect that ‖u‖(t) → 0 as t → ∞. (Here and later, ‖ · ‖ will denote
an L2 norm over the domain of interest.) Thus, as t → ∞, we have that ‖un‖ → ‖UI‖,
where

u(x, t) = UI(x) + un(x, t),(2.1)

i.e., un(x, t) is the noise. Our interest here is to find an (asymptotic) expression for
T , in terms of the physical parameters of the problem, ε, µ, τ0, and u0(x), that will
give an optimal recovered image. Presumably an optimal image will be recovered at
a time T that is close to the minimum ratio of ‖un‖ to ‖UI‖.

An illustrative one-dimensional example is given in Figure 1. An initial image
(Figure 1(a)) is perturbed by white noise (Figure 1(b)). Equation (1.1) with Neumann
conditions is integrated using a fully implicit finite difference scheme. In Figure 1(c) we
show ‖u‖(t) and ‖un‖(t). We see that ‖un‖(t) exhibits an initial rapid decay followed
by a slow increase, as the entire image u(t) decays to its mean. Figures 1(d)–(f) show
u(x, t) for two choices of t, close to the minimum of ‖un‖(t), and for a third choice of
t, as ‖u‖(t) has begun to decay significantly. It is apparent from Figures 1(d)–(f) that
during the initial rapid decay of ‖un‖(t), the noise in the image is averaged over a
local length-scale, and that on a longer timescale this averaging length-scale increases
to the entire image.

2.1. Decay estimates for u(x, t). The eventual decay of ‖u‖(t) in Figure 1(c)
would be expected for a diffusive process with nondegenerate diffusivity, but what is
peculiar to the problem with τ0 > 0 is that ‖u‖(t) → 0 in a finite time. This decay is
a result of having a finite yield stress: physically there comes a time when the stress
everywhere decays below the yield stress, and (see (1.5)) there will be zero rate of
strain everywhere; i.e., |∇u| = 0.

From1 Theorem 3.2 in Appendix 6 of [40], it is well known that if u is the (weak)

1Theorem 3.2 in Appendix 6 of [40] is slightly more general and includes a pressure gradient term
on the right-hand side of (1.3); i.e., in [40], set f = 0, β = bD, and g = τ0 to apply this result.
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  (a) (b) (c)

(d) (e) (f)

Fig. 1. One-dimensional example: discretization/pixel-scale ε = ∆x = 1/256, µ = 1/256,
τ = 1.0. (a) UI(x); (b) initial data, u0(x), image plus white noise with maximum amplitude ±0.2;
(c) ‖u‖(t) and ‖un‖(t) (dashed line); (d) u(x, t): t = 1.078 × 10−3; (e) u(x, t): t = 2.121 × 10−3;
(f) u(x, t): t = 3.481× 10−2.

solution of the Dirichlet problem corresponding to (1.3)–(1.5), then

u(t) = 0 : t ≥ t0 =
1

λ0µ
log

(
1 + λ0µ

‖u0‖
bDτ0

)
,(2.2)

where λ0 > 0 is the smallest eigenvalue of −∆ in V = H1
0 (Ω) and

bD = inf
v∈V, v �=0

∫
Ω
|∇v| dΩ
‖v‖ > 0.(2.3)

Thus, for τ0 > 0, decay of ‖u‖(t) is no longer exponential, and we expect that ‖u‖(t) →
0 in a finite time t0. For the Neumann problem, we set

V̂ =

{
v ∈ C1(Ω̄) :

∫
Ω

v dΩ = 0,
∂v

∂n
= 0 on ∂Ω

}

and let V be the closure of V̂ with respect to the H1(Ω) norm. We then proceed
essentially as in [40]; the exact details are not particularly interesting. We have that
if u is the weak solution of the Neumann problem corresponding to (1.3)–(1.5), then

u = 0 : t ≥ t0 =
1

λ0µ
log

(
1 + λ0µ

‖u0‖
bNτ0

)
,(2.4)

where λ0 > 0 is the smallest eigenvalue of −∆ in V and

bN = inf
v∈V, v �=0

∫
Ω
|∇v| dΩ
‖v‖ > 0.(2.5)

For the example in Figure 1 and associated parameters, we compute t0 ≈ 0.154, which
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(a) (b) (c)

×+ ×+ ×+ ×
+ ×

+

Fig. 2. Decay of ‖u‖(t) for different initial conditions u(x, 0) = uβ(x), ∆x = 0.002, µ = 0.002,
τ = 1.0: (a) uβ(x), β = 0.05, 0.15, 0.25, 0.35, 0.45; (b) ‖u‖(t), β = 0.05, 0.15, 0.25, 0.35, 0.45;
(c) t0 (×) from (2.2) compared with computed values (+).

clearly overestimates the decay shown in Figure 1(c). However, estimates such as (2.2)
are not always this poor and will depend on the initial data. In particular, as u(x, 0)
approaches a minimizer of (2.3), the estimate can be very sharp. As an illustration, we
have solved a one-dimensional Dirichlet problem (1.1), for various initial conditions:

u(x, 0) = uβ(x) =




x

β
, 0 ≤ x < β,

1, β ≤ x < 1− β,
1− x

β
, 1− β ≤ x < 1.




(2.6)

Figure 2(b) shows the decay of ‖u‖(t) for the range of initial conditions shown in
Figure 2(a). Figure 2(c) shows the difference between the computed decay time and
t0, given by (2.2), as β is varied.

2.2. Local decay estimates for un(x, t). Assuming the separation of spatial
length-scales between un(x, t) and UI(x), what we really wish to know is the time
interval taken for un(x, t) to decay to a local mean value. Further, we would like
to understand how this decay timescale can be affected by the image UI(x). The
estimate we develop is based loosely on the method of multiple scales; e.g., see [42].
Suppose that Ω = (0, 1)×(0, 1) and that, in the neighborhood of an arbitrary x0 ∈ Ω,
u0(x) is of the form

u0(x) = UI(x) + un,0(x̃) : x̃ =
x − x0

ε
,(2.7)

where ε � 1 is the pixel scale, i.e., we assume that the initial image has multiple
scales. Consider the forward integration of (1.1) in the neighborhood of x0. Since
we expect the high frequency components to decay faster than the low frequency
components, we seek a solution of (1.1) of the form

u(x, t) = U(x, t) + un(x̃, t̃),(2.8)
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where t̃ = t/δ for some δ � 1. The differential operators in (1.1) become

∂

∂t
→ 1

δ

∂

∂t̃
+

∂

∂t
,(2.9)

∇ → 1

ε
∇̃+∇,(2.10)

i.e., with ∇̃ containing spatial derivatives with respect to the components of x̃. We
now make a formal expansion of the right-hand side of (1.1), in terms of ε and δ:[

µ+
τ0

|∇u|
]
∇u → µ

ε
∇̃un + µ∇U +

τ0

|∇̃un|
∇̃un

+ ε
τ0

|∇̃un|

[
∇U − (∇U · ∇̃un)

|∇̃un|2
∇̃un

]

+ ε2
τ0

|∇̃un|

[
3

2

(∇U · ∇̃un)
2

|∇̃un|4
− 1

2

|∇U |2
|∇̃un|

]
∇̃un

− ε2
τ0

|∇̃un|
(∇U · ∇̃un)

|∇̃un|2
∇U +O(ε3).(2.11)

Substituting into (1.1), we obtain

1

δ

∂un

∂t̃
+

∂U

∂t
=

1

ε2
µ∇̃2un +

1

ε
∇̃ ·
[

τ0

|∇̃un|
∇̃un

]
+∇ · (µ∇U)(2.12)

+ ∇̃ ·
[

τ0

|∇̃un|

(
∇U − (∇U · ∇̃un)

|∇̃un|2
∇̃un

)]
+O(ε).

We balance the leading order terms, by setting δ = ε2, and neglect terms of order ε3:

∂un

∂t̃
= ∇̃ ·

[(
µ+

ετ0

|∇̃un|

)
∇̃un

]
+ ε2[∇ · (µ∇U)− Ut]

+ ε2∇̃ ·
[

τ0

|∇̃un|

(
∇U − (∇U · ∇̃un)

|∇̃un|2
∇̃un

)]
.(2.13)

Rather than proceeding asymptotically, we simply consider ε as a small finite param-
eter (known from the resolution of the image), which we retain to order ε2 in order
to understand the leading order effects of the underlying image UI .

It is, however, apparent that (2.13) is incomplete, since the limiting behavior as
|∇̃un| → 0 has been ignored in our formal expansions. In order to have a regular
solution to (2.13) (and indeed for our expansions to be valid), it is necessary that
|∇̃un| → 0 only if |∇U | = 0. Thus, in place of (2.13) we consider

∂un

∂t̃
= ∇̃ · [τ̃ + ε2m̃] + ε2f,(2.14)

where

f(x, t) = [∇ · (µ∇U)− Ut](2.15)
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and where we define τ̃ = (τ̃x, τ̃y):

|∇̃un| = 0 ⇐⇒ |∇U | = 0 and |(τ̃x, τ̃y)| ≤ τ̃0,(2.16)

|∇̃un| > 0 ⇐⇒




τ̃ =

[
µ+

ετ0

|∇̃un|

]
∇̃un,

m̃ =
τ0

|∇̃un|

[
∇U − (∇U · ∇̃un)

|∇̃un|2
∇̃un

]
.

(2.17)

2.2.1. Variational formulation. We return in section 2.2.3 to a physical inter-
pretation of (2.14)–(2.17), but to derive our stopping estimate it is somewhat easier
to work with a variational formulation.

We consider x0 to be the corner of a pixel and consider solution of (2.14)–(2.17)
in a local domain surrounding x0: x̃ ∈ Ω̃k = (−k, k)× (−k, k), where k is numerically
of order 1, with initial conditions

un(x̃, 0) = un,0(x̃).(2.18)

It is also necessary to impose boundary conditions on ∂Ω̃k, and for this we choose
homogeneous Neumann conditions. Equations (2.14)–(2.17) are still diffusive (see
section 2.2.3), and the effect of this choice of boundary conditions is that un is expected
to decay to its mean value over Ω̃k. Subtracting any constant value from un leaves
(2.14)–(2.17) unchanged, and hence we consider only functions of zero mean.

A classical solution to (2.14)–(2.18) will also satisfy the following variational in-
equality:

ε2f 〈[v − un]〉 ≤
〈
∂un

∂t̃
[v − un]

〉
+ µa(un, v − un) + ετ0[j(v)− j(un)]

+ ε2 〈m̃ · ∇(v − un)〉
∀v ∈ V, un(x̃, 0) = un,0(x̃),(2.19)

where

〈v〉 =
∫

Ω̃k

v dx̃,(2.20)

a(un, v) =
〈
∇̃un · ∇̃v

〉
,(2.21)

j(v) =
〈|∇̃v|〉,(2.22)

V =

{
v ∈ H1(Ω̃k) :

∫
Ω̃k

v dΩ = 0, |∇̃v| = 0 ⇒ |∇U | = 0

}
.(2.23)

Note that ∂v
∂n = 0 on ∂Ω̃k is inherent in the above variational formulation. In deriving

(2.19), note that f does not vary over the length-scale of Ω̃. We assume that there
exists a solution un to (2.19), and that un ∈ V , with sufficient regularity for what fol-
lows. Existence and uniqueness of solutions to (2.19) and the steady version of (2.19)
are interesting problems in their own right. We consider this further in Appendix A.
By choosing v = 0 and v = 2un, we see that un satisfies

‖un‖ d

dt̃
‖un‖ =

〈
∂un

∂t̃
un

〉
= −µa(un, un)− ετ0j(un) + ε2f 〈un〉 .(2.24)
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Following [39, 40], we bound as follows:

‖un‖ d

dt̃
‖un‖ ≤ −µλ0 ‖un‖2 − bN,kετ0 ‖un‖+ ε2|f | ‖un‖ ,

with λ0 the least positive eigenvalue of −∆ over V on Ω̃k. Assuming that ‖un‖ �= 0,

d

dt̃
‖un‖ ≤ −µλ0 ‖un‖ − bN,kετ0 + ε2|f |.(2.25)

Note that λ0 = π2/k2, and by a simple mapping,

bN,k ≡ inf
v∈V, v �=0

∫
Ω̃k

|∇̃v| dx̃

‖v‖L2(Ω̃k)

= bN = 2.(2.26)

Consider also the steady version of (2.19):

µa(u∗
n, v − u∗

n) + ετ0[j(v)− j(u∗
n)] ≥ ε2f 〈[v − u∗

n]〉 − ε2 〈m̃ · ∇(v − u∗
n)〉

∀v ∈ V, u∗
n ∈ V.(2.27)

Proceeding as for the transient case, we find the bound:

0 ≤ −µλ0 ‖u∗
n‖2 − bN,kετ0 ‖u∗

n‖+ ε2|f | ‖u∗
n‖ .(2.28)

Therefore u∗
n = 0 is the unique steady solution (and also a transient solution) if

τ0 >
ε|f |
bN,k

(2.29)

is satisfied. Returning now to the transient problem and assuming that (2.29) is
satisfied, we proceed as in [40, 39]. Applying Gronwall’s lemma, we get that

‖un‖ (t̃) ≤
[
‖un‖ (0) + bN,kετ0 − ε2|f |

λ0µ

]
e−λ0µt̃ − bN,kετ0 − ε2|f |

λ0µ

≤ 0 if λ0µt̃ ≥ ln

[
1 +

λ0µ ‖un‖ (0)
bN,kετ0 − ε2|f |

]
.(2.30)

Returning to the integration of (1.1) over the time variable t = ε2t̃, we expect that
un will have decayed to its mean value over Ω̃k, after integrating for

t ≥ t0 =
ε2

µλ0
ln

[
1 +

λ0µ ‖un‖ (0)
bN,kετ0 − ε2|f |

]
.(2.31)

2.2.2. Relation to total variation filtering. In the total variation denoising
case (i.e., µ = 0 and τ0 = 1) it follows purely formally from (2.25) that

d

dt̃
‖un‖ ≤ −bN,kε+ ε2|f |.

Thus, by integrating with respect to t̃, it follows that

‖un‖ (t̃) ≤ ‖un‖ (0) + t̃(−bN,kε+ ε2|f |).
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Thus, returning to the integration variable t, we expect ‖un‖ (t̃) = 0 for

t ≥ t0 :=
ε ‖un‖ (0)
bN,k − ε|f | =

ε ‖un‖ (0)
2− ε|f | .(2.32)

This above estimate also follows from (2.31) as the leading order term of a Taylor
series expansion as µ → 0. Since we have derived (2.31) in H1, the estimate (2.32)
remains purely formal for total variation denoising.

To evaluate the quality of (2.32) we can rely on a variety of results. In [16] the
minimizer uα of (1.7) has been calculated analytically for given piecewise constant
input data in R

2. As a consequence of these calculations a minimal regularization
parameter α∗ can be calculated such that uα∗ = 0. For the sake of simplicity of
presentation we assume that u0 is just noise, in which case we have

u0(x) =

np∑
i=1

u0,iχΩi
=

np∑
i=1

ε

4
u0,i

4ε

ε2
χΩi ,(2.33)

where Ωi is a square (pixel) with length ε, np is the number of pixels (index i), χΩi
is

an indicator function on Ωi, and |u0,i| ≤ ρ is the noise amplitude. We have introduced
(2.33) to be in accordance with [16], and the factor 4ε

ε2 is the ratio of the perimeter
to the Lebesgue measure of Ωi. Thus, for a regularization parameter α satisfying
α ≥ ερ/4 we have uα = 0. For Ω = (0, 1) × (0, 1), setting U = 0, f = 0, τ0 = 1, and
µ = 0, it follows from (2.32) that un(t) = 0 for

t ≥ t0 :=
ρε

2
.

This shows that the regularization parameter of BV -regularization and our estimated
stopping time for total variation flow (2.32) differ by a factor of 2. Note, however, that
there is a discrepancy between the models: we concentrate on a diffusion framework
on a bounded domain, while in [16] a regularization framework on R

2 is considered.
Moreover, the estimates in [16] are for piecewise constant functions, while here the
estimates are valid for all noise functions. The factor of 2 arises by our defining bN,k
over the set of functions of zero mean. If relaxed, the two estimates will coincide.
Equivalently, the estimate for bN,k is not optimal in the situation that the total
variation flow solution is piecewise constant. Since the total variation flow solution
is piecewise constant over time, we could use bN = 4 in this situation, which would
yield an estimate analogous to [16].

Finally, we mention that the topic of solvability and exact solution of the total
variation flow equation has been addressed in a series of papers [7, 9, 16].

2.2.3. Physical interpretation of (2.14)–(2.17). The underlying image UI
affects un at O(ε2) in two ways in (2.14). The interpretation of f is quite straight-
forward: as a fluid flow problem, f is an imposed pressure gradient or body force,
whereas as a heat/diffusion problem, f is a heat/concentration source term. The
second way in which U affects un at O(ε2) in (2.14) is through m̃. We show that
m̃ has the effect of introducing an anisotropy into the diffusivity, aligned with the
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underlying image. Observe that for |∇̃un| �= 0

|∇̃un|3
τ0

m̃ = ∇U |∇̃un|2 − (∇U · ∇̃un)∇̃un

=




−∂un
∂x̃2

∂U

∂x2

∂un
∂x̃2

∂U

∂x1

∂un
∂x̃1

∂U

∂x2
−∂un
∂x̃1

∂U

∂x1






∂un
∂x̃1

∂un
∂x̃2


 .

Together with (2.17), this shows that (2.14) can be rewritten as

∂un

∂t̃
= ∇̃ ·

[
A(∇̃un)∇̃un

]
+ ε2f,

with

A(∇̃un) =

(
µ+

ετ0

|∇̃un|

)
I +

ε2τ0

|∇̃un|3




−∂un
∂x̃2

∂U

∂x2

∂un
∂x̃2

∂U

∂x1

∂un
∂x̃1

∂U

∂x2
−∂un
∂x̃1

∂U

∂x1


 .

This shows that (2.14) is an inhomogeneous anisotropic heat equation.
Lemma 2.1. Let |∇̃un| �= 0. The two eigenvalues of A(∇̃un) are given by

λ1 =

(
µ+

ετ0

|∇̃un|

)
,

λ2 =

(
µ+

ετ0

|∇̃un|

)
− ε2τ0

|∇̃un|3
(
∂un
∂x̃1

∂U

∂x1
+

∂un
∂x̃2

∂U

∂x2

)
.

If |∇U | �= 0, then the (right) eigenvectors are given by

v1 =
1

|∇U |
(
∂U

∂x1
,
∂U

∂x2

)t
, v2 =

1

|∇̃un|

(
−∂un
∂x̃2

,
∂un
∂x̃1

)t
.

Proof.
1. Let us define

a =

(
µ+

ετ0

|∇̃un|

)
and c =

ε2τ0

|∇̃un|3
.

Then

A(∇̃un) =




a− c
∂un
∂x̃2

∂U

∂x2
c
∂un
∂x̃2

∂U

∂x1

c
∂un
∂x̃1

∂U

∂x2
a− c

∂un
∂x̃1

∂U

∂x1


 .

Now, if λ is an eigenvalue of A(∇̃un), we have det(λ − A(∇̃un)) = 0, which
gives the assertion after simple algebra.

2. The first eigenvector is easily calculated from the identity:

A(∇̃un) = λ1I +R,
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with

R =
ε2τ0

|∇̃un|3




−∂un
∂x̃2

∂U

∂x2

∂un
∂x̃2

∂U

∂x1

∂un
∂x̃1

∂U

∂x2
−∂un
∂x̃1

∂U

∂x1


 .

This shows that the eigenvector according to the first eigenvalue λ1 must be
in the nullspace of R. If |∇U | �= 0, ∇U spans the nullspace. The second
eigenvector can be calculated by using simple linear algebra.

This shows that the anisotropic diffusion directions are determined from the diffusion
directions of the diffused data originating from noise free data.

3. Numerical results. Application of (2.31) and the preceding estimates is
not immediate, since it is necessary to estimate |f |. Provided that t0 � 1, we can
consider |f | = |∇(µ∇U) − Ut| to be pseudosteady with respect to t̃. To estimate
f we might consider deriving the problem satisfied by U in the multiple timescales
method. However, due to the nonlinearity, the problem for U does not decouple,
and it would be necessary to compute various long-time averages of un. We have
not derived this problem and instead take a more direct approach. We assume an
approximate balance,

|Ut| ∼ |∇(µ∇U)|,

for the long-time U -problem. Provided that ε|∇(µ∇U)| � 1, any uniform value
τ0 ∼ 1 should dominate the underlying effects of the image. This balance will be met
when UI changes rapidly over a length-scale ∼ [µε]1/2 � 1. Consequently, we suggest
selecting µ ∼ ε and effectively neglecting the ε2f term in the denominator (2.31). Our
estimate for the decay timescale of un to its local mean over the scale kε is

t ∼ T =
ε2k2

µπ2
ln

[
1 +

π2µ ‖un‖ (0)
2k2ετ0

]
,(3.1)

which we expect to produce reasonable results, provided that spatial variations in UI
occur over length-scales � [µε]1/2, i.e., the pixel scale for our choice of µ. We proceed
with a number of numerical examples.

In the following examples, we have integrated (1.1) using the regularized form
(1.6) of D, with β = 10−3. A fully implicit fractional steps method is used. Since
the derivation of (3.1) is purely formal and mostly heuristic, our first objective is to
demonstrate that (3.1) produces a sensible estimate of the stopping time to be used
with filters of the form (1.2).

3.1. Example 1. As our first example, we take the image shown in Figure 3,
which has been normalized so as to have zero mean and so that ‖UI‖ = 1. This
image is perturbed on each pixel with random white noise of maximum amplitude
∆un,max. We fix a base case with parameters ∆x = ε = 0.01, µ = 0.01, τ0 = 1.0,
∆un,max = 0.5, and vary each of µ, τ0, and ∆un,max in turn. Plotted in Figures 3(b)–
(f) is the relative noise level ‖un‖ (t)/ ‖un‖ (0) against the time t, normalized with the
stopping time estimate (3.1), i.e., t/T . Figures 3(b)–(d) show this decay for varying
∆un,max, τ0, and µ, respectively. Here we have fixed k = 1. In Figures 3(e)–(f) we
show the variations in the decay of ‖un‖ (t)/ ‖un‖ (0) with τ0 and µ, for k = 2; i.e., we
wait for the local average to develop over a larger length-scale.
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(a) (b)(b)

(c)(c) (d)(d)

(e)(e) (f)(f)

Fig. 3. Decay of relative noise: ‖un‖ (t)/ ‖un‖ (0) with t/T . Base parameters: ∆x = ε = 0.01,
µ = 0.01, τ0 = 1.0, ∆un,max = 0.5. (a) UI(x); (b) variations with ∆un,max = 0.1, 0.2, . . . , 0.9, 1.0,
k = 1; (c) variations with τ0 = 0.1, 0.2, . . . , 0.9, 1.0, initial perturbation of UI(x) with white noise
of maximum amplitude ∆un,max = 0.5, k = 1; (d) variations with µ = 0.01, 0.02, . . . , 0.09, 0.1,
k = 1; (e) variations with τ0 = 0.1, 0.2, . . . , 0.9, 1.0, initial perturbation of UI(x) with white noise
of maximum amplitude ∆un,max = 0.5, k = 2; (f) variations with µ = 0.01, 0.02, . . . , 0.09, 0.1,
k = 2.
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(a)(a) (b)(b)

(c) (d)

(e) (f)(f)

Fig. 4. Evolution of the image u(x, t) of Figure 3(a), perturbed with white noise of maximum
amplitude ±∆un,max = 0.5. (a) t/T = 0, (b) t/T = 1, (c) t/T = 2 (approximately the minimum of
‖un‖ (t)/ ‖un‖ (0)), (d) t/T = 3, (e) t/T = 10, (f) t/T = 50.
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The first observation from Figure 3 is that the minimum in ‖un‖ (t)/ ‖un‖ (0)
is reached for t/T ∼ O(1), implying that (3.1) produces a sensible estimate of an
appropriate stopping time. For k = 1, the minimum is fairly shallow and can be made
slightly more extreme by increasing k. Note, however, that we generally do not wish
to average the noise over too large a length-scale since the image may then deteriorate.
As an example of the evolution of the image, we show in Figure 4 the solution u(t) at
different times t/T = 0, 1, 2, 3, 10, 50 for the base case ∆x = ε = 0.01, µ = 0.01,
τ0 = 1.0, ∆un,max = 0.5, k = 2. The more acceptable recovered images are close
to the minimum of ‖un‖ (t)/ ‖un‖ (0) (Figures 4(b)–(d)). At larger times, important
features of UI begin to be lost (Figure 4(e)), and for t � T the recovered image is
very poor (Figure 4(f)).
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Fig. 5. Results of applying the diffusion filter to an MR-image; ∆x = ε = 1/124, µ = ε,
τ0 = 1.0, k = 2. (a) MR-image u(x, 0), (b) contour plot of u(x, 0), (c) u(x, T ), (d) u(x, 2T ), (e)
u(x, 3T ), (f) u(x, 10T ).

3.2. Example 2. As a second example, we consider an MR-imaged head; see
Figure 5(a). Here the initial image is noisy and we can estimate ‖un‖ (0) ≈ 0.2. For
this image, ∆x = ε = 1/124, and we set µ = ε, τ0 = 1.0, and k = 2. Contours
of the initial image are shown in Figure 5(b). In Figures 5(c)–(f) the results of
applying the diffusion filter with these parameters to the solution u(x, t) at times
t = T, 2T, 3T, 10T are shown. On integrating further, the image is effectively
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constant by t ≈ 60T . The contours of the mouth and nose are particularly well-
defined for t ∼ T , but deteriorate rapidly for t � T .

3.3. Example 3. As a final example, we consider the more complex geometrical
image UI(x) in Figure 6(a). This type of image is quite challenging for a diffusion
filter due to the fine features, e.g., the edges around the windows, the chair legs,
the shadows on the computer screen, etc. In Figure 6(b) we perturb the image with
random white noise of maximum amplitude ±∆un,max = 0.1 and then integrate using
µ = ε, τ0 = 1.0, k = 2; here ∆x = ε = 1/256. The recovered image u(x, t) is shown
at times t = T, 2T, 3T, 10T in Figures 6(c)–(f). Again for t = 10T many of the
fine-scale features of the image are lost, whereas Figures 6(c)–(e) give a reasonable
recovered image.

For an image such as UI(x) in Figure 6(a), it is evidently hard to recover fine-
scale features when the initial noise level is high, since fine-scale features of the image
and noise become indistinguishable. However, the stopping estimate still produces
reasonable results, mathematically speaking; it is simply that they are not particularly
good aesthetically! In Figure 7 we repeat the numerical experiment of Figure 6,
perturbing UI(x) with random white noise of maximum amplitude ±∆un,max = 1.0,
(see Figure 7(a)), and integrating using µ = ε, τ0 = 1.0, k = 2. The recovered image
u(x, t) is shown at times t = T, 2T, 3T, 10T, 50T in Figures 7(b)–(f). The recovered
image is predictably much poorer than in Figure 6. For t = 50T the image has
diffused away. Figures 7(c)–(d) are quite reasonable, considering the initial image.
(Note that the initial image u(x, 0) is actually much more noisy than it appears in
Figure 7(a), since the grey-scale chosen represents only intensities in [0, 1]; hence the
salt-and-pepper look.)

4. Discussion. We have used an analogy between visco-plastic fluid flow and
image selective smoothing to determine quantitatively accurate asymptotic stopping
time estimates for Bingham diffusion models. The Bingham model is a physical fluid
model that, applied to filtering data, is capable of removing the noise locally in a
finite time, which, for instance, the Gaussian filtering method (τ → 0) does not do.
The Bingham model is also capable of preserving blocky structure in the original data
in the sense that horizontal level lines are preserved as horizontal, although corners
are blurred.

There are a number of potential extensions of our work. First, it is important to
note that the multiple scales estimate leaves room for the selection of locally varying
filter parameters, τ0(x) and µ(x), which can be chosen within this rational stopping
time framework that we have established. This can be used to produce local en-
hancement of the restored image, particularly in cases where fine-scale features of the
image are obscured by noise (e.g., our final example in Figure 7). We have already
made some progress in the development of local filtering techniques, which will be
reported elsewhere. Second, there are obvious extensions to multidimensional image
restoration tasks (e.g., color filtering) wherever Bingham-type filters are used. Third,
we mention that the Bingham model is only one of many visco-plastic fluid models.
It is of some academic and practical interest to further explore the frontier between
non-Newtonian fluid mechanics and image restoration. Currently there are concerns
in the image processing community about the use of bounded variation regularization
models and their tendency to generate blocky structures (see, e.g., [30, 57]). Recent
work of Gousseau and Morel [41] seem to point towards the use of power law models
in image denoising, which again have counterparts in fluid mechanics. Filtering meth-
ods can be developed for visco-plastic shear-thinning models such as Herschel–Bulkley
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(a) (b)

(c) (d)

(e) (f)

Fig. 6. Denoising of a more complex geometrical image: ∆x = ε = 1/256, µ = ε, τ0 = 1.0,
k = 2. (a) UI(x), (b) u(x, 0) after perturbing UI(x) with random white noise of maximum amplitude
±∆un,max = 0.1, (c) u(x, T ), (d) u(x, 2T ), (e) u(x, 3T ), (f) u(x, 10T ).

and Casson fluid models too. The inclusion of visco-elastic (memory) effects is also
of extreme practical interest. Our work is progressing in this direction.

Appendix. Weak solutions of (2.14)–(2.17). The differential equation (2.14)
has to be understood in a generalized setting. We interpret (2.14) following the con-
cept of nonlinear semigroup theory (see, e.g., [19]) and consider instead a semi-infinite
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(a) (b)

(c) (d)

(e) (f)

Fig. 7. Denoising of the image of Figure 6(a): ∆x = ε = 1/256, µ = ε, τ0 = 1.0, k = 2.
(a) u(x, 0) after perturbing UI(x) with random white noise of maximum amplitude ±∆un,max =
1.0, (note that the initial image is actually worse than it appears since the grey-scale chosen only
represents intensities in [0, 1]); (b) u(x, T ); (c) u(x, 2T ); (d) u(x, 3T ); (e) u(x, 10T ); (f) u(x, 50T ).

implicit time-discretized approximation ûn for un(t̃) at the discrete time samples

t̃ = t̃i = t̃i−1 +∆t̃ (i = 1, . . . ), t̃0 = 0,
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via

ûn(t̃+∆t̃)− ûn(t̃)

∆t̃
= ∇̃ · [τ̃ + ε2m̃](t̃+∆t̃) + ε2f.(A.1)

Note here that in our multiple-timescales approximation, partial derivatives of U , and
hence also of f , are considered constant in time and space for the rapid timescale and
short length-scale evolution associated with ûn. The approximation at time t̃+∆t̃ is
understood as the minimizer of the functional

F(û) := ∆t̃

{
µ

2
a(û, û) + ετ0j(û) + ε2τ0

〈
∇U · ∇̃û

|∇̃û|

〉
− ε2 〈fû〉

}
− 1

2‖ûn(t̃)− û‖2

over

H1
mean :=

{
û ∈ H1 :

∫
û = 0

}
.

We consider the variational problem of minimizing F over the space H1
mean. In contrast

to classical solutions for (2.14)–(2.18), we do not have to impose Neumann boundary
conditions, since they are inherent in the variational formulation. Note that the space
H1

mean is a Hilbert space with scalar product

〈∇u · ∇v〉 .
Since the functional F is nonconvex with respect to û in general we do not have

existence of a minimizer (see, e.g., [29]), and generalized solution concepts have to be
employed. There are at least three possible solution concepts:

1. Convexification (see, e.g., [29]). This would be the most attractive concept
for numerical purposes: it consists of calculating the convex envelope of the
function

Fc(û1, û2) = ∆t̃

{
µ

2
(û2

1 + û2
2) + ετ0

√
û2

1 + û2
2 + ε2τ0

∇U · û√
û2

1 + û2
2

}

with respect to the variable (û1, û2) ∈ R
2. Once the convex envelope is calcu-

lated, the resulting minimization problem can be solved by solving the first
order optimality condition, which is a degenerated elliptic partial differential
equation. The difficulty associated with calculation of the convex envelope is
the dependence of Fc on ∇U . Thus the convex envelope is only tractable if
we find an analytical expression for the convex envelope in terms of two free
parameters (U1, U2) representing ∇U .

2. Γ-limits (see, e.g., [5]). That is, we reconsider the functional F :

FΓ(û) := lim inf
{{v̂l,ξl}l∈N:v̂l⇀u∈H1

mean(Ω̃k) and ξl→0+}
Fξl(v̂l),

with

Fξ(v̂l) := ∆t̃


µ

2
a(v̂l, v̂l) + ετ0j(v̂l)− ε2 〈fv̂l〉

+ ε2τ0

〈
∇U · ∇̃v̂l√
|∇̃v̂l|2 + ξ2

〉
+ 1

2‖ûn(t̃)− ve‖2
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As we show below, the modified functional has a minimizer. The modified
functional is a reasonable model since, if the original functional F has a
minimizer, it also minimizes FΓ. We remark that for convex functionals the
modified functional is identical to the original. We employ Γ−-limits below.

3. Relaxation (see, e.g., [5, 29]). We call a relaxation method a Γ-limit, without
additional parameter dependency, i.e., without dependency of the positive
sequence {ξl}l∈N.

In order to simplify the considerations, we abbreviate the functional F and note that
it is of the general form

F(û) := ν1a(û, û) + ν2j(û) + ν3

〈
∇U · ∇̃û

|∇̃û|

〉
−
〈
f̂ û
〉
+ ν4‖ûn(t̃)− û‖2,

with 0 < ν := (ν1, ν2, ν3, ν4) ≤ ν.
Accordingly we set

Fξ(û) := ν1a(û, û) + ν2j(û) + ν3

〈
∇U · ∇̃û√
|∇̃û|2 + ξ2

〉
−
〈
f̂ û
〉
+ ν4‖ûn(t̃)− û‖2

and define the Γ-limit as above.
Lemma A.1. Let f̂ ∈ (H1

mean)
∗, the dual of H1

mean, and U ∈ H1. Moreover, let Ω̃k
be bounded with Lipschitz boundary. Then the function values FΓ(û) are well defined
for each û ∈ H1

mean.
Proof. Under the above assumptions, we have for each ũ ∈ H1

mean and ξ > 0 that

Fξ(ũ) ≥ −ν‖∇U‖L2 + ν1‖∇̃ũ‖2
L2 − ‖f̂‖(H1

mean)
∗‖∇̃ũ‖L2

≥ −ν‖∇U‖L2 −
‖f̂‖2

(H1
mean)

∗

4ν1
.

(A.2)

This shows that for any ũ ∈ H1
mean, Fξ(ũ) is uniformly bounded from below with

respect to ξ. Moreover, Fξ(ũ) is uniformly bounded from above since

Fξ(ũ) ≤ ν‖∇U‖L2 + C‖ũ‖2
H1

mean
+ ‖f̂‖(H1

mean)
∗‖ũ‖H1

mean
+ ν‖ũ‖H1

mean

√
meas(Ω̃k) + C,

(A.3)

with appropriate C > 0. Thus for any pair of sequences {v̂l}l∈N converging weakly
to û, and {ξl}l∈N converging to 0+, the sequence {Fξl(v̂l)}l∈N is uniformly bounded,
and thus its infimum is finite. Taking the infimum over all limits of possible sequences
{Fξl(v̂l)} gives the assertion.

Theorem A.2. Under the same assumptions as in Lemma A.1, FΓ attains a
minimum in H1

mean.
Proof. From (A.2) it follows that the infimum of FΓ over H1

mean is finite. Suppose
that FΓ does not attain a minimum; then there exists a sequence {ρl}l∈N satisfying

FΓ(ρl) → inf FΓ.

By definition, for any ρl and any δl > 0 there exists a pair (ρ̂l, ξl) satisfying

|FΓ(ρl)−Fξl(ρ̂l)| ≤ δl.
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Let δl → 0; then

Fξl(ρ̂l) → inf FΓ .(A.4)

In particular, we have

Fξl(ρ̂l) ≤ C < ∞ for all l ∈ N .

Thus from the definition of Fξl it follows that

ν‖ρ̂l‖2
H1

mean
≤ (

C + ν‖∇U‖L2

)
+

(
‖f̂‖(H1

mean)
∗ + ν

√
meas(Ω̃k)

)
‖ρ̂l‖H1

mean

=: C1 + C2‖ρ̂l‖H1
mean

,

which shows that {ρ̂l}l∈N is uniformly bounded in H1
mean, and therefore it has a weakly

convergent subsequence, which again, for simplicity of notation, is denoted by {ρ̂l}l∈N.
Let us denote by û the weak limit; then by definition of FΓ we have that

FΓ(û) ≤ lim inf
l∈N

Fξl(ρ̂l),

which together with (A.4) shows that

FΓ(û) = inf FΓ.
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[21] F. Catté, P.-L. Lions, J.-M. Morel, and T. Coll, Image selective smoothing and edge

detection by nonlinear diffusion, SIAM J. Numer. Anal., 29 (1992), pp. 182–193.
[22] A. Chambolle and P.L. Lions, Image recovery via total variation minimization and related

problems, Numer. Math., 76 (1997), pp. 167–188.
[23] T.F. Chan, G.H. Golub, and P. Mulet, A nonlinear primal-dual method for total variation-

based image restoration, SIAM J. Sci. Comput., 20 (1999), pp. 1964–1977.
[24] T.F. Chan and P. Mulet, On the convergence of the lagged diffusivity fixed point method in

total variation image restoration, SIAM J. Numer. Anal., 36 (1999), pp. 354–367.
[25] T.F. Chan, G.H. Golub, and P. Mulet, A nonlinear primal-dual method for total variation-

based image restoration, in Proceedings of the 12th International Conference on Analysis
and Optimization of Systems, Images, Wavelets and PDEs (ICAOS ’96), Berlin, 1996,
Lecture Notes in Control and Inform. Sci. 219, Springer-Verlag, London, 1996, pp. 241–
252.

[26] G. Chavent and K. Kunisch, Regularization of linear least squares problems by total bounded
variation, ESAIM Control Optim. Calc. Var., 2 (1997), pp. 359–376.

[27] M. Chipot, R. March, M. Rosati, and G. Vergara Caffarelli, Analysis of a nonconvex
problem related to signal selective smoothing, Math. Models Methods Appl. Sci., 7 (1997),
pp. 313–328.

[28] A. Cohen, R. DeVore, P. Petrushev, and H. Xu, Nonlinear approximation and the space
BV (R2), Amer. J. Math., 121 (1999), pp. 587–628.

[29] B. Dacorogna, Direct Methods in the Calculus of Variations, Springer-Verlag, Berlin, 1989.
[30] D.C. Dobson and F. Santosa, Recovery of blocky images from noisy and blurred data, SIAM

J. Appl. Math., 56 (1996), pp. 1181–1198.
[31] D.C. Dobson and O. Scherzer, Analysis of regularized total variation penalty methods for

denoising, Inverse Problems, 12 (1996), pp. 601–617.
[32] D.C. Dobson and C.R. Vogel, Convergence of an iterative method for total variation denois-

ing, SIAM J. Numer. Anal., 34 (1997), pp. 1779–1791.
[33] G. Duvaut and J.L. Lions, Inequalities in Mechanics and Physics, Springer-Verlag, New York,

1976.
[34] I.A. Frigaard and O. Scherzer, Uniaxial exchange flows of two Bingham fluids in a cylin-

drical duct, IMA J. Appl. Math., 61 (1998), pp. 237–266.
[35] I.A. Frigaard and O. Scherzer, The effects of yield stress variation on uniaxial exchange

flows of two Bingham fluids in a pipe, SIAM J. Appl. Math., 60 (2000), pp. 1950–1976.
[36] I.A. Frigaard, S.D. Howison, and I.J. Sobey, On the stability of Poiseuille flow of a Bing-

ham fluid, J. Fluid Mech., 263 (1994), pp. 133–150.
[37] D. Geman and C. Yang, Nonlinear image recovery with half-quadratic regularization, IEEE

Trans. Image Processing, 4 (1995), pp. 932–945.
[38] S. Geman and D. Geman, Stochastic relaxation, Gibbs distributions, and the Bayseian restora-

tion of images, IEEE Trans. Pattern Analysis and Machine Intelligence, 6 (1984), pp.
721–741.

[39] R. Glowinski, Numerical Methods for Nonlinear Variational Problems, Springer-Verlag,
Berlin, New York, 1984.

[40] R. Glowinski, J.-L. Lions, and R. Trémolières, Numerical Analysis of Variational Inequal-
ities, North–Holland, Amsterdam, 1981.

[41] Y. Gousseau and J.-M. Morel, Are natural images of bounded variation?, SIAM J. Math.
Anal., 33 (2001), pp. 634–648.

[42] E.J. Hinch, Perturbation Methods, Cambridge University Press, Cambridge, UK, 1991.



STOPPING TIMES FOR VISCO-PLASTIC DIFFUSION FILTERS 1933

[43] R.R. Huilgol and M.P. Panizza, On the determination of the plug flow region in Bingham
fluids through the application of variational inequalities, J. Non-Newtonian Fluid Mech.,
58 (1995), pp. 207–217.

[44] K. Ito and K. Kunisch, Lagrangian formulation of nonsmooth convex optimization in Hilbert
spaces, in Control of Partial Differential Equations and Applications, Proceedings of the
17th IFIP TC7 Conference on System Modelling and Optimization, E. Casas, ed., Lecture
Notes in Pure and Appl. Math. 174, Dekker, New York, 1996, pp. 107–117.

[45] K. Ito and K. Kunisch, Augmented Lagrangian methods for nonsmooth, convex optimization
in Hilbert spaces, Nonlinear Anal., 41A (2000), pp. 591–616.

[46] S. Kichenassamy, The Perona–Malik paradox, SIAM J. Appl. Math., 57 (1997), pp. 1328–1342.
[47] K.F. Liu and C.C. Mei, Slow spreading of a sheet of Bingham fluid on an inclined plane,

J. Fluid Mech., 207 (1989), pp. 505–529.
[48] S. Mallat, A Wavelet Tour of Signal Processing, 2nd ed., Academic Press, San Diego, CA,

1999.
[49] J.M. Morel and S. Solimini, Variational Methods in Image Segmentation, Birkhäuser Boston,
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Abstract. In this paper we extend the results of Frankel and Kiemel [SIAM J. Appl. Math, 53
(1993), pp. 1436–1446] to a network of slowly coupled oscillators. First, we use Malkin’s theorem to
derive a canonical phase model that describes synchronization properties of a slowly coupled network.
Then, we illustrate the result using slowly coupled oscillators (1) near Andronov–Hopf bifurcations,
(2) near saddle-node on invariant circle bifurcations, and (3) near relaxation oscillations. We compare
and contrast synchronization properties of slowly and weakly coupled oscillators.
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1. Slowly coupled networks. In this paper we study synchronization dynamics
of a network of n ≥ 2 coupled oscillators of the form

ẋi = fi(xi, s1, . . . , sn),(1.1)

ṡi = εgi(xi, si),(1.2)

where xi ∈ R
m describes the state of the ith oscillator and si ∈ R describes how

the ith oscillator affects the other oscillators for i = 1, . . . , n. The parameter ε � 1
is small reflecting the assumption that the connection variables si are “slow.” We
analyze this system in this section and present several examples in section 2.

Proceeding as in Frankel and Kiemel (1993) we “freeze” the vector of slow vari-
ables s = (s1, . . . , sn) ∈ R

n and assume that each oscillator described by (1.1) has a
Ti(s)-periodic solution xi = xi(t, s). Substituting this in (1.2) results in the system

ṡi = εgi(xi(t, s), si), i = 1, . . . , n,

which we can average and obtain a slow system

ṡi = εḡi(s), i = 1, . . . , n,(1.3)

where

ḡi(s) =
1

Ti(s)

∫ Ti(s)

0

gi(xi(t, s), si) dt

is the average of gi. In this paper we make the following two assumptions:
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A1. The system (1.3) has an exponentially stable equilibrium s̄ = (s̄1, . . . , s̄n).
A2. Each equation (1.1) has an exponentially stable limit cycle attractor γi(t) ⊂

R
m with period T > 0 when s = s̄.

Theorem 1.1 (phase model for slowly coupled oscillators). Consider the slowly
coupled system (1.1), (1.2) satisfying assumptions A1 and A2 above. Let τ = εt
be slow time. Let ui(τ) be the rescaled deviation of the slow variable si from the
asymptotic value s̄i, and let ϕi(τ) be the phase deviation of the ith oscillator from the
natural oscillation γi(t). Then, the phase dynamics and synchronization properties of
the slowly coupled system (1.1), (1.2) are described by the canonical phase model

ϕ′
i =

n∑
j=1

{aijuj +Hij(ϕj − ϕi)} ,(1.4)

u′i =
n∑
j=1

{bijuj +Kij(ϕj − ϕi)} ,(1.5)

where ′ = d/dτ , and

aij =
1

T

∫ T

0

Qi(t)
� ∂fi
∂sj

(γi(t), s̄) dt,

bij =
1

T

∫ T

0

[
Pi(t)

� ∂fi
∂sj

(γi(t), s̄) +
∂gi
∂sj

(γi(t), s̄i)

]
dt,

Hij(χ) =
1

T

∫ T

0

Qi(t)
� ∂fi
∂sj

(γi(t), s̄)

∫ t+χ

0

gj(γj(t̄), s̄) dt̄ dt,

Kij(χ) =
1

T

∫ T

0

(
Pi(t)

� ∂fi
∂sj

(γi(t), s̄) +
∂gi
∂sj

(γi(t), s̄i)

)∫ t+χ

0

gj(γj(t̄), s̄) dt̄ dt,

where Qi(t), Pi(t) ⊂ R
m are the unique nontrivial T -periodic solutions of the linear

adjoint systems

Q̇i = −
{
∂fi
∂xi

(γi(t), s̄)

}�
Qi and Ṗi = −

{
∂fi
∂xi

(γi(t), s̄)

}�
Pi −

{
∂gi
∂xi

(γi(t), s̄)

}�

(1.6)
satisfying the normalization conditions

Qi(t)
�fi(γi(t), s̄) = 1 and Pi(t)

�fi(γi(t), s̄) = −gi(γi(t), s̄)(1.7)

for some (and hence all) t ≥ 0.
Remark 1.2. The same result holds when gi(xi, si) also depend on s1, . . . , sn.
Remark 1.3. The same result holds for the slowly and weakly coupled system

ẋi = fi(xi, s1, . . . , sn) + ε

n∑
j=1

rij(xi, xj),

ṡi = εgi(xi, si),

provided that the term

1

T

∫ T

0

Qi(t)
�rij(γi(t), γj(t+ χ)) dt
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is added to the function Hij(χ) and the term

1

T

∫ T

0

Pi(t)
�rij(γi(t), γj(t+ χ)) dt

is added to the function Kij(χ).
Remark 1.4. This result not only extends the result of Frankel and Kiemel (1993)

to a network of n ≥ 2 oscillators, but also presents a precise description of all the
parameters and functions in the canonical model (1.4), (1.5), which can easily be
determined numerically; see Appendix B.

Proof. This result is a corollary to Malkin’s theorem, which we restate in Ap-
pendix A. Consider the slowly coupled system (1.1), (1.2) in an ε-neighborhood of s̄.
Let

si = s̄i + εwi,

so that we can rewrite (1.1), (1.2) in the form (A.1),

ẋi = fi(xi, s̄) + ε

n∑
j=1

hij(xi, s̄)wj ,(1.8)

ẇi = gi(xi, s̄i) + εpi(xi, s̄i)wi(1.9)

plus higher-order terms in ε, where

hij =
∂fi
∂sj

and pi =
∂gi
∂si

.

In the rest of the proof we omit s̄ for the sake of clarity of notation.
Since (1.8), (1.9) has a “weakly connected” form, it suffices to show that all the

conditions of Malkin’s theorem are satisfied for each individual oscillator.
Each unperturbed (uncoupled, ε = 0) system

ẋi = fi(xi),

ẇi = gi(xi)

has a 2-parameter family of T -periodic solutions

xi(t) = γi(t+ ϕi) and wi(t) = ui +

∫ t+ϕi

0

gi(γi(t̄)) dt̄,

where ϕi and ui are independent parameters, i = 1, . . . , n. (wi(t) is periodic because si
is at equilibrium and the average of gi over the limit cycle is assumed to be zero.) Let
Qi(t) and Pi(t) be the unique nontrivial solutions to the adjoint system (1.6), which
exist because γi(t) is a normally hyperbolic attractor (Hoppensteadt and Izhikevich
1997). One can verify that

Ri(t) =

(
Qi(t)
0

)
and Ri(t) =

(
Pi(t)
1

)
are two independent nontrivial solutions to the adjoint system (A.2),

Ṙi = −
(

∂fi
∂xi

(γi(t)) 0
∂gi
∂xi

(γi(t)) 0

)�
Ri .
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Equation (A.4) results in

ϕ′
i =

1

T

∫ T

0

Qi(t+ ϕi)
�




n∑
j=1

hij(γi(t+ ϕi))

(
uj +

∫ t+ϕj

0

gj(γj(t̄)) dt̄

)
 dt

=
1

T

∫ T

0

Qi(t)
�




n∑
j=1

hij(γi(t))

(
uj +

∫ t+ϕj−ϕi

0

gj(γj(t̄)) dt̄

)
 dt

and

u′i =
1

T

∫ T

0

Pi(t+ ϕi)
�




n∑
j=1

hij(γi(t+ ϕi))

(
uj +

∫ t+ϕj

0

gj(γj(t̄)) dt̄

)


+1 ·
{
pi(γi(t+ ϕi))

(
ui +

∫ t+ϕi

0

gi(γi(t̄)) dt̄

)}
dt

=
1

T

∫ T

0

Pi(t)
�




n∑
j=1

hij(γi(t))

(
uj +

∫ t+ϕj−ϕi

0

gj(γj(t̄)) dt̄

)


+1 ·
{
pi(γi(t))

(
ui +

∫ t+ϕj−ϕi

0

gi(γi(t̄)) dt̄

)}
dt,

which can be written in the form (1.4), (1.5).

2. Examples. The major challenge in applying Theorem 1.1 is solving the lin-
ear adjoint system (1.6). In general, this could be done numerically, as we show in
Appendix B. However, there are three important cases when (1.6) can be solved
analytically:

• Each oscillator is near an Andronov–Hopf bifurcation.
• Each oscillator is near a saddle-node on invariant circle bifurcation.
• Each oscillator has two time scales (relaxation oscillator).

We consider all three cases below, but first we start with two simple examples.

2.1. Phase oscillators. The system of slowly coupled phase oscillators

ϑ̇i = 1 +

n∑
j=1

cijsj ,(2.1)

ṡi = ε(cosϑi − bsi)(2.2)

illustrates the major steps in Theorem 1.1. When all si are not very large, the averaged
slow system (1.3) has the form

ṡi = −εbsi.
If b > 0, s̄ = 0 ∈ R

n is an exponentially stable equilibrium, and assumption A1 is
satisfied. Assumption A2 is also satisfied, since at s̄ = 0 all phase oscillators, described
by ϑ̇i = 1, have equal period T = 2π. Let si = εwi; then system (1.8), (1.9) has the
form

ϑ̇i = 1 + ε

n∑
j=1

cijwj ,

ẇi = cosϑi − εbwi.
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When ε = 0, this system has a family of solutions

ϑi(t) = t+ ϕi and wi(t) = ui + sin(t+ ϕi).

Since ∂fi/∂ϑi = 0, the adjoint system (1.6) has solutions Qi(t) = 1 and Pi(t) =
− cos t, which satisfy the normalization condition (1.7). It is easy to check that

aij =
1

T

∫ T

0

1 · cij dt = cij ,

bij =
1

T

∫ T

0

[− cos t · cij + 0] dt = 0, i 
= j,

bii =
1

T

∫ T

0

[− cos t · cii − b] dt = −b,

Hij(χ) =
1

T

∫ T

0

[
1 · cij ·

∫ t+χ

0

cos t̄ dt̄

]
dt = 0,

Kij(χ) =
1

T

∫ T

0

[
− cos t · cij

∫ t+χ

0

cos t̄ dt̄

]
dt = −cij

2
sinχ, i 
= j,

and Kii(0) = 0, so that the canonical phase model (1.4), (1.5) has the form

ϕ′
i =

n∑
j=1

cijuj ,

u′i = −bui − 1

2

n∑
j=1

cij sin(ϕj − ϕi).

It is a simple exercise to check that the same canonical model can be obtained via
standard averaging of (2.1), (2.2).

2.2. Frankel and Kiemel’s example. As an illustration, Frankel and Kiemel
(1993) considered the six-dimensional system

ϑ̇i = 1 + sj(α+ βri cosϑi + γr2i cos
2 ϑi),

ṙi = ri − r3i + ηsjr
2
i cosϑi,

ṡi = ε(ri cosϑi − µsi)

having fast variables in polar coordinates S
1×R and parameters α, β, γ, η, µ ∈ R, and

i, j ∈ {1, 2}, i 
= j. They used a completely different approach to show how the model
can be reduced to the planar system

χ′ = (−α− γ/2)u− β sinχ,(2.3)

u′ = (β/2− η/5− µ)u+ (α+ 3γ/4) sinχ,(2.4)

where

χ = ϕ2 − ϕ1 and u = u2 − u1(2.5)

and ui and ϕi have the same meaning as in this paper.
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Let us verify Frankel and Kiemel’s result using Theorem 1.1. Each uncoupled
oscillator has a 2π-periodic solution (t, 1) ∈ S

1 ×R when s̄ = 0. It is easy to check by
differentiating that the adjoint linear systems (1.6),

Q̇ = −
{

0 0
0 −2

}�
Q and Ṗ = −

{
0 0
0 −2

}�
P − { − sin t, cos t

}�
,

have solutions

Q(t) =

(
1
0

)
and P (t) =

( − cos t
2
5 cos t− 1

5 sin t

)
satisfying the normalization conditions (1.7). Therefore, the parameters in the canon-
ical model (1.4), (1.5) are (here i 
= j)

aij =
1

2π

∫ 2π

0

(
1
0

)�(
α+ β cos t+ γ cos2 t

η cos t

)
dt = α+

γ

2
,

bij =
1

2π

∫ 2π

0

( − cos t
2
5 cos t− 1

5 sin t

)�(
α+ β cos t+ γ cos2 t

η cos t

)
dt = −β

2
+
η

5
,

Hij(χ) =
1

2π

∫ 2π

0

(
1
0

)�(
α+ β cos t+ γ cos2 t

η cos t

)∫ t+χ

0

cos t̄ dt̄ dt =
β

2
sinχ,

Kij(χ) =
1

2π

∫ 2π

0

( − cos t
2
5 cos t− 1

5 sin t

)�(
α+ β cos t+ γ cos2 t

η cos t

)∫ t+χ

0

cos t̄ dt̄ dt

=

(
−α

2
− 3

8
γ

)
sinχ,

and

aii = 0, bii = −µ, Hii(0) = 0, and Kii(0) = −1/2 .
Using the difference variables (2.5) we arrive exactly at the same model (2.3), (2.4)
that Frankel and Kiemel did.

2.3. Andronov–Hopf bifurcation. Next, we derive the canonical phase model
for a network of slowly coupled oscillators near an Andronov–Hopf bifurcation. With-
out loss of generality we may assume that s̄ = 0 and that each oscillator has already
been converted into the topological normal form (by a continuous near-identity change
of variables; see Hoppensteadt and Izhikevich (1997)). We use complex coordinates
for convenience and consider the system

żi = (µ+ i)zi − zi|zi|2 + qi(zi, z̄i, s1, . . . , sn), zi ∈ C,

ṡi = εgi(zi, z̄i, si), si ∈ R,

where i =
√−1 has a different font from the subscript i, 0 < ε � µ � 1 (we assume

µ is sufficiently small so that higher-order terms in µ may be neglected) and qi and
gi are arbitrary smooth functions satisfying

qi(zi, z̄i, 0, . . . , 0) = 0 and gi(0, 0, 0) = 0.

In this case each unperturbed (ε = 0) oscillator

żi = (µ+ i)zi − zi|zi|2
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has a small amplitude limit cycle attractor

γi(t) =
√
µ eit ⊂ C

with period T = 2π. We do not need to solve the adjoint linear system (1.6),

Q̇i = −{i +O(µ)}∗Qi and Ṗi = −{i +O(µ)}∗Pi − {∂gi/∂zi}∗,

since we can find the solutions

Qi(t) = ieit/
√
µ and Pi(t) = −ieit

{
eit∂gi/∂zi + c.c.

}
directly from the normalization condition (1.7),

Qi(t)
∗ {(µ+ i)γi(t)− γi(t)|γi(t)|2

}
= Qi(t)

∗
{
i
√
µeit

}
= 1

and

Pi(t)
∗
{
i
√
µeit

}
= −gi(√µeit, 0) = −

{√
µeit∂gi/∂zi + c.c.

}
,

where Qi(t), Pi(t) ∈ C, ∗ denotes transposition and complex conjugation, and c.c.
means complex-conjugate. Now we can apply Theorem 1.1 to obtain the canonical
phase model

ϕ′
i =

n∑
j=1

{aijuj + cij sin(ϕj + ψij − ϕi)} ,

u′i =
n∑
j=1

bijuj ,

where

aij = Im
∂2qi
∂sj∂zi

,

bij = − Im
∂qi
∂sj

∂gi
∂zi

, i 
= j,

bii = − Im
∂qi
∂si

∂gi
∂zi

+
∂gi
∂si

,

and all derivatives are evaluated at the origin z = 0 and s = 0. Notice that Pi = O(1)
and gi = O(

√
µ), hence Kij = O(

√
µ) is infinitesimal. Let us show that

Hij(χ) = cij sin(ψij + χ).

First, ∫ t+χ

0

gj(
√
µeit̄,

√
µe−it̄, 0) dt̄ =

∫ t+χ

0

∂gj
∂zj

√
µeit̄dt̄+ c.c.

= i
√
µ
∂gj
∂zj

(
1− ei(t+χ)

)
+ c.c.
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Fig. 2.1. Numerical (see Appendix B) and analytical form of the connection functions for
slowly coupled oscillators near an Andronov–Hopf bifurcation. Parameters: q1(z1, z̄1, s1, s2) = s2
and g1(z1, z̄1, s1) = z1 + z̄1 − s1, µ = 0.01.

Next,

Hij(χ) = Re
1

2π

∫ 2π

0

(
−ie−it√

µ

)(
∂qi
∂sj

+O(
√
µ)

)(
i
√
µ
∂gj
∂zj

(
1− ei(t+χ)

)
+ c.c.

)
dt

= Re
1

2π

∫ 2π

0

(
− ∂qi
∂sj

∂gj
∂zj

eiχ + terms involving eit
)
dt

= −Re
∂qi
∂sj

∂gj
∂zj

eiχ = cij sin(ψij + χ),

where

cij =

∣∣∣∣ ∂qi∂sj

∂gj
∂zj

∣∣∣∣ and ψij = Arg
∂qi
∂sj

∂gj
∂zj

− π

2
.

A typical example of the connection function Hij(χ) is depicted in Figure 2.1. (Be-
cause theoretical and numerical curves were obtained using essentially the same for-
mulae, this figure illustrates only the accuracy of the numerical method, and it does
not validate the theory.)

Since the connection function Kij(χ) = 0 for all χ, the variables ui do not depend
on the phase variables ϕi. If the matrix (bij) is stable, all ui(t) → 0 as t → ∞, and
the locking properties of the slowly connected network are described by Kuramoto’s
(1984) system

ϕ′
i =

n∑
j=1

cij sin(ϕj + ψij − ϕi),



SLOWLY COUPLED OSCILLATORS 1943

node saddle saddle-node

inv
ariant circle

Fig. 2.2. Saddle-node on invariant circle bifurcation.

which was originally derived for weakly connected networks of Andronov–Hopf oscilla-
tors. Notice, though, that the variables ui may significantly slow down the convergence
to a synchronized state if the matrix (bij) has eigenvalues close to the imaginary axis.

2.4. Saddle-node on invariant circle bifurcation. Now we consider a slowly
connected network of oscillators near a saddle-node on invariant circle bifurcation,
which is illustrated in Figure 2.2. This bifurcation results in Class 1 excitable sys-
tems, i.e., systems able to oscillate with arbitrary small frequency (Hoppensteadt and
Izhikevich (1997)). Without loss of generality we assume that s̄ = 0 and that each
oscillator has been restricted to the center manifold and converted to the topological
normal form by an appropriate change of variables,

ẏi = µ+ y2
i + qi(yi, c1, . . . , cn, µ), yi ∈ R,

ċi = εgi(yi, ci), ci ∈ R,

where ε � √
µ � 1 and

qi(yi, 0, . . . , 0, µ) = 0 and gi(0, 0) = 0.

Here we consider only a small neighborhood of the origin, since the spike lemma
(Lemma 8.1 in Hoppensteadt and Izhikevich (1997)) implies that yi spends a negligible
amount of time outside the small neighborhood; that is, action potentials generated
by such a model look instantaneous on the slow time scale of order 1/

√
µ. Now we

rescale the variables and parameters,

yi = 2
√
µxi, ci = 2

√
µ{∂gi/∂yi}si, ε = 2

√
µε, tnew = 2

√
µtold,

to transform the system above into the form

ẋi = 1/4 + x2
i +

n∑
j=1

(cij + hijxi)sj +O(
√
µ),(2.6)

ṡi = ε {xi − pisi +O(
√
µ)} ,(2.7)

where

cij =
1

2

∂gi
∂yi

∂2qi
∂cj∂µ

,

hij =
∂gi
∂yi

∂2qi
∂cj∂yi

,

pi = −∂gi
∂ci

,
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and all derivatives are evaluated at the origin. Notice that each unperturbed (ε = 0)
oscillator has a limit cycle attractor

γi(t) =
1

2
tan

t

2
⊂ R ∪ {∞}

with period T = 2π. From the normalization condition (1.7),

Qi(t)
�(1/4 + γi(t)
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2) = −γi(t),
we can find directly the solutions to the adjoint problem (1.6),

Qi(t) = 2(1 + cos t) and Pi(t) = − sin t,

and use them in Theorem 1.1 to find all parameters and functions. It is easy to see
that
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A typical form of the connection function Hij(χ) and Kij(χ) is depicted in Figure 2.3.

2.4.1. Two identical oscillators. Let us consider synchronization dynamics of
two identical slowly coupled oscillators of the form

ẋ1 = 1/4 + x2
1 + (c+ hx1)s2, ẋ2 = 1/4 + x2

2 + (c+ hx2)s1,
ṡ1 = ε(x1 − ps1), ṡ2 = ε(x2 − ps2)

with p > 0 and arbitrary c and h. The canonical phase model has the form

ϕ̇1 = 2cu2 +H(ϕ2 − ϕ1),

u̇1 = −p(u1 + ln 2)− h

2
(u1 + u2) +K(ϕ2 − ϕ1),

ϕ̇2 = 2cu1 +H(ϕ1 − ϕ2),

u̇2 = −p(u2 + ln 2)− h

2
(u1 + u2) +K(ϕ1 − ϕ2),
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Fig. 2.3. Numerical (see Appendix B) and analytical forms of the connection functions for
slowly coupled oscillators near a saddle-node on invariant circle bifurcation. Parameters in (2.6),
(2.7): c12 = h12 = p1 = 1.

where

H(χ) = c(2 ln 2− cosχ) +
h

2
sinχ and K(χ) = − c

2
sinχ− h

4
(2 ln 2 + cosχ).

Let χ = ϕ2 − ϕ1 and u = u2 − u1; then

χ̇ = −2cu− h sinχ,
u̇ = −pu+ c sinχ.

The in-phase synchronized solution corresponds to the equilibrium χ = 0 and u = 0
with the Jacobian matrix

L =

( −h −2c
c −p

)
.

It is stable when

trL = −h− p < 0 and detL = hp+ 2c2 > 0,

which is always the case when h > 0. (It is an easy exercise to check that the antiphase
solution χ = π, u = 0 is stable when h < p and hp+ 2c2 < 0.)

We see that in contrast to weak coupling, which leads to a neutrally stable syn-
chronized state of two Class 1 identical oscillators (Hansel, Mato, and Meunier (1995),
Ermentrout (1996), Izhikevich (1999)), slow coupling with h > 0 always results in sta-
bility of the synchronized state, as we illustrate in Figure 2.4, regardless of the sign
of the connection coefficient c. Notice that the convergence to the in-phase synchro-
nized state χ = 0 is oscillatory, as we illustrate in Figure 2.5(a); that is, the oscillators



1946 EUGENE M. IZHIKEVICH AND FRANK C. HOPPENSTEADT

0 10 20 30 40 50 60 70 80 90 100
-5

0

5

10

15

time

x 1
, x

2

Fig. 2.4. Synchronization dynamics of two identical oscillators near a saddle-node on invariant
circle bifurcation. Parameters: c = 5, h = p = 1, and ε = 0.05.
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Fig. 2.5. (a) Convergence to the in-phase synchronized state is oscillatory (parameters as in
Figure 2.4). (b) The phase difference χ may oscillate (here h = −1.5).

in Figure 2.4 take turns—a prominent feature of slowly connected networks that was
discovered by Frankel and Kiemel (1993). If we decrease h past −p, a small amplitude
limit cycle may appear via a supercritical Andronov–Hopf bifurcation, and the phase
difference χ would exhibit sustained oscillations, as shown in Figure 2.5(b).

2.5. Relaxation oscillators. Now we consider a slowly coupled network of re-
laxation oscillators of the form

µẋi = Fi(xi, yi) + qi(xi, yi, s1, . . . , sn),

ẏi = Gi(xi, yi) + ri(xi, yi, s1, . . . , sn),

ṡi = εgi(xi, yi, si),

where µ � 1, xi, yi, si ∈ R, and

qi(xi, yi, 0, . . . , 0) = 0, ri(xi, yi, 0, . . . , 0) = 0, and gi(0, 0, 0) = 0.

Suppose that each unperturbed (ε = 0, s = 0) system

µẋi = Fi(xi, yi),

ẏi = Gi(xi, yi)
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Fig. 2.6. Top: Nullclines and periodic solution of the van der Pol relaxation oscillator µẋ =
−y + x − x3/3, ẏ = x for µ = 0.01. Bottom: The periodic solution becomes discontinuous in the
limit µ→ 0. (Modified from Izhikevich (2000)).

has a relaxation limit cycle attractor with period T > 0 converging to γi(t) ⊂ R
2

similar to the one depicted in Figure 2.6 in the limit µ → 0. Such an oscillation γi(t)
has two discontinuities (jumps) at t = t1 and t = t2. Izhikevich (2000) has shown
that in this case the solution to the adjoint problem (1.6) converges as µ → 0 to
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, 1
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,

where
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(
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)−1(
1

Gi(ak)
− 1
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)
and ak and bk are the end points of the kth jump, k = 1, 2; see Figure 2.6.

Knowing Qi(t) and Pi(t), one can easily find aij , bij , Hij , and Kij . For example,
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A salient feature of weakly coupled relaxation oscillators is the existence of discon-
tinuities in the connection functions Hij(χ), which result in many interesting syn-
chronization properties, such as superconvergence, persistence under perturbations
of natural frequencies, etc. (see the discussion in Izhikevich (2000)). However, the
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Fig. 2.7. Numerically found connection functions for slowly coupled Bonhoeffer–van der Pol
relaxation oscillators µẋi = xi − x3i /3 − yi + sj , ẏi = 0.5 + xi, ṡi = ε(xi − si), i = 1, 2, j = 2, 1,
µ = 0.001.

connection functions Hij(χ) (and Kij(χ)) for slowly coupled relaxation oscillators are
continuous, as shown in Figure 2.7. Hence, slowly coupled relaxation oscillators do
not have those interesting synchronization properties.

3. Discussion. Much research in theoretical neuroscience is devoted to weakly
coupled oscillators, as reviewed in Chapter 9 of Hoppensteadt and Izhikevich (1997).
Slow connections, however, received less attention despite the fact that slow synaptic
transmission is ubiquitous in the brain. Indeed, GABAb and NMDA receptor dy-
namics occur on the time scale of 150 ms, which are much slower than the period of
firing of many neurons, which is often smaller than 10 ms. Purely NMDA synaptic
connections have been found in the hippocampus (Isaac, Nicoll, and Malenka (1995))
and in the thalamocortical system (Isaac et al. (1997)). They are often referred to as
being “silent synapses” since activation of NMDA receptors requires postsynaptic de-
polarization. (Most synapses have slow NMDA and fast AMPA glutamate receptors
and hence describe slow and weak connections; see Remark 1.3.) Here we specu-
late that periodically firing neurons connected via NMDA or GABAb receptors could
have quite different synchronization properties from the same neurons coupled via
fast GABAa or AMPA receptors.

There have been only a few attempts to study rigorously slowly coupled oscilla-
tors. Notably, Rinzel and Frankel (1992) and Ermentrout (1994) used averaging to
study dynamics of slowly coupled Hodgkin–Huxley-type models. They discovered new
regimes that were not seen in weakly coupled networks, such as instabilities of relative
phases and network bursting. Bressloff and Coombes (2000) applied similar methods
to study integrate-and-fire neurons with slow synapses. The most important contri-
bution was made by Frankel and Kiemel (1993) who showed how two slowly coupled
oscillators can be transformed into a canonical phase model by an appropriate change
of variables.
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In this paper we extend the results of Frankel and Kiemel (1993) to a network
of n ≥ 2 slowly coupled oscillators. We confirm that synchronization properties of
such a network are described by a canonical phase model in which each oscillator
is represented by a pair of variables ϕi and ui on a cylindrical phase space. Using
Malkin’s theorem we can derive an analytical form for all coefficients and all connec-
tion functions Hij and Kij for the phase model.

In the second half of the paper we consider a few analytically solvable examples.
First, we study oscillators near an Andronov–Hopf bifurcation and show that dynam-
ics of variables ui do not depend on the phases ϕi. While the variables ui can slow
down the convergence to a synchronized state, they cannot change the stability of
that state.

Next, we study synchronization properties of Class 1 oscillators; that is, oscilla-
tors that are near a saddle-node on invariant circle bifurcation (Figure 2.2). Such
a bifurcation results in periodic activity with arbitrarily small frequency, and it is
believed to be involved in excitable properties of neocortical neurons in mammalian
brains. It is well known (Hansel, Mato, and Meunier (1995), Ermentrout (1996)) that
identical Class 1 oscillators if coupled weakly do not synchronize; more precisely, the
synchronized state is neutrally stable for n = 2 oscillators and unstable for n > 2
oscillators (Izhikevich (1999)) regardless of whether the connections are excitatory or
inhibitory. In contrast, slowly connected Class 1 oscillators do synchronize for both
excitatory and inhibitory connections. We show this analytically using the canonical
phase model approach, and then illustrate it numerically in Figure 2.4. Notice that
the oscillators take turns, i.e., change order of firing, during the convergence to the
synchronized state. This is a salient feature of slowly connected oscillators found by
Frankel and Kiemel (1993) that cannot occur in weakly coupled networks of n = 2
oscillators.

Finally, we consider slowly coupled relaxation oscillators and show that the con-
nection functions Hij(χ) and Kij(χ) are continuous. Therefore, in contrast to weak
coupling, slow coupling of relaxation oscillators does not lead to superstability of the
in-phase synchronized solution (Izhikevich (2000)).

Appendix A. Malkin’s theorem. Below we provide a general statement of
Malkin’s theorem (Malkin (1949), (1956)). A one-page proof can be found in (Hop-
pensteadt and Izhikevich (1997)).

Theorem A.1 (Malkin). Consider a T -periodic dynamical system of the form

Ẋ = F (X, t) + εG(X, t, ε), X ∈ R
m,(A.1)

and suppose that the unperturbed system, Ẋ = F (X, t), has a k-parameter family of
T -periodic solutions

X(t) = U(t, α),

where α = (α1, . . . , αk)
� ∈ R

k is a vector of independent parameters, by which we
mean that the rank of the n× k matrix DαU is k. Suppose the adjoint linear problem

Ṙi = −{DF (U(t, α), t)}�Ri(A.2)

has exactly k independent T -periodic solutions R1(t, α), . . . , Rk(t, α) ∈ R
m. Let R be

the matrix whose columns are these solutions such that

R�DαU = I,(A.3)
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where I is the identity k × k matrix. Then the perturbed system (A.1) has a solution
of the form

X(t) = U(t, α(εt)) +O(ε),

where

dα

dτ
=

1

T

∫ T

0

R(t, α)�G(U(t, α), t, 0) dt,(A.4)

where τ = εt is slow time. If (A.4) has a stable equilibrium, then system (A.1) has a
T -periodic solution.

Appendix B. Numerical recipe. A good numerical method to solve the adjoint
problem (1.6) was suggested by Williams and Bowtell (1997), and it is available in
the Bard Ermentrout software package XPP. Here, for the sake of convenience, we
present MATLAB script that uses the same method to determine all parameters and
functions of Malkin’s theorem.

The following MATLAB program consists of eight separate files, which are avail-
able at the first author’s website. The user should provide the following parameters
and functions:

• The period T and an initial point x0 on the limit cycle γ(t) in the file main.m.
• The right-hand sides of the fast and slow systems in files f.m and g.m, re-
spectively.

• The parameters Np, NT, and ds in the file main.m, and dx and dy in the file
Df.m control the accuracy of the numerical method. They may be changed if
necessary.

File main.m

function main

% Eugene M. Izhikevich and Frank C. Hoppensteadt, December 19, 2001

% Determines all parameters and functions for two slowly

% coupled oscillators.

global s1 s2 Np T gamma

Np=200; % The number of points on the limit cycle

NT=200; % The number of iterations along the limit cycle

T=2*pi; % The period of the limit cycle

x0=[0.1;0]; % An initial point on the limit cycle

s1=0; s2=0; % Steady-state value of s

[tg,gamma] = ode23s(’f’,(0:Np-1)/Np*T, x0);

figure(1),plot(tg,gamma); drawnow;

%

% solve the adjoint for Q(t) as t -> -infty

[t,Qinv] = ode15s(’adQ’,(0:NT*Np-1)/Np*T, [1;1]);

Q = Qinv(length(t)-(0:Np-1),:); % Q(t) => Q(-t)

Q = Q/(Q(1,:)*f(0,gamma(1,:))); % Normalization

% solve the adjoint for P(t) as t -> -infty

[t,Pinv] = ode15s(’adP’,(0:NT*Np-1)/Np*T, [1;1]);

P = Pinv(length(t)-(0:Np-1),:); % P(t) => P(-t)

P = P-Q*(P(1,:)*f(0,gamma(1,:))+g(0,gamma(1,:))); % Normalization

figure(2),plot(tg,Q,tg,P); drawnow;
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%

% Determine all parameters and functions

gv=funvect(’g’,tg,gamma);

fv=funvect(’f’,tg,gamma);

intg = cumtrapz(gv)*T/Np;

ds=0.0000001;

s1=s1+ds;

dfds1 = (funvect(’f’,tg,gamma)-fv)/ds;

dgds1 = (funvect(’g’,tg,gamma)-gv)/ds;

s1 = s1-ds;

s2=s2+ds;

dfds2 = (funvect(’f’,tg,gamma)-fv)/ds;

s2=s2-ds;

%

for i=1:Np

Qdf1(i)=Q(i,:)*dfds1(i,:)’;

Qdf2(i)=Q(i,:)*dfds2(i,:)’;

Pdf1(i)=P(i,:)*dfds1(i,:)’;

Pdf2(i)=P(i,:)*dfds2(i,:)’;

end;

%

a11 = trapz(Qdf1)/Np % aii

a12 = trapz(Qdf2)/Np % aij

b11 = trapz(Pdf1+dgds1’)/Np % bii

b12 = trapz(Pdf2)/Np % bij

H110 = trapz(Qdf1.*intg’)/Np % Hii(0)

K110 = trapz((Pdf1+dgds1’).*intg’)/Np % Kii(0)

for chi=1:Np

H12(chi) = trapz(Qdf2.*intg’)/Np; % Hij(chi)

K12(chi) = trapz(Pdf2.*intg’)/Np; % Kij(chi)

intg = [intg(2:end);intg(1)];

end;

figure(3),plot(tg,H12,tg,K12);

File f.m

function xdot = f(t,x)

% Right-hand side of the fast system

global s1 s2

xdot = [ 0.01*x(1)-x(2)-x(1)*(x(1)^2+x(2)^2)+s2;...

x(1)+0.01*x(2)-x(2)*(x(1)^2+x(2)^2)];

File g.m

function sdot = g(t,x)

% Right-hand side of the slow system

global s1

sdot = 2*x(1)-s1;

File Df.m
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function d = Df(t,x)

% Numerical evaluation of Jacobian matrix Df at the point (t,x)

dx = 0.0000001; dy = 0.0000001;

d = [(f(t,x+[dx;0])-f(t,x))/dx (f(t,x+[0;dy])-f(t,x))/dy];

File Dg.m

function d = Dg(t,x)

% Numerical evaluation of derivative Dg at x

dx = 0.0000001; dy = 0.0000001;

d = [(g(t,x+[dx;0])-g(t,x))/dx (g(t,x+[0;dy])-g(t,x))/dy];

File adQ.m

function Qdot = adQ(t,Q)

% Right-hand side of the adjoint equation

% Integrating as t -> -infty

global Np T gamma

Qdot=Df(t,gamma(ceil(Np*mod(-t/T+0.5/Np,1)),:)’)’*Q;

File adP.m

function Pdot = adP(t,P)

% Right-hand side of the adjoint equation for P

% Integrating as t -> -infty

global Np T gamma

gmt = gamma(ceil(Np*mod(-t/T+0.5/Np,1)),:)’;

Pdot=Df(t,gmt)’*P + Dg(t,gmt)’;

File funvect.m

function ans = funvect(fname,t,x)

% Applies function fname to the vector of arguments t,x

ans = zeros(length(t),length(feval(fname,t(1),x(1,:))));

for i=1:length(t)

ans(i,:) = feval(fname,t(i),x(i,:))’;

end;
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Abstract. Optimal control techniques are used to develop optimal strategies for chemotherapy.
In particular, we investigate the qualitative differences between three different cell-kill models: log-
kill hypothesis (cell-kill is proportional to mass); Norton–Simon hypothesis (cell-kill is proportional
to growth rate); and, Emax hypothesis (cell-kill is proportional to a saturable function of mass).
For each hypothesis, an optimal drug strategy is characterized that minimizes the cancer mass and
the cost (in terms of total amount of drug). The cost of the drug is nonlinearly defined in one
objective functional and linearly defined in the other. Existence and uniqueness for the optimal
control problems are analyzed. Each of the optimality systems, which consists of the state system
coupled with the adjoint system, is characterized. Finally, numerical results show that there are
qualitatively different treatment schemes for each model studied. In particular, the log-kill hypothesis
requires less drug compared to the Norton–Simon hypothesis to reduce the cancer an equivalent
amount over the treatment interval. Therefore, understanding the dynamics of cell-kill for specific
treatments is of great importance when developing optimal treatment strategies.

Key words. optimal control, cancer, cell-kill
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1. Introduction. When developing effective treatment strategies, understand-
ing the effects of chemotherapeutic drugs on tumors is of primary importance. Several
approaches to modeling chemotherapeutic induced cell-kill (killing of tumor cells) have
been developed. One of the early approaches was by Schabel, Skipper, and Wilcox [1]
who proposed that cell-kill due to a chemotherapeutic drug was proportional to the
tumor population. This hypothesis is based on in vitro studies in the murine leukemia
cell-line L1210. It states that for a fixed dose, the reduction of large tumors occurred
more rapidly than for smaller tumors. Skipper’s concept is referred to as the log-kill
mechanism. Norton and Simon [2, 3] find this model to be inconsistent with clini-
cal observations of Hodgkin’s disease and acute lymphoblastic leukemia which showed
that, in some cases, reduction in large tumors was slower than in histologically similar
smaller tumors. Therefore, Norton and Simon hypothesize that the cell-kill is pro-
portional to the growth rate (e.g., exponential, logistic, or Gompertz) of the tumor.
A third hypothesis notes that some chemotherapeutic drugs must be metabolized by
an enzyme before being activated. This reaction is saturable due to the fixed amount
of enzyme. Thus, Holford and Sheiner [4] develop the Emax model which describes
cell-kill in terms of a saturable function of Michaelis–Menton form.

In this study, we use optimal control theory to evaluate and compare effective
treatment strategies for each of these models by developing formal mathematical
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criteria to be minimized. These include tumor mass and dose of drug. We give a
mathematically detailed development of optimal control forms for the various growth
and drug terms that are subject to different objective functionals. We also show
therapeutically significant differences between the cell-kill hypotheses and their effect
on treatment schedules.

We have previously developed a treatment strategy using optimal control tech-
niques for the use of cell-cycle specific drugs such as Taxol for the reduction of breast
and ovarian cancers [5]. The model included a resting phase which made it more
realistic in the clinical setting. Among other things, the model showed that treating
with repeated shorter periods allows more drug to be given without excess damage
to the bone marrow. Similar results were also observed in [6]. Several other models
where optimal control methods have been utilized in analyzing effective chemothera-
peutic treatments include Swan [7, 8] and Murray [9]. Swan [7, 8] obtained feedback
treatment control drug characterizations for cancer models under a quadratic per-
formance criterion. Murray [9] has considered systems of normal and tumor cells
under the hypotheses of Gompertzian and logistic growth in which he controls the
rate of administration of drugs. Murray has minimized the tumor burden at the end
of treatment and, in another application, the toxicity level, defined as the area under
the drug concentration curve.

2. The model. Mathematically, the general form of the model under investiga-
tion is depicted by the differential equation:

dN

dt
= rNF (N)−G(N, t),(2.1)

where N is the tumor volume, r is the growth rate of the tumor, F (N) is the gener-
alized growth function. For the proposed model, we allow for Gompertzian growth:

F (N) = ln

(
Θ

N

)
.(2.2)

The function G(N, t) describes the pharmacokinetic and pharmacodynamic effects of
the drug on the system. In this study, we compare three cell-kill strategies. These
include the following:

• G(N) = δu(t)N : Skipper’s log-kill (i.e., percentage kill) hypothesis,
• G(N) = δu(t)N/(K +N): Emax model, and
• G(N) = δu(t)F (N): Norton–Simon hypothesis,

where δ is the magnitude of the dose and the control, u(t), describes the time depen-
dent pharmacokinetics of the drug; i.e., u(t) = 0 implies no drug effect is present and
u(t) > 0 implies the amount or strength of the drug effect. We investigated the dif-
ferences and similarities among the three drug effects via optimal control techniques
for ordinary differential equations.

We considered two objective functionals when determining the minimum amount
of drug needed to reduce or eliminate the tumor mass. One criterion considered is

Jα(u) =

∫ T

0

[
a(N −Nd)

2 + bu2
]
dt,(2.3)

where the measure of the “closeness” of the tumor mass to the desired tumor density,
Nd, and the cost of the control, u(t), are minimized over the class of measurable,
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nonnegative controls. Here, a and b are positive weight parameters. The second
criterion we considered (previously used by Boldrini and Costa [10] with variations
by Murray [11] and Martin and Teo [12]) is

Jβ(u) = aN(T ) + b

∫ T

0

u(t) dt,(2.4)

in which the tumor burden at the end of treatment (the first term in (2.4)) and the
toxicity (the second term in (2.4)), in terms of area under the drug concentration
curve, are minimized over the class of measurable, nonnegative controls.

After scaling the models using N = N/Θ, k = k/Θ, and δ = δ/Θ and dropping
the bars, we have the following three state equations (which will henceforth be referred
to as P1, P2, and P3, respectively), all with the same initial condition of N(0) = N0,
where 0 < N0 < 1 since the tumor cells have been normalized via the above change
of variables:

P1
dN

dt
= rN ln

(
1

N

)
− u(t)δN,

P2
dN

dt
= rN ln

(
1

N

)
− u(t)

δN

k +N
,

P3
dN

dt
= rN ln

(
1

N

)
[1− δu(t)] .

Ultimately, we determine the unique characterization of the optimal control u(t) in
the admissible control class,

U = {u measurable |0 ≤ u(t), t ∈ [0, T ]}(2.5)

or

V = {u measurable |0 ≤ u(t) ≤ M, t ∈ [0, T ]} ,(2.6)

such that the objective functionals Jα and Jβ are minimized over the class of controls,
U and V , respectively.

In sections 3.1–3.3, we consider the existence issues, the characterization of the
optimal control, and the uniqueness concept in association with problems P1–P3 such
that the objective functional (2.3) involving the nonlinear control term is minimized
over the class of controls, U . In sections 4.1–4.2, we discuss the existence of an optimal
control and its characterization such that it minimizes the second objective functional
(2.4) subject to each of the differential equations represented in P1–P3. Also, in
section 5, numerical simulations representing the control situations in relation to the
two objective functionals as well as the different cell-kill hypotheses depicted in the
differential equations are analyzed.

3. Nonlinear control.

3.1. Existence. First, the existence of the state solution to each of problems P1–
P3 given an optimal control in the admissible set, U , is shown. Also, the existence of
the optimal control for the state system is analyzed.
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Theorem 3.1. Given u ∈ U , there exists a bounded solution solving each of the
problems (P1)–(P3).

Proof. We consider the following differential equations in relation to P1, P2, P3,
respectively. The state variables N1(t), N2(t), and N3(t) represent supersolutions for
problems P1, P2, and P3.

dN1

dt
= r,(3.1)

dN2

dt
= r + u(t)δN2,(3.2)

dN3

dt
= −rN3 lnN3(1− u(t)δ).(3.3)

Since N(t) > 0 and ln 1
N ≤ 1

N , then equation (3.3) follows from P1.
Using that 0 ≤ t ≤ T , we can show that

N1(t) ≤ rT +N0,(3.4)

N2(t) ≤ (N0 + rT )e
δ
∫ T

0
u(s) ds

,(3.5)

N3(t) ≤ N
(e
−rt+rδ

∫ T

0
u(s) ds

)
0 .(3.6)

Since u(t) ∈ U , then, along with N1(t), N2(t) and N3(t) are bounded above.
Via a maximum principle [13] and standard existence theory for first-order nonlinear
differential equations, we obtain the existence of a solution to each of the problems
P1–P3.

Next, the existence of an optimal control for the state system is analyzed. Using
the fact that the solution to each state equation is bounded, the existence of an
optimal control for each problem can be determined using the theory developed by
Fleming and Rishel [14].

Theorem 3.2. Given the objective functional, Jα(u) =
∫ T
0

[
a(N −Nd)

2 + bu2
]
dt,

where

U = {u measurable |0 ≤ u(t), t ∈ [0, T ]}(3.7)

and each of the problems P1–P3 with N(0) = N0, then there exists an optimal con-
trol u∗ associated with each problem P1–P3 such that minu∈U Jα(u) = Jα(u

∗) if the
following conditions are met:

(i) The class of all initial conditions with a control u in the admissible control
set along with each state equation being satisfied is not empty.

(ii) The admissible control set U is closed and convex.
(iii) Each right-hand side of P1–P3 is continuous, is bounded above by a sum of

the bounded control and the state, and can be written as a linear function of
u with coefficients depending on time and the state.

(iv) The integrand of (2.3) is convex on U and is bounded below by −c2 + c1|u|η
with c1 > 0 and η > 1.

Proof. Since each problem has a bounded solution for the initial condition, given
an optimal control, by Theorem 3.1, then part (i) is established. By definition, U is
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closed and convex. To complete part (iii) we first reconsider the right-hand sides of
P1–P3 below:

f(t,N(t), u(t)) = rN ln
1

N
− δNu(t),

g(t,N(t), u(t)) = rN ln
1

N
− δN

k +N
u(t),

h(t,N(t), u(t)) = rN ln
1

N
− δrN ln

1

N
u(t).

We see by the representations of f, g, and h that they are continuous in t, u, and
N since N(t) > 0. Also, they are each written as a linear function of the control with
coefficients depending on time and the state. For the boundedness requirement, we
use the bounds in the proof of Theorem 3.1 to obtain the result. Consequently,

|f(t,N(t), u(t))| ≤
∣∣∣∣rN ln

1

N

∣∣∣∣+ |δN(t)u(t)|
≤ r + δ|u(t)|(N0 + rT )

≤ C1(1 + |u(t)|+ |N(t)|),
where C1 depends on r, d,N0, and T ,

|g(t,N(t), u(t))| ≤
∣∣∣∣rN ln

1

N

∣∣∣∣+
∣∣∣∣ δN(t)

k +N(t)
u(t)

∣∣∣∣
≤ r + δ|u(t)|
≤ r + δ|u(t)|+ |N(t)|,

and

|h(t,N(t), u(t))| ≤
∣∣∣∣rN ln

1

N

∣∣∣∣+
∣∣∣∣δrN(t) ln

1

N
u(t)

∣∣∣∣
≤ r + δr|u(t)|
≤ C2(1 + |u(t)|+ |N(t)|),

where C2 depends on r and d. Hence, the right-hand side of each state equation
is bounded above by a sum of the control and the state. Lastly, the integrand of
the objective functional is convex on U. One can consider the second partial of
the integrand of the objective functional with respect to the control and find that
it is positive. To obtain the necessary lower bound for the integrand, we see the
a(N −Nd)

2 + bu2 ≥ bu2 ≥ −c + bu2 for any c > 0. Therefore, part (iv) is complete
and so is the proof.

3.2. Characterization of optimal control. Since an optimal control exists
for minimizing the objective functional (2.3) subject to each of the three equations
P1–P3 with the initial conditions, the necessary conditions for an optimal control for
each problem are determined. For brevity, we derive the conditions using a version of
Pontryagin’s maximum principle for P3 [15, 16]. Then we give the optimality system,
which is the state system coupled with the adjoint system, for each problem.

In order to derive the necessary conditions, we define the Lagrangian associated
with Jα(u) subject to P3 as

L(N,u, λ3, w1) = a(N −Nd)
2 + bu2 + λ3

(
rN ln

1

N
(1− δru(t))

)
− w1(t)u(t),(3.8)

where w1(t) ≥ 0 is a penalty multiplier satisfying w1(t)u(t) = 0 at the optimal u∗.
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Similar definitions for hold for Jα(u) subject to P1 and P2.
Theorem 3.3. Given an optimal control u∗ and solution of the corresponding

state equation (P3), there exists an adjoint variable λ3 satisfying the following:

dλ3

dt
= − ∂L

∂N
= −

[
2a(N −Nd) + λ3r(1− uδ)

[
ln

1

N
− 1

]]
(3.9)

with λ3(T ) = 0. Further, u∗(t) can be represented by

u∗(t) =
(−λ3δrN lnN

2b

)+

.

Proof. The existence of the adjoint solution is found via a maximum principle
satisfying [13]. Using the Lagrangian (3.8), we complete the representation for u∗ by
analyzing the optimality condition ∂L

∂u = 0. Upon some algebraic manipulation, the
representation of u∗ becomes

u∗(t) =
−λ3δrN lnN + w1

2b
.

To determine an explicit expression for the optimal control, without w1, a standard
optimality technique is utilized. The optimal control is characterized as

u∗(t) =
(−λ3δrN lnN

2b

)+

,(3.10)

where

r+ =

{
r if r > 0,
0 if r ≤ 0.

(3.11)

Similarly, we can find the representations for the controls associated with problems
P1 and P2 that are subject to Jα. The associated control for P1 is u∗(t) = δ

2b (λ1N)+

and the control for P2 is u∗(t) = δ
2b (

λ2N
k+N )+.

Using this explicit representation for the control, the adjoint equation coupled
with the state equation and the initial and transversality conditions form the opti-
mality system. The optimality systems associated with each of the state equations
and their associated adjoint equations are given below. We note that Optimality Sys-
tem 1 is associated with P1 and its adjoint, Optimality System 2 is associated with
P2 and its adjoint, and Optimality System 3 is associated with P3 and its adjoint.

Optimality System 1 (OS1).

dN

dt
= rN ln

1

N
−N

δ2

2b
(λ1N)+,

dλ1

dt
= −

[
2a(N −Nd) + λ1

(
r ln

1

N
− r − δ2

2b
(λ1N)+

)]

with N(0) = N0 and λ1(T ) = 0.
Optimality System 2 (OS2).

dN

dt
= rN ln

1

N
− δ2

2b

N

k +N

( λ2N

k +N

)+

,

dλ2

dt
= −

[
2a(N −Nd) + λ2

(
r ln

1

N
− r − kδ2

2b(k +N)2

( λ2N

k +N

)+
)]

with N(0) = N0 and λ2(T ) = 0.
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Optimality System 3 (OS3).

dN

dt
= rN ln

1

N

[
1− δ2r

2b
(−λ3N lnN)+

]
,

dλ3

dt
= −

[
2a(N −Nd) + λ3r

(
1− δ2r

2b
(−λ3N lnN)+

)(
ln

1

N
− 1

)]

with N(0) = N0 and λ3(T ) = 0.

3.3. Uniqueness. Here, we focus our attention on OS1 and note that similar
analysis gives the uniqueness of the OS2 and OS3. The optimal control depends on
the adjoint and the state variables. By proving the optimality system has a unique
solution, we will argue that the optimal control is unique as well. We recognize
that since the tumor mass, N(t), is bounded, then the adjoint equation (3.12) has a
bounded right-hand side that is dependent on the final time T . Hence, there exists a
D > 0, depending on the coefficients of the state equation and the uniform bound for
N(t) such that |λ1(t)| < DT on [0,T].

Theorem 3.4. For T sufficiently small, the solution to Optimality System 1 is
unique.

Proof. We suppose that (N,λ1) and (M,ψ) are two distinct solutions to OS1. Let
m > 0 be chosen such that N = emtv, M = emtw, λ1 = e−mty, and ψ = e−mtz. Also,
we have that u = d

2b (yv)
+ and f = δ

2b (wz)
+. Upon substitution of the representations

for N , M , λ1, and ψ into the state and adjoint equations followed by simplification,
we obtain the following equations:

dv

dt
+mv = rv(−mt− ln v)− δ2

2b
v(yv)+,

dw

dt
+mw = rw(−mt− lnw)− δ2

2b
w(wz)+,

dy

dt
−my = −2av + 2aemtNd − yr(−mt− ln v) + ry +

δ2

2b
y(yv)+,

dz

dt
−mz = −2aw + 2aemtNd − zr(−mt− lnw) + rz +

δ2

2b
z(wz)+

with v(0) = N0, w(0) = N0, y(T ) = 0, and z(T ) = 0.
The next step is to subtract the equations corresponding to v, w, y, z. Then each

of these differences are multiplied by an appropriate function and are integrated from
0 to T . We obtain the following two equations for the modified state and the adjoint:

1

2
[v(T )− w(T )]2 +m

∫ T

0

(v − w)2 dt = mr

∫ T

0

t(v − w)2 dt

− r

∫ T

0

[v ln v − w lnw](v − w) dt

− δ2

2b

∫ T

0

(v(yv)+ − w(wz)+)(v − w) dt
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and

1

2
[y(0)− z(0)]2 +m

∫ T

0

(y − z)2 dt = 2a

∫ T

0

(v − w)(y − z) dt

+ mr

∫ T

0

t(y − z)2 dt+ r

∫ T

0

(y − z)2 dt

+ r

∫ T

0

[y ln v − z lnw](y − z) dt

+
δ2

2b

∫ T

0

(y(yv)+ − z(wz)+)(y − z) dt.

We need to estimate several terms in order to obtain the uniqueness result. For
explanation, we include one estimate below where the boundedness of the state vari-
ables and Cauchy’s inequality are used:∣∣∣∣∣

∫ T

0

(v ln v − w lnw)(v − w) dt

∣∣∣∣∣ =
∣∣∣∣∣
∫ T

0

[v(ln v − lnw) + (v − w) lnw](v − w) dt

∣∣∣∣∣
=

∣∣∣∣∣
∫ T

0

[
v
(
ln

v

w

)
(v − w) + (v − w)2 lnw

]
dt

∣∣∣∣∣
≤
∫ T

0

[v2

w
|(v − w)|+ |w|(v − w)2

]
dt

≤ TC1

∫ T

0

(v − w)2 dt.

In the estimate above, C1 depends on the bounds of the state variables and the
coefficients.

To complete this uniqueness proof, we add the two integral equations together
and bounds the terms to obtain

1

2
[v(T )− w(T )]2 +

1

2
[y(0)− z(0)]2 +m

∫ T

0

[(v − w)2 + (y − z)2] dt

≤ ((mr + C2)T )

∫ T

0

[(v − w)2 + (y − z)2] dt,

where C2 depends on the coefficients and the bounds of the state and the adjoint
variables.

Since the variable expressions evaluated at the initial and the terminal times are
nonnegative, the inequality reduces to

(m−mrT − C2T )

∫ T

0

[
(v − w)2 + (y − z)2

]
dt ≤ 0.(3.12)

For the optimality system to be unique, we must choose m such that m > C2

1−r and,
thus,

m−mrT − C2T > 0.

For this choice of m we have that T < m
mr+C2

. Moreover, OS1 has a unique solution.
Since the characterization of the optimal control directly depends on the state and
the adjoint solutions, which are unique, then the optimal control corresponding to
OS1 is unique. Similar results give uniqueness for Optimality Systems 2 and 3.
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4. Linear control. In this case we still consider the same three differential equa-
tions, P1–P3, subject to their initial conditions. However, in this case, we determine
the existence and the characterization of an optimal control in the admissible control
class, V , such that the objective functional (2.4),

Jβ(u) = aN(T ) + b

∫ T

0

u(t) dt,(4.1)

is minimized over this class of controls. The goal is to find an optimal control, u∗,
such that

min
0≤u≤M

J(u) = J(u∗).

4.1. Existence. In subsection 3.1, we obtain the existence of the state solution
for each problem P1–P3 given an optimal control in U . This work can be extended
directly because the only change is that u(t) is bounded above by a maximum amount
of drug M.

For simpler discussions, we transform the original problems P1–P3 via x = lnN .
Consequently, we minimize

J1(u) = aex(T ) + b

∫ T

0

u(t) dt(4.2)

over the class of admissible controls, V , subject to each of the three differential equa-
tions that correspond to P1, P2, and P3, respectively. We note that k 	= N0 and that
the initial condition is x(0) = lnN0 and is negative since 0 < N0 < 1.

dx

dt
= −rx− u(t)δ,(4.3)

dx

dt
= −rx− u(t)

δ

k + ex
,(4.4)

dx

dt
= rx(u(t)δ − 1).(4.5)

The theorem for the existence of an optimal control for the appropriate objective
functional is stated below. Since the proof involves standard arguments, it is omitted.
For further information, see [14].

Theorem 4.1. There exists an optimal control in V that minimizes the objective
functional J1(u) subject to (4.3), (4.4), and (4.5), respectively.

4.2. Characterization of optimal control. Since an optimal control exists,
we determine the characterization for each optimal control u(t) associated with each
problem (4.3), (4.4), and (4.5) that minimizes J1(u). We use Pontryagin’s maximum
principle [17] to obtain the necessary conditions for optimality for each problem.

Theorem 4.2. Given an optimal control u∗(t) and a solution, x(t) to (4.3), there
exists an adjoint ψ1 satisfying

dψ1

dt
= rψ1(t),

ψ1(T ) = aex(T ).

Furthermore,

u∗(t) =

{
M if ψ1(t) >

b
δ ,

0 if ψ1(t) <
b
δ .

(4.6)
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Note that this is a problem similar to Swierniak and Duda [18]. We note that
ψ1(t) = aex(T )−r(T−t) and a singular control could not exist. (A singular control
exists when the Hamiltonian is linear in the control and the coefficient of the control
is zero for some time interval.) If one were to exist, then ψ1(t) must equal b

δ on
some interval inclusive to [0,T]. This cannot occur since ψ1(t) would be constant
only for one instant in time. Furthermore, Swierniak and Duda provide conditions
for the representation of the control u∗(t) in terms of the model parameters. Please
see [18, 19] for complete details.

For problem (4.4), we have the following result.
Theorem 4.3. Given an optimal control u∗(t) and corresponding solution x∗(t)

to (4.4), there exists an adjoint ψ2 satisfying

dψ2

dt
= ψ2(t)

[
r − u(t)δex(t)

(k + ex(t))2

]
,(4.7)

ψ2(T ) = aex
∗(T ).(4.8)

In addition,

u∗(t) =


 0 if b− ψ2(t)δ

(k+ex∗(t)) > 0,

M if b− ψ2(t)δ

(k+ex∗(t)) < 0.
(4.9)

Proof. To determine the representation for u∗(t) and the differential equation
associated with ψ2(t), we form the Hamiltonian. We note via Pontryagin’s maxi-
mum principle [17] that if u∗ is an optimal control associated with a corresponding
trajectory on [0, T ], then there exists λ0 ≥ 0 and an absolutely continuous function
λ : [0, T ] → R such that (λ0, λ(t) 	= (0, 0)) for all t ∈ [0, T ] and λ(t) satisfies (4.7) and

λ(T ) = λ0ae
x(T ). This optimal control minimizes H = λ0bu(t)+λ(−rx(t)− u(t)δ

(k+ex(t))2
)

over V . Yet, λ0 cannot vanish for this problem because, if it did, then λ(T ) = 0 and
hence λ(t) = 0 on [0, T ]. This contradicts the nontriviality of the multipliers. There-
fore, without loss of generality, we let λ0 = 1.

Consequently, we consider the following Hamiltonian, where we omit the asterisks
for simplicity:

H(t, x(t), u(t), ψ2(t)) = bu(t) + ψ2(t)
(
−rx(t)− u(t)δ

(k + ex(t))

)
.

We note that from standard existence theory we obtain the existence of ψ2(t)
solving (4.7) given that x(t) is bounded. The necessary conditions of optimality give
that

u(t) =




0 if b− ψ2(t)δ

(k+ex∗(t)) > 0,

M if b− ψ2(t)δ

(k+ex∗(t)) < 0,

singular if b− ψ2(t)δ

(k+ex∗(t)) = 0.

(4.10)

We note that

ψ2(t) = ae
x(T )−

∫ T

t

[
r − u(t)δex(t)

(k + ex(t))2

]
ds

is always positive on [0,T] since a > 0.
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We suppose that the control is singular on (t0, t1) ⊂ [0, T ], i.e.,

b− ψ2(t)d

(k + ex(t))
= 0(4.11)

on that interval. We take the derivative with respect to time of (4.11) and obtain,
after simplification,

(k + ex(t))
dψ2(t)

dt
− ψ2(t)e

x(t) dx

dt
= 0.(4.12)

Next, we substitute the right-hand sides of the differential equations for ψ2(t) and for
x(t) associated with problem (4.4) and find that

(k + ex(t))
[
ψ2(t)

(
r − u(t)δex(t)

(k + ex(t))2

)]
− exψ2(t)

(
−rx(t)− u(t)δ

(k + ex(t))

)
= 0,

ψ2(t)r(k + ex(t) + x(t)ex(t)) = 0.

Since ψ2(t) > 0 on [0,T] and r > 0, then

k + ex(t) + x(t)ex(t) = 0.(4.13)

This immediately gives that x(t) is constant.
Since x(t) is constant, then u(t) is constant here. We make note that with the fixed

final time that H(t, x, u, ψ2) is constant [20]. Since H(t, x, u, ψ2) = bu + ψ2
dx
dt = bu

in this case and we are minimizing H, then u(t) = 0. However, for this to occur
b− ψ2δ

(k+ex) > 0, in (4.10), which contradicts our original assumption for the control to

be singular. Thus, a singular control does not exist and our control is

u∗(t) =


 0 if b− ψ2(t)δ

(k+ex∗(t)) > 0,

M if b− ψ2(t)δ

(k+ex∗(t)) < 0.
(4.14)

We now determine the characterization of the optimal control to minimize J1(u)
subject to (4.5).

Theorem 4.4. Given an optimal control u∗ and a corresponding solution x∗(t)
to (4.5), there exists an adjoint ψ3(t) satisfying

dψ3

dt
= −ψ3(t)r(u

∗(t)δ − 1),(4.15)

ψ3(T ) = aex
∗(T )(4.16)

with

u∗(t) =

{
0 if x(T )ex(T ) > −b

aδr ,

M if x(T )ex(T ) < −b
aδr .

(4.17)

Proof. To determine the representation for the control, we form the Hamiltonian
in a similar fashion as we did in the proof of Theorem 4.3,

H(t, x(t), u(t), ψ3(t)) = bu(t) + ψ3(t)(rx(t)(u(t)δ − 1)).
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As before, a solution to the adjoint exists and is given by

ψ3(t) = ae
x(T )−r

∫ T

t
(1−u(s)δ) ds

,(4.18)

and a solution to the problem (4.5) is

x(t) = x(0)e
−rt+rδ

∫ t

0
u(s) ds

.(4.19)

Since x(0) < 0 and a > 0, then ψ3(t)x(t) < 0 on [0,T].
The necessary conditions for optimality give that

u(t) =




0 if b+ ψ3(t)δrx(t) > 0,
M if b+ ψ3(t)δrx(t) < 0,
singular if b+ ψ3(t)δrx(t) = 0.

(4.20)

We see that

ψ3(t)x(t) = (ae
x(T )−r

∫ T

t
(1−u(s)δ) ds

)(x(0)e
−rt+rδ

∫ t

0
u(s) ds

)

= ax(0)e
x(T )−r(T−t)+rδ

∫ T

t
u(s) ds−rt+rδ

∫ t

0
u(s) ds

= ax(0)e
x(T )−rT+rδ

∫ T

0
u(s) ds

= ax(T )ex(T ).

Hence, ψ3(t)x(t) is constant on [0,T]. This means that u∗(t) must be either zero, its
maximum value—M , or its singular representation on the entire interval [0,T].

Using that ψ3(t)x(t) is constant and that the Hamiltonian is to be minimized,
we can exclude the singular case. If the control is singular, then the Hamiltonian is
equal to −ψ3(t)x(t)r. We can see for the case, u = M , that H(t, x(t), u(t), ψ3(t)) <
−ψ3(t)x(t)r. Moreover, for the case u = 0 we see that the Hamiltonian is bounded
strictly above by b

δ , which is the value of the Hamiltonian if the control is singu-
lar. Consequently, a singular control will not generate the minimum value for the
Hamiltonian.

Therefore, the necessary conditions for optimality are

u∗(t) =

{
0 if x(T )ex(T ) > −b

aδr ,

M if x(T )ex(T ) < −b
aδr .

(4.21)

We simply need to check if the expression x(T )ex(T ) is smaller or larger than −b
arδ .

Then this determines the constant control on the interval [0,T].
Using the representation of the control in terms of the state and adjoint solutions

to the transformed problems (4.3), (4.4), and (4.5), we have the associated Optimality
Systems 4, 5, and 6.

Optimality System 4 (OS4).

dx

dt
= −rx(t)− δu∗(t),

dψ1

dt
= rψ1(t),

x(0) = lnN0, and ψ1(T ) = aex(T ),
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where

u∗(t) =

{
M if ψ1(t) >

b
δ ,

0 if ψ1(t) <
b
δ .

Optimality System 5 (OS5).

dx

dt
= −rx(t)− δu∗(t)

(k + ex(t))
,

dψ2

dt
= ψ2

[
r − u∗(t)δex(t)

(k + ex(t))2

]
,

x(0) = lnN0, and ψ2(T ) = aex(T ),

where

u∗(t) =


 0 if b− ψ2(t)δ

(k+ex∗(t)) > 0,

M if b− ψ2(t)δ

(k+ex∗(t)) < 0.

Optimality System 6 (OS6).

dx

dt
= rx(t)(u∗(t)δ − 1),

dψ3

dt
= −rψ3(t)(u

∗(t)δ − 1),

x(0) = lnN0, and ψ3(T ) = aex(T ),

where

u∗(t) =

{
0 if x(T )ex(T ) > −b

aδr ,

M if x(T )ex(T ) < −b
aδr .

5. Numerical results. We obtain numerical solutions to each of the optimality
systems using the two-point boundary value solver in Matlab [21, 22].

5.1. OS1–OS3. We observe several interesting differences among the three sys-
tems. First, there are significant differences between the optimal solutions of systems
OS1–OS3 based on the initial tumor volume. For initial conditions near the carry-
ing capacity (97.5% of carrying capacity), the optimal solutions for OS1 require less
treatment to reduce the tumor volume the same amount as in OS2 or OS3 (Fig-
ure 5.1(A), (B)). In particular, the optimal solution for OS1 allows for the treatment
to be reduced quickly while for OS3 the treatment remains higher for a more extended
period. This difference is due to the different cell-kill hypotheses of the three methods.
In particular, OS1 hypothesizes that cell-kill is proportional to tumor size, thus larger
tumors are effectively reduced by the drug and the optimality scheme can quickly
reduce the dose needed to keep the tumor size small over the treatment interval.
However, OS3 hypothesizes that cell-kill is proportional to the growth rate, which is
small when the tumor is near its carrying capacity. Therefore, the optimality scheme
requires more drug for a longer period of time to reduce the tumor an equivalent
amount as in OS1.

For initial conditions at half the carrying capacity the differences between the
optimal solutions of the three strategies are less significant (Figure 5.1(C), (D)). OS3
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Fig. 5.1. Comparison of hypotheses OS1 ——, OS2 — - —, and OS3 - - -. The parameters
used are given in Table 5.1. The left column is the control and the right column is the tumor volume.
A and B represent a large tumor near its carrying capacity (97.5% of carrying capacity). C and
D represent a midsized tumor at half its carrying capacity (50% of carrying capacity). E and F
represent a small tumor relative to its carrying capacity (5% of carrying capacity). In all cases the
parameter “δ” was set such that all three methods would have the same tumor volume at the end
time “T.” The units for time is days.

still requires more drug early, when the growth rate was slower, to obtain the same
overall cell-kill as OS1, but the differences are much smaller.

As for smaller tumors where the initial conditions are much smaller than the
carrying capacity (5% of carrying capacity), the optimal solution for OS1 requires
more drug later compared to the optimal solution for OS3 to have the same effect
on the tumor volume (Figure 5.1(E), (F)). But again, the differences in this case are
much less significant compared to tumors near carrying capacity.

We also consider the effects of the weights a, b, and δ in the objective function
(2.3). In particular, we fix b and considered how varying a and δ affects results.
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Table 5.1
Model parameters. All units are nondimensional.

Parameter OS1 OS2 OS3
r 0.1 0.1 0.1
δ 0.45 0.225 4.0
a 3 3 3
b 1 1 1
Nd 0 0 0
k 0.25
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Fig. 5.2. OS1 ——, OS2 — - —, and OS3 - - -. In A and B the parameter “a” is larger
( 2.5 times) and the parameter “δ” is smaller (50%–60%) compared to C and D. In all cases the
initial condition for the tumor size is 97.5% of the carrying capacity and the remaining parameters
are given in Table 5.1.

(The remaining parameters are given in Table 5.1.) In general, a smaller a, 2.5 times
smaller (i.e., less weight in the objective function on minimizing the tumor volume)
requires more drug (or a more effective drug) via an increase in δ (50%–60% increase)
to give equivalent results (Figure 5.2). In general, a, b, and δ alter the quantitative
but not the qualitative results.

5.2. OS4–OS6. Systems OS4–OS6, with the linear control functional (2.4), give
qualitatively different results compared to OS1–OS3. For example, OS4 and OS5 force
treatment to be delayed until the later portion of the treatment interval (Figure 5.3).
This delay in treatment is due to the choice of the objective functional (2.4), which
minimizes N at the end time T . Since (based on the Gompertz growth model) larger
tumors grow much slower than smaller ones, it is more advantageous for the tumor
to remain larger (and thus slower growing) for the first portion of the treatment
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Fig. 5.3. Tumor volume “N” ——, control “u(t)” — - —. Note that for OS6 the graph shows
only the portion where the treatment is “on.”

interval and treat during the remaining portion of the treatment interval. If instead
the treatment is given over the first portion of the treatment interval, then the tumor
would be able to recover during the second portion of the interval at a much faster
rate (since the smaller tumor after treatment has a faster growth rate) and thus not
optimize the objective functional (2.4).

OS6 could only determine the length of treatment and not when treatment should
be started or stopped due to the end condition being only dependent on the end time
T (Figure 5.3). However, there are also some similarities between OS1–OS3 and OS4–
OS6. These include OS4, which like OS1 hypothesizes that cell-kill is proportional to
the tumor volume and requires drug to be given over a shorter period (3 days) com-
pared to the other two methods (OS5 approximately 7.5 days and OS6 approximately
4.5 days).

6. Conclusions.
Theoretical. There are several important differences in the objective functionals

that are minimized over the two classes of controls. For the objective functional with
the quadratic control (2.3), the representation for the optimal control involves both
the state and the adjoint variables for all time, t. For the second objective functional
(2.4), the control is explicitly dependent on the adjoint, which in turn does implicitly
depend on the state, for OS4 and OS5. In OS6, the control is dependent only on the
final time and the evaluation of the state at the final time.
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Within OS1–OS3, the existence, uniqueness, and characterization of the optimal
control are easier to obtain because of the nonlinear control. The biological validity of
the quadratic cost term has been debated [7]. However, its use in order to incorporate
the nonlinear flavor of the problem has given results that are qualitatively significant.
For OS4–OS6, an interesting component is the bang-bang structure of the optimal
controls. An intriguing difference occurs in OS6 in which the optimal control depends
on the length of the treatment. Once this is known, the control will either be given at
the maximum or the minimum level. A future problem relating to OS6 could involve
the minimization of the time of treatment in conjunction with the minimization of
the drug needed.

The mathematical significance of these problems lies in the similarities and dif-
ferences of the construction of the controls. Basic concepts using a Lagrangian or
Hamiltonian are needed in each. Yet, the possibility of singular controls in section
4 required more explorations of the control representations. In this investigation,
the strategies employed in both the nonlinear and the linear control settings attempt
to qualitatively answer the questions relating to the appropriate drug treatment to
impose under the given three hypotheses of cell-kill.

Clinical. The most important clinical question that this study addresses is, When
can drug treatment be reduced to reduce toxicity? If the log-kill hypothesis is used,
then the optimal control systems suggest that treatment can be given for a shorter
period of time relative to the Norton–Simon hypothesis. However, the consequence of
choosing the incorrect hypothesis is to either under- or over-treat the patient, causing
ineffective reduction of the tumor or toxicity, respectively. Therefore, more studies
are needed to determine the specific dynamics of various drugs on tumors relative to
these (or other) cell-kill hypotheses.

We also observe qualitatively different treatment strategies based on the use of
different objective functionals. These differences show the importance of defining an
objective functional that most accurately reflects the toxicities of a particular drug
along with the objective of the treatment strategy, e.g., reduce the tumor mass at the
end of the treatment interval, reduce the overall tumor burden over the treatment
interval, or some other clinically relevant criteria.
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Abstract. The problem of motion of many solids through an unbounded ideal liquid (inviscid
and irrotational) is considered. A Lagrangian formulation of the equations of motion leads to a set
of ordinary differential equations (ODEs) coupled to an elliptic partial differential equation (PDE)
[H. Lamb, Hydrodynamics, 6th ed., Dover, New York, 1932]. Here, using a variational approach,
an approximated solution for the PDE is presented, and the problem is reduced to the study of a
system of ODEs. As a consequence one can get approximate forces and torques due to hydrodynamic
interaction of rigid bodies of arbitrary shapes. Some examples are discussed at the end.
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1. Introduction and main result. This paper is concerned with the motion of
solids through an infinite mass of an ideal liquid (inviscid and irrotational). Since the
1800s this problem has been treated in Lagrangian form considering the solids and
the liquid as a single system in which dynamics are determined only by their inertia.
The equations of motion obtained in this way are given by a set of ordinary differ-
ential equations (ODEs) (borne upon the rigid bodies) coupled to an elliptic partial
differential equation (PDE) (borne upon the fluid). The fundamental contributions
to the subject were given by Kirchhoff, Thomson (Lord Kelvin), and Tait. The book
of Lamb [1] contains an excellent presentation of these and related works. A critical
discussion on the physical validity of the hypotheses behind this classical approach
can be found in the book by Birkhoff [2, paragraph 109].

The problem of motion of solids in ideal liquids has recently received renewed
interest, in particular, due to its significance in the study of two phase flows (see,
for instance, [3], [4], [5], [6]) and in the study of motion of submerged bodies (see,
for instance, [7], [8], [9]). In a few situations of very simple geometry (all bodies are
balls) and under the hypothesis of not close approach, some authors were able to
approximately solve the elliptic PDE in the equations of motion and to get an explicit
set of ODEs for the dynamics of the rigid bodies (see, for instance, [1], [10], [4], [5],
[6], [7]). This was particularly important in numerical studies of systems with a great
number of bodies (for instance, [4], [6]). In this paper the idea of approximately
solving the elliptic part of the problem is extended to systems containing bodies of
arbitrary shape. The goal is to obtain an explicit set of ODEs (and/or the Lagrangian
function that determines it) for the dynamics of the rigid bodies. This finite set of
ODEs depends on geometric parameters, volume, center of volume, and “added-mass”
coefficients of each body. In general (except for balls and ellipsoids) these added-mass
coefficients are yet to be determined numerically through the solution of an elliptic
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PDE. Therefore, the main contribution given here is the reduction of the original
coupled ODE-PDE system for the dynamics of rigid bodies in a fluid to a finite
system of ODEs with some time-independent parameters. These parameters can be
determined by solving a finite number of PDEs only once. Notice that in the original
problem at each time step of integration of the ODE, an elliptic PDE has to be solved
in a domain that changes according to the motion of the bodies.

The hypotheses assumed in this paper are very restrictive from a physical point
of view. A real fluid has viscosity and its dynamic is in most cases very different from
that of an inviscid irrotational fluid. A first motivation for this paper was research on
the dynamics of ships used as oil floating production storage and offloading (FPSO)
units (see, for instance, [11] [12]) carried out by a group of people at the University
of São Paulo and PETROBRAS (the Brazilian oil company) under the leadership
of J. A. P. Aranha. This group has developed a physical model for the forces and
torques (due to current, wind, and waves) acting on a single FPSO under some typical
environmental conditions. The hydrodynamic part of the model was developed in two
steps. At first expressions for the force and torque functions, depending on a minimal
number of unknown parameters, were obtained by means of a theoretical analysis.
The guideline for this analysis was a decomposition proposed by Lighthill [13] of
the forces acting on the ship into a viscous drag force and an inviscid inertial force
(see also [14] and [9]). Then the unknown parameters were determined using either
statistical data obtained from similar ships or towing tank experiments. During an
offloading operation two ships get close to each other. In this case a new hydrodynamic
interaction force between the ships appears. However, in this case not even an estimate
of the inviscid potential part of the hydrodynamic interaction functions was available
in the literature, at least in a form sufficiently explicit to be used as it was in the single
ship case. Therefore, the main motivation for this paper was to come up with such an
estimate. Following the general idea of Lighthill’s force decomposition the expressions
given here provide a starting point for the buildup of more realistic expressions for
the force and torque interaction functions. In this context it is clear the importance
of having explicit formulas for bodies of arbitrary shape. Of course many terms will
have to be incorporated to these interaction functions due to viscous effects as it was
in the single ship case. In the end tests and adjustments of the model will have to be
done experimentally.

A second more direct application of the results of this paper is to the problem
of hydrodynamic interaction between fast oscillating bodies. For instance, consider a
system of two bodies inside a fluid. To the first body a fast small amplitude oscil-
lation is imposed. The second one is allowed to move freely. How do they interact?
Do they attract or repel each other? These questions were addressed in [15]. There
the equations of motion were conveniently averaged and both Theorems 1.2 and 1.4
presented below played an important role. (In the context of the previous paragraph
only Theorem 1.2 is relevant.) In this case the fluid flow induced by the fast oscillat-
ing body has a small “particle displacement/particle acceleration” ratio, so that the
inertial forces are quite relevant (see [2, paragraph 103]). On the other hand eddies
are not generated near the bodies (there are no wakes) due to their small fast net
displacements. So, eddy formation, the usual major way of body-fluid interaction
through viscosity, is not relevant in this case. There may also be the influence of
viscosity due to skin friction and of fluid compressibility if the imposed oscillation of
the first body is too fast (acoustic effects). However, at least for certain frequency
ranges of oscillation, these are second order effects. So, in this context the force and
torque expressions given here seem to be the physically most relevant part of the real
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hydrodynamic interaction functions.
The hypotheses and notation used in this paper are as follows. Let us consider

a system of N bounded rigid bodies whose boundaries are smooth surfaces (or, more
precisely, the boundaries are continuously differentiable). Each body will be labeled
by a Greek letter α ∈ {1, 2, . . . , N}. In each body we fix a reference point and a three
orthogonal reference frame centered on it. We denote by Kα the reference frame
of body α and by {�eα1,�eα2,�eα3} its unit vectors. We also consider a space fixed
three orthogonal reference frame K and denote by {�e1,�e2,�e3} its unit vectors. The

configuration of the system is determined by N position vectors �Rα and N orthogonal
transformations Tα, where �Rα is the position of the reference point of solid α with
respect to K and Tα : Kα → K describes the orientation of body α with respect to
K. (Tα is the attitude matrix of body α.) The set of points of body α will be denoted
by Bα (sometimes we will just use Bα to refer to the body itself), and the boundary
of Bα will be denoted by ∂Bα. The bodies will be supposed to move without collision
through an infinite mass of an ideal liquid (inviscid, incompressible) of density ρ which
is at rest at infinity. It will be assumed that the motion of the liquid is entirely due
to its interaction with the solid, namely there is no external forces acting on the fluid.
The fluid flow will be supposed irrotational, and if a body is bounded by a multiply
connected surface, then it will be supposed that there is no circulation about any
irreducible path on this surface.

We start the study of the dynamics of a system of solids in a fluid by the simplest
case of a single body. Let α be the index of this body. Under the above hypothesis
it can be shown [1] that the velocity field �u of the fluid is the gradient of a potential
function Φ, �u = ∇Φ. For each time t the incompressibility of the liquid implies that
the Laplacian of Φ is equal to zero, ∆Φ = 0. In addition to this equation, it is well
known that the following boundary conditions completely determine �u = ∇Φ: (1) the
components of ∇Φ normal to the body surface points are equal to the normal velocity
of these points, and (2) the fluid is at rest at infinity. Moreover, these boundary
conditions imply that ||∇Φ||, �x ∈ K, is of order 1/||�x||3 as ||�x|| → ∞. The time
dependence enters parametrically in this elliptic problem. The total kinetic energy of
the system solid plus fluid is given by

W = kinetic energy of body +
ρ

2

∫
R

3−Bα

||∇Φ||2,

where Bα denotes the set of points of solid α. The position and velocity of each point
of Bα are determined by the position vector �Rα, the attitude matrix Tα, the velocity

vector �̇Rα
def
= �Vα, and the angular velocity vector �Ωα, whose components in the fixed

reference frame K are given by

ṪαT
†
α

def
=


 0 −Ωα3 Ωα2

Ωα3 0 −Ωα1

−Ωα2 Ωα1 0


 ,

where T †
α is the transpose of matrix Tα (which coincides with its inverse because Tα

is orthogonal). Since ∇Φ is determined by positions and velocities of points in the
boundary of Bα, which we denote by ∂Bα, we conclude that the kinetic energy W
is completely determined by �Rα, �Vα, Tα, and �Ωα. In order to write W explicitly in
terms of these positions and velocities it is convenient to represent them in the body
reference frame Kα. Using the transformation Tα : Kα → K we define

�rα = T−1
α

�Rα, �vα = T−1
α

�Vα, �ωα = T−1
α

�Ωα.
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Sometimes it will be convenient to denote the components of �vα and �ωα in a combined
way, so we define

cαi = vαi, cα(i+3) = ωαi, i = 1, 2, 3(1.1)

(we will always use Latin indices i, j, l, k to denote vector components). It is also
convenient to use the following decomposition for Φ (see [1, article 118]):

Φ(Tα�xα) =

6∑
i=1

cαiφαi(�xα), �xα ∈ Kα,

where for i = 1, 2, 3


∆φαi(�xα) = 0 for �xα ∈ R
3 −Bα,

∇φαi(�xα) · �nα(�xα) = �eαi · �nα(�xα) for �xα ∈ ∂Bα,
||∇φαi(�xα)|| → 0 as ||�xα|| → ∞

(1.2)

(�nα(�xα) ∈ Kα denotes the unit normal vector at the point �xα ∈ ∂Bα that points out
of the body) and for i = 4, 5, 6


∆φαi(�xα) = 0 for �xα ∈ R

3 −Bα,
∇φαi(�xα) · �nα(�xα) = �eα(i−3) × �xα · �nα(�xα) for �xα ∈ ∂Bα,
||∇φαi(�xα)|| → 0 as ||�xα|| → ∞.

(1.3)

Using the above definitions it is possible to show that the kinetic energy W of the
system body plus fluid can be written as

W =
1

2

(
mα||�vα||2 + 2mα�vα · (�ωα × �τα) + �ωα · Iα�ωα

)
+

1

2

6∑
i,j=1

Aαijcαicαj ,(1.4)

where
mα is the mass of body α,
�τα is the position of the center of mass of body α in the reference frame Kα,
Iα is the moment of inertia tensor of body α with respect to the reference
frame Kα, and
Aαij are the added mass coefficients of body α,

Aαij
def
= ρ

∫
R

3−Bα

∇φαi · ∇φαj .

Finally, using this expression for W and D’Alambert’s equation,

d

dt

∂

∂ṡαi
W − ∂

∂sαi
W = Qαi,

where sαi is some generalized coordinate of the body α and Qαi is its related gen-
eralized external force, we can write the equations of motion for the dynamics of a
single body in a fluid. Notice that the effect of the fluid on the body dynamics is
represented by the set of constants Aαij that depends only on the geometry of solid α.
These constants either were already analytically computed for some simple interesting
geometries (like ellipsoids; see [1]) or can be numerically estimated with high precision
(for instance, with the commercial software “Wamit”; see http://www.wamit.com).
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Therefore, in the context of ideal fluids, the problem of the dynamics of a single solid
in a fluid reduces to the problem of studying some known set of ODEs. We just remark
that by no means is this a trivial task. For instance, it has been proved by Kozlov [16]
that even the “free motion” (Qαi = 0) of a single rigid body with sufficiently complex
geometry leads to a nonintegrable set of ODEs.

Now, let us turn to the problem of motion of several solids through a liquid. As
above, the idea is to write the kinetic energy of the system solid plus fluid in terms of
generalized coordinates of the solids only. The same arguments as before lead to the
following expression [1]:

W =
1

2

N∑
α=1

[(
mα||�vα||2 + 2mα�vα · (�ωα × �τα) + �ωα · Iα�ωα

)]
+

ρ

2

∫
S

||∇Φ||2,

where S is the open set of points in R
3 outside B1 ∪ . . . ∪BN and


∆Φ = 0 for �x ∈ S,

∇Φ · �n = [�Vα + �Ωα × (�x− �Rα)] · �n for �x ∈ ∂Bα,
||∇Φ|| → 0 as ||�x|| → ∞.

(1.5)

Now, in contrast to the case of a single solid, it is not possible to write the integral

ρ

2

∫
S

||∇Φ||2(1.6)

in terms of a set of constants that depend only on the geometry of each body. In
fact this integral is a quadratic function of the velocities and angular velocities of
each body and also a function of the relative positions and orientations of the bodies.
Except for very simple geometries, like two spheres moving on a line of centers ([10,
Chapter XI]), the form of this function is unknown. As we already mentioned the goal
of this paper is to write this integral approximately and explicitly in the case where
the bodies are not close to each other. This approximation will depend on certain
geometrical parameters of each body α which are combinations of the added mass
coefficients Aαij ; the volume of body α,

ηα
def
=

∫
Bα

d3xα;

and the center of volume of body α,

�ξα
def
=

∫
Bα

�xαd
3xα.

In order to motivate the definition of these geometrical parameters let us present a
proposition concerning the solutions of (1.2) and (1.3).

We say that a function f : R → R is of order 1/|x|n or

f(x) = O
(

1

|x|n
)

if there exist constants C and C ′ such that

|f(x)| < C ′

|x|n for |x| > C.
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Proposition 1.1. Let φαi be the solution of problem (1.2) for i = 1, 2, 3 and of
problem (1.3) for i = 4, 5, 6. Then the following expansion holds:

φαi(�xα) = − 1

4π

1

||�xα||

{
�λαi · �xα
||�xα||2 +R(�xα)

}
,

where

�λαi
def
=

{
ηα�eαi +

1

ρ

3∑
j=1

Aαij�eαj

}
∈ Kα for i = 1, 2, 3,

�λαi
def
=

{
�eα(i−3) × �ξα +

1

ρ

3∑
j=1

Aαij�eαj

}
∈ Kα for i = 4, 5, 6,

�xα = T−1
α (�x− �Rα).

Moreover, function R can be expanded in a convergent power series of �xα/||�xα||2 and

|R(�xα)| = O
(

1

||�xα||2
)
.

The expansion in this proposition in cases i = 1, 2, 3 is essentially given in article
121a of Lamb’s book [1]. The expansion in cases i = 4, 5, 6 is obtained in a similar
way. The proof of the analyticity of φαi at infinity can be found, for instance, in
Folland’s book [18]. Notice that Lamb defines the velocity of the fluid as −∇φ while
we use ∇φ. This explains the difference in sign between the formula above and the
one in Lamb’s book.

Notice that the geometric parameter �λαi appearing in Proposition 1.1 is the dipole
coefficient of the multipole expansion of φαi. The main idea in this paper is to use
Proposition 1.1 in the following way. Function Φ appearing in (1.5) is unknown but
it is well approximated by a sum of solutions of one-body problems

∑
α

∑
i cαiφαi if

the bodies are sufficiently far apart. Since each φαi behaves like a dipole at infinity,
the error at the boundary conditions of (1.5) after replacing Φ by its approximation
is of order O(1/R3), where

R
def
= min{||�Rβ − �Rα|| : for α �= β, α = 1, . . . , N, β = 1, . . . , N}.

Then a well-known variational principle for (1.5) (see [17, exercise 8.4]) implies that
the error in the kinetic energy (1.6) after replacing Φ by its approximation is of order
O(1/R6). Some further approximations, necessary to obtain more explicit formulas,
lead to an error estimate of order O(1/R4) for the kinetic energy (1.6). These are the
main ideas in the proof of the following theorem.

Theorem 1.2. Let us define

�Rαβ = �Rβ − �Rα for α �= β, α = 1, . . . , N, β = 1, . . . , N.

For each pair α, β, with α �= β, we define a transformation Fαβ : Kβ → Kα which

depends on Tα, Tβ, and �Rαβ, whose 3× 3 matrix has the following elements:

Fαβlk = (Fαβ�eβk ·�eαl)

=
1

4π

1

||�Rαβ ||3

{
(Tβ�eβk · Tα�eαl)− 3

(�eβk · T−1
β

�Rαβ)(T
−1
α

�Rαβ ·�eαl)
||�Rαβ ||2

}

= F βαkl = O
(

1

R3

)
.
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Then

ρ

2

∫
S

||∇Φ||2 = 1

2

N∑
α=1

6∑
i=1

6∑
j=1

Aαijcαicαj

+
ρ

2

N∑
α=1

N∑
β �=α
β=1

6∑
i=1

6∑
j=1

(�λαi · Fαβ�λβj)cαicβj +O
(

1

R4

)
,

where

cαi = vαi, cα(i+3) = ωαi, i = 1, 2, 3.

The result in Theorem 1.2 can be written in different ways. At first let us represent
�λαi as a column vector with 3 components λα1i, λα2i, λα3i and define a 3× 6 matrix
λα, where the ith column is given by �λαi. We call λα the “form matrix.” Let us
represent cα1, . . . , cα6 as a column vector cα with 6 elements. Notice that λαcα is a
column vector in Kα with 3 elements. Then the kinetic energy due to the interaction
of bodies α and β is given by the quadratic function (λαcα · Fαβλβcβ). Notice that
matrix Fαβ does not depend on the geometric properties of bodies α and β but just
on their relative position and orientation. We call Fαβ the “interaction matrix.” It
is interesting to write the interaction matrix in a different way. Let Rαβ1, Rαβ2, Rαβ3

be the three components of �Rαβ and Pαβ be the following matrix:

Pαβ
def
=

1

||�Rαβ ||2


 Rαβ1Rαβ1 Rαβ1Rαβ2 Rαβ1Rαβ3

Rαβ2Rαβ1 Rαβ2Rαβ2 Rαβ2Rαβ3

Rαβ3Rαβ1 Rαβ3Rαβ2 Rαβ3Rαβ3


 .

This matrix defines a transformation Pαβ : K → K that projects any vector in K on
a unit vector with the direction of �Rαβ (PαβPαβ = identity and Pαβ �Rαβ = �Rαβ).
Let 1l be the identity matrix and Gαβ : K → K be the transformation defined as

Gαβ
def
=

1

4π||�Rαβ ||3
[1l− 3Pαβ ].(1.7)

Then the interaction matrix can be factorized as

Fαβ = T−1
α GαβTβ ,(1.8)

where Gαβ depends only on �Rαβ (notice that Fαβ = F βα†). As we will see this factor-
ization simplifies a lot the derivation of the equations of motion from the Lagrangian
function. Finally, using the form and the interaction matrices we can rewrite the
result in Theorem 1.2 as

ρ

2

∫
S

||∇Φ||2 = 1

2

N∑
α=1

6∑
i=1

6∑
j=1

Aαijcαicαj

+
ρ

2

N∑
α=1

N∑
β �=α
β=1

(λαcα · Fαβλβcβ) +O
(

1

R4

)
.(1.9)

Now, in order to explain the origin of the interaction matrix we differentiate the
expansion in Proposition 1.1 to obtain the following proposition. (The symbol ∇
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before a function refers to the gradient of the function with respect to the variables
in its argument.)

Proposition 1.3. Let φαi be the solution of problem (1.2) for i = 1, 2, 3 and
of problem (1.3) for i = 4, 5, 6. Suppose that �xα ∈ ∂Bβ, β �= α. Then the following
expansions hold:

T−1
β Tα∇φαi(�xα) = −�fαβi +O

(
1

R4

)
and

φαi(�xα) = φαi(T
−1
α

�Rαβ)− �fαβi · �xβ +O
(

1

R4

)
,

where

�fαβi = F βα�λαi =
1

4π

1

||�Rαβ ||5

{
||�Rαβ ||2T−1

β Tα�λαi − 3(Tα�λαi · �Rαβ)T−1
β

�Rαβ

}
(1.10)

and

�xβ = T−1
β (�x− �Rβ) ⇒ �xα = T−1

α (�Rαβ + Tβ�xβ).

Proposition 1.3 implies that −�fαβi = −F βα�λαi ∈ Kβ essentially represents the
velocity of the fluid at the reference point of body β due to the unit velocity motion
of body α in the “direction i,” as if the latter were moving in the absence of all other
bodies. The vector �fαβi is nondimensional for i = 1, 2, 3, and it has dimension of
length for i = 4, 5, 6.

Our second main result concerns the problem of motion of a single body, referred
as “body α,” in R

3 in the presence of N other rigid bodies which are held at rest.
If we try to apply the formula in Theorem 1.2 to this problem, we just obtain the
kinetic energy for the motion of a single isolated body given in (1.4). This problem
requires a better approximation of Φ than that used in the proof of Theorem 1.2.
This approximation is presented in section 2. The approximated expression for the
kinetic energy in this case is given in the following theorem. The notation follows the
one above. In this case �Rβ , Tβ , β = 1, . . . , N , do not depend on time.

Theorem 1.4. Let us consider a system of N + 1 rigid bodies in an ideal irro-
tational fluid in R

3. The body denoted by the letter α is free to move, but all others
with indices β = 1, . . . , N are held at rest. Then

ρ

2

∫
S

||∇Φ||2 = 1

2

6∑
i=1

6∑
j=1

cαicαj(A
α
ij + Cαij) +O

(
1

R7

)
,

where

Cαij = Cαji = ρ

N∑
β=1

3∑
k=1

(�λβk · F βα�λαj)(�eβk · F βα�λαi)

= ρ
N∑
β=1

3∑
k=1

(�λβk · �fαβj )(�eβk · �fαβi )

= O
(

1

R6

)
,
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where F βα is defined in Theorem 1.2 and �fαβi is defined in (1.10).
Again the result in Theorem 1.4 can be written in a more concise way. Let λβ (3×3)

be the form matrix λβ (3×6) restricted to its first three first columns. Let Q : K → K
be the transformation defined by

Q =

N∑
β=1

GαβTβλβT
−1
β Gαβ ,(1.11)

where Gαβ is defined in (1.7). Notice that Q depends on the position of body α but
not on its orientation. These definitions imply that the result in Theorem 1.4 can be
written as

ρ

2

∫
S

||∇Φ||2 = 1

2




6∑
i=1

6∑
j=1

cαicαjA
α
ij


+

ρ

2
(λαcα · T †

αQTαλαcα) +O
(

1

R7

)
.

(1.12)

The rest of this paper is organized as follows. In section 2 we present a variational
principle which provides a “good” framework for obtaining approximations for inte-
gral (1.6). We then use this variational principle to obtain first approximations for
integral (1.6) which, unfortunately, do not provide expressions as explicit and simple
as those given in the above theorems. In section 3 we do further approximations to
the expressions obtained in section 2 and compute the formulas in Theorems 1.2 and
1.4. In section 4 we obtain the equations of motion for a system of N rigid bodies
in the case in which each body has three orthogonal planes of symmetry (like, for
instance, a system of ellipsoids). The results in this section indicate how to obtain
the equations of motion in the general case. In section 5 we apply Theorem 1.2 to
some examples: a system of N spheres, a single sphere moving in a fluid contain-
ing other fixed spheres (it could be, for instance, an infinite cubic lattice of identical
equally spaced fixed spheres), and a planar system of two bodies. For this last system
we also present the equations of motion explicitly. It is interesting to point out that
for the problem of two spheres moving on the line of centers, Smereka compared the
approximation of Theorem 1.2 to a higher order one, of order 1/R12, due to Basset
(see [6, eqn. (3.26) and Figure 2] and [10, Chapter XI, especially paragraphs 232,
233]). His conclusion was that the agreement between both approximations was very
good (the relative error was of order 2/1000) even when the spheres touched. Other
applications of Theorems 1.2 and 1.4 can be found in [15].

Finally, it is worth mentioning some words about the important issue of estimating
the errors in the first and higher order derivatives of the approximated expressions
presented in the above theorems. It is not hard to prove that the function defined
by integral (1.6) depends analytically on �Rα and Tα for α = 1, . . . , N . This proof
was essentially presented to me by the late Prof. Daniel Henry. It is a consequence
of a general theory developed by himself for the dependence of solutions of elliptic
problems on the shape of the domain. (This theory is explained in a book of his
which will be published by Cambridge University Press.) This implies that we can

differentiate function Φ with respect to �Rα infinitely many times and that these
derivatives satisfy elliptic problems similar to those studied in this paper. In order to
estimate the derivatives of the expressions in the above theorems we have to estimate
solutions of these new elliptic problems. Though interesting, this problem will not be
considered here.
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2. The variational principle. Let S be the open set given by R
3 minus the

union of Bα, α = 1, . . . , N . Let Φ be the solution of problem (1.5) which we write in
a simpler way as 


∆Φ(�x) = 0 for �x ∈ S,
∇Φ(�x) · �n(�x) = g(�x) for �x ∈ ∂S,
||∇Φ(�x)|| → 0 as ||�x|| → ∞.

We recall that �n is the unit normal to ∂S pointing “inside” S. We will denote by S
the closure of S. Using Green’s identities it is easy to prove the following theorem
(see [17, exercise 8.4]).

Theorem 2.1. Let θ : S → R be a continuously differentiable function such that
the integral of ||∇θ||2 over S exists. Then

G(Φ)
def
=

∫
S

||∇Φ||2 ≥ −2
∫
∂S

gθ −
∫
S

||∇θ||2 def
= F (θ).

Moreover, if θ = Φ+ δ, then

G(Φ)− F (θ) =

∫
S

||∇δ||2.

Proof. In order to prove the theorem we write G(Φ)− F (Φ + δ) explicitly. Then
we use Green’s identity to obtain∫

∂S

δ∇Φ · �n = −
∫
S

(∇δ · ∇Φ),∫
∂S

Φ∇Φ · �n = −
∫
S

||∇Φ||2.

With these identities we remove the integrals over the boundary from G(Φ)−F (Φ+δ)
and get G(Φ)−F (Φ+ δ) = G(δ) ≥ 0. Therefore, F (θ) takes its minimum value when
θ = Φ.

Notice that if ∆θ = 0, then using Green’s identity again we obtain∣∣∣∣
∫
S

||∇Φ||2 − F (θ)

∣∣∣∣ =
∣∣∣∣
∫
S

||∇δ||2
∣∣∣∣ =

∣∣∣∣
∫
∂S

δ∇δ · �n
∣∣∣∣ ,(2.1)

which means that the difference |G(Φ) − F (θ)| depends quadratically on δ over the
boundary ∂S. This enables us to compute the kinetic energy of the fluid with a great
precision even if we only know the fluid velocity field approximately. We remark that
variational tools similar to the one described above are used to compute capacities in
electrostatics (see, for instance, [17]).

In order to prove Theorems 1.2 and 1.4 we use approximations θ1 and θ2 that are
convenient sums of solutions of one-body problems. At first we restrict attention to
θ1, which is chosen as

θ1(�x) =

N∑
α=1

6∑
i=1

cαiφαi(�xα),(2.2)
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where cαi is given in (1.1). Notice that θ1 is harmonic in S, and for each given α it
can be decomposed as

θ1(�x) =

6∑
i=1

cαiφαi(�xα) +

N∑
β �=α
β=1

6∑
i=1

cβiφβi(�xβ)

def
=

6∑
i=1

cαiφαi(�xα) + hα(�x).

The estimates in Proposition 1.1 imply that for �x ∈ ∂Bα,

hα(�x) = O(1/R2), ∇hα(�x) = O(1/R3).(2.3)

For �x ∈ ∂Bα, using that

∇θ1(�x) =

6∑
i=1

cαiTα∇φαi(�xα) +∇hα(�x),

∇φαi(�xα) · �nα(�xα) = �eαi · �nα(�xα) for i = 1, 2, 3,

∇φαi(�xα) · �nα(�xα) = �eα(i−3) × �xα · �nα(�xα) for i = 4, 5, 6,

Tα�nα(�xα) = �n(�x),

we obtain

∇θ1(�x) · �n(�x) =
6∑
i=1

cαi[Tα∇φαi(�xα) · �n(�x)] +∇hα(�x) · �n(�x)

=

6∑
i=1

cαi[∇φαi(�xα) · �nα(�xα)] +∇hα(�x) · �n(�x)

=

[
3∑
i=1

vαi�eαi · �nα(�xα)
]
+

[
3∑
i=1

ωαi�eαi × �xα · �nα(�xα)
]
+∇hα(�x) · �n(�x)

= [�vα · �nα(�xα)] + [ωα × �xα · �nα(�xα)] +∇hα(�x) · �n(�x)
= [�Vα + �Ωα × (�x− �Rα)] · �n(�x) +∇hα(�x) · �n(�x).

This and the boundary conditions (1.5) verified by Φ implies that δ1 = θ1−Φ satisfies


∆δ1(�x) = 0 for �x ∈ S,
∇δ1(�x) · �n(�x) = ∇hα(�x) · �n(�x) for �x ∈ ∂Bα α = 1, . . . , N,
||∇δ1(�x)|| → 0 as ||�x|| → ∞.

(2.4)

So, from (2.3) we get that the normal derivative of δ1 at ∂S is of the order O(1/R3).
Now, let θ2 be given by

θ2(�x) =

6∑
i=1

cαiφαi(�xα) +

N∑
β=1

6∑
i=1

3∑
j=1

cαif
αβ
ij φβj(�xβ),(2.5)

where

fαβij
def
= (�fαβi ·�eβj)
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and �fαβi is defined in (1.10). Using Proposition 1.3 and an argument analogous to the
one above we obtain that δ2 = θ2 − Φ satisfies


∆δ2(�x) = 0 for �x ∈ S,
∇δ2(�x) · �n(�x) = O(1/R4) for �x ∈ ∂S,
||∇δ2(�x)|| → 0 as ||�x|| → ∞.

(2.6)

In order to estimate the difference |G(Φ) − F (θl)|, l = 1, 2, using (2.1) it is still
necessary to find an upper bound for δl on ∂S. This is provided by the lemma below.
Its proof is given in the appendix.

Lemma 2.2. Suppose that δ is a solution of either problem (2.4) or (2.6) with
∇δ(�x) · �n(�x) = O(1/Rk) for �x ∈ ∂S. Then

max{|δ(�x)| : �x ∈ ∂S} = O(1/Rk).

Finally, this lemma, the estimates for∇δ·�n, and (2.1) imply the following theorem.
Theorem 2.3. Let θ1 and θ2 be the approximations of Φ given in (2.2) and (2.5),

respectively. Then∣∣∣∣
∫
S

||∇Φ||2 + 2

∫
∂S

θk(∇Φ · �n) +
∫
S

||∇θk||2
∣∣∣∣ = O(1/R4+2k)

for k = 1, 2.

3. Proofs of Theorems 1.2 and 1.4. In general the functions φαi are not
known. Thus, it is not easy to directly obtain from Theorem 2.3 expressions that are
so explicit as those presented in Theorems 1.2 and 1.4. So, in this section we do some
approximations to the integrals in Theorem 2.3 and obtain Theorems 1.2 and 1.4. At
first, we will prove Theorem 1.2.

From the definition of F (θ) in Theorem 2.1 and Green’s identity we get

F (θ) = −2
∫
∂S

θ(∇Φ · �n)−
∫
S

||∇θ||2 =
N∑
α=1

∫
∂Bα

θ[−2∇Φ · �n+∇θ · n].(3.1)

Using the definition of θ1, (2.2), and Proposition 1.3 for �x ∈ ∂Bα, we get

∇θ1(�x) · �n(�x) = ∇Φ(�x) · �n(�x)−
N∑
β �=α
β=1

6∑
i=1

cβi �f
βα
i · �nα(�xα) +O

(
1

R4

)
.

This equation, the definition of θ1, Proposition 1.3, and∫
∂Bα

[∇φαi(�xα) · �nα(�xα)] = 0(3.2)

for i = 1, . . . , 6 imply that F (θ1) given by (3.1) can be written as

F (θ1) = −
N∑
α=1

6∑
i=1

6∑
j=1

cαicαj

∫
∂Bα

φαj(�xα)∇φαi(�xα) · �nα(�xα)

+

N∑
α=1

N∑
β �=α
β=1

6∑
i=1

6∑
j=1

cαjcβi

{
−
∫
∂Bα

φαj(�xα)�f
βα
i · �nα(�xα)

+

∫
∂Bα

(�fβαi · �xα)(∇φαj(�xα) · �nα(�xα))
}
+O

(
1

R4

)
.
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The formula in Theorem 1.2 is a consequence of this equation, Theorem 2.3,

−
∫
∂Bα

φαj(�xα)∇φαi(�xα) · �nα(�xα) =
∫

R
3−Bα

∇φαi · ∇φαj =
1

ρ
Aαij ,(3.3)

which is the ij added-mass coefficient of body α, and the following proposition.
Proposition 3.1.

−
∫
∂Bα

φαj(�xα)�f
βα
i · �nα(�xα) +

∫
∂Bα

(�fβαi · �xα)(∇φαj(�xα) · �nα(�xα)) = (�λαj · �fβαi ).

Proof. Let us consider a large sphere Γ of radius RΓ centered on Bα. Then using
that φαj and �fβαi · �xα are harmonic outside Bα from Green’s identity, we get∫

∂Bα

φαj(�xα)�f
βα
i · �nα(�xα) +

∫
Γ

φαj(�xα)�f
βα
i · �nα(�xα)

=

∫
∂Bα

(�fβαi · �xα)(∇φαj(�xα) · �nα(�xα)) +
∫

Γ

(�fβαi · �xα)(∇φαj(�xα) · �nα(�xα)),

which implies

−
∫
∂Bα

φαj(�xα)�f
βα
i · �nα(�xα) +

∫
∂Bα

(�fβαi · �xα)(∇φαj(�xα) · �nα(�xα))

=

∫
Γ

φαj(�xα)�f
βα
i · �nα(�xα)−

∫
Γ

(�fβαi · �xα)(∇φαj(�xα) · �nα(�xα)).

Using Proposition 1.1 we obtain∫
Γ

φαj(�xα)�f
βα
i · �nα(�xα) = − 1

4π

∫
Γ

�λαj · �xα
||�xα||3

�fβαi · �nα(�xα) +O
(

1

RΓ

)
.(3.4)

Differentiating the approximation for φαj in Proposition 1.1 we obtain

∇φαj(�xα) = − 1

4π||�xα||5
{
||�xα||2�λαj − 3(�λαj · �xα)�xα

}
+O

(
1

||�xα||4
)
.

Using this approximation we obtain∫
Γ

(�fβαi · �xα)(∇φαj(�xα) · �nα(�xα)) = − 1

4π

∫
Γ

�λαj · �nα(�xα)
||�xα||3

�fβαi · �xα

+
3

4π

∫
Γ

(�fβαi · �xα)(�λαj · �xα)(�xα · �nα(�xα))
||�xα||5

+O
(

1

RΓ

)
.

This equation, equation (3.4), and the fact that for �xα ∈ Γ, �nα(�xα) = −�xα/||�xα||
imply that∫

Γ

φαj(�xα)�f
βα
i · �nα(�xα)−

∫
Γ

(�fβαi · �xα)(∇φαj(�xα) · �nα(�xα))

= − 3

4π

∫
Γ

(�fβαi · �xα)(�λαj · �xα)(�xα · �nα(�xα))
||�xα||5 +O

(
1

RΓ

)
.(3.5)
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Using that �nα(�xα) = −�xα/||�xα|| we obtain

3

4π

∫
Γ

(�fβαi · �xα)(�λαj · �xα)(�xα · �nα(�xα))
||�xα||5 =

3

4πR3
Γ

∫
Γ

(�fβαi · �xα)(�λαj · �nα(�xα)).

Using that (�fβαi ·�xα) and (�λαj ·�xα) are harmonic functions in R
3 from Green’s identity,

we get

3

4πR3
Γ

∫
Γ

(�fβαi · �xα)(�λαj · �nα(�xα)) = − 3

4πR3
Γ

∫
Ball RΓ

(�fβαi · �λαj) = −(�fβαi · �λαj).

Thus, taking the limit as RΓ → ∞ in (3.5), we prove the proposition.
Now, we turn to the proof of Theorem 1.4. Using (3.1), the definition of θ2, (2.5),

Propositions 1.1 and 1.3, and (3.2) we obtain

F (θ2) = −
6∑
i=1

6∑
j=1

cαicαj

∫
∂Bα

φαj(�xα)∇φαi(�xα) · �nα(�xα)

+

N∑
β=1

6∑
i=1

6∑
j=1

3∑
k=1

cαjcβif
αβ
ik

{
−
∫
∂Bα

φαj(�xα)�f
βα
k · �nα(�xα)

+

∫
∂Bα

(�fβαk · �xα)(∇φαj(�xα) · �nα(�xα))
}
+O

(
1

R7

)
.

This equation, equation (3.3), Proposition 3.1, and Theorem 2.3 imply the formula
in Theorem 1.4. The statement Cαij = Cαji in Theorem 1.4 is a consequence of (1.12)

and the symmetry of matrix Q given in (1.11). (Notice that both Gαβ and λβ are
symmetric.)

4. The equations of motion. Let us consider a system of N rigid bodies such
that each body has three orthogonal planes of symmetry. This implies that we can
choose each reference frame Kα such that the added mass matrix Aαij is diagonal. We
will assume this choice. In this case all coefficients of the form matrix λαij are null for
i = 1, 2, 3 and j = 4, 5, 6. So we can restrict the form matrix to its first three columns.
To simplify the notation we keep denoting this restricted matrix by λα. Notice that
λα is diagonal: λαii = ηα + ρ−1Aαii, i = 1, 2, 3, α = 1, . . . , N . Let us write the kinetic
energy of the system as

W =
N∑
α=1

Wα +
1

2

N∑
α=1

N∑
β �=α
β=1

Wαβ ,(4.1)

where Wα is the kinetic energy of body α as if it were isolated and Wαβ is the
approximation for the kinetic energy of hydrodynamic interaction given in Theorem
1.2,

Wαβ = ρ(λα�vα · Fαβλβ�vβ) = Wβα.

The kinetic energy Wα (equation (1.4)) can be written as

Wα =
1

2
(�vα · bα�vα + 2mα�vα · (�ωα × �τα) + �ωα · ξα�ωα) ,
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where bα and ξα are matrices given by

bαij = mαδij +Aαijδij ,

ξαij = Iαij +Aα(i+3)(j+3)δij for i = 1, 2, 3, j = 1, 2, 3,(4.2)

where δij = 1 if i = j, otherwise it is zero. In order to find the equations of motion
we have to compute

d

dt
∇�Vα

W −∇�Rα
W,

d

dt
∇ �̇ψα

W −∇ψαW

for α = 1, . . . , N , where Vα = �̇Rα and ψα is any set of three angles ψα1, ψα2, ψα3 that
parameterize the attitude matrix Tα. (It can be the Euler angles, for instance.) Due
to the decomposition (4.1) of W , the equations of motion are sums of terms of the
following types:

d

dt
∇�Vα

Wα −∇�Rα
Wα,(4.3)

d

dt
∇ �̇ψα

Wα −∇ψαWα,(4.4)

d

dt
∇�Vα

Wαβ −∇�Rα
Wαβ ,(4.5)

d

dt
∇ �̇ψα

Wαβ −∇ψα
Wαβ ,(4.6)

where β �= α. There are two main difficulties in computing these derivatives. The
first difficulty is the amount of terms that have to be differentiated and that appear
in the final equation of motion. In order to partially overcome this problem we define
some tensors that allow us to simplify the computations and the final result. The
second difficulty is related to the angle parameterization of the attitude matrices. We
overcome this problem by using some identities for derivatives of orthogonal matrices
that are independent of the particular choice of angle parameterization. We remark
that the expressions resulting from (4.3) and (4.4) are well known. They correspond to
the equations of motion for an isolated body (Kirchhoff’s equations). Here we indicate
how to obtain them from the Lagrangian Wα to show how to handle derivatives with
respect to angular velocities. Notice that angular velocities do not appear in the
particular Wαβ considered in this section, but they do appear in Wαβ for systems of
bodies of more complex geometry.

Let us start computing (4.5). Using (1.8), that �Vα = Tα�vα, and the identification
T−1
α = T †

α, we write

Wαβ = ρ(�Vα · TαλαT †
αG

αβTβλβT
†
β
�Vβ).(4.7)

This implies that

1

ρ
∇�Vα

Wαβ = TαλαT
†
αG

αβTβλβT
†
β
�Vβ
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and that

1

ρ

d

dt
∇�Vα

Wαβ = ṪαλαT
†
αG

αβTβλβT
†
β
�Vβ + TαλαṪ

†
αG

αβTβλβT
†
β
�Vβ(4.8)

+TαλαT
†
αG

αβṪβλβT
†
β
�Vβ + TαλαT

†
αG

αβTβλβṪ
†
β
�Vβ(4.9)

+TαλαT
†
αĠ

αβTβλβT
†
β
�Vβ(4.10)

+TαλαT
†
αG

αβTβλβT
†
β
�̇V β .(4.11)

The time derivatives of the attitude matrices are related to the angular velocities in
the following way. Matrix Tα satisfies TαT

†
α = 1l. Differentiating this relation we get

ṪαT
†
α = −TαṪ

†
α, which implies that ṪαT

†
α is antisymmetric. The angular velocities

�Ωα, �ωα are vectors whose components satisfy

ṪαT
†
α

def
=Ω̂α =


 0 −Ωα3 Ωα2

Ωα3 0 −Ωα1

−Ωα2 Ωα1 0


(4.12)

and

T †
α(ṪαT

†
α)Tα = T †

αṪα
def
= ω̂α =


 0 −ωα3 ωα2

ωα3 0 −ωα1

−ωα2 ωα1 0


 .(4.13)

Notice that Ω̂α : K → K and ω̂α : Kα → Kα are antisymmetric transformations. For
any vector �U ∈ K or �u ∈ Kα the following identities hold:

ṪαT
†
α
�U = Ω̂α�U = �Ωα × �U, Ṫ †

αṪα�u = ω̂α�u = �ωα × �u.

Sometimes we write Ṫ †
αṪα�u = ω̂α�u, sometimes Ṫ †

αṪα�u = �ωα × �u. For each α =
1, . . . , N , we write the form matrix in the inertial reference frame K as

TαλαT
†
α = Λα.(4.14)

With this notation we get that line (4.8) becomes

ṪαλαT
†
αG

αβTβλβT
†
β
�Vβ + TαλαṪ

†
αG

αβTβλβT
†
β
�Vβ = [Ω̂αΛα − ΛαΩ̂α]G

αβΛβ �Vβ

(4.15)

and line (4.9) becomes

TαλαT
†
αG

αβṪβλβT
†
β
�Vβ + TαλαT

†
αG

αβTβλβṪ
†
β
�Vβ = ΛαG

αβ [Ω̂βΛβ − ΛβΩ̂β ]�Vβ .

(4.16)

In order to handle the derivative Ġαβ we define a tensor Hαβ that with each vector
�U ∈ K associates a linear transformation Hαβ(�U) in K. The components of Hαβ are

Hαβ
ijk =

∂Gαβij
∂Rαβk

= − 3

4π||�Rαβ ||5

{
Rαβkδij +Rαβiδkj +Rαβjδik − 5

RαβiRαβjRαβk

||�Rαβ ||2

}
,

(4.17)
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where i, j, k take values in 1, 2, 3 and δij = 1 if i = j, otherwise it is zero. Notice that

Hαβ is a totally symmetric tensor. If �U and �W are arbitrary vectors in K, then

Hαβ(�U) �W = − 3

4π||�Rαβ ||5

{
�Rαβ(�U · �V ) + �U(�Rαβ · �V )

+ �V (�Rαβ · �U)− 5
�Rαβ(�Rαβ · �U)(�Rαβ · �V )

||�Rαβ ||2

}
.(4.18)

With this definition, after working with each coordinate separately, we get

ΛαĠ
αβΛβVβ −∇�Rαβ

Wαβ(4.19)

= ΛαH
αβ(Λβ �Vβ)�Vβ + [Hαβ(Λβ �Vβ)Λα − ΛαH

αβ(Λβ �Vβ)]�Vα.

Finally, from (4.19), (4.16), (4.15), (4.11), (4.10), (4.9), and (4.8) we get

d

dt
∇�Vα

Wαβ −∇�Rα
Wαβ

= ρ[Ω̂αΛα − ΛαΩ̂α]G
αβΛβ �Vβ + ρΛαG

αβ [Ω̂βΛβ − ΛβΩ̂β ]�Vβ + ρΛαG
αβΛβ �̇V β

+ ρΛαH
αβ(Λβ �Vβ)�Vβ + ρ[Hαβ(Λβ �Vβ)Λα − ΛαH

αβ(Λβ �Vβ)]�Vα.(4.20)

We remark that the force terms in line (4.20) are of order O(1/R4) while the terms
in the previous line are of order O(1/R3).

Let us compute (4.6). Now, we have to differentiate Tα with respect to the angles
ψαi, i = 1, 2, 3. In the same way we defined the angular velocities Ωα, (4.12), and ωα,

(4.13), we define vectors �Γαi and �γαi, i = 1, 2, 3, that have components Γαi1,Γαi2,Γαi3
and γαi1, γαi2, γαi3, respectively, given by

(
∂Tα
∂ψαi

)
T †
α =


 0 −Γαi3 Γαi2

Γαi3 0 −Γαi1
−Γαi2 Γαi1 0


(4.21)

and

T †
α

∂Tα
∂ψαi

=


 0 −γαi3 γαi2

γαi3 0 −γαi1
−γαi2 γαi1 0


 .(4.22)

This definition implies that for any vectors �U ∈ K, �u ∈ Kα the following identities
hold: (

∂Tα
∂ψαi

)
T †
α
�U = �Γαi × �U, T †

α

∂Tα
∂ψαi

�u = �γαi × �u.

Using that Wαβ does not depend on ψ̇αi, the above definition of �Γαi, and some easy
vector identities, we get

d

dt

∂

∂ψ̇αi
Wαβ − ∂

∂ψαi
Wαβ

= ρ(�Γαi · {[�Vα × ΛαG
αβΛβ �Vβ ]− [(Λα�Vα)×GαβΛβ �Vβ ]}).
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Using the linear independence of �Γαi, i = 1, 2, 3, we get

d

dt
∇ψ̇α

Wαβ −∇ψαWαβ

= ρ[�Vα × ΛαG
αβΛβ �Vβ ]− ρ[(Λα�Vα)×GαβΛβ �Vβ ].(4.23)

We remark that the torque on the right-hand side of this equation is of order O(1/R3).

The computation of (4.3) uses only arguments similar to those given above. So in
this case we just present the final result. Let Bα and Ξα be the inertia and moment
of inertia matrices given in the inertial reference frame, namely

Bα = Tαb
αT †

α, Ξα = Tαξ
αT †

α,(4.24)

where bα and ξα were defined in (4.2). Then

d

dt
∇�Vα

Wα −∇�Rα
Wα

= B�̇V α +mα
�̇Ωα × (Tα�τα) +mα

�Ωα × [�Ωα × (Tα�τα)]

+ [�Ωα ×B�Vα]−B[�Ωα × �Vα].(4.25)

The computation of (4.4) involves derivatives of Wα with respect to ψ̇αi, which
did not appear yet. In this case, in order to get a final expression that does not
depend on a particular parameterization of Tα we have to use the following identities:

�Γαi × �Γαj =
∂�Γαj
∂ψαi

− ∂�Γαi
∂ψαj

,(4.26)

�γαi × �γαj =
∂�γαi
∂ψαj

− ∂�γαj
∂ψαi

,(4.27)

and

�Ωα = ψ̇α1
�Γα1 + ψ̇α2

�Γα2 + ψ̇α3
�Γα3,

�ωα = ψ̇α1�γα1 + ψ̇α2�γα2 + ψ̇α3�γα3.(4.28)

These identities are used in the following way. Let us consider the part of (4.4) given
by

d

dt

∂

∂ψ̇αi

�ωα · ξα�ωα
2

− ∂

∂ψαi

�ωα · ξα�ωα
2

.

Using (4.28) and that ξα does not depend on time, we get

d

dt

∂

∂ψ̇αi

�ωα · ξα�ωα
2

= �γαi · ξα�̇ωα + (ξα�ωα) ·
3∑
j=1

ψ̇αj
∂�γαi
∂ψαj

.
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Then using (4.27) we get

d

dt

∂

∂ψ̇αi

�ωα · ξα�ωα
2

− ∂

∂ψαi

�ωα · ξα�ωα
2

= �γαi · ξα�̇ωα + (ξα�ωα) ·
3∑
j=1

ψ̇αj

[
∂�γαi
∂ψαj

− ∂�γαj
∂ψαi

]

= �γαi · ξα�̇ωα + (ξα�ωα) ·
3∑
j=1

ψ̇αj [�γαi × �γαj ]

= �γαi · [ξα�̇ωα + (�ωα × ξα�ωα)]

= �Γαi · [Ξα �̇Ωα + (�Ωα × Ξα�Ωα)],

where in the last line we used that �Γαi = Tα�γαi and �̇Ωα = Tα�̇ωα. Using these ideas
and some well-known vector identities, we obtain

d

dt
∇ �̇ψα

Wα −∇ψαWα

= Ξα �̇Ωα +mα(Tα�τα)× �̇V α + �Ωα × (Ξα�Ωα) + �Vα × (B�Vα).(4.29)

Equations (4.20), (4.23), (4.25), and (4.29) are given in the inertial reference
frame K. It is also possible to write the full system of equations choosing for each
equation containing Wα the reference frame Kα. This is the approach taken in the
trivial case of a system with only one body, since the attitude matrix disappears from
the equations of motion. This advantage is obviously lost when there is more then
one body. Nevertheless, it is still interesting to write the equations in the reference
frame of each body especially when the bodies are far a way. In this case the attitude
matrices appear only in the weak coupling term that corresponds to Wαβ . Below, we
write equations (4.20), (4.23), (4.25), and (4.29) in the reference frame Kα:

T †
α

{
d

dt
∇�Vα

Wαβ −∇�Rα
Wαβ

}
= ρ[ω̂αλα − λαω̂α]F

αβλβ�vβ + ρλαF
αβω̂βλβ�vβ

+ ρλαF
αβλβ�̇vβ + ρλαT

†
αH

αβ(Tβλβ�vβ)Tβ�vβ

+ ρ[T †
αH

αβ(Tβλβ�vβ)Tαλα − λαT
†
αH

αβ(Tβλβ�vβ)Tα]�vα,(4.30)

T †
α

{
d

dt
∇ψ̇α

Wαβ −∇ψαWαβ

}
= ρ[�vα × λαF

αβλβ�vβ ]− ρ[(λα�vα)× Fαβλβ�vβ ],(4.31)

T †
α

{
d

dt
∇�Vα

Wα −∇�Rα
Wα

}
= bα�̇vα +mα�̇ωα × �τα +mα�ωα × [�ωα × τα] + [�ωα × bα�vα],(4.32)

T †
α

{
d

dt
∇ �̇ψα

Wα −∇ψα
Wα

}
= ξα�̇ωα +mα�τα × �̇vα +mα�τα × (ωα × �vα)

+ �ωα × (ξα�ωα) + �vα × (bα�vα).(4.33)
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5. Examples.

5.1. Many balls. The added-mass coefficients for a single ball of radius aα with
respect to its center are Aαii =

2
3πρa

3
α for i = 1, 2, 3, and all the remaining coefficients

are zero. The volume of the ball is ηα = 4
3πa

3
α, and its center of volume is �ξα = �0.

Therefore, �λαi = 2πa3
α�eαi, i = 1, 2, 3, �λαi = �0, i = 4, 5, 6, and λαcα = 2πa3

α�vα. Let
us consider a system of N balls of radii aα, α = 1, . . . , N . Then from Theorem 1.2,
equations (1.7) and (1.8) the kinetic energy of the system is approximately given by

1

2

N∑
α=1

(
mα +

2

3
πa3

αρ

)
||�Vα||2

+
ρ

2

N∑
α=1

N∑
β �=α
β=1

πa3
αa

3
β

||�Rαβ ||3

{
(�Vα · �Vβ)− 3

(�Vα · �Rαβ)(�Vβ · �Rαβ)
||�Rαβ ||2

}
,

where mα is the mass of ball α. The formulas in this paragraph had been previously
obtained in [4] and [6].

5.2. A ball moving in an environment containing many fixed balls. Let
us assume that a ball of radius aα is moving in a fluid of density ρ in R

3 in the presence
of N fixed balls of radius bβ , β = 1, . . . , N , which are not close to each other. Then,
from Theorem 1.4, equations (1.11) and (1.12) we get that the kinetic energy of the
system is approximately

1

2

(
mα +

2

3
πa3

αρ

)
||�Vα||2

+
ρπa6

α

4

N∑
β=1

b3β

||�Rαβ ||6

{
||�Vα||2 + 3

(�Vα · �Rαβ)(�Vα · �Rαβ)
||�Rαβ ||2

}
,

where �Rαβ = �Rβ − �Rα and �Rβ is fixed. Notice that using this formula we can get
an approximation for the kinetic energy of a ball of radius a moving in a fluid that
contains an infinite cubic lattice of fixed equal balls of radius b, provided the lattice
spacing is sufficiently larger than a and b. It is easy to check that the infinite sum that
appears in this case converges absolutely. This is in contrast to the case of a ball in a
box with periodic boundary conditions, where certain sum rules have to be assumed
in order to overcome the problem of nonabsolute convergence of an analogous series
(see [6]).

5.3. Two bodies moving on a plane. Let us consider a system of two bodies
that can freely move on a plane X,Y . For simplicity we will assume that each body is
symmetric with respect to two orthogonal lines. We choose the reference point in each
body at the intersection of these two lines. In order to make easier the distinction
between body labels and coordinate labels, we use α and β to indicate the first and the
second body, respectively. Let �Rα, �Rβ , ψα, and ψβ be the configuration coordinates
of the system as shown in Figure 5.1. Notice that

Tα(ψα) =

(
cosψα − sinψα
sinψα cosψα

)
, Tβ(ψβ) =

(
cosψβ − sinψβ
sinψβ cosψβ

)

and �ωα = ψ̇α�e3, �ωβ = ψ̇β�e3, where �e3 is a fixed unit vector perpendicular to the plane
of motion. The inertia and form coefficients of each body are as follows:
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R 1

R2

R

ψ
1

ψ
2

e2

e1

Fig. 5.1. Diagram showing the coordinates used to describe the two-body system example of
section 5.3.

moment of inertia coefficients: Iα33 (body 1), Iβ33 (body 2);
added mass matrices:

 Aα11 0 0
0 Aα22 0
0 0 Aα66


 ,


 Aβ11 0 0

0 Aβ22 0

0 0 Aβ66


 ;

masses: mα and mβ ;
inertia matrices (according to (4.2)):

bα =

(
mα +Aα11 0

0 mα +Aα22

)
, bβ =

(
mβ +Aβ11 0

0 mβ +Aβ22

)
,

and

ξα33 = Iα33 +Aα66, ξβ33 = Iβ33 +Aβ66;
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centers of mass: �τα
def
= τα�e11 and �τβ

def
= τβ�e21;

volumes: ηα and ηβ ;

centers of volume: �ξα = �0 and �ξβ = �0.
For this system the form matrices λα and λβ can be written as 2× 2 matrices:

λα =

(
ηα + ρ−1Aα11 0

0 ηα + ρ−1Aα22

)
, λβ =

(
ηβ + ρ−1Aβ11 0

0 ηβ + ρ−1Aβ22

)
.

The interaction matrix Fαβ can be also written as a 2×2 matrix (since our symmetry

assumptions imply Fαβ16 = Fαβ26 = Fαβ61 = Fαβ62 = Fαβ66 = 0):(
Fαβ11 Fαβ12

Fαβ21 Fαβ22

)
= T †

αG
αβTβ .

Defining

�Rβ − �Rα
def
= �R = (R1�e1 +R2�e2),

to simplify the notation, we get from (1.7)

Gαβ =
1

4π||�R||3

{(
1 0
0 1

)
− 3

||�R||2
(

R1R1 R1R2

R2R1 R2R2

)}
.

It is also convenient to define vectors �Wα and �Wβ in K given by

�Wα
def
= Tαλα�vα, �Wβ

def
= Tβλβ�vβ .

Then from (4.17) we get

Hαβ( �Wβ) = − 3

4π||�R||5

·
{(

3Wβ1R1 +Wβ2R2 Wβ1R2 +Wβ2R1

Wβ1R2 +Wβ2R1 3Wβ2R2 +Wβ1R1

)
− 5(�R · �Wβ)

||�R||2
(

R1R1 R1R2

R2R1 R2R2

)}
.

Now, from (4.30) and (4.32) we get the following equation for the velocities of
body α written in the reference frame Kα:

bα�̇vα +mαταψ̈α�eα2 −mαταψ̇
2
α�eα1 + ψ̇α�e3 × (bα�vα)

+ (Aα11 −Aα22)ψ̇α

(
0 1
1 0

)
Fαβλβ�vβ(5.1)

+ ρψ̇βλαF
αβ [�e3 × (λβ�vβ)] + ρλαF

αβλβ�̇vβ(5.2)

+ ρλαT
†
αH

αβ( �Wβ)Tβ�vβ(5.3)

+ (Aα11−Aα22)

[
Hαβ

12 ( �Wβ) cos(2ψα)+
Hαβ

22 ( �Wβ)−Hαβ
11 ( �Wβ)

2
sin(2ψα)

]
(�e3×�vα)

(5.4)
= �fα,

where �fα ∈ Kα represents other forces that may act on body α. Notice that the terms
in lines (5.1) and (5.2) are of order O(1/R3) while those in lines (5.3) and (5.4) are
of order O(1/R4).
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From (4.31) and (4.33) we get the following equations for the angular motion of
body α:

ξα33ψ̈α +mαταv̇α2 +mαταψ̇αvα1 + (Aα22 −Aα11)vα1vα2

+(Aα22 −Aα11)�vα ·
(

0 1
1 0

)
Fαβλβ�vβ(5.5)

= nα,

where nα represents other torques that may act in body α. Notice that the term in
line (5.5) is of order O(1/R3). To get the equations for body β it is enough to change
α for β in the equations above.

Appendix. In this appendix we prove Lemma 2.2, namely we show that if δ is
a solution of 


∆δ(�x) = 0 for �x ∈ S,
∇δ(�x) · �n(�x) = g(�x) = O(1/Rk) for �x ∈ ∂S,
||∇δ(�x)|| → 0 as ||�x|| → ∞,

then

||δ||∂S∞ def
= sup{|δ(�x)| : �x ∈ ∂S} = O

(
1

Rk

)
.

The proof requires several well-known results that can be found in partial differ-
ential equations textbooks. Here we will often refer to the book of Folland [18]. If
function g is continuous, then δ is continuous in S, it is differentiable in S, and its
derivative in the direction of the normal to ∂S has a continuous extension to ∂S ([18,
Chapter 3A]). Then for �x ∈ S, the following identity holds (Green’s third identity;
see the remark below Proposition 3.3 in [18]):

δ(�x) = −
∫
∂S

δ(�y)[∇yψ(�x, �y) · �n(�y)]dσ(�y) +
∫
∂S

[∇yδ(�y) · �n(�y)]ψ(�x, �y)dσ(�y),(A.1)

where

ψ(�x, �y) = − 1

4π

1

||�x− �y||
is the Newtonian potential and dσ is the element of area on ∂S.

For any �x ∈ R
3, there exists C ′

1(α) > 0, α = 1, . . . , N , such that∫
∂Bα

|ψ(�x, �y)|dσ(�y) < C ′
1(α).

So defining C1 = C ′
1(1) + · · ·+ C ′

1(N) we obtain that for any �x ∈ R
3:∣∣∣∣

∫
∂S

[∇yδ(�y) · �n(�y)]ψ(�x, �y)dσ(�y)
∣∣∣∣ =

∣∣∣∣
∫
∂S

g(y)ψ(�x, �y)dσ(�y)

∣∣∣∣ ≤ C1||g||∂S∞.(A.2)

Now we need the following result [18, Theorem 3.22].
Theorem A.1. Let ∂B be the twice continuously differentiable boundary of a

bounded open set B (which may have several components) in R3 and S be the open



MOTION OF SOLIDS THROUGH A LIQUID 1995

set of points in R
3 outside B ∪ ∂B. Let f be a real valued continuous function in ∂B

and u be a function in B ∪ S given by

u(�x) =

∫
S

f(�y)[∇yψ(�x, �y) · �n(�y)]dσ(�y),

where �n points outside B. Then u has continuous extensions u− and u+ to B and S,
respectively. Moreover, for �x ∈ ∂B,

u−(�x) =
1

2
f(�x) +

∫
∂B

f(�y)[∇yψ(�x, �y) · �n(�y)]dσ(�y),

u+(�x) = −1

2
f(�x) +

∫
∂B

f(�y)[∇yψ(�x, �y) · �n(�y)]dσ(�y).

Let �x∗ be a point in ∂Bα for a particular value of α, such that

|δ(�x∗)| = ||δ||∂S∞.

Then taking �x → �x∗ , �x ∈ S, from Theorem A.1 we obtain

δ(�x) +

∫
∂S

δ(�y)[∇yψ(�x, �y) · �n(�y)]dσ(�y) → 1

2
δ(�x∗)

+

∫
∂Bα

δ(�y)[∇yψ(�x∗, �y) · �n(�y)]dσ(�y) +
N∑
β �=α
β=1

∫
∂Bβ

δ(�y)[∇yψ(�x∗, �y) · �n(�y)]dσ(�y).

(A.3)

If �y ∈ ∂Bβ and �x∗ ∈ ∂Bα, then ||∇yψ(�x∗, �y)|| = O(||�x∗−�y||−2). So there exists R > 0
and C ′

2(β) > 0 such that for β �= α and R > R the following inequality holds:∫
∂Bβ

|[∇yψ(�x∗, �y) · �n(�y)]|dσ(�y) < C2

R2
.

Defining C2 =
∑
β �=α C

′
2(β) this implies that for R > R,∣∣∣∣∣∣∣∣

N∑
β �=α
β=1

∫
∂Bβ

δ(�y)[∇yψ(�x∗, �y) · �n(�y)]dσ(�y)

∣∣∣∣∣∣∣∣ ≤ ||δ||∂S∞C2

R2
.(A.4)

Now, taking the limit as �x → �x∗, �x ∈ S, in (A.1) using (A.3) and inequalities (A.2)
and (A.4), we get for R > R

|F(δ)(�x∗)| def
=

∣∣∣∣12δ(�x∗) +
∫
∂Bα

δ(�y)[∇yψ(�x∗, �y) · �n(�y)]dσ(�y)
∣∣∣∣

≤ ||δ||∂S∞C2

R2
+ C1||g||∂S∞.(A.5)

From Theorem A.1 with B = Bα we notice that

F(δ)(�x∗) =
1

2
δ(�x∗) +

∫
∂Bα

δ(�y)[∇yψ(�x∗, �y) · �n(�y)]dσ(�y)
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is the boundary value of a function δ− that is harmonic inside the open set Bα. The
mapping δ → F(δ), from the Banach space of continuous functions on ∂Bα with the
supremum norm to itself, is a bounded linear bijection (see, for instance, [18, Chapter
3, section E] or [19, section 9.2]). Thus by Banach’s inverse theorem (see [20, Chap.
4, section 4, Theorem 3]) the inverse operator of F is also bounded, namely, there
exists a constant C3 which depends on ∂Bα such that

||δ||∂S∞ = ||δ||∂Bα∞ ≤ C3 sup
�x∈∂Bα

∣∣∣∣12δ(�x) +
∫
∂Bα

δ(�y)[∇yψ(�x, �y) · �n(�y)]dσ(�y)
∣∣∣∣ .

From this inequality and inequality (A.5) we obtain

||δ||∂S∞ ≤ ||δ||∂S∞C3C2

R2
+ C1C3||g||∂S∞,

or using that ||g||∂S∞ = O(1/Rk),

||δ||∂S∞
(
1− C3C2

R2

)
≤ O

(
1

Rk

)
,

which implies

||δ||∂S∞ = O
(

1

Rk

)
.
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A CANARD MECHANISM FOR LOCALIZATION IN SYSTEMS OF
GLOBALLY COUPLED OSCILLATORS∗
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IRVING R. EPSTEIN‡
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Vol. 63, No. 6, pp. 1998–2019

Abstract. Localization in a discrete system of oscillators refers to the partition of the population
into a subset that oscillates at high amplitudes and another that oscillates at much lower amplitudes.
Motivated by experimental results on the Belousov–Zhabotinsky reaction, which oscillates in the
relaxation regime, we study a mechanism of localization in a discrete system of relaxation oscillators
globally coupled via inhibition. The mechanism is based on the canard phenomenon for a single
relaxation oscillator: a rapid explosion in the amplitude of the limit cycle as a parameter governing
the relative position of the nullclines is varied. Starting from a parameter regime in which each
uncoupled oscillator has a large amplitude and no other periodic or other stable solutions, we show
that the canard phenomenon can be induced by increasing a global negative feedback parameter γ,
with the network then partitioned into low and high amplitude oscillators. For the case in which the
oscillators are synchronous within each of the two such populations, we can assign a canard-inducing
critical value of γ separately to each of the two clusters; localization occurs when the value for the
system is between the critical values of the two clusters. We show that the larger the cluster size, the
smaller is the corresponding critical value of γ, implying that it is the smaller cluster that oscillates
at large amplitude. The theory shows that the above results come from a kind of self-inhibition of
each cluster induced by the local feedback. In the full system, there are also effects of interactions
between the clusters, and we present simulations showing that these nonlocal interactions do not
destroy the localization created by the self-inhibition.

Key words. canard phenomenon, globally coupled oscillators, relaxation oscillator, localization
of oscillations

AMS subject classifications. 34C15, 34C26

DOI. 10.1137/S0036139902411843

1. Introduction. The Belousov–Zhabotinsky (BZ) reaction is the prototype
system in nonlinear chemical dynamics [1, 2, 3] (see references therein). In bulk, it is
a relaxation oscillator. A wide variety of spatially extended patterns have been found
in experiments on this reaction. Along with the experiments, chemically plausible
mathematical models have been proposed and studied both analytically and numer-
ically. The results obtained qualitatively reproduce experimental findings. Recently,
new patterns have been found as nondiffusive couplings have been experimentally and
numerically introduced.

In particular, the existence of localized oscillatory clusters has been reported in
[4, 5] for the BZ reaction with global inhibitory feedback. Simulations performed on
the Oregonator model [5] and a modified Oregonator model [6] of the BZ reaction,
both with global inhibitor feedback, reproduce the experimental findings. However,
the mechanism by which localized cluster formation occurs remains unclear from both
the mathematical and chemical points of view.
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We consider as a cluster a set of “cells” or “chemical points” of the reactor that
oscillate synchronously with the same amplitude. In certain cases, depending on some
parameter, only two different amplitude regimes of oscillations occur: large amplitude
oscillations (LAO) and small amplitude oscillations (SAO). The LAO regime consists
of limit cycles whose amplitudes are O(1), i.e., almost equal to the maximum am-
plitude of the limit cycle for a single uncoupled oscillator, whereas the SAO regime
consists of limit cycles whose amplitudes are of order of magnitude ε � 1. In such
cases there is a range of amplitudes that is not observable because they occur in an
exponentially small interval of the governing parameter. When the system is divided
into two or more clusters and at least one oscillates in an LAO regime and one in
an SAO regime, we say that the clusters are localized. Clusters that are in the same
amplitude regime may oscillate with a small difference in their amplitudes (compared
with the LAO), but we do not refer to that situation as a localization phenomenon.
Note that our definition of clusters does not require oscillators in each cluster to be
spatially grouped; we disregard spatial structure in this work.

The localized cluster patterns found in the experiments and simulations on the
BZ reaction with global inhibitory feedback [4, 5, 6] present two main features that
might seem counterintuitive:

1. Two different oscillatory regimes coexist in a system of identical coupled
oscillators.

2. The cluster with the largest number of oscillators is always in the SAO regime
whereas the smallest clusters are in an LAO regime; one might expect the
largest cluster to be oscillating in an LAO regime and suppressing the smaller
ones as occurs in other systems, e.g., neural systems with inhibitory synapses,
with all-to-all identical coupling. In this latter case, if one cluster has a larger
number of cells than the others, the former can suppress the latter.

In this paper we seek to explain the mechanism of localization for globally cou-
pled relaxation oscillators of the FitzHugh–Nagumo (FHN) type, along with the two
features mentioned above. The FHN-type models were chosen as simplifications of
the Oregonator models. Although they are not precise as descriptions of chemical
phenomena, they display the localization phenomenon and are easier to study ana-
lytically in order to give some insight into the dynamical mechanisms that produce
localized solutions. In addition, they display some of the relevant qualitative features
of the modified Oregonator model studied in [6], such as the shape of the nullclines,
the fact that the limit cycle is created in a supercritical Hopf bifurcation, and the re-
laxation nature of the oscillator. In a forthcoming paper we will address the questions
related to the mechanism of localization in the modified version of the Oregonator
used in [6, 7].

We argue that the mechanism of localization is based on the canard phenomenon
that occurs in single relaxation oscillators. The canard phenomenon is a very rapid
change in the amplitude of the limit cycle of a relaxation oscillator as the inhibitor
nullcline moves with respect to the activator nullcline [11, 12, 13, 14, 15, 16]. It
arises in the context of experiments and simulations of nonlinear chemical dynamics
[17, 18, 19] and in a two-pool model describing the mechanism of calcium-induced
calcium release [20, 21].

The mechanism of localization in oscillatory systems, not of the relaxation type,
has been studied in [8, 9, 10] for nonidentical diffusively coupled oscillators. To our
knowledge, the mechanism of localization in relaxation-type oscillators has not been
analyzed before.
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In section 2 we present a general formulation for a class of models of globally
coupled oscillators of FHN type that include the modified FHN (MFHN) models
studied in this manuscript. For single FHN-type oscillators, the fast variable null-
cline is cubic-like and intersects, on its middle branch, the slow variable nullcline,
an increasing function. The parameters were chosen such that this intersection is
an unstable fixed point. In section 3 we explain the reduction of dimensions strat-
egy, a self-consistent argument that reduces the dimensionality of the mathematical
problem by assuming the existence of M clusters, each with a different dynamical
behavior (different amplitudes, phases or both). Within each cluster, the oscillators
synchronize.

In section 4 we describe the canard phenomenon for a single FHN-type equation
and review some results. Following [15], we present a mathematical expression for
an asymptotic approximation to the “canard critical value” for the parameter λ, the
parameter responsible for the displacement of the slow variable nullcline relative to
the fast variable nullcline, as a function of the remaining parameters of the model.
When, by increasing or decreasing λ through a critical value λc, there is a sudden
change (of canard type) in the amplitude of the limit cycle, we say that the canard
phenomenon has been induced by changes in λ, and we call λc the canard critical
value of λ. Strictly speaking, the sudden change in the amplitude of the limit cycle
takes place in an exponentially small interval of values of λ; the canard critical value
is the limit of the interval as ε→ 0.

In section 5 we show that, when there are synchronized (bulk) oscillations for the
globally coupled system (only one cluster), the canard phenomenon may be induced
by increasing the value of the global feedback parameter γ and keeping λ fixed. In
the FHN-type models with global feedback presented here, as well as in the BZ model
with global feedback used in [6], the intersection point between nullclines remains
fixed as γ is increased. When γ = 0 (no global feedback) the uncoupled oscillators
are in an LAO regime; localization for these models is a consequence of the global
coupling. An asymptotic approximation to the critical global feedback value, γc, is
also calculated as a function of λ and other parameters of the model. These results
are the basis of our analysis of the localization phenomenon.

The localization phenomenon for a two-cluster system, in which one cluster is in
an LAO regime and the other is in an SAO regime, is analyzed in section 6. The dy-
namics of the two-cluster globally coupled system is analyzed by studying each cluster
separately and considering the other cluster as forcing it. Under specific assumptions,
this dynamics is a combination of self-inhibition of each cluster, responsible for creat-
ing an interval of values of γ within which a localized solution may exist, and inhibition
(forcing) exerted on each cluster by the remaining ones. We show that self-inhibition
is stronger the larger the cluster size, which explains why in a localized solution the
largest cluster is in an SAO regime. We show that, for the special case of the van
der Pol (VDP) equations with global feedback, localization is produced by only the
self-inhibition, and the forcing exerted on each cluster by the other does not affect
localization. In this paper we analyze only the effect of self-inhibition; however, we
present some simulations of other globally coupled FHN systems that support our
claim that the localization phenomenon is present with the same features predicted
theoretically. In section 7, we relate our results to experiments and simulations.

2. Models. In this paper we study models of the type{
v′k = F (vk, wk) − γ (〈w〉 − w̄),
w′
k = ε G(vk, wk;λ)

(1)
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Fig. 1. Nullclines for a sigmoid version of the FHN model for several values of λ = v̄ − vmin
(the intersection point between nullclines).

for k = 1, . . . , N and 0 < ε � 1. In (1), F (v, w) is such that the zero level curve
F (v, w) = 0 can be expressed as w = f(v) with f(v) a cubic-like function having one
local minimum at (vm, wm) and one local maximum at (vM , wM ) with vm < vM and
wm < wM . The function G is a nonincreasing function of w such that the zero level
curve G(v, w;λ) = 0 is an increasing function of v for every λ in a given neighborhood
of λ = 0 and is also a decreasing function of λ for all v in a neighborhood of vm. We
further assume that F = 0 and G = 0 intersect at (v̄, w̄) with v̄ = vm when λ = 0 and
that (v̄, w̄) is an unstable fixed point lying on the central branch of f when λ > 0.
The constant γ is the global feedback parameter, and 〈w〉 is given by

〈w〉 =
1

N

N∑
k=1

wk.(2)

Note that (v̄, w̄) does not depend on γ, as we can see by replacing 〈w〉 by w̄ in (1). In
all models considered here, the systems are assumed to be in a relaxation oscillatory
regime in the absence of global coupling (γ = 0). For γ = 0, changes in the parameter
λ alter the position of the wk nullcline (see Figure 1). When this nullcline moves,
the intersection point (v̄, w̄) changes. As we will explain in section 4, without loss of
generality we can redefine λ such that λ = v̄. In the literature v is usually referred to
as the activator or the “potential” variable and w as the “inhibitor” or the recovery
variable.

Some specific systems may be modeled by making simplifying assumptions on (1)
and considering F (v, w) = f(v) − w and G(v, w;λ) = g(v;λ) − w, where f is as de-
scribed before and g is an increasing function of v for every λ in a given neighborhood
of λ = 0 and a decreasing function of λ for all v in a neighborhood of vm. Examples are

(i) VDP equations in Lienard form

f(v) = −v3 + v2, G(v, w;λ) = v − λ;(3)

(ii) the classical FHN equations

f(v) = −h v3 + a v2 − b v + c, g(v;λ) = β v − η,(4)

where h, a, b, c, β, and η are nonnegative constants;
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Fig. 2. Nullclines for the MFHN model for a single oscillator (or equivalently for γ = 0).
The values of the parameters used in our simulations are h = 1.92, a = 4.32, b = 1.8, c = 0.23,
β = 0.41, η = 0.05, ε = 0.05, vm = 0.25, f(vm) = 0.02, v̄ = 0.328, w̄ = 0.036092. The function f
was constructed in such a way that the maximum and minimum are close to 1 and 0, respectively,
in the following way: (i) we took a cubic function with minimum 0 at v = 0 and maximum 0.98 at
v = 1, (ii) we shifted it up by 0.02, (iii) we shifted it to the right by 0.25. The function g, a sigmoid
function, was built in such a way that it crosses f at a single point, v̄, placed to the right of the Hopf
bifurcation and such that v̄ > λc (beyond the canard critical value for a single oscillator). Note that
g is very steep and limv→±∞ = ±1.

(iii) the sigmoid FHN equations

f(v) = −h v3 + a v2 − b v + c, g(v;λ) =
1

2
(tanh((v − β)/η) + 1) ,(5)

where h, a, b, c, β, and η are nonnegative constants; and
(iv) the MFHN equations, which we use in our simulations,

f(v) =

{
fcub(v), v ≥ vm,
fcub(vm) v2m/v

2, v ≤ vm,

g(v;λ) =
1

2
(tanh((v − β)/η) + 1) ,

(6)

and

fcub = −h v3 + a v2 − b v + c.(7)

Here vm is the minimum of fcub; a, b, c, h, β, η, and ε are nonnegative constants.
In our simulations we use the following values for the parameters: h = 1.92, a = 4.32,
b = 1.8, c = 0.23, β = 0.41, η = 0.05, and ε = 0.05. With those parameters we get
(vm, wm) = (0.25, 0.02) and (v̄, w̄) = (0.328, 0.036092). We can see the graph of the
corresponding nullclines in Figure 2. In (4), (5), and (6) the parameter λ (which was
defined as the v-coordinate of the intersection point between the two nullclines of the
system) is implicitly defined by other parameters of the model.

The MFHN model is a simplification of the modified version of the Oregonator
model used in [6]; it allows an easier qualitative dynamical understanding by reproduc-
ing important aspects of the BZ dynamics and keeping some of its features, including
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the “N” shape of the nullcline corresponding to the first equation in (1), its asymptotic
approach to the w axis, its qualitative behavior as a function of the global feedback
parameter, and an inhibitor dynamics described by a sigmoid function rather than a
line. The motivation for using the MFHN system instead of more classical versions
of the FHN system is that, by changing the global feedback parameter γ, we can find
small amplitude limit cycles with smaller amplitude in the v direction than for the
FHN equations. This is due to the fact that the activator nullcline is asymptotic to
the w axis.

3. Strategy: Reduction of dimension using clusters. We are interested
in localized solutions to (1)–(2) for γ �= 0, in which two different portions of the
system display LAO and SAO, respectively. Toward this end we will analyze the
existence, properties, and stability of solutions to models of type (1)–(2) with M
different oscillatory behaviors (M ≤ N). More specifically, we will look for solutions
to (1)–(2) in which the system of N oscillators is divided into M different sets, each

set containing a fraction αk, k = 1, . . . ,M , of the N oscillators with
∑M
k=1 αk = 1, and

such that all oscillators in a set synchronize and oscillate with the same amplitude.
Since all the oscillators in each set are equivalent, we can write

〈w〉 =

M∑
j=1

αj wj .(8)

Bulk oscillations correspond to M = 1. Two-phase (phase-locked) oscillations cor-
respond to M = 2, as do localized oscillations in which a fraction of the system
oscillates with large amplitude and the rest of the system oscillates with small ampli-
tude. M = 3 includes three-phase (phase-locked) oscillations and localized oscillations
in which a fraction of the system displays two-phase (phase-locked) LAO and the rest
of the system oscillates with small amplitude.

In order to consider the influence of the rest of the system on the kth oscillator,
we define

Sk =

M∑
j=1,j �=k

αj wj(9)

for k = 1, . . . ,M . Using (9) and (1), we obtain{
v′k = F (vk, wk) − γ αk wk + γ w̄ − γ Sk,
w′
k = εG(vk, wk;λ)

(10)

for k = 1, . . . ,M . Note that the last term in the first equation of (10) is the only one
depending on wj , j = 1, . . . ,M , j �= k. This term can be seen as a forcing exerted
by the rest of the oscillators on the kth one. For M = 1 (Sk = 0, α1 = 1), (10) is
an unforced oscillator with global coupling; it describes bulk oscillations of the whole
system. For M > 1, the inhibitor nullsurfaces are not dependent on γ or Sk, while
the activator nullsurfaces, which are solutions of

F (vk, wk) − γ αk wk + γ w̄ − γ Sk = 0(11)

for k = 1, . . . ,M , vary depending on Sk and γ.
When F (v, w) = f(v) − w in (10) we have FHN-type equations. In this case the

activator nullsurfaces are given by

wk =
f(vk) + γ w̄

1 + γ αk
− γ

1 + γ αk
Sk(12)
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for k = 1, . . . ,M . For each k, the solutions (vk, wk) of the FHN-type equations
can be considered as living in a three-dimensional space (vk, wk, Sk). The activator
nullsurfaces vary in the Sk direction. As the system evolves, Sk changes in a periodic
fashion. For each value of Sk we can consider the projection of (12) onto the (vk, wk)
plane. This gives us the possibility of looking at the phase space of the FHN-type
equations for each oscillator separately as if it were two-dimensional, with the activator
nullcline moving up and down periodically according to Sk, i.e., according to the
dynamics of the rest of the M − 1 oscillators. The intersection point in the (vk, wk)
plane between the projections of the inhibitor and activator nullsurfaces becomes a
periodic function of t that moves as the wk nullcline moves. We call the vk-coordinate
of this time-dependent intersection point λk = λk(t) for k = 1, . . . ,M . Thus, for
systems of the form f(v, w) = f(v) −w, we can decompose the whole system into M
forced subsystems of FHN type, one for each value of k. The forcing exerted on one
oscillator depends on the remaining ones.

Stability of a solution to (10) does not automatically imply stability with respect
to the full equations (1), since the solution may not be stable to perturbations that
destroy the clustering into groups of equivalent oscillators. Hence once a solution has
been numerically found for a specific model and value of M , it is desirable to check
its stability in the N -array of globally coupled oscillators. We approach this problem
numerically. In order to numerically solve system (1) we used the modified Euler
method [22] for N = 100 with a step size ∆t = 0.01. For M = 2 we divided the N
oscillators into two sets, each with uniform initial conditions. Once each set of oscil-
lators (with αkN oscillators belonging to each set, k = 1, 2) settled down in a specific
limit cycle, we applied a random perturbation of maximum amplitude 0.001 to each
variable. We applied the following criterion for stability: if, after the perturbation,
each oscillator returns to its original limit cycle and phase difference, then we say that
the system is N -stable (numerically stable in an array of N oscillators). Otherwise we
say that the system is N -unstable (numerically unstable in an array of N oscillators).
We are aware that our definition of stability is not a rigorous one and can be affected
by numerical instabilities. Still, it gives us valuable information about the stability
of phase and localized clusters for the subset of values of γ for which they exist.

4. Canard phenomenon. In this section we review the canard phenomenon
for relaxation oscillators. Consider system (1) for a single oscillator and γ = 0; i.e.,{

v′ = F (v, w),
w′ = ε G(v, w;λ),

(13)

where 0 < ε � 1 and where F and G are as described in section 2. We first look
at FHN-type models; i.e., F (v, w) = f(v) − w with f as described in section 2. We
assume that system (13) is in an oscillatory regime. The nullclines for a sigmoid-type
FHN model and a limit cycle corresponding to a chosen set of parameters are shown
in Figure 3.

The dynamics of system (13) depends on the value of λ, i.e., on the relative
position of the w nullcline with respect to the v nullcline. For the FHN-type equations
there exists a Hopf bifurcation point λH(ε) ≥ vm in a neighborhood of (vm, wm) which
converges to (vm, wm) as (ε, λ) → (0, 0) (see Appendix C and Figure 1). For values
of λ < vH system (13) has a steady state as the only attractor, and the system is
excitable [1, 3, 23, 24]; i.e., relatively small perturbations (but large enough to exceed a
threshold, a curve in phase space, determined by the v nullcline and the parameters of
the model) give rise to a large excursion that returns to the attractor. This trajectory
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Fig. 3. Nullclines and limit cycle for a sigmoid version of the FHN model where λ = v̄− vmin.
The values of the parameters are as in Figure 2 and (a) λ = 0.0375, (b) λ = 0.0585, (c) λ = 0.059,
(d) λ = 0.5.

is usually called an excitation loop, a pulse, or a spike. Subthreshold perturbations
return to the stable fixed point with no large excursion. At λ = λH(ε), system (13)
undergoes a supercritical Hopf bifurcation. As λ increases, the amplitude of the limit
cycle increases slowly for small enough values of λ, part of the trajectory being very
close to the unstable branch of the v nullcline for a while, then crossing the unstable
branch and moving toward the left branch of the v nullcline, as illustrated in Figure
3(a) and 3(b). At some critical point λc(ε) > λH(ε), the trajectory moves toward the
right branch of the activator nullcline instead of moving toward the left branch, and
the limit cycle expands rapidly (over an exponentially small interval in the parameter
λ) becoming a relaxation oscillator [1, 3, 25, 26], as seen in the transition from Figure
3(b) to 3(c). After that, the amplitude of the limit cycle either increases slowly or
remains constant as λ is increased, until the oscillator becomes like the one in Figure
3(d). By symmetry, when λ is near the maximum of w = f(v), the same effect is seen
in a small neighborhood of the Hopf bifurcation near λ = vM . In Figure 4 we can see
the amplitude of the limit cycle, given by the maximum and minimum values of v and
w (vmin, vmax, wmin, and wmax), as a function of λ for the sigmoid version of the FHN
equations (5). This rapid change from a “small” amplitude limit cycle to a “large”
amplitude limit cycle is known as the canard phenomenon [11, 12, 14, 15, 16, 27].
In this case the canard phenomenon has been induced by changes in λ. Here we
concentrate on the canard phenomenon near v = vm.



2006 ROTSTEIN, KOPELL, ZHABOTINSKY, AND EPSTEIN

Fig. 4. Amplitude of the limit cycle as a function of the crossing point between the activator
and inhibitor nullclines λ for a single cell FHN oscillator. The values of the parameters are as in
Figure 2. (a) v-amplitude (vmin and vmax), (b) w-amplitude (wmin and wmax).
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The canard phenomenon was discovered by Benoit et al. [14] for the VDP oscil-
lator. In their work [14] they show that there exists a critical value λc(ε) of λ such
that for λ in a small neighborhood of λc the limit cycle deforms into a curve similar
to the one shown in Figure 3(c). While Benoit et al. [14] used nonstandard analysis
techniques in their study, Eckhaus [12] and Baer and Emeux [13] used asymptotic
techniques. In particular they found expressions for the canard critical value λc for
VDP-type equations and for a generalization of system (13).

The canard phenomenon for (13) has been also studied by Dumortier and Rous-
sarie [11] and by Krupa and Szmolyan [15, 16]. We follow the latter authors in
our approach. In order to present their results, without loss of generality, we take
(vm, wm) = (0, 0). For (v, w) = 0 we assume that F (0) = 0, ∂F/∂v(0) = 0,
∂2F/∂v2(0) �= 0, i.e., (vm, wm) is a nondegenerate local minimum (fold point) of
the nullcline F (v, w) = 0 for λ in a suitable interval. Furthermore, ∂F/∂w(0) �= 0.
We also assume for (v, w, λ) = 0 that G(0) = 0, ∂G/∂v(0) �= 0, and ∂G/∂λ(0) �= 0.
These conditions defining a canard point (which will be referred to as canard condi-
tions) mean that the nullcline G(v, w, λ) = 0 is transverse to the nullcline F (v, w) = 0,
and it passes through the fold point with nonzero speed as λ varies. As pointed out
above, v̄ increases as λ increases (see Figure 1), allowing us to reparametrize λ such
that λ = v̄. For the VDP and FHN equations, these assumptions are satisfied with
an appropriate change of variables.

We show in Appendix B that

λc = Λ ε+ |Fw|Υ ε+ O(ε3/2),(14)

where

Υ =
Gv

2Fvv |Gλ|
(
Gv
Fvv

)
v

, Λ = − Gv
2F 3

vv |Gλ|
(Gv Fvw Fvv +Gw F

2
vv ),(15)

and all the functions are calculated at 0. To obtain (14) we used an earlier result
by Krupa and Szmolyan [15]. There, the cubic-like function was assumed to have its
minimum at (0, 0).

For the VDP equations (3), Λ = 0 and Υ = −f ′′′(0) / 2 (f ′′(0))2 = 3/4, coinciding
with the expression found by Eckhaus [12]. For the classical FHN equations (4),
Λ = β / (2 f ′′(0) |gλ|) and Υ = −β f ′′′(0) / (2 (f ′′(0))3 |gλ|). The expression for the
canard critical value becomes

λc =
β

2 (f ′′(0))3 |gλ(0)| [ (f ′′(0))2−β f ′′′(0) ] ε+O(ε3/2) =
β ( 2 a2 + 3β h )

8 a3 |gλ(0)| ε+O(ε3/2).

(16)
For the general FHN-type equations with G(v, w;λ) = g(v;λ) − w,

λc =
g′(0)

2 (f ′′(0))3 |gλ(0)| [ (f ′′(0))2 − f ′′′(0) g′(0) + g′′(0) f ′′(0) ]ε+ O(ε3/2)

=
g′(0)

8 a3 |gλ(0)| [ 2 a2 + 3h g′(0) + a g′′(0) ]ε+ O(ε3/2).(17)

Note that if the minimum of the activator nullcline (vm, f(vm)) �= (0, 0), a translation
of coordinates may be performed without changing the values of the derivatives of f
and g.
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By construction, f in the MFHN model is a matching of two different functions.
The result is continuous but not differentiable at the origin. In order for the theory
described in this section to be applicable, F and G must be Ck-functions with k ≥ 3
(continuous at least up to the third derivative) [16]. In the analysis presented here we
consider functions f qualitatively similar to the MFHN function defined above, i.e.,
satisfying the canard conditions, but Ck with k ≥ 3. Our numerical simulations with
the MFHN function qualitatively agree with the analytical predictions.

5. Canard phenomenon induced by the global feedback parameter in
synchronized (bulk) oscillatory systems. In this section we study the influence
of the global feedback parameter γ on the amplitude regime (LAO or SAO) of the
solution for M = 1 (bulk or synchronized oscillations). In what follows, all functions
are calculated at 0. For M = 1, system (1) reads as{

v′ = F (v, w) − γ w + γ w̄,
w′ = ε G(v, w;λ).

(18)

We assume that at γ = 0, λc = O(ε) such that λc �= O(εν), ν > 1, λ = O(ε) fixed,
and λ > λc; i.e., the system is in an LAO regime for γ = 0.

First we explain how to apply the theory developed in section 4 to system (18). In
the calculation of the canard critical value we use the fact that in a neighborhood of
(vm, f(vm)) = (0, 0) the v nullcline can be described by a parabolic function (see (48)
in Appendix A). Then, by our assumption λ = O(ε) (v̄ = O(ε)), it follows that γw̄ =
O(ε2). We can rescale the last term in the first equation in (18) by defining w̄ = κ ε2,
getting the following expression for the v nullcline: Φ(v, w, ε) := F (v, w)−γ w+γ κ ε2.
Note that κ is independent of v and that Φ(0, 0, 0) = 0 as required in [15].

Remark. When the activator nullcline Φ = 0 is ε-dependent, the canonical equa-
tions (48) are augmented by a term ε h6(v, w, ε) and the expression for the canard
critical value has an extra term proportional to h6,v [15].1 For (18) h6 = γ ε κ, so
h6,v = 0 and the expression for the canard critical value is not affected. The only
effect of γ on the canard critical value comes from the term −γ w in the first equation
in (18).

An expression for the canard critical value as a function of the global feedback
parameter γ can be calculated as in the calculation for γ = 0 (see Appendix B) to
obtain

λc(γ) = Λ ε+ ( |Fw| + γ ) Υ ε+ O(ε3/2) = λc(0) + γ Υ ε+ O(ε3/2).(19)

Expressions (19) and (15) imply that, by increasing the value of the global feedback
parameter, the value of the canard critical value is increased, provided(

Gv
Fvv

)
v

> 0,(20)

since Gv and Fvv were assumed to be positive. So, if for γ = 0 we have λ > λc(0)
(the system is in an LAO regime), then the canard phenomenon can be induced by
increasing the value of γ without changing the value of λ. The change from LAO to
SAO takes place in an interval of values of γ exponentially small in ε.

We now compute γc, the amount that γ must be increased (in the limit as ε→ 0)
to induce the canard phenomenon, assuming that the system is in an LAO regime

1See the explanation after (53).
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when γ = 0. Taking into account the assumptions made at the beginning of this
section on λ and λc, the critical value γc(λ) of γ may be calculated as the value of γ
that brings λc(γ) to λ, i.e., by replacing γ by γc and λc by λ, respectively, in (19):

λ = λc(0) + γc(λ) Υ ε+ O(ε3/2).(21)

From (14)

|Fw|Υ ε = λc(0) − Λ ε+ O(ε3/2).(22)

Substituting (22) into (21), multiplied by |Fw|, we get

|Fw| [λ− λc(0) ] = γc [λc(0) − Λ ε ] + O(ε3/2).(23)

Note that in the FHN models |Fw| = O(1), which has been used in the error term in
(23). Rearranging terms and using (14), we get

γc(λ) = |Fw| λ− λc(0)

λc(0) − Λ ε
+ O

(
ε3/2

λc(0) − Λ ε

)
= |Fw| λ− λc(0)

λc(0) − Λ ε
+ O(ε1/2).(24)

For the VDP equations (3), Fw = −1 and G is independent of w so we have
Λ = 0. Thus from (19)

λc(γ) = λc(0) (1 + γ) + O(ε3/2),(25)

and

γc(λ) =
λ− λc(0)

λc(0)
+ O(ε1/2).(26)

Note that, since G is independent of w, the nullclines intersect at the same value λ
for all γ ≥ 0.

Using (19) and (24), the expressions for λc and γc for the FHN-type equations
with G(v, w;λ) = g(v;λ) − w are given by

λc(γ) = λc(0) +
γ g′(0)

2 f ′′(0) |g(λ)|
[
g′′(0) f ′′(0) − g′(0) f ′′′(0)

[f ′′(0)]2

]
ε+ O(ε3/2)(27)

and

γc(λ) =
λ− λc(0)

λc(0)

[
1 +

g′(0)

2 λc(0) f ′′(0) |gλ| ε
]

+ O(ε1/2).(28)

In both cases, as γ increases, the canard critical value moves to the right; then
there exists a critical value of the global feedback parameter, γc, such that for values
of γ below (above) γc, solutions display LAO (SAO).

As noted above, for the MFHN model used in our simulations, we do not have
an expression for the canard critical value as a function of the parameters of the
model and γ, but we conjecture on the basis of numerical simulations that the be-
havior is similar to the smooth case described before. The results of numerical sim-
ulations are shown in Figures 5 and 6. In Figure 5 we see the dependence of the
amplitude of the limit cycle (represented by the minimum and maximum values of
v and w) on γ for the MFHN model. We observe that for γ = γc (in this case γc ∼
0.429), there is a sudden change in both the v- and w-amplitudes of the limit cycle.
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Fig. 5. Amplitude of the limit cycle for the MFHN oscillator as a function of the global feedback
parameter γ. The values of the parameters are as in Figure 2.
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Fig. 6. Nullclines and phase plane for the MFHN oscillator for various values of γ. The
function f(v; γ) = (f(v) + γ w̄)/(1 + γ). The values of the parameters are as in Figure 2 and (a)
γ = 0, (b) γ = 0.428, (c) γ = 0.429, (d) γ = 1.

In Figure 6 we show the shape of the limit cycle for several values of γ above and be-
low γc. For γ = 0 (Figure 6(a)) the system is in a relaxation oscillation regime. As γ
increases, the limit cycle goes through the lower knee of the activator nullcline, comes
up along the unstable branch for a while, and then moves rapidly to the right branch
of the activator nullcline (Figure 6(b)) if γ < γc; if γ > γc, the trajectory crosses
the unstable branch and moves rapidly to the left branch of the activator nullcline
(Figure 6(c)).

Our numerical simulations show that bulk oscillations for the MFHN model are
100-stable for γ ≤ 0.39 and γ ≥ 25.0.

6. Localized solutions. In this section we analyze the existence of localized
solutions for a system of globally coupled FHN-type equations, i.e., equations (1)–(2),
where F (v, w) = f(v) − w. We deal here with the case M = 2; this can be easily
generalized to larger values of M . In a two-cluster localized solution, some of the
oscillators are in an SAO regime while the other oscillators are in an LAO regime.

By applying the reduction of dimensions described in section 3 we reduce the
system of N oscillators to a system of two oscillators. The activator nullcline for each
oscillator is given by (12) for k = 1, 2. The first term in (12) depends only on vk
and the second term is independent of (vk, wk) and is the only one depending on wj ,
j = 1, 2, j �= k. As explained in section 3, we can consider the second term in (12)
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as moving the nullcline, whose shape is given by the first term in (12), up and down.
We call λk,c(γ) and γk,c(λ) the canard critical value and the critical global feedback
parameter value, respectively, for k = 1, 2. Looking at each of the two oscillators
separately we can calculate the respective canard critical values as a function of γ and
the fraction of oscillators in each cluster, αk, following the same reasoning leading to
(19) and (24) in section 5, where γ is replaced by αk γ. This yields

λk,c(γ) = λc(0) + αk γ Υ ε+ O(ε3/2)(29)

and

γk,c(λ) =
1

αk

λ− λc(0)

λc(0) − Λ ε
+ O(ε1/2)(30)

for k = 1, 2. Thus, for a given γ, the larger αk the larger the canard critical point
for the kth oscillator and the smaller the corresponding γk,c, i.e., the less the global
feedback needed to get SAO. We can easily calculate

λ1,c(γ) − λ2,c(γ) = (α1 − α2) γ Υ ε+ O(ε3/2)(31)

and

γ2,c − γ1,c =
α1 − α2

α1 α2

λ− λ(0)

λc(0) − Λ ε
+ O(ε1/2).(32)

For the VDP equations, the value of λk(t) (see section 3 for the definition of this
quantity) does not depend either on k or on t. Let us refer to it as λ. In this case,
expression (31) implies that if α1 �= α2, then we can find values of the global feedback
parameter γ for which λ has a value between λ1,c and λ2,c, thus producing a localized
solution. As we can see from (31) and (32) the interval of values of λ and γ for which
we can expect a localized solution increases with the difference between the fractions
of oscillators in the two clusters. Since λk(t) is independent of k and t, localization
in the VDP model is a consequence only of nonsymmetric self-inhibition, i.e., not a
consequence of the forcing that the oscillators exert on one another. Note that the
cluster with the larger αk is the one in the SAO regime, as seen in experiments and
simulations on the BZ reaction with global feedback. (In the latter case the LAO
regime consisted of two phase locked clusters.) The shape, frequency, and amplitude
of each limit cycle (considered separately) in the localized solutions depend, in ways
that are not yet fully understood, on γ, on the size of the other oscillator, and possibly
on other quantities.

For the FHN-type equations self-inhibition creates intervals of critical values of λ
and γ given by (31) and (32), respectively. In contrast to the VDP equations, when
γ > 0, λk(t) (see section 3 for the definition of this quantity) depends on both k
and t. The forcing exerted on each oscillator by the other one changes the value of
λk(t). Thus there are two effects we must consider in understanding how localized
solutions arise: self-inhibition and external inhibition or forcing. How external forcing
interacts with localization is not yet understood. However, our simulations for the
MFHN model show that localization is present as expected and that the numerically
determined interval γ2,c − γ1,c in which there is localization increases as α1 − α2

increases. In Figure 7 we show the amplitude of the solutions to the MFHN system
with M = 2 as a function of the global feedback parameter γ for different values
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Fig. 7. Amplitude of the limit cycle for 2 globally coupled (M = 2) MFHN oscillators as a
function of the global feedback parameter γ and for different values of the fraction of oscillators
in each cluster. The parameters are as in Figure 2 and (a) α1 = 0.5, v-amplitude, (b) α1 = 0.5,
w-amplitude, (c) α1 = 0.6, v-amplitude, (d) α1 = 0.7, v-amplitude, (e) α1 = 0.8, v-amplitude, (f)
α1 = 0.9, v-amplitude.

of αk, k = 1, 2. The amplitude of the oscillatory solutions for vk is represented as
the minimum and maximum values vk,min and vk,max, respectively. In Table 1 we
present numerical approximations of γ1,c and γ2,c for different values of α1 and α2.
For α1 = 0.6, 0.7, and 0.8 we found that the localized solutions corresponding to a
subset of values of γ included in (γ1,c, γ2,c) are 100-stable.
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Table 1
Localized solution for the MFHN model. Values of the canard critical values γc,1 and γc,2 as

a function of the fraction of oscillators in each cluster. The values of the parameters are as in
Figure 2 with M = 2. The intervals of 100-stability, I, are (i) I = 1.01 for α1 = 0.6, (ii) I = 0.6
for α1 = 0.7 and I = 0.05 for α1 = 0.8. For α1 = 0.9 100-stable localized solutions were not found.

α1 α2 γc,1 γc,2

0.5 0.5 1.47 1.47
0.6 0.4 1.01 2.40
0.7 0.3 0.77 4.85
0.8 0.2 0.6 8.64
0.9 0.1 0.5 9.53

The analysis presented in this section can be generalized for larger values of M ,
in which case we will have two regimes (LAO and SAO), but in each of the regimes
we can have different amplitudes or phases for different clusters.

7. Discussion. In this paper we analyze the mechanism of localization of oscilla-
tions for a globally coupled system of relaxation oscillators of FHN type. In addition
to localization, these models display the basic features of the modified Oregonator
models studied in [6] and [5] to reproduce the experimental results: shape of the null-
clines, a limit cycle created in a supercritical Hopf bifurcation, and display of canards
among others.

Although the present study is motivated by the BZ reaction, a spatially extended
system, experimental evidence suggests that the phenomena studied here, the mech-
anism of localization or creation of localized clusters, does not depend on diffusion
[4, 28]. Based on the results of the simulations presented in [6] and simulations per-
formed by the authors and not presented here, we conjecture that the diffusion plays
an important role in spatially grouping together oscillators belonging to the same
cluster.

We analyzed the canard phenomenon induced by the global feedback parameter
γ for bulk oscillations (M = 1), obtaining an expression for the canard critical value
λc and the critical global feedback parameter γc as functions of the parameters of the
models considered. We showed that, by increasing the value of the global feedback
parameter, the canard phenomenon is induced for a critical value γc; i.e., as γ passes
γc the system rapidly changes from an LAO regime to an SAO regime due to self-
inhibition. Our numerical stability calculations show that this limit cycle need not
be 100-stable in a neighborhood of γc; e.g., for values of γ close enough to γc, bulk
oscillations lose stability, generating other patterns, among them localized structures.
The idea of induction of the canard phenomenon by changing γ is a key to the analysis
of localization.

We used the idea of self-inhibition to partially explain the two-cluster localization
phenomenon (M = 2) for a system of FHN-type equations. We applied the reduction
of dimension via clusters, and we analyzed each of the two oscillators separately,
considering each as a forcing exerted on the other. By writing the equations for
the nullclines of each oscillator, we saw that their dynamics can be understood as
a combination of two phenomena: self-inhibition of each oscillator and inhibition
(forcing) exerted on each oscillator by the remaining ones. Self-inhibition creates
intervals of critical values of λ and γ given by (31) and (32), respectively. The forcing
exerted on each oscillator by the other one changes the values of λk(t). We did not
analyze the effect of the forcing exerted on each oscillator by the remaining one, but
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we studied this effect numerically, showing that the main features of localization are
present; i.e., the larger cluster is in an SAO regime, and the larger the size difference
between two clusters the larger the interval of values of γ for which the system has
a localized solution, which is 100-stable. Our analysis reveals that for the VDP
equations, localization is produced by self-inhibition alone. For systems that are not
of FHN type (e.g., the BZ equations [6]), the analysis becomes more complicated.

In experiments on the BZ reaction with global inhibitory feedback [4, 5] as well
as in simulations using an Oregonator model [5] and another BZ model [6], localized
structures consisted of three clusters, the largest cluster in an SAO regime and two
smaller phase-locked clusters in an LAO regime. The mechanism we propose here for
FHN-type models does not deal with the multiple clusters in LAO regimes but does
explain the counterintuitive inverse relation between amplitude regime and cluster
size and sheds light on the role of self-inhibition in the phenomenon of localization.

We conjecture that a similar mechanism is responsible for localization in a mod-
ified Oregonator model for the BZ reaction [6] that we study in a forthcoming paper,
as well as in the Oregonator model [5]. The canard phenomenon for a single two-
dimensional Oregonator model has been studied in [29], although in this case the
Hopf bifurcation taking place in a neighborhood of the minimum of the activator
nullcline may be subcritical instead of supercritical; then SAO are not possible for
a single oscillator, though they might be possible in a globally coupled system. Our
preliminary analysis shows that global feedback changes the stability type of the Hopf
bifurcation point, thus allowing for SAO.

Appendix A. Calculation of the canonical form. The first step in calculat-
ing the canard critical value for system (13) is to transform it into its canonical form.
We assume (vm, wm) = 0.

We first expand the right-hand sides in both equations in (13) in Taylor series:{
F (v, w) = −b w + a v2 +H1(v, w),
G(v, w, λ) = e v − c λ+ d w +H2(v, w, λ),

(33)

where

a =
1

2

∂2F

∂v2
(0), b =

∣∣∣∣∂F∂w (0)

∣∣∣∣ ,(34)

c =

∣∣∣∣∂G∂λ (0)

∣∣∣∣ , d =
∂G

∂w
(0), e =

∂G

∂v
(0),(35)

H1(v, w) =
∂2F

∂vw
(0) v w +

1

6

∂3F

∂v3
(0) v3 + O(w2, v2w, vw2, w3),(36)

H2(v, w, λ) =
1

2

∂2G

∂v2
(0) v2 +

∂2G

∂vλ
(0) v λ+ O(w2, λ2, v w,wλ).(37)

In (34) and (36) 0 = (0, 0), whereas in (35) and (37) 0 = (0, 0, 0).
Next, we substitute (33) into (13), getting{

v′ = −b w + a v2 +H1(v, w),
w′ = ε [ e v − c λ+ d w +H2(v, w, λ) ].

(38)
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Finally, we rescale system (38) by defining

V = e1/2b1/2a−1, W = e a−1, L = e3/2b1/2a−1c−1, T = e−1/2b−1/2,(39)

v̂ =
v

V
, ŵ =

w

W
, λ̂ =

λ

L
, t̂ =

t

T
,(40)

Ĥ1(v̂, ŵ) =
T

V
H1(V v̂,W ŵ)

= T W
∂2F

∂v̂ŵ
(0) v̂ ŵ +

1

6
T V 2 ∂

3F

∂v̂3
(0) v̂3 + O(ŵ2, v̂2ŵ, v̂ŵ2, ŵ3)

= ŵ

[
T W

∂2F

∂v̂ŵ
(0) v̂ + O(ŵ)

]
+ v̂2

[
1

6
T V 2 ∂

3F

∂v̂3
(0) v̂ + O(ŵ)

]
,(41)

and

Ĥ2(v̂, ŵ, λ̂) =
T

W
H2(V v̂,W ŵ, L λ̂)

=
T V 2

2W

∂2G

∂v̂2
(0) v̂2 +

T V L

W

∂2G

∂v̂λ̂
(0) v̂ λ̂+ O(ŵ2, λ̂2, v̂ ŵ, ŵλ̂)

= v̂

[
T V 2

2W

∂2G

∂v̂2
(0) v̂ + O(ŵ)

]
+ λ̂

[
T V L

W

∂2G

∂v̂λ̂
(0) v̂ + O(ŵ, λ̂)

]
(42)

and substituting (39)–(42) into (38). Calling

h1(v̂, ŵ) = −T W ∂
2F

∂v̂ŵ
(0) v̂ + O(ŵ) = b−1/2 e1/2 a−1 ∂

2F

∂v̂ ŵ
(0) v̂ + O(ŵ),(43)

h2(v̂, ŵ) =
1

6
T V 2 ∂

3F

∂v̂3
(0) v̂ + O(ŵ) =

1

6
e1/2 b1/2 a−2 ∂

3F

∂v̂3
(0) v̂ + O(ŵ),(44)

h3(v̂, ŵ, λ̂) =
T V 2

2W

∂2G

∂v̂2
(0) v̂ + O(ŵ) =

1

2
e−1/2 b1/2 a−1 ∂

2G

∂v̂2
(0) v̂ + O(ŵ),(45)

h4(v̂, ŵ, λ̂) = −T V L
W

∂2G

∂v̂λ̂
(0) v̂ + O(ŵ, λ̂)(46)

= −e1/2 a−1 b1/2 c−1 ∂
2G

∂v̂λ̂
(0) v̂ + O(ŵ, λ̂),

h5(v̂, ŵ, λ̂) = d T + O(v̂, ŵ, λ̂) = d e−1/2 b−1/2 + O(v̂, ŵ, λ̂),(47)
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rearranging terms we get the canonical form{
v̂′ = −ŵ + v̂2 − ŵ h1(v̂, ŵ) + v̂2 h2(v̂, ŵ),

ŵ′ = ε [ v̂ − λ̂+ v̂ h3(v̂, ŵ, λ̂) − λ̂ h4(v̂, ŵ, λ̂) + ŵ h5(v̂, ŵ, λ̂) ].
(48)

Note that in (48) the sign ′ represents d/d t̂.

Appendix B. Calculation of the canard critical value. In [16] an expression

for λ̂c was found:

λ̂c =
−a1 + 3 a2 − 2 a3 + 2 a5

8
ε+ O(ε3/2),(49)

where

a1 =
∂h1

∂v̂
, a2 =

∂h2

∂v̂
, a3 =

∂h4

∂v̂
, a5 = h5.(50)

Substituting (34), (35), and (43)–(47) into (50), we get

a1 = −2 G
1/2
v Fvw

|Fw|1/2 Fvv , a2 =
2 G

1/2
v |Fw|1/2 Fvvv

3 F 2
vv

,(51)

a3 =
|Fw|1/2 Gvv
G

1/2
v Fvv

, a5 =
Gw

G
1/2
v |Fw|1/2

,(52)

where all the functions are calculated at 0. The corresponding expression for λc = L λ̂c
is

λc(
√
ε) = −g

3/2
v |Fw|1/2
4 Fvv |Gλ| [−a1 + 3 a2 − 2 a3 + 2 a5] ε+ O(ε3/2)

= − Gv
2F 3

vv |Gλ|
[Gv Fvw Fvv +Gv |Fw|Fvvv(53)

− |Fw|Gvv Fvv +Gw F
2
vv ] ε+ O(ε3/2),

where all the functions are calculated at 0.
If F were not independent of ε, then we would need to add a term ε h6 in (48).

This would produce an additional O(ε) term, proportional to dh6/dv, in the expression
for λc [15].

Appendix C. Equilibrium point and Hopf bifurcation. Here we present
a result by Krupa and Szmolyan [15]. Based on the calculations from appendices A
and B, we apply it to system (1) and the examples presented in section 2.

Consider system (1) with γ = 0 and (vk, wk) replaced by (v, w). Call

A = −a1 + 3 a2 − 2 a3 − 2 a5.(54)

Assume the following:
(i) The critical manifold {(v, w) : F (v, w) = 0} can be written in the form w =

f(v), and the function f is cubic-like, i.e., it has precisely two critical points, one
nondegenerate minimum and one nondegenerate maximum, each of which satisfies
∂2F/∂v2(p) �= 0 and ∂F/∂w(p) �= 0. Without loss of generality, the minimum of f
can be taken as (0, 0).
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(ii) For ε = 0 the left and right branches of the critical manifold F (v, w) = 0 are
attracting and the central branch is repelling.

(iii) For λ = 0 the fold point (0, 0) is a nondegenerate canard point; i.e., it satisfies
∂G/∂v(0) �= 0 and ∂G/∂λ(0) �= 0.

(iv) When λ = 0, v′ < 0 for the slow flow on the right branch of f and v′ > 0 for
the slow flow on the central and left branches of f , including the point (0, 0).

Then there exist ε0 > 0 and λ0 > 0 such that, for each 0 < ε < ε0, |λ| < λ0, system
(1) with γ = 0 and (vk, wk) replaced by (v, w) has precisely one equilibrium point pe
in a neighborhood of the origin which converges to the canard point as (ε, λ) → (0, 0).
Moreover, there exists a curve

λH(
√
ε) = −a5

2
ε+ O(ε3/2)(55)

such that pe is stable (unstable) for λ < λH (λ > λH ). The equilibrium point pe
loses stability through a supercritical (subcritical) Hopf bifurcation if A > 0 (A < 0).

The proof is given in [15].
By substituting (51) and (52) into (54) we get

A =
2

|Fw|1/2 (Gv)1/2 (Fvv)2
[
Gv Fvv Fvw + |Fw|Gv Fvvv − |Fw|Gvv Fvv −Gw (Fvv)

2
]
.

(56)

Note that for the FHN equations (examples (ii) and (iii) in section 2) the condition
for a supercritical Hopf bifurcation is equivalent to 3h gv+a gvv > 2 a2. In particular,
for the classical FHN equations (example (ii) in section 2) this becomes 3hβ > 2 a2.

By substituting the second equation in (52) into (55) we get

λH(
√
ε) = − Gw

2 (Gv)1/2 |Fw|1/2 ε+ O(ε3/2).(57)

Note that for the FHN equations λH(
√
ε) = 1 / (Gv)

1/2ε+O(ε3/2), and for the classical
FHN equations λH(

√
ε) = 1 /β1/2ε+ O(ε3/2).
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SIAM J. APPL. MATH. c© 2003 Society for Industrial and Applied Mathematics
Vol. 63, No. 6, pp. 2020–2041

Abstract. We perform a multiple time scale, single space scale analysis of a compressible fluid
in a time-dependent domain, when the time variations of the boundary are small with respect to
the acoustic velocity. We introduce an average operator with respect to the fast time. The averaged
leading order variables satisfy modified incompressible equations, which are coupled to linear acoustic
equations with respect to the fast time. We discuss possible initial-boundary data for the asymptotic
equations inherited from the initial-boundary data for the compressible equations.
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1. Introduction. A most remarkable property of the compressible fluid equa-
tions is, roughly speaking, their ability to force a solution to remain approximately
incompressible when the initial data are approximately incompressible. This is a sin-
gular limit result, since the compressible and the incompressible equations are related
through a passage to infinite of a characteristic speed. The relationship between
compressible and incompressible flows was rigorously stated and proved for isentropic
flows in unbounded domains by Klainerman and Majda at the beginning of the eight-
ies [13, 14] and later extended to nonisentropic flows in bounded domains by Schochet
[27]. In all these papers, the initial data are “prepared,” that is, they are compatible
with the limiting incompressible equations. When the data are not prepared, the
limit is still valid but it is not uniform for times close to zero, since the initial time
derivative fails to be uniformly bounded (cf. [1, 7, 8, 9, 33] and, recently, [25]).

Despite its mathematical subtleties, the physical mechanism of this singular limit
is very simple. The smallness of the Mach number constrains the spatial variation
of the pressure to stay small at order zero for consistency with the conservation of
momentum. Then, the energy equation, written in terms of the pressure, forces the
divergence of the fluid velocity to stay close to zero. Finally, if no compression or ex-
pansion over the boundary of the domain takes place, the initial density configuration
is advected by the flow.

The low Mach number theory plays an important role in many applications, such
as in combustion, both in confined and unbounded domains [18, 21], and in astro-
physics, in the framework of magnetohydrodynamics, in order to justify the small
density fluctuations, called pseudosound, in the solar wind incompressible model
[22, 34, 35]. In the context of these physical applications, it is very important to
develop numerical schemes that are uniformly valid as the Mach number goes to zero.
In the one-dimensional case, by using a multiple scale asymptotic analysis, Klein was
able to construct a numerical scheme for compressible flows which retains its validity
also at low Mach number regimes [15] (see also the extensive report [16], where, in
particular, the issue of asymptotic adaptivity of this scheme with respect to the Mach
number is addressed). These results were later extended to the multidimensional case
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in [31]. The main point of Klein’s asymptotic analysis, later assessed within a system-
atic mathematical framework in [23] (for unbounded domains), is the introduction of
two different length scales corresponding to the large scale motion of the fluid and to
small acoustic perturbations. In fact, a simple asymptotic analysis shows that highly
oscillating acoustic perturbations show up at the same order as pressure variations
become significant [18].

In this paper, we perform a similar analysis, when only a length scale is relevant
but two time scales need to be considered. A typical example of this occurrence is a
fluid confined in a bounded time-dependent domain, when the time variation of the
boundary (the “boundary velocity”) is small compared to the acoustic velocity of the
fluid. We introduce a slow time t, related to the boundary velocity and therefore to the
large scale motion of the fluid, and a fast time τ = t/ε, related to the acoustic speed.
The parameter ε is proportional to the Mach number. This multiple scale analysis
shows that the limiting incompressible variables can be interpreted as averages of the
compressible variables with respect to τ . Moreover, they are coupled to linear acoustic
equations with respect to the fast time τ . More precisely, we show that at leading
order the motion is adiabatic, that is, the leading order pressure p(t) is related to the
volume V (t) of the domain by the law p = cV −γ . Also, the leading order density ρ
does not depend on the fast time, and the leading order velocity u can be split into
the averaged part with respect to the fast time and the average-free part, u = ū+ δu.
These variables satisfy the following equations:

1

ρ
(∂t + ū · ∇)ρ = − 1

V

dV

dt
,

ρ(∂t + ū · ∇)ū+∇π = −∇ · (ρ 〈δu⊗ δu〉) ,(1.1)

∇ · ū = 1

V

dV

dt
,

where the curled brackets denote average with respect to τ . The “incompressible”
pressure π coincides with the averaged second order pressure. Finally, the average-
free leading order velocity is coupled to the first order average-free pressure δp(1) by
the linear acoustic system

∂τδu+
1

ρ
∇δp(1) = 0,

∂τδp
(1) + γp∇ · δu = 0.

(1.2)

The limit equations (1.1) and the acoustic equations (1.2) decouple if no pressure
fluctuations appear at order ε. In this case, δp(1) vanishes as well as δu, and (1.1)
reduces to the nearly incompressible equations (using the terminology of [22, 34, 35]).
The same theory applies if the domain is not moving for compressible flows with
typical speed small compared to the acoustic velocity. In this case, we have dV/dt = 0
and the system (1.1) reduces to the incompressible system describing a stratified fluid,
as found in [27]. An analogous theory can be developed for unbounded domains,
obtaining the same set of equations (1.1), (1.2), with dV/dt = 0.

The acoustic system (1.2) deserves further comments. Thus far, the problem of
high-frequency acoustics has only been addressed for unbounded domains [2, 3, 4, 5,
6, 10, 11, 12, 19, 20, 26, 28, 29], while the moving boundary problem was considered
satisfactorily only in a single space dimension (the so-called piston problem) [17, 30,
32]. Here, we address the problem of high-frequency acoustics in more than one space
dimension and in a closed, variable boundary domain.
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The plan of the paper is the following. In section 2, we set the problem and in-
troduce the fundamental equations and initial-boundary conditions. In section 3, we
perform a preliminary single scale analysis, following [23]. The details of our asymp-
totic multiscale analysis are expounded in section 4. In the following two sections, we
discuss the initial-boundary conditions for the asymptotic equations inherited from
the initial-boundary data for the original compressible equations. In general, it is not
possible to assign uniquely initial data for the acoustic equations with respect to the
fast time τ . Anyway, at the end of section 6, we are able to produce a simple class
of motion for which this problem can be solved. Finally, in section 7, we give an
outlook of our results and draw some conclusions. The paper is supplemented by an
appendix on weakly nonisentropic flows, that is, flows with constant entropy at order
zero, which are produced by constant initial density distributions.

2. The compressible fluid equations. The Euler equations for a compressible
fluid are

∂tρ+∇ · (ρu) = 0,
∂t(ρu) +∇ · (ρu⊗ u+ pI) = 0,(2.1)

∂tE +∇ · [(E + p)u] = 0,

where E = ρ
(
e+ 1

2 |u|2
)
is the total energy. The internal energy, e, the pressure, p,

and the density, ρ, are related to the entropy, s, and the temperature, T , by

de+ pd

(
1

ρ

)
= Tds.(2.2)

It is useful to write equations (2.1) in nonconservative form:

(∂t + u · ∇)ρ = −ρ∇ · u,
ρ(∂t + u · ∇)u = −∇p,(2.3)

ρ(∂t + u · ∇)e = −p∇ · u.

Equations (2.3) and (2.2) immediately yield the entropy equation

(∂t + u · ∇)s = 0(2.4)

and the identity

(∂t + u · ∇)p = −ρ
(
∂p

∂ρ

∣∣∣∣
e

+
p

ρ2
∂p

∂e

∣∣∣∣
ρ

)
∇ · u. ≡ −ρ ∂p

∂ρ

∣∣∣∣
s

∇ · u.(2.5)

In the following, we will assume the existence of an equation of state of the form
s = s(ρ, p) and regard (2.1) as a hyperbolic system of partial differential equations
for the variables (ρ,u, p). Using (2.5), we can write the pressure equation

∂tp+ u · ∇p+ γp∇ · u = 0,(2.6)

where the adiabatic exponent γ is defined by [24]

γ =
ρ

p

∂p

∂ρ

∣∣∣∣
s

≡ ρ

p

∂s/∂ρ

∂s/∂p
.(2.7)
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For a perfect fluid satisfying the relation p = RρT , the adiabatic coefficient is a
function of temperature only, that is, γ depends on the ratio γ(p/ρ) only. In particular,
γ is constant for a polytropic gas. In this case, the equation of state is explicitly given
by

s = log
(
pρ−γ

)
.(2.8)

We consider the equations (2.1), (2.2) on a bounded, time-dependent domain
Ωt ∈ R

n. We denote by Ω0 the domain at the initial time t = 0 and describe its
evolution by a family of invertible maps Φt : R

n → R
n, depending continuously on

the time t such that

Ωt = Φt(Ω0) for all t.

This severe assumption on the domain Ωt is, nevertheless, general enough to
include a moving rigid domain, or a cylinder cut by a fixed surface and a moving
surface (piston problem), or a contracting-expanding sphere (star).

In the case of a moving rigid domain, we can choose Φt as

Φt(x) = x+ c(t).(2.9)

In the piston model, using the notation y = (x1, x2, . . . , xn−1) and z = xn, the
time-dependent domain can be written as

Ωt = {(y, z) ∈ R
n : y ∈ Σ, α(y) ≤ z ≤ βt(y)},(2.10)

where Σ is a bounded set of Rn−1, α, βt are functions defined in Σ, with minΣ{α−βt}<
0 for all t ≥ 0. The piston deformation can be described by

Φt(y, z) =

(
y, α(y) +

βt(y)− α(y)
β0(y)− α(y) (z − α(y))

)
.(2.11)

In the star model, we have

Ωt = {x ∈ R
3 : |x| ≤ η(x̂, t)},(2.12)

with x̂ = x
|x| and η(x̂, t) > 0, η(x̂, 0) = η0(x̂). We can choose

Φt(x) =



η(x̂, t)

η0(x̂)
x if x �= 0,

0 if x = 0.
(2.13)

The map Φt has a geometric meaning and is related neither to the fluid motion
nor to the Lagrangian variables. Moreover, Φt does not need to be globally unique,
since only its restriction to a neighborhood of the boundary ∂Ω0 characterizes the
motion of the domain’s boundary ∂Ωt. In particular, we can use the map Φt to define
the velocity uΩ of the boundary by

uΩ(x) =
∂Φt
∂t
(Φ−1

t (x)) for all x ∈ ∂Ωt.(2.14)

The aim of this paper is to describe the fluid motion when the velocity of the
boundary is small compared to the sound speed. In particular, this requirement is
always valid when the boundary is fixed.
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To nondimensionalize the equations (2.1), (2.6), we consider reference values for
the density, the pressure, the length scale, and the time scale, ρref , pref , lref , and tref ,
respectively. We introduce the rescaled variables

ρ′ =
ρ

ρref
, u′ =

u

uref
, p′ =

p

pref
,

x′ =
x

lref
, t′ =

t

tref
, uref =

lref
tref
.(2.15)

We choose uref as a typical value of the boundary speed. Some care is required in
selecting the “correct” typical velocity. In [32], several choices are checked numerically
for a unidimensional piston model. For this simple model, the conclusion is that the
most appropriate typical speed is the maximum speed of the piston.

Substituting (2.15) into (2.1), (2.6), we obtain

∂t′ρ
′ +∇′ · (ρ′u′) = 0,

∂t′ (ρ
′u′) +∇′ · (ρ′u′ ⊗ u′) +

1

ε2
∇′p′ = 0,(2.16)

∂t′p
′ + (u′ · ∇′)p′ + γ′p′∇′ · u′ = 0,

with γ′(ρ′, p′) = γ(ρrefρ′, prefp′), and

ε2 =
u2

ref

pref/ρref
.(2.17)

The parameter ε is proportional to the square of the Mach number M = uref/cref ,
where cref is the typical sound speed:

c2ref =
∂p

∂ρ

∣∣∣∣
s

(ρref , pref) ≡ γ(ρref , pref)pref
ρref

.

Equation (2.16) is defined in the domain Ω′
t′ =

1
lref
Ωtref t′ . We rescale the map Φt

accordingly as

Φ′
t′(x

′) =
1

lref
Φtref t′(lrefx

′).(2.18)

Then we have Ω′
t′ = Φ

′
t′(Ω

′
0) and

u′
Ω =

uΩ

uref
.(2.19)

It is convenient to drop the primes and rewrite (2.16) as

∂tρ+∇ ·m = 0,

∂tm+∇ · (m⊗ u) +
1

ε2
∇p = 0,(2.20)

1

γp
(∂t + u · ∇)p+∇ · u = 0,

with m = ρu.
In conclusion, we consider the system (2.20) on the domain Ωt with initial data

ρ(x, 0) = ρ0(x), u(x, 0) = u0(x), p(x, 0) = p0(x) in Ω0,(2.21)
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and boundary conditions

u · nt = uΩ · nt on ∂Ωt.(2.22)

Here, nt denotes the outward normal on the boundary ∂Ωt.
In principle, it is possible to consider more general boundary conditions, by ex-

panding (2.21) as a power series of ε. Also, it is possible to consider more general
boundary conditions by assuming a given flux rate through the boundary. For sim-
plicity, we will not consider such generalizations in this paper. Moreover, we will
restrict our study to a polytropic fluid so that γ is a constant and the equation of
state is given by (2.8).

The limit of (2.20) as ε tends to zero is a singular limit. There are many ways to
approach the study of the limiting behavior of the compressible solutions. Here, we
will follow a multiple scale asymptotic approach. Anyway, it is instructive to perform
a preliminary single scale asymptotic analysis of this limit. In the following section, we
deduce some general properties, which can be recovered just from the boundedness of
Ωt and from the boundary condition (2.22) using a single scale expansion. A detailed
account of the appropriate multiple scale asymptotics will be given in the subsequent
section 4.

3. Single scale asymptotics. In order to study the basic mechanism of the
singular limit in (2.20), we assume that for a polytropic fluid a solution of (2.20)
admits a single scale expansion of the form

ρ(x, t) = ρ(0)(x, t) + ερ(1)(x, t) +O(ε2),

u(x, t) = u(0)(x, t) + εu(1)(x, t) +O(ε2),(3.1)

p(x, t) = p(0)(x, t) + εp(1)(x, t) + ε2p(2)(x, t) +O(ε3).

By using this expansion in (2.20) and equating to zero the coefficient of each power
of ε, we obtain asymptotic equations for the functions of the expansion at each order.
Explicitly, up to order ε, we obtain

∂tρ
(0) +∇ ·m(0) = 0,(3.2)

∂tρ
(1) +∇ ·m(1) = 0,(3.3)

∇p(0) = 0,(3.4)

∇p(1) = 0,(3.5)

∂tm
(0) +∇ ·

(
m(0) ⊗ u(0)

)
+∇p(2) = 0,(3.6)

1

γp(0)
∂tp

(0) +∇ · u(0) = 0,(3.7)

∂t

(
p(1)

γp(0)

)
+∇ · u(1) = 0.(3.8)

Here, we have m(0) = ρ(0)u(0), m(1) = ρ(0)u(1) + ρ(1)u(0).
Using (3.4) and (3.5), we can state the following result.
Theorem 3.1. If (ρ,u, p) is a solution to (2.20) which admits the asymptotic

expansion (3.1), then, at the first two orders in ε, the pressure p is a function of time:

p = p(0)(t) + εp(1)(t) +O(ε2).(3.9)
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Using the boundary condition (2.22), we can recover the functions p(0)(t) and
p(1)(t) from (3.7) and (3.8).

Theorem 3.2. If (ρ,u, p) is a solution to (2.20), (2.22) which admits the asymp-
totic expansion (3.1), then p(0)(t) and p(1)(t) are given by

p(0) = C0|Ωt|−γ ,(3.10)

p(1) = C1p
(0),(3.11)

where |Ωt| is the measure of the domain Ωt and C0, C1 are constants.

Proof. We integrate (3.7) and (3.8) over the domain Ωt. Using Green’s formula
and the boundary condition (2.22), we find

1

γp(0)
dp(0)

dt
= −

∫
∂Ωt

u(0) · nt dS∫
Ωt
dV

= − 1

|Ωt|
∫
∂Ωt

uΩ · nt dS,(3.12)

d

dt

(
p(1)

γp(0)

)
= −

∫
∂Ωt

u(1) · nt dS∫
Ωt
dV

= 0.(3.13)

The second equation immediately gives (3.11). To evaluate the right-hand side of the
first equation, we observe that uΩ can be extended to a differentiable function defined
in Ωt by

uΩ(x) = ∂tΦt(Φ
−1
t (x)) for all x ∈ Ωt.(3.14)

Then we have∫
∂Ωt

uΩ · nt dS =
∫

Ωt

∇ · uΩ dV =

∫
Ω0

∇ · ∂Φt
∂t

∣∣∣∣∂Φt∂x0

∣∣∣∣ dV0

=

∫
Ω0

∂

∂t

∣∣∣∣∂Φt∂x0

∣∣∣∣ dV0 =
d

dt

∫
Ω0

∣∣∣∣∂Φt∂x0

∣∣∣∣ dV0 =
d|Ωt|
dt

.

Here we have used the well-known identity

∂

∂t

∣∣∣∣∂Φt∂x0

∣∣∣∣ = ∇ · ∂Φt
∂t

∣∣∣∣∂Φt∂x0

∣∣∣∣ .
In conclusion, using this result in (3.12), we arrive at the equation

1

γp(0)
dp(0)

dt
= − 1

|Ωt|
d|Ωt|
dt

,(3.15)

which immediately implies (3.10).

As a consequence of Theorem 3.2, since the function p(0) is known in terms of the
measure of the domain, (3.7) can be regarded as a constraint for the leading order
velocity. In particular, if the domain is fixed, (3.7) reduces to the incompressibility
condition.

The dynamics of ρ(0) and u(0) is ruled by (3.2) and (3.6). Writing them in terms
of density, pressure, and velocity, and using Theorem 3.2, we obtain the following
result.



LOW MACH NUMBER FLOWS IN TIME-DEPENDENT DOMAINS 2027

Theorem 3.3. Under the same assumptions of Theorem 3.2, the leading order
density and velocity (ρ(0),u(0)) satisfy the system

1

ρ(0)
Dρ(0)

Dt
= − 1

|Ωt|
d|Ωt|
dt

,

ρ(0)
Du(0)

Dt
+∇p(2) = 0,(3.16)

∇ · u(0) =
1

|Ωt|
d|Ωt|
dt

,

where

D

Dt
= ∂t + u(0) · ∇.

From Theorem 3.3, obvious restrictions on the initial data in Ω0 are

u0(x) = u
(0)
0 (x) +O(ε), p0(x) = constant +O(ε

2),(3.17)

with the constraint

∇ · u(0)
0 = constant.(3.18)

Therefore, we expect new effects, which are not described by the single scale theory,
to arise when the restriction (3.18) does not hold. In the following section we develop
a multiscale analysis which includes an additional time scale related to the acoustic
speed.

4. A multiscale analysis. Two time scales arise naturally in the zero Mach
number limit of a compressible flow in a bounded domain. They are related to the
typical speed of the flow under consideration, uref , and to the typical acoustic speed,
cref . More precisely, since the domain is bounded, the reference length scale, lref ,
can be chosen as the typical size of the domain. Then, we can define the time scales
tref = lref/uref and ts = lref/cref . We recall that the small parameter ε is proportional
to the ratio between uref and cref , that is, between ts and tref .

In (2.15), we have used tref to rescale the time according to the relation t
′ = t/tref

(here, t is the unscaled time). Since uref is related to the motion of the domain’s
boundary (for instance, the piston speed), the rescaled time, tref , is related to the
large scale motion of the fluid (for instance, to flows with speed sufficiently close to
the domain’s boundary velocity). To describe smaller fluctuations of the flow, due to
the propagation of acoustic wave we need to introduce a dependence also on the other
time which appears naturally, that is, t/ts ∼ t′/ε.

With this motivation we want to express the solution (ρ,u, p) of (2.20), with
initial data (2.21) and boundary condition (2.22), as a series in the powers of ε:

ρ(x, t; ε) = ρ(0)(x, t, τ) + ερ(1)(x, t, τ) + ε2ρ(2)(x, t, τ) + · · · ,
u(x, t; ε) = u(0)(x, t, τ) + εu(1)(x, t, τ) + ε2u(2)(x, t, τ) + · · · ,(4.1)

p(x, t; ε) = p(0)(x, t, τ) + εp(1)(x, t, τ) + ε2p(2)(x, t, τ) + · · ·
with τ = t

ε . We assume that the expansion (4.1) is uniformly valid in time.
Theorem 4.1. The uniform validity of the series (4.1) with respect to time for

all positive times is equivalent to the sublinearity conditions

lim
τ→∞

1

τ
(ρ(i),u(i), p(i))(x, t, τ) = 0, i = 0, 1, 2, . . . .(4.2)
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Proof. It suffices to observe that

lim
ε→0

εw(x, t, τ) = t lim
ε→0

1

t/ε
w(x, t, t/ε) = t lim

τ→∞
1

τ
w(x, t, τ)

for any appropriate function w(x, t, τ) for all t > 0.
Recalling the sublinearity condition (4.2), it is natural to introduce for any func-

tion w(x, t, τ) the fast time average

〈w〉 (x, t) = lim
τ→∞

1

τ

∫ τ

0

w(x, t, s)ds.

If this limit exists and it is finite, we can write w(x, t, τ) = w̄(x, t) + δw(x, t, τ), with
w̄ = 〈w〉 and 〈δw〉 = 0. Plugging (4.1) into (2.20) and equating to zero the coefficient
of each power of ε, we find

∂τρ
(0) = 0,(4.3)

∂τρ
(1) + ∂tρ

(0) +∇ ·m(0) = 0,(4.4)

∂τρ
(2) + ∂tρ

(1) +∇ ·m(1) = 0,(4.5)

∇p(0) = 0,(4.6)

∂τm
(0) +∇p(1) = 0,(4.7)

∂τm
(1) + ∂tm

(0) +∇ · (m(0) ⊗ u(0)) +∇p(2) = 0,(4.8)

∂τm
(2) + ∂tm

(1) +∇ · (m(0) ⊗ u(1) +m(1) ⊗ u(0)) +∇p(3) = 0,(4.9)

∂τp
(0) = 0,(4.10)

1

γp(0)
∂τp

(1) +
1

γp(0)
∂tdp

(0) +∇ · u(0) = 0,(4.11)

1

γp(0)
∂τp

(2) + (∂t + u(0) · ∇)
(
p(1)

γp(0)

)
+∇ · u(1) = 0.(4.12)

Averaging (4.7) with respect to τ and using the sublinearity condition (4.2), we obtain

∇p̄(1) = 0.(4.13)

The following result is a simple consequence of (4.3), (4.6), (4.10), and (4.13).
Theorem 4.2. If (ρ,u, p) is a solution to (2.20) which admits the asymptotic

expansion (4.1), then the density and the pressure have the expansions

ρ = ρ(0)(x, t) +O(ε),(4.14)

p = p(0)(t) + ε
[
p̄(1)(t) + δp(1)(x, t, τ)

]
+O(ε2).(4.15)

Equations (4.11) and (4.12) convey further information about the leading order
and the first order pressure. Averaging (4.11) and (4.12) with respect to τ and using
the sublinearity condition (4.2), we obtain

1

γp(0)
dp(0)

dt
+∇ · ū(0) = 0,(4.16)

d

dt

(
p̄(1)

γp(0)

)
+∇ · ū(1) = − 1

γp(0)

〈
u(0) · ∇p(1)

〉
.(4.17)
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The next result follows immediately by subtracting (4.13) from (4.7) and (4.16) from
(4.11) and recalling (4.14).

Theorem 4.3. If (ρ,u, p) is a solution to (2.20) which admits the asymptotic
expansion (4.1), then the average-free parts of the first order pressure and of the
leading order velocity, δp(1) and δu(0), respectively, satisfy the linear acoustic system

∂τδu
(0) +

1

ρ(0)
∇δp(1) = 0,

∂τδp
(1) + γp(0)∇ · δu(0) = 0.

(4.18)

We can use the acoustic system (4.18) to simplify (4.17). Using the sublinearity
condition (4.2), we immediately find〈

u(0) · ∇p(1)
〉
=
〈
δu(0) · ∇δp(1)

〉
= −ρ

(0)

2

〈
∂τ

∣∣∣δu(0)
∣∣∣2〉 = 0,(4.19)

and hence the right-hand side of (4.17) vanishes. Now we are ready to prove the
analogue of Theorem 3.2.

Theorem 4.4. If (ρ,u, p) is a solution to (2.20), (2.22) which admits the asymp-
totic expansion (4.1), then p(0)(t) and p̄(1)(t) are given by

p(0) = C0|Ωt|−γ ,(4.20)

p̄(1) = C1p
(0),(4.21)

where |Ωt| is the measure of the domain Ωt and C0, C1 are constants.
Proof. The relations (4.20) and (4.21) follow from (4.16), (4.17), and (4.19) as in

Theorem 3.2, once we note that

ū(0) · nt = uΩ · nt, ū(1) · nt = 0 on ∂Ωt.(4.22)

The boundary conditions (4.22) follow from (2.22) after using the expansion (4.1) and
averaging with respect to τ .

In the following section we will show that the constants C0 and C1 can be recov-
ered by the initial data (2.21) (see Theorem 5.2). As in the single scale analysis, (4.16)
can be regarded as a constraint for ū(0), which reduces to the incompressibility condi-
tion when the domain is not moving. To derive evolution equations for (ρ(0), ū(0)), we
average (4.4) and (4.8) with respect to τ . Then using the condition (4.2) and recalling
that the leading order density is independent of τ , we obtain

∂tρ
(0) +∇ ·

(
ρ(0)ū(0)

)
= 0,(4.23)

∂t

(
ρ(0)ū(0)

)
+∇ ·

(
ρ(0)

〈
u(0) ⊗ u(0)

〉)
+∇p̄(2) = 0.(4.24)

We can rewrite equations (4.23) and (4.24) so that the leading order material deriva-

tive D̄
Dt = ∂t+ ū(0) ·∇ appears. Also, we can express ∇· ū(0) in terms of |Ωt| by using

(4.16) and (4.20). The resulting equations are reported in the following statement.
Theorem 4.5. Under the same assumptions of Theorem 4.4, the averaged leading

order density and velocity (ρ(0), ū(0)) satisfy the system

1

ρ(0)
D̄ρ(0)

Dt
= − 1

|Ωt|
d|Ωt|
dt

,

ρ(0)
D̄ū(0)

Dt
+∇p̄(2) = −∇ ·

(
ρ(0)

〈
δu(0) ⊗ δu(0)

〉)
,(4.25)

∇ · ū(0) =
1

|Ωt|
d|Ωt|
dt

.
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Equation (4.25) is the analogue of (3.16). The main difference resides in the
coupling of (ρ(0), ū(0)) with δu(0) in (4.25)2. In principle, (4.18), (4.20), and (4.25)
determine completely ρ(0), u(0) = ū(0) + δu(0), p(1) = δp(1), and the average p̄(2). We
will discuss the appropriate initial-boundary conditions in the next section.

The next theorem concerns the higher order variables: ρ̄(1) + δρ(1), ū(1) + δu(1),
and δp(2).

Theorem 4.6. If (ρ,u, p) is a solution to (2.20), (2.21), (2.22) which admits
the asymptotic expansion (4.1), then the average-free functions δρ(1), δu(1), and δp(2)

satisfy the linear acoustic system

∂τδρ
(1) = −∇ ·

(
ρ(0)δu(0)

)
,

ρ(0)∂τδu
(1) +∇δp(2) = −ρ(1)∂τδu(0) − ρ(0)(∂t + u(0) · ∇)u(0) −∇p̄(2),(4.26)

∂τδp
(2) + γp(0)∇ · δu(1) = −γp(0)(∂t + u(0) · ∇)

(
δp(1)

γp(0)

)
.

Moreover, the averaged perturbations ρ̄(1), ū(1) satisfy the equations

∂tρ̄
(1) +∇ ·

(
ρ(0)ū(1) + ρ̄(1)ū(0)

)
= 0,(4.27)

∂t

(
ρ(0)ū(1) + ρ̄(1)ū(0)

)
+∇ ·

{
ρ̄(1)ū(0) ⊗ ū(0)(4.28)

+ ρ(0)
(
ū(0) ⊗ ū(1) + ū(1) ⊗ ū(0)

)}
+∇p̄(3)

= −∇ ·
{〈
ρ(1)δu(0) ⊗ δu(0)

〉
+ ρ(0)

〈
δu(0) ⊗ δu(1) + δu(1) ⊗ δu(0)

〉}
,

∇ · ū(1) = 0.(4.29)

Proof. The system (4.26) comes from (4.4), (4.8), and (4.12) after some simple
algebra by using (4.14) and (4.23). For the second part of the thesis, we average (4.5)
and (4.9) with respect to τ and use the sublinearity condition. The result is

∂tρ̄
(1) +∇ · m̄(1) = 0,(4.30)

∂tm̄
(1) +∇ ·

〈
m(0) ⊗ u(1) +m(1) ⊗ u(0)

〉
+∇p̄(3) = 0,(4.31)

with m(0) = ρ(0)u(0), m(1) = ρ(0)u(1) + ρ(1)u(0). Recalling (4.14), we have

m̄(1) = ρ(0)ū(1) + ρ̄(1)ū(0) +
〈
δρ(1)δu(0)

〉
.

We will show in section 6 that 〈
δρ(1)δu(0)

〉
= 0.(4.32)

After some algebra, (4.30) and (4.31) yield (4.27) and (4.28). Finally, recalling (4.19),
equation (4.17) reduces to (4.29) provided p̄(1) = 0. The proof of this equality de-
pends on the boundary conditions and will be postponed to the following section (see
Theorem 5.2).

The average-free components (δρ(1), δu(1), δp(2)) are coupled with (ρ̄(1), ū(1))
through the averaged first order density ρ̄(1) appearing in the right-hand side of
(4.26)2. There are two important cases when the two groups of equations (4.26)
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and (4.27)–(4.29) decouple. The first case is when the average-free functions δu(0)

and δp(1) are identically zero. Then, the system (4.25) reduces to (3.16), the right-
hand sides of the equations (4.26), (4.27), and (4.28) vanish, and δρ(1) = 0. The
second case leading to decoupling is induced by a constant initial density distribu-
tion, ρ(x, 0) = ρ0. In this case, the leading order density ρ

(0) is inversely proportional
to the volume |Ωt|, the averaged first order density ρ̄(1) vanishes, and the leading or-
der entropy is constant. Since entropy variations appear only at order ε, the resulting
flow will be called weakly nonisentropic. In the appendix at the end of the paper, we
report the main results regarding weakly nonisentropic flows.

5. Initial-boundary conditions. In the previous section, we have shown that
a solution of (2.20), which admits the expansion (4.1), takes the form

ρ(x, t; ε) = ρ(0)(x, t) + ε
[
ρ̄(1)(x, t) + δρ(1)(x, t, τ)

]
+O(ε2),

u(x, t; ε) =
[
ū(0)(x, t) + δu(0)(x, t, τ)

]
+ ε
[
ū(1)(x, t) + δu(1)(x, t, τ)

]
+O(ε2),(5.1)

p(x, t; ε) = p(0)(t) + ε
[
p̄(1)(t) + δp(1)(x, t, τ)

]
+ ε2

[
p̄(2)(x, t) + δp(2)(x, t, τ)

]
+O(ε3),

where p(0) and p̄(1) satisfy (4.20) and (4.21), (δu(0), δp(1)) satisfy (4.18), and (ρ(0), ū(0))
satisfy (4.25). Moreover, we have〈

δρ(1)
〉
= 0,

〈
δu(0)

〉
=
〈
δu(1)

〉
= 0,

〈
δp(1)

〉
=
〈
δp(2)

〉
= 0.(5.2)

In order to determine completely the asymptotic expansion (5.1), we need to
assign at each order appropriate initial-boundary conditions which are induced by the
initial-boundary conditions (2.21), (2.22) for the original system (2.20), that is,

ρ(x, 0) = ρ0(x), u(x, 0) = u0(x), p(x, 0) = p0(x) in Ω0,(5.3)

u · nt = uΩ · nt on ∂Ωt.(5.4)

The theoretical analysis performed in [1, 7, 8, 9, 25, 33] shows that the low Mach
number limit for generic data is not uniform in a time interval containing the zero,
unless the initial data is compatible with the zero Mach number equations. Therefore,
in general we must expect a sort of instantaneous jump from the initial data (5.3) to
possibly different initial data adjusted to the asymptotic equations.

In this section, we collect some results which are related to the asymptotic initial-
boundary conditions and can be derived immediately from the asymptotic expansion
(4.1). First, we discuss the implications of the boundary condition (5.4). Using (5.1)
in (5.4) and averaging with respect to τ , we find

ū(0) · nt = uΩ · nt, ū(1) · nt = 0 on ∂Ωt.(5.5)

In turn, the previous condition implies

δu(0) · nt = δu(1) · nt = 0 on ∂Ωt.(5.6)
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Next, we discuss the relationship between the initial data (5.3) for the original
system and the initial data for the functions appearing in the asymptotic expansion
(5.1). We write τ = t/ε in the expansion (5.1) and evaluate it at the time t = 0.
Comparing the result with (5.3), we obtain the following conditions for the density:

ρ(0)(x, 0) = ρ0(x),(5.7)

ρ̄(i)(x, 0) + δρ(i)(x, 0, 0) = 0 for i = 1, 2, . . . ,(5.8)

with x ∈ Ω0. The condition (5.7) provides initial data for ρ
(0). In the previous section,

we have shown that

∂τρ
(i) + ∂tρ

(i−1) +∇ ·m(i−1) = 0, i = 1, 2.

It is simple to see that this equation is valid for all integers i. Then, subtracting the
averaged equation and using the sublinearity condition (4.2), we obtain

∂τδρ
(i) +∇ · δm(i−1) = 0, i = 1, 2, . . . .(5.9)

Since m(i−1) is known at this stage, we can integrate (5.9) and recover δρ(i) using the
condition

〈
δρ(i)

〉
= 0. The result is

δρ(i)(x, t, τ) =

〈
∇·
∫ τ

0

δm(i−1)(x, t, τ ′) dτ
〉
−∇·

∫ τ

0

δm(i−1)(x, t, τ ′) dτ,(5.10)

which, using (5.8), gives

ρ̄(i)(x, 0) = −δρ(i)(x, 0, 0) = −
〈
∇·
∫ τ

0

δm(i−1)(x, 0, τ ′) dτ
〉

for x ∈ Ω0.(5.11)

In particular, for i = 1 we have δm(0) = ρ(0)δu(0), which implies

ρ̄(1)(x, 0) = −δρ(1)(x, 0, 0) = 0 for x ∈ Ω0.(5.12)

Next, comparing the expansion (4.1) for the velocity, written at t = 0, and the
initial data (5.3), we find

ū(0)(x, 0) + δu(0)(x, 0, 0) = u0(x),(5.13)

ū(i)(x, 0) + δu(i)(x, 0, 0) = 0 for i = 1, 2, . . . ,(5.14)

with x ∈ Ω0. Some care is required to determine appropriate initial data for ū
(i),

i = 0, 1, since the functions ū(0)(x, 0) and ū(1)(x, 0) must be compatible with (4.25)3
and (4.29). Accordingly, we decompose the initial velocity u0 as

u0 = u∗
0 +∇ω∗ +∇ω0.(5.15)

In (5.15), u∗
0 is the divergence-free part of u0 in Ω0, and ω

∗ is given by the system

∆ω∗ =
(
1

|Ωt|
d|Ωt|
dt

)
t=0

in Ω0,(5.16)

∂ω∗

∂n0
= 0 on ∂Ω0.(5.17)
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Using the decomposition (5.15), the condition (5.13), and the constraint (4.25)3 leads
to the reasonable assumption

ū(0)(x, 0) = u∗
0(x) +∇ω∗, δu(0)(x, 0, 0) = ∇ω0(x) in Ω0.(5.18)

In the same way, using (4.29), it is simple to see that the condition (5.14) yields

ū(1)(x, 0) = 0, δu(1)(x, 0, 0) = 0 in Ω0.(5.19)

Finally, comparing the expansion (4.1) for the pressure, written at t = 0, and the
initial data (5.3), we find

p(0)(0) = p0(x),(5.20)

p̄(i)(x, 0) + δp(i)(x, 0, 0) = 0 for i = 1, 2, . . . ,(5.21)

with x ∈ Ω0. It is immediately seen that (5.20) is compatible with a constant initial
pressure p0. However, as we will see, general initial data are admissible for p. Then,
the condition (5.20) implies that the convergence as ε tends to zero cannot be uniform
in a neighborhood of t = 0 if the initial pressure is not constant in Ω0.

The functions p(0) and p̄(1) will be determined in terms of p0(x) by simple physical
considerations. We need the following lemma.

Lemma 5.1. For any function a(x, t) defined for x ∈ Ωt, t ≥ 0, we have

d

dt

∫
Ωt

a dV =

∫
Ωt

∂ta+∇ · (au∗) dV(5.22)

for any vector-valued function u∗(x, t) such that

nt · u∗ = nt · uΩ for x ∈ ∂Ωt.(5.23)

In particular, if

∂ta+∇ · (au∗) = ∇ · v for x ∈ Ωt,
nt · v = 0 for x ∈ ∂Ωt,

we have ∫
Ωt

a dV =

∫
Ω0

a0 dV,(5.24)

with a0(x) = a(x, 0).
Proof. We evaluate the left-hand side of (5.22) as

d

dt

∫
Ωt

a dV =
d

dt

∫
Ω0

a(Φt(x0), t)

∣∣∣∣∂Φt∂x0

∣∣∣∣ dV0

=

∫
Ω0

{(
∂t +

∂Φt
∂t

· ∇
)
a+ a∇ · ∂Φt

∂t

} ∣∣∣∣∂Φt∂x0

∣∣∣∣ dV0

=

∫
Ωt

{
∂ta+∇ · (au∗) +∇ ·

[
a

(
∂Φt
∂t

− u∗
)]}

dV

=

∫
Ωt

∂ta+∇ · (au∗) dV +
∫
∂Ωt

ant ·
(
∂Φt
∂t

− u∗
)
dS.
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The thesis follows immediately from (2.14) and (5.23).
The following result completes Theorem 4.4.
Theorem 5.2. If (ρ,u, p) is a solution to (2.20), (5.3), (5.4) which admits the

asymptotic expansion (4.1), then p(0)(t) and p̄(1)(t) are given by

p(0)(t) = ||p0||L1/γ(Ω0)|Ωt|−γ ,(5.25)

p̄(1)(t) = 0,(5.26)

where p0(x) is the initial pressure. Moreover, δp(1) satisfies the condition∫
Ωt

δp(1) dV = 0 for all t, τ ≥ 0.(5.27)

Proof. Using (2.4), it is possible to show that

∂t(ρf(s)) +∇ · (ρf(s)u) = 0

for any smooth function f of the entropy s. Then, we can apply Lemma 5.1 with
a = ρes/γ , u∗ = u, and v = 0. Recalling (2.8), we obtain∫

Ωt

p1/γ dV =

∫
Ω0

p
1/γ
0 dV.(5.28)

This equation is valid also when we use the power series expansion of p. At the first
two orders in ε, we find∫

Ωt

[
p(0)
]1/γ

dV =

∫
Ω0

p
1/γ
0 dV,(5.29) ∫

Ωt

1

γ

[
p(0)
]1/γ−1 (

p̄(1) + δp(1)
)
dV = 0.(5.30)

Since p(0) and p̄(1) are functions of time only, (5.29) immediately gives (5.25). Equa-
tion (5.30) implies

p̄(1)(t) = − 1

|Ωt|
∫

Ωt

δp(1) dV.(5.31)

Averaging (5.31) with respect to τ , we obtain (5.26), and (5.31) becomes (5.27).
As a consequence of (5.26), the condition (5.20) implies

δp(1)(x, 0, 0) = 0.(5.32)

In general, once p̄(i), i = 2, 3, . . . , is given as a result of the evolutionary equations
for ū(i−2), the condition (5.21) gives the value of δp(i) at t = τ = 0 in Ω0.

In conclusion, we have shown how to assign initial-boundary conditions for all
the averaged quantities appearing in the expansion (4.1), namely (5.5), (5.7), (5.12),
(5.18), and (5.19). In particular, at the first two orders the pressure is explicitly
given by (5.25) and (5.26). We still need to assign appropriate conditions for the
average-free functions δu(0), δu(1), δp(0), and δp(1), depending on the fast time τ and
satisfying the acoustic equations (4.18) and (4.26). This problem will be addressed in
the following section.
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6. The fast acoustic equation. This section is entirely devoted to determin-
ing the average-free functions appearing in the expansion (4.1). For simplicity of
exposition, we will refer only to δu(0) and δp(1), satisfying the system (4.18) and the
conditions (5.6), (5.18), and (5.32). The same analysis can be extended to the next
orders, since all the systems for δu(i) and δp(i+1) share the same differential structure.

The slow time t and the fast time τ are linearly related by the small parameter
ε. Since the parameter ε is arbitrary, it might be meaningful to regard the fast time
τ as an independent variable and to assign, for τ = 0, “initial” data depending on t.
As a most unfortunate consequence of this approach, arbitrary “initial” data would
be compatible with the initial data (5.3). Nevertheless, it is useful to derive a formal
representation of the general solution of (4.18). This will be the object of the first part
of this section. Subsequently, we will show that it is possible to resolve completely
the average-free functions for a relevant class of motion of the domain Ωt.

We consider the acoustic equation (4.18), supplemented with the boundary con-
dition

δu(0) · nt = 0 on ∂Ωt(6.1)

and with initial data

δu(0)(x, t, 0) = ∇ωt(x), δp(1)(x, t, 0) = πt(x) in Ωt,(6.2)

consistently with (5.18) and (5.32), that is,

δu(0)(x, 0, 0) = ∇ω0(x), δp(1)(x, 0, 0) = π0(x) = 0 in Ω0.(6.3)

The acoustic system (4.18), (6.1), (6.2) can be replaced by the wave equation

∂2
τ δp

(1) − c2∇ ·
(
r∇δp(1)

)
= 0,(6.4)

where

c2(t) =
γp(0)(t)

ρ̃(0)(t)
, r(x, t) =

ρ̃(0)(t)

ρ(0)(x, t)
, ρ̃(0) =

1

|Ωt|
∫

Ωt

ρ(0) dV,(6.5)

with boundary condition

∂δp(1)

∂nt
= 0 on ∂Ωt(6.6)

and initial data

δp(1)(x, t, 0) = πt(x), ∂τδp
(1)(x, t, 0) = −γp(0)∆ωt(x) in Ωt.(6.7)

Once we know δp(1), the average-free velocity can be recovered from the equation
(4.18)2, supported with the condition

〈
δu(0)

〉
= 0.

The parameter r in (6.4) characterizes the degree of “isentropicity” of the flow,
in the sense that when r = 1 the flow is weakly nonisentropic. Some properties of
weakly nonisentropic flows are reported in the appendix.

The operator ∇ · r∇, which appears in (6.4), admits a family of eigenfunctions
{wtj} which forms an orthonormal basis of L2(Ωt). They are defined by

∇ · (r∇wtj) = −λtjwtj in Ωt,

∂wtj
∂nt

= 0 on ∂Ωt,(6.8) ∣∣∣∣wtj∣∣∣∣L2(Ωt)
= 1.
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Then, we can express δp(1) as

δp(1)(x, t, τ) =
∑
j

σtj(τ)w
t
j(x).(6.9)

The function σtj for all j and t satisfies the system(
d2

dτ2
+ c2(t)λtj

)
σtj = 0,(6.10)

σtj(0) =
(
πt, w

t
j

)
,

dσtj
dτ
(0) = −γp(0) (∆ωt, wtj) .(6.11)

The eigenvalues λtj are nonnegative for all j and monotonically increasing to infinity as
j increases. In particular, the eigenfunction wt0 associated with the eigenvalue λ

t
0 = 0

is

wt0(x) = |Ω|−1/2.(6.12)

Using (5.27) in (6.9), we get

σt0(τ) = 0 for all t, τ ≥ 0,(6.13)

and hence πt and ∆ωt necessarily satisfy the condition∫
Ωt

πt dV = 0,

∫
Ωt

∆ωt dV = 0.(6.14)

The solution of (6.10) for j > 0 is

σtj(τ) =
(
πt, w

t
j

)
cos
[
c(λtj)

1/2τ
]
− ρ̃(0)c

(
∆ωt, w

t
j

)
(λtj)

1/2
sin
[
c(λtj)

1/2τ
]
.(6.15)

Equations (6.9) and (6.15) give a full representation of δp(1) in terms of the eigen-
functions wtj and the eigenvectors λ

t
j of the operator ∇ · r∇ in Ωt. Moreover, using

(4.18), (6.2), and (6.9), we find

δu(0)(x, t, τ) =
∑
j

Stj(τ)r(x, t)∇wtj(x),(6.16)

Stj(τ) = −
(
πt, w

t
j

)
ρ̃(0)c(λtj)

1/2
sin
[
c(λtj)

1/2τ
]
−
(
∆ωt, w

t
j

)
λtj

cos
[
c(λtj)

1/2τ
]
,(6.17)

together with the necessary constraint

∇ωt = −
∑
j

(
∆ωt, w

t
j

) r
λtj

∇wtj .(6.18)

Using (5.10), (6.16), and (6.17), it is possible to assess the validity of (4.32).
We conclude this section by showing that the fast acoustics can be completely

resolved at least for a class of motion of the boundary ∂Ωt.
We consider any invertible map Φt : Ω0 → Ωt which describes the motion of

∂Ωt. For simplicity, we consider weakly isentropic flows so that ρ
(0) = ρ(0)(t). The
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following transformation is compatible with the asymptotic analysis presented in this
paper:

(x, t, τ)→ (y, s, σ) =

(
Ψt(x), s(t),

s(t)

ε

)
with s′(t) �= 0.(6.19)

Here, Ψt : Ωt → Ω0 is the inverse of the map Φt, and s(t) is a function to be
determined (not the entropy!). After this change of variables the acoustic system
(4.18) becomes

∂σδu
(0) +

1

s′ρ(0)
M∇yδp

(1) = 0,

s′∂σδp(1) + γp(0)(M∇y) · δu(0) = 0, y ∈ Ω0,
(6.20)

where ∇y is the gradient operator with respect to y, M(y, t) is the inverse of the ma-
trix ∂Φt(y)/∂y, and t is expressed everywhere as a function of s. The wave equation
(6.4) is replaced by

∂2
σδp

(1) − γp(0)

(s′)2ρ(0)
|M∇y|2 δp(1) = 0.(6.21)

We wish to choose s(t) so that the wave speed for (6.21) does not depend on t. This
is not possible in general, since the matrixM depends on time as well as on the space
variables. Anyway, there is a simple class of motion for which this problem has a
solution corresponding to Φt(y) = a(t)y + b(t). In this case we have M = (1/a)I.
Then, for weakly nonisentropic flows, the choice

s′(t) = constant ·
(

γp(0)(t)

ρ(0)(t)a2(t)

) 1
2

(6.22)

leads to a wave speed independent of the slow time t. Using (5.25) and (A.2), and
noting that |Ωt|/|Ω0| = an, it is possible to rewrite the relation (6.22) in terms of p(0):

s′(t) = constant ·
(
p(0)(t)

) γ−1+2/n
2γ

.(6.23)

The wave equation (6.21) can be solved by following the method outlined in the first
part of this section with initial data (6.3). For the one-dimensional piston problem,
this approach leads to equivalent results to the ones obtained in [17].

7. Conclusions. In this paper we have derived the main implications of the
ansatz (4.1) in the framework of the low Mach number limit for a compressible flow
in a domain with variable boundary. We have shown that the limit incompressible
variables are coupled with high-frequency oscillations produced by the motion of the
boundary through the equations (4.18), (4.25). Understanding the role of the inter-
play with fast acoustics has an enormous relevance for the development of numerical
schemes capable of dealing with low Mach number phenomena in a bounded domains.

The analysis performed here is not conclusive since the theory presented is not
capable of providing a full resolution of high-frequency acoustics, as we have shown
in the previous sections. Nevertheless, the representation given by (6.9) and (6.15)
gives a first hint for a theoretical comprehension of the acoustic modes generated by
the motion of the boundary. In our opinion, the key point is that one fast variable
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is not sufficient to describe the sequence of modes produced by a generic motion of
the boundary. Thus, we need to extend the theory by including a family of fast
variables nonlinearly related to the slow time and to the space variables. The number
of independent fast variables for each term of the expansion should increase with
the order of the term. This extension, which has a theoretical interest in itself and
is a necessary step for the development of efficient numerical schemes for low Mach
number flows in bounded domains with moving boundary, is still a work in progress.

Appendix. Weakly nonisentropic flows. In this appendix we collect some
results regarding weakly nonisentropic flows resulting from the condition

ρ(x, 0) = ρ0 = constant.(A.1)

Theorem A.1. Let (ρ,u, p) be a solution of (2.20) which admits the asymptotic
expansion (4.1). If (A.1) holds, the leading order density is a function of time only,
ρ(0) = ρ(0)(t), given by

ρ(0)(t) =
|Ω0|
|Ωt| ρ0.(A.2)

Moreover,

s(0) = constant,(A.3)

where s(0) is the leading order entropy.
Proof. Using (4.25)1, we obtain

D̄

Dt

(
ρ(0)|Ωt|

)
= 0.

Then, applying Lemma 5.1 with a = ρ(0)(ρ(0)|Ωt|)q−1, where q is an integer, u∗ = ū(0),
and v = 0, we find

1

|Ωt|
∫

Ωt

(
ρ(0)|Ωt|

)q
dV = (ρ0|Ω0|)q for all integers q,

which implies ∣∣∣∣∣∣ρ(0)|Ωt| − ρ0|Ω0|
∣∣∣∣∣∣
Lq(Ωt)

= 0 for all integers q.

Thus, we have ∣∣∣∣∣∣ρ(0)|Ωt| − ρ0|Ω0|
∣∣∣∣∣∣
L∞(Ωt)

= 0,

and hence (A.2). Finally, using (4.20) and (A.2) and recalling the equation of state
(2.8), we have also (A.3).

Theorem A.2. For a weakly nonisentropic flow, the leading order averaged
velocity ū(0) satisfies the system

D̄ū(0)

Dt
+∇ p̄

(2)

ρ(0)
= −∇ ·

〈
δu(0) ⊗ δu(0)

〉
,(A.4)

∇ · ū(0) =
1

|Ωt|
d|Ωt|
dt

.
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Moreover, the leading order average-free velocity δu(0) and the first order average-free
pressure δp(1) satisfy system (4.18). In particular, we have

∂2
τ δp

(1) − c2∆δp(1) = 0,(A.5)

with c2 = γp(0)/ρ(0).
Proof. Equation (A.4) follows from (4.25) after using Theorem A.1. Equation

(A.5) follows from (6.4) after using (A.2).
Theorem A.3. For a weakly nonisentropic flow (ρ,u, p), the first order density

ρ(1) = ρ̄(1) + δρ(1) is given by

ρ̄(1) = 0,(A.6)

δρ(1) =
ρ(0)

γp(0)
δp(1).(A.7)

Proof. Using (A.2) and (4.18), equation (4.26)1 becomes

∂τδp
(1) = −ρ(0)∇ · δu(0) = ∂τ

(
ρ(0)

γp(0)
δp(1)

)
.

After integrating with respect to τ , we obtain (A.7). Then, recalling the condition
(4.31)3, equation (4.31)1 becomes

∂tρ̄
(1) +∇ ·

(
ρ̄(1)ū(0)

)
= −∇ ·

〈
δρ(1)δu(0)

〉
= − ρ(0)

γp(0)
∇ ·
〈
δp(1)δu(0)

〉
.

Using (4.18), we obtain

∇ ·
〈
δp(1)δu(0)

〉
= −ρ(0)

〈
δu(0) · ∂τδu(0)

〉
− 1

γp(0)

〈
δp(1)∂τδp

(1)
〉
= 0,

and hence

∂tρ̄
(1) +∇ ·

(
ρ̄(1)ū(0)

)
= 0.

Using (A.4)2, we find

1

ρ̄(1)
D̄ρ̄(1)

Dt
= − 1

|Ωt|
d|Ωt|
dt

.

Finally, proceeding as in Theorem A.1, we arrive at (A.6).
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Abstract. We establish the conditions for the frozen path approximation for turbulent transport
in a class of nonmixing Gaussian flows with long-range correlation. We identify the regimes of
fractional Brownian motion limit as well as the Brownian motion limit.

Key words. turbulent transport, fractional Brownian motion, Taylor–Kubo formula
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1. Introduction. The study of turbulent transport is fundamental to under-
standing of temperature fields as well as pollutant or tracer particles movement in
the atmosphere and oceans and solute transport in groundwater flows [1]. For a long
time, the Brownian motion (BM) and the heat equation have been the paradigm for
describing large-scale turbulent transport since Taylor’s works in the 1920s. The wide
applicability of the Brownian motion and the related Gaussian processes have much
to do with the central limit theorem which is often assumed to be valid over large
scales if there is no memory or intermittency effect.

To account for the memory or intermittency effect, anomalous diffusions have
been introduced in recent years as phenomenological models within the framework
of fractional kinetic equations or continuous-time random walks (see [21], [12], [19],
and the references therein). The mechanisms for anomalous behaviors are generally
attributed to long waiting times (subdiffusion) or long flights (superdiffusion) or both.
The former results in fractional-in-time (hence non-Markovian) differential operators
while the latter results in fractional-in-space differential operators. In both cases the
underlying processes are non-Gaussian.

In this paper we derive rigorously the fractional Brownian motions (FBMs) as
limiting processes of large-scale motions of particles being advected by a family of
random flows that are decorrelated both in space and time but in a manner depending
on the wave modes of the velocity. This dependence is described in terms of two
crucial parameters (α and β) of the flows. Our limit theorem also characterizes the
multiple-particle motions in the FBM regime. FBMs are Gaussian but non-Markovian
processes and are different from the phenomenological models mentioned above. The
FBMs we find in this paper are invariably superdiffusive due to the positive memory
effect, while the FBMs we found elsewhere [7] for a different type of flows can be
subdiffusive as well as superdiffusive. By varying the parameters we see that the
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limiting processes can switch from FBMs to the Brownian motion, and we characterize
the boundary of transition precisely.

The FBM regime indicates the breakdown of the central limit theorem, but the
Gaussianity persists in the limit and is inherited from that of the velocity field. It is
an open problem if one would obtain non-Gaussian limits for non-Gaussian velocity
fields, which are beyond the methodology of the paper.

For the particle displacement x(t) in a given random velocity V(t,x) we consider
the general large-scale limit

xε(t) = εx

(
t

ε2q

)
satisfying the equation

dxε(t) = ε1−2qV(ε−2qt, ε−pxε(t))dt+ ε1−q
√
2κdB(t), p ≥ 0,(1.1)

for some q > 0 (to be determined) as ε tends to zero. Here B(t) is the Brownian
motion and κ is the molecular diffusivity. The special case of p = 0 and q = 1 is the
white-noise-in-time limit. The scaling limit with p = 1 is the homogenization limit.

We assume that, in addition to incompressibility, the velocity V(t,x), (t,x) ∈
R × R

d, is a zero mean, time-stationary, space-homogeneous, isotropic, Ornstein–
Uhlenbeck (thus, Gaussian and Markovian) process with long-range correlations (see
below). Here the scaling exponent q depends on the correlation functions of the
velocity. The scaling limit (1.1) has been studied by Kesten and Papanicolaou [11]
in the case of p = 0 and Komorowki [13], [14] in the general case of 0 ≤ p < 1
for velocities sufficiently strongly mixing in time, and in this situation the scaling
exponent is always q = 1, i.e., the diffusive scaling, and the limiting process is a
Brownian motion with the diffusion coefficients given by the Taylor–Kubo formula
[22]

Dij =

∫ ∞

0

{E[Vi(t,0)Vj(0,0)] + E[Vj(t,0)Vi(0,0)]} dt.(1.2)

To understand how the long-range correlation in velocity fields may change the
diffusive scaling, we study the weak coupling limit for Ornstein–Uhlenbeck velocities
with long-range correlations in both space and time (thus, nonmixing) defined as
follows. We define the family of velocity fields with power-law spectra as follows.
Let (Ω,V, P ) be a probability space of which each element is a velocity field V(t,x),
(t,x) ∈ R× R

d satisfying the following properties.
(H1) V(t,x) is time-stationary, space-homogeneous, and centered, i.e., EV(0,0) =

0, and Gaussian. Here E stands for the expectation with respect to the
probability measure P .

(H2) The two-point correlation tensor R = [Rij ] is given by

Rij(t,x) = E [Vi(t,x)Vj(0,0)](1.3)

=

∫
R

d

cos (k · x) exp (−|k|2βt) E(|k|)|k|d−1

×
(
I− k⊗ k

|k|d−1

)
dk, β ≥ 0, d ≥ 2,

with the spatial spectral density

E(k) = a(k)

k2α−1
, α < 1,(1.4)
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where a : [0,+∞) → R+ is a compactly supported, continuous, nonnegative
function. The factor I− k⊗ k/|k|2 in (1.3) ensures the incompressibility.

Note that for α < 1 the instantaneous two-point correlation functions Rij(0,x) decays
to zero as |x| tends to infinity. The velocity is strongly temporally mixing if and only
if β = 0 (see [20]).

We show that the scaling limit is either a Brownian motion or a persistent (i.e., su-
perdiffusive) FBM as stated in the following theorem.

Theorem 1. Let the velocity field satisfy properties (H1)–(H2) with p < 1.
Case 1. For α+ β < 1 and the scaling exponent

q = 1,

the solution xε(t) converges in distribution, as ε tends to zero, to the Brownian motion
with the covariance matrix given by the Kubo formula (1.2) plus κI.

Case 2. For 1 < α+ β, α+ 2β < 1 + 1/p, and the scaling exponent

q :=
β

α+ 2β − 1 ,(1.5)

the solution xε(t) converges in probability, as ε tends to zero, to a fractional Brownian
motion BH(t) with covariance given by

Cov(BH(t1),BH(t2)) =
1

2
D
{|t1|2H + |t2|2H − |t1 − t2|2H

}
(1.6)

with the coefficients D

D =

∫
R

d

e−|k|2β − 1 + |k|2β
|k|2α+4β−1

(
I− k⊗ k

|k|2
)
a(0)

|k|d−1
dk(1.7)

and the Hurst exponent H,

1/2 < H = 1/2 +
α+ β − 1

2β
< 1.(1.8)

The homogenization scaling with p = 1 has been considered in [2], [3], [8], [15]
and the corresponding scaling exponent q is the same. But the eddy diffusion matrix
is no longer given by the Kubo formula.

We also establish the following results, which are very useful for understanding
the simultaneous limit of the motion of multiple particles.

Theorem 2. Under the same assumptions of Theorem 1, the following approx-
imations are valid in the respective regimes in the mean square sense for sufficiently
small ε:

Case 1.

xε(t) =Wε(t) + o(1)

with

Wε(t) : =

∫ t

0

∫
R

d

|k|βE 1
2 (|k|)

(|k|2β + ε2)|k| (d−1)
2

(
I− k⊗ k

|k|2
) 1

2

[cos (ε−pxε(s) · k)W0(ds, dk) + sin (ε
−pxε(s) · k)W1(ds, dk)],(1.9)
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where Wi(dt, dk), i = 0, 1, are two independent copies of a d-dimensional space-time
white-noise field (see [16] for a thorough discussion).

Case 2.

xε(t) = xε(0) +

∫ t

0

ε1−2qV(ε−2qs, ε−pxε(0))ds+ o(1).(1.10)

The surprising feature about the approximation (1.10) is that the “frozen path”
approximation is asymptotically exact on the time scale of observation. Thus the
multiple-point motion can be easily derived.

The processWε(t) defined by (1.9) is a continuous martingale with the quadratic
variation

〈Wε〉t = t
∫

R
d

|k|2βE(|k|)
(|k|2β + ε2)2

(
I− k⊗ k

|k|2
)

dk

|k|d−1
.

Thus we know that Wε(t), t ≥ 0, is a Brownian motion. It is easy to check that the
ratio 〈Wε〉t/t converges to the Kubo formula as ε tends to zero.

Theorem 1 characterizes the limit of one-point motion whereas Theorem 2 enables
us to calculate the limit of multiple-point motion with each particle starting from a
different point. It is straightforward to check from the corresponding approximations
(1.9) and (1.10) that any two particles with a fixed initial separation in xε(0) become,
in the limit ε→ 0, independent Brownian or FBMs for p > 0. However, if the initial
separation of particles is of order εp, then the resulting limit processes are correlated
as in the case of p = 0 which has been studied in [6]. The proofs of Theorem 1 and
2 use (finite) diagrammatic expansion and are given in sections 4–6.1. In the main
text we present the physical explanation of the theorems in terms of the frozen path
approximation. The results are shown schematically in Figure 1. In section 7 we
provide a scaling argument for the case of p > 1 for the fractional Brownian regime.

When an additional infrared cutoff of the size εγ is introduced in the velocity
spectrum, the results depend on whether the cutoff is subcritical, γ < (α+2β− 1)−1,
or supercritical, γ > (α+2β−1)−1. A supercritical cutoff does not affect the diagram,
but a subcritical cutoff does. In particular, the regime of FBM limit disappears, and
the limit is always a Brownian motion when the infrared cutoff is subcritical (see
[2], [3]). We will not further discuss the effect of infrared cutoff in this paper.

The effect of molecular diffusion on transport may be subtle (see [18], [7]). How-
ever, for isotropic flows with monotonically decaying temporal correlation, small
molecular diffusivity is negligible and will only affect results perturbatively. So we set
κ = 0 from now on to simplify the presentation.

2. Brownian motion limit. Let us first consider the case of the Brownian
motion limit. We express the displacement in the integral form

xε(t) = xε(0) +
1

ε

∫ t

0

V

(
t1
ε2
,
xε(t1)

εp

)
dt1.

Assuming for simplicity that the spatial derivative of the velocity field is uniformly
bounded, we know that the frozen path approximation

xε(t) ≈ x̃ε(t) = xε(0) +
1

ε

∫ t

0

V

(
s

ε2
,
xε(0)

εp

)
ds, 0 < t < τ,
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α

β

α = 1

.

α = 0

= β/(α+2β−1)q

H = 1/(2q)

H = 1

q = 1

/2 α+2β = 1+1/

α+β=1

p

α = 1+1/p

Fig. 1. Phase diagram with supercritical infrared cutoff.

is accurate pathwise with an error of O(τ3/2ε−1−p) on the time scale

ε2 � τ � εp+1(2.1)

(cf. (3.5)). One then expects that, for small ε, the displacement xε(t) is approximately
the sum, x̃ε(t), of t/τ random variables in the form

∆x̃n
ε (τ) = x̃ε((n+ 1)τ)− x̃ε(nτ) = ε

∫ (n+1)τ/ε2

nτ/ε2
V

(
s,

x̃ε(nτ)

εp

)
ds, n = 0, 1, 2, . . . .

Since τ � ε2, by the central limit theorem for processes with mixing, stationary
increments (cf. [20]), the process ∆x̃n

ε (t),

∆x̃n
ε (t) = ε

∫ (nτ+t)/ε2

nτ/ε2
V

(
s,

x̃ε(nτ)

εp

)
ds, 0 < t ≤ τ,

conditioned on x̃ε(nτ), is approximately a Brownian motion, starting at 0, with dif-
fusion coefficient given by the Taylor–Kubo formula (1.2). Since τ � ε2 and the
Taylor–Kubo formula converges, ∆x̃n

ε are nearly uncorrelated for different n and the
total error made by the frozen path approximation is O(τε−1−p), which is negligible
for τ � ε1+p.

The question is, What is the region in the (α, β) plane where the classical tur-
bulent diffusion theorem, with the Taylor–Kubo formula (1.2), holds? It is easy to
find the necessary condition by imposing the convergence of the Taylor–Kubo formula
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(1.2). A straightforward calculation

D∗
ij =

∫ ∞

0

Rij(t,0)dt

=

∫
R

d

(
δij − kikj

|k|2
) E(|k|)
|k|d−1

∫ ∞

0

exp (−|k|2βt)dtdk

=

∫
R

d

(
δij − kikj

|k|2
) E(|k|)
|k|d+2β−1

dk(2.2)

leads to the condition

α+ β < 1.(2.3)

It turns out that (2.3) is also sufficient. In other words, the classical turbulent diffusion
theorem holds for this family of Gaussian velocity fields if and only if (2.3) is true
(see section 6.1).

Let us see what the frozen path approximation tells us. The covariance of the
Gaussian increment ∆x̃n

ε (t), 0 < t < τ (given by (2.1)), stationary with respect to n,
can be expressed as

2ε2
∫ t/ε2

0

∫ s1

0

Rij(s1 − s2,0) ds2 ds1

= 2ε2
∫ t/ε2

0

∫
R

d

(
δij − kikj

|k|2
) E(|k|)
|k|d+2β−1

(1− e−s1|k|2β )dkds1

= 2

∫ t

0

∫
R

d

(
δij − kikj

|k|2
) E(|k|)
|k|d+2β−1

(1− e−t1|k|2β/ε2)dkdt1

= 2D∗
ijt− 2

∫ t

0

∫
R

d

(
δij − kikj

|k|2
) E(|k|)
|k|d+2β−1

e−t1|k|2β/ε2dkdt1

= 2D∗
ijt− 2

∫
R

d

(
δij − kikj

|k|2
) E(|k|)
|k|d+2β−1

× ε2

|k|2β (1− e
−t|k|2β/ε2) dk(2.4)

with D∗ given by the Taylor–Kubo formula (2.2). The last integral can be estimated
by breaking it into two parts: |k|2β < ε2/t and |k|2β ≥ ε2/t. The first part has the
asymptotic

2t

∫
|k|2β<ε2/t

(
δij − kikj

|k|2
) E(|k|)
|k|d+2β−1

dk

∼ |k|2−2α−2β
∣∣∣ ( ε2

t )1/(2β)

0
t

= ε2(1−α−β)/βt(α+2β−1)/β ,(2.5)

which, if α+ 2β > 1, gives rise to the subdiffusive FBM with the Hurst exponent

H =
α+ 2β − 1

2β
< 1/2

and vanishing coefficient since α+ β < 1. The second part can be estimated by

2

∫
|k|2β≥ε2/t

E(|k|)
|k|d+2β−1

× ε2

|k|2β dk
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∼ 2ε2

[(
ε2

t

)(1−α−2β)/β

−K2(1−α−2β)

]

= 2ε2(1−α−β)/βt(α+2β−1)/β − 2ε2K2(1−α−2β).(2.6)

Thus, if α+ 2β < 1, the second term in (2.6) dominates the first and, if α+ 2β > 1,
the first dominates. But both (2.5) and (2.6) are negligible relative to the leading
term 2D∗

ijt.

Therefore, for α + β < 1, the displacement xε(t) behaves like the Brownian
motion, with the diffusion coefficient given by the Taylor–Kubo formula (2.2), plus a
correction term. When α+ 2β > 1 the correction term is like a subdiffusive FBM.

3. FBM limit. What happens if (2.3) is violated? The divergence of the Taylor–
Kubo formula (1.2) suggests a superdiffusive behavior and, consequently, a different
scaling limit.

Consider the superdiffusive scaling on the displacement

xε(t) = εx

(
t

ε2q

)
, q < 1.(3.1)

The equation of motion becomes

dxε(t)

dt
=

1

ε2q−1
V

(
t

ε2q
,
xε(t)

εp

)
, p < 1.(3.2)

The frozen path argument will show that for

α+ β > 1, α < 1,(3.3)

and

q =
β

α+ 2β − 1 ,(3.4)

the solution xε(t) of (3.2) converges to an FBM.

First we note that the frozen path approximation

xε(t) ≈ x̃ε(t) = xε(0) +
1

ε2q−1

∫ t

0

V

(
t1
ε2q
,
xε(0)

εp

)
dt1

is accurate with the error O(τ1+1/(2q)ε1−p−2q) on the (rescaled) time scale τ ,

ε2q � τ � εp+2q−1,(3.5)

provided that the scaling exponent q is the right one (i.e., xε(t), t > 0 is O(1)). The
upper limit on τ is imposed in (3.5) because the total error made by the frozen path
approximation is then O(τε1−p−2q), which is negligible.

Let us calculate the covariance of the Gaussian increment

∆x̃n
ε (t) = ε

∫ (nτ+t)/ε2q

nτ/ε2q
V

(
s,

x̃ε(nτ)

εp

)
ds, 0 < t ≤ τ,
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which is stationary in n. Denoting by Rs the symmetric part of the covariance matrix
R, we have

E[∆x̃nε (t)⊗∆x̃nε (t)]

= 2ε2
∫ t/ε2q

0

∫ s1

0

Rs(s1 − s2, 0) ds1 ds2

= 2ε2
∫ t/ε2q

0

∫
R

d

(
I− k⊗ k

|k|2
) E(k)
|k|d+2β−1

(1− e−s1|k|2β ) ds1 dk

= 2ε2(1−q)

∫ t

0

(∫
|k|2β<ε2q/t1

+

∫
|k|2β≥ε2q/t1

)

×
(
I− k⊗ k

|k|2
) E(k)
|k|d+2β−1

(1− e−t1|k|2β/ε2q ) dk dt1.

The first integral has the order of magnitude

ε2(1−q)

∫ t

0

∫
|k|2β<ε2q/t1

E(k)
|k|d+2β−1

× t1|k|2β
ε2q

dk dt1 ∼ ε2[1−q(α+2β−1)/β]t(α+2β−1)/β .

The second integral has the order of magnitude

ε2(1−q)

∫ t

0

∫
|k|2β≥ε2q/t1

E(k)
|k|d+2β−1

dk dt1 ∼ ε2[1−q(α+2β−1)/β]t(α+2β−1)/β .

They are of the same sign so they do not cancel with each other. With (3.4) both
terms behave like the FBM of finite, constant coefficients with the Hurst exponent
H = 1/(2q) on the (rescaled) time scales in the range given by (3.5). In particular,
for p = 0, the FBM limit holds up to order one time as is rigorously proved in [6].
The scaling with (3.4) is superdiffusive since q < 1 for α + β > 1. This is the result
of positive correlation between successive increments. For the FBM-like behavior to
persist up to order one times for p > 0 the stationary increments at different times
must have the right positive correlation. This is proved in section 6.

4. Estimation by diagrammatic method. We now turn to the proof of Theo-
rem 1. We shall only calculate the mean square displacement of the particle. We make
use of a spectral representation of the velocity field as follows. Let V̂0(t, dk),V̂1(t, dk)
be two independent copies of real Rd-valued, Gaussian, random spectral measures with
the structure matrix

E[V̂i(t, dk)⊗ V̂i(0, dk)] =
e−|k|2βtE(|k|)

|k|d−1

(
I− k⊗ k

|k|2
)
dk, i = 0, 1.(4.1)

The modes of the random measure can be intuitively thought of as mutually indepen-
dent “infinitesimal” Ornstein–Uhlenbeck processes, that is, a stationary solution of a
properly understood (e.g., in the sense of generalized functions) stochastic differential
equation

dtV̂i(t, dk)(4.2)

= −|k|2βV̂i(t, dk)dt+ |k|(2β+1−d)/2E 1
2 (|k|)

(
I− k⊗ k

|k|2
)
Wi(dt, dk), i = 0, 1.
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HereWi(dt, dk), i = 0, 1, are independent R
d-valued, uncorrelated space-time white-

noise random measures.

We can write then that

V(t,x) =

∫
V̂(t,x, dk),(4.3)

with

V̂(t,x, dk) := eik·xV̂(t, dk)(4.4)

and V̂(t, ·) a C
d-valued, componentwise Gaussian random measure given by

V̂(t, A) :=
1

2
[V̂0(t, A) + V̂0(t,−A)] + i

2
[V̂1(t, A)− V̂1(t,−A)].(4.5)

The velocity field is temporally Markovian because for any Borel set A and s ≤ t

EsV̂(t, dk) = e
−|k|2β(t−s)V̂(s, dk).(4.6)

Here Es denotes the conditional expectation with respect to the history of the random
field determined up to time s. Another property of temporal dynamics of the field
is its reversibility, which can be expressed in the following form. For any s1 ≥ s2 ≥
· · · sn ≥ 0 and functions F,G of appropriate arguments, we have

E

{
E0

[
F (V̂(s1, dk1), . . . , V̂(sn, dkn))

]
G(V̂(0, dkn+1))

}
(4.7)

= E

[
F (V̂(s1 − sn, dk1), . . . , V̂(0, dkn))E0G(V̂(sn, dkn+1))

]
.

As explained in the introduction, the molecular diffusion has only a perturbative
effect and will be set to zero to simplify the calculation. The motion of the tracer is
then described by

dx(t)

dt
= V(t, ε1−px(t)).(4.8)

Let us set

xε(t) = ε

∫ tε−2q

0

V(s, ε1−px(s))ds,(4.9)

where p < 1 and x(t) is given by (4.8) and q is to be specified later.

For any t ≥ s define ∆n(t, s) := [(s1, . . . , sn+1) : t ≥ s1 ≥ · · · ≥ sn+1 ≥ s]. To
compute the mean square displacement of the particle we write

E [xε(t)⊗ xε(t)] = ε
2

∫ tε−2q

0

ds

∫ s

0

{
E
[
V(s1, ε

1−px(s1))⊗V(0,0)
]

+E
[
V(0,0)⊗V(s1, ε

1−px(s1))
]}
ds1

=

N−1∑
n=0

In,ε(t) +RN,ε(t),(4.10)
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with In,ε(t) the symmetric part of the matrix

I0
n,ε(t) := 2ε

n(1−p)+2

∫ tε−2q

0

ds

∫
· · ·
∫

∆n(s,0)

E {E0 [Wn(s1, . . . , sn+1,0)](4.11)

⊗V(0,0)} ds1 · · · dsn+1

and RN,ε(t) the symmetric part of the matrix

R0
N,ε(t)

= 2εN(1−p)+2

∫ tε−2q

0

ds

∫
· · ·
∫

∆N (s,0)

E
{
EsN+1

[
WN (s1, . . . , sN+1, ε

1−px(sN+1))
]

⊗V(0,0)} ds1 · · · dsN+1,

where Wn(·) is defined inductively by
W0(s1,x) := V(s1,x),(4.12)

Wn(s1, . . . , sn+1,x) := V(sn+1,x)(4.13)

·∇Wn−1(s1, . . . , sn,x) for n = 1, 2, . . . .

To estimate both In and the remainder term RN,ε(t) we shall deal with expec-
tations of polynomial-like expressions in a Gaussian variable. To calculate the expec-
tation of multiple product of Gaussian random variables, we use Feynman diagrams
borrowed from quantum field theory (see, e.g., [9] and [10]). A Feynman diagram F
(of order n = number of vertexes and rank r = number of edges) is a graph consisting
of a set B(F) of n vertexes and a set E(F) of r edges without common endpoints.
So there are r pairs of vertexes, each joined by an edge, and n − 2r unpaired ver-
texes, called free vertexes. Let B(F) be a subset of positive integers. An edge whose
endpoints are m,n ∈ B is represented by m̂n (unless otherwise specified, we always
assume m < n); an edge includes its endpoints. A diagram F is said to be based on
B(F). Denote the set of free vertexes by A(F), so A(F) = F \ E(F). The diagram
is complete if A(F) is empty and incomplete otherwise. Denote by G(B) the set of
all diagrams based on B, by Gc(B) the set of all complete diagrams based on B, and
by Gin(B) the set of all incomplete diagrams based on B. A diagram F ′ ∈ Gc(B) is
called a completion of F ∈ Gi(B) if E(F) ⊆ E(F ′).

Let Zn := {1, 2, 3, . . . , n}. For n ≥ 1 we define inductively a class Sn of certain
Feynman diagrams based on Zn as follows. For n = 1, S1 consists of the trivial
diagram F with vertex 1. Given Sn−1, Sn consists of all the descendants of Sn−1.
A descendant F ′ of F ∈ Sn−1 is a graph based on Zn such that A(F ′) �= ∅ and

F ′
|n−1 = F ,(4.14)

where F ′
|n−1 is the restriction of F ′ to Zn−1 with edges of the type m̂n, m =

1, 2, . . . , n − 1, deleted. We call F the predecessor of F ′. The predecessor of any
F ′ ∈ Sn is clearly unique. For F ∈ Sn set Ak(F) = A(F|k), k = 1, 2, . . . , n.

Adopting the multi-index notation for any N ∈ Z
+, n = (n1, . . . , nN+1), nj ∈

{1, 2, 3, . . . , d}, and |n| := n1 + n2 + . . .+ nN+1, we have the following formula.
Lemma 1. Let N ≥ 1 and s1 ≥ s2 ≥ · · · ≥ sN+1 ≥ 0, i ∈ {1, . . . , d}, x ∈ R

d. We
have then that
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(4.15)

EsN+1
WN,i(s1, . . . , sN+1,x) =

∑
n,F

∫
· · ·
∫
exp


i ∑

m∈AN (F)∪{N+1}
km · x




× iN
N∏
j=1


 ∑

m∈Aj(F)

km


 exp


− ∑

m∈Aj(F)

|km|2β(sj − sj+1)




× Cn,N

∏
m̂m′∈E(F)

E

[
V̂nm(0, dkm)V̂nm′ (0, dkm′)

] ∏
m∈AN (F)∪{N+1}

V̂nm(sN+1, dkm),

where |Cn,N | ≤ 1. The summation extends over all integer valued multi-indices n =
(n1, . . . , nN+1), n1 = i, and all Feynman diagrams F ∈ SN .

The proof of Lemma 1 is a straightforward moment calculation with jointly Gaus-
sian random variables using spectral representation (4.3)–(4.4). The free vertexes arise
from centering and the edges from covariance of each pair. The condition A(F ′) �= ∅
is due to the gradient operation. The term Cn,N contains an O(1) factor like

∏
m̂m′∈E(F)

[
1− e−2|km′ |2β(sm′−sN+1)

]

resulting from replacing the conditional covariance by the covariance of the pairing
(cf. [6]).

Using Lemma 1 we can write that

∫ tε−2q

0

ds

∫
· · ·
∫

∆N (s,0)

EsN+1
WN,i(s1, . . . , sN+1,x)ds1 · · · dsN+1(4.16)

=
∑∫ tε−2q

0

ds

∫ s

0

ds′
∫
· · ·
∫

∆N−1(s,s′)

ϕN (k1, . . . ,kN )PN (x,k1, . . . ,kN ;F)

×
∏

m̂m′∈E(F)

E

[
V̂nm(0, dkm)V̂nm′ (0, dkm′)

] ∏
m∈AN (F)∪{N+1}

V̂nm(s
′, dkm)

for i = 1, . . . , d. Here,

(4.17)

ϕN (x,k1, . . . ,kN ) := iNCn,N

N∏
j=1

∑
m∈Aj(F)

|km|2β

1− exp
{
− ∑

m∈Aj(F)

|km|2βtε−2q)

} ×

∑
m∈Aj(F)

km∑
m∈Aj(F)

|km|

× exp

 i

∑
m∈AN (F)∪{N+1}

km · x



×
∫
· · ·
∫

∆N−1(s,s′)

N∏
j=1

exp


− ∑

m∈Aj(F)

|km|2β(sj − sj+1)


 ds1 · · · dsN
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and

(4.18)

PN (k1, . . . ,kN ;F) =
N∏
j=1




 ∑

m∈Aj(F)

|km|

×

1− exp
{
− ∑

m∈Aj(F)

|km|2βtε−2q

}
∑

m∈Aj(F)

|km|2β



.

It is elementary to check that

|ϕN (x,k1, . . . ,kN )| ≤ 1.(4.19)

To further estimate the expression (4.16) we need to have more refined analysis
of the graphs F ∈ SN . Define

rN (F) := max {m : m ∈ AN (F)},(4.20)

aN (F) := min {m : m ∈ AN (F)}.(4.21)

We define ak(F), k < N , as

ak−1(F) = min {m : m ∈ Aak
(F)}

successively unless ak = 1. In other words, ak−1 is the smallest integer which is the left
endpoint of an edge with its right endpoint greater than ak; cf. (4.14). Below we will
use the short-hand notation ak := ak(F). Note that AN (F) and Aak−1(F), ak > 1,
are mutually disjoint. Let

A(F) := AN (F)
⋃

k: ak>1

Aak−1(F).(4.22)

Observe that any vertex m ∈ A(F) cannot be a right endpoint of any edge in E(F).
For any m ∈ A(F) let m∗ be the nearest vertex in A(F) to the right of m, i.e.,

m∗ := min[k : k ∈ A(F), k > m](4.23)

if the relevant set is nonempty; otherwise, set m∗ := N . Let

qm := #{p̂p′ ∈ E(F) : m < p′ < m∗}(4.24)

and let e(F), c(F) be the cardinalities of E(F) and AN (F), respectively. It is easy
to see that ∑

m∈A
qm = e(F),(4.25)

and thus ∑
m∈A(F)

qm + e(F) + c(F) = N.(4.26)
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4.1. Estimates for the remainder terms RN,ε(t). By the Cauchy–Schwartz
inequality we get that

|RN,ε(t)|2(4.27)

≤ 4ε2N(1−p)
E|V(0,0)|2

× max
0≤s≤tε−2

E

∣∣∣∣∣∣∣
∫ s

0

ds′
∫
· · ·
∫

∆N−1(s,s′)

Es′WN (s1, . . . , sN , s
′, εx(s′))ds1 · · · dsN

∣∣∣∣∣∣∣
2

.

The stationarity of the Lagrangian velocity field implies that the right-hand side of
(4.27) is equal to

4ε2N(1−p)
E|V(0,0)|2 max

0≤s≤tε−2
E

∣∣∣∣∣∣∣
∫ s

0

ds′
∫
· · ·
∫

∆N (s′,0)

E0WN (s1, . . . , sN , 0,0)ds1 · · · dsN

∣∣∣∣∣∣∣
2

.

(4.28)
Subsequently using (4.16) for the multiple time integration of the conditional expec-
tations in (4.28), we deduce that the above expression is less than or equal to

4Cε2N(1−p)t2ε4(1−2q)
E

∣∣∣∣∣∣
∑
F,n

∫
· · ·
∫
ϕN (x,k1, . . . ,kN )PN (k1, . . . ,kN ;F)(4.29)

×
∏

m̂m′∈E(F)

E

[
V̂nm

(0, dkm)V̂nm′ (0, dkm′)
] ∏
m∈AN (F)∪{N+1}

V̂nm(0, dkm)

∣∣∣∣∣∣
2

.

The summation above extends over all Feynman diagrams F ∈ SN and multi-indices
n.

By introducing an identical copy of the diagram which is supported on {N +
2, N + 2, . . . , 2N + 2}, the expression in (4.29) can be written in the form

4Cε2N(1−p)t2ε4(1−2q)
∑∫

. . .

∫
ϕN (0,k1, . . . ,kN )ϕN (0,k

′
1, . . . ,k

′
N )

PN (k1, . . . ,kN ;F)PN (k′
1, . . . ,k

′
N ;F)

×
∣∣∣∣∣∣

∏
m̂m′∈E(F)

E

[
V̂nm

(0, dkm)V̂nm′ (0, dkm′)
]

×
∏

m̂m′∈E(F)

E

[
V̂nm(0, dk

′
m)V̂nm′ (0, dk

′
m′)
]

E


 ∏
m∈A(2)(F)

V̂nm(0, dkm)



∣∣∣∣∣∣ ,

where kN+1+j := k′
j and

A(2)(F) = AN (F) ∪ {N + 1} ∪ {j +N + 1 : j ∈ AN (F) ∪ {N + 1}}.(4.30)

Using the elementary inequality

1− e−xt/ε2

x
≤ C

x+ ε2q/t
, t, x > 0,
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for a constant C independent of ε, x, we conclude that (see (4.18))

|PN (k1, . . . ,kN ;F)| ≤
N∏
j=1

∑
m∈Aj(F)

|km|∑
m∈Aj(F)

|km|2β + ε2q/t .

The expression (4.29) can be now estimated by

Ct2ε4(1−2q)
∑∫ K

0

· · ·
∫ K

0

QN (k1, . . . , kN ;F)QN (k
′
1, . . . , k

′
N ;F)(4.31)

×
∏

m̂m′∈E(F)

[
δ(km − km′)dkmdkm′

k2α−1
m

× δ(k′m − k′m′)dkmdkm′
k′m

2α−1

]

×
∏

m̂m′∈E(F ′)

δ(km − km′)dkmdkm′
k2α−1
m

,

with km = |km| and

QN (k1, . . . , kN ;F) :=
N∏
j=1

∑
m∈Aj(F)

km∑
m∈Aj(F)

k2β
m + ε2q/t

.

The summation extends over all Feynman diagrams F ∈ SN and all complete dia-
grams F ′ made of the vertexes of A(2)(F).

When 2β ≤ 1, QN (k1, . . . , kN ;F) is bounded. This in turn implies that the
expression (4.31) diverges at most at the rate ε4(1−2q). The estimate (4.27) implies
then that RN,ε(t) vanishes with ε ↓ 0 and N > 2/(1− p).

Let us assume therefore that 2β > 1. There exists then a constant C, depending
only on t, N , β, and K, such that∑

m∈Aj(F)

km∑
m∈Aj(F)

k2β
m + ε2q/t

≤ C kmj + ε
q/β

k2β
mj + ε

2q
∀mj ∈ Aj(F)(4.32)

and thus

QN (k1, . . . , kN ;F) ≤ C
N∏
j=1

kmj + ε
q/β

k2β
mj + ε

2q
(4.33)

for all mj ∈ Aj(F). Hereby we make the following definite choice of mj : let mj := j
if j is not the right endpoint of an edge of the diagram F . Otherwise, let mj be the
closest vertex from A(F) to the left of j.

Denote by E′(F) the set of the edges of the diagram F with neither endpoint
belonging to A(F) (see (4.22)) by cardinality of e′. In view of (4.25), (4.26), and the
identity

e′(F) + #[A(F) \AN (F)] = e(F),(4.34)
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the expression on the right-hand side of (4.33) can be written as

C
∏

m̂m′∈E′(F)

km + ε
q/β

k2β
m + ε2q

×
∏

m∈A(F)\AN (F)

(
km + ε

q/β

k2β
m + ε2q

)qm+1

(4.35)

×
∏

m∈AN (F)

(
km + ε

q/β

k2β
m + ε2q

)qm+1

.

From (4.31), (4.33), and (4.35) we conclude that

(4.36)

|RN,ε(t)|2 ≤ Cε2N(1−p)+4(1−2q)
∑ ∏

m∈A(F)\AN (F)

[∫ K

0

(
k + εq/β

k2β + ε2q

)qm+1
dk

k2α−1

]2

×
[∫ K

0

(k + εq/β)dk

(k2β + ε2q)k2α−1

]2e′ ∏
m̂m′∈E(F ′)

∫ K

0

(
k + εq/β

k2β + ε2q

)2+qm+qm′ dk

k2α−1
.

Here the summation extends over all possible diagrams F , F ′ as in (4.31). The
meanings of qm’s related to the diagram F are the same as introduced in the previous
section. We adopt also the convention that qN+1 = q2N+2 = −1 and qN+1+m := qm.

4.2. Estimates for In,ε(t) for n ≥ 1. The calculation is similar to that for
the remainder term carried out in the previous section, so we shall sketch only the
main points.

From (4.16) we infer that the i, jth entry of the matrix In,ε(t), given by (4.11),
equals

2εn(1−p)+2
∑∫ tε−2q

0

ds

∫
· · ·
∫
ϕn+1(k1, . . . ,kn+1)

×Pn(k1, . . . ,kn;F)

 ∑

m∈An+1(F)

|km|2β + ε2q/t

−1

(4.37)

×
∣∣∣∣∣∣

∏
m̂m′∈E(F)

E

[
V̂lm(0, dkm)V̂lm′ (0, dkm′)

]
E


 ∏
m∈An+1(F)∪{n+2}

V̂lm(0, dkm)



∣∣∣∣∣∣ .

Here the summation extends over all multi-indices l = (l1, . . . , ln+2) such that l1 = i,
ln+2 = j, and all Feynman diagrams F ∈ Sn+1. Proceeding with the same type of
estimates as in the case of the remainder term we conclude that

|In,ε(t)| ≤ Ctεn(1−p)
∑ ∏

m∈A(F)\An+1(F)

∫ K

0

(
ε

q
β + k

ε2q + k2β

)qm+1
dk

k2α−1
(4.38)

×
[∫ K

0

(ε
q
β + k)dk

(ε2q + k2β)k2α−1

]e′ ∏
m̂m′∈F ′

∫ K

0

(ε
q
β + k)2+qm+qm′−rm,m′

(ε2q + k2β)2+qm+qm′
× dk

k2α−1
.

Here the summation extends over all Feynman diagrams F ∈ Sn+1 and all complete
diagrams F ′ made of the vertexes of An+1(F)∪{n+2}; rm,m′ := δm,mn+1

+δm′,mn+1
.

Also, we adopt convention qn+2 = −1.
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5. Case 1. α + β < 1, 2pβ < 1, 0 ≤ p < 1—Brownian motion (q = 1).
We shall give the proof only in the case 2pβ < 1. Also, for clarity we shall calculate
only the asymptotic of the mean square displacement of xε(t), referring an interested
reader to our paper [5], where the proof of the martingale version of our theorem has
been laid out for p = 0. A suitable adaptation of the proof to the case p ∈ [0, 1) and
2pβ < 1 is possible along the lines of the argument we present below.

After an elementary calculation we deduce that under the assumption α+ β < 1

lim
ε↓0

I0,ε(t) = Dt

with

D =

∫
R

d

(
I− k⊗ k

|k|2
)

a(|k|)
|k|2α+2β−1

dk

|k|d−1
,

provided that q = 1.
Estimates for RN,ε(t). We observe that∫ K

0

k + ε1/β

k2β + ε2
dk

k2α−1
≤ C,(5.1)

∫ K

0

(
ε1/β + k

ε2 + k2β

)qm+1
dk

k2α−1
≤ C(1 + εγ(m)),(5.2)

∫ K

0

(
ε1/β + k

ε2 + k2β

)2+qm+qm′ dk

k2α−1
≤ C(1 + εγ(m̂m′)),(5.3)

with

γ(m) :=
1

β
[2− 2α+ (qm + 1)(1− 2β)],(5.4)

γ(m̂m′) :=
1

β
[2− 2α+ (qm + qm′ + 2)(1− 2β)].(5.5)

We conclude therefore that

|RN,ε(t)|2 ≤ Cεµ,(5.6)

with

µ := 2N(1− p)− 4 + κ,(5.7)

κ :=
1

β

[
2f ′(2− α− 2β) + 2f ′′(3− 2α− 2β)(5.8)

+(1− 2β)
∑ ′ (qm + qm′) + 2(1− 2β)

∑′′ qm
]
,

where the summation
∑′

extends over the edges m̂m′ of the diagram F ′ for which
γ(m̂m′) < 0 and

∑′′ extends over the vertexes m of A(F) \ AN (F), for which
γ(m) < 0 (see (5.4), (5.5)) and f ′, f ′′ denote the cardinalities of the respective sets of
edges and vertexes. Obviously,

f ′ ≤ c, f ′′ ≤ e− e′,(5.9)
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with c the cardinality of AN (F) and e the number of edges of F (cf. (4.34)). Note
that c+ 2e = N .

Using
∑ ′ (qm + qm′) + 2

∑′′ qm ≤ 2e and 2β > 1, we can write that

κ ≥ 2

β
[f ′(2− α− 2β) + f ′′(3− 2α− 2β) + e(1− 2β)] .(5.10)

Since N = c+ 2e we conclude from (5.9) and (5.10) that

µ ≥ −4 + 2N(1− p) + 2

β
[f ′(2− α− 2β) + f ′′(3− 2α− 2β) + e(1− 2β)](5.11)

≥ −4 + 2(c− f ′)(1− p)
+
2

β
{f ′[2− α− (1 + p)β] + f ′′(3− 2α− 2β) + e(1− 2pβ)} > 0,

provided that 2pβ < 1 (note that then necessarily 2 − α − (1 + p)β > 0) and N is
sufficiently large.

Estimates for In,ε(t) for n ≥ 1. Using (5.1)–(5.2) and

∫ K

0

(k + ε
1
β )2+qm+qm′−rm,m′

(k2β + ε2)2+qm+qm′

dk

k2α−1
≤ C(1 + εγ̃(m̂m′)),

with

γ̃(m̂m′) :=
1

β
[2− 2α+ (qm + qm′ + 2)(1− 2β)− rm,m′ ],(5.12)

we conclude that

|In,ε(t)| ≤ Cεµ,(5.13)

where µ = n(1− p) + κ and

κ :=
1

β

[
2f ′(2− α− 2β) + f ′′(3− 2α− 2β)

+(1− 2β)
∑ ′ (qm + qm′) + (1− 2β)

∑′′ qm − 1
]
.

The summation
∑′

extends over the edges m̂m′ of the diagram F ′ for which γ̃(m̂m′) <
0 and

∑′′ extends over the vertexes m of A(F)\An+1(F) for which γ(m) < 0. f ′, f ′′
denote the cardinalities of the respective sets of edges and vertexes. Finally, obtain
that

µ ≥ (c+ 1− 2f ′ + e)(1− p)
+
1

β
[2pβ + 2f ′(2− α− (1 + p)β) + f ′′(3− 2α− 2β) + e(1− 2pβ)] > 0.

In conclusion, we proved that the utmost left-hand side of (4.10) tends to Dt as
ε ↓ 0, provided that α+ β < 1.
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6. Case 2. 1 < α + β < 1 + 1/p, 0 ≤ p < 1—FBM. For α + β > 1, it is
straightforward to check that

lim
ε↓0

I0,ε = Dt2H ,

provided that q = β/(α+ 2β − 1). Here

D =

∫
R

d

e−|k|2β − 1 + |k|2β
|k|2α+4β−1

(
I− k⊗ k

|k|2
)
a(0)

|k|d−1
dk

and the Hurst exponent H is given by

1/2 < H = 1/2 +
α+ β − 1

2β
< 1.

6.1. Case 2a. We assume that

3/2 < α+ β, α+ 2β < 1 + 1/p, 0 ≤ p < 1.

We shall only carry out the estimates of RN,ε(t). One can easily obtain the respective
estimates of In,ε(t). These estimates are very similar to the corresponding part of
section 5. We use the notation introduced there.

As before we need only to consider the case 2β > 1 (cf. (4.36)). Note that∫ K

0

(εq/β + k)dk

(ε2q + k2β)k2α−1
≤ C(1 + εγ),

∫ K

0

(
εq/β + k

ε2q + k2β

)qm+1
dk

k2α−1
≤ C(1 + εγ(m)),

and ∫ K

0

(
εq/β + k

ε2q + k2β

)2+qm+qm′

× dk

k2α−1
≤ C(1 + εγ(m̂m′)),

with

γ :=
3− 2α− 2β
α+ 2β − 1 ,(6.1)

γ(m) :=
3− 2α− 2β + qm(1− 2β)

α+ 2β − 1 ,(6.2)

γ(m̂m′) :=
4− 2α− 4β + (qm + qm′)(1− 2β)

α+ 2β − 1(6.3)

(cf. (5.4)–(5.5)).
Estimating the same way as in (5.6)–(5.11) we obtain

|RN,ε(t)|2 ≤ Ct4εµ,
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with

µ := 2N(1− p) + 4(1− 2q) + κ,(6.4)

κ := 2(e′ + f ′′)
3− 2α− 2β
α+ 2β − 1

+
1

α+ 2β − 1
[
2f ′(2− α− 2β) + (1− 2β)

∑ ′ (qm + qm′) + 2(1− 2β)
∑′′ qm

]
(cf. (5.9)). We have

µ ≥ 4(1− 2q) + 2N(1− p) + 2(e′ + f ′′)3− 2α− 2β
α+ 2β − 1

+
2

α+ 2β − 1 [f
′(2− α− 2β) + e(1− 2β)]

≥ 4(1− 2q) + 2(c+ 2e)(1− p) + 2e3− 2α− 2β
α+ 2β − 1

+
2

α+ 2β − 1 [c(2− α− 2β) + e(1− 2β)]

≥ 4(1− 2q) + 2Np 1 + 1/p− α− 2β
α+ 2β − 1 > 0,

provided that N is sufficiently large. This in turn implies that |RN,ε(t)|2 vanishes as
ε ↓ 0 for such a choice of N .

6.2. Case 2b. Here we assume that

1 < α+ β < 3/2, α+ 2β < 1 + 1/(2p) + (α+ β − 1)/p, 0 ≤ p < 1.

In this case one can write κ in (6.4) as

κ = 2f ′′
3− 2α− 2β
α+ 2β − 1 +

1

α+ 2β − 1
×
[
2f ′(2− α− 2β) + (1− 2β)

∑ ′ (qm + qm′) + 2(1− 2β)
∑′′ qm

]
and hence

µ ≥ 4(1− 2q) + 2(c+ 2e)(1− p)
+ 2f ′′

3− 2α− 2β
α+ 2β − 1 +

2

α+ 2β − 1 [f
′(2− α− 2β) + e(1− 2β)]

≥ 4(1− 2q) + 2ep (α+ β − 1)/p+ 1/(2p)− α− 2β
α+ 2β − 1 + 2f ′′

3− 2α− 2β
α+ 2β − 1

+ 2(c− f ′)(1− p) + 2f ′p 1 + 1/p− α− 2β
α+ 2β − 1 > 0,

provided that N is sufficiently large. This in turn implies that |RN,ε(t)|2 vanishes as
ε ↓ 0 for such a choice of N .
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7. FBM limit with p ≥ 1: Heuristics. In this section we give an argument
indicating that the FBM limit holds for p > 1. The argument is similar to the one
given in [8].

Let Uε(t,x) be the Gaussian velocity with energy spectrum given by

Eε(k) = a(εpk)

k2α−1
.(7.1)

Then it follows from the spectral representation of the velocity correlation function
that Uε is related to V via

V

(
t

ε2q
,
x

εp

)
= εp(1−α)Uε

(
t

ε2(q−pβ)
,x

)
.

With a unique pair of parameters q, ηε,

q = β/(α+ 2β − 1), ηε = ε
1+p−p(α+2β),(7.2)

the equation of motion can be written as

dxε(t)

dt
=

1

η2q−1
ε

Uε

(
t

η2q
ε

,xε(t)

)
.(7.3)

Since ηε must tend to zero we require that

α+ 2β < 1 +
1

p
.(7.4)

Condition (7.4) is also related to the fact that the velocity Uε has increasingly smaller
scales as ε tends to zero.

The following physical argument shows that, under the conditions (7.4) and

α+ β > 1,

the ultraviolet divergence in Uε has no physical significance. The small-scale velocity
associated with high wave number |k| has the amplitude

(∫
c1|k|≤|k′|≤c2|k|

E(k′)d|k′|
)1/2

∼ |k|1−α, |k| � 1,

and the correlation time is of the order |k|−2β . Then particles transported by small-
scale velocity travel a distance less than or equal to the sum of t|k|2β number uncorre-
lated random variables of magnitude |k|1−α|k|−2β . Thus, on the time scale t ∼ η−2q

ε ,
the displacement caused by high wave number k is of the order less than or equal to√
η−2q
ε |k|2β |k|1−α−2β , as suggested by the turbulent diffusion limit theorem for mix-

ing flows [4], which equals η−q
ε |k|1−α−β and is always smaller than η−1

ε (the spatial
scale of observation) if α + β > 1 and q < 1 (superdiffusive scaling). With (7.2) the
two conditions (α + β > 1 and q < 1) are equivalent. It is clear that for |k| = O(1)
the previous argument is still valid.

Now, if we neglect the high wave numbers in (7.3) the equation becomes

dxε(t)/dt = η1−2q
ε V(t/η2q

ε ,x
ε(t)),(7.5)
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which has the asymptotic solution

xε(0) + ηε

∫ t/η2q
ε

0

V(xε(0), s)ds(7.6)

converging to an FBM (Theorems 1 and 2).
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Abstract. This paper is concerned with a delay differential equation model for the interaction
between two species, the adult members of which are in competition. The competitive effects are of
the Lotka–Volterra kind, and in the absence of competition it is assumed that each species evolves
according to the predictions of a simple age-structured model which reduces to a single equation for
the total adult population. For each of the two species the model incorporates a time delay which
represents the time from birth to maturity of that species. Thus, the time delays appear in the adult
recruitment terms.

The dynamics of the model are determined, and global stability results are established for each
equilibrium. The equilibria of the model involve the maturation delays. The criteria for global
convergence to each equilibrium are sharp and involve these delays.

A reaction-diffusion extension of the model is also studied for the case when only the adult
members of each species can diffuse. We prove the existence of a traveling front solution connecting
the two boundary equilibria for the case when there is no coexistence equilibrium. This represents
invasion by the stronger species of territory previously inhabited only by the weaker. The proof
of the existence of such a front uses Wu and Zou’s theory for traveling front solutions of delayed
reaction-diffusion systems.

Key words. competition, stage structure, time delay, global stability, reaction-diffusion, trav-
eling front
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1. Introduction. This paper is concerned with the following delayed Lotka–
Volterra-type model for the adult members of two species U and V in competition,

dU(t)

dt
= αu

∫ ∞

0

fu(s)e−γusU(t− s) ds− βuU2(t) − c1U(t)V (t),

dV (t)

dt
= αv

∫ ∞

0

fv(s)e
−γvsV (t− s) ds− βvV 2(t) − c2U(t)V (t)

(1.1)

and also with a reaction-diffusion extension thereof. In proposing the system (1.1), it
is assumed that competition effects are of the classical Lotka–Volterra kind. It is also
assumed that the adult numbers of each species, in the absence of the other species,
evolve according to a delay equation of the form

du(t)

dt
= α

∫ ∞

0

f(s)e−γsu(t− s) ds− βu2(t).(1.2)

Equation (1.2) can be regarded as a generalization of the second equation of the
system

u′i(t) = αum(t) − γui(t) − α e−γτum(t− τ),
u′m(t) = α e−γτum(t− τ) − βu2

m(t),
(1.3)
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which was proposed by Aiello and Freedman [1] as a model of a single species, where
ui denotes the number of sexually immature members of the species and um the
number of mature adult members. Note that, in system (1.3), the second equation is
uncoupled from the first and thus it is sufficient to consider this second equation on
its own. The parameter τ in (1.3) measures the time from birth to maturity, and the
e−γτ terms allow for the fact that not all immatures survive to maturity (γ in (1.3)
is the death rate of immatures, while β measures deaths of matures). An assumption
behind (1.3) is that all individuals take the same amount of time τ to become mature.
If we instead allow the possibility that an individual could become mature at any age,
and if we denote by f(s) ds the probability that the maturation time is between s and
s+ ds with ds infinitesimal, and

∫∞
0
f(s) ds = 1, then simple modeling leads to (1.2)

as a generalization of the second equation of (1.3). Of course, f(s) will be small when
s is small, and when s is large, and it is quite reasonable to take f(s) = 0 for all s
above some finite value, as we shall do in much of the paper.

Thus, in our model (1.1), we assume that each species on its own grows not
according to the logistic equation or delayed logistic equation but according to the
predictions of the simple stage structured model (1.2) which is arguably more realistic
as a model of a single species. The ci terms in (1.1) are the competition effects; c1 and
c2 measure the competitive effect of V on U , and U on V , respectively. Of course, U
and V in (1.1) refer only to the adult numbers of the two species. Thus, it is assumed
that competition occurs only between the adults. Since many species strongly protect
their young, we feel this is not too unrealistic an assumption.

Competition systems with time delays have been studied by many authors. For
example, Gopalsamy [3] studied the two-species delayed competition system

du/dt = u

(
γ1 − a1u− b1

∫ 0

−T
K1(s)v(t+ s) ds

)
,

dv/dt = v

(
γ2 − a2

∫ 0

−T
K2(s)u(t+ s) ds− b2v

)
,

in which the delays are in the interspecies competition terms, and established a re-
sult on the global stability of the coexistence equilibrium, showing that when the
intraspecies competition is stronger than the interspecies competition, nonconstant
oscillatory solutions are not possible.

In the present paper we will show that the global dynamics of our system (1.1)
can be completely determined, except in the case when the boundary equilibria Êu
and Êv are both linearly stable. In this case one expects that the outcome of the
competition will depend on the initial conditions. For other cases, the possibilities
can be enumerated in a similar way to the classical Lotka–Volterra competition model
without delay, as described in the book by Murray [6]. If one boundary equilibrium
is linearly stable and the other unstable, we show that solutions converge globally
to the stable boundary equilibrium. When both boundary equilibria are linearly
unstable, we show that solutions converge globally to the coexistence equilibrium.
Thus, the conditions for global stability are sharp and can be interpreted ecologically.
Furthermore, the conditions involve the maturation delay kernels fu(s) and fv(s), and
thus the role of these maturation delays can be elucidated. This is important since the
comparison approach we adopt in this paper does not always, in other applications,
elucidate clearly the role of the time delays and tends rather to furnish conditions
which are merely sufficient for convergence and only involve the other parameters of
the model.
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It is straightforward to show that the solutions of system (1.1), subject to (2.8)
below, satisfy U(t), V (t) > 0 on (0,∞). This fact is important for both the modeling
and the analysis.

2. Equilibria and their stability. System (1.1) has four equilibria, determined
by setting dU/dt = dV/dt = 0 in (1.1), and these are

E0 =(0, 0), Êu=

(
αu
βu

∫ ∞

0

fu(s)e−γusds, 0
)
, Êv=

(
0,
αv
βv

∫ ∞

0

fv(s)e
−γvsds

)
,

and

Ê = (Û , V̂ ),

where

Û =
βvαu

∫∞
0
fu(s)e−γusds− c1αv

∫∞
0
fv(s)e

−γvsds
βuβv − c1c2

and

V̂ =
βuαv

∫∞
0
fv(s)e

−γvsds− c2αu
∫∞
0
fu(s)e−γusds

βuβv − c1c2
provided Û , V̂ > 0. Of course, the feasibility of the fourth equilibrium Ê depends on
the parameters. As we shall show, it is feasible if either (i) the boundary equilibria
Êu and Êv are both linearly unstable, or (ii) the boundary equilibria are both linearly
stable.

We will begin by investigating the linearized stability of each equilibrium. Starting
with E0 = (0, 0), the linearization of (1.1) about this equilibrium is

dU(t)

dt
= αu

∫ ∞

0

fu(s)e−γusU(t− s) ds,

dV (t)

dt
= αv

∫ ∞

0

fv(s)e
−γvsV (t− s) ds.

(2.1)

The characteristic equation resulting from (2.1) is(
λ− αu

∫ ∞

0

fu(s)e−s(γu+λ)ds

)(
λ− αv

∫ ∞

0

fv(s)e
−s(γv+λ)ds

)
= 0,

the roots of which are the zeros of the first and the second bracketed factors, and in
each of these the existence of a real positive root λ can be seen by plotting against λ
the graphs of y = λ, y = αu

∫∞
0
fu(s)e−s(γu+λ)ds, and y = αv

∫∞
0
fv(s)e

−s(γv+λ)ds.
Therefore, (0, 0) is linearly unstable.

The linearization of (1.1) about Êu is

dU

dt
= αu

∫ ∞

0

fu(s)e−γusU(t− s) ds− 2αuU(t)

∫ ∞

0

fu(s)e−γus ds

−c1αu
βu

V (t)

∫ ∞

0

fu(s)e−γusds,

dV

dt
= αv

∫ ∞

0

fv(s)e
−γvsV (t− s) ds− c2αu

βu
V (t)

∫ ∞

0

fu(s)e−γus ds.

(2.2)
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The characteristic equation resulting from (2.2) is(
λ+ c2αuβ

−1
u

∫ ∞

0

fu(s)e−γus ds− αv
∫ ∞

0

fv(s)e
−s(γv+λ)ds

)

×
(
λ+ 2αu

∫ ∞

0

fu(s)e−γus ds− αu
∫ ∞

0

fu(s)e−s(γu+λ) ds

)
= 0.

The eigenvalues of the linearization about Êu are therefore the roots λ of the equation

λ+ 2αu

∫ ∞

0

fu(s)e−γusds = αu

∫ ∞

0

fu(s)e−s(γu+λ) ds(2.3)

together with the roots λ of the equation

λ+ c2αuβ
−1
u

∫ ∞

0

fu(s)e−γus ds = αv

∫ ∞

0

fv(s)e
−s(γv+λ)ds.(2.4)

It is not difficult to see that all the roots of (2.3) satisfy Reλ < 0. We shall now find
the condition which determines that all roots of (2.4) satisfy Reλ < 0. Assume, for
contradiction, that there exists a root λ∗ of (2.4) such that Reλ∗ ≥ 0. Then∣∣∣∣λ∗ + c2αuβ

−1
u

∫ ∞

0

fu(s)e−γus ds
∣∣∣∣ =

∣∣∣∣αv
∫ ∞

0

fv(s)e
−s(γv+λ)ds

∣∣∣∣
≤ αv

∫ ∞

0

fv(s)e
−sγv |e−sλ∗ |ds

= αv

∫ ∞

0

fv(s)e
−sγve−sReλ∗ds

≤ αv
∫ ∞

0

fv(s)e
−sγvds,

since Reλ∗ ≥ 0. This implies that λ∗ is in the circle in the complex λ plane centered
at λ = −c2αuβ−1

u

∫∞
0
fu(s)e−γus ds and of radius αv

∫∞
0
fv(s)e

−sγvds. Accordingly,
we shall have a contradiction if

c2αu

∫ ∞

0

fu(s)e−γus ds > βuαv
∫ ∞

0

fv(s)e
−γvsds.(2.5)

Therefore, if condition (2.5) holds, then the equilibrium Êu is linearly stable.
In a similar way, we can show that Êv is linearly stable if

c1αv

∫ ∞

0

fv(s)e
−γvs ds > βvαu

∫ ∞

0

fu(s)e−γusds.(2.6)

Thus, if (2.5) and (2.6) both hold, then Êu and Êv are both linearly stable, and the
numerators of the components Û , V̂ of the equilibrium Ê are both negative. But, at
the same time, (2.5) and (2.6) imply that

βv <
c1αv

∫∞
0
fv(s)e

−γvs ds
αu
∫∞
0
fu(s)e−γusds

, βu <
c2αu

∫∞
0
fu(s)e−γus ds

αv
∫∞
0
fv(s)e−γvsds

so that βvβu < c1c2, i.e., the denominators of Û , V̂ are negative too. Thus, under
these circumstances, Û , V̂ > 0 so that the equilibrium Ê is feasible.
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In a similar way, we can see that if (2.5) and (2.6) are both reversed, then the
boundary equilibria Êu and Êv are both linearly unstable and again Ê is feasible
under these circumstances. However, if one of the boundary equilibria Êu, Êv is
stable and the other unstable, then the coexistence equilibrium Ê is not feasible.

In the next two sections, we shall prove theorems on the global asymptotic sta-
bility of the equilibria Êu, Êv, and Ê for the case when the kernels fu(s), fv(s) have
compact support, that is, fu(s) = fv(s) = 0 for all s ≥ τ , for some τ > 0, and
normalized such that

∫ τ
0
fu(s) ds =

∫ τ
0
fv(s) ds = 1. In this case the system (1.1)

becomes

dU(t)

dt
= αu

∫ τ

0

fu(s)e−γusU(t− s) ds− βuU2(t) − c1U(t)V (t),

dV (t)

dt
= αv

∫ τ

0

fv(s)e
−γvsV (t− s) ds− βvV 2(t) − c2U(t)V (t).

(2.7)

For initial data, we assume that

U(t), V (t) ≥ 0 for − τ ≤ t ≤ 0, with U(0), V (0) > 0.(2.8)

Before proceeding, we shall need the following theorem.
Theorem 1. Let u(t) be the solution of

du(t)

dt
= αu

∫ τ

0

fu(s)e−γusu(t− s) ds− βuu2(t) −Au(t),(2.9)

where u(t) > 0 for −τ ≤ t ≤ 0. If

0 ≤ A < αu
∫ τ

0

fu(s)e−γus ds,

then limt→∞ u(t) = û, where

û =
1

βu

[
αu

∫ τ

0

fu(s)e−γus ds−A
]
.(2.10)

Proof. Let us first deal with the cases when u(t) is eventually monotonically
decreasing or eventually monotonically increasing. In the former case, positivity of
solutions immediately yields that u(t) must approach some limit û ≥ 0. This limit
must be an equilibrium of (2.9) and is therefore either zero or the value stated. Zero
is ruled out since a standard linearized analysis yields that the zero solution of (2.9)
is linearly unstable under the stated condition on A.

If u(t) is eventually monotonically increasing, then, when t is sufficiently large,
u(t− s) ≤ u(t) for all s ∈ [0, τ ] so that

du(t)

dt
≤ αuu(t)

∫ τ

0

fu(s)e−γus ds− βuu2(t) −Au(t)

and hence u(t) must be bounded above. Hence û = limt→∞ u(t) exists and is an equi-
librium of (2.9), and obviously û > 0 in this case. The conclusion follows immediately.

The remaining case to consider is that in which u(t) is neither eventually mono-
tonically decreasing nor increasing. Of the various possibilities which then arise, we
shall treat in detail the case in which u(t) has an infinite sequence of local maxima
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{tj}, j = 1, 2, 3, . . ., all greater than û, with tj → ∞. Other cases can be dealt with
similarly. At the times tj , u(tj) > û, u̇(tj) = 0, and ü(tj) < 0. We claim that
supt≥t1 u(t) = u(tk) for some integer k. If this is false, it means that after every
local maximum u(tj) there is another that is higher, and therefore that a subsequence
of {tj} (still denoted {tj}) can be found with the property that u(t) < u(tj) for
all t1 ≤ t < tj and each j. (The subsequence is generated by including each local
maximum that is higher than every one before it.) Then, for each j,

0 = u̇(tj) = αu

∫ τ

0

fu(s)e−γusu(tj − s) ds− βuu2(tj) −Au(tj)

≤ u(tj)

(
αu

∫ τ

0

fu(s)e−γus ds− βuu(tj) −A
)

< u(tj)

(
αu

∫ τ

0

fu(s)e−γus ds− βuû−A
)

= 0,

which is a contradiction. Thus, supt≥t1 u(t) = u(tk) for some integer k, and we let
s1 = tk. Now, by applying this same argument to the interval t ≥ tk+1 we can infer
the existence of a tl (l > k) with supt≥tk+1

u(t) = u(tl), and we let s2 = tl. This
process can be continued to generate an infinite sequence {sj} of times such that
sj+1 > sj , sj → ∞, u(t) ≤ u(sj) for all t > sj , and u̇(sj) = 0.

Let y(t) = u(t) − û; then we wish to prove that y(t) → 0 as t → ∞. We have
y(sj) ≥ y(sj+1) > 0 (since u(sj) ≥ u(sj+1) and u(sj) > û), and it is now enough to
show that y(sj) → 0 as j → ∞. In terms of y, equation (2.9) becomes, at t = sj ,

0 = ẏ(sj) = αu

∫ τ

0

fu(s)e−γusy(sj − s) ds− 2βuy(sj)û− βuy2(sj) −Ay(sj)

so that

αu

∫ τ

0

fu(s)e−γusy(sj − s) ds

= 2βuy(sj)û+ βuy
2(sj) +Ay(sj)

= 2βuy(sj)û+ βuy
2(sj) +

[
αu

∫ τ

0

fu(s)e−γus ds− βuû
]
y(sj)

= βuy(sj)û+ βuy
2(sj) + αuy(sj)

∫ τ

0

fu(s)e−γus ds

≥
(
αu

∫ τ

0

fu(s)e−γus ds+ βuû

)
y(sj),

where we have used (2.10). From the sequence {sj} we shall now extract a further
subsequence, still denoted {sj}, such that sj − τ ≥ sj−1. Then y(sj − s) ≤ y(sj−1)
for all s ∈ [0, τ ] and therefore

y(sj) ≤
αu
∫ τ
0
fu(s)e−γusy(sj − s) ds

αu
∫ τ
0
fu(s)e−γus ds+ βuû

≤ S y(sj−1),

where

S =
αu
∫ τ
0
fu(s)e−γus ds

αu
∫ τ
0
fu(s)e−γus ds+ βuû

.
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Now, S < 1 and S is independent of j. Therefore, y(sj) → 0 as j → ∞. We conclude
that limt→∞ u(t) = û, and the proof of Theorem 1 is complete.

2.1. Global stability of Êu. We shall prove a theorem on the global stability
of the equilibrium point

Êu =

(
αu
βu

∫ τ

0

fu(s)e−γusds, 0
)

of system (2.7), in the situation when the other boundary equilibrium

Êv =

(
0,
αv
βv

∫ τ

0

fv(s)e
−γvsds

)

of (2.7) is linearly unstable. This means that the competition between the two species
U and V is strong and the species cannot coexist. One of them, in this case the V
population, dies out.

In the proof of Theorem 2 below, and in subsequent theorems, we shall use a
comparison principle. Comparison principles do not always hold for delay equations;
it depends very much on how the delay appears in the equations. For scalar equations,
the essential requirement for a comparison principle to hold is that the reaction term
be a nondecreasing function of the delayed variable (see, for example, Martin and
Smith [5]). The following proposition will be useful and follows easily from the results
in [5].

Proposition 1. Let v(t) be a solution of

dv(t)

dt
= α

∫ τ

0

f(s)e−γsv(t− s) ds− βv2(t) − λv(t), t > 0,

and u(t) some function satisfying

du(t)

dt
≥ α

∫ τ

0

f(s)e−γsu(t− s) ds− βu2(t) − λu(t), t > 0.(2.11)

Assume also that u(s) ≥ v(s) for all s ∈ [−τ, 0]. Then u(t) ≥ v(t) for all t > 0.
Remarks. An analogous result holds with the inequalities reversed, and we shall

need this also. In our applications of these comparison results we shall often find that
a differential inequality of the form (2.11) holds only for t above some value, say t1,
and not for all t > 0. In that case the initial time is simply thought of as t1 rather
than 0, and u(t) ≥ v(t) is arranged to hold for t ≤ t1 by appropriate definition of v(t)
for values of t ≤ t1. In the interests of clarity, we shall not always elaborate on this
latter point in detail.

Theorem 2. Let the initial data satisfy (2.8), and assume that

c2αu

∫ τ

0

fu(s)e−γus ds > βuαv
∫ τ

0

fv(s)e
−γvs ds(2.12)

and

c1αv

∫ τ

0

fv(s)e
−γvs ds < βvαu

∫ τ

0

fu(s)e−γus ds.(2.13)

Then U(t) → αu

βu

∫ τ
0
fu(s)e−γus ds and V (t) → 0 as t→ ∞.
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Proof. Let U = lim supt→∞ U(t), U = lim inft→∞ U(t), V = lim supt→∞ V (t),
and V = lim inft→∞ V (t). Now, since

dU(t)

dt
= αu

∫ τ

0

fu(s)e−γusU(t− s) ds− βuU2(t) − c1U(t)V (t)

≤ αu
∫ τ

0

fu(s)e−γusU(t− s) ds− βuU2(t),

we can conclude from this and Theorem 1 that U ≤ UB , where

UB =
αu
βu

∫ τ

0

fu(s)e−γus ds

is the U component of the equilibrium Êu. By positivity of V (t) we also know that
V ≥ 0. To complete the proof it suffices to find two sequences {Mu

m}, {Nv
m} with the

properties that U ≥ Mu
m for each m with Mu

m → UB as m → ∞ (so that U ≥ UB),
and V ≤ Nv

m for each m with Nv
m → 0 as m→ ∞. As a first step in this process, let

v1(t) satisfy

dv1(t)

dt
= αv

∫ τ

0

fv(s)e
−γvsv1(t− s) ds− βvv21(t), t > 0,

with, for s ≤ 0, v1(s) ≡ max{V (s), s ∈ [−τ, 0]} > 0. Then

lim
t→∞ v1(t) =

αv
βv

∫ τ

0

fv(s)e
−γvs ds.

Since U(t) and V (t) are nonnegative,

dV (t)

dt
= αv

∫ τ

0

fv(s)e
−γvsV (t− s) ds− βvV 2(t) − c2U(t)V (t)

≤ αv
∫ τ

0

fv(s)e
−γvsV (t− s) ds− βvV 2(t).

By comparison, V (t) ≤ v1(t) and therefore

V = lim sup
t→∞

V (t) ≤ lim
t→∞ v1(t) =

αv
βv

∫ τ

0

fv(s)e
−γvs ds := Nv

1 .

Let ε > 0 be sufficiently small such that

0 < ε <
βvαu

∫ τ
0
fu(s)e−γus ds− c1αv

∫ τ
0
fv(s)e

−γvs ds
βvc1

.(2.14)

There exists t1 > τ such that V (t) ≤ Nv
1 + ε for all t ≥ t1. For t > t1 let u1(t) evolve

according to

du1(t)

dt
= αu

∫ τ

0

fu(s)e−γusu1(t− s) ds− βuu2
1(t) − c1u1(t)(Nv

1 + ε),

and for t ∈ [t1 − τ, t1] let

u1(t) ≡ min{U(t), t ∈ [t1 − τ, t1]},
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which is strictly positive, since U(t) > 0 on (0,∞). It is not necessary to define u1(t)
for t < t1 − τ since Proposition 1 is now being applied with initial time t1 rather
than 0.

Since ε satisfies (2.14), Theorem 1 yields that

lim
t→∞u1(t) =

1

βu

[
αu

∫ τ

0

fu(s)e−γus ds− c1(Nv
1 + ε)

]
.

Now, since Nv
1 + ε ≥ V (t) for t ≥ t1, we have, for such t,

dU(t)

dt
= αu

∫ τ

0

fu(s)e−γusU(t− s) ds− βuU2(t) − c1U(t)V (t)

≥ αu
∫ τ

0

fu(s)e−γusU(t− s) ds− βuU2(t) − c1U(t)(Nv
1 + ε).

By comparison, U(t) ≥ u1(t) and therefore

U = lim inf
t→∞ U(t) ≥ lim

t→∞u1(t) =
1

βu

[
αu

∫ τ

0

fu(s)e−γus ds− c1(Nv
1 + ε)

]
.

Since this is true for any ε > 0 satisfying (2.14), it follows that U ≥Mu
1 , where

Mu
1 =

1

βu

[
αu

∫ τ

0

fu(s)e−γusds− c1Nv
1

]
.

Let ε > 0. There exists t2 > 0 such that U(t) ≥Mu
1 − ε for all t ≥ t2. For t > t2

let v2(t) be the solution of

dv2(t)

dt
= αv

∫ τ

0

fv(s)e
−γvsv2(t− s) ds− βvv22(t) − βuαv

∫ τ
0
fv(s)e

−γvs ds
αu
∫ τ
0
fu(s)e−γus ds

(Mu
1 − ε)v2

with appropriate “initial data” on the interval [t2 − τ, t2]. Now

dV (t)

dt
= αv

∫ τ

0

fv(s)e
−γvsV (t− s) ds− βvV 2(t) − c2U(t)V (t)

≤αv
∫ τ

0

fv(s)e
−γvsV (t−s) ds−βvV 2(t)− βuαv

∫ τ
0
fv(s)e

−γvs ds
αu
∫ τ
0
fu(s)e−γus ds

(Mu
1 − ε)V (t),

where we have used (2.12). By comparison, V (t) ≤ v2(t). But, by Theorem 1, and
using the fact that Mu

1 < (αu/βu)
∫ τ
0
fu(s)e−γus ds,

lim
t→∞ v2(t) =

1

βv

[
αv

∫ τ

0

fv(s)e
−γvsds− βuαv

∫ τ
0
fv(s)e

−γvsds
αu
∫ τ
0
fu(s)e−γusds

(Mu
1 − ε)

]
.

Hence

V = lim sup
t→∞

V (t) ≤ lim
t→∞ v2(t)

=
1

βv

[
αv

∫ τ

0

fv(s)e
−γvs ds− βuαv

∫ τ
0
fv(s)e

−γvs ds
αu
∫ τ
0
fu(s)e−γus ds

(Mu
1 − ε)

]
.
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Since ε is arbitrary, we conclude that V ≤ Nv
2 , where

Nv
2 =

1

βv

[
αv

∫ τ

0

fv(s)e
−γvs ds− βuαv

∫ τ
0
fv(s)e

−γvs ds
αu
∫ τ
0
fu(s)e−γus ds

Mu
1

]
.(2.15)

Now, let ε > 0 be sufficiently small such that the expression given below for
limt→∞ u2(t) is positive. That this is possible follows from the second inequal-
ity (2.13) in the hypotheses of Theorem 2, together with the fact that Nv

2 satisfies
Nv

2 < (αv/βv)
∫ τ
0
fv(s)e

−γvs ds.
There exists t3 > 0 such that V (t) ≤ Nv

2 + ε for all t ≥ t3. For t > t3 let u2(t) be
a suitable solution of

du2(t)

dt
= αu

∫ τ

0

fu(s)e−γusu2(t− s) ds− βuu2
2(t) − c1(Nv

2 + ε)u2(t).

Then, since

dU(t)

dt
= αu

∫ τ

0

fu(s)e−γusU(t− s) ds− βuU2(t) − c1U(t)V (t)

≥ αu
∫ τ

0

fu(s)e−γusU(t− s) ds− βuU2(t) − c1(Nv
2 + ε)U(t),

we have U(t) ≥ u2(t). Also

lim
t→∞u2(t) =

1

βu

[
αu

∫ τ

0

fu(s)e−γus ds− c1(Nv
2 + ε)

]
.

Hence

U ≥ 1

βu

[
αu

∫ τ

0

fu(s)e−γus ds− c1(Nv
2 + ε)

]
.

By the arbitrariness of ε > 0, U ≥Mu
2 , where

Mu
2 =

1

βu

[
αu

∫ τ

0

fu(s)e−γus ds− c1Nv
2

]
.(2.16)

Continuing this process, we obtain two sequences Nv
m, Mu

m, m = 1, 2, 3, . . ., such that,
for m ≥ 2,

Nv
m =

1

βv

[
αv

∫ τ

0

fv(s)e
−γvsds− βuαv

∫ τ
0
fv(s)e

−γvsds
αu
∫ τ
0
fu(s)e−γusds

Mu
m−1

]
(2.17)

and

Mu
m =

1

βu

[
αu

∫ τ

0

fu(s)e−γusds− c1Nv
m

]
.(2.18)

Combining these,

Nv
m =

c1αv
∫ τ
0
fv(s)e

−γvs ds
βvαu

∫ τ
0
fu(s)e−γus ds

Nv
m−1,
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which confirms that all the Nv
m are positive. Furthermore, by assumption (2.13),

Nv
m → 0 as m→ ∞. Hence, by (2.18),

lim
m→∞M

u
m =

αu
βu

∫ τ

0

fu(s)e−γusds = UB .

Therefore

lim
t→∞U(t) = UB

and

lim
t→∞V (t) = 0,

which completes the proof of Theorem 2.
The following theorem is an analogue of Theorem 2 for the situation when the

equilibrium Êu is unstable and Êv is asymptotically stable. The proof is similar to
that of Theorem 2.

Theorem 3. Let the initial data satisfy (2.8), and assume that

c2αu

∫ τ

0

fu(s)e−γus ds < βuαv
∫ τ

0

fv(s)e
−γvs ds

and

c1αv

∫ τ

0

fv(s)e
−γvs ds > βvαu

∫ τ

0

fu(s)e−γus ds.

Then V (t) → αv

βv

∫ τ
0
fv(s)e

−γvs ds and U(t) → 0, as t→ ∞.

2.2. Global stability of the coexistence state Ê. We will prove a theorem
on the global stability of the coexistence equilibrium Ê = (Û , V̂ ) of system (2.7),
where

Û =
βvαu

∫ τ
0
fu(s)e−γusds− c1αv

∫ τ
0
fv(s)e

−γvsds
βuβv − c1c2

and

V̂ =
βuαv

∫ τ
0
fv(s)e

−γvsds− c2αu
∫ τ
0
fu(s)e−γusds

βuβv − c1c2 .

The hypotheses in Theorem 4 below are those which imply linear instability of both
of the boundary equilibria Êu and Êv. In this case the coexistence equilibrium Ê
is globally asymptotically stable. The conditions (2.19) and (2.20) below have vari-
ous ecological interpretations including weak interspecific competition and significant
adult mortality. (Recall that deaths rates of immatures are measured by γu and γv,
which arise in the conditions in a somewhat different way.)

Theorem 4. If the initial data satisfies (2.8), and if the following two conditions
hold,

c2αu

∫ τ

0

fu(s)e−γus ds < βuαv
∫ τ

0

fv(s)e
−γvsds(2.19)

and

c1αv

∫ τ

0

fv(s)e
−γvs ds < βvαu

∫ τ

0

fu(s)e−γusds,(2.20)

then U(t) → Û and V (t) → V̂ as t→ ∞.
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Proof. Recall that in the proof of Theorem 2 we were able to establish U ≤ UB
and V ≥ 0 in one step, and thereafter we established a sequence of lower bounds Mu

m

for U and a sequence of upper bounds Nv
m for V . These sequences approached limits

UB and 0, respectively, establishing our result.
Our approach to proving Theorem 4 is similar, but the situation is more compli-

cated since we are concerned with the coexistence equilibrium. We shall need four
sequences, Nu

m, Nv
m, Mu

m, and Mv
m, m = 1, 2, 3, . . .. It is helpful to remember that

Nm denotes an upper bound and Mm a lower bound on the limsup and liminf, re-
spectively, as t → ∞, of the variable in the superscript. We shall derive recursion
formulae for these bounds and use them to deduce the result.

From positivity of solutions we immediately obtain Nu
1 as follows:

dU(t)

dt
≤ αu

∫ τ

0

fu(s)e−γusU(t− s) ds− βuU2(t).

Hence

U = lim sup
t→∞

U(t) ≤ αu
βu

∫ τ

0

fu(s)e−γus ds := Nu
1 .

In a similar way, we have

V ≤ αv
βv

∫ τ

0

fv(s)e
−γvs ds := Nv

1 .

Let ε > 0 be sufficiently small such that

ε <
βuαv

∫ τ
0
fv(s)e

−γvs ds− c2αu
∫ τ
0
fu(s)e−γus ds

βuc2
,(2.21)

which is possible by (2.19). Let t1 > 0 be such that U(t) ≤ Nu
1 + ε for all t ≥ t1, and

for t > t1 let mv
1(t) be a solution of

dmv
1(t)

dt
= αv

∫ τ

0

fv(s)e
−γvsmv

1(t− s) ds− βv(mv
1(t))2 − c2(Nu

1 + ε)mv
1(t)

with appropriate initial data on [t1 − τ, t1]. Since ε satisfies (2.21), Theorem 1 applies
and yields

lim
t→∞m

v
1(t) =

1

βv

[
αv

∫ τ

0

fv(s)e
−γvsds− c2(Nu

1 + ε)

]
.

Since Nu
1 + ε ≥ U(t) for t ≥ t1,

dV (t)

dt
= αv

∫ τ

0

fv(s)e
−γvsV (t− s) ds− βvV 2(t) − c2U(t)V (t)

≥ αv
∫ τ

0

fv(s)e
−γvsV (t− s) ds− βvV 2(t) − c2(Nu

1 + ε)V (t)

so that V (t) ≥ mv
1(t), and hence

V = lim inf
t→∞ V (t) ≥ lim

t→∞m
v
1(t) =

1

βv

[
αv

∫ τ

0

fv(s)e
−γvs ds− c2(Nu

1 + ε)

]
.
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This is true for any ε > 0 satisfying (2.21), and hence

V ≥ 1

βv

[
αv

∫ τ

0

fv(s)e
−γvs ds− c2Nu

1

]
:= Mv

1 .

In exactly the same way, we can show that

U ≥ 1

βu

[
αu

∫ τ

0

fu(s)e−γus ds− c1Nv
1

]
:= Mu

1 ,

and, in doing so, the assumption (2.20) is used.
We shall now show how to find new upper bounds Nu

2 , Nv
2 in terms of the old

lower bounds Mv
1 , Mu

1 , respectively. New lower bounds are then found from the new
upper bounds by following the procedure already described. It will then be clear how
to proceed from the (m− 1)th to the mth step in this process.

Let ε > 0. There exists t2 > 0 such that V (t) ≥ Mv
1 − ε for all t ≥ t2. Then, for

t ≥ t2,

dU(t)

dt
= αu

∫ τ

0

fu(s)e−γusU(t− s) ds− βuU2(t) − c1U(t)V (t)

≤ αu
∫ τ

0

fu(s)e−γusU(t− s) ds− βuU2(t) − c1(Mv
1 − ε)U(t).

Thus, if for t > t2 we denote by nu2 (t) the solution of

dnu2 (t)

dt
= αu

∫ τ

0

fu(s)e−γusnu2 (t− s) ds− βu(nu2 (t))2 − c1(Mv
1 − ε)nu2 (t)

with appropriate initial data, then U(t) ≤ nu2 (t) and thus

U ≤ lim
t→∞n

u
2 (t) =

1

βu

[
αu

∫ τ

0

fu(s)e−γus ds− c1(Mv
1 − ε)

]
.

(We have used assumption (2.20) to deduce that nu2 (t) has this limiting behavior.)
Since ε > 0 is arbitrary,

U ≤ 1

βu

[
αu

∫ τ

0

fu(s)e−γus ds− c1Mv
1

]
:= Nu

2 .

In the same way, and using (2.19), we deduce the following estimate for V :

V ≤ 1

βv

[
αv

∫ τ

0

fv(s)e
−γvs ds− c2Mu

1

]
:= Nv

2 .

One now sees that the transition from the (m− 1)th to the mth step in this iterative
process is given by

Nu
m =

1

βu

[
αu

∫ τ

0

fu(s)e−γus ds− c1Mv
m−1

]
,

Nv
m =

1

βv

[
αv

∫ τ

0

fv(s)e
−γvs ds− c2Mu

m−1

]
,
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Mu
m =

1

βu

[
αu

∫ τ

0

fu(s)e−γus ds− c1Nv
m

]
,

Mv
m =

1

βv

[
αv

∫ τ

0

fv(s)e
−γvs ds− c2Nu

m

]
,

and, of course,

Mu
m ≤ U ≤ U ≤ Nu

m and Mv
m ≤ V ≤ V ≤ Nv

m

for each m = 1, 2, 3, . . .. We need to show that Mu
m and Nu

m both approach Û as
m→ ∞ and that Mv

m and Nv
m both approach V̂ .

We see at once that

Nu
m =

αuβv
∫ τ
0
fu(s)e−γus ds− c1αv

∫ τ
0
fv(s)e

−γvs ds
βuβv

+
c1c2
βuβv

Nu
m−1.(2.22)

Note that (2.19) and (2.20) imply that

c1c2
βuβv

< 1.

We claim that Nu
m is a monotonically decreasing sequence that is bounded below by

Û . The boundedness below by Û follows immediately from (2.22) by induction. Then,
by (2.22), and using (2.20),

Nu
m

Nu
m−1

=
αuβv

∫ τ
0
fu(s)e−γus ds− c1αv

∫ τ
0
fv(s)e

−γvs ds
βuβvNu

m−1

+
c1c2
βuβv

≤ αuβv
∫ τ
0
fu(s)e−γus ds− c1αv

∫ τ
0
fv(s)e

−γvs ds

βuβvÛ
+
c1c2
βuβv

= 1

so that Nu
m is monotonically decreasing. Hence Nu

m converges to a limit which,
by (2.22), equals Û .

Of course, convergence of Nu
m implies convergence of Mv

m, and it is easily checked
that Mv

m has the limit V̂ . The analysis for the remaining two sequences is similar.
The proof of the theorem is complete.

3. Traveling wave front solutions. In this section we shall explore the exis-
tence of a traveling wave front solution of a reaction-diffusion extension of system (1.1)
between the two boundary equilibria Êv and Êu, in the situation when V is the weaker
competitor and there is no coexistence equilibrium. Ecologically, this situation corre-
sponds to a one-dimensional habitat initially inhabited only by the weaker V species,
and then some of the U species are introduced at one end. The U species then invades
the domain, driving the V species to extinction. The end result is that the domain is
inhabited only by U .

The approach we shall use to prove the existence of such a traveling front is the
upper-lower solution technique and the monotone iteration method recently developed
by Wu and Zou [9] (in particular, Theorem 3.6 of that paper) for delayed reaction-
diffusion systems. To be precise, we shall consider the competitive system

∂U1(t)

∂t
= d1

∂2U1

∂x2
+ α1e

−γ1τ1U1(x, t− τ1) − β1U
2
1 (x, t) − c1U1(x, t)U2(x, t),

∂U2(t)

∂t
= d2

∂2U2

∂x2
+ α2e

−γ2τ2U2(x, t− τ2) − β2U
2
2 (x, t) − c2U1(x, t)U2(x, t),

(3.1)

where all the parameters are nonnegative constants.
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It is well known that the addition of diffusion to a system with time delays can be
problematic from the point of view of ecological realism. One expects that in general
a time-delayed term would need to become a weighted spatial average involving the
diffusivity. However, system (3.1) is realistic in the case when the immature members
of the species are not moving (the immatures do not explicitly feature in (3.1)). For
many species such an assumption is entirely realistic. For example, insects which go
through a larval stage do not move, or move hardly at all, during the larval phase, but
on becoming adults they can of course travel tremendous distances. In such cases,
each individual on reaching adulthood is still at the same location as when it was
born, and only on becoming an adult does it start moving.

The situation when the immatures do move can be studied by replacing the time
delay terms in (3.1) with more complicated delay terms involving integral convolutions
in space (see, for example, Al-Omari and Gourley [2]). Of course, the immatures and
matures might diffuse at different rates. The methods of Wu and Zou [9] should be
applicable to this case also (see, for example, So, Wu, and Zou [7] who treated a scalar
delay equation containing such an integral convolution in space). In this paper we
shall concentrate on the case when the immatures are immobile.

System (3.1) has four spatially uniform equilibria: (α1

β1
e−γ1τ1 , 0), (0, α2

β2
e−γ2τ2),

(0, 0), and the coexistence equilibrium (if feasible)(
β2α1e

−γ1τ1 − c1α2e
−γ2τ2

β1β2 − c1c2 ,
β1α2e

−γ2τ2 − c2α1e
−γ1τ1

β1β2 − c1c2

)
.

The situation of interest here is that in which the equilibrium (0, α2

β2
e−γ2τ2) is unstable

and when (α1

β1
e−γ1τ1 , 0) is stable, both as solutions of the spatially uniform model. The

conditions on the parameters can be extracted as a particular case of Theorem 2 and
are

c2α1e
−γ1τ1 > β1α2e

−γ2τ2 and c1α2e
−γ2τ2 < β2α1e

−γ1τ1 .(3.2)

Therefore, we assume that (3.2) holds throughout this section. Note that in this case
the coexistence equilibrium is not feasible since its components are of opposite sign.

3.1. Wu and Zou’s theory. We shall summarize those aspects of the work of
Wu and Zou [9] which are relevant here. Applications of their techniques include work
by Al-Omari and Gourley [2] on a structured model of a single species, by So and
Zou [8] on the diffusive Nicholson’s blowflies equation, by Huang and Zou [4] on a
cooperative Lotka–Volterra system with delay, and by Wu and Zou themselves [9] on
a delayed Fisher equation and a delayed Belousov–Zhabotinskii reaction model.

The theory is for reaction diffusion systems of the form

∂u(x, t)

∂t
= D

∂2u(x, t)

∂x2
+ f(ut(x)), x ∈ R, t ≥ 0,(3.3)

with u ∈ Rn, D a diagonal diffusion matrix with positive entries, f(·) a functional,
and its argument ut(x) the function

ut(x)(s) = u(x, t+ s), s ∈ [−τ, 0].

This set-up allows more than one time delay. Conversion to traveling wave form, by
setting u(x, t) = φ(z) ∈ Rn, z = x+ ct with c ≥ 0, yields a system of equations of the
form

Dφ′′(z) − cφ′(z) + fc(φz) = 0, z ∈ R,(3.4)
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where φz(ζ) = φ(ζ + z) and the new functional fc is defined by fc(ψ) = f(ψc),
where ψc(s) := ψ(cs), s ∈ [−τ, 0]. The theory establishes, under certain conditions,
existence of a solution of (3.4) satisfying

φ(−∞) = 0, φ(∞) = K,(3.5)

where 0 and K are equilibria of (3.3).
The theory presumes that there are no other equilibria u with 0 < u < K (here,

the ordering is the standard partial ordering in Rn, i.e., u ≤ v if ui ≤ vi, i = 1, . . . , n,
and u < v if u ≤ v but u 
= v). Actually, this condition is not quite satisfied for us,
for reasons which will be explained later. We shall argue, by a detailed examination
of its proof, that Wu and Zou’s Theorem 3.6 applies nevertheless.

Additionally [9, p. 659], there must exist a matrix δ = diag(δ1, . . . , δn) with δi ≥ 0
such that

fc(φ) − fc(ψ) + δ(φ(0) − ψ(0)) > 0(3.6)

for all continuous functions φ, ψ such that 0 ≤ ψ(s) ≤ φ(s) ≤ K, s ∈ [−cτ, 0]. This is
called a quasi-monotonicity condition.

The following set is called the profile set :

Γ = {φ ∈ C(R,Rn) : φ(z) is nondecreasing, φ(−∞) = 0, and φ(∞) = K} .
Additionally, one must find an upper solution, i.e., a function φ that is twice differen-
tiable almost everywhere and satisfies

Dφ
′′
(z) − cφ′(z) + fc(φz) ≤ 0.

A lower solution φ is also required, being a function defined as above but with the
inequality reversed. These two functions must be constructed such that

0 ≤ φ(z) ≤ φ(z) ≤ K

and such that at least one component of the lower solution is not identically zero.
Actually only one component of our lower solution is nonzero, but we shall be arguing
that refinements of Wu and Zou’s approach (see Remark 4.6 in [9]) lead to their
Theorem 3.6 remaining valid.

If all of the above conditions are met, and if the upper solution φ ∈ Γ (the lower
solution need not lie in Γ), Theorem 3.6 in [9] guarantees the existence of a solution
of (3.4) satisfying (3.5).

3.2. Existence of a traveling wave front. In this section, we will prove the
existence of a traveling front solution of (3.1) by using Wu and Zou’s theory.

To seek a traveling front solution of system (3.1), set U1(x, t) = φ1(z) and
U2(x, t) = φ2(z), where z = x + ct and c > 0 is the wave speed. The system (3.1)
becomes

d1φ
′′
1(z) − cφ′1(z) + α1e

−γ1τ1φ1(z − cτ1) − β1φ
2
1(z) − c1φ1(z)φ2(z) = 0,

d2φ
′′
2(z) − cφ′2(z) + α2e

−γ2τ2φ2(z − cτ2) − β2φ
2
2(z) − c2φ1(z)φ2(z) = 0,

(3.7)

which is to be solved subject to

φ1(−∞) = 0, φ2(−∞) =
α2

β2
e−γ2τ2 , φ1(∞) =

α1

β1
e−γ1τ1 , φ2(∞) = 0,
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and also, for ecological realism, φ1(z), φ2(z) ≥ 0 for all z ∈ (−∞,∞). The latter
is only possible for c exceeding a certain minimum value, as can be seen from the
following linearized analysis. As z → −∞, the first equation of (3.7) becomes, ap-
proximately,

d1φ
′′
1(z) − cφ′1(z) + α1e

−γ1τ1φ1(z − cτ1) − c1α2

β2
e−γ2τ2φ1(z) = 0,

and, seeking solutions of this proportional to exp(λz), one finds that ∆1(λ) = 0, where

∆1(λ) = α1e
−γ1τ1e−λcτ1 − c1α2

β2
e−γ2τ2 − (cλ− d1λ2

)
.(3.8)

Similarly, if we let z → ∞ and approximate the second equation of (3.7) suitably, trial
solutions of the form exp(λz) exist when ∆2(λ) = 0, where

∆2(λ) = α2e
−γ2τ2e−λcτ2 − c2α1

β1
e−γ1τ1 − (cλ− d2λ2

)
.(3.9)

Since positive and monotone solutions are sought, any decay to zero as z → ±∞
must be nonoscillatory. Now, ∆1(λ) = 0 relates to the situation as z → −∞, so
it is necessary that this equation should have at least one real positive root, while
∆2(λ) = 0 should have a real negative root since the latter equation is for z → ∞.

Keeping in mind (3.2), simple graphical arguments show that ∆1(λ) = 0 has no
real positive roots if c is very small, but that if c is increased, two real roots appear.
We denote by c∗ the infimum of the set of values of c for which there are two real
positive roots. For any c > c∗ the two roots are denoted by 0 < λ1 < λ2. Furthermore

∆1(λ) =



> 0 for λ < λ1,
< 0 for λ ∈ (λ1, λ2),
> 0 for λ > λ2.

The existence of a real negative root (which we shall denote by λ3) of ∆2(λ) = 0
follows immediately from (3.2) and a graphical argument, without further restriction
on c. This equation also has a real positive root λ4. Furthermore, ∆2(λ) > 0 when
λ < λ3, ∆2(λ) < 0 when λ3 < λ < λ4, and ∆2(λ) > 0 when λ > λ4.

We are thus led to conjecture that ecologically relevant traveling fronts exist only
for c > c∗. Furthermore, note that c∗ depends on both of the delays τ1 and τ2.

Wu and Zou’s theory presumes that the equilibria of the traveling wave equations
are 0 and K, where K is a vector with positive components. This is not so in our
problem as currently posed but can be made so by the change of variables Ũ1 = U1

and Ũ2 = α2

β2
e−γ2τ2 − U2 under which the system (3.1) is transformed into

∂Ũ1(t)

∂t
= d1

∂2Ũ1

∂x2
+ α1e

−γ1τ1Ũ1(x, t− τ1) − β1Ũ
2
1 (x, t) − c1α2

β2
e−γ2τ2Ũ1(x, t)

+ c1Ũ1(x, t)Ũ2(x, t),

(3.10)

∂Ũ2(t)

∂t
= d2

∂2Ũ2

∂x2
+ α2e

−γ2τ2Ũ2(x, t− τ2) + β2Ũ
2
2 (x, t) − 2α2e

−γ2τ2Ũ2(x, t)

+
c2α2

β2
e−γ2τ2Ũ1(x, t) − c2Ũ1(x, t)Ũ2(x, t).
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The equilibria of interest are now (0, 0) and

K :=

(
α1

β1
e−γ1τ1 ,

α2

β2
e−γ2τ2

)
,(3.11)

which are unstable and stable, respectively, as solutions of (3.10) to spatially uniform
perturbation. We have noted that the coexistence equilibrium is unfeasible, being in
either the second or the fourth quadrant of the (U1, U2) plane, but in the latter case it
is mapped into the open first quadrant of the (Ũ1, Ũ2) plane. Fortunately, (3.2) yields
that its components are larger than those of K, so that Wu and Zou’s results remain
applicable. The origin is mapped to Ũ1 = 0, Ũ2 = (α2/β2)e−γ2τ2 . This equilibrium
lies in (0,K) according to the meaning of <, and thus the assumption that there is no
equilibrium u with 0 < u < K does not actually hold. We shall return to this point
later. It is not a serious problem and can be dealt with as suggested in Remark 4.6
of [9].

In traveling wave form, system (3.10) becomes (with tildes dropped)

d1φ
′′
1(z) − cφ′1(z) + α1e

−γ1τ1φ1(z − cτ1) − β1φ
2
1(z) − c1α2

β2
e−γ2τ2φ1(z)

+c1φ1(z)φ2(z) = 0,

d2φ
′′
2(z) −cφ′2(z) + α2e

−γ2τ2φ2(z − cτ2) + β2φ
2
2(z) −2α2e

−γ2τ2φ2(z) +
c2α2

β2
e−γ2τ2φ1

−c2φ1(z)φ2(z) = 0,
(3.12)
and the boundary conditions are now

φ1(−∞) = 0, φ1(∞) = α1
β1
e−γ1τ1 ,

φ2(−∞) = 0, φ2(∞) = α2
β2
e−γ2τ2 .

(3.13)

We will prove the following theorem. For ecological relevance the theorem is formu-
lated in terms of the original competition system (3.1). However, for the proof we shall
work with the transformed system and its associated traveling wave equations (3.12).

Theorem 5. Assume (3.2) holds and that c > c∗. Assume also that

∆2(λ1) ≤ 2

(
α2e

−γ2τ2 − c2α1

β1
e−γ1τ1

)
.(3.14)

Then there exists a traveling wave front for (3.1) with speed c, connecting the equilibria
(0, α2

β2
e−γ2τ2) and (α1

β1
e−γ1τ1 , 0).

Remarks. It is inconvenient to have to impose the condition (3.14). We feel
that the condition is probably not necessary for Theorem 5 to hold. However, it
is needed in our proof. Let us satisfy ourselves that the condition can be satisfied
under ecologically realistic circumstances. Note that the right-hand side of (3.14) is
negative (by (3.2)), so ∆2(λ1) must be negative too. This can certainly be arranged,
(for example, by taking d2 sufficiently small) and then the question is, Under what
circumstances will ∆2(λ1) be sufficiently negative to satisfy (3.14)? Let us view both
sides of (3.14) as functions of c2 and imagine that c2 approaches, from above, the
critical c∗2 at which (3.2) ceases to hold. Then the right-hand side of (3.14) approaches
zero while, noting that λ1 does not depend on c2, the left-hand side ∆2(λ1) approaches
some strictly negative number. Thus, (3.14) is certainly satisfied provided c2 is not
too much greater than the minimum value of c2 consistent with (3.2).
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Proof of Theorem 5. Let φ = (φ1, φ2). To prove the theorem we need to show
that the quasi-monotonicity condition holds and that upper and lower solutions φ
and φ can be found as described in section 3.1, with at least one component of the
lower solution not identically zero. (We shall explain later why, in our case, we do
not require both components to be nonzero.) For the system (3.12) the functional
fc(φ) = (fc1(φ), fc2(φ)) referred to in section 3.1 is given by

fc1(φ) = α1e
−γ1τ1φ1(−cτ1) − β1φ

2
1(0) − c1α2

β2
e−γ2τ2φ1(0) + c1φ1(0)φ2(0),

fc2(φ) = α2e
−γ2τ2φ2(−cτ2) + β2φ

2
2(0) − 2α2e

−γ2τ2φ2(0) +
c2α2

β2
e−γ2τ2φ1(0)

− c2φ1(0)φ2(0).

Let us verify that this fc satisfies the quasi-monotonicity condition. Let τ=max{τ1,τ2}.
For any φ = (φ1, φ2) and ψ = (ψ1, ψ2) ∈ C([−cτ ; 0];R2), with 0 ≤ ψ(s) ≤ φ(s) ≤ K
for all s ∈ [−cτ, 0], we have

fc1(φ) − fc1(ψ)

= α1e
−γ1τ1φ1(−cτ1) − β1φ

2
1(0) − c1α2

β2
e−γ2τ2φ1(0) + c1φ1(0)φ2(0)

− α1e
−γ1τ1ψ1(−cτ1) + β1ψ

2
1(0) +

c1α2

β2
e−γ2τ2ψ1(0) − c1ψ1(0)ψ2(0)

= α1e
−γ1τ1φ1(−cτ1) − α1e

−γ1τ1ψ1(−cτ1) − β1

[
φ2

1(0) − ψ2
1(0)

]
− c1α2

β2
e−γ2τ2 (φ1(0) − ψ1(0)) − c1 (ψ1(0)ψ2(0) − φ1(0)φ2(0))

≥ −β1 (φ1(0) − ψ1(0)) (φ1(0) + ψ1(0)) − c1α2

β2
e−γ2τ2 (φ1(0) − ψ1(0))

≥
[
−2α1e

−γ1τ1 − c1α2

β2
e−γ2τ2

]
(φ1(0) − ψ1(0))

and hence

fc1(φ) − fc1(ψ) + δ1 [φ1(0) − ψ1(0)]

≥
[
−2α1e

−γ1τ1 − c1α2

β2
e−γ2τ2 + δ1

]
(φ1(0) − ψ1(0)) ≥ 0

provided δ1 is chosen such that

δ1 ≥ 2α1e
−γ1τ1 +

c1α2

β2
e−γ2τ2 .

Similarly, we have

fc2(φ) −fc2(ψ) = α2e
−γ2τ2φ2(−cτ2) − α2e

−γ2τ2ψ2(−cτ2) −2α2e
−γ2τ2 (φ2(0) −ψ2(0))

+ β2

(
φ2

2(0) − ψ2
2(0)

)
+
c2α2

β2
e−γ2τ2 (φ1(0) − ψ1(0)) −c2 (φ1(0)φ2(0) −ψ1(0)ψ2(0))

≥ −2α2e
−γ2τ2 (φ2(0) − ψ2(0)) +

c2α2

β2
e−γ2τ2 (φ1(0) − ψ1(0))

+ β2 (φ2(0) − ψ2(0)) (φ2(0) + ψ2(0)) − c2 (φ1(0)φ2(0) − ψ1(0)ψ2(0))

= −2α2e
−γ2τ2 (φ2(0) − ψ2(0)) + β2 (φ2(0) − ψ2(0)) (φ2(0) + ψ2(0))

+
c2α2

β2
e−γ2τ2 (φ1(0)− ψ1(0)) −c2φ2(0) (φ1(0) − ψ1(0)) − c2ψ1(0) (φ2(0) − ψ2(0))
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≥ −2α2e
−γ2τ2 (φ2(0) − ψ2(0)) + β2 (φ2(0) − ψ2(0)) (φ2(0) + ψ2(0))

+
c2α2

β2
e−γ2τ2 (φ1(0) − ψ1(0)) − c2α2

β2
e−γ2τ2 (φ1(0) − ψ1(0))

− c2α1

β1
e−γ1τ1 (φ2(0) − ψ2(0))

≥
[
−2α2e

−γ2τ2 − c2α1

β1
e−γ1τ1

]
(φ2(0) − ψ2(0)) .

Therefore

fc2(φ) − fc2(ψ) + δ2 [φ2(0) − ψ2(0)]

≥
[
δ2 − 2α2e

−γ2τ2 − c2α1

β1
e−γ1τ1

]
(φ2(0) − ψ2(0)) ≥ 0

provided

δ2 ≥ 2α2e
−γ2τ2 +

c2α1

β1
e−γ1τ1 .

Consequently,

fc(φ) − fc(ψ) + δ [φ(0) − ψ(0)] ≥ 0,

where the matrix δ is given by δ = diag(δ1, δ2). Thus, the quasi-monotonicity condi-
tion holds.

Our search for solutions of system (3.12) shall be confined to the profile set

Γ =

{
φ ∈ C(R,R2) :

(i)φ is componentwise nondecreasing in R,
(ii) lim

z→−∞φ(z) = 0 and lim
z→∞φ(z) = K

}
,

where K is given by (3.11).
Next, we shall find a pair of upper and lower solutions as required by Wu and

Zou’s theory. Let τ1, τ2 > 0, and define

φ1(z) = min

{
α1

β1
e−γ1τ1eλ1z,

α1

β1
e−γ1τ1

}
,

φ2(z) = min

{
α2

β2
e−γ2τ2eλ1z,

α2

β2
e−γ2τ2

}
.

We claim that φ(z) := (φ1(z), φ2(z))T is an upper solution of (3.12) and φ ∈ Γ.
Certainly, φ ∈ Γ is clear. We need to verify the two differential inequalities

obtained from (3.12) by replacing = by ≤, and each needs to be checked separately
for z > 0 and z < 0. For φ1 we have two cases:

(i) If z > 0, φ1 = α1

β1
e−γ1τ1 , φ1(z − cτ1) ≤ α1

β1
e−γ1τ1 , and φ2(z) = α2

β2
e−γ2τ2 . Then

d1φ
′′
1(z)−cφ′1(z) +α1e

−γ1τ1φ1(z − cτ1) −β1φ
2

1(z) − c1α2

β2
e−γ2τ2φ1(z) + c1φ1(z)φ2(z)

≤ α1e
−γ1τ1 α1

β1
e−γ1τ1 − β1

α2
1

β2
1

e−2γ1τ1 − c1α2

β2
e−γ2τ2

α1

β1
e−γ1τ1 + c1

α1

β1
e−γ1τ1

α2

β2
e−γ2τ2

= 0.
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(ii) If z < 0, φ1 = α1

β1
e−γ1τ1eλ1z, φ1(z − cτ1) = α1

β1
e−γ1τ1eλ1(z−cτ1), and φ2(z) =

α2

β2
e−γ2τ2eλ1z. Thus

d1φ
′′
1(z) − cφ′1(z) + α1e

−γ1τ1φ1(z − cτ1) − β1φ
2

1(z) − c1α2

β2
e−γ2τ2φ1(z)

+ c1φ1(z)φ2(z)

=
α1

β1
e−γ1τ1eλ1z

{
d1λ

2
1 − cλ1 + α1e

−γ1τ1e−λ1cτ1 − c1α2

β2
e−γ2τ2

}

+
α1

β1
e−γ1τ1e2λ1z

{
c1α2

β2
e−γ2τ2 − α1e

−γ1τ1
}

<
α1

β1
e−γ1τ1eλ1z ∆1(λ1) = 0,

where we have used ∆1(λ1) = 0 and α1e
−γ1τ1 > c1α2

β2
e−γ2τ2 .

Therefore, we have proved

d1φ
′′
1(z) −cφ′1(z) +α1e

−γ1τ1φ1(z − cτ1) −β1φ
2

1(z) − c1α2

β2
e−γ2τ2φ1(z) +c1φ1(z)φ2(z)

≤ 0 (a.e.) on R.

For φ2, again we need to check the cases z > 0 and z < 0 separately. The former
case is trivial while, for z < 0, we have

d2φ
′′
2(z) − cφ′2(z) + α2e

−γ2τ2φ2(z − cτ2) + β2φ
2

2(z) − 2α2e
−γ2τ2φ2(z)

+
c2α2

β2
e−γ2τ2φ1(z) − c2φ1(z)φ2(z)

=
α2

β2
e−γ2τ2eλ1z

{
d2λ

2
1 − cλ1 + α2e

−γ2τ2e−λ1cτ2 − 2α2e
−γ2τ2 +

c2α1

β1
e−γ1τ1

}

+
α2

β2
e−γ2τ2e2λ1z

(
−c2α1

β1
e−γ1τ1 + α2e

−γ2τ2
)

︸ ︷︷ ︸
<0

<
α2

β2
e−γ2τ2eλ1z

(
∆2(λ1) − 2α2e

−γ2τ2 +
2c2α1

β1
e−γ1τ1

)
≤ 0,

where we have used (3.2) and (3.14). We have shown that φ = (φ1, φ2) is an upper
solution of (3.12).

Now let us construct a lower solution. Recall that λ1 and λ2 are the two real
positive roots of ∆1(λ) = 0. Now, let ε > 0 be sufficiently small such that λ1 <
λ1 + ε < λ2 (so that ∆1(λ1 + ε) < 0) and also such that λ1 + ε ≤ 2λ1. Let M > 1 be
a number to be chosen later. Our candidate for a lower solution is

φ
1
(z) =

{
(1 −Meεz)eλ1z, z < z1,

0, z ≥ z1, φ
2
(z) = 0,

where z1 = −(1/ε) lnM < 0. Then φ(z) ≥ 0 for all z. Recall that the lower solution
is not required to lie in the profile set Γ.

We must verify that φ
1
, φ

2
satisfy the differential inequalities obtained by re-

placing = by ≥ in (3.12). The second such inequality is trivially satisfied. The first
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differential inequality needs to be checked separately for the intervals z > z1 + cτ1,
z1 < z ≤ z1 + cτ1, and z ≤ z1. It trivially holds in the first two of these intervals
since in these cases we have φ

1
(z) = φ

1
(z − cτ1) = 0 and φ

1
(z) = 0, φ

1
(z − cτ1) ≥ 0,

respectively. When z ≤ z1,

d1φ
′′
1
(z) − cφ′

1
(z) + α1e

−γ1τ1φ
1
(z − cτ1) − β1φ

2

1
(z)

− c1α2

β2
e−γ2τ2φ

1
(z) + c1φ1

(z)φ
2
(z)

= eλ1z

(
d1λ

2
1 − cλ1 + α1e

−γ1τ1e−λ1cτ1 − c1α2

β2
e−γ2τ2

)
︸ ︷︷ ︸

=∆1(λ1)=0

−M e(λ1+ε)z
(
d1(λ1 + ε)2 − c(λ1 + ε) + α1e

−γ1τ1e−(λ1+ε)cτ1 − c1α2

β2
e−γ2τ2

)
− β1e

2λ1z(1 −Meεz)2
= −M e(λ1+ε)z∆1(λ1 + ε) − β1e

2λ1z(1 −Meεz)2.

Now, since z ≤ z1 < 0, we have 0 ≤ 1 −Meεz < 1. Also, 2λ1 ≥ λ1 + ε so that, since
z < 0, e2λ1z ≤ e(λ1+ε)z. Therefore

d1φ
′′
1
(z) − cφ′

1
(z) + α1e

−γ1τ1φ
1
(z − cτ1) − β1φ

2

1
(z)

− c1α2

β2
e−γ2τ2φ

1
(z) + c1φ1

(z)φ
2
(z)

≥ −M e(λ1+ε)z∆1(λ1 + ε) − β1e
(λ1+ε)z

= Me(λ1+ε)z


−∆1(λ1 + ε)︸ ︷︷ ︸

>0

−β1

M


 .

We now choose M sufficiently large to ensure (a) strict positivity of the right-hand
side of the above, and (b) that

sup
z∈R

φ
1
(z) <

α1

β1
e−γ1τ1 ,

which is easily shown to be possible. We then need to arrange that φ
1
(z) ≤ φ1(z)

for all z, which is not automatically true. But note that φ
1
(z) and φ1(z) have the

same exponential decay rate as z → −∞. Accordingly, we can arrange to have
φ

1
(z) ≤ φ1(z) for all z by replacing our upper solution φ(z) by a leftward shifted

translate φ(z + A) thereof, for a suitably large value of A > 0. Since our problem is
invariant to translations in z, any such translate of φ is still an upper solution and,
furthermore, is still in Γ.

We have now established the existence of an upper and a lower solution. We have
mentioned that certain hypotheses of Wu and Zou do not quite apply to our problem,
namely, the requirement that each component of the lower solution φ be not identically
zero and that there be no equilibria u with 0 < u < K. But Wu and Zou stress (see
Remark 4.6 in [9]) that these very assumptions are required only for the final stage
in their proof, i.e., that their solution satisfies φ(∞) = K and that any replacement
which also ensures this is perfectly valid. Indeed, their construction of a solution
to (3.4) is based on an iterative scheme which starts with the upper solution and
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converges to a (nondecreasing) function φ(z) satisfying (3.4) and φ(z) ≤ φ(z) ≤ φ(z).
These facts already imply φ(−∞) = 0.

In view of the above remarks, Wu and Zou’s construction assures us of a solution
to (3.12) satisfying φ(−∞) = 0, and we must now confirm that φ(∞) = K with
K given by (3.11). Indeed (see [9, p. 666]), we can conclude, since φ

1
(z) 
≡ 0, that

limz→∞ φ1(z) := φ∗1 exists and φ∗1 ∈ (0, α1

β1
e−γ1τ1 ]. For φ2(z), since φ

2
(z) ≡ 0, we

are still assured of the existence of limz→∞ φ2(z) := φ∗2, but we only know that
φ∗2 ∈ [0, α2

β2
e−γ2τ2 ]. However, (φ∗1, φ

∗
2) must be an equilibrium of (3.10). Thus

(φ∗1, φ
∗
2) =

(
α1

β1
e−γ1τ1 ,

α2

β2
e−γ2τ2

)
.

The proof of the theorem is complete.

4. Conclusion. For the purely time dependent model studied in sections 1 and 2,
it is apparent that the dynamics depends on the values of the four quantities

c2αu

∫ τ

0

fu(s)e−γus ds, βuαv

∫ τ

0

fv(s)e
−γvs ds, c1αv

∫ τ

0

fv(s)e
−γvs ds,

and

βvαu

∫ τ

0

fu(s)e−γus ds.

Accordingly, the dynamics depends heavily on the maturation delays as represented by
the probability density functions fu(s) and fv(s). To see the role of these delays it will
be helpful to consider the particular case when fu(s) = δ(s−τu) and fv(s) = δ(s−τv),
so that all members of the U species take time τu to mature, and the V species take
time τv to mature. Then, the criteria for U to win and V to be driven to extinction
(Theorem 2) become

c2αue
−γuτu > βuαve−γvτv and c1αve

−γvτv < βvαue−γuτu .

These conditions are automatically satisfied if the V species has a long maturation
time τv, a large immature mortality rate γv, or insufficient live births or eggs laid per
adult per unit time (this is what αv represents). Significant adult mortality among
the V species, as measured by βv, does not automatically imply extinction of that
species. The two species will coexist if

c2αue
−γuτu < βuαve−γvτv and c1αve

−γvτv < βvαue−γuτu ,

and these conditions are satisfied when there is little interspecific competition and/or
significant adult mortality in both species.

While the conclusions listed above are not counterintuitive, let us emphasize that
they explicitly state how the survival or extinction of a species depends on the mat-
uration time for the species, or more generally on a weighted average thereof.

For the reaction-diffusion model, we have proved the existence of a traveling
wave front connecting the two boundary equilibria in the situation when the stronger
species is sufficiently dominant that there is no possibility of coexistence. In addition
to the conditions which one expects to have to impose, based on linearized analysis
(i.e., conditions (3.2)), our existence proof requires (3.14) to be satisfied. In practice,
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this will happen whenever (i) the diffusivity d2 of the weaker competitor is relatively
small and (ii) the parameter c2, which measures the competitive pressure exerted by
the stronger competitor on the weaker, is not too much greater than the minimum
value consistent with (3.2). Smallness of d2 (i.e., inability to move about quickly) can
be interpreted as one of the weaker competitor’s weaknesses. The fact that we have
to restrict c2 almost certainly has no ecological interpretation.

We have also calculated the minimum speed c∗ implicitly. From simple graphical
arguments one easily determines that the circumstances under which the minimum
speed will be reduced are (i) if one or more of the parameters c1, α2, γ1, or τ1 is
increased, or (ii) if one or more of the parameters d1, α1, β2, γ2, or τ2 is decreased.
Of course, one must ensure (3.2) remains satisfied.

Ecologically speaking, invasion of the domain by the dominant species therefore
slows down under one or more of the following circumstances: reduction of diffusivity
of the dominant species; reduction of the dominant species’ reproductive activity; re-
duction of adult mortality, infant mortality, or maturation time for the weaker species.
The invasion speed is also lowered if the weaker species increases its reproductive ac-
tivity or exerts increased competitive pressure on the stronger, or if the stronger
species suffers an increase in infant mortality or its maturation delay.

The minimum speed as determined from the linearized analysis does not depend
on d2 or c2. Of course, the value of c2 is important in determining whether conditions
are right for colonization by the stronger competitor, driving the weaker to extinction.
However, if these conditions are satisfied, then our analysis predicts that the actual
invasion speed does not depend on c2. Also, while the invasion speed depends strongly
on the diffusivity d1 of the stronger competitor, it does not depend at all on the
diffusivity d2 of the weaker.
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Abstract. A hierarchy of models for type-II superconducting thin films is presented. Through
appropriate asymptotic limits this hierarchy passes from the mesoscopic Ginzburg–Landau model
to the London model with isolated vortices as δ-function singularities to vortex-density models and
finally to macroscopic critical-state models. At each stage it is found that a key nondimensional
parameter is Λ = λ2/dL, where λ is the penetration depth of the magnetic field, a material parameter,
and d and L are a typical thickness and lateral dimension of the film, respectively. The models
simplify greatly if this parameter is large or small.
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1. Introduction. The response of a bulk superconducting material to an ap-
plied magnetic field is conveniently described by Figure 1, which shows the phase
the superconductor adopts as a function of the external magnetic field Hext and the
material parameter κ (known as the Ginzburg–Landau parameter), which determines
the type of superconducting material; κ < 1/

√
2 describes what are known as type-I

superconductors, while κ > 1/
√
2 describes what are known as type-II superconduc-

tors.
For type-I superconductors in sufficiently low magnetic fields the material is in the

superconducting state, and the field is excluded from the interior of the sample except
in thin boundary layers (this effect is known as the Meissner effect). However, there
is a critical magnetic field, Hc, above which the material will revert to the normally
conducting (normal) state, and the magnetic field will penetrate it fully.

In type-II superconductors this critical magnetic field splits into a lower critical
field, Hc1 , and an upper critical field, Hc2 . For magnetic fields below Hc1 the material
is in the superconducting state and the field is excluded from the interior, while for
magnetic fields above Hc2 the material is in the normal state and the field penetrates
it fully. For magnetic fields between Hc1 and Hc2 a third state exists, known as
the “mixed state,” in which there is a partial penetration of the magnetic field into
the superconducting material, which occurs by means of thin filaments of nonsuper-
conducting material carrying magnetic flux (“flux tubes”) and circled by a vortex of
superconducting current (hence these filaments are often referred to as vortices).

A hierarchy of models for bulk type-II superconductors has been derived recently
in [6]. The starting point for this hierarchy is the Ginzburg–Landau model, which ap-
plies on mesoscopic lengthscales ∼ 0.01µm, and which is generally believed to describe
the behavior of superconductors well (at least for low-temperature superconductors
not too far from the critical temperature Tc). The Ginzburg–Landau model is quite
complicated, and through the asymptotic limit κ→ ∞ may be simplified to the Lon-
don model, a linear equation in which the vortices appear as line singularities. These
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Fig. 1. The response of a superconducting material as a function of the applied magnetic field
Hext and the Ginzburg–Landau parameter κ.

may then be averaged to produce vortex-density models. Finally, if vortex pinning
by inhomogeneities is included in these vortex-density models, so-called critical-state
models can be derived.

Here we are interested in the simplifications which arise when the superconducting
material comprises a thin film, possibly of varying thickness. Such a situation is
very common experimentally and technologically because of the relative ease with
which thin films can be manufactured. We will derive a hierarchy of models for
superconducting thin films corresponding exactly to those for bulk superconductors.
We will find that a key nondimensional parameter is Λ = λeff/L, where L is a typical
lateral dimension of the film and the effective screening length [24] λeff = λ2/d,
where λ is the penetration depth of the magnetic field, a material parameter, and d
is a typical thickness of the film. The canonical scaling is for Λ to be of order one
as d/L → 0, in which case the problems for the electric current in the film and the
magnetic field outside it are coupled. The problem simplifies greatly if Λ is either large
or small, since in each case the problems for the electric current and the magnetic
field decouple. Many of the models we arrive at are new; our aims are to show where
the existing models fit into the general framework and to fill in the gaps. In particular
we will find that the thin-film limit of the Ginzburg–Landau model considered in [8]
corresponds to the limit Λ → ∞, while the thin-film critical-state models studied
recently in [29] and [31] correspond to the limit Λ → 0.

Before we begin let us first make a note of some of the lengthscales in the problem.
There are two material parameters which are lengthscales, both of which appear in the
Ginzburg–Landau model. These are λ, the aforementioned penetration depth, which
is the typical lengthscale for the decay of magnetic field away from a vortex, and ξ,
the coherence length, which is the typical lengthscale for the variation in the number
density of superconducting electrons, and is the vortex core radius. The ratio of these
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two lengthscales is the Ginzburg–Landau parameter κ = λ/ξ; as we have already
said, for type-II superconductors κ > 1/

√
2, and the London model corresponds to

the limit in which κ → ∞. However, we will find that the important parameter in
determining the behavior of thin films is not κ but κeff = λeff/ξ = (λ/d)κ. Thus
when d is small compared to λ, the Ginzburg–Landau parameter is enhanced. The
situation is not dissimilar to that of lubrication theory, in which the key parameter is
the reduced Reynolds number rather than the Reynolds number itself.

To go with these two material lengths we have three geometrical lengths in the
problem. Since we will allow the film to vary in thickness, besides the typical thick-
ness d and lateral dimension L of the film we also have the typical lengthscale for
the thickness variations, which we will denote by δ. (We assume that the amplitude
of the thickness variations is of the same order as the thickness itself, which is the
canonical case.) When pinning through inhomogeneities is introduced we have the
typical lengthscale for variation of the pinning potential, which we denote by ε. Fi-
nally, we have the typical separation of vortices, which we denote by ν, and which
will be determined by the strength of the applied magetic field.

Thus there are seven lengthscales in the problem, and it is the relative sizes of
these which will determine which is the relevant thin-film model in any given situation.

In section 2 we introduce the Ginzburg–Landau theory which underpins our hier-
archy of models and consider its thin-film limit. In section 3 we consider the London
limit κeff → ∞ of the thin-film Ginzburg–Landau model and show that this is the
same as the thin-film limit of the bulk London model. In section 4 we let the sep-
aration of vortices ν/L → 0 and average the thin-film London model to produce a
thin-film vortex-density model. We show that this is the same as the thin-film limit
of the bulk vortex-density model.

In section 5 we let the lengthscale of the pinning potential ε→ 0 and homogenize
the pinning force to produce a thin-film critical-state model. Finally, in section 6, we
present our conclusions.

2. Ginzburg–Landau models. The starting point for our discussion of thin-
film models of superconductivity is the Ginzburg–Landau equations. In their steady
form these equations were written down by Ginzburg and Landau in [17], through
the minimization of a phenomenologically developed free-energy functional. Later it
was shown by Gor’kov [18] that they could be derived as a limit of the microscopic
Bardeen, Cooper, and Schrieffer (BCS) model [2]. Time-dependent versions of the
Ginzburg–Landau equations were written down by Schmidt [27], and in 1968 Gor’kov
and Éliashberg [19] demonstrated that (1)–(2) could be derived from the BCS model
for a superconductor with paramagnetic impurities. These correspond to a gauge-
invariant gradient flow of the Ginzburg–Landau energy functional and as such are
the simplest time-dependent equations whose solutions evolve to the minimizers of
that functional. The dimensionless time-dependent Ginzburg–Landau equations for
a superconducting material occupying a region Ω ⊆ R

3 are

1

κ2

∂Ψ

∂t
+
iΨφ

κ
=

(
1

κ
∇− iA

)2

Ψ + Ψ
(
1− |Ψ|2) in Ω,(1)

−( curl )2A − σ

κ2

(
∂A

∂t
+∇φ

)
=

i

2κ
(Ψ∗∇Ψ−Ψ∇Ψ∗) + |Ψ|2A in Ω,(2)

where Ψ is the normalized superconducting order parameter, so that |Ψ|2 represents
the number density of superconducting electrons, with |Ψ| = 1 representing wholly
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superconducting material and Ψ = 0 representing wholly nonsuperconducting (nor-
mal) material; A and φ are the magnetic vector potential and electric scalar potential,
respectively, which are such that the magnetic field H and electric field E are given
by

H = curlA,(3)

E = −∂A
∂t

−∇φ.(4)

A is determined up to a gradient; once A is given φ is determined up to a function
of t. The constant σ is a measure of the normal conductivity of the superconducting
material (in this nondimensional form σ is the ratio of the timescale for diffusion of
magnetic field in the normal state to the timescale for the relaxation of the order
parameter), and κ is the Ginzburg–Landau parameter. Length has been scaled with
the penetration depth λ, which is the natural lengthscale for variations in the magnetic
field. In these units the thermodynamic critical field is given by Hc = 1/

√
2, and the

upper and lower critical fields are given by Hc2 = κ and Hc1 ∼ log(κ)/2κ for large κ,
respectively.

The most common boundary conditions on (1)–(2) are the natural conditions

n · (∇Ψ− iAΨ) = 0 on ∂Ω(5)

and continuity of A, H, and E across ∂Ω (assuming that the permeability and per-
mittivity of the region exterior to the superconductor is equal to that of the supercon-
ducting material; the modification if this is not the case is easy to make). Equation
(5) is applicable when the region adjacent to the superconductor is an insulator, which
is the case we will consider henceforth. Note that (5) implies that no supercurrent
passes through the boundary, and we assume also that no normal current is applied
directly to the superconductor.

Outside Ω we have Maxwell’s equations (neglecting displacement current)

curlH = Jext,(6)

divH = 0,(7)

Ht + curlE = 0,(8)

divE = 0,(9)

where Jext is the externally imposed current which is driving the system. The most
commonly considered situation is that in which a uniform magnetic field is applied at
infinity, in which case Jext is zero and

H → Hext as |x| → ∞(10)

(assuming a bounded superconducting region). The continuities of A, H, and E
are the usual boundary conditions on Maxwell’s equations at an interface between
two media. Note though that these conditions are not all independent, since, for
example, the continuity of the normal component of H arises by taking (7) to hold
in a generalized sense everywhere, but this equation is automatic from (3), which, if
it holds in a generalized sense, gives continuity of the tangential components of A.

Equations (1)–(2) are gauge invariant in the sense that they are invariant under
transformations of the form

A → A +∇ω, φ→ φ− ∂ω

∂t
, Ψ → Ψeiκω.



A HIERARCHY OF MODELS FOR SUPERCONDUCTING THIN FILMS 2091

We take advantage of this invariance to write the equations in terms of real variables
by writing

Ψ = feiχ, Q = A − 1

κ
∇χ, Φ = φ+

1

κ

∂χ

∂t
(11)

to give

− 1

κ2

∂f

∂t
+

1

κ2
∇2f = f3 − f + f |Q|2 in Ω,(12)

f2Φ + div (f2Q) = 0 in Ω,(13)

−( curl )2Q =
σ

κ2

(
∂Q

∂t
+∇Φ

)
+ f2Q in Ω,(14)

H = curlQ,(15)

E = −∂Q
∂t

−∇Φ.(16)

The vortex solutions characteristic of type-II superconductors can be illustrated by
seeking a solution of the form

Ψ = f(r)einθ,(17)

A = A(r)eθ(18)

on an infinite domain, where n is an integer known as the vortex number, r and θ are
polar coordinates, and eθ is the unit vector in the azimuthal direction. Substituting
into (1)–(2) gives

1

κ2

1

r

d

dr

(
r
df

dr

)
−
(
A− n

κr

)2

f = f3 − f,(19)

d

dr

(
1

r

d

dr
(rA)

)
= f2

(
A− n

κr

)
,(20)

f, A bounded as r → 0,(21)

f → 1, A→ 0 as r → ∞.(22)

The existence of a solution which necessarily has f(0) = 0 has been shown by Berger
and Chen [3]. The supercurrent is given by

J = −f2
(
A− n

κr

)
eθ,(23)

which shows the vortex nature of this solution. The axial magnetic field carried by
the vortex is ∫

R
2

H · dS =
2πn

κ
,(24)

which is quantized in units of 2π/κ, with n the number of flux quanta carried by the
vortex. Note that for large values of κ, f ≈ 1 except in a region of order κ−1 from
the origin, which is the vortex core.

Since the flux quantum is O(1/κ) it is common to rescale magnetic field with
1/κ when considering vortex solutions. However, when considering the thin-film limit
we must first rescale length so that we are working on the lateral dimension of the
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sample, L say, which requires a corresponding rescaling of time with L2/λ2. The
canonical scale for the magnetic field then involves rescaling with λ2/(L2κ) (if we
assume that the vortex separation is O(L); see [10], for example), so that Q and J
must be rescaled with λ/(Lκ). This gives

ξ2

L2

(
−∂f
∂t

+∇2f

)
= f3 − f +

ξ2f |Q|2
L2

in Ω,(25)

f2Φ + div (f2Q) = 0 in Ω,(26)

−λ2/L2 curlH = −J =
ξ2σ

L2

(
∂Q

∂t
+∇Φ

)
+ f2Q in Ω,(27)

H = curlQ,(28)

remembering that κ = λ/ξ. Note also the equations

divH = 0,(29)

divJ = 0,(30)

which follow from (27) and (28) and will prove useful in the thin-film analysis. With
these equations we have the boundary conditions

∂f

∂n
= 0 on ∂Ω,(31)

Q · n = 0 on ∂Ω,(32)

J · n = 0 on ∂Ω,(33)

with H and E continuous across ∂Ω.

2.1. Vortex pinning in the Ginzburg–Landau model. Before we go on to
consider the thin-film version of (25)–(33) let us first describe the modifications which
can be made to model the pinning of vortices in this framework.

In most technological applications superconductors are required to carry a trans-
port current. The interaction of this current with the current circling a vortex causes
the vortex to move. (This is often considered to be the result of the “Lorentz force”
on the magnetic flux line carried by the vortex due to the transport current.) The
motion of the vortex dissipates energy, leads to an electric field and hence a nonzero
resistivity, and is therefore undesirable. In practice attempts are made to “pin” vor-
tices at certain sites in the material in order to impede their motion. It is found that
any form of inhomogeneity (for example, impurities, dislocations, or grain bound-
aries) will help to pin vortices. Such impurities have the effect of impeding locally
the ability of the material to become superconducting. A popular way of modeling
this inhomogeneity in the Ginzburg–Landau framework is to allow the equilibrium
density of superconducting electrons to vary spatially [23, 7]. In the simplest case this
leads to

ξ2

L2

(
−∂f
∂t

+∇2f

)
= f3 − a(x)f +

ξ2f |Q|2
L2

in Ω,(34)

f2Φ + div (f2Q) = 0 in Ω,(35)

−λ2/L2 curlH = −J =
ξ2σ

L2

(
∂Q

∂t
+∇Φ

)
+ f2Q in Ω,(36)
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where the equilibrium density of superconducting electrons is denoted by a(x). Of
course, more generally we may allow the coefficient of |Ψ|2Ψ as well as λ, ξ, κ, and
σ to vary spatially, but we will consider here the case when these parameters are
constant.

Numerical simulations of these equations in two dimensions show that the vortices
are attracted to minima of a, as we would have hoped [7, 14].

2.2. Thin-film limit of the Ginzburg–Landau model. Let the film be given,
here and throughout, by

Ω = {(x, y, z) : (x, y) ∈ D, (ζ − g/2)ε < z < (ζ + g/2)ε} ,(37)

where D ⊂ R
2 is the projection of the film in the (x, y) plane, ζ(x, y) is the height of

the centersurface of the film, g(x, y) is the film thickness, and ε = d/L is the aspect
ratio.

We write ξ/L = Ξ and λ2/L2 = εΛ, since the canonical scaling will turn out to
be Λ = O(1). Then

Ξ2

(
−∂f
∂t

+∇2f

)
= f3 − a(x)f + Ξ2f |Q|2 in Ω,(38)

f2Φ + div (f2Q) = 0 in Ω,(39)

−εΛcurlH = −J = Ξ2σ

(
∂Q

∂t
+∇Φ

)
+ f2Q in Ω.(40)

We consider first the problem in the film, where we rescale z with ε by setting z = εZ.
Henceforth for clarity we use h to denote the magnetic field outside the film and H
to denote it inside the film. Then

Ξ2

(
−∂f
∂t

+
∂2f

∂x2
+
∂2f

∂y2
+

1

ε2
∂2f

∂Z2

)
= f3 − f + Ξ2f(Q2

1 +Q2
2 +Q2

3) in Ω,(41)

f2Φ +
∂(f2Q1)

∂x
+
∂(f2Q2)

∂y
(42)

+
1

ε

∂(f2Q3)

∂Z
= 0 in Ω,

−εΛ
(
∂H3

∂y
− 1

ε

∂H2

∂Z

)
= −J1 = Ξ2σ

(
∂Q1

∂t
+
∂Φ

∂x

)
+ f2Q1 in Ω,(43)

−εΛ
(
1

ε

∂H1

∂Z
− ∂H3

∂x

)
= −J2 = Ξ2σ

(
∂Q2

∂t
+
∂Φ

∂y

)
+ f2Q2 in Ω,(44)

−εΛ
(
∂H2

∂x
− ∂H1

∂y

)
= −J3 = Ξ2σ

(
∂Q3

∂t
+

1

ε

∂Φ

∂Z

)
+ f2Q3 in Ω,(45)

∂Q3

∂y
− 1

ε

∂Q2

∂Z
= H1,(46)

1

ε

∂Q1

∂Z
− ∂Q3

∂x
= H2,(47)

∂Q2

∂x
− ∂Q1

∂y
= H3,(48)

∂H1

∂x
+
∂H2

∂y
+

1

ε

∂H3

∂Z
= 0,(49)

∂J1

∂x
+
∂J2

∂y
+

1

ε

∂J3

∂Z
= 0.(50)
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With these equations we have the boundary conditions on the upper and lower surfaces
of the film

−ε2 ∂
∂x

(ζ ± g/2)∂f
∂x

(x, y, ζ ± g/2)− ε2 ∂
∂y

(ζ ± g/2)∂f
∂y

(x, y, ζ ± g/2)(51)

+
∂f

∂Z
(x, y, ζ ± g/2) = 0 for (x, y) ∈ D,

−ε ∂
∂x

(ζ ± g/2)Q1(x, y, ζ ± g/2)− ε ∂
∂y

(ζ ± g/2)Q2(x, y, ζ ± g/2)(52)

+Q3(x, y, ζ ± g/2) = 0 for (x, y) ∈ D,
−ε ∂
∂x

(ζ ± g/2) J1(x, y, ζ ± g/2)− ε ∂
∂y

(ζ ± g/2) J2(x, y, ζ ± g/2)(53)

+ J3(x, y, ζ ± g/2) = 0 for (x, y) ∈ D,

h(x, y, z = ε(ζ ± g/2)) = H(x, y, Z = ζ ± g/2).(54)

We formally expand all variables in a power series in ε as ε→ 0 as

H = H(0) + εH(1) + · · · ,
etc. Then at leading order in (41)–(50)

∂2f (0)

∂Z2
= 0 in Ω,(55)

∂((f (0))2Q
(0)
3 )

∂Z
= 0 in Ω,(56)

Λ
∂H

(0)
2

∂Z
= −J (0)

1 = Ξ2σ

(
∂Q

(0)
1

∂t
+
∂Φ(0)

∂x

)
+ (f (0))2Q

(0)
1 in Ω,(57)

−Λ
∂H

(0)
1

∂Z
= −J (0)

2 = Ξ2σ

(
∂Q

(0)
2

∂t
+
∂Φ(0)

∂y

)
+ (f (0))2Q

(0)
2 in Ω,(58)

0 =
∂Φ(0)

∂Z
in Ω,(59)

∂Q
(0)
2

∂Z
= 0,(60)

∂Q
(0)
1

∂Z
= 0,(61)

∂Q
(0)
2

∂x
− ∂Q

(0)
1

∂y
= H

(0)
3 ,(62)

∂H
(0)
3

∂Z
= 0,(63)

∂J
(0)
3

∂Z
= 0,(64)

with boundary conditions

∂f (0)

∂Z
(x, y, ζ ± g/2) = 0 for (x, y) ∈ D,(65)
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Q
(0)
3 (x, y, ζ ± g/2) = 0 for (x, y) ∈ D,(66)

J
(0)
3 (x, y, ζ ± g/2) = 0 for (x, y) ∈ D,(67)

h(0)(x, y, z = ±0) = H(0)(x, y, Z = ζ ± g/2).(68)

Equations (55) and (65) give f (0) = f (0)(x, y, t). From (64) and (67) we see that J
(0)
3 =

0. We see from (59)–(61) that Q
(0)
1 , Q

(0)
2 , and Φ(0) are independent of Z, so that J

(0)
1

and J
(0)
2 are independent of Z. Then (57), and (58) may be integrated to give

H
(0)
1 =

ZJ
(0)
2

Λ
+ a(x, y, t),(69)

H
(0)
2 = −ZJ

(0)
1

Λ
+ b(x, y, t).(70)

Similarly (63) gives

H
(0)
3 = c(x, y, t).(71)

Now evaluating on the top and bottom of the film Z = ζ ± g/2 and using (68) give

[h(0)] =
g

Λ
(J

(0)
2 ,−J (0)

1 , 0) for (x, y) ∈ D,(72)

where the square bracket indicates the jump in the quantity enclosed across D. Writ-
ing this jump condition in the more usual form gives[

ez ∧ h(0)
]
=
g

Λ
J (0) for (x, y) ∈ D,(73) [

ez · h(0)
]
= 0 for (x, y) ∈ D,(74)

where ez is the unit vector in the z-direction. Equations (73)–(74) form boundary
conditions on the problem for the external magnetic field, which satisfies Maxwell’s
equations

curlh(0) = J
(0)
ext,(75)

divh(0) = 0,(76)

h(0) → h
(0)
ext as |r| → ∞.(77)

As we might expect, h(0) is simply the magnetic field generated if the total current in
the film were distributed on a sheet, plus the applied (externally generated) magnetic

field. We can therefore calculate h(0) once we have found J (0).
Returning to the film, we see from (56) and (66) that Q

(0)
3 = 0. What remains is

to find an equation for f (0), Q
(0)
1 , Q

(0)
2 , and Φ(0). To do this we need to proceed to

higher orders in the expansion of (41) and (51).
At first order in (41) and (51) we find

∂f (1)

∂Z
= 0.(78)

At second order we find

Ξ2

(
−∂f

(0)

∂t
+
∂2f (0)

∂x2
+
∂2f (0)

∂y2
+
∂2f (2)

∂Z2

)
(79)

= (f (0))3 − a(x)f (0) + Ξ2f (0)((Q
(0)
1 )2 + (Q

(0)
2 )2) in Ω,
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with

− ∂

∂x
(ζ ± g/2)∂f

(0)

∂x
(x, y, ζ ± g/2)− ∂

∂y
(ζ ± g/2)∂f

(0)

∂y
(x, y, ζ ± g/2)(80)

+
∂f (2)

∂Z
(x, y, ζ ± g/2) = 0 for (x, y) ∈ D.

Integrating (79) from ζ − g/2 to ζ + g/2 and using (80) give

Ξ2

(
−∂f

(0)

∂t
+

1

g
∇ ·
(
g∇f (0)

))
(81)

= (f (0))3 − f (0) + Ξ2f (0)((Q
(0)
1 )2 + (Q

(0)
2 )2) for (x, y) ∈ D.

We are still missing an equation for the divergence of Q(0), which should come from
(42). Proceeding to next order in this equation gives

(f (0))2Φ(0) +
∂((f (0))2Q

(0)
1 )

∂x
+
∂((f (0))2Q

(0)
2 )

∂y
+
∂((f (0))2Q

(1)
3 )

∂Z
= 0 in Ω.(82)

At next order in the boundary condition (52) we find

− ∂

∂x
(ζ ± g/2)Q(0)

1 (x, y, ζ ± g/2)− ∂

∂y
(ζ ± g/2)Q(0)

2 (x, y, ζ ± g/2)(83)

+Q
(1)
3 (x, y, ζ ± g/2) = 0 for (x, y) ∈ D.

Now, integrating (82) from Z = ζ − g/2 to Z = ζ + g/2 and using (83) gives

(f (0))2Φ(0) +
1

g
∇ ·
(
g(f (0))2Q(0)

)
= 0 for (x, y) ∈ D.(84)

A similar analysis on (50) and (53) gives

∇ ·
(
gJ (0)

)
= 0.(85)

Finally, by continuity of magnetic field at the interface (68) and constancy of H3 in
Z (71), equation (62) becomes

∂Q
(0)
2

∂x
− ∂Q

(0)
1

∂y
= h

(0)
3 (x, y, 0).(86)

Summary. We now have a closed model for the leading-order problem as ε → 0
with Ξ and Λ fixed. Dropping the superscripts for clarity we have

Ξ2

(
−∂f
∂t

+
1

g
∇ · (g∇f)

)
= f3 − a(x)f + Ξ2f |Q|2 for (x, y) ∈ D,(87)

f2Φ +
1

g
∇ · (gf2Q

)
= 0 for (x, y) ∈ D,(88)

∂Q2

∂x
− ∂Q1

∂y
= h3(x, y, 0) for (x, y) ∈ D,(89)

Q3 = 0,(90)
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∇ · (gJ) = 0,(91)

J = −Ξ2σ

(
∂Q

∂t
+∇Φ

)
− f2Q for (x, y) ∈ D,(92)

J3 = 0,(93)

[ez ∧ h] =
g

Λ
J for (x, y) ∈ D,(94)

[ez · h] = 0 for (x, y) ∈ D,(95)

curlh = Jext,(96)

divh = 0,(97)

h → hext as |x| → ∞.(98)

If g is constant, then (87)–(93) are simply the two-dimensional Ginzburg–Landau
equations. The big difference in the thin-film case is that h3 is not related to J
through J = curl (0, 0, h3) but through the exterior problem (94)–(98).

We note that there is an equivalent complex formulation

Ξ2

(
−∂Ψ
∂t

− iΨφ(99)

+
1

g
(∇− iA) · g (∇− iA)Ψ

)
= Ψ(|Ψ|2 − a(x)) for (x, y) ∈ D,

∂A2

∂x
− ∂A1

∂y
= h3(x, y, 0) for (x, y) ∈ D,(100)

A3 = 0,(101)

[ez ∧ h] =
g

Λ
J for (x, y) ∈ D,(102)

[ez · h] = 0 for (x, y) ∈ D,(103)

∇ · (gJ) = 0,(104)

−Ξ2σ

(
∂A

∂t
+∇φ

)
(105)

+
1

2
(Ψ∗∇Ψ−Ψ∇Ψ∗)− |Ψ|2A = J for (x, y) ∈ D,

J3 = 0,(106)

curlh = Jext,(107)

divh = 0,(108)

h → hext as |x| → ∞,(109)

where

Ψ = feiχ, Q = A −∇χ, Φ = φ+
∂χ

∂t
,(110)

and χ is arbitrary. To these equations we must add the boundary conditions (5) (or
equivalently (31)–(32)) and (33) on the lateral edges of the film, giving

ν · (∇Ψ− iAΨ) = 0 on ∂D,(111)

J · ν = 0 on ∂D,(112)

where ν is the unit outward normal to ∂D.
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Before proceeding let us first examine the flow of information in the equations,
and in particular whether we have the right number of equations and unknowns. As
we have already mentioned, equations (102)–(103) and (107)–(109) form a standard
problem in magnetostatics, namely to determine the magnetic field generated by
a surface current sheet. Thus these equations determine h if J is given. Having
determined h, equations (100)–(101) then determine A up to a gradient, which we
can fix due to the gauge invariance property (110). With A given, equations (99) and
(104) (using (105)) with the boundary conditions (111)–(112) form a closed system
for Ψ and φ. Finally, the loop is closed by (105), which gives J as a function of Ψ, φ,
and A.

2.2.1. Thin strip geometry. Suppose our thin film is a thin strip of width 2l,
i.e., D = (x, y) : −l < x < l, and that Jext and hext are such that h = (h1, 0, h3), J =
(0, J2, 0), with h1, h3, and J2 independent of y. Then we can write the relationship
between h3 and J2 explicitly using a Hilbert transform as follows. We first write
h = happ + h′, where happ is the total applied magnetic field (generated by Jext
and hext) so that h′ satisfies the homogeneous version of (107) and tends to zero at
infinity. Then (107) and (108) imply that we can write

h′ = ∇w,(113)

∇2w = 0,(114)

where ∇ is the two-dimensional gradient in x and z, with[
∂w

∂x

]
=
gJ2

Λ
,(115) [

∂w

∂z

]
= 0,(116)

w → 0 as x2 + z2 → ∞.(117)

Since the solution to (114)–(117) will be symmetric, so that

w(x, z) = −w(x,−z),(118)

we may consider the problem in the upper half-plane only, giving

∇2w = 0 in z > 0,(119)

∂w

∂x
=
gJ2

2Λ
on z = 0,(120)

∂w

∂z
= h3(x, 0)− happ,3(x, 0) on z = 0,(121)

w → 0 as x2 + z2 → ∞.(122)

Then

∂w

∂z

∣∣∣∣
z=0

= H
(
∂w

∂x

∣∣∣∣
z=0

)
≡ 1

π
−
∫ ∞

−∞

1

x̄− x
∂w

∂x
(x̄, 0) dx̄,(123)

so that

h3(x, 0)− happ,3(x, 0) =
1

π
−
∫ l

−l

gJ2(x̄)

2Λ(x̄− x) dx̄.(124)

This equation replaces (102)–(103) and (107)–(109) in (99)–(112).

2.2.2. The limit Λ → ∞ with Ξ fixed. There are three key parameters left
in the model, namely Λ, Ξ, and σ. We have so far considered the canonical scaling
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in which all the equations remain coupled in the thin-film limit. The thin-film limit
of the Ginzburg–Landau equations considered in [8] corresponds to the limit Λ → ∞
with Ξ fixed, since they consider the limit ε → 0 with fixed λ, ξ, L, and κ. As
Λ → ∞ we see from (94) that the current in the film is insufficient to affect the
magnetic field at leading order, and the problems for A and Ψ decouple leading to a
great simplification. At leading order the applied magnetic field simply passes straight
through the film, so that

h = happ, A = (0, xH3,app, 0),

where happ is the total applied magnetic field (that generated by the external current
plus that imposed at infinity), which is the solution to (107)–(109). Equations (99)
and (104) can then be solved for Ψ and φ since A is known. Note that the factor
Ξ2 may be removed from these equations by a rescaling of x and A, as is done in
[8]. The current in the film is then determined from (105). The correction to the
magnetic field can then be calculated from (102)–(103) and (107)–(109). Thus in this
expansion for large Λ at each stage we have to solve the standard magnetostatics
problem of determining the magnetic field due to a known surface current sheet and
then a problem for Ψ and φ in which A is known.

The numerical solutions in [8] show that vortices are attracted to the minima
of g(x), that is, the thin parts of the film. Figure 2 shows a typical calculation,
performed on a square film with side of (nondimensional) length 20 (L = ξ is chosen
as the unit of length, so dimensionally the side of the square is 20ξ), with applied
field perpendicular to the film and of (nondimensional) strength 0.5. In Figure 2(a)
the solution for a film of constant thickness is shown. (Contours show the level curves
of the modulus of the order parameter.) Ten squares of size ξ × ξ were then chosen
randomly, and the thickness of the film on the squares were reduced to half that
of the remaining film; the distribution of the thin regions is shown in Figure 2(b).
Figure 2(c) shows the position of the vortices for the variable thickness film with the
same magnetic field strength as Figure 2(a). Figure 2(d) shows Figures 2(b) and 2(c)
superimposed, so that the position of the vortices can be compared to the position of
the thin regions of the film.

Numerical solutions of the time-dependent version of this reduced model are also
performed in [1] to study vortex nucleation at boundaries in the presence of applied
magnetic fields and currents.

The limit Λ → 0 with Ξ fixed. The alternative limit is Λ → 0 with Ξ fixed. In
this case, from (94) and (92), we must rescale J , Q, and Φ with Λ. Then to leading
order (89) gives

h3(x, y, 0) = 0 for (x, y) ∈ D.(125)

Equations (96)–(98) can then be solved with this boundary condition for h.
Equation (125) is valid away from vortices. Near each vortex an inner problem

must be solved in which length is rescaled with Λ, which couples the problems for h
and J together again. The limit Λ → 0 will be much more interesting when we go on
to consider vortex density models in section 4.

3. London models.

3.1. The London limit of the thin-film Ginzburg–Landau model. From
(87) we see that the vortex core radius is of order Ξ in these units. The London
model, corresponding to vanishing core radius, therefore corresponds to the limit
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(a) Constant thickness film. (b) Distribution of thin regions.

(c) Variable thickness film. (d) Figs. 2(b) and 2(c) superim-
posed.

Fig. 2. Level curves of the magnitude of the order parameter for superconducting samples
having sides equal to 20 coherence lengths [S. J. Chapman, Q. Du, and M. D. Gunzburger, A model
for variable thickness superconducting thin films, Z. Angew. Math. Phys., 47 (1996), pp. 410–431].
Reprinted with permission.

Ξ → 0. Since we are taking this limit after having let ε→ 0 we are in the parameter
regime ε� Ξ � 1. We will consider the alternative regime Ξ � ε� 1 in section 3.3.

In the limit Ξ → 0 with Λ fixed we see that (87) implies f2 = a(x) except at
vortices. Then from (92) we have

J = −aQ,(126)

so that (89) gives

ez · curl
(

J

a

)
+ h3(x, y, 0) = 0(127)

except at vortices.
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Suppose there is a vortex at the origin. Near the vortex we rescale r = (x2 +
y2)1/2 = ΞR and expand

f = f (0) + · · · ,(128)

Q =
1

Ξ
Q(0) + · · · .(129)

Then at leading order in the core region

Q(0) = − 1

R
eθ,(130)

∂2f (0)

∂R2
+

1

R

∂f (0)

∂R
− f (0)

R2
= (f (0))3 − a(0)f (0).(131)

Writing

f (0) =
√
a(0)f̄(ρ), ρ =

√
a(0)R,

as in [12] we find f̄ satisfies

f̄ ′′ +
f̄ ′

ρ
− f̄

ρ2
= f̄3 − f̄ ,(132)

f̄(0) = 0,(133)

f̄ → 1 as ρ→ ∞,(134)

where ′ ≡ d/dρ. Hence f̄ is simply the solution corresponding to a two-dimensional
rectilinear isotropic vortex, whose existence and uniqueness have been shown in [13].
From (130) and (126) we see the matching condition on the outer solution J as a
vortex is approached is therefore

J ∼ a(0)

r
eθ as r → 0.

We may combine this matching condition succinctly with the London equation (127)
by writing

ez · curl
(

J

a(x)

)
+ h3(x, y, 0) = 2πδ(x),(135)

where x = (x, y) and δ(x) is the two-dimensional Dirac δ-function. Thus we have
reduced the nonlinear but regular Ginzburg–Landau equation to a linear but singular
London equation. The great advantage of the linearity of (135) is that if we have many
vortices located at the positions xn, n = 0, . . . , N , we may simply add up their con-
tributions to the electric current and magnetic field by the principle of superposition
to give

ez · curl
(

J

a(x)

)
+ h3(x, y, 0) = 2π

N∑
n=0

δ(x − xn).(136)

All that remains is to determine a law of motion for each vortex, so that we can
determine the evolution of the positions xn. To do this we need to proceed further
down the asymptotic expansions. The analysis parallels exactly that in [11, 12, 10].
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Asymptotically expanding the solution of (136), (91) in inner coordinates as r → 0 as
in [10] we find

Q = −1

a
J ∼ − 1

ΞR
eθ − | log Ξ|

2(ag)

(
(ag)y
−(ag)x

)
+ · · · ,(137)

where the second term is evaluated at r = 0 (and is therefore constant). Thus the
expansion in the inner region must proceed as

f = f (0) + Ξ| log Ξ|f (1) + · · · ,(138)

Q =
1

Ξ
Q(0) + | log Ξ|Q(1) + · · · ,(139)

Φ =
| log Ξ|

Ξ
Φ(0) + · · · ,(140)

v = | log Ξ|v(0) + · · · ,(141)

where v is the velocity of the vortex at the origin. Equating coefficients of | log Ξ| in
(87), (88), (91), and (92) we find

v(0) · er
df (0)

dR
+
∂2f (1)

∂R2
+

1

R

∂f (1)

∂R
− f (1)

R2
+

1

R2

∂2f (1)

∂θ2
(142)

= 3(f (0))2f (1) − a(0)f (1) − 2f (0)

R
Q(1) · eθ,

(f (0))2Φ(0) − 1

R

∂

∂θ

(
2f (0)f (1)

R

)
(143)

+
1

R

∂

∂R

(
R(f (0))2Q(1) · er

)
+

1

R

∂

∂θ

(
(f (0))2Q(1) · eθ

)
= 0,

1

R

∂

∂R

(
RQ(1) · eθ

)
− 1

R

∂

∂θ

(
Q(1) · er

)
= 0,(144)

− 1

R

∂

∂θ

(
2f (0)f (1)

R

)
+

1

R

∂

∂R

(
R(f (0))2Q(0) · er

)
+

1

R

∂

∂θ

(
R(f (0))2Q(0) · eθ

)
+ σ

(
1

R

∂

∂R

(
R
∂Θ(0)

∂R

)
+

1

R2

∂2Θ(0)

∂θ2

)
= 0.(145)

From (144) and (145) we see that

(f (0))2Φ(0) = σ

(
1

R

∂

∂R

(
R
∂Θ(0)

∂R

)
+

1

R2

∂2Θ(0)

∂θ2

)
.(146)

As R→ 0 we have the boundary condition [11]

Φ(0) ∼ − 1

R
v(0) · eθ.(147)

From (143) we may write Q(1) in terms of a scalar potential ψ as

Q(1) · eθ =
1

R

∂ψ

∂θ
,(148)

Q(1) · er =
∂ψ

∂R
.(149)
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To match with the outer behavior (137) we require

ψ ∼ constant×R sin(θ − α)
for some constant angle α. Thus we make the ansatz [12]

ψ = a(0)−1/2φ(ρ) sin(θ − α),(150)

Φ(0) = Ua(0)1/2η(ρ) sin(θ − α),(151)

f (1) = F (ρ) cos(θ − α),(152)

v(0) = U(cos(θ − α)er − sin(θ − α)eθ) = U(cosαex + sinαey).(153)

The system (142), (145), (146) then reduces to

1

ρ
(ρF ′)′ − 3f̄2F + F = −Uf̄ ′ − 2f̄φ

ρ2
+

2F

ρ2
,(154)

1

ρ

(
ρf̄2φ′

)′
+ σU

(
η′ +

η

ρ

)′
− f̄2φ

ρ2
+

2f̄F

ρ2
= 0,(155)

η′′ +
1

ρ
η′ − 1

ρ2
η − f (0)2η

σ
= 0,(156)

where ′ ≡ d/dρ. Equation (147) gives the boundary condition

η ∼ 1

ρ
as ρ→ 0(157)

on (156). Matching with the outer solution gives the second condition:

ρη → 0 as ρ→ ∞.(158)

This gives a well-posed problem for η, and numerical solutions of (156) with boundary
conditions (157) and (158) have been given by Peres and Rubinstein [25].

We consider (154) and (155). Noting that the derivative of the leading-order so-
lution f̄ satisfies the homogeneous version of (154) we see that there will be a solution
if and only if a certain solvability condition is satisfied. To derive this condition we
multiply (154) by ρf̄ ′, the derivative of (131) by ρf (1), and subtract to obtain

ρU(f̄ ′)2 +
(
ρF ′f̄ ′ − ρF f̄ ′′)′ = −2f̄ ′f̄φ

ρ
+

2f̄F

ρ2
.(159)

Using (155) to eliminate the final F , integrating over (0,∞) and using the asymptotic
behavior of the f̄ and Θ(0) at 0 and ∞ we find

lim
ρ→∞

(
φ′ +

φ

ρ

)
= −Uβ,(160)

where

β =

∫ ∞

0

ρ(f̄ ′)2dρ+
∫ ∞

0

f̄2ηdρ.(161)

Hence

lim
ρ→∞Q(1) =

Uβ

2
(sinαex − cosαey) .(162)
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Matching with the outer solution (137) using (153) gives

v(0) = − 1

β
∇ log(ag),(163)

so that to leading order

v = −| log Ξ|
β

∇ log(ag).(164)

We see that vortices are attracted to the minima of ag. If we proceed to higher orders
we find that the first two terms in the vortex velocity law give

v = −| log Ξ|
β

∇ log(ag) +
2

βa
J ∧ ez,(165)

where J is the regular part of the current density. The second term here becomes
dominant either when ag is constant, so that the first term vanishes, or when the
background current density J is large, which will be the case when we allow the
vortex separation ν/L to tend to zero to arrive at vortex-density models in section
4.1

Summary. The leading-order London limit of the thin-film Ginzburg–Landau
model is (dropping the superscripts for clarity)

curlh = Jext,(166)

divh = 0,(167)

with

[ez ∧ h] =
g

Λ
J for (x, y) ∈ Ω,(168)

[ez · h] = 0,(169)

h(0) → hext as |r| → ∞,(170)

for the magnetic field outside the superconductor, and

ez · curl
(

J

a

)
+ h3(x, y, 0) = 2π

∑
n

δ(x − xn),(171)

div (gJ) = 0,(172)

with

J · ν = 0 on ∂D,(173)

for the electric current inside the superconductor, with the vortices moving according
to the law

ẋn = −| log Ξ|
β

∇ log(ag) +
2

βa
J ∧ ez.(174)

1Strictly speaking the law of motion needs to be rederived when the terms in (165) switch order
so that the second one dominates, but the analysis proceeds in exactly the same way and (165) still
holds.
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The key equation here is (171); as we have already said, all the other equations are
simply the thin-film versions of Maxwell’s equations. We note that there are two
source terms in (171) for the current. The first is the sum of δ-functions due to the
vortices, as expected. The second is due to the applied magnetic field, which acts as
a negative distributed vorticity. This term is due to the Meissner effect, by which a
superconductor attempts to exclude a magnetic field from its interior. The current
generated by this term in (171) is an attempt to shield the superconductor from the
applied field and will result in a lower magnetic field inside the superconductor than
the applied field hext.

Note that if we instead consider vortices with negative winding number (corre-
sponding to a magnetic field in the −ez-direction rather than the ez-direction), then
(171) and (174) are modified to

ez · curl
(

J

a

)
+ h3(x, y, 0) = −2π

∑
n

δ(x − xn),(175)

ẋn = −| log Ξ|
β

∇ log(ag)− 2

βa
J ∧ ez.(176)

Note also that by writing the equations in terms of the total current in the film
gJ (rather than the average current J) the solution depends only on the product ag.
This shows how variations in film thickness play exactly the same role as variations
in the equilibrium density of superconducting electrons.

These equations were derived in [10, 21] for the case a = 1 and in [16] for the case
of a strip geometry D = (x, y) : −l < x < l in the absence of vortices, with a = g = 1.
In the strip case (166)–(170) may be replaced by

h3(x, 0)− happ,3(x, 0) =
1

π
−
∫ l

−l

gJ2(x̄)

2Λ(x̄− x) dx̄,(177)

as in section 2.2.1.
The increased Ginzburg–Landau parameter. Note that from (94) the lengthscale

for the decay of the magnetic field away from a vortex is Λ, which is the nondimen-
sional version of Pearl’s effective screening length for thin films [24]. Thus the London
limit we have considered is valid so long as Ξ � Λ. Thus in a thin film the relevant
parameter in determining the type of superconductor is not the Ginzburg–Landau
parameter κ but the increased Ginzburg–Landau parameter

κeff =
Λ

Ξ
=
λeff

ξ
=
λ2

ξd
=
λκ

d
.

This explains why thin films of even type-I superconducting material develop vortex
solutions similar to bulk type-II superconductors once the thickness becomes smaller
than the penetration depth, as was first observed by Tinkham [30].

3.2. The bulk London model. Let us now consider the opposite sequence of
limits, namely we first let Ξ → 0 keeping λ and ε fixed (i.e., we let κ→ ∞), and then
we let ε→ 0, that is, we are in the parameter regime Ξ � ε� 1.

We have seen that the vortex cores have vanishingly small radius in the limit
Ξ → 0 and (25) gives f = a(x) except at these isolated vortex lines. Then from (27)

λ2

L2
curl2Q + aQ = 0,(178)
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or, taking the curl,

λ2

L2
curl

(
1

a
curlH

)
+ H = 0,(179)

away from vortices. By matching a local asymptotic analysis of an individual vortex
core with this outer expansion away from vortices, as in section 3.1 and as detailed
in [11], it may be shown that the presence of vortices leads to δ-function singularities
on the right-hand side of (179), so that

λ2

L2
curl

(
1

a
curlH

)
+ H = 2π

∑
n

δΓn ,(180)

where

δΓ(x) =

∫
Γ

δ(x− x̄)δ(y − ȳ)δ(z − z̄)dx̄.(181)

Proceeding to first order in this asymptotic matching and applying a solvability con-
dition gives the law of motion of superconducting vortices as [11, 12]

v =
| log Ξ|
β

Cn − | log Ξ|
β

∇ log a+
2

aβ
J ∧ t,(182)

where J is the background current, C is the curvature of the vortex line, and β is
given by (161) as before.

It has been shown in [10] that (182), (180) imply that vortices must meet the
boundary ∂Ω normally, since if this is not so an infinite current density is produced.
(This can also be thought of as an infinite curvature of the vortex and its image,
which is clearly incompatible with (182).)

Equations (180), (182) must be coupled with Maxwell’s equations (6)–(10) outside
the film, along with continuity conditions on H across ∂Ω.

3.3. Thin film of the London equations. As in section 2, we assume that the
vortex separation is of the same order as the lateral dimension of the film as ε → 0,
that is, the film contains a finite number of vortices in the limit. We write (180) as

J = εΛcurlH,(183)

curl

(
J

a

)
+ H = 2π

∑
n

δΓn ,(184)

where our scaling of J , consistent with section 2, is such that terms in (184) are
balanced. Of course, in the canonical case both (183) and (184) will be balanced, and
it is only when we are considering limiting cases that the scaling of J is important.
As in section 2 we will find that the canonical scaling is to have Λ = λ2/dL of order
one. Since the vortices must meet the upper and lower surfaces of the film normally,
they must lie in the z-direction to leading order. Thus the equations to be satisfied
are

curl j + H = 2π
∑
n

δ(x − xn)ez + · · · in Ω,(185)

aj = Λε curlH in Ω,(186)
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divH = 0 in Ω,(187)

div (aj) = 0 in Ω,(188)

curlh = Jext outside Ω,(189)

divh = 0 outside Ω,(190)

with

h = H on ∂Ω,(191)

j · n = 0 on ∂Ω,(192)

and

h → hext as |r| → ∞,(193)

where n is the normal to ∂Ω and we have written J = aj.
As usual, we start by considering the problem inside the film. Rescaling z = εZ,

equation (185) becomes

−1

ε

∂j2
∂Z

+
∂j3
∂y

+H1 = · · · ,(194)

1

ε

∂j1
∂Z

− ∂j3
∂x

+H2 = · · · ,(195)

∂j2
∂x

− ∂j1
∂y

+H3 = 2π
∑
n

δ(x̂ − x̂n) + · · · .(196)

We expand all quantities asymptotically in powers of ε as

h ∼ h(0) + εh(1) + ε2h(2) + · · · ,(197)

etc. Substituting these expansions into (194)–(196) and equating powers of ε gives,
at leading order,

∂j
(0)
1

∂Z
=
∂j

(0)
2

∂Z
= 0,(198)

∂j
(0)
2

∂x
− ∂j

(0)
1

∂y
+H

(0)
3 = 2π

∑
n

δ(x̂ − x̂n).(199)

Thus, as before, j
(0)
1 and j

(0)
2 are constant in Z. The thin-film analysis of (186)–(193)

then proceeds exactly as in section 2.2 to give [10]

j
(0)
3 = 0,(200) [

ez ∧ h(0)
]
=
ag

Λ
j(0) for (x, y) ∈ D,(201) [

ez · h(0)
]
= 0 for (x, y) ∈ D.(202)

Similarly the thin-film analysis of (188) gives

div (ag j(0)) = 0.(203)



2108 S. J. CHAPMAN AND D. R. HERON

Finally we need to determine the law of motion for the vortices. An asymptotic
analysis in [10] for constant a matching this outer model with the inner model in the
vicinity of the vortex cores gives the law of motion

v =
2

β
J ∧ ez − | log Ξ|

β
∇ log g.(204)

If a variable a is included in this analysis, the result is

v =
2

aβ
J ∧ ez − | log Ξ|

β
∇ log(ag).(205)

It is shown in [10] that the motion due to variations in film thickness is consistent
with the motion of the vortex under (182) with the curvature it must have if it forms
an arc of a circle meeting the upper and lower surfaces of the film normally.

Thus we find that the thin-film version of the London model corresponds exactly
to the London limit of the thin-film Ginzburg–Landau model (166)–(174).

3.4. Limiting cases. In the limit Λ → ∞ the magnetic field generated by the
current in the film gives a negligible contribution to (171), and h3(x, y, 0) is simply
replaced by happ,3(x, y, 0), the third component of the total applied magnetic field.
The problem for the electric current is then decoupled from the problem for the
magnetic field, which as usual reduces to the standard problem in electromagnetism
of calculating the magnetic field due to a current sheet once the electric current has
been found.

For Λ small we must rescale the electric current with Λ. Then the current term
in (171) is negligible, and this equation reads

h3(x, y, 0) = 2π
∑
n

δ(x − xn)(206)

to leading order. Hence the normal component of the magnetic field is zero on z = 0,
except at the positions of the vortices. Near each vortex an inner problem must be
solved, in which length is rescaled with Λ, so that the first term in (171) is relevant
again. Thus, effectively, the relevant horizontal lengthscale is no longer L but the
effective penetration depth λeff , and the vortices are completely isolated. This last
limit is much more interesting when the vortices are more closely separated, so that
the sum of δ-functions can be averaged into a vortex density or vorticity.

4. Vortex-density models. So far we have been considering the limit ε → 0
with the vortex separation of the same order as L, so that there are a finite number
of vortices in the film in the limit. In this section we will consider the limit in which
ν/L→ 0 where ν is the vortex separation, so that the individual vortices are replaced
by a vortex density.

As before we now have two limiting processes (ε→ 0 and ν/L→ 0), and we can
choose to perform them in either order. We will consider first the vortex-density limit
of the thin-film London model, that is, we first let ε→ 0 and then let ν/L→ 0, so that
ε� ν/L� 1. In section 4.3 we will consider the alternative regime ν/L� ε� 1.

4.1. Averaging the thin-film London model. We consider the limit in which
the vortex separation ν/L→ 0. In this case it is clear from (171) that both h and J
need to be rescaled with L2/ν2.
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We formally define the vortex density as

ω(x) = lim
η→0

2πν2

η2L2

∫
|x|<η/2,|y|<η/2

∑
i

δ(x′ − xn) dx
′,(207)

where the integration is over a square of dimension η, and ν/L� η � 1 as ν/L→ 0,
so that the size of the square is tending to zero, but each square contains many vortices.
The prefactor ν2/L2 ensures that the limit is order one. Now locally averaging (166)–
(173) by formally integrating over the same square of side η, we find the electric
current inside the superconductor satisfies

ez · curl
(

J

a

)
+ h3(x, y, 0) = ω,(208)

div (gJ) = 0,(209)

with

J · ν = 0 on ∂D,(210)

while the problem for the magnetic field outside the superconductor,

curlh = Jext,(211)

divh = 0,(212)

with

[ez ∧ h] =
g

Λ
J for (x, y) ∈ D,(213)

[ez · h] = 0,(214)

h → hext as |r| → ∞,(215)

is unchanged. In the strip geometry, with a and g constant, equation (208) was
derived by Larkin and Ovchinnikov [22]. As usual, in this geometry (211)–(215) can
be replaced by (124). However, we now have another dependent variable, ω, so we
need another equation. In passing from isolated vortices to a vortex density we have
lost the property of vortex conservation, which is automatic when we are tracking
individual vortices. Thus the equation we need to add is a conservation law for the
vortices. This law takes the usual form, namely

∂ω

∂t
+ div (ωv) = 0,(216)

where v is the velocity of the vortices, which is given by (174). Remembering that we
have rescaled the electric current with L2/ν2, we also now rescale time with 2L2/βν2

to give

v =
1

a
J ∧ ez − ν2| log Ξ|

2L2
∇ log(ag).(217)

Now the pinning effect of variations in ag has been weakened due to the increased
current density in the film; if the lengthscale for variations in ag is order L, then
the first term is likely to dominate. In section 5 we will consider the case when the
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lengthscale ε for variations in a is also small, so that pinning becomes important
again.

If we perform the same analysis in a region of vortices with negative winding
number, we find ω < 0 and (217) becomes

v = −1

a
J ∧ ez − ν2| log Ξ|

2L2
∇ log(ag).(218)

We can combine these two results in the single vortex velocity law

v =
sign(ω)

a
J ∧ ez − ν2| log Ξ|

2L2
∇ log(ag).(219)

Equation (216) introduces one real characteristic into the model, so that we need
to give an extra boundary condition (on ω) whenever this characteristic points into
the domain, i.e., whenever v · ν < 0. This condition will typically relate either the
magnitude of the vorticity or the flux of vorticity through the boundary to the local
current density. In the two-dimensional case it is found that vortices will not be
nucleated at the boundary until the current density reaches a critical value. In the
thin-film case the details of vortex nucleation will depend on the local shape of the film
near the boundary ∂D, and an inner boundary layer problem needs to be solved on a
lateral lengthscale of order d, the film thickness. However, it is natural to assume still
that vortices will not be nucleated until the current density at the boundary reaches
a critical value, Jnucl say.

4.2. The bulk vortex-density model. Let us now consider the parameter
regime ν/L � ε � 1; that is, we first consider the limit ν/L → 0 to obtain the bulk
vortex-density model and then consider the thin-film limit of it by letting ε→ 0.

In three dimensions a similar formal averaging gives the vortex-density model as
[6]

λ2

L2
curl

(
1

a
curl H

)
+ H = ω in Ω,(220)

divH = 0,(221)

with Maxwell’s equations (6)–(10) as usual outside Ω, with continuity of H across
∂Ω and

J · n = 0 on ∂Ω,(222)

where ω is now a vector vortex density or vorticity given by

ω(x) = lim
η→0

2πν2

η2L2

∫
|x|<η/2,|y|<η/2

∑
i

δΓn(x
′) dx′.

The law of conservation of vortices in three dimensions is [6, 5]

∂ω

∂t
+ curl (ω ∧ v) = 0,(223)

where the vortex velocity v is given by

v =
1

a
J ∧ ω̂ +

ν2| log Ξ|
2L2

(−∇ log a+ curl ω̂ ∧ ω̂) ,(224)
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and ω̂ is the unit vector in the direction of ω. The term curl ω̂ ∧ ω̂ here is just
the curvature term rewritten. If the limits Ξ → 0 and ν/L → 0 are such that
ν2| log Ξ|/L2 → 0, then the last term is of lower order and can be neglected. In the
general three-dimensional situation neglecting the self-induced curvature term leads
to the possibility of a short-wavelength large–growth-rate instability on vortex lines
if J ·ω �= 0, as shown in [26] and discussed in [6]. However, in the thin-film limit it is
safe to neglect the self-induced term since the current will lie in the (x, y)-plane while
the vorticity will be normal to it.

As in the thin-film vortex-density model, equation (223) has introduced one real
characteristic, and we need to give a boundary condition on ω whenever v · n < 0.
Now, an analysis in [15] indicates that on such an inflow boundary either ω · n = 0
(which is the case in the thin-film model and also in the two-dimensional model with
axial symmetry) or ω ∧ n = 0. In the first case the flux of vorticity through the
boundary will be related to the local current density, while in the second no extra
condition needs to be given. In a general three-dimensional situation the position of
the switch between these two types of behavior is unknown, and a boundary layer
calculation may be necessary in its vicinity. However, in our thin film scenario we
are fortunate that the top and bottom of the film will have vortices passing through
them and be such that ω∧n = 0 if they are inflow, while we will see that the sides of
the film will have ω · n = 0 to leading order, and therefore these are the boundaries
through which new vortices will pass.

4.3. Thin film of the vortex-density model. Let us now consider the thin-
film limit ε → 0 of the bulk vortex-density model (220)–(224), corresponding to the
parameter regime ν/L� ε� 1. We begin as usual by writing (220) as

curl

(
J

a

)
+ H = ω in Ω,(225)

J = Λε curlH in Ω.(226)

Expanding all quantities in powers of ε the analysis proceeds exactly as in section 3.3
giving

curlh = Jext,(227)

divh = 0,(228)

with

[ez ∧ h] =
g

Λ
J for (x, y) ∈ D,(229)

[ez · h] = 0,(230)

h → hext as |r| → ∞,(231)

for the magnetic field outside the superconductor, and

ez · curl
(

J

a

)
+ h3(x, y, 0) = ω3,(232)

div (gJ) = 0,(233)

with

J · ν = 0 on ∂D,(234)
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for the electric current inside the superconductor. The only additional work is to
check that the three-dimensional vector conservation law (223) reduces to the two-
dimensional scalar conservation law (216) in the thin-film limit. To do that we need
to show that ω lies in the z-direction to leading order. Since one of the top or bottom
sides of the film is an inflow boundary, and on that inflow boundary ω ∧ n = 0, to
leading order we must have ω∧ez = 0 there. To be sure that ω1 = ω2 = 0 everywhere
we must check that they cannot vary rapidly in z, i.e., they are independent of Z to
leading order. Writing (223) in component form in the film gives

∂ω1

∂t
+
∂

∂y
(ω1v2 − ω2v1)− 1

ε

∂

∂Z
(ω3v1 − ω1v3) = 0,(235)

∂ω2

∂t
− ∂

∂x
(ω1v2 − ω2v1) +

1

ε

∂

∂Z
(ω2v3 − ω3v2) = 0,(236)

∂ω3

∂t
+
∂

∂x
(ω3v1 − ω1v3)− ∂

∂y
(ω2v3 − ω3v2) = 0,(237)

where

av1 = J2ω̂3,(238)

av2 = −J1ω̂3,(239)

av3 = J1ω̂2 − J2ω̂1.(240)

Thus at leading order in ε

ω3v1 − ω1v3 = independent of Z,(241)

ω2v3 − ω3v2 = independent of Z.(242)

Now (225) implies div ω = 0, which in the film gives ω3 independent of Z to leading
order. Then eliminating v from (241)–(242) gives two equations for ω1 and ω2 in
terms of ω3, so that ω1 and ω2, and therefore v, are also independent of Z to leading
order.

Finally (237) then gives

∂ω3

∂t
+
∂

∂x
(ω3v1) +

∂

∂y
(ω3v2) = 0,(243)

as required.

4.4. Limiting cases. In the limit in which Λ → ∞, the problem for the electric
current becomes

ez · curl
(

J

a

)
+ happ,3(x, y, 0) = ω,(244)

∂ω

∂t
+ div (ωv) = 0,(245)

v =
sign(ω)

a
J ∧ ez,(246)

div (gJ) = 0,(247)

with

J · ν = 0 on ∂Ω.(248)
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Once the current has been found, the magnetic field may be found from (211)–(215)
in the usual way.

In the limit in which Λ → 0, we must scale the electric current with Λ to give

curlh = Jext,(249)

divh = 0,(250)

with

[ez ∧ h] = gJ for (x, y) ∈ Ω,(251)

[ez · h] = 0,(252)

h(0) → hext as |r| → ∞,(253)

h3(x, y, 0) = ω.(254)

The problems for the magnetic field and electric current again simplify, but in this
case (249)–(250), (252)–(254) are first solved for the magnetic field, and then (251)
is used to determine the current in the superconductor. Having found the current,
(216) and (219) are then solved for the vortex density, which in turn feeds into (254).
Thus the problems remain coupled in this limit.

However, in taking the limit ν/L→ 0 and Λ → 0 there is a constraint on relative
magnitudes of these two parameters for the model (216), (219), (249)–(254) to be
valid. As we let Λ → 0 we are weakening the size of the mean-field current over the
local perturbation to this current due to neighboring individual vortices. We have
seen that the mean-field current is O(ΛL2/ν2), while influence of the current due to
a single vortex on its neighbors is O(L/ν). Thus for the dynamics to be dominated
by the mean field as in (219) we need ν/L � Λ, i.e., ν � λeff . If this is not the
case, then the vortex motion will be dominated by local forces and they will form
a strong lattice rather than the vortex liquid we are supposing. Note that for bulk
superconductors the equivalent condition is ν < λ2/L; the thin film condition is much
less stringent since the right-hand side is increased by the aspect ratio L/d.

In the strip geometry (216), (219), (249)–(254) reduce to an interesting singular
integral equation. Suppose that D = (x, y) : −l < x < l and that happ,2 = 0 as usual.
In the strip geometry vortex conservation (245) gives

∂ω

∂t
+
∂

∂x

(
J2|ω|
a

)
= 0,(255)

while (124) and (254) give

ω − happ,3 =
1

π
−
∫ l

−l

gJ2(x̄)

2(x̄− x) dx̄, −l < x < l.(256)

Hence

∂

∂t

(
happ,3 +

1

π
−
∫ l

−l

gJ2(x̄)

2(x̄− x) dx̄
)

(257)

+
∂

∂x

(
J2

a

∣∣∣∣∣happ,3 +
1

π
−
∫ l

−l

gJ2(x̄)

2(x̄− x) dx̄
∣∣∣∣∣
)

= 0, −l < x < l.
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If l = ∞, we may invert (256) to give

gJ2

2
=

1

π
−
∫ ∞

−∞

ω(x̄)− happ,3
x− x̄ dx̄,(258)

and hence

∂ω

∂t
+
∂

∂x

(
2|ω|
ag

[
1

π
−
∫ ∞

−∞

ω(x̄)− happ,3
x− x̄ dx̄

])
= 0.(259)

This inversion is not so easy if l is finite, since J2 depends on h3 outside the domain
D, which cannot be simply written in terms of ω.

5. Critical-state models. So far we have been considering the limit in which
the separation of vortices ν/L → 0 but in which the lengthscale for variations in a,
namely ε, remains fixed. Let us now consider the limit in which ε/L → 0 also, so
that the pinning potential is also homogenized. Such a limit will lead to critical state
models, in which vortices do not move until the forcing current exceeds a critical
value.

5.1. Critical-state limit of the vortex-density thin-film model. Suppose
we now allow a in (208)–(217) to vary rapidly. If we look locally near a single vortex
which is in the deepest local well and consider the effect of applying a current J to
it, we see that if the current is not sufficient to cause the vortex to leave its local
well, then it will move up the side of the well until the attraction from the potential
balances the applied current (see Figure 3). In this case the vortex will have moved
a distance of order ε. Now, if we increase the current J , then at some point it will
be sufficient to cause the vortex to leave its local well and it will jump into the next
well. However, since the vortex was in the deepest local well the current will also be
sufficient to cause the vortex to leave the neighboring well. It will continue in this
way until it has moved an order-one distance, until either the local well depth has
increased, or until the local current density has decreased sufficiently to catch the
vortex. Hence, in the limit that ε/L→ 0, we arrive at a stick-slip mobility law: if the
local current density is less that a critical value, Jc say (which may be a function of
position), then the vortex does not move, while if the local current density is greater
than Jc, then the vortex will move but at a reduced speed due to moving through the
potential wells. If the distribution of well depth is nonuniform, so that there are a
range of depths locally, then it is possible to see how the critical current in this stick-
slip model may depend on ω. If we add more and more vortices locally, we have to
make use of shallower and shallower wells, thus reducing the critical current required
to start some of the vortices moving.

The critical current density in these scalings will be of order (ν2/Lε)| log Ξ|.
We have described the interaction of a single vortex with a rapidly varying poten-

tial, which is the case ε� ν. A similar scenario exists in the complementary situation
ν � ε with the single vortex replaced by a “pool” of vorticity, as shown in Figure 4.
Applying a forcing term now corresponds to “tilting” the potential, and again there
will be a critical current at which the well can no longer hold the pool. In this case it
is clear that the critical current will depend on the vortex density.

Thus, after homogenizing the pinning potential the law of motion (219) is modified
to be

v = sign(ω)F (|J |;x, ω)Ĵ ∧ ez,(260)
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Small forcing term J

No forcing term J

Forcing term enough to depin

Fig. 3. Pinning of a single vortex by a rapidly varying pinning potential.

where Ĵ is the unit vector in the direction of J and F (J) = 0 for J < Jc(x, ω)
(see Figure 5). The value of Jc and the exact form of the velocity law for J above Jc
depend on the nature of the pinning potential. We do not delve into the details of this
correspondence here, but note that for a single vortex moving in a simple sinusoidal
potential with uniform well depth, F approaches zero as (J − Jc)1/2. Note also that
(208) becomes

ez · curl
(

1

â(x)
J

)
+ h3(x, y, 0) = ω,(261)

where â is the effective equilibrium density of superconducting electrons, which is
not simply the local average of a but must be determined through a multiple scales
analysis.

Since the critical state corresponds to simply changing the law of motion, the
thin-film limit of the bulk critical-state model leads to the same set of equations.

We note that it is quite common in the literature to use a vortex velocity law
in which the velocity depends on the electric current via a power law, either with
or without a critical current. In [9] a law of this type is used to derive the current-
voltage characteristics of thin strips from the underlying vortex velocity law. Even
more common (especially when Λ = 0) is to model the superconductor as a nonlinear
conductor by assuming a nonlinear (typically power-law) relationship between the
electric field

E = Λ
∂J

∂t
+ ωez ∧ v = Λ

∂J

∂t
+ |ω|F (|J |;x, ω)Ĵ

and the electric current. When Λ = 0 this corresponds to choosing F (|J |;x, ω) ∝
|J |n/|ω|. Typically the power chosen is large, n = 9 [28] or even n = 19 [29]. When n
is large these power laws approximate to a stick-slip law of the form (260), but with
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Small forcing term J

No forcing term J

Forcing term enough to depin

Fig. 4. Pinning of a vortex pool by a rapidly varying pinning potential.

Fig. 5. Velocity law with stick-slip pinning.

an infinite vortex mobility once the critical current is exceeded (so that the graph
in Figure 5 is vertical). Such an infinite mobility also approximates an arbitrary
stick-slip law (260) when the applied magnetic field is slowly varying.

When the mobility of unpinned vortices is infinite the velocity v lies in the di-
rection of sign(ω)J ∧ ez, but its magnitude is determined from the constraint that

|J (0)| ≤ Jc, so that

v = sign(ω)mJ ∧ ez,(262)
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|J | ≤ Jc if ω �= 0,(263)

m ≥ 0,(264)

m (|J | − Jc) = 0.(265)

These equations are coupled with the law of vortex conservation,

∂ω

∂t
+ div (ωv) = 0,(266)

and the usual equations for the magnetic field and electric current, namely

curlh = Jext,(267)

divh = 0,(268)

with

[ez ∧ h] =
g

Λ
J for (x, y) ∈ D,(269)

[ez · h] = 0,(270)

h → hext as |r| → ∞,(271)

and

ez · curl
(

J

â

)
+ h3(x, y, 0) = ω,(272)

div (gJ) = 0,(273)

with

J · ν = 0 on ∂D.(274)

However, so far ω = 0 is a solution for all applied magnetic fields. What we are
missing is the condition of nucleation of vortices at the boundary ∂D. Vortices will
be nucleated once the current reaches the nucleation value Jnucl, but if Jnucl < Jc,
they will not move until the current reaches this higher depinning value. Thus in
addition to (263) we must also impose

|J | ≤ Jc on ∂D.(275)

Now in three dimensions in regions where ω = 0, taking the curl of (225) shows that
|J | takes its maximum value on the boundary. If this is true for the thin-film model
(272) also, then we can replace (262)–(265) with

ωv = mJ ∧ ez,(276)

|J | ≤ Jc, m ≥ 0, m (|J | − Jc) = 0.(277)

Streamfunction formulation. Using (273) we may introduce a streamfunction ψ
such that

J =
1

g
(ψy,−ψx, 0) .(278)

Then v is in the direction of −∇ψ, so we may set

ωv = −m∇ψ,(279)
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giving

∂ω

∂t
= div (m∇ψ),(280)

−∇ ·
(

1

âg
∇ψ
)

+ h3(x, y, 0) = ω,(281)

with the constraints

|∇ψ| ≤ gJc, m ≥ 0, m (|∇ψ| − gJc) = 0.(282)

These equations are coupled to (267)–(271) for Λ order one.
In a virgin sample in an increasing magnetic field there will be a region in the in-

terior, D1 say, which vortices have not yet reached, and a region around the boundary,
D2 = D\D1 say, in which the current is equal to the critical value.

In a strip −l < x < l, with â = 1 and Jc constant, and with D1 given by
−s < x < s, this gives

∂J2

∂x
+ h3(x, 0) = 0 for |x| < s,(283)

J2 = Jc for − l < x < −s,(284)

J2 = −Jc for s < x < l,(285)

with J2 continuous at x = ±s, and
ω = 0 for |x| < s,(286)

ω = h3(x, 0) for s < |x| < l,(287)

where

h3(x, 0)− happ,3(x, 0) =
1

π
−
∫ l

−l

gJ2(x̄)

2Λ(x̄− x) dx̄.(288)

5.2. Limiting cases. As Λ → ∞ the problems for the current decouples from
the problem for the magnetic field, since, as usual, h3(x, y, 0) in (281) is simply re-
placed by happ,3(x, y, 0). Then we have

∂ω

∂t
= div (m∇ψ),(289)

−∇ ·
(

1

âg
∇ψ
)

+ happ,3 = ω,(290)

with the constraints

|∇ψ| ≤ gJc, m ≥ 0, m (|∇ψ| − gJc) = 0.(291)

In this limit with g = 1 the free-boundary problem (283)–(285) gives

J2 = Jc for − L < x < −s,(292)

J2 = −happ,3x for − s < x < s,(293)

J2 = −Jc for s < x < L,(294)

s =
Jc

happ,3
,(295)

with

ω = 0 for |x| < s,(296)
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(a) (b)

Fig. 6. Solutions of the thin-film critical-state model in a thin strip in the limit Λ → ∞.

ω = happ,3(x, y, 0) for s < |x| < l.(297)

These solutions are plotted in Figure 6 for an increasing applied magnetic field happ,3.
For comparison, the corresponding solutions for a two-dimensional critical-state

model in a slab are

J2 = Jc for − L < x < −s,(298)

J2 = 0 for − s < x < s,(299)

J2 = −Jc for s < x < L,(300)

s = l − happ,3
Jc

,(301)

with

ω = 0 for |x| < s,(302)

ω = Jc(x− s) for s < x < l,(303)

ω = −Jc(x+ s) for − l < x < −s,(304)

which are shown in Figure 7.
In the second limit, Λ → 0, we must again scale J with Λ to give

curlh = Jext,(305)

divh = 0,(306)

with

[ez ∧ h] = (ψy,−ψx, 0) for (x, y) ∈ D,(307)

[ez · h] = 0,(308)

h → hext as |r| → ∞,(309)

h3(x, y, 0) = ω.(310)

∂ω

∂t
= div (m∇ψ),(311)

with the constraints

|∇ψ| ≤ gJc, m ≥ 0, m (|∇ψ| − gJc) = 0.(312)
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(a) (b)

Fig. 7. Solutions of the two-dimensional critical-state model in a slab.

(a) (b)

Fig. 8. Solutions of the thin-film critical-state model in a thin strip in the limit Λ → 0.

In this case with g = 1 the free-boundary problem (283)–(285) becomes

h3(x, 0) = happ,3 +
1

π
−
∫ l

−l

J2(x̄)

2(x̄− x) dx̄ = 0 for |x| < s,(313)

J2 = Jc for − l < x < −s,(314)

J2 = −Jc for s < x < l.(315)

This problem has been considered previously in [4, 10, 29, 31]. Solutions are plotted
in Figure 8. Note that the magnetic field tends to infinity as x→ ±l; there is an inner
region of width Λ in which the problems for J and h are coupled again and which
regularizes the magnetic field.

In both [4] and [31] field and current profiles are calculated for superconducting
strips in an applied field, with an applied current, and with both an applied field and
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Fig. 9. Variation of the applied magnetic field with time for the simulations shown in Figures
10 and 11.

an applied transport current. In [29] the theoretical profiles are compared with ex-
perimentally measured profiles of the magnetic field distribution in a superconducting
slab in an applied magnetic field, and the agreement is shown to be good. Schuster et
al. also consider experimentally the effects of inhomogeneous pinning. If the critical
current is lower in the center of a sample than it is at the outside, there can be a
sudden jump in the free boundary as the applied magnetic field reaches a critical
value. This effect is also examined in [20], where its implications for the flux flow
regime under an applied current are considered.

In [29] the profiles of magnetic field distribution on a square film in an applied
field are measured experimentally, and in [28] the profiles on a film in the shape
of a cross are measured experimentally and calculated theoretically, using a power-
law dependence of E on J . In [20] field and current distributions for general two-
dimensional films are calculated numerically in both the critical state and flux flow
regimes (using general vortex velocity laws as well as general nonlinear Ohm’s laws),
both with an applied magnetic field and a transport current. This work also includes
the heating effect of the electric field coupled with an equation for the evolution of
temperature, with temperature dependent critical fields and vortex mobilities, but a
discussion of this extension is beyond the scope of the present paper.

The solutions for a cross in an increasing applied magnetic field are reproduced
in Figure 10. The field is ramped up from zero to 1.5 over 4 time units and then
held fixed until the sample reaches steady state, as illustrated in Figure 9. Figure 10
shows the current, vorticity, and electric field at times t = 1, 2, 3, and 4. Figure 11
shows the current and vorticity in the steady state which is reached at about t = 8
(the electric field is zero in steady state). In Figures 10(a), (d), (g), (j) and 11(a) the
shading shows the magnitude of the current density and the lines show the direction
of current flow. In the other figures the lines are contour lines of constant ω or |E|.

The vortices enter first at the reentrant corners of the cross, and this is where
the electric field is largest. In the thermal problem the heating at these points may
significantly affect the solution.
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(b) ω at time t = 1
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(e) ω at time t = 2
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(f) |E| at time t = 2

Fig. 10. See caption on following page.
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(g) |J | at time t = 3
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(h) ω at time t = 3
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(j) |J | at time t = 4
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(k) ω at time t = 4
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Fig. 10. Solutions of the thin-film critical-state model of a cross in an applied magnetic field in the limit Λ → 0. The magnetic field is ramped up from zero
to 1.5 over 4 time units. Numerical solution due to A. D. Grief [20].
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(a) |J | in steady state
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(b) ω in steady state

Fig. 11. Steady state of the thin-film critical-state model of a cross in an applied magnetic field
of strength 1.5 in the limit Λ → 0. Numerical solution due to A. D. Grief [20].

6. Conclusion. We have developed a hierarchy of models of superconducting
thin films, allowing for a spatially varying film thickness and a spatially varying equi-
librium density of superconducting electrons.

We began with the Ginzburg–Landau model, where we found that the canonical
scaling was to let ε = d/L → 0 with Ξ = ξ/L and Λ = λeff/L = λ2/dL fixed,
where λeff is the effective screening length. This corresponds to letting the Ginzburg–
Landau parameter κ = λ/ξ tend to zero like ε1/2. The London limit of this model, in
which vortices appear as δ-function singularities, corresponds to the limit in which the
increased Ginzburg–Landau parameter κeff = Λ/Ξ = λκ/d→ ∞, in contrast to bulk
superconductors, where it corresponds to the limit κ → ∞. This explains why thin
films of even type-I superconductors will exhibit vortex solutions when the thickness
becomes smaller than the penetration depth.

Following on from the London limit we considered the situation in which the
vortex separation tends to zero and the vortices can be averaged to produce a vortex
density.

Finally we considered critical state models, in which the pinning potential is
homogenized to give stick/slip mobility laws.

In each case we found that a key parameter is Λ = λ2/Ld. If this parameter is
order one, corresponding to a lateral film dimension of the same order as the effective
screening length λeff , then the problems for the electric current in the film and the
magnetic field outside it are coupled. If this parameter is large, then the applied
magnetic field passes straight through the film to leading order, and the problem for
the current inside the film is decoupled. If Λ is small, then the model also simplifies,
since then the vorticity in the film determines the magnetic field, which subsequently
determines the current in the film.

Our hierarchy contains one or two models which have appeared elsewhere in the
literature. The thin-film limit of the Ginzburg–Landau equations was considered in
[8], but in the limit d/L → 0 with ξ and λ fixed. Thus the model they obtained
corresponds to the limit Λ → ∞.
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Λ → 0

ξ/L → 0

ν/L → 0

Λ → ∞

Ginzburg–Landau model

d, λeff � L

ξ, ν, ε ∼ L

sect. 2.2.2

Ginzburg–Landau model

d � L

ξ, λeff , ν, ε ∼ L

(99)–(112)

Ginzburg–Landau model
d � L

ξ, ν, ε ∼ L

λeff � L

sect. 2.2.2

Ξ → 0

London model
ξ � λeff � L

d � L

ν, ε ∼ L

sect. 3.4

London model

ξ, d � L

λeff , ξ, ε ∼ L

(166)–(174)

London model
ξ, d � L

ν, ε ∼ L
λeff � L

sect. 3.4

Vortex-density model
ξ � ν � λeff � L

d � L

ε ∼ L
(249)–(254)

Vortex-density model
ξ � ν � L

d � L
λeff , ε ∼ L

(208)–(216), (219)

Vortex-density model
ξ � ν � L

d � L

ε ∼ L λeff � L

(244)–(248)

Critical-state model
ξ � ν � λeff � L

d, ε � L

(305)–(312)

Critical-state model
ξ � ν, ε � L

d � L
λeff ∼ L

(266)–(274), (276)–(277)

Critical-state model
ξ � ν, ε � L

d � L
λeff � L

(289)–(291)

Fig. 12. The hierarchy of models for superconducting thin films. Recall that Ξ = ξ/L and
Λ = λeff/L. Numbers refer to equation numbers in the text. The lengthscales are defined in Table 1.

The London model for uniform strips in the absence of vortices was considered
in [16] and independently for variable thickness films in two lateral dimensions with
vortices in [10, 21].

The thin-film critical-state model has been considered in [29] and [31]. However,
because they took the thin-film limit of the bulk critical state model, in which λ had
already been set to zero, their model corresponds to the Λ → 0 limit.

A summary of the hierarchy of models we have derived is shown in Figure 12,
with a summary of the definitions of the various lengthscales in Table 1.

Acknowledgments. The first author would like to thank Andrew Grief for many
useful discussions, for identifying errors in a preliminary version of this manuscript,
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Table 1
Definition of the lengthscales in Figure 12.

λ penetration depth
ξ coherence length
d typical film thickness
L typical film width
ν vortex separation
ε lengthscale of pinning potential

λeff = λ2/d effective penetration depth

and for kindly allowing us to present some of his numerical solutions of thin-film
models in Figures 10 and 11.
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IMAGE SEGMENTATION USING ACTIVE CONTOURS:
CALCULUS OF VARIATIONS OR SHAPE GRADIENTS?∗

GILLES AUBERT† , MICHEL BARLAUD‡ , OLIVIER FAUGERAS§ , AND
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Abstract. We consider the problem of segmenting an image through the minimization of an
energy criterion involving region and boundary functionals. We show that one can go from one class
to the other by solving Poisson’s or Helmholtz’s equation with well-chosen boundary conditions.
Using this equivalence, we study the case of a large class of region functionals by standard methods
of the calculus of variations and derive the corresponding Euler–Lagrange equations. We revisit this
problem using the notion of a shape derivative and show that the same equations can be elegantly
derived without going through the unnatural step of converting the region integrals into boundary
integrals. We also define a larger class of region functionals based on the estimation and comparison
to a prototype of the probability density distribution of image features and show how the shape
derivative tool allows us to easily compute the corresponding Gâteaux derivatives and Euler–Lagrange
equations. Finally we apply this new functional to the problem of regions segmentation in sequences
of color images. We briefly describe our numerical scheme and show some experimental results.

Key words. image segmentation, region segmentation, active contours, active regions, im-
age statistics, region functionals, boundary functionals, calculus of variations, shape optimization,
shape gradient, Euler–Lagrange equations, Gâteaux derivative, Parzen window estimation, level set
methods
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1. Introduction. Many problems in image processing, such as segmentation,
tracking, or classification, can be cast in the framework of optimization theory, e.g.,
as the minimization of some energy measure. The energy is often some combination
of region or boundary functionals. The minimization is usually not trivial, and many
methods have been developed to reach an optimum which may be only local.

We address here the problem of the optimization of region or boundary functionals
with the method of active contours. Active contours have been introduced by Kass,
Witkin and Terzopoulos [34] and were originally boundary methods. Snakes [34], bal-
loons [10], or geodesic active contours [4] are driven towards the edges of an image
through the minimization of a boundary integral of functions of features depending on
edges. Active contours driven by region functionals in addition to boundary function-
als have appeared later. Introduced by [11] and [43], they have been further developed
in [52, 5, 9, 38, 39, 40, 41, 21, 51] and [31, 33]. In effect, the use of active contours
for the optimization of a criterion including both region and boundary functionals
appears to be really powerful.

In general, features of the image region to be segmented, tracked, etc., . . . are
embedded in region functionals while the boundary functional allows smoothness and
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regularity of the region boundary. The basic principle is to construct a parabolic
partial differential equation (PDE) from the energy criterion, e.g., by computing some
sort of Euler–Lagrange equations; this PDE changes the shape of the current curve
according to some velocity field which can be thought of as a direction of descent of the
energy criterion. Given a closed curve enclosing an initial region one then computes
the solution of this PDE for this initial condition. The corresponding family of curves
decreases the energy criterion and converges toward a (local) minimum of the criterion
hopefully corresponding to the objects to be segmented. To compute such a PDE,
several methods have been proposed.

Some authors do not compute the theoretical expression of the velocity field (ba-
sically the gradient of the energy criterion) but choose a deformation of the curve that
will make the criterion decrease [5, 9] (they compute a direction of descent). Other
authors [52, 39, 41] compute the theoretical expression of the velocity vector from the
Euler–Lagrange equations. The computation is performed in three main steps. First,
region integrals representing region functionals are transformed into boundary inte-
grals using the Green–Riemann theorem. Second, the corresponding Euler–Lagrange
equations are derived and used to define a dynamic scheme to evolve the initial re-
gion. Another alternative is to keep the region formulation to compute the gradient
of the energy criterion with respect to the region boundary instead of reducing region
integrals to boundary integrals. In [21], the authors propose computing the derivative
of the criterion while taking into account the discontinuities across the contour. In
[31, 33] the computation of the evolution equation is achieved through shape deriva-
tion principles.

This computation becomes more involved when global information about regions
is present in the energy criterion, the so-called region-dependent case. It happens,
for example, when statistical features of a region such as, for example, the mean
or the variance of the intensity are involved in the minimization. This case has
been studied in [6, 7, 20, 21, 31, 33, 51]. In [31, 33] the authors show that the
minimization of functionals involving region-dependent features induces additional
terms in the evolution equation of the active contour that are important in practice.
These additional terms are easily computed thanks to shape derivation tools.

In this article we clarify the relationships between the boundary and region func-
tionals that arise naturally in several image processing tasks. We show in section 3
that one can go from one to the other by solving Poisson’s equation with Dirichlet
conditions or Helmholtz’s equation with Neumann conditions.

We then concentrate on the problem of finding local minima of a large class of
region functionals. In section 4 we first transform them into boundary functionals
and apply methods from the calculus of variations to compute the corresponding
Gâteaux derivatives and construct a velocity field on the region boundary. This field
defines a PDE whose solution for a given initial boundary condition defines a one-
parameter family of regions which, in practice, converges towards a local minimum
of the functional. The problem of the existence and uniqueness of a solution to this
PDE is not addressed in this article.

We next change our point of view and rederive the same equations in a simpler and
more natural way, i.e., without going through the trouble of turning region integrals
into boundary integrals; this is achieved in section 5 by applying shape derivation
methods [49, 22]. This line of approach has already been followed in [46] in his work
on the estimation of the optical flow.

We then turn in section 6 our attention to a new class of region-based functionals
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by considering histograms of image features. The shape derivation tools allow us to
easily derive the velocity field that defines the evolution of the region boundary.

Section 7 is devoted to an application of the previous methods to the problem
of region segmentation with a given color histogram in a sequence of images. Our
experimental results show that the technique indeed has some interesting potentials.

2. Problem statement. In many image processing problems, the issue is to
find a set of image regions that minimize a given error criterion. This criterion is
often a combination of region and boundary functionals.

A local minimizer for such a criterion including both region and boundary func-
tionals is usually hard to compute. This is mostly due to the fact that the set of image
regions, i.e., the set of regular open domains in R

n (whose boundary is a closed, C2

manifold), does not have a structure of vector space, preventing us from using in a
straightforward fashion gradient descent methods. In order to circumvent this diffi-
culty, calculus of variations and shape optimization techniques can be brought to bear
on the problem. The basic idea is to use them in order to derive a PDE that will drive
the boundary of an initial region toward a local minimum of the error criterion. The
key point is to compute the velocity vector at each point of the boundary at each time
instant. In this paper we propose a framework for achieving these goals in a number
of practically important cases.

To fix ideas in the two-dimensional case, the evolving boundary, or active contour,
is modeled by a parametric curve Γ(s, τ) = (x1(s, τ), x2(s, τ)), where s may be its arc-
length and τ is an evolution parameter—the time. The active contour is then driven
by the following PDE:

Γτ
def
=
∂Γ(s, τ)

∂τ
= v with Γ(τ = 0) = Γ0,(2.1)

where Γ0 is an initial curve defined by the user and v the velocity vector of Γ(s, τ).
This velocity is the unknown that must be derived from the error criterion so that
the solution Γ(., τ) converges towards a curve achieving a local minimum and thus,
hopefully, towards the boundary of the object to segment as τ → ∞.

2.1. Boundary and region functionals. Let us now define more precisely the
region and boundary functionals. Let U be a class of domains (open, regular bounded
sets, i.e., C2) of R

n and Ω an element of U of boundary ∂Ω, which we sometimes
denote Γ. A boundary functional, Jb, may be expressed as a boundary integral of
some scalar function g of image features:

Jb(∂Ω) =

∫
∂Ω

g(x) da(x),(2.2)

where ∂Ω is the boundary of the region and da its area element. The derivation of
this boundary functional is classical [4, 35] and leads to the following velocity vector:

vb = [g(x)κ−∇g(x) ·N]N,

where N is the inward unit normal vector of Γ and κ its mean curvature. The idea
is to use a local parametrization of Γ to reduce (2.2) to a standard problem in the
calculus of variations.

A region functional, Jr, may be expressed as an integral in a domain Ω of U of
some function f of some region features:

Jr(Ω) =

∫
Ω

f(x,Ω)dx.(2.3)
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In that case, the computation of the velocity vector for (2.1) is not as easy. We
propose comparing two main approaches. The first approach is based upon the idea
of transforming all functionals into boundary functionals, thereby reducing (through
a local parametrization of the boundary) the problem of minimization to a standard
problem in the calculus of variations from which the computation of the Gâteaux
derivatives follows. The second approach is based upon the use of shape derivation
tools. In a sense it is more natural since it keeps the region representation.

Note that the scalar function f in (2.3) is generally region-dependent. This is
important since this dependency on the region must be taken into account when
searching for a local minimum of the functional, as discussed in later sections.

Also note that we could have added a dependency of g on ∂Ω, i.e., write g(x, ∂Ω)
in (2.2), to keep the symmetry with the region functional. This is not necessary since
the results in section 4.2, in particular Theorem 4.6, do in fact provide an answer for
this case.

2.2. Examples of such optimization problems in image processing. An
image is represented by its intensity I(x) defined on some region of R

n.
Active contours were originally introduced to search for minima of boundary

functionals. In [4, 35], the function g is a function of the magnitude of the image
gradient through a strictly decreasing function ϕ : [0,+∞[→ R

+ such that ϕ(r) → 0 as
r → +∞. Hence g(x) = ϕ(|∇I(x)|). The minimization amounts to the minimization
of the length of a curve in a Riemannian space. Local minima are obtained via the
steepest descent method.

Region functionals have also been introduced. The region information is em-
bedded in the function f of (2.3). These functionals have been used for many
applications such as moving objects detection [38, 40, 30, 32], image segmentation
[5, 21, 7, 39, 40, 51], or classification [52, 44, 45, 41]. For example, people have used
statistical features such as the mean or the variance of a region Ω:{

µΩ = 1
|Ω|
∫
Ω
I(x)dx with |Ω| =

∫
Ω
dx,

σ2
Ω = 1

|Ω|
∫
Ω

(I(x) − µΩ)2dx.

We use these two examples to motivate the introduction of a general region func-
tional

Jr(Ω) =

∫
Ω

f(x, G1(Ω), G2(Ω), . . . , Gm(Ω)) dx,(2.4)

where the functionals Gi are given by

Gi(Ω) =

∫
Ω

Hi(x,Ω) dx, i = 1 . . .m.(2.5)

As shown in this equation, the function Hi is itself region-dependent; more precisely,

Hi(x,Ω)
def
= Hi(x,Ki1(Ω),Ki2(Ω), . . . ,Kili(Ω)) ,(2.6)

where

Kij(Ω) =

∫
Ω

Lij(x) dx, j = 1 . . . li i = 1 . . .m.(2.7)



2132 G. AUBERT, M. BARLAUD, O. FAUGERAS, AND S. JEHAN-BESSON

Note that we have stopped the process at the second level but it could conceivably
continue. We have chosen this special case of dependency because it often arises in
applications, as shown in the next two sections. The various methods that we develop
can be extended in a fairly straightforward fashion to more complicated situations if
needed; see, for example, section 6.

2.3. An example involving the mean. Let us choose

f(x,Ω) = �(I(x) − µΩ),(2.8)

where � : R → R+ is a positive function of class C1. f is region-dependent. This
is an example where the process described in the previous section stops at the first
level:

J(Ω) =

∫
Ω

f(x,Ω) dx =

∫
Ω

�(I(x) − µΩ) dx =

∫
Ω

�

(
I(x) − G1(Ω)

G2(Ω))

)
dx,

where

G1(Ω) =

∫
Ω

H1(x,Ω) dx with H1(x,Ω) = I(x) ,

G2(Ω) =

∫
Ω

H2(x,Ω) dx with H2(x,Ω) = 1 .

In this case, the functions Hi, i = 1, 2, do not depend on the region Ω, l1 = l2 = 0,
and Kij(x) = 0 for all i, j.

2.4. An example involving the variance. Let us take an example where we
stop the process at the second level. Consider the case where the function f is a
function of the variance given by

f(x,Ω) = �(σ2
Ω).(2.9)

� : R+ → R+ is of class C1. We write

J(Ω) =

∫
Ω

f(x,Ω) dx =

∫
Ω

�(σ2
Ω) dx =

∫
Ω

�

(
G1(Ω)

G2(Ω))

)
dx .

Therefore we have

G1(Ω) =

∫
Ω

H1(x,Ω) dx , H1(x,Ω) = (I(x) − µΩ)
2
,

G2(Ω) =

∫
Ω

H2(x,Ω) dx , H2(x,Ω) = 1 ,

with

H1(x,Ω) =

(
I(x) − K11

K12

)2

, l1 = 2,

H2(x,Ω) = 1 , l2 = 0 ,

and finally

K11(Ω) =

∫
Ω

I(x) dx , L11(x) = I(x) ,

K12(Ω) =

∫
Ω

dx , L12(x) = 1 .
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3. Expression of region functionals as boundary functionals and vice
versa. In this section, we show that a region functional may always be expressed as
a boundary functional and vice versa.

3.1. Tranformation of region functionals into boundary functionals.
Consider the region functional (2.3); the next proposition shows that, under some
reasonable assumptions on the function f , it can always be turned into a boundary
functional (2.2).

Proposition 3.1. Let Ω be a bounded open set with regular boundary ∂Ω. Let
f : Ω → R be a continuous function and u be the unique solution of Poisson’s equation:{ −∆u = f in Ω,

u|∂Ω = 0.

We have the following equality:∫
Ω

f(x,Ω) dx =

∫
∂Ω

∇u ·N da(x),

where N is the inside pointing unit normal to ∂Ω and da(x) its area element.
Proof. Because of our assumptions, Poisson’s equation has a unique classical, i.e.,

C2, solution in Ω [2, 25], and we have∫
Ω

f(x,Ω) dx = −
∫

Ω

∆u dx =

∫
∂Ω

∇u ·N da(x),

the last equality being a consequence of the Green–Riemann theorem.
A region functional can always be expressed as a boundary functional, via the

solution of Poisson’s equation with Dirichlet conditions.

3.2. Tranformation of boundary functionals into region functionals.
The converse of Proposition 3.1 is also true. Let us consider the boundary functional
(2.2).

Proposition 3.2. Let Ω be a bounded open set with regular boundary ∂Ω. Let u
be the unique solution of Helmholtz’s equation:{ −∆u+ u = 0 in Ω,

∂u
∂N |∂Ω

= −g.
Then we have the following equality:∫

∂Ω

g(x) da(x) =

∫
Ω

u(x,Ω) dx,

where da(x) is the area element of ∂Ω.
Proof. Because of our assumptions, Helmholtz’s equation has a unique classical,

i.e., C2, solution in Ω [42, 13, 14, 15, 16, 17, 18], and we have∫
Ω

u dx =

∫
Ω

∆u dx = −
∫
∂Ω

∇u ·N da(x),

the last equality being a consequence of the Green–Riemann theorem. Therefore∫
Ω

u dx = −
∫
∂Ω

∂u

∂N
da(x) =

∫
∂Ω

g(x) da(x).

A boundary functional can always be expressed as a region functional, via the
solution of Helmholtz’s equation with Neumann boundary conditions.
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4. Computation of the evolution equation using a boundary approach.
Originally, the derivation of region functionals has been performed by using the Green–
Riemann theorem to transform region functionals into boundary functionals and then
by computing the Euler–Lagrange equations. In this section, we recall the principles
of the derivation and we explicitly take into account the case of region-dependent
features when computing the Gâteaux derivative. Region functionals are transformed
into boundary functionals by using Proposition 3.2. The region functional to minimize
is (2.3).

The computation of a velocity field for the evolution of the boundary in order to
reach a minimum of the error criterion proceeds in three main steps:

1. Tranformation of the region functionals into boundary functionals.
2. Computation of the Gâteaux derivatives of the boundary functionals.
3. Construction of a velocity field for the evolution of the boundary.

The first step can always be performed as it has been proven in Proposition 3.1.
The computation of an optimal velocity field is carried out for region-independent

features first, i.e., when the function f does not depend on Ω. We then consider the
more general case where f has some region dependency. We derive our results in the
two-dimensional case; the generalization to any dimension is tedious but straightfor-
ward.

4.1. Region-independent features. In this part, we detail the three steps for
region-independent features. We do it for two-dimensional images (n = 2) to keep
notation simple, but the results hold in any dimension greater than 2.

We parameterize ∂Ω through the C2 function Γ : [0, 1] → R
2 such that when p

varies from 0 to 1 we go once around ∂Ω counterclockwise. The unit tangent vector
to ∂Ω is the vector Γ′(p)/|Γ′(p)|, where ′ indicates the derivative with respect to the
parameter p. The inside pointing normal N is the vector Γ

′⊥(p)/|Γ′(p)|. The vector
Γ
′⊥ is obtained by rotating Γ′ by 90 degrees counterclockwise; hence if Γ′ = [Γ′

1,Γ
′
2]T ,

Γ
′⊥ = [−Γ′

2,Γ
′
1]T .

4.1.1. Transformation of region functionals into boundary functionals.
The following proposition is a straightforward consequence of Proposition 3.1

Proposition 4.1. If f satisfies the hypotheses of Proposition 3.1, the functional
(2.3),

Jr(Ω) =

∫
Ω

f(x) dx,

is equal to

Φ(Γ) =

∫ 1

0

(ux2(Γ(p))Γ′
1(p) − ux1(Γ(p))Γ′

2(p)) dp
def
=

∫ 1

0

ϕ(Γ(p),Γ′(p)) dp,(4.1)

where Γ = ∂Ω and u is the unique classical solution of{ −∆u = f in Ω,
u|∂Ω = 0.

Therefore minimizing (2.3) with respect to Ω is equivalent to minimizing (4.1) with
respect to Γ.

Proof. According to Proposition 3.1, we have∫
Ω

f(x) dx = −
∫

Ω

∆u dx =

∫
∂Ω

∇u ·N da(x),

and since da(x) = |Γ′(p)|dp, the result follows.
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4.1.2. Computation of the Gâteaux derivative. According to Proposition
4.1, minimizing (2.3) with respect to Ω is equivalent to minimizing (4.1) with respect
to Γ. Thus, we have to compute the Gâteaux derivative of the functional Φ.

Theorem 4.2. The Gâteaux derivative in the direction γ of the functional Φ is

〈Φ′(Γ), γ〉 = −
∫ 1

0

f(Γ(p)) (Γ
′⊥(p) · γ(p)) dp.

Proof. Let γ : [0, 1] → R2 be a C2 parametrization of an arbitrary closed curve.
The Gâteaux derivative of Φ(Γ) in the direction γ noted 〈Φ′(Γ), γ〉 > is defined by

〈Φ′(Γ), γ〉 = lim
τ→0

Φ(Γ + τγ) − Φ(Γ)

τ
.

We have

lim
τ→0

Φ(Γ + τγ) − Φ(Γ)

τ
=

∫ 1

0

(ϕΓ(Γ(p),Γ′(p))γ(p) + ϕΓ′(Γ(p),Γ′(p))γ′(p)) dp,

where ϕΓ = ∂ϕ
∂Γ (Γ,Γ′). Integrating by parts, we obtain the following expression for

the Gâteaux derivative:

〈Φ′(Γ), γ〉 =

∫ 1

0

(
ϕΓ(Γ(p),Γ′(p)) − d

dp
ϕΓ′(Γ(p),Γ′(p))

)
· γ(p) dp.

We then explicitly compute the derivative of ϕ with respect to Γ using (4.1),

ϕΓ = ∇ux2(Γ(p))Γ′
1(p) −∇ux1(Γ(p))Γ′

2(p),

and with respect to Γ′,

ϕΓ′ = [ux2
,−ux1 ]T .

Therefore

d

dp
ϕΓ′ = [∇ux2 · Γ′,−∇ux1 · Γ′]T .

Putting everything together we obtain

ϕΓ − d

dp
ϕΓ′ = ∆uΓ

′⊥ = −f Γ
′⊥

thanks to Proposition 4.1.
The Euler–Lagrange equations associated with the Gâteaux derivative are thus

given by

ϕΓ − d

dp
ϕΓ′ = −f(Γ(p))Γ

′⊥.

An interesting point to note is that the intermediary function u disappears.

4.1.3. Construction of an optimal velocity vector for the evolution of
an active contour. In order to find a local extremum of the criterion (4.1), we evolve
a curve using the steepest descent method, starting from an initial curve defined by
the user. Thus, we obtain the following evolution equation:

∂Γ

∂τ
= f(Γ)N with Γ(τ = 0) = Γ0.(4.2)

This is the classical result [52, 38, 40, 51] when f has no region dependency. Let us
now consider the more general case where the function f has some region dependency.
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4.2. General case. Let us now derive the evolution equation in the general case.
As in the previous case, we follow our three steps.

4.2.1. Transformation of the region functional into a boundary func-
tional. In the following, to simplify the proofs and the notations, we take m = 1
and l1 = 1 and drop the indexes. The equations for m > 1 and li ≥ 1 are then given
without proof.

Because of the form of (2.4)–(2.7), we have to go through three levels of transfor-
mations. We start with the first level and the following proposition.

Proposition 4.3. If L satisfies the assumptions of Proposition 3.1, the func-
tional

K(Ω) =

∫
Ω

L(x) dx

is equal to

Θ(Γ) =

∫ 1

0

(ux2(Γ(p), L(Γ))Γ′
1(p) − ux1(Γ(p), L(Γ))Γ′

2(p)) dp

def
=

∫ 1

0

θ(Γ(p),Γ′(p)) dp,

where Γ = ∂Ω and u is the unique classical solution of{ −∆u = L in Ω,
u|∂Ω = 0.

Proof. The proof is identical to that of Proposition 4.1.
In the same manner, for the second level, we have the following proposition.
Proposition 4.4. If H satisfies the assumptions of Proposition 3.1, the func-

tional

G(Ω) =

∫
Ω

H(x,K(Ω)) dx

with K(Ω) =
∫
Ω
L(x)dx is equal to

Ψ(Γ) =

∫ 1

0

(vx2(Γ(p),Θ(Γ))Γ′
1(p) − vx1(Γ(p),Θ(Γ))Γ′

2(p)) dp

def
=

∫ 1

0

ψ(Γ(p),Γ′(p),Θ(Γ)) dp,

where Γ = ∂Ω and v is the unique classical solution of{ −∆v = H in Ω,
v|∂Ω = 0.

Θ is given by Proposition 4.3.
Proof. The proof is identical to that of Proposition 4.1.
We finally reach the third and last level with the following proposition.
Proposition 4.5. If f satisfies the assumptions of Proposition 3.1, the functional

J(Ω) =

∫
Ω

f(x, G(Ω)) dx ,(4.3)
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with G(Ω) =
∫
Ω
H(x,K(Ω))dx and K(Ω) =

∫
Ω
L(x)dx, is equal to

Φ(Γ) =

∫ 1

0

(wx2(Γ(p),Ψ(Γ))Γ′
1(p) − wx1(Γ(p),Ψ(Γ))Γ′

2(p)) dp(4.4)

def
=

∫ 1

0

ϕ(Γ(p),Γ′(p),Ψ(Γ)) dp,

where Γ = ∂Ω and u is the unique classical solution of{ −∆w = f in Ω,
w|∂Ω = 0.

Ψ(Γ) is given by Proposition 4.4. Therefore minimizing (4.3) with respect to Ω is
equivalent to minimizing (4.4) with respect to Γ.

Proof. The proof is identical to that of Proposition 4.1.

4.2.2. Computation of the Gâteaux derivative. According to Proposition
4.5, minimizing (4.3) with respect to Ω is equivalent to minimizing (4.4) with respect
to Γ. Thus we compute the Gâteaux derivative of Φ given by (4.4).

Theorem 4.6. The Gâteaux derivative in the direction γ of the functional Φ
defined in (4.4) is

〈Φ′(Γ), γ〉 = −
∫ 1

0

[f(Γ(p),Ψ(Γ)) +AH(Γ(p),Θ(Γ))

+ABL(Γ(p))] q(p) dp,

where

A =

∫
Ω

fG(x,G(Ω)) dx and B =

∫
Ω

HK(x,K(Ω)) dx

with fG = ∂f
∂G , and q(p) = (Γ

′⊥(p) · γ(p)) .
Proof. The Gâteaux derivative of Φ(Γ) in the direction γ denoted 〈Φ′(Γ), γ〉 is

given by

〈Φ′(Γ), γ〉 = lim
τ→0

Φ(Γ + τγ) − Φ(Γ)

τ
.

We have

lim
τ→0

Φ(Γ + τγ) − Φ(Γ)

τ

=

∫ 1

0

(ϕΓ(Γ(p),Γ′(p),Ψ(Γ))γ(p) + ϕΓ′(Γ(p),Γ′(p),Ψ(Γ))γ′(p)) dp

+

∫ 1

0

ϕΨ(Γ(p),Γ′(p),Ψ(Γ))〈Ψ′(Γ), γ〉 dp,

where ϕΨ = ∂ϕ
∂Ψ (Γ,Γ′,Ψ). Integrating by parts, we obtain

〈Φ′(Γ), γ〉 =

∫ 1

0

[
ϕΓ − d

dp
ϕΓ′

]
γ(p) dp(4.5)

+

∫ 1

0

ϕΨ(Γ(p),Γ′(p),Ψ(Γ))〈Ψ′(Γ), γ〉 dp.
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According to Theorem 4.2, we obtain ϕΓ − d
dpϕΓ′ = −f Γ

′⊥. The Gâteaux derivative

of Ψ(Γ) in the direction γ is computed in the same manner and we find

〈Ψ′(Γ), γ〉 = −
∫ 1

0

H(Γ(p),Θ(Γ)) q(p) dp

+

∫ 1

0

ψΘ(Γ(p),Γ′(p),Θ(Γ))〈Θ′(Γ), γ〉 dp.

According to Theorem 4.2, the Gâteaux derivative of Θ(Γ) in the direction γ is given
by:

〈Θ′(Γ), γ〉 = −
∫ 1

0

L(Γ(p)) q(p) dp.

Putting all terms together in (4.5), we find the following expression for the derivative:

〈Φ′(Γ), γ〉 = −
∫ 1

0

f(Γ(p),Ψ(Γ)) q(p) dp

−
∫ 1

0

ϕΨ(Γ(p),Γ′(p),Ψ(Γ))dp

∫ 1

0

H(Γ(p),Θ(Γ)) q(p) dp

−
∫ 1

0

ϕΨ(Γ(p),Γ′(p),Ψ(Γ))dp

∫ 1

0

ψΘ(Γ(p),Γ′(p),Θ(Γ)) dp

∫ 1

0

L(Γ(p)) q(p) dp.

Using Propositions 4.4 and 4.5, we find that

∫ 1

0

ϕΨ(Γ(p),Γ′(p),Ψ(Γ))dp =

∫
Ω

fG(x, G(Ω))dx
def
= A.

Similarly, using Propositions 4.3 and 4.4, we obtain

∫ 1

0

ψΘ(Γ(p),Γ′(p),Θ(Γ))dp =

∫
Ω

HK(x,K(Ω))dx
def
= B.

The equation of the derivative is obtained:

〈Φ′(Γ), γ〉 = −
∫ 1

0

[f(Γ(p),Ψ(Γ)) +AH(Γ(p),Θ(Γ)) +AB L(Γ(p))] q(p) dp.

The Euler–Lagrange equations associated with the Gâteaux derivative are given
by

− [f(Γ(p),Ψ(Γ)) +AH(Γ(p),Θ(Γ)) +ABL(Γ(p)) ] Γ
′⊥ = 0.

Note again that the intermediate functions u, v, and w do not appear in this expres-
sion.

We can now state the general theorem for m > 1 and li ≥ 1.

Theorem 4.7. The Gâteaux derivative in the direction γ of the functional J
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defined in (2.4) is

〈Φ′(Γ), γ〉 = −
∫ 1

0


f(Γ(p), G1(Γ), . . . , Gm(Γ))

+

m∑
i=1

AiHi(Γ(p),Ki1(Γ), . . . ,Kili(Γ))

+

m∑
i=1

Ai


 li∑
j=1

BijLij(Γ(p))




 (Γ

′⊥(p) · γ(p)) dp,

where

Ai =

∫
Ω

fGi(x,G1(Ω), . . . , Gm(Ω)) dx, i = 1 . . .m,

and Bij =

∫
Ω

HiKij
(x,Ki1(Ω), . . . ,Kili(Ω)) dx, i = 1 . . .m, j = 1 . . . li.

4.2.3. Construction of an optimal velocity vector for the evolution of an
active contour. In the general case, according to Theorem 4.7 the steepest gradient
descent method yields the following evolution equation for the active contour:

∂Γ

∂τ
=


f(Γ) +

m∑
i=1

AiHi(Γ) +

m∑
i=1

Ai


 li∑
j=1

BijLij(Γ)




N(4.6)

with Γ(τ = 0) = Γ0. Compared with (4.2), some additional terms appear that come
from the region dependency of the descriptors.

5. Computation of the derivative using shape derivation tools, or “how
to keep a region formulation.” In the previous part, region functionals were first
transformed into boundary functionals for the computation of the derivative. This
step is neither natural nor straightforward. Therefore, we propose another solution
based on shape derivation tools [49, 22]. The region formulation is maintained for
the computation and this provides a suitable way of obtaining the derivative of the
criterion and the evolution equation of an active contour.

We perform three main steps:

1. Introduction of a dynamic scheme. Since the set of all image regions is not
a vector space, it is difficult to compute the derivative of the criterion with
respect to the domain Ω. To circumvent this problem, we apply a family of
transformations Tτ , indexed by a real parameter τ ≥ 0, to Ω, and we denote

Ω(τ) = Tτ (Ω). The region functional becomes a function of τ , J(τ)
def
=

J(Ω(τ)).
2. Derivation of the criterion based on shape derivation principles. The error

criterion J(τ) is then derived with respect to τ using shape derivation prin-
ciples.

3. Computation of the evolution equation from the derivative. From the deriva-
tive, we deduce the velocity field of the active contour that will make it evolve
towards a local minimum of the error criterion.



2140 G. AUBERT, M. BARLAUD, O. FAUGERAS, AND S. JEHAN-BESSON

5.1. Introduction of transformations. As it has already been pointed out,
the optimization of the region functional (2.3) is difficult since the set of regular
domains (regular open bounded sets) U of R

n does not have the structure of a vector
space. Variations of a domain must then be defined in some way. Let us consider
a reference domain Ω ∈ U and the set Â of applications T : Ω → R

n, which are at
least as regular as homeomorphisms (i.e., one to one with T and T−1 continuous).
We define

Â =
{
T one to one, T, T−1 ∈W 1,∞(Ω,Rn)

}
,

where

W 1,∞(Ω,Rn) = {T : Ω → R
n such that T ∈ L∞(Ω,Rn) and

∂iT ∈ L∞(Ω,Rn), i = 1, . . . , n}.

Given a shape function F : U → R+ for T ∈ Â, let us define F̂ (T ) = F (T (Ω)). The
key point is that W 1,∞(Ω,Rn) is a Banach space. This allows us to define the notion
of derivative with respect to the domain Ω as follows.

Definition 5.1. F is Gâteaux differentiable with respect to Ω if and only if F̂ is
Gâteaux differentiable with respect to T .

In order to compute Gâteaux derivatives with respect to T we introduce a family
of deformation (T (τ))τ≥0 such that T (τ) ∈ Â for τ ≥ 0, T (0) = Id, and T (.) ∈
C1([0, A];W 1,∞(Ω,Rn)), A > 0. From a practical point of view, there are many ways
to construct such a family. The most famous one is the Hadamard deformation [27].

For a point x ∈ Ω, we denote

x(τ) = T (τ,x) with T (0,x) = x,

Ω(τ) = T (τ,Ω) with T (0,Ω) = Ω.

Let us now define the velocity vector field V corresponding to T (τ) as

V(τ,x) =
∂T

∂τ
(τ,x) ∀x ∈ Ω ∀τ ≥ 0.

5.2. Computation of the derivative using shape derivation tools. We
now introduce three main definitions.

Definition 5.2. The Gâteaux derivative of J(Ω) =
∫
Ω
f(x,Ω)dx in the direction

of V, denoted 〈J ′(Ω),V〉, is equal to

〈J ′(Ω),V〉 = lim
τ→0

J(Ω(τ)) − J(Ω)

τ
.

Definition 5.3. The material derivative of f(x,Ω), denoted fm(x,Ω,V), is
equal to

fm(x,Ω,V) = lim
τ→0

f(x(τ),Ω(τ)) − f(x,Ω)

τ
.

Definition 5.4. The shape derivative of f(x,Ω), denoted fs(x,Ω,V ), is equal
to

fs(x,Ω,V) = lim
τ→0

f(x,Ω(τ)) − f(x,Ω)

τ
.
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5.2.1. Relation between the Gâteaux derivative and the shape deriva-
tive. The following theorem gives a relation between the Gâteaux derivative and the
shape derivative for the region functional (2.3). The proof can be found in [49, 22],
we provide an elementary one here for completeness.

Theorem 5.5. The Gâteaux derivative of the functional J(Ω) =
∫
Ω
f(x,Ω) dx

in the direction of V is the following:

〈J ′(Ω),V〉 =

∫
Ω

fs(x,Ω,V)dx−
∫
∂Ω

f(x,Ω)(V(x) · N(x))da(x),

where N is the unit inward normal to ∂Ω and da its area element.
Proof. As far as the computation of the derivative is concerned, only small de-

formations are relevant, and we thus consider a first order Taylor expansion of the
transformation:

T (τ,x) = T (0,x) + τ
∂T

∂τ
(0,x)

= x+ τV(x),

where V(x) = ∂T
∂τ (0,x).

We obtain the following expressions for the material and the shape derivatives:

fm(x,Ω,V) = lim
τ→0

f(x+ τV(x),Ω + τV) − f(x,Ω)

τ
,

fs(x,Ω,V) = lim
τ→0

f(x,Ω + τV) − f(x,Ω)

τ
.

If we assume that limτ→0 ∇f(x,Ω + τV) = ∇f(x,Ω), we can write

fm(x,Ω,V) = fs(x,Ω,V) + ∇f(x,Ω) ·V(x).(5.1)

We are now ready for the computation of the Gâteaux derivative of J(Ω) in the
direction of V. We have

J(Ω(τ)) − J(Ω)

τ
=

1

τ

[ ∫
Ω(τ)

f(x,Ω(τ))dx−
∫

Ω

f(x,Ω)dx

]
.(5.2)

In the first integral, we make the change of variable x→ x+ τV(x) which yields∫
Ω(τ)

f(x,Ω(τ))dx =

∫
Ω

f(x+ τV(x),Ω + τV)|det Jτ (x)|dx,

where Jτ (x) is the Jacobian matrix,

Jτ (x) =




1 + τ ∂V1

∂x1
· · · τ ∂V1

∂xn

...
...

...

τ ∂Vn

∂x1
· · · 1 + τ ∂Vn

∂xn


 ,

V(x) = [V1(x), . . . , Vn(x)]T , and x = [x1, . . . , xn]T . It follows that

det Jτ (x) = 1 + τdiv(V(x)) + o(τ).
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This shows that if τ is small enough, detJτ (x) > 0 and

lim
τ→0

det Jτ (x) − 1

τ
= div(V(x)).

Equation (5.2) can now be rewritten as

J(Ω(τ)) − J(Ω)

τ
=

∫
Ω

f(x+ τV(x),Ω + τV) − f(x,Ω)

τ
det(Jτ (x))dx

−
∫

Ω

f(x,Ω)
det(Jτ (x)) − 1

τ
dx

def
= I1 − I2.

If τ goes to 0, using (5.1) and Definitions 5.3 and 5.4, we get

lim
τ→0

I1 =

∫
Ω

fm(x,Ω,V)dx

=

∫
Ω

fs(x,Ω,V)dx+

∫
Ω

∇f(x,Ω) ·V(x)dx,

lim
τ→0

I2 =

∫
Ω

f(x,Ω)div(V(x))dx.

We find that the Gâteaux derivative is given by

〈J ′(Ω),V〉 =

∫
Ω

fs(x,Ω,V)dx+

∫
Ω

(∇f(x,Ω) ·V(x) + f(x,Ω)div(V(x)))dx(5.3)

=

∫
Ω

fs(x,Ω,V)dx+

∫
Ω

div(f(x,Ω) V(x))dx.

Applying the Green–Riemann theorem in (5.3), we finally obtain

〈J ′(Ω),V〉 =

∫
Ω

fs(x,Ω,V)dx−
∫
∂Ω

f(x,Ω)(V(x) ·N(x))da(x),

where N is the unit inward normal to ∂Ω.
Note that Theorem 5.5 provides a necessary condition for a domain Ω̂ to be an

extremum of J(Ω):∫
Ω̂

fs(x, Ω̂,V)dx−
∫
∂Ω̂

f(x, Ω̂)(V(x) ·N(x)) da(x) = 0 ∀V.

5.3. Construction of the velocity vector of the active contour from the
Gâteaux derivative. We now make good use of the previous tools to derive the
velocity vector of the active contour for the same functionals as those which were
considered in section 5. As expected we find the same results but in a way which, we
feel, is more natural, since we do not have to turn a region integral into a boundary
one, and simpler. The evolving region boundary ∂Ω, denoted Γ, is modeled as an
active contour: the user defines an initial curve Γ0 = ∂Ω0 that evolves towards a local
minimum of the region functional (2.3) according to a PDE that we will now derive.

5.3.1. Region-independent features. We first consider the simple case where
the function f does not depend on Ω, i.e., f = f(x). In that case, the shape derivative
fs is equal to zero and the Gâteaux derivative of J is simply (Theorem 5.5)

〈J ′(Ω),V〉 = −
∫
∂Ω

f(x)(V(x) · N(x))da(x).
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This leads to the following evolution equation for region-independent descriptors:

∂Γ

∂τ
= f(Γ)N

with Γ(τ = 0) = Γ0.
We notice that, as expected, the evolution equation is the same as (4.2) in section

4.

5.3.2. General case. Let us now tackle the same general case as in section 4.2,
using the functional defined by (2.4)–(2.7). We similarly restrict the computation of
the Gâteaux derivative of J to the case m = 1 and li = 1, state the result for m > 1
and li ≥ 1, and drop the indexes.

Theorem 5.6. The Gâteaux derivative in the direction of V of the functional J
defined in (4.3) is

〈J ′(Ω),V〉 = −
∫

Γ

(AB L(x) +AH(x,K(Ω)) + f(x,Ω)) (V(x) ·N(x))da(x),

where

A =

∫
Ω

fG(x,G(Ω)) dx and B =

∫
Ω

HK(x,K(Ω)) dx.

Proof. According to Theorem 5.5, we have

〈J ′(Ω),V〉 =

∫
Ω

fs dx−
∫

Γ

f (V ·N)da(x).

Let us first compute the shape derivative of f . From the chain rule we get

fs(x,Ω,V) = fG(x, G)〈G′(Ω),V〉,(5.4)

where fG denotes the partial derivative of the function f with respect to its second
argument.

Next we compute the Gâteaux derivative of G in the direction of V. We again
apply Theorem 5.5, and we get

〈G′(Ω),V〉 =

∫
Ω

Hs dx−
∫

Γ

H (V ·N)da(x).

Plugging this into (5.4), we obtain∫
Ω

fs dx = A

(∫
Ω

Hs dx−
∫

Γ

H(V ·N)da(x)

)
,

where

A =

∫
Ω

fG(x, G(Ω)) dx.

We also compute the shape derivative of H through Theorem 5.5:

Hs(x,Ω,V) = HK(x,K)〈K ′(Ω),V〉.
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We continue with the Gâteaux derivative of K in the direction of V:

〈K ′(Ω),V〉 =

∫
Ω

Ls dx−
∫

Γ

L(x)(V (x) ·N(x))da(x).

Since L does not depend on Ω, we obtain Ls = 0 and we are done.
Putting all terms together, we obtain the complete expression of the Gâteaux

derivative of J :

〈J ′(Ω),V〉 = −
∫

Γ

(AB L(x) +AH(x,K(Ω)) + f(x,Ω)) (V(x) ·N(x))da(x)

with B =
∫
Ω
HK(x,K) dx.

The general case follows easily and is stated in the following theorem.
Theorem 5.7. The Gâteaux derivative in the direction of V of the functional J

defined in (2.4) is

〈J ′(Ω),V〉 = −
∫

Γ


 m∑
i=1

Ai

li∑
j=1

(Bij Lij(x)) +

m∑
i=1

(AiHi) + f


 (V(x)) ·N(x)da(x),

where

Ai =

∫
Ω

fGi(x,G1(Ω), . . . , Gm(Ω)) dx, i = 1 . . .m,

and Bij =

∫
Ω

HiKij
(x,Ki1(Ω), . . . ,Kili(Ω)) dx, i = 1 . . .m, j = 1 . . . li.

From the Gâteaux derivative of J , we deduce the corresponding evolution equa-
tion:

∂Γ

∂τ
=


f(Γ) +

m∑
i=1

AiHi(Γ) +

m∑
i=1

Ai


 li∑
j=1

BijLij(Γ)




N,(5.5)

which, as expected, is identical to (4.6). As far as the final result is concerned, the
two methods of computation are equivalent.

5.4. Application. Let us now apply this method to the first example in section
2.3. The function f is given by (2.8). The corresponding functions Gi, Hi are given
in section 2.3. We need the terms Aj , j = 1, 2:


A1 = − ∫

Ω
1
G2
�′
(
I(x) − G1

G2

)
dx = −1

|Ω|
∫
Ω
�′(I − µΩ)dx,

A2 =
∫
Ω

G1

(G2)2
�′
(
I(x) − G1

G2

)
dx = µΩ

|Ω|
∫
Ω
�′(I − µΩ)dx.

Since the terms Hi are not region-dependent, the terms Bij are equal to zero. The
velocity vector of the active contour is then the following:

∂Γ(τ)

∂τ
=

[
f − (I − µΩ)

|Ω|
∫

Ω

�′(I − µΩ)dx

]
N.

In this example, the additional term coming from the region dependency of f is equal

to (I−µΩ)
|Ω|

∫
Ω
�′(I−µΩ)dx. Note that in the particular case of �(r) = r2, this additional
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term is equal to zero [6, 7, 20, 21]. However, in the general case, the additional term
is not nul.

Let us apply this method to the second example in section 2.4. The function f is
a function of the variance given by (2.9). The corresponding functions Gi, Hi, Kij ,
and Lij are also given in section 2.4. We need the terms Aj , j = 1, 2:

 A1 =
∫
Ω

1
G2
�′
(
G1

G2

)
dx = �′(σ2

Ω),

A2 = − ∫
Ω

G1

(G2)2
�′
(
G1

G2

)
dx = −σ2

Ω �
′(σ2

Ω).

The terms Bij are given by

B11 =

∫
Ω
H1K11

(x,K11,K12) = −2 1
|Ω|
∫
Ω

(I(x) − µΩ)dx = 0,

B12 =
∫
Ω
H1K12

(x,K11,K12) = 2µΩ

|Ω|
∫
Ω

(I(x) − µΩ)dx = 0.

We can then compute the velocity vector of the active contour from (5.5) and we find

∂Γ(τ)

∂τ
= [ f + �′(σ2

Ω)
(
(I − µΩ)2 − σ2

Ω

)
] N.

In this simple example, we notice that the dependency of the function on the region
induces an additional term in the evolution equation compared with the evolution
equation obtained in the case where the function is region independent (equation
(4.2)). This additional term is �′(σ2

Ω)
(
(I(x) − µΩ)2 − σ2

Ω

)
. It must be included in

order to reach a true minimum of the criterion as proved in [33].

6. Matching histograms. A natural way of generalizing the use of statistical
image features such as the mean and the variance of the intensity for image segmenta-
tion is to consider the full probability distribution of the feature of interest within the
region, e.g., intensity, color, texture, etc., . . . . It turns out that in attempting to do
so, one is naturally led to extend the criterion (2.4) to the case where the function f
depends on a continuous family of region criteria. Consider a function h : R

n → R
m

which describes the feature of interest. Suppose we have learnt the probability density
function (pdf) of the feature h within the image region of interest, and let q(α) be
this pdf. Given a region Ω, we can estimate the pdf of the feature h through the use
of the Parzen method [24]: let p : R

m → R
+ be the Parzen window, a smooth positive

function whose integral is equal to 1. For the sake of simplicity but without loss of
generality, we assume that p is an m-dimensional Gaussian with 0-mean and variance
σ2, we note

p(α) = gσ(α) =
1

(2πσ2)m/2
exp

(
−|α|2

2σ2

)
,

and we define

q̂(α,Ω) =
1

K(Ω)

∫
Ω

gσ(h(x) − α) dx,

where h(x) is the value of the feature of interest at the point x of Ω and K is a
normalizing constant, in general depending of Ω, such that∫

R
m

q̂(α,Ω) dα = 1.



2146 G. AUBERT, M. BARLAUD, O. FAUGERAS, AND S. JEHAN-BESSON

Therefore

K(Ω) =

∫
Ω

∫
R

m

gσ(h(x) − α) dα dx = | Ω | .

We next assume that we have a function ϕ : R
+ × R

m → R
+ which allows us to

compare two pdfs. This function is small if the pdfs are similar and large otherwise.
It allows us to introduce the following functional which represents the “distance”
between the two histograms:

D(Ω) =

∫
R

m

ϕ(q̂(α,Ω), q(α)) dα.(6.1)

The distance can be the square of the L2 norm when

ϕ(q̂(α,Ω), q(α)) = (q̂(α,Ω) − q(α))2,

or the commonly used Kullback–Leibler divergence when

ϕ(q̂(α,Ω), q(α)) =
1

2

(
q(α) log

q(α)

q̂(α,Ω)
+ q̂(α,Ω) log

q̂(α,Ω)

q(α)

)
,

or the Hellinger distance when

ϕ(q̂(α,Ω), q(α)) = (
√
q̂(α,Ω) −

√
q(α))2 ,

or the nonsymmetric chi-2 comparison function when

ϕ(q̂(α,Ω), q(α)) =
(q̂(α,Ω) − q(α))2

q(α)
.

A further generalization of the previous case is to consider second order histograms
which describe the probability of having the value α1 at pixel x and the value α2

at pixel x + δ, where δ is a fixed (usually small) vector of Rn. This has been used
very much in computer vision for analyzing textures [28, 29]. The corresponding pdf,
denoted qδ(α1,α2), can be estimated with the same Parzen window technique. We
define

q̂δ(α1,α2,Ω) =
1

Kδ(Ω)

∫
Ω

gσ(h(x) − α1)gσ(h(x+ δ) − α2) dx.

The normalizing constant Kδ(Ω) is given by

Kδ(Ω) =

∫
Ω

∫
R

m×R
m

gσ(h(x) − α1)gσ(h(x+ δ) − α2) dα1 dα2 dx =| Ω | .

We therefore define

Dδ(Ω) =

∫
R

m×R
m

ϕ(q̂δ(α1,α2,Ω), qδ(α1,α2)) dα1 dα2.(6.2)

Using the tools developed in section 5, we compute the Gâteaux derivative of the
functional D. We have the following theorem.
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Theorem 6.1. The Gâteaux derivative in the direction V of the functional D
defined in (6.1) is

〈D′(Ω),V〉 = − 1

| Ω |
∫

Γ

(
∂1ϕ(q̂(.,Ω), q(.)) ∗ gσ(h(x)) − C(Ω)

)
(V ·N)da(x),

where C(Ω) =
∫

R
m ∂1ϕ(q̂(α,Ω), q(α))q̂(α,Ω) dα.

Proof. By the definition of D we have

〈D′(Ω),V〉 =

∫
R

m

〈(ϕ(q̂(α,Ω), q(α)))′,V〉 dα.

Let us compute the Gâteaux derivative of ϕ(q̂(α,Ω), q(α)). We define

ϕ(q̂(α,Ω), q(α)) = f(G1(α,Ω), G2(Ω)) = ϕ

(
G1(α,Ω)

G2(Ω)
, q(α)

)
,

where

G1(α,Ω) =

∫
Ω

gσ(h(x) − α) dx with H1(α,x) = gσ(h(x) − α),

G2(Ω) = | Ω |=
∫

Ω

dx.

We obtain

〈f ′,V〉 = fG1〈G′
1,V〉 + fG2〈G′

2,V〉

=
∂1ϕ(q̂(α,Ω), q(α))

| Ω | (〈G′
1,V〉 − q̂(α,Ω)〈G′

2,V〉)

and, using Theorem 5.5,

〈f ′,V〉 = −∂1ϕ(q̂(α,Ω), q(α))

| Ω |
∫

Γ

( gσ(h(x) − α) − q̂(α,Ω)) (V ·N)da(x).

Plugging this result into the expression of 〈D′(Ω),V〉 and swapping the order of
integration, we obtain

〈D′(Ω),V〉 = − 1

| Ω |
∫

Γ

(∫
R

m

gσ(h(x) − α)∂1ϕ(q̂(α,Ω), q(α)) dα

−
∫

R
m

∂1ϕ(q̂(α,Ω), q(α))q̂(α,Ω) dα
)

(V ·N)da(x).

The first integral on the right-hand side is the convolution ∂1ϕ(q̂(.,Ω), q(.))∗gσ of the
function ∂1ϕ(q̂(.,Ω), q(.)) : R

m → R with the function gσ. The final result is

〈D′(Ω),V〉 = − 1

| Ω |
∫

Γ

(
∂1ϕ(q̂(.,Ω), q(.)) ∗ gσ(h(x)) − C(Ω)

)
(V · N)da(x),

where C(Ω) =
∫

R
m ∂1ϕ(q̂(α,Ω), q(α))q̂(α,Ω) dα.

This solves the question of first order histograms. For second order histograms
we have the following theorem.
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Theorem 6.2. The Gâteaux derivative in the direction V of the functional Dδ

defined in (6.2) is

〈D′
δ(Ω),V〉 = − 1

| Ω |
∫

Γ

(
∂1ϕ(q̂δ(., .,Ω), q(., .)) ∗ (gσ ⊗ gσ)(h(x),h(x+ δ))

− Cδ(Ω)
)

(V ·N)da(x) ,

where Cδ(Ω) =
∫

R
m×R

m ∂1ϕ(q̂δ(α1,α2,Ω), q(α1,α2))q̂δ(α1,α2,Ω) dα1 dα2, and gσ⊗
gσ(α1,α2) = gσ(α1) gσ(α2).

Proof. The proof is identical to that of Theorem 6.1.

7. Color histograms: Segmentation of regions in video sequences. This
work has been motivated by [12, 8] where the tracking algorithms take advantage of
statistical color distributions. We propose here to use active contours in order to fit
exactly the shape of the object to be segmented. We consider a video sequence where
each frame is represented by the color function h : R

2 → R
2. The color space used

is (H,V ), where H stands for the hue and V for the value.1 The goal is to segment
a reference region, given in the previous image of the sequence, into the current one
by minimizing the distance between the reference histogram q of the region in the
previous image and the estimated histogram q̂ in the current frame. From an initial
curve chosen by the user in the current frame, we want to make an active contour
evolve towards the region in the current frame whose histogram is closest to the
reference histogram of the previous frame.

In order to introduce a competition between the region of interest and the back-
ground region, we also consider the complement Ωc of the region Ω of interest. They
share the same boundary, Γ, but with normals pointing in opposite directions. We
denote qc the reference histogram of Ωc, and we look for the region Ω which minimizes
the following criterion:2

J(Ω) = D(Ω) +D(Ωc) + λ

∫
Γ

ds.(7.1)

In this criterion, the first two terms are region functionals while the last one is a
boundary functionals. The last one minimizes the curve length and is a regularization
term weighted by the positive parameter λ. We have, of course,

D(Ω) =

∫
R

2

ϕ(q̂(α,Ω), q(α)) dα,

D(Ωc) =

∫
R

2

ϕ(q̂(α,Ωc), q(α)) dα.

Computation of the Gâteaux derivative. A straightforward application of Theo-
rem 6.1 yields

〈D′(Ω),V〉 = − 1

| Ω |
∫

Γ

(
∂1ϕ(q̂(.,Ω), q(.)) ∗ gσ(h(x)) − C(Ω)

)
(V ·N)ds

1We ignore the saturation to avoid the curse of dimensionality.
2The results are even better if we introduce the region area in the criterion by minimizing

D(Ω)|Ω| +D(Ωc)|Ωc| + λ
∫
Γ ds.
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with

C(Ω) =

∫
R

m

∂1ϕ(q̂(α,Ω), q(α))q̂(α,Ω) dα .(7.2)

Similar results hold for Ωc:

〈D′(Ωc),V〉 =
1

| Ωc |
∫

Γ

(
∂1ϕ(q̂(.,Ωc), qc(.)) ∗ gσ(h(x)) − C(Ωc)

)
(V ·N)ds ,

with

C(Ωc) =

∫
R

m

∂1ϕ(q̂(α,Ωc), qc(α))q̂(α,Ωc) dα .(7.3)

Computation of the evolution equation of an active contour. It is well known that
the minimization of the curve length leads to the Euclidean curve shortening flow λκ
[4, 35]. Then, from the previous derivatives, we can deduce the evolution of an active
contour that will evolve towards a minimum of the criterion Jn defined in (7.1). We
find the evolution equation

∂Γ(τ)

∂τ
= FN(7.4)

with

F = λκ+
1

| Ω |
(
∂1ϕ(q̂(.,Ω), q(.)) ∗ gσ(h(x)) − C(Ω)

)
− 1

| Ωc |
(
∂1ϕ(q̂(.,Ωc), qc(.)) ∗ gσ(h(x)) − C(Ωc)

)
,

where κ is the curvature of Γ and C(Ω), C(Ωc) are given by (7.2) and (7.3), respec-
tively.

Let us take the example of the Hellinger distance, where ∂1ϕ(r,α) = (
√
r −√

q(α))/
√
r. We find for the velocity vector

F = λκ+
1

| Ω |

(
(
√
q̂(. ,Ω) −√q(.))√

q̂(. ,Ω)
∗ gσ(h(x)) − C(Ω)

)

− 1

| Ωc |

(
(
√
q̂(. ,Ωc) −√qc(.))√

q̂(. ,Ωc)
∗ gσ(h(x)) − C(Ωc)

)
.

And for the chi-2 comparison function where ∂1ϕ(r,α) = 2(r − q(α))/q(α), we find

F = λκ+
2

| Ω |
(

(q̂(. ,Ω) − q(.))
q(.)

∗ gσ(h(x)) − C(Ω)

)

− 2

| Ωc |
(

(q̂(. ,Ωc) − qc(.))
qc(.)

∗ gσ(h(x)) − C(Ωc)

)
.

In the velocity, the convolution term allows us to compare locally the reference his-
togram to the current histogram.
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7.1. Implementation. As far as the numerical implementation is concerned,
we can model the active contour with either an explicit parameterization (Lagrangian
formulation) or an implicit one (Eulerian formulation). See [23] for an interesting
comparison between the two methods. Another interesting review may be found in
[36].

Here, we use the level set method approach first proposed by Osher and Sethian
[37] and applied this to active contours in [3]. The key idea of the level set method
is to introduce an auxiliary function U(x, τ) such that Γ(τ) is the zero level set of
U . The function U is often chosen to be the signed distance function of Γ(τ) which
satisfies

Γ(τ) = {x | U(x, τ) = 0} and |∇U | = 1.

This Eulerian formulation presents several advantages [47]. First, the curve U may
break or merge as the function U evolves, and topological changes are thus easily
handled. Second, the evolving function U(x, τ) always remains a function allowing
efficient numerical schemes. Third, the geometric properties of the curve, like the
curvature κ and the normal vector field N, can be estimated directly from the level
set function:

κ = div

( ∇U
|∇U |

)
and N = − ∇U

|∇U | .

The evolution equation (7.4) then becomes

∂U(τ)

∂τ
= F |∇U |.(7.5)

The velocity function F is computed only on the curve Γ(τ), but we can extend
its expression to the whole image domain Ω. To implement the level set method,
solutions must be found to circumvent problems coming from the fact that the signed
distance function U is not a solution of the PDE (7.5); see [26] for details. In our
work, the function U is re-initialized so that it remains a distance function. Details
on the re-initialization equation are provided in [1, 19].

In order to improve numerical efficiency, we compute the equation in a narrow
band enclosing the 0 level of the level set function [47, 48]. We also use multiresolution
techniques by making the active contour evolve first in a low resolution image. The
final contour obtained for this reduced image is then used as an initial curve for
the real size image. Another possibility for increasing efficiency would be the use of
accurate operator splitting (AOS) schemes [50].

7.2. Experimental results. Experimental results have been obtained on the
sequence “Erik” from the European group COST211. Experiments are conducted
using the chi-2 comparison function with ϕ(r, α) = (r− q(α))2/q(α) and ∂1ϕ(r,α) =
2(r − q(α))/q(α).

The region of interest is the face. We assume that it has been segmented in the
first image as shown in Figure 1(a). The first two reference histograms are computed.
The two reference histograms are also given Figure 1(b) for the background reference
histogram qc and Figure 1(c) for the object reference histogram, q. For a given region
Ω and for a point α = [α1, α2]T , the function q̂(α,Ω) represents the probability to
obtain H(x) = α1 and V (x) = α2 for x belonging to the region Ω.

Then, using the two reference histograms of the previous frame, we make the
active contour evolve using (7.4) in the current frame. The initial curve is chosen



IMAGE SEGMENTATION USING ACTIVE CONTOURS 2151

a. Reference segmentation

b. Background reference histogram c. Object reference histogram

Fig. 1. The reference segmentation of the previous frame (a), the corresponding background
reference histogram qc (b), and the corresponding object reference histogram q (c).

to be a circle. The evolution of the active contour in the current frame is shown in
Figure 2. We notice that the final contour in Figure 2(c) nicely describes the region
of interest, and the face is accurately segmented. We can also visualize the evolution
of the object histogram, q̂(α,Ω), during the propagation of the active contour. The
final object histogram given in Figure 2(d) can be compared to the reference object
histogram in Figure 1(c), showing an efficient minimization of the distance between
the two histograms.

8. Conclusion. In this article we have clarified the relationships between the
boundary and region functionals that arise naturally in several image processing tasks.
We have shown that one can go from one to the other by solving Poisson’s equation
with Dirichlet conditions or Helmholtz’s equation with Neumann conditions.

We have then concentrated on the problem of finding local minima of a large
class of region functionals. By first transforming them into boundary functionals and
applying methods from the calculus of variations we have computed the corresponding
Gâteaux derivatives and constructed a velocity field on the region boundary. This
field defines a PDE whose solution, for a given initial boundary, generates a one-
parameter family of regions which, in practice, converges toward a local minimum of
the functional. The problem of the existence and uniqueness of a solution to this PDE
has not been addressed.

Changing our point of view, we have then rederived the same equations in a
simpler and more natural way, i.e., without going through the trouble of turning
region integrals into boundary integrals; this is achieved by applying methods of
shape derivation [49, 22].
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a. Initial contour b. Initial histogram q̂(α,Ω)

c. Final Contour d. Final histogram q̂(α,Ω)

Fig. 2. Evolution of the region histogram q̂(α,Ω) of the current frame during the evolution of
the active contour.

We have then turned our attention to a new class of region-based functionals by
considering histograms of image features. The shape derivation tools have allowed us
to easily derive the velocity field that defines the evolution of the region boundary.

The final part of the paper has been devoted to an application of the previous
methods to the problem of region segmentation with a given color histogram in a
sequence of images. Our experimental results show that the technique has indeed
some interesting potentials.

Acknowledgments. We thank Rachid Deriche for his helpful comments on an
early draft of this document. We also thank Gerardo Hermosillo for providing us with
his software package for the robust estimation of image histograms.
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Abstract. In this paper we analyze the stability of a levitated axisymmetric top carrying a
system of permanent magnets in an alternating magnetic field. We show that there are stable con-
figurations where the top is stationary, and the alternating magnetic field stabilizes the equilibrium
position. We show that one mechanism for achieving stability is to periodically change the coupling
between the rotational and translational degrees of freedom.

Key words. Levitron, stability, magnets

AMS subject classifications. 70E05, 70J25, 78A30

DOI. 10.1137/S003613990241031X

1. Introduction. Earnshaw’s theorem states that it is impossible to have stable
levitation in a magneto-static or electro-static field. Although the theorem has a very
broad scope, there are some very precise conditions that must be met in order for it
to apply. In particular, the theorem fails if there are diamagnetic materials present,
the levitating body is spinning, or the fields are alternating in time.

The discovery of the LevitronTM [7] demonstrated that it is possible to have
stable levitation in a steady magneto-static field. This has led to a renewed interest
in the subject of passive magnetic levitation using magneto-static fields [2], [4], [5],
[11], [3]. Stable levitation has also been demonstrated using diamagnetic materials.
A particular case of this is levitation over a superconducting disc, which can be
considered as a diamagnetic material with magnetic permeability of zero.

In this paper we would like to discuss the possibility of achieving passive stable
levitation in an alternating magnetic field. Although the fields are varying with time,
we still refer to them as being magneto-static, since we assume that they are varying
slowly enough that we can ignore the effects of the time varying terms in Maxwell’s
equations. We say that our system is passive because we prescribe the time variation
of the magnetic field ahead of time, rather than adjusting the field in response to the
position of the top.

In [10] Paul reviews the work on how small particles can be levitated in an alter-
nating field. This work has demonstrated both theoretically and experimentally how
Earnshaw’s theorem can be violated in an alternating field. Our paper differs from
this work in several respects. Our paper is aimed at trying to design a system on
a larger scale, where we have both the flexibility and the necessity of specifying the
design of both the levitating body and the supporting magnets.

The theory outlined in [10] applies to point charges in an alternating field. It is
very simple and elegant, and has found profound uses in such fields as mass spectrom-
etry. However, if one is going to make an oscillating field (and not spinning) version of
the LevitronTM, one needs a fuller theory. In particular, we need to take into account
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the full (although linearized) rigid body dynamics of the levitated body. When we
do this we find that there are two quite distinct methods of stabilizing the top. The
first is the mechanism outlined in [10]; the second involves periodically varying the
coupling between the rotational and translational modes of the top. In a practical
device, one would most likely want to bring both of these mechanisms into play.

We will now describe our proposed setup and the conclusions of the analysis. We
assume that there is a system of base magnets that gives a steady magnetic field
with axial symmetry about the z axis (the direction of gravity). We also assume
that we have a system of axisymmetric magnetic coils that give an axisymmetric
periodically varying magnetic field. We suppose that we have an axisymmetric top
with an axisymmetric system of magnets attached to it. When the top’s axis is
pointing in the z direction, and its center of mass is at the origin, we assume that the
magnetic force from the steady field exactly balances the force of gravity. We also
assume that the time varying force on the top vanishes at this position. In section 7
we will show that it is possible to find configurations of magnets that achieve these
conditions. Assuming these conditions are satisfied, we see that there is an equilibrium
position where the top is at rest in the time varying field. We then consider the
stability of this equilibrium.

The linear stability equations are identical to those used in analyzing the stability
of an axisymmetric LevitronTM, except the dynamical parameters are time varying
and the spin rate is set to zero. In particular, the system can be described by a
lateral translational spring constant A, an axial translational spring constant −2A,
a rotational spring constant −C, and a term B that couples the translations to the
rotations. All of these terms have both a steady and a time varying component. Due
to Earnshaw’s theorem, if we set the time varying fields to zero, it is not possible for
the system to be stable to both axial and lateral translational perturbations.

The mechanism described in [10] is equivalent to assuming that there is no cou-
pling term B in the equations of motion and the rotational spring constant −C is
positive. This gives us a rotationally stable top, but one that at each instant of time
sees a negative spring constant for either axial or lateral perturbations. However, by
varying the translational spring constant 2A(t) at the right amplitude and frequency,
it is possible to achieve overall stability in both the axial and lateral directions.

A different mechanism for achieving stability is to keep the translational spring
constant A and the rotational spring constant −C steady in time and to periodically
vary the coupling term B(t). Our results show that in order to achieve stability,
it is necessary that the field varies more rapidly than the natural frequency of the
rotational oscillation of the top. Furthermore, there is both an upper and a lower
limit to the strength of the time varying coupling term. We cannot achieve stable
equilibrium if the coupling is either too big or too small.

We now give a brief outline of the rest of this paper. In section 2 we derive the
equations governing the linear stability of the top. In section 3 we discuss how to
apply Floquet theory to analyze these equations and give general properties of the
stability equations. In section 4 we analyze the case where stabilization is achieved
without any coupling between the rotations and translations. In section 5 we consider
the case where this coupling is the stabilizing mechanism. In section 6 we discuss the
high frequency approximation to the stability equations. In section 7 we discuss
how to find configurations that give us the desired dynamical parameters. We give
conclusions in section 8.
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2. Basic equations. We suppose that there is an equilibrium position where
the center of mass of the top is at the origin and its axis of symmetry is pointing in
the z direction. We should emphasize that even though the magnetic field is varying
with time, we assume that a steady state equilibrium exists. For this to be true,
it is necessary that the time varying components of the force and torque vanish at
the equilibrium position. Due to symmetry, when the top is placed symmetrically in
the field, all components of the force and torque vanish except for the force in the z
direction. We must arrange the magnets so that the time varying component of this
force vanishes.

We now determine the form of the equations governing the linear stability of
this equilibrium. We begin by using simple symmetry arguments to deduce the most
general form of the linear stability equations.

In order to orient the axis of symmetry of the top, we assume that the axis is
initially pointing in the positive z direction. We orient the body by rotating it about
the x axis by θ, then about the y axis by φ, and then about the z axis by ψ. Since
we are mainly concerned with the linear stability of the system, and we are assuming
that the top is axisymmetric, the angle ψ will not appear in the equations of motion.

2.1. Symmetry considerations. For any axisymmetric top with an axisym-
metric system of magnets, the energy of the top in a magnetic field can be written as

Energy = U(x, d, t),

where x = (x, y, z) gives the position of the center of mass of the top and d =
(dx, dy, dz) is a unit vector pointing in the direction of the axis of symmetry of the
top. This very general form for the energy holds as long as the top is axisymmetric
and carries with it an axisymmetric system of magnets.

The force and torques can be derived from the potential U(x, d, t). The forces
can be written as

F (x, d, t) = −∇xU(x, d, t).(1)

Here ∇x is the gradient with respect to x. The torque τ can be computed using the
fact that if we rotate our system about the axis a by an infinitesimal amount dα, the
change in energy can be written as

dU = −τ · adα.
When we rotate our system in this way, the axis d changes by the amount dαa × d.
It follows that the change in energy can be written as

dU = ∇dU(x, d, t) · (dαa× d) = dαa · (d×∇dU) .

Equating the two expressions for dU and requiring that they hold for all values of a,
we conclude that the torque is given by

τ = −d×∇dU(x, d, t).(2)

We will also use the fact that

∇2
xU = 0.

We are interested in analyzing the stability of an equilibrium position where
d = (0, 0, 1). For small perturbations to this solution, both θ and φ are small, and we
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have the approximate expression (dx, dy, dz) ≈ (φ,−θ, 1). In the linear approximation,
the energy U is a quadratic function of x, y, z, θ, and φ. In this approximation, the
torques τx and τy are given by

τx = −∂U
∂θ

,

τy = −∂U
∂φ

.

We now assume that the top is in an axisymmetric magnetic field with the z axis
as the axis of symmetry. Due to the symmetry of our configuration, it is clear that if
we reflect both the position and the vector d about either the x or y axes, the energy
stays the same, as it does for reflections about the plane x = y. This implies that

U(x, y, z, dx, dy, dz, t) = U(−x, y, z,−dx, dy, dz, t),(3a)

U(x, y, z, dx, dy, dz, t) = U(x,−y, z, dx,−dy, dz, t),(3b)

U(x, y, z, dx, dy, dz, t) = U(y, x, z, dy, dx, dz, t).(3c)

These symmetry properties must be satisfied by any axisymmetric system. We
could write down other symmetry properties, but these suffice to specify the form of
the equations of motion.

In the linear approximation these symmetry conditions can be written as

U(x, y, z, θ, φ, t) = U(−x, y, z, θ,−φ, t),

U(x, y, z, θ, φ, t) = U(x,−y, z,−θ, φ, t),

U(x, y, z, θ, φ, t) = U(y, x, z,−φ, θ, t).
These symmetries, along with the fact that the forces and torques are derivable

from a potential, imply that the general form for the linearized equations of an axi-
symmetric top can be written as

mẍ−A(t)x−B(t)φ = 0,

mÿ −A(t)y +B(t)θ = 0,

mz̈ + 2A(t)z = 0,

I1θ̈ − C(t)θ +B(t)y = 0,

I1φ̈− C(t)φ−B(t)x = 0.
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These linearized stability equations depend on the mass m, the moment of inertia
I1, and the dynamical constants A, B, and C. These dynamical constants are given by

A(t) = −1

2

∂Fz
∂z

=
∂Fx
∂x

=
∂Fy
∂y

,

B(t) = −∂τx
∂y

=
∂τy
∂x

=
∂Fx
∂φ

= −∂Fy
∂θ

,

C =
∂τx
∂θ

=
∂τy
∂φ

.

In these expressions the partial derivatives are to be evaluated at the equilibrium
position, which is assumed to be with the top aligned with the axis of symmetry and
the center of mass along the axis of symmetry. Note that the dynamical parameters
A, B, and C are time dependent due to the time varying nature of the fields.

The dynamical constant A is the translational spring constant. For a steady field,
if B = 0, then when A > 0 we have a stable harmonic oscillator for displacements in
the z direction and (due to Earnshaw’s theorem) an unstable oscillator in the x and
y directions. The constant −C is a torsional spring constant. Finally, the constant
B gives the coupling between the rotations and translations. For example, when the
top is rotated about the y axis by φ, it gives a force in the x direction proportional
to Bφ, and when the top is displaced in the x direction, there is a torque about the
y axis that is proportional to Bx.

Once again we emphasize that this form of the equations holds for any axisym-
metric system, no matter how complicated the systems of magnets for either the base
or top are. If the top has a single dipole, quadrapole, or octapole on it, and the base
consists of a single coil or a single ring magnet, it is possible to find explicit expres-
sions for the constants A, B, and C. Using linear superposition, it is then possible to
compute the dynamical constants A, B, and C for arbitrarily complicated systems of
magnets on the top and in the base. Alternatively, assuming we have a code that can
compute the force and torque on the top when it is placed with an arbitrary position
and orientation in an axisymmetric field, we can compute the constants A, B, and C
by numerically taking the derivatives of the forces and torques about the equilibrium
position.

Given a particular configuration of magnets, the functions A(t), B(t), and C(t)
determine the stability properties of the configuration. However, in order to determine
if a configuration is in equilibrium, we also need to calculate the lift L(t). In order
for this to be a valid configuration, it is necessary that the lift L(t) be independent
of time and that it be equal and opposite to the force of gravity on the top.

2.2. Sinusoidally varying fields. In the most general case that we consider in
this paper, all of the terms have both a steady and a sinusoidally varying component.
We assume that all of the time varying components have the same phase. We will
write

A(t) = A0 +Av cos(ωt),

B(t) = B0 +Bv cos(ωt),
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C(t) = C0 + Cv cos(ωt).

We are assuming that the lift L(t) is independent of time.
We will introduce the following dimensionless variables:

x = ξ
√
I1/m,

y = χ
√
I1/m,

z = η
√
I1/m,

t = s/ω.

In terms of these dimensionless variables, we get the equations

ξ̈ − (α0 + αv cos(s))ξ + (β0 + βv cos(s))φ = 0,(4a)

φ̈+ (γ0 + γv cos(s))φ+ (β0 + βv cos(s))ξ = 0,(4b)

η̈ + 2(α0 + αv cos(s))η = 0.(4c)

Here

α0 =
A0

mω2
,

γ0 =
−C0

I1ω2
,

β0 =
B0√
mI1ω2

,

αv =
Av
mω2

,

γv =
−Cv
I1ω2

,

βv =
Bv√
mI1ω2

.

Note that the equation for η decouples from those for ξ and φ. Furthermore, the
equations for χ and θ decouple from the rest of the equations and are almost identical
to the equations for ξ and φ (and hence we have not bothered to write them down).
If the equations for ξ and φ are stable, then so will the ones for χ and θ. For this
reason we will not carry them along in our analysis.

3. General properties concerning the stability of the equilibrium. The
equations (4) can be split up into two independent systems. The equation for η is a
second order system that decouples from the rest of the equations. The equations for



PASSIVE MAGNETIC LEVITATION 2161

ξ and φ can be written as a fourth order system of the form

q̇ = R(t)q,(5)

q =




ξ

ξ̇
φ

φ̇


 ,

where R(t) is a 4 × 4 matrix that satisfies R(t) = R(t+ 2π).
In order to have stability, both the equation for η and (5) must give stability. The

equation for η is Mathieu’s equation, whose stability properties are well known. In
the rest of this section we discuss how to analyze the stability of (5). The arguments
we now give are a special case of those given in [8].

In order to analyze the stability of our system of equations we consider the fun-
damental matrix solution Q(t) satisfying

Q̇ = R(t)Q,

Q(0) = I.

We define the monodromy matrix Γ as

Γ = Q(2π).

The equilibrium with q = 0 will be stable provided all of the eigenvalues of Γ have
magnitudes less than unity. However, since our system is conservative we can at best
have neutral stability. This follows since tr(R(t)) = 0. This implies that the Wron-
skian Wr(t) (the determinant of Q(t)) is constant. This follows since the Wronskian
satisfies the equation

dWr

dt
= tr(R(t))Wr.

Since the Wronskian is independent of time, the determinant of Q(2π) must be equal
to one. This implies that it is not possible to have all of the eigenvalues of Γ have
magnitudes less than unity. For this reason we can have only instability or neutral
stability.

For given values of the parameters α0, αv, etc., it is straightforward to numerically
integrate the system of equations and evaluate the eigenvalues of the monodromy
matrix Γ. However, if one is going to track (either numerically or with perturbation
theory) the curves separating regions of instability from regions of neutral stability,
it is helpful to understand some more properties of Γ.

We begin by showing that due to time reversal symmetry, if λ is an eigenvalue
of Γ, then so is 1/λ. Suppose we integrate (5) with the initial conditions q(0) = q

0
,

and after integrating this equation over a single period we end up with the vector
q(2π) = q

1
. If we integrate our differential equations backwards with the initial

condition q
1
, we will end up getting back q

0
at t = 0. However, due to the time

reversal symmetry of our system, we can get back q
0

by integrating our equations
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forward. In order to do this we need to multiply q
1

by the matrix

J =




1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1


 .

This has the effect of keeping the values of ξ and φ (in the vector q) the same but
changing the signs of their derivatives. If we integrate (5) forward with the initial
condition q(0) = Jq

1
, we will end up with the vector Jq

0
after we have integrated over

a single period. This will work for any initial condition q
0
, and hence our monodromy

matrix must satisfy

ΓJΓ = J.(6)

We will now show that this equation implies that if λ is an eigenvalue of Γ, then
so is 1/λ. In order to show this we note that (6) can be written as

JΓ = Γ−1J.

Suppose λ is an eigenvalue of Γ with eigenvector r. This means that Γr = λr, and
hence JΓr = λJr. However, using JΓ = Γ−1J , this can be written as Γ−1Jr = λJr.
This implies that λ is an eigenvalue of Γ−1 with eigenvector Jr. This is equivalent to
saying that 1/λ is an eigenvalue of Γ.

It follows that the characteristic equation for Γ is a reciprocal equation. That is,
it can be written as

det (λI − Γ) = λ4 + p(Γ)λ3 + q(Γ)λ2 + p(Γ)λ+ 1 = 0.(7)

Reciprocal equations can be solved by solving equations of half the degree and
a quadratic [9]. For fourth order reciprocal equations we use the polynomials ψ0 =
1,ψ1(t) = t, ψ2(t) = t2 − 2. These polynomials satisfy

ψk(x+ 1/x) = xk + 1/xk.

To solve (7) we multiply (7) by 1/λ2 to get

(λ2 + 1/λ2) + p(Γ)(λ+ 1/λ) + q(Γ) = 0.

This can be written as

ψ2(λ+ 1/λ) + p(Γ)ψ1(λ+ 1/λ) + q(Γ) = 0.

If we make the substitution z = λ+ 1/λ, we get the equation

z2 + p(Γ)z + q(Γ) − 2 = 0,(8)

and solving for λ in terms of z we get

λ2 − zλ+ 1 = 0.(9)

In order for this last equation to have roots with | λ |= 1, it is necessary and
sufficient that z be real and satisfy z2 < 4. It follows that a necessary and sufficient
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condition that our system is neutrally stable is that all of the roots of (8) be real and
have magnitude less than two. These conditions can be written as

−4 < p(Γ) < 4,

8 + p(Γ)2 − 4q(Γ) > 0,

2 + 2p(Γ) + q(Γ) > 0,

2 − 2p(Γ) + q(Γ) > 0.

It is more useful to express these equations directly in terms of the monodromy
matrix. To do this we use

p(Γ) = −tr(Γ),

q(Γ) =
1

2

(
p(Γ)2 − tr(Γ2)

)
.

The necessary and sufficient conditions for stability can now be written as

Z1(Γ) = 8 + 2 tr(Γ2) − tr(Γ)2 > 0,(10a)

Z2(Γ) = (2 − tr(Γ))2 − tr(Γ2) > 0,(10b)

Z3(Γ) = (2 + tr(Γ))2 − tr(Γ2) > 0,(10c)

Z4(Γ) = 4 − tr(Γ) > 0,(10d)

Z5(Γ) = tr(Γ) + 4 > 0.(10e)

On the boundary between a region of stability and instability, one of these inequal-
ities is replaced by an equality. For example, numerically it is found that Z1(Γ) = 0
is satisfied for the upper bound on βv and Z2(Γ) = 0 for the lower bound on βv when
αv = γv = β0 = 0 and γ0 > 0.

4. Systems with no coupling term B(t). We begin by assuming that both
the steady and time varying components of the coupling term B(t) vanish. In this
case the equations for φ, θ, ξ, χ, and η all decouple from each other. The equations
for φ and θ imply that the top is rotationally stable provided γ0 > 0 and γv is not
too large. Assuming this is the case, the stability is determined by the condition that
the equations

ξ̈ − (α0 + αv cos(s))ξ = 0

and

η̈ + 2(α0 + αv cos(s))η = 0

both give stable solutions. This theory is nearly identical to that presented in [10].
Each one of these equations is a particular case of Mathieu’s equation. The theory of
Mathieu’s equation has been well documented in many different books on nonlinear
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Fig. 1. This shows the upper and lower values of αv as a function of α0 for the case where
there is no coupling between the rotational and translational modes.

oscillations [12], [1]. The only trick here is adjusting the parameters so that both
of these equations give stable solutions at the same time. Note that at any instant
in time, if we freeze the coefficients, only one of these equations would be stable.
However, since the fields are changing with time, we can get overall stability even
though the equations with frozen coefficients give instability.

We have numerically integrated these equations to determine the monodromy
matrix and the Floquet exponents. Figure 1 shows a plot of the region of stability.

5. Systems stabilized by coupling. We now consider systems where the only
time variation is in the coupling term βv. For simplicity we assume that the steady
component β0 also vanishes. Since the equation for η is decoupled from the rest of the
equations, it is clear that we must have α0 > 0 in order to have the top be stable to
axial perturbations. Assuming that α0 > 0, the stability of such a system is governed
by the equations

ξ̈ − α0ξ + βv cos(s)φ = 0,(11a)

φ̈+ γ0φ+ βv cos(s)ξ = 0.(11b)

Before giving numerical or perturbation results, we will give some intuitive argu-
ments that give the basic features of the numerical calculations.
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Suppose that both βv and α0 are small. In this case it is reasonable to assume
that ξ(t) is changing slowly compared to the driving frequency, and hence ξ(s) can
be approximated as a constant in (11b). This implies that we can write

φ(s) =
ξ(s)βv cos(s)

1 − γ0
.

If we substitute this back into the equation for ξ, we get

ξ̈ − α0ξ + ξ
β2
v

1 − γ0
cos2(s) = 0.

This can be written as

ξ̈ +

(
β2
v

2(1 − γ0)
− α0

)
ξ +

β2
v

2(1 − γ0)
cos(2s)ξ = 0.(12)

This is identical to Mathieu’s equation. As long as we are away from regions of
parametric resonance we expect that this will be stable provided the steady term in
the spring constant is positive. By this we mean that

β2
v

2(1 − γ0)
− α0 > 0.(13)

We see that if we make the coupling term βv large enough, we can overcome the desta-
bilizing effect of the parameter α0. However, this is possible only if γ0 < 1. However,
as the coupling term increases, the steady term approaches 1 and the oscillating term
grows. Eventually we are going to reach a point where the system becomes unstable
due to parametric excitation.

We can numerically integrate (12) and use Floquet theory to determine regions
of stability and instability. Figure 2 shows a plot of the neutral stability region for
this equation. We see that the lower limit on stability is well approximated by the
curve β2

v = 2α0(1 − γ0). This lower limit on stability also agrees very well with the
lower limit obtained by doing Floquet theory on the full set of equations (11).

The condition γ0 < 0 corresponds to having the top be rotationally unstable in
the absence of the coupling term βv. In this case if βv and α0 are both small, our
system will be unstable due to (11b). In this case it is necessary to stabilize the
instability to rotations in a manner similar to the way we stabilized the translational
instability. Almost identical arguments show that it is necessary to have

β2
v

2(1 − α0)
+ γ0 > 0(14)

in order to stabilize the rotational instability. This shows that when γ0 is negative,
then even when α0 is infinitesimally small, there is a minimum value of βv necessary
in order to achieve stability.

We now present numerical results that confirm all of our results based on heuristic
reasoning. The only major modification to these results is that the results based on
(12) do not do a good job of predicting the upper limit on βv. In particular, the full
numerical calculations show that the upper and lower limits converge towards each
other at a finite value of α0.
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Fig. 2. This shows the upper and lower values of βv for stable operation predicted by (12). This
plot is for γ0 = .1.

Figure 3 shows the bounds on βv as a function of α0 when we use the full linearized
stability equations (11) to analyze the stability. We see that the upper and lower
curves intersect tangentially at a finite value of α0. As we increase γ0, the region of
stable operation shrinks until it completely vanishes just before γ0 = 1.

Figure 4 shows similar plots for negative values of γ0. Note that when γ0 is
negative the curve for the lower limit on βv has a kink in it that occurs when α0+γ0 =0.
The first part of the curve is very well approximated by (14), and the second part
of the curve is approximated by (13). As γ0 gets smaller, the region of stability
eventually shrinks to zero.

The “exact” numerical results we present were found by numerically integrating
the linearized system of equations with different initial conditions in order to obtain
the monodromy matrix. For given values of our parameters this allows us to compute
the quantities Zk in (10). On a surface in parameter space where the system changes
stability we must have Zk = 0 for at least one of k = 1, 2, 3, 4. If we have a good guess
for a point in parameter space satisfying Zk = 0, we can use the secant method to
change one parameter until we find a point that exactly satisfies this equation. Using
this technique it is possible to map out the regions of stability quite efficiently.

6. The high frequency approximation. The situations we have considered in
the last two sections were aimed at isolating two important mechanisms for stabilizing
the equilibrium. In particular, both situations assumed that the steady coupling term
β0 was identically zero. Figure 5 shows plots of the upper and lower bounds on βv
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Fig. 3. This shows the curves for the upper and lower limits to βv as a function of α0. (a)
γ0 = .0, (b) γ0 = .1, (c) γ0 = .2, (d) γ0 = .4. Note that as γ0 gets close to 1, the region of stability
shrinks to zero.

as a function of α0 when we let the parameter β0 be nonzero. We see that the lower
limit on stability is raised as we increase β0, and for α0 = 0 the amount it is raised is
nearly proportional to

√
β0.

The dependence of our stability curves on β0 is just one aspect of the stability
boundaries that were not explored in the last two sections. In order to understand
fully the stability of the equilibrium, we have a six parameter space to explore. The
analysis in this section is aimed at attempting to understand the stability boundaries
of this space. In order to do this we consider the stability of the equilibrium when all
of the dimensionless parameters α0, β0, γ0, αv, βv, and γv are small. Physically this
can be achieved by making the driving frequency ω large.

We can derive the high frequency approximation using the method of averaging.
We briefly outline the method of averaging outlined in [6] when applied to linear
systems with periodic coefficients. In this special case, we are concerned with systems
of the form

ż = εM(t)z,(15)
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Fig. 4. This shows the curves for the upper and lower limits to βv as a function of α0. (a)
γ0 = −.05, (b) γ0 = −.1, (c) γ0 = −.2. Note that the lower bound on βv follows one branch until
α0 = −γ0, then it follows a different branch. As γ0 decreases, the lower bound on βv for α0 = 0 is
continually raised.

where ε is small and M is a 2π periodic matrix. The method of averaging shows that
we can make a change of variable of the form

z = ξ +
(
εN1(t) + ε2N2(t) + · · · + εkNk(t)

)
ξ,

where each Ni(t) is a 2π periodic matrix with zero time average, such that the equation
for ξ can be written as

ξ̇ = Mavξ +O(εk+1),

where Mav can be written as

Mav = εM1 + ε2M2 + · · · + εkMk.
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Fig. 5. This shows the curves for the upper and lower limits to βv as a function of α0 with
γ0 = 0 and different values of β0. (a) β0 = 0, (b) β0 = .005, (c) β0 = .002, (d) β0 = .01. Note that
increasing β0 moves the region of neutral stability upwards.

Here each of the matrices Mj is independent of time. Simple arguments show that the
eigenvalues of the matrix Mav must agree with the Floquet exponents of the original
system (15) to order εk.

If we carry out this method of averaging, we get

M1 = 〈M(t)〉,
where

〈f(t)〉 =
1

2π

∫ 2π

0

f(t)dt.

The matrix N1(t) is the unique matrix with 〈N1〉 = 0 satisfying

dN1

dt
= M(t) −M1.

The matrix M2 is given by

M2 = 〈M(t)N1(t) −N1(t)M1〉.
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The matrix N2(t) is the unique matrix with 〈N2〉 = 0 satisfying

dN2

dt
= M(t)N1(t) −N1(t)M1 −M2.

The matrix M3 is given by

M3 = 〈M(t)N2(t) −N1(t)M2 −N2(t)M1〉.
Assuming that the dimensionless parameters α(t), β(t), and γ(t) are small, it is

possible to apply the method of averaging to our linearized stability equations. We
have, in fact, done this. However, we will now present a simpler heuristic analysis
that leads to the same results as carrying out this averaging process to third order.

We suppose that the steady parameters α, β, and γ are small compared to the
time varying parameters αv, βv, and γv; we assume that the time varying parameters
are themselves small. We will write the solution ξ(s) and φ(s) as

ξ(s) = ξ0(s) + ξ1(s),

φ(s) = φ0(s) + φ1(s),

where ξ0 and φ0 are slowly varying and ξ1 and φ1 are rapidly varying.
Under these assumptions the first two equations in equations (4) imply that the

fast components satisfy

ξ̈1 − αv cos(s)ξ0 + βv cos(s)φ0 = 0,(16)

φ̈1 + γv cos(s)φ0 + βv cos(s)ξ0 = 0.(17)

We can solve these equations to get

ξ1 = cos(s) (−αvξ0 + βvφ0) ,

φ1 = cos(s) (γvφ0 + βvξ0) .

If we now substitute these expressions into the first two of equations (4) and
take the time average, ignoring the time variation of ξ0 and φ0, we get the averaged
equations

ξ̈0 − αeffξ0 + βeffφ0 = 0,

φ̈0 + γeff + βeffξ0 = 0,

where

αeff = α− 1

2
α2
v −

1

2
β2
v ,(18a)

βeff = β − 1

2
αvβv +

1

2
βvγv,(18b)

γeff = γ +
1

2
γ2
v +

1

2
β2
v .(18c)

A necessary and sufficient condition for these averaged equations to have neutrally
stable solutions is that the eigenvalues of the matrix

Keff =

(
αeff −βeff
−βeff −γeff

)
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all be negative. A necessary and sufficient condition for this to be true is that

αeff − γeff < 0,(19)

αeffγeff + β2
eff < 0.(20)

These are the necessary and sufficient conditions that the averaged equations
yield a neutrally stable equilibrium. One can also obtain these results by carrying
out a regular perturbation expansion to find the quantities Zk(Γ) (defined in (10))
assuming that all of the dynamical parameters are small. If we do this, we find that all
of the quantities Zk(Γ) are guaranteed to be positive for small values of the dynamical
parameters, except for Z2(Γ) and Z4(Γ). The condition αeff − γeff < 0 is related to
the condition Z4(Γ) > 0. In particular, we have

Z4(Γ) = 2π2
(
α2
v + 2β2

v + γ2
v − 2α0 + 2γ0

)
+ · · · .(21)

The requirement that αeffγeff+β2
eff < 0 is related to the condition that Z2(Γ) >

0. In particular, we have

1

8π4
Z2(Γ) = −4β2

0 + (β2
v + 2γ0)(β2

v − 2α0) + 2α2
vγ0

(22)
+ 4αvβ0βv + α2

vγ
2
v − 4β0βvγv − 2α0γ

2
v + 2αvγvβ

2
v .

The expression for Z2(Γ) is quite complicated, but it contains a considerable
amount of information. If we set β0 = γv = αv = 0, our asymptotic stability condi-
tions imply that

Z4 = 2π2
(
2β2

v − 2α0 + 2γ0

)
> 0

and

Z2 = 8π4
(
β2
v + 2γ0

) (
β2
v − 2α0

)
> 0.

In order for the second of these conditions to be satisfied, we must have β2
v > 2α0.

If this is so, and γ0 > 0, then the first condition will also be satisfied. In this case, we
get the curve for the lower bound on βv in Figure 3. Note that our high frequency
approximation assumes that all of the parameters are small and does not predict the
upper limit for βv. If γ0 < 0, then the second condition does not necessarily imply the
first and we end up getting a kink in our curve for the lower limit on stability, as in
Figure 4. This shows that our asymptotic results agree with the results we previously
derived using intuitive arguments.

Suppose we still set αv = γv = α0 = 0, but we now let β0 be nonzero. In this
case the condition that Z2 = 0 can be written as

−4β2
0 + (β2

v + 2γ0)β2
v = 0.(23)

If γ0 is small, this shows that the lower bound on βv is proportional to the square
root of β0, a result we observed numerically in Figure 5, but had not yet derived.
In general, (23) gives a quadratic equation for βv. Figure 6 shows a plot of βv(β0)
for a fixed value of γ0. It shows both the exact expression obtained by numerically
computing the monodromy matrix and the analytical expression obtained by solving
(23). We see that there is excellent agreement between these results until βv gets to
be nearly .5, where the high frequency approximation should be expected to break
down. Figure 7 shows a similar plot for βv(γ0) and β0 fixed.

These examples show that although (22) is quite complicated, it contains a con-
siderable amount of information. Furthermore, if we restrict ourselves to simple slices
through parameter space, this equation is not so complicated.
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Fig. 6. This shows the curve for βv(β0) determined by the condition Z2 = 0 (α0 = αv =
γv = 0, γ0 = .1). This gives the lower limit on the value of βv. The upper curve is found by
numerically solving the full set of linearized differential equations. The lower curve is found by using
the high frequency approximation. Note that by the time we see significant disagreement between the
numerical and asymptotic results, βv > .5, which is clearly out of the range of applicability of the
high frequency approximation.

7. Finding real configurations. We will not propose any specific configura-
tions of magnets in this paper. However, we would at least like to explain how one
can theoretically find configurations of magnets that yield stable equilibria. We will
illustrate the procedure for the case where the only time varying term is Bv and the
steady coupling term B0 is set to zero.

We assume that the top has several systems of axisymmetric multipoles that
are, in general, displaced from the center of mass of the top. We assume that each
system of magnets on the top can be approximated as a linear combination of dipoles,
quadrapoles, and octapoles. It should be pointed out that a ring of finite thickness
can be well approximated as a dipole plus an axisymmetric octopole.

We assume that the steady fields are produced by one or more axisymmetric rings
of axially magnetized material. These rings in the base can either be approximated
as infinitesimally thin rings that have a prescribed magnetization per unit length
P0, or they can be considered as rings of finite thickness that have a prescribed
magnetization per unit volume. If we approximate them as being infinitesimally thin,
then to actually build such a ring, we prescribe a magnetization per unit volume M0

and a cross sectional area S for the ring such that SM0 is equal to P0.
We assume that the alternating fields are produced by one or more loops of wires

that are carrying sinusoidally oscillating currents.
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Fig. 7. This shows the curve for βv(γ0) (for α0 = αv = γv = 0 and βv = .05) determined by
the condition Z2 = 0. This gives the lower limit on the value of βv. The upper curve (for large
values of γ0) is found by numerically solving the full set of linearized differential equations. The
lower curve is found by using the high frequency approximation. Note that the agreement between
the numerical and asymptotic results is excellent provided γ0 < .1. Beyond this point, the agreement
is still quite good, even though we are pushing the limits of the high frequency approximation.

For a given configuration of magnets it is a straightforward (though tedious)
exercise to compute the parameters A, B, C, and L (the lift). We have, in fact,
carried out this procedure, but we will just briefly outline it here.

All of the dynamical parameters can be computed if we know the first few terms
of the magnetic potential about the equilibrium position of any magnet on the top.
In order to find the multidimensional Taylor series, it is only necessary to have the
Taylor series on the axis of symmetry. This is because for an axisymmetric field the
Taylor series on the axis is sufficient to generate all of the terms in the spherical
harmonic expansion of the field. For axisymmetric rings and coils, the Taylor series of
the potential on the axis of symmetry is easily computed. This is a very brief outline
of how one can compute the dynamical coefficients for quite complicated systems of
magnets on the base and the top.

This means that the forward problem of determining whether a given configura-
tion is stable or not can be solved. For a given configuration we can compute both
the steady and periodically varying dynamical constants and the lift. If the time
varying component of the lift is not zero, or the steady lift term does not balance
the force of gravity, then we do not have a good configuration. Assuming these hold,
we can compute both the steady and time varying components of the dimensionless
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parameters α, β, and γ and use Floquet theory to determine if the configuration is,
in fact, stable.

If we could use arbitrarily large values of the magnetization per unit volume M0,
we could easily find configurations of magnets that give stable equilibrium. In order
to do this, we could specify the magnets on the top and the positions of four rings in
the base. For the given mass and moments of inertia of the top, we determine values
of A0, B0, C0, L, and Bv that will give us a stable equilibrium when the center of
mass is at the origin. We now determine magnetizations per unit length Pi that give
us these values of the dynamical parameters. In order to do this we note that if Ai,
Bi, Ci, and Li are the dynamical parameters coming from the ith ring when it has
unit magnetization per unit length, then the total value of A0 is given by

A0 =
∑

PiAi.

Similar expressions hold for B0, C0, and L0. We see that if we have four rings in
the base, we have four linear equations in four unknowns for determining Pi. If
the magnetization M0 is large enough, we are guaranteed of being able to choose a
reasonable cross sectional area Si so that we could actually build the ith ring.

We can carry out a similar procedure for the time varying parameters. Once
again, if the current in the coils can be as large as we need, and we have at least four
coils, we can find systems of coils such that we get any specified values of the time
varying dynamical parameters.

The procedure we have outlined is not quite the one we would want to actually
carry out in practice. In practice we would want to wisely position both the magnets
on the top and the magnets in the base. Furthermore, we would want to look at several
different configurations and choose the one that was the most robust to imperfections
in the placement or strengths of the magnets.

8. Conclusions. We believe we have given a comprehensive analysis of the sta-
bility of an axisymmetric body in a time periodic magnetic field. We have analyzed
the most general configuration possible, taking into account the coupling between the
rotational and translational modes of the top. Our analysis applies to any configura-
tion of magnets, as long as they are axisymmetric, and the time varying parts of the
field are sinusoidal, and all in phase.
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Abstract. In this paper we present an analysis of a new configuration for achieving spin
stabilized magnetic levitation. In the classical configuration, the rotor spins about a vertical axis;
the spin stabilizes the lateral instability of the top in the magnetic field. In this new configuration the
rotor spins about a horizontal axis; the spin stabilizes the axial instability of the top in the magnetic
field.
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1. Introduction. Earnshaw’s theorem [9] implies that it is impossible to achieve
stable static magnetic levitation in a static magnetic field. However, the discovery of
the LevitronTM [7] has shown that it is in fact possible for a spinning top to be in
stable equilibrium in a static magnetic field. We refer to this as spin stabilized mag-
netic levitation. There have been numerous papers analyzing spin stabilized magnetic
levitation [1], [2], [6], [10], [5]. In this paper we extend these results by considering
the case of a rotor that spins about a horizontal axis. Although no such device has
yet been built, a program is currently under way to build one. A sketch of what such
a device might look like is given in Figures 1 and 2. As with the classical LevitronTM,
we anticipate that there will be a high degree of sensitivity in such a device, so that it
may take an adept experimentalist to build one. For this reason we believe that it is
worth presenting the theory even though there is as yet no experimental justification.

Classically, spin stabilized magnetic levitation devices are axisymmetric. In prin-
ciple we could achieve a horizontally spinning device using systems of magnets that
have no symmetry properties at all. However, we choose to consider systems that
have enough symmetry so that equilibrium of forces and torques is guaranteed in all
directions except for the vertical. One such situation (depicted in Figure 1) is the
following:

• The base magnets have reflectional symmetry about the planes y = 0 and
x = 0.

• The rotor is axisymmetric and has reflectional symmetry about its midplane.
• The rotor is placed with its center of mass at (0, 0, z0) and its axis of symmetry
pointing in the direction (1, 0, 0).

We will show that due to the symmetry of this configuration, there are no forces
in the y and x direction when the rotor is placed symmetrically in the field. Similarly,
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Fig. 1. This shows a sketch of what a horizontal spin stabilized magnetic levitation device might
look like. This particular configuration has an axisymmetric rotor with a system of magnets that
has reflectional symmetry about its midplane. The magnets in the base have reflectional symmetry
about the planes y = 0 and x = 0.

Fig. 2. This is a schematic of a second type of symmetry for achieving horizontal spin sta-
bilized magnetic levitation. This particular configuration has an axisymmetric rotor with a system
of magnets that is antisymmetric about its midplane. The magnets in the base have reflectional
symmetry about the plane y = 0 and are antisymmetric about the plane x = 0.

there are no torques in any direction. Equilibrium in the z direction can be obtained
by adjusting the height or weight of the rotor.

A similar situation (depicted in Figure 2) exists when the base magnets are an-
tisymmetric about the plane x = 0, and the magnets on the rotor are antisymmetric
with respect to reflections about the midplane of the rotor.

Earnshaw’s theorem implies that this equilibrium position must be unstable if
the rotor is not spinning. When we analyze the stability of a spinning rotor in such
a configuration, we find that the equations for perturbations in the y and z direc-
tions decouple from the perturbations in the axial (x) direction and from the angular
perturbations. This implies that it is not possible for spinning to stabilize the per-
turbations in the y and z directions. If we are going to stabilize this configuration by
spinning the rotor, the rotor must be unstable to perturbations in the axial direction
(in the absence of spin). In certain situations we can stabilize the perturbations in
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the axial direction by spinning the rotor. As with the vertically spinning systems,
there is an upper and lower spin rate for stable equilibrium.

We would like to emphasize that for spin stabilized magnetic levitation of a ver-
tically spinning rotor in an axisymmetric field it is not possible to stabilize the axial
direction by spinning. This means that in the absence of spin, the system is stable ax-
ially, and unstable laterally. This is exactly the opposite of horizontal spin stabilized
systems that we discuss in this paper.

We now give an outline of the rest of this paper. In section 2 we discuss the sym-
metry properties of these configurations. In section 3 we show that these properties
imply that when the rotor is placed symmetrically in the field, all of the forces and
torques vanish except for the force in the vertical direction. In section 4 we derive
the equations governing the linear stability of the equilibrium. In section 5 we give
simple necessary conditions for stability, a simple stability condition similar to the
adiabatic approximation made in [1], and a quartic equation that can be solved to
determine the upper and lower spin rates. In section 6 we discuss how to compute
the dynamical parameters in the linear stability equations for a given configuration
of magnets. In section 7 we discuss how to find configurations of magnets that have
the desired stability properties. We give our conclusions in section 8.

2. Symmetry properties. We assume that the rotor and its magnets are ax-
isymmetric, that in equilibrium it is aligned with its axis of symmetry in the x di-
rection, and that it spins about the x axis. In equilibrium its center of mass is at
x = (0, 0, z0). We consider two different situations:

• Systems where the supporting magnets produce a potential that is antisym-
metric with respect to a reflection about the plane x = 0 and symmetric with
respect to a reflection about the plane y = 0. In this case we assume that the
magnets on the rotor are antisymmetric with respect to reflections about the
midplane.

• Systems where the supporting magnets produce a potential that is symmetric
with respect to reflections about the planes x = 0 and y = 0. In this case
we assume that the magnets on the rotor are symmetric with respect to a
reflection about the midplane.

We will show that in both of these situations when the center of mass of the rotor
is at y = 0, x = 0 and the axis of symmetry of the rotor is aligned in the x direction,
we are guaranteed of having no forces in the y or x direction and no torques on the
rotor. By suitably adjusting the weight of the rotor, or the strengths of the magnets,
we can make it so that the force in the z direction balances the force of gravity, which
we assume points in the z direction.

The first of these symmetries can be constructed by building a rotor with two
dipoles on the axis of symmetry, symmetrically located about the midplane, and both
pointing in the same direction along the axis of symmetry. In this case a system
of supporting magnets having the proper symmetry could consist of magnets in a
plane z = constant all pointing in the z direction. In this case any supporting mag-
net at (x0, y0, z0) would have companion magnets at (±x0,±y0, z0). The dipole at
(x0,−y0, z0) would be in the same direction as the first dipole, and the dipoles at
(−x0,±y0, z0) would be in the opposite direction. This is just one example of how to
achieve this symmetry. More generally we could have the magnets in the base have
the dipoles pointing in arbitrary directions as long as their companion magnets have
been appropriately reflected.
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The second of these symmetries can be constructed by building a rotor with
two dipoles on the axis of symmetry, symmetrically placed about the midplane, and
pointing in opposite directions along the axis of symmetry. In this case a system of
supporting magnets having the proper symmetry could consist of magnets in a plane
z = constant all pointing in the z direction. In this case any supporting magnet
at (x0, y0, z0) would have companion magnets at (±x0,±y0, z0). All of the magnets
would have their dipoles pointing in the same direction. Once again, this is just one
way of achieving systems with this symmetry.

Since the rotor is axisymmetric, the energy of the rotor in an arbitrary magnetic
field can be written as

Energy = U(x, d),

where x = (x, y, z) is the center of mass of the rotor and d = (dx, dy, dz) is a unit
vector pointing in the direction of the axis of symmetry. The energy satisfies

∇2
xU = 0,

where ∇2
x is the Laplacian with respect to the variable x.

The energy of systems where the potential is antisymmetric with respect to re-
flections about the x axis satisfy the following symmetry properties:

U(x, y, z, dx, dy, dz) = U(−x, y, z, dx,−dy,−dz),(1a)

U(x, y, z, dx, dy, dz) = U(x,−y, z, dx,−dy, dz),(1b)

U(x, y, z, dx, dy, dz) = −U(x, y, z,−dx,−dy,−dz).(1c)

Systems where the potential is symmetric with respect to reflections about the x
axis satisfy the identical symmetry properties.

2.1. Examples illustrating the symmetry properties. These symmetry
properties become clearer if we consider special cases of such systems. Suppose we
have a rotor that has two equal dipoles on the axis of symmetry, each pointing in the
direction of the axis of symmetry. We suppose that the magnets are placed symmet-
rically a distance δ/2 from the center of mass. When the rotor gets displaced and
rotated, one of the dipoles will be located at x+ = x + δ/2d and the other one at
x− = x− δ/2d. The dipole moment of the magnet at x+ will be m+ = m0d, and the
moment at x− will be m− = m0d. The total magnetic energy of the rotor will be

U(x, d) = m0

(
d · ∇φ(x+) + d · ∇φ(x−)

)
.

It can be verified that assuming that φ(x, y, z) is symmetric in y and antisymmet-
ric in x, the energy U(x, d) satisfies the symmetry properties stated in (1). Note that
these symmetry properties would hold for more complicated systems, such as rotors
having more than one pair of symmetrically placed dipoles or symmetrically placed
rings.
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An example illustrating the second sort of symmetry comes from a rotor that
once again has symmetrically placed dipoles, but in this case the dipoles are equal
and opposite to each other. In this case the energy can be written as

U(x, d) = m0

(
d · ∇φ(x+)− d∇φ(x−)

)
.

Once again it can be verified that if φ(x, y, z) is symmetric in x and y, then the energy
satisfies the symmetry properties (1).

3. Equilibrium. We will now show that assuming our system of magnets and
the rotor satisfy the symmetry properties of the last section, we can easily find equi-
librium configurations. In particular, we will show that if we place the rotor so that
its center of mass is at (0, 0, z0) and its axis of symmetry is pointing in the direction
(1, 0, 0), then there is no torque on the rotor and the only component of force is in the
z direction. By appropriately adjusting the weight or the strengths of the magnets,
we can make it so that the force of gravity balances this magnetic force.

The force and torque on the rotor can be computed using

F = −∇xU(x, d),

τ = −d×∇dU(x, d).

Here, ∇x is the gradient with respect to x, and ∇d is the gradient with respect to d.
We can derive these formulas using generalizations of the derivations for the force

and torque on a point dipole [3]. The principle of virtual work tells us that the change
in energy when we move the center of mass without rotating it is given by

δU = −F · δr,

where F is the force on the top and δr is the change in the center of mass of the top.
Since we can write δU = ∇xU · δr, we see that

∇xU · δr = −F · δr.

Since this must hold for all values of δr, we see that

F = −∇xU.

On the other hand, if we rotate the body about the axis e by an angle δθ, then
the principle of virtual work requires that the change in energy is given by

δU = −τ · eδθ.

When we rotate the body about e by δθ, the change in the unit vector d is given by
δd = e× dδθ. We see that

δU = ∇dU · δd = ∇dU · (e× d)δθ = (d×∇dU) · eδθ.

When we equate this expression to the expression from the principle of virtual work,
and require that it hold for all values of e and θ, we get

τ = −d×∇dU.
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The symmetry properties of the energy show that for both the antisymmetric and
symmetric cases we have

U(x, 0, z, 1, 0, 0) = U(−x, 0, z, 1, 0, 0),

U(0, y, z, 1, 0, 0) = U(0,−y, z, 1, 0, 0).

When the rotor is placed symmetrically in the field, the forces Fx and Fy in the
x and y directions satisfy

Fx(0, 0, z, 1, 0, 0) = −∂U(0, 0, z, 1, 0, 0)

∂x
= 0,

Fy(0, 0, z, 1, 0, 0) = −∂U(0, 0, z, 1, 0, 0)

∂y
= 0.

To show that the torques vanish, we substitute x = 0, y = 0 into the symmetry
property U(x, y, z, dx, dy, dz) = U(−x, y, z, dx,−dy,−dz) to get

U(0, 0, z, 1, dy, dz) = U(0, 0, z, 1,−dy,−dz).

This shows that the energy at x = y = 0 is an even function of dy and dz, and
hence the derivatives with respect to dy and dz must vanish. Using the fact that
τ = −d×∇dU we see that

τ(0, 0, z, 1, 0, 0) = 0.

We see that based on the symmetry of our problem, if we put the rotor so that
its center of mass is at x = y = 0, so that its axis of symmetry is pointing in the x
direction, there will be no forces in the x or y directions and no torques at all.

4. The linearized equations of motion. We describe the kinematics of the
rotor in a manner similar to [6]. In our discussion the coordinates (x, y, z) refer to
coordinates fixed in space. We assume that the body is axisymmetric with a moment
of inertia of I3 about the axis of symmetry and I1 about the other two principal axes.

We will orient the body by rotating about the z axis by θ, the y axis by φ, and
then the x axis by ψ. If the rotor is spinning about the x axis with angular velocity
ω0, then a small perturbation to this state gives approximate angular momenta Ly
and Lz of

Ly = I1φ̇+ I3ω0θ,

Lz = I1θ̇ − I3ω0φ.

These formulas can be derived rigorously by expressing the angular momenta in
terms of the angular variables and their derivatives and then assuming that θ and
φ are small. They also have a simple intuitive interpretation. The expression for
Ly consists of two terms. The first term is the angular momentum we would get
if ω0 were zero and the body were spinning about the y axis. The second term is
the angular momentum we would get if the body kept spinning about the axis of
symmetry with angular velocity ω0 but was slowly tilted by an amount θ about the
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x axis. As a result of this tilting some of the angular momentum that was initially in
the x direction gets projected onto the y axis. A similar interpretation can be given
for the angular momentum in the z direction.

The linearized equations of motion can be written

mẍ = Fx(x, y, z, θ, φ),

mÿ = Fy(x, y, z, θ, φ),

mz̈ = Fz(x, y, z, θ, φ),

I1θ̈ − I3ω0φ̇ = τz(x, y, z, θ, φ),

I1φ̈+ I3ω0θ̇ = τy(x, y, z, θ, φ).

In the linear approximation, the forces and torques are linear functions of (x, y, z,
θ, φ). In the linear approximation, we have

d = (dx, dy, dz) = (1, θ,−φ).

Also, in the linear approximation the forces and torques are derivable from a quadratic
potential. The symmetry properties show that many of the terms in the quadratic po-
tential must be missing. For example, the fact that U(x, y, z, dx, dy, dz) = U(x,−y, z,
dx,−dy, dz) implies that the Taylor series expansion of the energy cannot have any
terms of the form xy, yz, yφ, xθ, zθ, or θφ. The fact that U(x, y, z, dx, dy, dz) =
U(−x, y, z, dx,−dy,−dz) implies that we cannot have any terms of the form xy, xz,
yφ, yθ, zφ, or zθ. Using these symmetry properties we conclude that the linearized
equations of motion are of the form

mÿ +A1y = 0,

mz̈ +A2z = 0,

mẍ−Ax−Bφ = 0,

I1θ̈ − I3ω0φ̇− C1θ = 0,

I1φ̈+ I3ω0θ̇ − C2φ−Bx = 0.

Note that the equations for y and z decouple from the other equations. This
means that in order to have stability we must have A1 and A2 both be bigger than
zero. In other words, the system would have to be stable to lateral perturbations if
the rotor were not spinning. The fact that ∇2

xU = 0 (or Earnshaw’s theorem) implies
that A1 + A2 = A, and hence the system must be unstable to axial perturbations if
the rotor is not spinning.
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4.1. The dimensionless equations of motion. We now introduce the dimen-
sionless variables

x =
√
I1/mx̂,

t =
√
m/At̂.

In terms of these dimensionless variables, we get the dimensionless equations
(after dropping the hats for notational convenience)

ẍ− x−
√
Λφ = 0,(2a)

θ̈ − Ωφ̇− Γ1θ = 0,(2b)

φ̈+Ωθ̇ − Γ2φ−
√
Λx = 0.(2c)

Here we have introduced the dimensionless parameters

Γ1 =
mC1

I1A
,(3)

Γ2 =
mC2

I1A
,(4)

Λ =
mB2

I1A2
,(5)

Ω2 =
I2
3ω

2
0m

I2
1A

.(6)

5. The stability of the equilibrium. We now analyze the stability of the
system of equations (2). In the first subsection we compute the characteristic equation
governing the stability and give some necessary conditions for stability. In the next
subsection we carry out an analysis assuming that Γ1, Γ2, and Λ are all large. This
analysis gives very simple criteria for stability, and we believe it is similar to making
the adiabatic assumption as in [1] (see the discussion in Appendix B). In the next
subsection we use results from the theory of polynomials that allow us to predict the
exact upper and lower spin rates by solving a quartic equation. This is similar to the
procedure carried out in [2] in the analysis of the vertically spinning LevitronTM.

5.1. The characteristic equation and its properties. We now assume so-
lutions of the form eiσt in the linearized dynamical equations. This leads to the
characteristic polynomial

(σ2 + 1)
(
(σ2 + Γ1)(σ

2 + Γ2)− Ω2σ2
)− Λ(σ2 + Γ1) = 0.(7)
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Expanding this we get

G(q,Ω) = q3 + q2
(
1 + Γ1 + Γ2 − Ω2

)
+ q

(
Γ1 + Γ2 + Γ1Γ2 − Λ− Ω2

)
+ Γ1Γ2 − ΛΓ1

= 0,(8)

where

q = σ2.

In order for our system to be stable, all of the roots of (8) must be real and positive.
Descarte’s theorem [8] implies that for an equation of the form z3 + px2 + qz + r = 0
to have all real and positive roots, it is necessary that p < 0, q > 0, and r < 0.
Furthermore, if all of the roots are real, then these conditions are both necessary and
sufficient conditions for all of the roots to be positive. This, along with the condition
that A > 0 gives us several necessary conditions for stability:

Ω2 > 1 + Γ1 + Γ2,(9a)

Γ1 + Γ2 + Γ1Γ2 − Λ > Ω2,(9b)

ΛΓ1 > Γ1Γ2,(9c)

Λ > 0.(9d)

The last of these conditions is the requirement that A > 0 in order to have lateral
stability. As with the vertically spinning spin stabilized magnetic levitation, we see
that there is both an upper and a lower value of Ω for stability.

5.2. Asymptotic stability analysis. We can gain considerable insight into
these equations by analyzing their behavior when Γ1, Γ2, and Λ are all large. We
claim that this is similar to making the adiabatic approximation as in [1]. We elab-
orate on the connection between our asymptotic stability criterion and the adiabatic
approximation in Appendix B.

To be precise, we assume that

Λ = λ/ε2,

Γ1 = γ1/ε
2,

Γ2 = γ2/ε
2,

Ω = ω/ε.

If we substitute these expression into (7), multiply by ε4, and set ε = 0, we get the
equation

σ2γ2 = λ− γ2.
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This gives us two roots of our 6th order polynomial. We can have only positive
solutions to σ2 if

γ2 > 0

and

λ− γ2 > 0.

We get the four other roots by assuming that σ = σ̂/ε. This gives us the equation

σ̂2
(
(σ̂2 + γ1)(σ̂

2 + γ2)− Ω2σ̂2
)
= 0.

After factoring out σ̂2 this is the characteristic equation for a spinning rotor in a
harmonic potential:

(σ̂2 + γ1)(σ̂
2 + γ2)− Ω2σ̂2 = 0.

A simple application of the quadratic equation shows that in order for this to have all
real roots we must have Γ1Γ2 > 0, which along with our previous stability criterion
requires that both Γ1 and Γ2 be positive. We must also have Γ1 + Γ2 − Ω2 < 0 and
(Γ1 +Γ2 −Ω2)2 − 4Γ1Γ2 > 0. By choosing Ω large enough we can satisfy all of these
criterion.

We can give a simple interpretation of these stability conditions. If Γ1, Γ2, and
Λ are large, and the system is not responding too quickly, (2b) implies that

Γ2φ+
√
Λx = 0.

This is equivalent to saying that as the rotor moves around, it orients itself so that
there is no torque on it. This gives us the expression φ = −√

Λx/Γ2. When we
substitute this into (2a) we get

ẍ+ x(Λ/Γ2 − 1) = 0.

We see that this will be a stable harmonic oscillator provided Λ > Γ2. This is the
first of our asymptotic stability conditions. In order to satisfy this condition we must
have Γ2 > 0, which implies that the rotor would want to flip over in the absence of
spin.

Our second criterion is the condition that we are spinning the rotor fast enough
that it will not flip over. To analyze this mode we have assumed that σ is of order
1/ε. In this case, (2a) implies that x is small compared to φ. This means that we can
solve (2b) and (2c) ignoring x. This is equivalent to considering a rotor spinning in a
potential where we ignore the translational energy. This leads to our second stability
condition.

The asymptotic analysis we just presented does not predict the existence of an
upper spin rate. In order to predict the upper spin rate we once again assume that
Γ1, Γ2, and Λ are large. We will see that if Ω is too large, the eigenvalues that are of
order one will eventually become unstable.

Assuming that σ is order unity and that all of our parameters are large, our
eigensystem can be approximated by

(σ2 + 1)x+
√
Λφ = 0,
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−iΩσφ− Γ1θ = 0,

iσΩθ − Γ2φ−
√
Λx = 0.

These equations are obtained by ignoring the second derivatives of θ and φ in (2).
They are an extension of the results we have already presented where we ignore all
derivatives of these quantities.

These equations imply that

(σ2 + 1)
(
Γ1Γ2 − Ω2σ2

)− Γ1Λ = 0.

This is a quadratic equation for σ2. We need this equation to have positive real
roots. In order for this to be so we must have Γ1Γ2 > Ω2, Λ > Γ2, and

(z − Γ2)
2 − 4z(Λ− Γ2) > 0,

where

z =
Ω2

Γ1
.

This gives a quadratic equation in z whose roots are

z± = 2Λ− Γ2 ±
√
(2Λ− Γ2)2 − Γ2

2.(10)

In order to have real roots we must have z < z− or z > z+. However, if z > z+, we
cannot satisfy the other inequalities necessary to have positive real roots. It follows

that we must have Ω2

Γ1
< z−. This is the asymptotic prediction for the upper spin

rate. Note that assuming that Γ1, Γ2, and Λ are of order 1/ε2, this upper limit on
the spin rate is also of order 1/ε2. On the other hand, the lower spin rate is on the
order of 1/ε. It follows that as we make ε smaller, the ratio of the upper and lower
spin rate can be made very large.

We will now collect all of our results from the asymptotic stability analysis. As-
suming that Γ1 = γ1/ε, Γ2 = γ2/ε, Λ = λ/ε2, we see that necessary and sufficient
conditions for stability are

Γ1 > 0,(11a)

Γ2 > 0,(11b)

Λ > Γ2,(11c)

Ω2 > Γ1 + Γ2 + 2
√
Γ1Γ2,(11d)

Ω2 < Γ1z−.(11e)

Once again we emphasize that if Γ1, Γ2, and Λ are order 1/ε2, then the lower spin
rate is of order 1/ε and the upper spin rate is of order 1/ε2. This shows that as we
keep the ratios of Γ1, Γ2, and Λ fixed but let the quantities get large, the ratio of the
upper and lower spin rates also gets large.

In the next section we will show that by finding the roots of a fourth order
polynomial we can find exact expressions (that must be computed numerically) for
the upper and lower spin rates. Figure 3 shows that our asymptotic estimates for the
upper and lower spin rates are in fact quite accurate even for moderate values of Γ1,
Γ2, and Λ.
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Fig. 3. This shows the curves for the upper and lower limits on the spin rate Ω as a function of
ε, where Γ1 = Γ̂1/ε2, Γ2 = Γ̂2/ε2, and Λ = Λ̂/ε2 (Γ̂1 = 1., Γ̂2 = 1.5, Λ̂ = 2). This figure compares
the numerical bounds on the upper and lower spin rate to the asymptotic approximation to these
bounds given in (11).

5.3. Upper and lower bounds on the spin rate. We will now find an exact
expression for determining the upper and lower spin rates. In order to do this we
first note that in a region of stability we must have ΛΓ1 > Γ1Γ2. This is both one
of our asymptotic stability criteria and one of the conclusions in (9) from Descarte’s
theorem. This implies that we can never have roots of our characteristic equation
G(q,Ω) = 0 (defined in (8)) with q = 0. It follows that if Ω0 is at a boundary of a
stability region, then G(q,Ω0) must have all real roots, but a small perturbation of
Ω will yield complex roots. This implies that on a boundary of a region of stability
there must be a root q0 such that both G(q0,Ω) and G′(q0,Ω) = dG

dq vanish.
We will write

G(q,Ω) = q3 + (D − Ω2)q2 + (E − Ω2)q + F,

where

D = 1 + Γ1 + Γ2,

E = Γ1 + Γ2 + Γ1Γ2 − Λ,

F = Γ1Γ2 − ΛΓ1.

On the boundary of stability G and G′ must have a common root or, equivalently,
G must have a multiple root. A necessary and sufficient condition that a polynomial
have multiple roots is that the discriminant vanishes. This is equivalent to saying
that the resultant of G and G′ vanishes. Suppose we have two polynomials

g(x) = g0x
3 + g1x

2 + g2x+ g3

and

h(x) = h0x
2 + h1x+ h2.
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A necessary and sufficient condition that these two polynomials have roots in common
is that the resultant vanish. The resultant is the determinant of the following matrix:

R =




g3 g2 g1 g0 0
0 g3 g2 g1 g0

h2 h1 h0 0 0
0 h2 h1 h0 0
0 0 h2 h1 h0


 .

When we substitute the polynomials G and G′ into this expression we find (with
the help of Mathematica) that the resultant can be written as

ψ(Ω) = Ω8 +K6Ω
6 +K4Ω

4 +K2Ω
2 +K0,(12)

K6 = (32− 16D − 16E + 32F )/8,

K4 = (8D2 − 96E + 32DE + 8E2 + 144F − 96DF )/8,

K2 = (−16D2E + 96E2 − 16DE2 − 144DF + 96D2F − 144EF )/8,

K0 = (8D2E2 − 32E3 − 32D3F + 144DEF − 216F 2)/8.

This is a quartic polynomial in Ω2. We have shown that on the boundary of
stability ψ(Ω) must vanish, but we have not shown that any root of this equation will
yield a value of Ω that is on the boundary of stability. In Appendix A we apply the
theory of Hankel matrices [4] to show that the polynomial G(q,Ω) will have all real
roots if and only if ψ(Ω) < 0. We will further show that G(q,Ω) will have all positive
real roots if and only if ψ(Ω) < 0, and all of the inequalities in (9) are satisfied.

If we compute the roots of the polynomial ψ(Ω), we find that there are roots that
do not satisfy the conditions in (9). If we limit ourselves to roots that satisfy the
conditions in (9), we find that the roots of ψ(Ω) do in fact give the upper and lower
limits on the spin rates. Figure 3 shows the numerically computed upper and lower
spin rates and compares them to the previously derived asymptotic estimates.

6. Computing the dynamical constants. In this section we will explain how,
for a given configuration of magnets on the rotor and in the base, one can compute
the dynamical constants A1, A2, A, B, C1, C2, and B that are needed in order to
compute the stability of the equilibrium. We also show how to compute the lift L.

For simplicity we will assume that the magnets on the rotor can be approximated
by dipoles. We could extend this analysis so that the magnets on the rotor were
approximated as a combination of axisymmetric dipoles, quadrapoles, and octopoles.
However, that would make some of our results quite tedious. We will begin by ana-
lyzing the case where the rotor is in an antisymmetric potential. That is, we assume
that the potential f(x, y, z) satisfies

f(x, y, z) = f(x,−y, z),

f(x, y, z) = −f(−x, y, z).
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We will assume that when the rotor is oriented in its equilibrium position, it has
dipoles at (±δ/2, 0, z0), both of magnitude MR and both pointing in the direction
(1, 0, 0). We will compute the dynamical constants when we have just a single pair
of dipoles on the rotor. If we have more than one pair, then the constants can be
computed by summing over all the different pairs.

In order to compute the force and torques on the rotor as it gets displaced from
its equilibrium, we need to compute the Taylor series (up to the cubic terms) of the
magnetic potential about the points (±δ/2, 0, z0):

f(x+δ/2, y, z0+z) = α0x+α1z+β0xz+
1

2
β1(2x

2−y2−z2)+
1

2
β2(y

2−z2)+Γ+(x, y, z),

Γ+(x, y, z0 + z) = γ0

(
x3/3− xy2/2− xz2/2

)
+ γ1

(
xy2/2− xz2/2

)
+ γ2(z

3/6− x2z/2) + γ3(z
3/6− y2z/2) + · · · .

Around the point (−δ/2, 0, z0) we have the Taylor series expansion

f(x−δ/2, y, z0+z) = α0x−α1z+β0xz− 1

2
β1(2x

2−y2−z2)− 1

2
β2(y

2−z2)+Γ+(x, y, z),

Γ−(x, y, z0 + z) = γ0

(
x3/3− xy2/2− xz2/2

)
+ γ1

(
xy2/2− xz2/2

)
− γ2(z

3/6− x2z/2)− γ3(z
3/6− y2z/2) + · · · .

This is the most general form for the Taylor series (up to cubic terms) of a function
f(x, y, z) that is antisymmetric in x and symmetric in y.

The dynamical constants can be computed with the following procedure, which
is easily implemented in Mathematica.

• Compute the orientation of the dipole which for small angles is approximated
by d = (1− θ2/2− φ2/2, θ,−φ).

• Set the position of the right dipole to x+ = xcm+dδ/2 and the dipole moment
to m+ = MRd.

• Set the position of the left dipole to x− = xcm−dδ/2 and the dipole moment
to m− = MRd.

• Compute the magnetic energy U = m+ · ∇f(x+) +m− · ∇f(x−).
• Calculate the force F = −∇U .
• Compute the torques, which in the linear approximation can be written as
τz = −∂U

∂θ and τy = −∂U
∂φ .

• Set xcm = ε(x̂, ŷ, ẑ), θ = εθ̂, and φ = εφ̂.
• Expand the forces and torques up to order ε.
• Set the lift L equal to the zeroth order term in the force Fz.
• Set −A1 to the term in Fy that is linearly proportional to y, −A2 to the term
in Fz that is linearly proportional to z, and A equal to the term in Fx that
is linearly proportional to x. Set B equal to the term in Fx that is linearly
proportional to φ.

• Set C1 and C2 to the terms in τz and τy that are linearly proportional to θ
and φ, respectively.

After carrying out this procedure, we arrive at the following expressions for the
dynamical constants:

L = −2m0β0,(13)



2190 L. A. ROMERO

A1 = 2m0(γ1 − γ0),(14)

A2 = −2m0(γ0 + γ1),(15)

A = −4m0γ0,(16)

B = m0(2β0 − γ2d),(17)

C1 = 2m0α0 +m0d (4β1 − 2β2) +m0d
2(γ0 − γ1)/2,(18)

C2 = 2m0α0 +m0d (4β1 + 2β2) +m0d
2(γ1 + γ0)/2.(19)

If we have several systems of dipoles on the rotor, the dynamical constants are
the sum of the dynamical constants for each system of magnets.

It should be pointed out that we get the exact same formula for systems with
potentials that are symmetric with respect to reflections about the x axis and whose
rotor magnets are also symmetric with respect to reflections about the midplane.
In this case we get the same expansion of the field about the point (δ/2, 0, z0), but
the expansion about (−δ/2, 0, 0) is exactly opposite that given for the antisymmetric
case. If we define our fields using the Taylor expansion about (δ/2, 0, 0), the dynamical
constants have the exact same values as those given for the antisymmetric case.

7. Finding realizable configurations. So far we have discussed how to com-
pute the dynamical constants assuming that we have a given configuration of magnets.
We now discuss how one could in fact find a given configuration of magnets that gives
the desired dynamical constants. We will present at least one way of going about this
for systems that have potentials with reflectional symmetry about the x axis.

We will suppose that the base magnets consist of 4N dipoles all pointing in the
z direction. The positions of the dipoles are given by

p
i
= (±ai,±bi, ci), i = 1, N,

and the magnetizations are given by

Mi = (0, 0, di), i = 1, N.

For each value of i (four symmetrically placed magnets in the base), we can
compute the dynamical constants A1(i), A2(i), A(i), B(i), C1(i), C2(i), and L(i)
for di = 1. The values of the dynamical parameters for the whole system can be
obtained by summing over the different sets of magnets multiplied by the strengths
of the dipoles. For example,

L =
N∑
i=1

diL(i).

If we have 6 or more systems of magnets, we can choose the strengths di so that
we get any desired values of the parameters that we want. This means that in theory
we can specify the desired values of A1, A2, L, Γ1, Γ2, and Λ that we would like, and
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thus the values of A, B, C1, and C2 that we would like. Once these are known we
can determine the dipole strengths of the magnets that give these parameters.

The procedure we have outlined is meant to show that these configurations can
be realized in theory. It does not address how to actually find a good configuration.
For example, it is possible that the configurations could be very sensitive to small
variations in the positions of the magnets or to their strengths. We have carried out
some more elaborate forms of this procedure in order to find possible configurations.
We do not feel that it is appropriate to give any specific examples until we have
analyzed them for their robustness.

8. Conclusions. We have theoretically demonstrated the existence of what is a
distinctly different form of spin stabilized magnetic levitation. As with the traditional
set up for spin stabilized magnetic levitation, we expect that most configurations will
have a high degree of sensitivity to the placement of the magnets. For this reason
we believe that it is necessary to come up with some measure of the robustness of a
configuration, and to search over a large class of configurations trying to find robust
configurations.

Although nobody has ever used spin stabilized magnetic levitation for anything
other than a scientific toy, it is possible that this principle could in fact have practical
applications. It is hoped that by showing that the classical vertical configuration is
not the only possibility, this paper may contribute to the eventual practical use of
this principle.

Appendix A. We have shown that on the boundary of a region of stability, we
must have ψ(Ω) = 0. In this appendix we will show that the condition ψ < 0 is a
necessary and sufficient condition for G(q,Ω) to have all real roots. To do this we
apply the method of Hankel matrices presented in [4]. In [4], this method is explained
for arbitrary polynomials; to simplify the notation, we will limit ourselves to cubic
polynomials. Suppose we have a cubic polynomial of the form

a0x
3 − a1x

2 + a2x− a3.

The theory we present allows us to determine the number of real roots of this poly-
nomial.

Suppose (x0, x1, x2) are the roots to this polynomial (which of course we do not
know). We begin by computing the Newton polynomials

σk = xk0 + xk1 + xk2 .

Even though we do not know the roots to the polynomial, we can compute the Newton
polynomials. This follows from the fact that the σk’s are symmetric polynomials in
the variables xi and hence can be written as polynomials in the coefficients aj of our
polynomial. The theory of how to do this is explained in [8]. We will need to know
σk up to k = 4. We can compute these recursively using

σ0 = 3,

σ1 = a1,

σ2 = a1σ1 − 2a2,
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σ3 = a1σ2 − a2σ1 + 3a3,

σ4 = a1σ3 − a2σ2 + a3σ1.

We now form the Hankel matrix:

H =


 σ0 σ1 σ2

σ1 σ2 σ3

σ2 σ3 σ4


 .

The number of real roots is equal to 3−2V , where V is the number of sign changes
in the sequence D0, D1, D2, where D0 = σ0,

D1 = det

(
σ0 σ1

σ1 σ2

)
,

and

D2 = det(H).

In order to have all real roots all of the determinants D0, D1, and D2 must be
positive. However, for a cubic polynomial, it is not possible to have D1 be negative
while D2 is positive. This can be shown algebraically, or by noting that if this were
the case, then our formula for the number of real roots would yield a negative number
of real roots, which is impossible. It follows that a necessary and sufficient condition
for our cubic polynomial to have all real roots is that the determinant D2 is positive.

When we substitute the coefficients from the polynomial G(q,Ω) into the general
expression for D2, this yields the polynomial −ψ(Ω). It follows that a necessary and
sufficient condition for G(q,Ω) to have all real roots is that ψ(Ω) < 0.

If a polynomial has all real roots, then a necessary and sufficient condition that
all of its roots are positive is that its coefficients alternate in sign. This implies that
our system will be stable if and only if both ψ(Ω) < 0 and all of the inequalities in
(9) are satisfied.

Appendix B. In this appendix we will discuss the relation between the asymp-
totic stability analysis made in section 5.2 (assuming Γ1, Γ2, and Ω are large) and the
adiabatic approximation presented for the vertically spinning LevitronTM in [1]. We
will show that these two approaches give the same results, and we will show that the
conditions that the dimensionless parameters Γ1, Γ2, and Ω be large are equivalent
to the conditions stated in [1] for the adiabatic approximation to hold.

Since the adiabatic approximation in [1] is worked out for a point dipole, we will
now restrict our analysis to that case. That is, we will assume that our rotor only has
a single dipole pointing in the direction of the axis of symmetry. This is an example
of one of our two symmetries that we discussed in section 2.

We begin by applying the adiabatic approximation to our problem. Following [1],
we argue that assuming that the top is fast we can make the approximation

L = I3ω0d.

Here ω0 is the initial spin of the top, and d is the unit vector in the direction of the
axis of symmetry. This assumes that we can ignore all components of the angular
momentum except for the component about the axis of symmetry of the top. As
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pointed out in [1] the fast top approximation holds as long as the spin of the top is
large compared to the precession rate of the top.

Under this fast top approximation, the equation for the change in angular mo-
mentum can be written as

ω0I3ḋ = −m0d×B.

Here m0 is the dipole moment of the dipole on the rotor. In the adiabatic approxi-
mation this equation implies that the quantity

µad = d ·B/ | B |

stays constant. In order for this approximation to hold it is necessary that the rate
of change of the vector d be large compared to the rate of change of the quantity
d ·B/ | B |.

In the adiabatic approximation, the magnetic energy of the rotor can be written
as

Umag = −µad | B | .

This is equivalent to saying that the top is moving in an effective potential that
depends only on the center of mass of the top, not on its orientation. This effective
potential is computed by using the magnetic energy U(x, d) = −m0d · B of the top
but using the fact that d is always pointing in the direction of the magnetic field.
This is clearly equivalent to the approximation made in section 5.2 where we assumed
that the rotor always orients itself so that there is no torque on it and then used this
to get an effective simple harmonic oscillator for the x component.

We would now like to show that the criteria that our parameters Γ1, Γ2, and Ω be
large are equivalent to the criteria given in [1] for the adiabatic approximation to hold.
We will discuss the scaling properties using the dimensionless linearized equations of
motion 2. The precession frequency of the top is given by

Ωprec =

√
Γ1Γ2

Ω2
.(20)

This precession frequency is obtained by ignoring the second derivatives of θ and φ
and the term

√
Λ in (2). The fast top assumption assumes that this precession rate

is small compared to the spin rate of the top. This can be written as

Ω 	 Ωprec.(21)

Another condition stated in [1] for the adiabatic approximation to hold is that
the bobbing frequency of the top be much less than the precession rate of the top.
Physically this means that as the top moves around it can quickly orient itself so
that it is aligned with the direction of the magnetic field. In our case the bobbing
frequency of the top is obtained by ignoring the term

√
Λφ in (2). Since we have

made our equations dimensionless by this bobbing frequency, our bobbing frequency
is unity. The condition that the precession rate is fast compared to the bobbing
frequency can be written as

Ωprec 	 1.(22)
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In order to satisfy both of the conditions in (21) and (22), it is clearly necessary
that Ω 	 1. The condition that Ωprec 	 1 implies that

Γ1Γ2 	 Ω4.

Since Ω is large, this implies that the product Γ1Γ2 must be large. In the case of an
axisymmetric top considered in [1], this would imply that Γ1 = Γ2 	 1.
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